US7287197B2 - Vectoring an interrupt or exception upon resuming operation of a virtual machine - Google Patents
Vectoring an interrupt or exception upon resuming operation of a virtual machine Download PDFInfo
- Publication number
- US7287197B2 US7287197B2 US10/663,205 US66320503A US7287197B2 US 7287197 B2 US7287197 B2 US 7287197B2 US 66320503 A US66320503 A US 66320503A US 7287197 B2 US7287197 B2 US 7287197B2
- Authority
- US
- United States
- Prior art keywords
- fault
- vmm
- delivery
- error code
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 230000007704 transition Effects 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 34
- 230000015654 memory Effects 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 description 16
- 238000013461 design Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000009191 jumping Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
Definitions
- Embodiments of the invention relate generally to virtual machines, and more specifically to handling faults in a virtual machine environment.
- a conventional virtual-machine monitor typically runs on a computer and presents to other software the abstraction of one or more virtual machines.
- Each virtual machine may function as a self-contained platform, running its own “guest operating system” (i.e., an operating system (OS) hosted by the VMM) and other software, collectively referred to as guest software.
- the guest software expects to operate as if it were running on a dedicated computer rather than a virtual machine. That is, the guest software expects to control various events and have access to hardware resources.
- the hardware resources may include processor-resident resources (e.g., control registers), resources that reside in memory (e.g., descriptor tables) and resources that reside on the underlying hardware platform (e.g., input-output devices).
- the events may include internal interrupts, external interrupts, exceptions, platform events (e.g., initialization (INIT) or system management interrupts (SMIs)), and the like.
- the VMM In a virtual-machine environment, the VMM should be able to have ultimate control over the events and hardware resources as described in the previous paragraph to provide proper operation of guest software running on the virtual machines and for protection from and among guest software running on the virtual machines. To achieve this, the VMM typically receives control when guest software accesses a protected resource or when other events (such as interrupts or exceptions) occur. For example, when an operation in a virtual machine supported by the VMM causes a system device to generate an interrupt, the currently running virtual machine is interrupted and control of the processor is passed to the VMM. The VMM then receives the interrupt, and handles the interrupt itself or invokes an appropriate virtual machine and delivers the interrupt to that virtual machine.
- events such as interrupts or exceptions
- FIG. 1 illustrates one embodiment of a virtual-machine environment, in which some embodiments of the present invention may operate
- FIG. 2 is a flow diagram of one embodiment of a process for handling faults in a virtual machine environment
- FIG. 3 illustrates an exemplary format of a VMCS field that stores fault identifying information
- FIG. 4 is a flow diagram of one embodiment of a process for handling a fault in a virtual-machine environment using fault information provided by a VMM.
- the present invention may be provided as a computer program product or software which may include a machine or computer-readable medium having stored thereon instructions which may be used to program a computer (or other electronic devices) to perform a process according to the present invention.
- steps of the present invention might be performed by specific hardware components that contain hardwired logic for performing the steps, or by any combination of programmed computer components and custom hardware components.
- a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer), but is not limited to, floppy diskettes, optical disks, Compact Disc, Read-Only Memory (CD-ROMs), and magneto-optical disks, Read-Only Memory (ROMs), Random Access Memory (RAM), Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), magnetic or optical cards, flash memory, a transmission over the Internet, electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.) or the like.
- a machine e.g., a computer
- a design may go through various stages, from creation to simulation to fabrication.
- Data representing a design may represent the design in a number of manners.
- the hardware may be represented using a hardware description language or another functional description language.
- a circuit level model with logic and/or transistor gates may be produced at some stages of the design process.
- most designs, at some stage reach a level of data representing the physical placement of various devices in the hardware model.
- data representing a hardware model may be the data specifying the presence or absence of various features on different mask layers for masks used to produce the integrated circuit.
- the data may be stored in any form of a machine-readable medium.
- An optical or electrical wave modulated or otherwise generated to transmit such information, a memory, or a magnetic or optical storage such as a disc may be the machine readable medium. Any of these mediums may “carry” or “indicate” the design or software information.
- an electrical carrier wave indicating or carrying the code or design is transmitted, to the extent that copying, buffering, or re-transmission of the electrical signal is performed, a new copy is made.
- a communication provider or a network provider may make copies of an article (a carrier wave) embodying techniques of the present invention.
- FIG. 1 illustrates a virtual-machine environment 100 , in which some embodiments of the present invention may operate.
- bare platform hardware 110 comprises a computing platform, which may be capable, for example, of executing a standard operating system (OS) and/or a virtual-machine monitor (VMM), such as a VMM 112 .
- the VMM 112 though typically implemented in software, may emulate and export a bare machine interface to higher level software.
- Such higher level software may comprise a standard or real-time OS, may be a highly stripped down operating environment with limited operating system functionality, or may not include traditional OS facilities.
- the VMM 112 may be run within, or on top of, another VMM.
- VMMs and their typical features and functionality are well known by those skilled in the art and may be implemented, for example, in software, firmware, hardware or by a combination of various techniques.
- the platform hardware 110 includes a processor 118 and memory 120 .
- Processor 118 can be any type of processor capable of executing software, such as a microprocessor, digital signal processor, microcontroller, or the like. Though only one processor 118 is shown in FIG. 1 , the platform hardware 110 may include one or more such processors.
- Memory 120 can be any type of recordable/non-recordable media (e.g., random access memory (RAM), read only memory (ROM), magnetic disk storage media, optical storage media, flash memory devices, etc.), as well as electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.), any combination of the above devices, or any other type of machine medium readable by processor 118 .
- Memory 120 may store instructions for performing the execution of method embodiments of the present invention.
- the platform hardware 110 can be of a personal computer (PC), mainframe, handheld device, portable computer, set-top box, or any other computing system.
- PC personal computer
- mainframe mainframe
- handheld device portable computer
- set-top box or any other computing system.
- the VMM 112 presents to other software (i.e., “guest” software) the abstraction of one or more virtual machines (VMs), which may provide the same or different abstractions to the various guests.
- FIG. 1 shows three VMs, 130 , 140 and 150 .
- the guest software running on each VM may include a guest OS such as a guest OS 154 , 160 or 170 and various guest software applications 152 , 162 and 172 .
- the guest OSs 154 , 160 and 170 expect to access physical resources (e.g., processor registers, memory and input-output (I/O) devices) within corresponding VMs (e.g., VM 130 , 140 and 150 ) on which the guest OSs are running and to perform other functions.
- physical resources e.g., processor registers, memory and input-output (I/O) devices
- the guest OS expects to have access to all registers, caches, structures, I/O devices, memory and the like, according to the architecture of the processor and platform presented in the VM.
- the resources that can be accessed by the guest software may either be classified as “privileged” or “non-privileged.”
- the VMM 112 facilitates functionality desired by guest software while retaining ultimate control over these privileged resources.
- Non-privileged resources do not need to be controlled by the VMM 112 and can be accessed by guest software.
- each guest OS expects to handle various fault events such as exceptions (e.g., page faults, general protection faults, etc.), interrupts (e.g., hardware interrupts, software interrupts), and platform events (e.g., initialization (INIT) and system management interrupts (SMIs)).
- exceptions e.g., page faults, general protection faults, etc.
- interrupts e.g., hardware interrupts, software interrupts
- platform events e.g., initialization (INIT) and system management interrupts (SMIs)
- IIT initialization
- SMIs system management interrupts
- control may be transferred to the VMM 112 .
- the transfer of control from guest software to the VMM 112 is referred to herein as a VM exit.
- the VMM 112 may return control to guest software.
- the transfer of control from the VMM 112 to guest software is referred to as a VM entry.
- the VMM 112 requests the processor 118 to perform a VM entry by executing a VM entry instruction.
- the processor 118 controls the operation of the VMs 130 , 140 and 150 in accordance with data stored in a virtual machine control structure (VMCS) 126 .
- the VMCS 126 is a structure that may contain state of guest software, state of the VMM 112 , execution control information indicating how the VMM 112 whishes to control operation of guest software, information controlling transitions between the VMM 112 and a VM, etc.
- the VMCS is stored in memory 120 .
- multiple VMCS structures are used to support multiple VMs.
- the VMM 112 may handle the fault itself or decide that the fault needs to be handled by an appropriate VM. If the VMM 112 decides that the fault is to be handled by a VM, the VMM 112 requests the processor 118 to invoke this VM and to deliver the fault to this VM. In one embodiment, the VMM 112 accomplishes this by setting a fault indicator to a delivery value and generating a VM entry request. In one embodiment, the fault indicator is stored in the VMCS 126 .
- the processor 118 includes fault delivery logic 124 that receives the request of the VMM 112 for a VM entry and determines whether the VMM 122 has requested the delivery of a fault to the VM. In one embodiment, the fault delivery logic 124 makes this determination based on the current value of the fault indicator stored in the VMCS 126 . If the fault delivery logic 124 determines that the VMM has requested the delivery of the fault to the VM, it delivers the fault to the VM when transitioning control to this VM.
- delivering of the fault involves searching a redirection structure for an entry associated with the fault being delivered, extracting from this entry a descriptor of the location of a routine designated to handle this fault, and jumping to the beginning of the routine using the descriptor.
- Routines designated to handle corresponding interrupts, exceptions or any other faults are referred to as handlers.
- handlers Routines designated to handle corresponding interrupts, exceptions or any other faults.
- certain faults are associated with error codes that may need to be pushed onto stack (or provided in a hardware register or via other means) prior to jumping to the beginning of the handler.
- the processor 118 may perform one or more address translations, converting an address from a virtual to physical form.
- the address of the interrupt table or the address of the associated handler may be a virtual address.
- the processor may also need to perform various checks during the delivery of a fault. For example, the processor may perform consistency checks such as validation of segmentation registers and access addresses (resulting in limit violation faults, segment-not-present faults, stack faults, etc.), permission level checks that may result in protection faults (e.g., general-protection faults), etc.
- Address translations and checking during fault vectoring may result in a variety of faults, such as page faults, general protection faults, etc.
- Some faults occurring during the delivery of a current fault may cause a VM exit. For example, if the VMM 112 requires VM exists on page faults to protect and virtualize the physical memory, then a page fault occurring during the delivery of a current fault to the VM will result in a VM exit.
- the fault delivery logic 124 addresses the above possible occurrences of additional faults by checking whether the delivery of the current fault was successful. If the fault delivery logic 124 determines that the delivery was unsuccessful, it further determines whether a resulting additional fault causes a VM exit. If so, the fault delivery logic 124 generates a VM exit. If not, the fault delivery logic 124 delivers the additional fault to the VM.
- FIG. 2 is a flow diagram of one embodiment of a process 200 for handling faults in a virtual machine environment.
- the process may be performed by processing logic that may comprise hardware (e.g., circuitry, dedicated logic, programmable logic, microcode, etc.), software (such as that run on a general purpose computer system or a dedicated machine), or a combination of both.
- process 200 is performed by fault delivery logic 124 of FIG. 1 .
- process 200 begins with processing logic receiving a request to transition control to a VM from a VMM (processing block 202 ).
- the request to transition control is received via a VM entry instruction executed by the VMM.
- processing logic determines whether the VMM has requested a delivery of a fault to the VM that is to be invoked.
- a fault may be an internal interrupt (e.g., software interrupt), an external interrupt (e.g., hardware interrupt), an exception (e.g., page fault), a platform event (e.g., initialization (INIT) or system management interrupts (SMIs)), or any other fault event.
- processing logic determines whether the VMM has requested the delivery of a fault by reading the current value of a fault indicator maintained by the VMM.
- the fault indicator may reside in the VMCS or any other data structure accessible to the VMM and processing logic 200 .
- the VMM when the VMM wants to have a fault delivered to a VM, the VMM sets the fault indicator to the delivery value and then generates a request to transfer control to this VM. If no fault delivery is needed during a VM entry, the VMM sets the fault indicator to a no-delivery value prior to requesting the transfer of control to the VM. This is discussed below with respect to FIG. 3 .
- processing logic determines that the VMM has requested a delivery of a fault
- processing logic delivers the fault to the VM while transitioning control to the VM (processing block 206 ).
- Processing logic then checks whether the delivery of the fault was successful (decision box 208 ). If so, process 200 ends. If not, processing logic determines whether a resulting additional fault causes a VM exit (decision box 210 ). If so, processing logic generates a VM exit (processing block 212 ). If not, processing logic delivers the additional fault to the VM (processing block 214 ), and, returning to processing block 208 , checks whether this additional fault was delivered successfully. If so, process 200 ends. If not, processing logic returns to decision box 210 .
- processing logic determines that the VMM has not requested a delivery of a fault, processing logic transitions control to the VM without performing any fault related operations (processing block 218 ).
- processing logic when processing logic needs to deliver a fault to a VM, it searches a redirection structure (e.g., the interrupt-descriptor table in the instruction set architecture (ISA) of the Intel® Pentium® 4 (referred to herein as the IA-32 ISA)) for an entry associated with the fault being delivered, extracts from this entry a descriptor of a handler associated with this fault, and jumps to the beginning of the handler using the descriptor.
- the interrupt-descriptor table may be searched using fault identifying information such as a fault identifier and a fault type (e.g., external interrupt, internal interrupt, non-maskable interrupt (NMI), exception, etc.).
- a fault identifier e.g., external interrupt, internal interrupt, non-maskable interrupt (NMI), exception, etc.
- certain faults are associated with error codes that need to be pushed onto stack (or provided in a hardware register or via other means) prior to jumping to the beginning of the handler.
- the fault identifying information and associated error code are provided by the VMM using a designated data structure.
- the designated data structure is part of the VMCS.
- FIG. 3 illustrates an exemplary format of a VMCS field that stores fault identifying information. This VMCS field is referred to as a fault information field.
- the fault information field is a 32-bit field in which the first 8 bits store an identifier of a fault (e.g., an interrupt or exception), the next 2 bits identify the type of the fault (e.g., external interrupt, software interrupt, NMI, exception, etc.), bit 11 indicates whether an error code (if any) associated with this fault is to be provided to a corresponding handler (by pushing onto the stack, stored in a hardware register, etc.), and bit 31 is a fault indicator that specifies whether a fault is to be delivered to a VM as discussed above.
- a fault e.g., an interrupt or exception
- the next 2 bits identify the type of the fault (e.g., external interrupt, software interrupt, NMI, exception, etc.)
- bit 11 indicates whether an error code (if any) associated with this fault is to be provided to a corresponding handler (by pushing onto the stack, stored in a hardware register, etc.)
- bit 31 is a fault indicator that specifies whether a fault is to be delivered to a
- a second VMCS field is accessed to obtain the error code associated with this fault.
- the second VMCS field is referred to as a fault error code field.
- FIG. 4 is a flow diagram of one embodiment of a process 400 for handling a fault in a virtual-machine environment using fault information provided by a VMM.
- the process may be performed by processing logic that may comprise hardware (e.g., circuitry, dedicated logic, programmable logic, microcode, etc.), software (such as run on a general purpose computer system or a dedicated machine), or a combination of both.
- process 400 is performed by fault delivery logic 124 of FIG. 1 .
- process 400 begins with processing logic detecting an execution of a VM entry instruction by the VMM (processing block 402 ). In response, processing logic accesses a fault indicator bit controlled by the VMM (processing block 403 ) and determines whether a fault is to be delivered to the VM that is to be invoked (decision box 404 ). If not, processing logic ignores the remaining fault information and performs the requested VM entry (processing block 406 ). If so, processing logic obtains fault information from a fault information field in the VMCS (processing block 408 ) and determines whether an error code associated with this fault is to be provided to the fault's handler (decision box 410 ). If so, processing logic obtains the error code from a fault error code field in the VMCS (processing block 412 ). If not, processing logic proceeds directly to processing block 414 .
- processing logic delivers the fault to the VM while performing the VM entry. Processing logic then checks whether the delivery of the fault was successful (decision box 416 ). If so, process 400 ends. If not, processing logic determines whether a resulting additional fault causes a VM exit (decision box 418 ). If so, processing logic generates a VM exit (processing block 420 ). If not, processing logic delivers the additional fault to the VM (processing block 422 ), and, returning to processing block 416 , checking whether this additional fault was delivered successfully. If so, process 400 ends. If not, processing logic returns to decision box 418 .
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Debugging And Monitoring (AREA)
- Storage Device Security (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
Abstract
Description
Claims (26)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/663,205 US7287197B2 (en) | 2003-09-15 | 2003-09-15 | Vectoring an interrupt or exception upon resuming operation of a virtual machine |
PCT/US2004/030387 WO2005029327A1 (en) | 2003-09-15 | 2004-09-15 | Vectoring an interrupt or exception upon resuming operation of a virtual machine |
GB0603362A GB2420207B (en) | 2003-09-15 | 2004-09-15 | Vectoring an interrupt or exception upon resuming operation of a virtual machine |
CN200480026398A CN100585562C (en) | 2003-09-15 | 2004-09-15 | Vectoring an interrupt or exception upon resuming operation of a virtual machine |
DE112004001652.5T DE112004001652B4 (en) | 2003-09-15 | 2004-09-15 | Vectoring an interrupt or an exception when resuming the operation of a virtual machine |
JP2006526436A JP2007506162A (en) | 2003-09-15 | 2004-09-15 | Vector processing of interrupt or execution for return of operation of virtual machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/663,205 US7287197B2 (en) | 2003-09-15 | 2003-09-15 | Vectoring an interrupt or exception upon resuming operation of a virtual machine |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050060703A1 US20050060703A1 (en) | 2005-03-17 |
US7287197B2 true US7287197B2 (en) | 2007-10-23 |
Family
ID=34274309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/663,205 Expired - Fee Related US7287197B2 (en) | 2003-09-15 | 2003-09-15 | Vectoring an interrupt or exception upon resuming operation of a virtual machine |
Country Status (6)
Country | Link |
---|---|
US (1) | US7287197B2 (en) |
JP (1) | JP2007506162A (en) |
CN (1) | CN100585562C (en) |
DE (1) | DE112004001652B4 (en) |
GB (1) | GB2420207B (en) |
WO (1) | WO2005029327A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070074067A1 (en) * | 2005-09-29 | 2007-03-29 | Rothman Michael A | Maintaining memory reliability |
US20090119665A1 (en) * | 2007-11-06 | 2009-05-07 | Vmware, Inc. | Transitioning of virtual machine from replay mode to live mode |
US7962909B1 (en) * | 2004-05-11 | 2011-06-14 | Globalfoundries Inc. | Limiting guest execution |
US20110161541A1 (en) * | 2009-12-31 | 2011-06-30 | Rajesh Sankaran Madukkarumukumana | Posting interrupts to virtual processors |
US20150095705A1 (en) * | 2013-09-27 | 2015-04-02 | Ashok Raj | Instruction and Logic for Machine Checking Communication |
US9910699B2 (en) | 2014-10-28 | 2018-03-06 | Intel Corporation | Virtual processor direct interrupt delivery mechanism |
US11080088B2 (en) * | 2018-12-19 | 2021-08-03 | Intel Corporation | Posted interrupt processing in virtual machine monitor |
US11249782B2 (en) * | 2012-02-28 | 2022-02-15 | Red Hat Israel Ltd. | Manageable external wake of virtual machines |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7222203B2 (en) * | 2003-12-08 | 2007-05-22 | Intel Corporation | Interrupt redirection for virtual partitioning |
US7305592B2 (en) * | 2004-06-30 | 2007-12-04 | Intel Corporation | Support for nested fault in a virtual machine environment |
WO2007065307A2 (en) * | 2005-12-10 | 2007-06-14 | Intel Corporation | Handling a device related operation in a virtualization environment |
US7900204B2 (en) * | 2005-12-30 | 2011-03-01 | Bennett Steven M | Interrupt processing in a layered virtualization architecture |
US8286162B2 (en) | 2005-12-30 | 2012-10-09 | Intel Corporation | Delivering interrupts directly to a virtual processor |
US20080034193A1 (en) * | 2006-08-04 | 2008-02-07 | Day Michael N | System and Method for Providing a Mediated External Exception Extension for a Microprocessor |
US7533207B2 (en) * | 2006-12-06 | 2009-05-12 | Microsoft Corporation | Optimized interrupt delivery in a virtualized environment |
US8151264B2 (en) * | 2007-06-29 | 2012-04-03 | Intel Corporation | Injecting virtualization events in a layered virtualization architecture |
CN101383688B (en) * | 2007-09-06 | 2013-12-04 | 艾优克服务有限公司 | Data communication device and method for keeping high availability of data communication device |
US9411667B2 (en) | 2012-06-06 | 2016-08-09 | Intel Corporation | Recovery after input/ouput error-containment events |
CN102902599B (en) * | 2012-09-17 | 2016-08-24 | 华为技术有限公司 | Virtual machine internal fault handling method, Apparatus and system |
Citations (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3699532A (en) | 1970-04-21 | 1972-10-17 | Singer Co | Multiprogramming control for a data handling system |
US3996449A (en) | 1975-08-25 | 1976-12-07 | International Business Machines Corporation | Operating system authenticator |
US4037214A (en) | 1976-04-30 | 1977-07-19 | International Business Machines Corporation | Key register controlled accessing system |
US4162536A (en) | 1976-01-02 | 1979-07-24 | Gould Inc., Modicon Div. | Digital input/output system and method |
US4207609A (en) | 1978-05-08 | 1980-06-10 | International Business Machines Corporation | Method and means for path independent device reservation and reconnection in a multi-CPU and shared device access system |
US4247905A (en) | 1977-08-26 | 1981-01-27 | Sharp Kabushiki Kaisha | Memory clear system |
US4276594A (en) | 1978-01-27 | 1981-06-30 | Gould Inc. Modicon Division | Digital computer with multi-processor capability utilizing intelligent composite memory and input/output modules and method for performing the same |
US4278837A (en) | 1977-10-31 | 1981-07-14 | Best Robert M | Crypto microprocessor for executing enciphered programs |
US4307447A (en) | 1979-06-19 | 1981-12-22 | Gould Inc. | Programmable controller |
US4319323A (en) | 1980-04-04 | 1982-03-09 | Digital Equipment Corporation | Communications device for data processing system |
US4319233A (en) | 1978-11-30 | 1982-03-09 | Kokusan Denki Co., Ltd. | Device for electrically detecting a liquid level |
US4347565A (en) | 1978-12-01 | 1982-08-31 | Fujitsu Limited | Address control system for software simulation |
US4366537A (en) | 1980-05-23 | 1982-12-28 | International Business Machines Corp. | Authorization mechanism for transfer of program control or data between different address spaces having different storage protect keys |
US4403283A (en) | 1980-07-28 | 1983-09-06 | Ncr Corporation | Extended memory system and method |
US4419724A (en) | 1980-04-14 | 1983-12-06 | Sperry Corporation | Main bus interface package |
US4430709A (en) | 1980-09-13 | 1984-02-07 | Robert Bosch Gmbh | Apparatus for safeguarding data entered into a microprocessor |
US4521852A (en) | 1982-06-30 | 1985-06-04 | Texas Instruments Incorporated | Data processing device formed on a single semiconductor substrate having secure memory |
US4571672A (en) | 1982-12-17 | 1986-02-18 | Hitachi, Ltd. | Access control method for multiprocessor systems |
US4621318A (en) | 1982-02-16 | 1986-11-04 | Tokyo Shibaura Denki Kabushiki Kaisha | Multiprocessor system having mutual exclusion control function |
US4759064A (en) | 1985-10-07 | 1988-07-19 | Chaum David L | Blind unanticipated signature systems |
US4795893A (en) | 1986-07-11 | 1989-01-03 | Bull, Cp8 | Security device prohibiting the function of an electronic data processing unit after a first cutoff of its electrical power |
US4802084A (en) | 1985-03-11 | 1989-01-31 | Hitachi, Ltd. | Address translator |
US4825052A (en) | 1985-12-31 | 1989-04-25 | Bull Cp8 | Method and apparatus for certifying services obtained using a portable carrier such as a memory card |
US4907270A (en) | 1986-07-11 | 1990-03-06 | Bull Cp8 | Method for certifying the authenticity of a datum exchanged between two devices connected locally or remotely by a transmission line |
US4907272A (en) | 1986-07-11 | 1990-03-06 | Bull Cp8 | Method for authenticating an external authorizing datum by a portable object, such as a memory card |
US4910774A (en) | 1987-07-10 | 1990-03-20 | Schlumberger Industries | Method and system for suthenticating electronic memory cards |
US4975836A (en) | 1984-12-19 | 1990-12-04 | Hitachi, Ltd. | Virtual computer system |
US5007082A (en) | 1988-08-03 | 1991-04-09 | Kelly Services, Inc. | Computer software encryption apparatus |
US5022077A (en) | 1989-08-25 | 1991-06-04 | International Business Machines Corp. | Apparatus and method for preventing unauthorized access to BIOS in a personal computer system |
US5075842A (en) | 1989-12-22 | 1991-12-24 | Intel Corporation | Disabling tag bit recognition and allowing privileged operations to occur in an object-oriented memory protection mechanism |
US5079737A (en) | 1988-10-25 | 1992-01-07 | United Technologies Corporation | Memory management unit for the MIL-STD 1750 bus |
US5187802A (en) | 1988-12-26 | 1993-02-16 | Hitachi, Ltd. | Virtual machine system with vitual machine resetting store indicating that virtual machine processed interrupt without virtual machine control program intervention |
US5230069A (en) | 1990-10-02 | 1993-07-20 | International Business Machines Corporation | Apparatus and method for providing private and shared access to host address and data spaces by guest programs in a virtual machine computer system |
US5237616A (en) | 1992-09-21 | 1993-08-17 | International Business Machines Corporation | Secure computer system having privileged and unprivileged memories |
US5255379A (en) | 1990-12-28 | 1993-10-19 | Sun Microsystems, Inc. | Method for automatically transitioning from V86 mode to protected mode in a computer system using an Intel 80386 or 80486 processor |
US5287363A (en) | 1991-07-01 | 1994-02-15 | Disk Technician Corporation | System for locating and anticipating data storage media failures |
US5293424A (en) | 1992-10-14 | 1994-03-08 | Bull Hn Information Systems Inc. | Secure memory card |
US5295251A (en) | 1989-09-21 | 1994-03-15 | Hitachi, Ltd. | Method of accessing multiple virtual address spaces and computer system |
US5317705A (en) | 1990-10-24 | 1994-05-31 | International Business Machines Corporation | Apparatus and method for TLB purge reduction in a multi-level machine system |
US5319760A (en) | 1991-06-28 | 1994-06-07 | Digital Equipment Corporation | Translation buffer for virtual machines with address space match |
US5361375A (en) | 1989-02-09 | 1994-11-01 | Fujitsu Limited | Virtual computer system having input/output interrupt control of virtual machines |
US5386552A (en) | 1991-10-21 | 1995-01-31 | Intel Corporation | Preservation of a computer system processing state in a mass storage device |
US5421006A (en) | 1992-05-07 | 1995-05-30 | Compaq Computer Corp. | Method and apparatus for assessing integrity of computer system software |
US5434999A (en) | 1988-11-09 | 1995-07-18 | Bull Cp8 | Safeguarded remote loading of service programs by authorizing loading in protected memory zones in a terminal |
US5437033A (en) | 1990-11-16 | 1995-07-25 | Hitachi, Ltd. | System for recovery from a virtual machine monitor failure with a continuous guest dispatched to a nonguest mode |
US5442645A (en) | 1989-06-06 | 1995-08-15 | Bull Cp8 | Method for checking the integrity of a program or data, and apparatus for implementing this method |
US5455909A (en) | 1991-07-05 | 1995-10-03 | Chips And Technologies Inc. | Microprocessor with operation capture facility |
US5459867A (en) | 1989-10-20 | 1995-10-17 | Iomega Corporation | Kernels, description tables, and device drivers |
US5459869A (en) | 1994-02-17 | 1995-10-17 | Spilo; Michael L. | Method for providing protected mode services for device drivers and other resident software |
US5469557A (en) | 1993-03-05 | 1995-11-21 | Microchip Technology Incorporated | Code protection in microcontroller with EEPROM fuses |
US5473692A (en) | 1994-09-07 | 1995-12-05 | Intel Corporation | Roving software license for a hardware agent |
US5479509A (en) | 1993-04-06 | 1995-12-26 | Bull Cp8 | Method for signature of an information processing file, and apparatus for implementing it |
US5504922A (en) | 1989-06-30 | 1996-04-02 | Hitachi, Ltd. | Virtual machine with hardware display controllers for base and target machines |
US5506975A (en) * | 1992-12-18 | 1996-04-09 | Hitachi, Ltd. | Virtual machine I/O interrupt control method compares number of pending I/O interrupt conditions for non-running virtual machines with predetermined number |
US5511217A (en) | 1992-11-30 | 1996-04-23 | Hitachi, Ltd. | Computer system of virtual machines sharing a vector processor |
US5522075A (en) * | 1991-06-28 | 1996-05-28 | Digital Equipment Corporation | Protection ring extension for computers having distinct virtual machine monitor and virtual machine address spaces |
US5528231A (en) | 1993-06-08 | 1996-06-18 | Bull Cp8 | Method for the authentication of a portable object by an offline terminal, and apparatus for implementing the process |
US5533126A (en) | 1993-04-22 | 1996-07-02 | Bull Cp8 | Key protection device for smart cards |
US5555385A (en) | 1993-10-27 | 1996-09-10 | International Business Machines Corporation | Allocation of address spaces within virtual machine compute system |
US5555414A (en) | 1994-12-14 | 1996-09-10 | International Business Machines Corporation | Multiprocessing system including gating of host I/O and external enablement to guest enablement at polling intervals |
US5560013A (en) | 1994-12-06 | 1996-09-24 | International Business Machines Corporation | Method of using a target processor to execute programs of a source architecture that uses multiple address spaces |
US5564040A (en) | 1994-11-08 | 1996-10-08 | International Business Machines Corporation | Method and apparatus for providing a server function in a logically partitioned hardware machine |
US5566323A (en) | 1988-12-20 | 1996-10-15 | Bull Cp8 | Data processing system including programming voltage inhibitor for an electrically erasable reprogrammable nonvolatile memory |
US5574936A (en) | 1992-01-02 | 1996-11-12 | Amdahl Corporation | Access control mechanism controlling access to and logical purging of access register translation lookaside buffer (ALB) in a computer system |
US5582717A (en) | 1990-09-12 | 1996-12-10 | Di Santo; Dennis E. | Water dispenser with side by side filling-stations |
US5604805A (en) | 1994-02-28 | 1997-02-18 | Brands; Stefanus A. | Privacy-protected transfer of electronic information |
US5606617A (en) | 1994-10-14 | 1997-02-25 | Brands; Stefanus A. | Secret-key certificates |
US5615263A (en) | 1995-01-06 | 1997-03-25 | Vlsi Technology, Inc. | Dual purpose security architecture with protected internal operating system |
US5628022A (en) | 1993-06-04 | 1997-05-06 | Hitachi, Ltd. | Microcomputer with programmable ROM |
US5633929A (en) | 1995-09-15 | 1997-05-27 | Rsa Data Security, Inc | Cryptographic key escrow system having reduced vulnerability to harvesting attacks |
US5657445A (en) | 1996-01-26 | 1997-08-12 | Dell Usa, L.P. | Apparatus and method for limiting access to mass storage devices in a computer system |
US5668971A (en) | 1992-12-01 | 1997-09-16 | Compaq Computer Corporation | Posted disk read operations performed by signalling a disk read complete to the system prior to completion of data transfer |
US5684948A (en) | 1995-09-01 | 1997-11-04 | National Semiconductor Corporation | Memory management circuit which provides simulated privilege levels |
US5706469A (en) | 1994-09-12 | 1998-01-06 | Mitsubishi Denki Kabushiki Kaisha | Data processing system controlling bus access to an arbitrary sized memory area |
US5717903A (en) | 1995-05-15 | 1998-02-10 | Compaq Computer Corporation | Method and appartus for emulating a peripheral device to allow device driver development before availability of the peripheral device |
US5720609A (en) | 1991-01-09 | 1998-02-24 | Pfefferle; William Charles | Catalytic method |
US5721222A (en) | 1992-04-16 | 1998-02-24 | Zeneca Limited | Heterocyclic ketones |
US5729760A (en) | 1996-06-21 | 1998-03-17 | Intel Corporation | System for providing first type access to register if processor in first mode and second type access to register if processor not in first mode |
US5737604A (en) | 1989-11-03 | 1998-04-07 | Compaq Computer Corporation | Method and apparatus for independently resetting processors and cache controllers in multiple processor systems |
US5737760A (en) | 1995-10-06 | 1998-04-07 | Motorola Inc. | Microcontroller with security logic circuit which prevents reading of internal memory by external program |
US5740178A (en) | 1996-08-29 | 1998-04-14 | Lucent Technologies Inc. | Software for controlling a reliable backup memory |
US5752046A (en) | 1993-01-14 | 1998-05-12 | Apple Computer, Inc. | Power management system for computer device interconnection bus |
US5757919A (en) | 1996-12-12 | 1998-05-26 | Intel Corporation | Cryptographically protected paging subsystem |
US5764969A (en) | 1995-02-10 | 1998-06-09 | International Business Machines Corporation | Method and system for enhanced management operation utilizing intermixed user level and supervisory level instructions with partial concept synchronization |
US5796845A (en) | 1994-05-23 | 1998-08-18 | Matsushita Electric Industrial Co., Ltd. | Sound field and sound image control apparatus and method |
US5796835A (en) | 1992-10-27 | 1998-08-18 | Bull Cp8 | Method and system for writing information in a data carrier making it possible to later certify the originality of this information |
US5805712A (en) | 1994-05-31 | 1998-09-08 | Intel Corporation | Apparatus and method for providing secured communications |
US5809546A (en) | 1996-05-23 | 1998-09-15 | International Business Machines Corporation | Method for managing I/O buffers in shared storage by structuring buffer table having entries including storage keys for controlling accesses to the buffers |
US5825880A (en) | 1994-01-13 | 1998-10-20 | Sudia; Frank W. | Multi-step digital signature method and system |
US5825875A (en) | 1994-10-11 | 1998-10-20 | Cp8 Transac | Process for loading a protected storage zone of an information processing device, and associated device |
US5835594A (en) | 1996-02-09 | 1998-11-10 | Intel Corporation | Methods and apparatus for preventing unauthorized write access to a protected non-volatile storage |
US5844986A (en) | 1996-09-30 | 1998-12-01 | Intel Corporation | Secure BIOS |
US5852717A (en) | 1996-11-20 | 1998-12-22 | Shiva Corporation | Performance optimizations for computer networks utilizing HTTP |
US5854913A (en) | 1995-06-07 | 1998-12-29 | International Business Machines Corporation | Microprocessor with an architecture mode control capable of supporting extensions of two distinct instruction-set architectures |
US5867577A (en) | 1994-03-09 | 1999-02-02 | Bull Cp8 | Method and apparatus for authenticating a data carrier intended to enable a transaction or access to a service or a location, and corresponding carrier |
US5872994A (en) | 1995-11-10 | 1999-02-16 | Nec Corporation | Flash memory incorporating microcomputer having on-board writing function |
US5890189A (en) | 1991-11-29 | 1999-03-30 | Kabushiki Kaisha Toshiba | Memory management and protection system for virtual memory in computer system |
US5901225A (en) | 1996-12-05 | 1999-05-04 | Advanced Micro Devices, Inc. | System and method for performing software patches in embedded systems |
US5900606A (en) | 1995-03-10 | 1999-05-04 | Schlumberger Industries, S.A. | Method of writing information securely in a portable medium |
US5903752A (en) | 1994-10-13 | 1999-05-11 | Intel Corporation | Method and apparatus for embedding a real-time multi-tasking kernel in a non-real-time operating system |
WO2002052404A2 (en) * | 2000-12-27 | 2002-07-04 | Intel Corporation (A Delaware Corporation) | Processor mode for limiting the operation of guest software r unning on a virtual machine supported by a monitor |
US20050060702A1 (en) * | 2003-09-15 | 2005-03-17 | Bennett Steven M. | Optimizing processor-managed resources based on the behavior of a virtual machine monitor |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978481A (en) * | 1994-08-16 | 1999-11-02 | Intel Corporation | Modem compatible method and apparatus for encrypting data that is transparent to software applications |
US6058478A (en) * | 1994-09-30 | 2000-05-02 | Intel Corporation | Apparatus and method for a vetted field upgrade |
IL116708A (en) * | 1996-01-08 | 2000-12-06 | Smart Link Ltd | Real-time task manager for a personal computer |
US5978892A (en) * | 1996-05-03 | 1999-11-02 | Digital Equipment Corporation | Virtual memory allocation in a virtual address space having an inaccessible gap |
US6175925B1 (en) * | 1996-06-13 | 2001-01-16 | Intel Corporation | Tamper resistant player for scrambled contents |
US6055637A (en) * | 1996-09-27 | 2000-04-25 | Electronic Data Systems Corporation | System and method for accessing enterprise-wide resources by presenting to the resource a temporary credential |
US5937063A (en) * | 1996-09-30 | 1999-08-10 | Intel Corporation | Secure boot |
JPH10134008A (en) * | 1996-11-05 | 1998-05-22 | Mitsubishi Electric Corp | Semiconductor device and computer system |
US5818939A (en) * | 1996-12-18 | 1998-10-06 | Intel Corporation | Optimized security functionality in an electronic system |
US5953502A (en) * | 1997-02-13 | 1999-09-14 | Helbig, Sr.; Walter A | Method and apparatus for enhancing computer system security |
US6075938A (en) * | 1997-06-10 | 2000-06-13 | The Board Of Trustees Of The Leland Stanford Junior University | Virtual machine monitors for scalable multiprocessors |
US5987557A (en) * | 1997-06-19 | 1999-11-16 | Sun Microsystems, Inc. | Method and apparatus for implementing hardware protection domains in a system with no memory management unit (MMU) |
US6014745A (en) * | 1997-07-17 | 2000-01-11 | Silicon Systems Design Ltd. | Protection for customer programs (EPROM) |
US6148379A (en) * | 1997-09-19 | 2000-11-14 | Silicon Graphics, Inc. | System, method and computer program product for page sharing between fault-isolated cells in a distributed shared memory system |
US6061794A (en) * | 1997-09-30 | 2000-05-09 | Compaq Computer Corp. | System and method for performing secure device communications in a peer-to-peer bus architecture |
US5970147A (en) * | 1997-09-30 | 1999-10-19 | Intel Corporation | System and method for configuring and registering a cryptographic device |
US6085296A (en) * | 1997-11-12 | 2000-07-04 | Digital Equipment Corporation | Sharing memory pages and page tables among computer processes |
US6173417B1 (en) * | 1998-04-30 | 2001-01-09 | Intel Corporation | Initializing and restarting operating systems |
US6496847B1 (en) * | 1998-05-15 | 2002-12-17 | Vmware, Inc. | System and method for virtualizing computer systems |
US7225333B2 (en) * | 1999-03-27 | 2007-05-29 | Microsoft Corporation | Secure processor architecture for use with a digital rights management (DRM) system on a computing device |
US6158546A (en) * | 1999-06-25 | 2000-12-12 | Tenneco Automotive Inc. | Straight through muffler with conically-ended output passage |
JP3710671B2 (en) * | 2000-03-14 | 2005-10-26 | シャープ株式会社 | One-chip microcomputer, IC card using the same, and access control method for one-chip microcomputer |
US7631160B2 (en) * | 2001-04-04 | 2009-12-08 | Advanced Micro Devices, Inc. | Method and apparatus for securing portions of memory |
US7676430B2 (en) * | 2001-05-09 | 2010-03-09 | Lenovo (Singapore) Ptd. Ltd. | System and method for installing a remote credit card authorization on a system with a TCPA complaint chipset |
US7191464B2 (en) * | 2001-10-16 | 2007-03-13 | Lenovo Pte. Ltd. | Method and system for tracking a secure boot in a trusted computing environment |
US7103771B2 (en) * | 2001-12-17 | 2006-09-05 | Intel Corporation | Connecting a virtual token to a physical token |
US7308576B2 (en) * | 2001-12-31 | 2007-12-11 | Intel Corporation | Authenticated code module |
US7124327B2 (en) * | 2002-06-29 | 2006-10-17 | Intel Corporation | Control over faults occurring during the operation of guest software in the virtual-machine architecture |
-
2003
- 2003-09-15 US US10/663,205 patent/US7287197B2/en not_active Expired - Fee Related
-
2004
- 2004-09-15 JP JP2006526436A patent/JP2007506162A/en active Pending
- 2004-09-15 WO PCT/US2004/030387 patent/WO2005029327A1/en active Application Filing
- 2004-09-15 DE DE112004001652.5T patent/DE112004001652B4/en not_active Expired - Lifetime
- 2004-09-15 GB GB0603362A patent/GB2420207B/en not_active Expired - Fee Related
- 2004-09-15 CN CN200480026398A patent/CN100585562C/en not_active Expired - Fee Related
Patent Citations (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3699532A (en) | 1970-04-21 | 1972-10-17 | Singer Co | Multiprogramming control for a data handling system |
US3996449A (en) | 1975-08-25 | 1976-12-07 | International Business Machines Corporation | Operating system authenticator |
US4162536A (en) | 1976-01-02 | 1979-07-24 | Gould Inc., Modicon Div. | Digital input/output system and method |
US4037214A (en) | 1976-04-30 | 1977-07-19 | International Business Machines Corporation | Key register controlled accessing system |
US4247905A (en) | 1977-08-26 | 1981-01-27 | Sharp Kabushiki Kaisha | Memory clear system |
US4278837A (en) | 1977-10-31 | 1981-07-14 | Best Robert M | Crypto microprocessor for executing enciphered programs |
US4276594A (en) | 1978-01-27 | 1981-06-30 | Gould Inc. Modicon Division | Digital computer with multi-processor capability utilizing intelligent composite memory and input/output modules and method for performing the same |
US4207609A (en) | 1978-05-08 | 1980-06-10 | International Business Machines Corporation | Method and means for path independent device reservation and reconnection in a multi-CPU and shared device access system |
US4319233A (en) | 1978-11-30 | 1982-03-09 | Kokusan Denki Co., Ltd. | Device for electrically detecting a liquid level |
US4347565A (en) | 1978-12-01 | 1982-08-31 | Fujitsu Limited | Address control system for software simulation |
US4307447A (en) | 1979-06-19 | 1981-12-22 | Gould Inc. | Programmable controller |
US4319323A (en) | 1980-04-04 | 1982-03-09 | Digital Equipment Corporation | Communications device for data processing system |
US4419724A (en) | 1980-04-14 | 1983-12-06 | Sperry Corporation | Main bus interface package |
US4366537A (en) | 1980-05-23 | 1982-12-28 | International Business Machines Corp. | Authorization mechanism for transfer of program control or data between different address spaces having different storage protect keys |
US4403283A (en) | 1980-07-28 | 1983-09-06 | Ncr Corporation | Extended memory system and method |
US4430709A (en) | 1980-09-13 | 1984-02-07 | Robert Bosch Gmbh | Apparatus for safeguarding data entered into a microprocessor |
US4621318A (en) | 1982-02-16 | 1986-11-04 | Tokyo Shibaura Denki Kabushiki Kaisha | Multiprocessor system having mutual exclusion control function |
US4521852A (en) | 1982-06-30 | 1985-06-04 | Texas Instruments Incorporated | Data processing device formed on a single semiconductor substrate having secure memory |
US4571672A (en) | 1982-12-17 | 1986-02-18 | Hitachi, Ltd. | Access control method for multiprocessor systems |
US4975836A (en) | 1984-12-19 | 1990-12-04 | Hitachi, Ltd. | Virtual computer system |
US4802084A (en) | 1985-03-11 | 1989-01-31 | Hitachi, Ltd. | Address translator |
US4759064A (en) | 1985-10-07 | 1988-07-19 | Chaum David L | Blind unanticipated signature systems |
US4825052A (en) | 1985-12-31 | 1989-04-25 | Bull Cp8 | Method and apparatus for certifying services obtained using a portable carrier such as a memory card |
US4795893A (en) | 1986-07-11 | 1989-01-03 | Bull, Cp8 | Security device prohibiting the function of an electronic data processing unit after a first cutoff of its electrical power |
US4907270A (en) | 1986-07-11 | 1990-03-06 | Bull Cp8 | Method for certifying the authenticity of a datum exchanged between two devices connected locally or remotely by a transmission line |
US4907272A (en) | 1986-07-11 | 1990-03-06 | Bull Cp8 | Method for authenticating an external authorizing datum by a portable object, such as a memory card |
US4910774A (en) | 1987-07-10 | 1990-03-20 | Schlumberger Industries | Method and system for suthenticating electronic memory cards |
US5007082A (en) | 1988-08-03 | 1991-04-09 | Kelly Services, Inc. | Computer software encryption apparatus |
US5079737A (en) | 1988-10-25 | 1992-01-07 | United Technologies Corporation | Memory management unit for the MIL-STD 1750 bus |
US5434999A (en) | 1988-11-09 | 1995-07-18 | Bull Cp8 | Safeguarded remote loading of service programs by authorizing loading in protected memory zones in a terminal |
US5566323A (en) | 1988-12-20 | 1996-10-15 | Bull Cp8 | Data processing system including programming voltage inhibitor for an electrically erasable reprogrammable nonvolatile memory |
US5187802A (en) | 1988-12-26 | 1993-02-16 | Hitachi, Ltd. | Virtual machine system with vitual machine resetting store indicating that virtual machine processed interrupt without virtual machine control program intervention |
US5361375A (en) | 1989-02-09 | 1994-11-01 | Fujitsu Limited | Virtual computer system having input/output interrupt control of virtual machines |
US5442645A (en) | 1989-06-06 | 1995-08-15 | Bull Cp8 | Method for checking the integrity of a program or data, and apparatus for implementing this method |
US5504922A (en) | 1989-06-30 | 1996-04-02 | Hitachi, Ltd. | Virtual machine with hardware display controllers for base and target machines |
US5022077A (en) | 1989-08-25 | 1991-06-04 | International Business Machines Corp. | Apparatus and method for preventing unauthorized access to BIOS in a personal computer system |
US5295251A (en) | 1989-09-21 | 1994-03-15 | Hitachi, Ltd. | Method of accessing multiple virtual address spaces and computer system |
US5459867A (en) | 1989-10-20 | 1995-10-17 | Iomega Corporation | Kernels, description tables, and device drivers |
US5737604A (en) | 1989-11-03 | 1998-04-07 | Compaq Computer Corporation | Method and apparatus for independently resetting processors and cache controllers in multiple processor systems |
US5075842A (en) | 1989-12-22 | 1991-12-24 | Intel Corporation | Disabling tag bit recognition and allowing privileged operations to occur in an object-oriented memory protection mechanism |
US5582717A (en) | 1990-09-12 | 1996-12-10 | Di Santo; Dennis E. | Water dispenser with side by side filling-stations |
US5230069A (en) | 1990-10-02 | 1993-07-20 | International Business Machines Corporation | Apparatus and method for providing private and shared access to host address and data spaces by guest programs in a virtual machine computer system |
US5317705A (en) | 1990-10-24 | 1994-05-31 | International Business Machines Corporation | Apparatus and method for TLB purge reduction in a multi-level machine system |
US5437033A (en) | 1990-11-16 | 1995-07-25 | Hitachi, Ltd. | System for recovery from a virtual machine monitor failure with a continuous guest dispatched to a nonguest mode |
US5255379A (en) | 1990-12-28 | 1993-10-19 | Sun Microsystems, Inc. | Method for automatically transitioning from V86 mode to protected mode in a computer system using an Intel 80386 or 80486 processor |
US5720609A (en) | 1991-01-09 | 1998-02-24 | Pfefferle; William Charles | Catalytic method |
US5319760A (en) | 1991-06-28 | 1994-06-07 | Digital Equipment Corporation | Translation buffer for virtual machines with address space match |
US5522075A (en) * | 1991-06-28 | 1996-05-28 | Digital Equipment Corporation | Protection ring extension for computers having distinct virtual machine monitor and virtual machine address spaces |
US5287363A (en) | 1991-07-01 | 1994-02-15 | Disk Technician Corporation | System for locating and anticipating data storage media failures |
US5455909A (en) | 1991-07-05 | 1995-10-03 | Chips And Technologies Inc. | Microprocessor with operation capture facility |
US5386552A (en) | 1991-10-21 | 1995-01-31 | Intel Corporation | Preservation of a computer system processing state in a mass storage device |
US5890189A (en) | 1991-11-29 | 1999-03-30 | Kabushiki Kaisha Toshiba | Memory management and protection system for virtual memory in computer system |
US5574936A (en) | 1992-01-02 | 1996-11-12 | Amdahl Corporation | Access control mechanism controlling access to and logical purging of access register translation lookaside buffer (ALB) in a computer system |
US5721222A (en) | 1992-04-16 | 1998-02-24 | Zeneca Limited | Heterocyclic ketones |
US5421006A (en) | 1992-05-07 | 1995-05-30 | Compaq Computer Corp. | Method and apparatus for assessing integrity of computer system software |
US5237616A (en) | 1992-09-21 | 1993-08-17 | International Business Machines Corporation | Secure computer system having privileged and unprivileged memories |
US5293424A (en) | 1992-10-14 | 1994-03-08 | Bull Hn Information Systems Inc. | Secure memory card |
US5796835A (en) | 1992-10-27 | 1998-08-18 | Bull Cp8 | Method and system for writing information in a data carrier making it possible to later certify the originality of this information |
US5511217A (en) | 1992-11-30 | 1996-04-23 | Hitachi, Ltd. | Computer system of virtual machines sharing a vector processor |
US5668971A (en) | 1992-12-01 | 1997-09-16 | Compaq Computer Corporation | Posted disk read operations performed by signalling a disk read complete to the system prior to completion of data transfer |
US5506975A (en) * | 1992-12-18 | 1996-04-09 | Hitachi, Ltd. | Virtual machine I/O interrupt control method compares number of pending I/O interrupt conditions for non-running virtual machines with predetermined number |
US5752046A (en) | 1993-01-14 | 1998-05-12 | Apple Computer, Inc. | Power management system for computer device interconnection bus |
US5469557A (en) | 1993-03-05 | 1995-11-21 | Microchip Technology Incorporated | Code protection in microcontroller with EEPROM fuses |
US5479509A (en) | 1993-04-06 | 1995-12-26 | Bull Cp8 | Method for signature of an information processing file, and apparatus for implementing it |
US5533126A (en) | 1993-04-22 | 1996-07-02 | Bull Cp8 | Key protection device for smart cards |
US5628022A (en) | 1993-06-04 | 1997-05-06 | Hitachi, Ltd. | Microcomputer with programmable ROM |
US5528231A (en) | 1993-06-08 | 1996-06-18 | Bull Cp8 | Method for the authentication of a portable object by an offline terminal, and apparatus for implementing the process |
US5555385A (en) | 1993-10-27 | 1996-09-10 | International Business Machines Corporation | Allocation of address spaces within virtual machine compute system |
US5825880A (en) | 1994-01-13 | 1998-10-20 | Sudia; Frank W. | Multi-step digital signature method and system |
US5459869A (en) | 1994-02-17 | 1995-10-17 | Spilo; Michael L. | Method for providing protected mode services for device drivers and other resident software |
US5604805A (en) | 1994-02-28 | 1997-02-18 | Brands; Stefanus A. | Privacy-protected transfer of electronic information |
US5867577A (en) | 1994-03-09 | 1999-02-02 | Bull Cp8 | Method and apparatus for authenticating a data carrier intended to enable a transaction or access to a service or a location, and corresponding carrier |
US5796845A (en) | 1994-05-23 | 1998-08-18 | Matsushita Electric Industrial Co., Ltd. | Sound field and sound image control apparatus and method |
US5805712A (en) | 1994-05-31 | 1998-09-08 | Intel Corporation | Apparatus and method for providing secured communications |
US5473692A (en) | 1994-09-07 | 1995-12-05 | Intel Corporation | Roving software license for a hardware agent |
US5568552A (en) | 1994-09-07 | 1996-10-22 | Intel Corporation | Method for providing a roving software license from one node to another node |
US5706469A (en) | 1994-09-12 | 1998-01-06 | Mitsubishi Denki Kabushiki Kaisha | Data processing system controlling bus access to an arbitrary sized memory area |
US5825875A (en) | 1994-10-11 | 1998-10-20 | Cp8 Transac | Process for loading a protected storage zone of an information processing device, and associated device |
US5903752A (en) | 1994-10-13 | 1999-05-11 | Intel Corporation | Method and apparatus for embedding a real-time multi-tasking kernel in a non-real-time operating system |
US5606617A (en) | 1994-10-14 | 1997-02-25 | Brands; Stefanus A. | Secret-key certificates |
US5564040A (en) | 1994-11-08 | 1996-10-08 | International Business Machines Corporation | Method and apparatus for providing a server function in a logically partitioned hardware machine |
US5560013A (en) | 1994-12-06 | 1996-09-24 | International Business Machines Corporation | Method of using a target processor to execute programs of a source architecture that uses multiple address spaces |
US5555414A (en) | 1994-12-14 | 1996-09-10 | International Business Machines Corporation | Multiprocessing system including gating of host I/O and external enablement to guest enablement at polling intervals |
US5615263A (en) | 1995-01-06 | 1997-03-25 | Vlsi Technology, Inc. | Dual purpose security architecture with protected internal operating system |
US5764969A (en) | 1995-02-10 | 1998-06-09 | International Business Machines Corporation | Method and system for enhanced management operation utilizing intermixed user level and supervisory level instructions with partial concept synchronization |
US5900606A (en) | 1995-03-10 | 1999-05-04 | Schlumberger Industries, S.A. | Method of writing information securely in a portable medium |
US5717903A (en) | 1995-05-15 | 1998-02-10 | Compaq Computer Corporation | Method and appartus for emulating a peripheral device to allow device driver development before availability of the peripheral device |
US5854913A (en) | 1995-06-07 | 1998-12-29 | International Business Machines Corporation | Microprocessor with an architecture mode control capable of supporting extensions of two distinct instruction-set architectures |
US5684948A (en) | 1995-09-01 | 1997-11-04 | National Semiconductor Corporation | Memory management circuit which provides simulated privilege levels |
US5633929A (en) | 1995-09-15 | 1997-05-27 | Rsa Data Security, Inc | Cryptographic key escrow system having reduced vulnerability to harvesting attacks |
US5737760A (en) | 1995-10-06 | 1998-04-07 | Motorola Inc. | Microcontroller with security logic circuit which prevents reading of internal memory by external program |
US5872994A (en) | 1995-11-10 | 1999-02-16 | Nec Corporation | Flash memory incorporating microcomputer having on-board writing function |
US5657445A (en) | 1996-01-26 | 1997-08-12 | Dell Usa, L.P. | Apparatus and method for limiting access to mass storage devices in a computer system |
US5835594A (en) | 1996-02-09 | 1998-11-10 | Intel Corporation | Methods and apparatus for preventing unauthorized write access to a protected non-volatile storage |
US5809546A (en) | 1996-05-23 | 1998-09-15 | International Business Machines Corporation | Method for managing I/O buffers in shared storage by structuring buffer table having entries including storage keys for controlling accesses to the buffers |
US5729760A (en) | 1996-06-21 | 1998-03-17 | Intel Corporation | System for providing first type access to register if processor in first mode and second type access to register if processor not in first mode |
US5740178A (en) | 1996-08-29 | 1998-04-14 | Lucent Technologies Inc. | Software for controlling a reliable backup memory |
US5844986A (en) | 1996-09-30 | 1998-12-01 | Intel Corporation | Secure BIOS |
US5852717A (en) | 1996-11-20 | 1998-12-22 | Shiva Corporation | Performance optimizations for computer networks utilizing HTTP |
US5901225A (en) | 1996-12-05 | 1999-05-04 | Advanced Micro Devices, Inc. | System and method for performing software patches in embedded systems |
US5757919A (en) | 1996-12-12 | 1998-05-26 | Intel Corporation | Cryptographically protected paging subsystem |
WO2002052404A2 (en) * | 2000-12-27 | 2002-07-04 | Intel Corporation (A Delaware Corporation) | Processor mode for limiting the operation of guest software r unning on a virtual machine supported by a monitor |
US20050060702A1 (en) * | 2003-09-15 | 2005-03-17 | Bennett Steven M. | Optimizing processor-managed resources based on the behavior of a virtual machine monitor |
Non-Patent Citations (43)
Title |
---|
Berg, Cliff , "How Do I Create a Signed Applet?", Dr. Dobb's Journal, (Aug. 1997), 1-9. |
Brands, Stefan , "Restrictive Blinding of Secret-Key Certificates", Springer-Verlag XP002201306, (1995),Chapter 3. |
Chien, Andrew A., et al., "Safe and Protected Execution for the Morph/AMRM Reconfigurable Processor", 7th Annual IEEE Symposium, FCCM '99 Proceedings, XP010359180, ISBN 0-7695-0375-6, Los Alamitos, CA, (Apr. 21, 1999), 209-221. |
Compaq Computer Corporation, "Trusted Computing Platform Alliance (TCPA) Main Specification Version 1.1a", XP002272822, (Jan. 25, 2001), 1-321. |
Coulouris, George, et al., "Distributed Systems, Concepts and Designs", 2nd Edition, (1994), 422-424. |
Crawford, John , "Architecture of the Intel 80386", Proceedings of the IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD '86), (Oct. 6, 1986),155-160. |
Davida, George I., et al., "Defending Systems Against Viruses through Cryptographic Authentication", Proceedings of the Symposium on Security and Privacy, IEEE Comp. Soc. Press, ISBN 0-8186-1939-2,(May 1989). |
Fabry, R.S., "Capability-Based Addressing", Fabry, R.S., "Capability-Based Addressing," Communications of the ACM, vol. 17, No. 7, (Jul. 1974),403-412. |
Frieder, Gideon, "The Architecture And Operational Characteristics of the VMX Host Machine", The Architecture And Operational Characteristics of the VMX Host Machine, IEEE, (1982),9-16. |
Goldberg, Robert P., "Survey of Virtual Machine Research", COMPUTER Magazine, (Jun. 1974), 34-35. |
Gong, Li , et al., "Going Beyond the Sandbox: An Overview of the New Security Architecture in the Java Development Kit 1.2", Proceedings of the USENIX Symposium on Internet Technologies and Systems, Monterey, CA,(Dec. 1997). |
Gum, P. H., "System/370 Extended Architecture: Facilities for Virtual Machines", IBM J. Research Development, vol. 27, No. 6, (Nov. 1983), 530-544. |
Hall, Judith S., et al., "Virtualizing the VAX Architecture," ACM SIGARCH Computer Architecture News, Proceedings of the 18th annual international symposium on Computer architecture, vol. 19, Issue No. 3, Apr. 1991, 10 pages. |
Heinrich, Joe, "MIPS R4000 Microprocessor User's Manual, Second Edition", Chapter 4 "Memory Management" , (Jun. 11, 1993), 61-97. |
HP Mobile Security Overview, "HP Mobile Security Overview", (Sep. 2002), 1-10. |
IBM Corporation, "IBM ThinkPad T30 Notebooks", IBM Product Specification, located at www-1.ibm.com/services/files/cisco<SUB>-</SUB>t30<SUB>-</SUB>spec<SUB>-</SUB>sheet<SUB>-</SUB>070202.pdf, last visited Jun. 23, 2004, (Jul. 2, 2002), 1-6. |
IBM, "Information Display Technique for a Terminate Stay Resident Program IBM Technical Disclosure Bulletin", TDB-ACC-No. NA9112156, vol. 34, Issue 7A, (Dec. 1, 1991), 156-158. |
Intel Corporation, "IA-64 System Abstraction Layer Specification", Intel Product Specification, Order No. 245359-001, (Jan. 2000), 1-112. |
Intel Corporation, "Intel 82802AB/82802AC Firmware Hub (FWH)", Intel Product Datasheet, Document No. 290658-004,(Nov. 2000), 1-6, 17-28. |
Intel Corporation, "Intel IA-64 Architecture Software Developer's Manual", vol. 2: IA-64 System Architecture, Order No. 245318-001, (Jan. 2000), i, ii, 5.1-5.3, 11.1-11.8, 11.23-11.26. |
INTEL, "IA-32 Intel Architecture Software Developer's Manual", vol. 3: System Programming Guide, Intel Corporation-2003, 13-1 through 13-24. |
INTEL, "Intel386 DX Microprocessor 32-Bit CHMOS Microprocessor With Integrated Memory Management", (1995),5-56. |
Karger, Paul a., et al., "A VMM Security Kernal for the VAX Architecture", Proceedings of the Symposium on Research in Security and Privacy, XP010020182, ISBN 0-8186-2060-9, Boxborough, MA, (May 7, 1990), 2-19. |
Kashiwagi, Kazuhiko, et al., "Design and Implementation of Dynamically Reconstructing System Software", Software Engineering Conference, Proceedings 1996 Asia-Pacific Seoul, South Korea 4-7 Dec. 1996, Los Alamitos, CA USA, IEEE Comput. Soc, US, ISBN 0-8186-7638-8, (1996). |
Lawton, Kevin, et al., "Running Multiple Operating Systems Concurrently on an IA32 PC Using Virtualization Techniques", http://www.plex86.org/research/paper.txt, (Nov. 29, 1999), 1-31. |
Luke, Jahn, et al., "Replacement Strategy for Aging Avionics Computers", IEEE AES Systems Magazine, XP002190614,(Mar. 1999). |
Menezes, Alfred J., et al., "Handbook of Applied Cryptography", CRC Press LLC, USA XP002201307, (1997),475. |
Menezes, Alfred J., et al., "Handbook of Applied Cryptography", CRC Press Series on Discrete Mathematics and its Applications, Boca Raton, FL, XP002165287, ISBN 0849385237,(Oct. 1996),403-405, 506-515, 570. |
Motorola, "M68040 User's Manual", (1993), 1-1 to 8-32. |
Nanba, S., et al., "VM/4: ACOS-4 Virtual Machine Architecture", VM/4: ACOS-4 Virtual Machine Architecture, IEEE, (1985), 171-178. |
PCT Search Report, Int'l. Application No. PCT/US2004/030387, mailed Mar. 2, 2005, (6 pages). |
Richt, Stefan, et al., "In-Circuit-Emulator Wird Echtzeittauglich", Elektronic, Franzis Verlag GMBH, Munchen, DE, vol. 40, No. 16, XP000259620, (100-103), 8-6-1991. |
Robin, John S., et al., "Analysis of the Pentium's Ability to Support a Secure Virtual Machine Monitor", Proceedings of the 9th USENIX Security Symposium, XP002247347, Denver, Colorado, (Aug. 14, 2000), 1-17. |
Rosenblum, M., "Virtual Platform: A Virtual Machine Monitor for Commodity PC", Proceedings of the 11th Hotchips Conference, (Aug. 17, 1999), 185-196. |
RSA Security, "Hardware Authenticators", www.rsasecurity.com/node.asp?id=1158, 1-2. |
RSA Security, "RSA SecurID Authenticators", www.rsasecurity.com/products/securid/datashets/SID<SUB>-</SUB>DS<SUB>-</SUB>0103. pdf, 1-2. |
RSA Security, "Software Authenticators", www.srsasecurity.com/node.asp?id=1313, 1-2. |
Saez, Sergio , et al., "A Hardware Scheduler for Complex Real-Time Systems", Proceedings of the IEEE International Symposium on Industrial Electronics, XP002190615, (Jul. 1999),43-48. |
Schneier, Bruce, "Applied Cryptography: Protocols, Algorithm, and Source Code in C", Wiley, John & Sons, Inc., XP002138607; ISBM 0471117099, (Oct. 1995),56-65. |
Schneier, Bruce, "Applied Cryptography: Protocols, Algorithm, and Source Code in C", Wiley, John & Sons, Inc., XP002939871; ISBM 0471117099, (Oct. 1995),47-52. |
Schneier, Bruce, "Applied Cryptography: Protocols, Algorithms, and Source Code C", Wiley, John & Sons, Inc., XP002111449; ISBN 0471117099, (Oct. 1995), 169-187. |
Schneier, Bruce, "Applied Cryptography: Protocols, Algorithms, and Source Code in C", 2nd Edition: Wiley, John & Sons, Inc., XP002251738; ISBM 0471128457, (Nov. 1995),28-33; 176-177; 216-217; 461-473; 518-522. |
Sherwood, Timothy, et al., "Patchable Instruction ROM Architecture", Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, (Nov. 2001). |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7962909B1 (en) * | 2004-05-11 | 2011-06-14 | Globalfoundries Inc. | Limiting guest execution |
US20070074067A1 (en) * | 2005-09-29 | 2007-03-29 | Rothman Michael A | Maintaining memory reliability |
US20090119665A1 (en) * | 2007-11-06 | 2009-05-07 | Vmware, Inc. | Transitioning of virtual machine from replay mode to live mode |
US7966615B2 (en) * | 2007-11-06 | 2011-06-21 | Vmware, Inc. | Transitioning of virtual machine from replay mode to live mode |
US8843683B2 (en) * | 2009-12-31 | 2014-09-23 | Intel Corporation | Posting interrupts to virtual processors |
US8566492B2 (en) * | 2009-12-31 | 2013-10-22 | Intel Corporation | Posting interrupts to virtual processors |
US20110161541A1 (en) * | 2009-12-31 | 2011-06-30 | Rajesh Sankaran Madukkarumukumana | Posting interrupts to virtual processors |
US20140365696A1 (en) * | 2009-12-31 | 2014-12-11 | Rajesh Sankaran Madukkarumukumana | Posting interrupts to virtual processors |
US9116869B2 (en) * | 2009-12-31 | 2015-08-25 | Intel Corporation | Posting interrupts to virtual processors |
US9892069B2 (en) | 2009-12-31 | 2018-02-13 | Intel Corporation | Posting interrupts to virtual processors |
US11249782B2 (en) * | 2012-02-28 | 2022-02-15 | Red Hat Israel Ltd. | Manageable external wake of virtual machines |
US20150095705A1 (en) * | 2013-09-27 | 2015-04-02 | Ashok Raj | Instruction and Logic for Machine Checking Communication |
US9842015B2 (en) * | 2013-09-27 | 2017-12-12 | Intel Corporation | Instruction and logic for machine checking communication |
US9910699B2 (en) | 2014-10-28 | 2018-03-06 | Intel Corporation | Virtual processor direct interrupt delivery mechanism |
US11080088B2 (en) * | 2018-12-19 | 2021-08-03 | Intel Corporation | Posted interrupt processing in virtual machine monitor |
Also Published As
Publication number | Publication date |
---|---|
DE112004001652B4 (en) | 2015-03-12 |
WO2005029327A1 (en) | 2005-03-31 |
GB2420207A (en) | 2006-05-17 |
US20050060703A1 (en) | 2005-03-17 |
CN100585562C (en) | 2010-01-27 |
GB0603362D0 (en) | 2006-03-29 |
JP2007506162A (en) | 2007-03-15 |
GB2420207B (en) | 2008-04-16 |
DE112004001652T5 (en) | 2006-06-22 |
CN1849586A (en) | 2006-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1761850B1 (en) | Support for nested faults in a virtual machine environment | |
US7287197B2 (en) | Vectoring an interrupt or exception upon resuming operation of a virtual machine | |
US7424709B2 (en) | Use of multiple virtual machine monitors to handle privileged events | |
US7237051B2 (en) | Mechanism to control hardware interrupt acknowledgement in a virtual machine system | |
US7356735B2 (en) | Providing support for single stepping a virtual machine in a virtual machine environment | |
US7827550B2 (en) | Method and system for measuring a program using a measurement agent | |
US7707341B1 (en) | Virtualizing an interrupt controller | |
US8561068B2 (en) | Optimizing processor-managed resources based on the behavior of a virtual machine monitor | |
US7209994B1 (en) | Processor that maintains virtual interrupt state and injects virtual interrupts into virtual machine guests | |
US8099574B2 (en) | Providing protected access to critical memory regions | |
US7840962B2 (en) | System and method for controlling switching between VMM and VM using enabling value of VMM timer indicator and VMM timer value having a specified time | |
JP5602814B2 (en) | Apparatus, method and system used in virtual architecture | |
US20070067590A1 (en) | Providing protected access to critical memory regions | |
US20070079090A1 (en) | Validating a memory type modification attempt | |
WO2003073269A2 (en) | Method and apparatus for loading a trustable operating system | |
US20090265709A1 (en) | Method and apparatus for facilitating recognition of an open event window during operation of guest software in a virtual machine environment | |
CN116702129B (en) | Safe calling method and device for power architecture running service code |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTEL CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BENNETT, STEVEN M.;ANDERSON, ANDREW V.;JEYASINGH, STALINSELVARAJ;AND OTHERS;REEL/FRAME:014974/0926;SIGNING DATES FROM 20040129 TO 20040203 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20191023 |