US7249721B2 - Device and method for injecting a liquid fuel into an air flow for a combustion chamber - Google Patents
Device and method for injecting a liquid fuel into an air flow for a combustion chamber Download PDFInfo
- Publication number
- US7249721B2 US7249721B2 US10/477,127 US47712703A US7249721B2 US 7249721 B2 US7249721 B2 US 7249721B2 US 47712703 A US47712703 A US 47712703A US 7249721 B2 US7249721 B2 US 7249721B2
- Authority
- US
- United States
- Prior art keywords
- liquid fuel
- pipes
- fuel
- veins
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D17/00—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
- F23D17/002—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
Definitions
- the present invention relates to a device and to a method for injecting a liquid fuel into an air flow allowing to obtain a homogeneous fuel/air mixture in a combustion chamber.
- the invention finds applications in particular in the sphere of onshore gas turbines by allowing to obtain, during operation of said turbine, a high energy efficiency together with a low pollutant production.
- the main priority is to obtain a stable combustion in a wide range of operating conditions.
- a combustion is conventionally first carried out under conditions close to stoichiometry with part of the air coming from the compressor, and the fumes obtained are then progressively diluted with another part of the air coming from this compressor so as to lower their temperature to the thermal level allowable by the expander.
- the pollutants generally produced by gas turbines during the combustion of hydrocarbons are, as mentioned above, nitrogen oxides, as well as carbon monoxide and unburned hydrocarbons.
- nitrogen oxides as well as carbon monoxide and unburned hydrocarbons.
- carbon monoxide and unburned hydrocarbons are, as mentioned above, nitrogen oxides, as well as carbon monoxide and unburned hydrocarbons.
- oxidation of molecular nitrogen to thermal NO x in the combustion chambers of turbines greatly depends on the maximum temperature of the hot gases in the reactive zone.
- nitrogen oxides can thus be represented by an increasing exponential function of the temperature. It ensues therefrom that it is possible to limit the formation of nitrogen oxides by preventing gas temperature peaks in the combustion chamber.
- Another solution consists in carrying out a multistage combustion, with a rich step and a lean step, the shift from one to the other occurring very quickly.
- the temperature peaks generating nitrogen oxides NO x are reduced and the rich zone allows their formation to be limited, but this solution leads to a significant production of unburned hydrocarbons.
- a third solution for controlling both the temperature and the discharge of pollutants consists, prior to combustion, in mixing the air and the fuel in form of a lean mixture so as to obtain a fuel/air ratio ranging between 0.3 and 1, preferably between 0.5 and 0.8.
- the air mass present in excess in the reaction zone thus absorbs part of the heat generated by the oxidation reaction of the fuel and reduces the temperature to which the reaction products are subjected. Furthermore, the cooling air requirements for adjusting the temperature at the expander inlet are markedly lower. This method thus efficiently allows to limit the production of nitrogen oxides without substantially increasing the emissions level of the other pollutants (hydrocarbons, carbon monoxide, etc.).
- premixing has to be sufficiently homogeneous and uniform to reach the desired low emissions level.
- U.S. Pat. No. 6,094,916 provides for example a device wherein mixing of the air and of the fuel is carried out under pressure by means of a fixed device equipped with radial blades generating a rotating motion of the fluid flow.
- a fuel injection pipe is axially positioned between each blade of the device. The fuel is injected through openings provided in the pipes with an opening angle of 60° to a radial direction of said device.
- Such a layout is not suitable for injecting a fuel in liquid form because, in this case, it would have the effect of sending said fuel directly on the blades of the device, with the inevitable consequence of the formation of coke on the walls thereof, leading to considerable damage in terms of performance, lifetime of the materials of the device and emissions level of the turbine. Furthermore, it has been found by the applicant that such an injection does not allow optimum spraying and homogeneous mixing with air in case of injection of a liquid fuel.
- the object of the present invention thus is a device allowing to obtain a homogeneous lean mixture of fuel and air prior to combustion.
- a device for injecting a liquid fuel into a pressurized air flow comprising a hollow cylindrical body of longitudinal axis delimiting a substantially cylindrical central volume, fluid veins substantially radial in relation to the longitudinal axis of the body and arranged on the periphery of said body to allow passage of said flow, and axial fuel injection pipes arranged inside said veins and connected to at least one fuel inlet by at least one supply point, is characterized in that said pipes are pierced with openings that open onto the central volume of said body and which are oriented substantially in the direction of the flow in the fluid veins.
- the median axis of the veins can form an angle ranging between 20° and 60° with the radius of the cylindrical body.
- the fluid veins can have a three-dimensional shape calculated to minimize the pressure drops caused as the air flow under pressure flows through the veins.
- the openings can be linearly distributed in the axial direction of the fuel injection pipes.
- the fuel injection pipes can have a variable inner section according to the distance to the fuel supply point of said pipe.
- the device can also comprise axial pipes for injecting a gaseous fuel, said pipes being pierced with openings that open onto said central cylindrical volume and oriented substantially perpendicular to the direction of the flow in the fluid veins.
- the gaseous fuel injection pipes can be arranged, in relation to the direction of the air flow under pressure in the fluid veins, upstream from the liquid fuel injection pipes.
- a method of injecting a liquid fuel into an air flow under pressure is characterized in that the following stages are carried out:
- pressurized air is sent into a volume upstream from at least one combustion zone
- a swirling motion of the air is generated in said volume by causing the air flow under pressure to pass through a plurality of passages arranged on the periphery of said volume,
- the liquid fuel is injected into said passages substantially in the direction of the pressurized air flow.
- air can be injected into said volume in such a way that its velocity ranges from about 10 m/s to about 200 m/s.
- a gaseous fuel can be injected into said passages substantially perpendicular to the direction of the pressurized air flow.
- Water can be injected in liquid form or in form of steam as a substitute for the fuel.
- FIG. 1 is a partial cross-sectional view of an injection device according to the invention
- FIG. 2 is a cross-sectional view along line 2 - 2 of FIG. 1 ,
- FIG. 3A is a larger-scale local view showing a detail of the device according to the invention.
- FIG. 3B is a cross-sectional view along line 3 - 3 of FIG. 3A .
- FIG. 4 shows a longitudinal section of a possible embodiment of the liquid fuel injection pipes
- FIGS. 5A and 5B diagrammatically show, in two views similar to the views of FIGS. 3A and 3B , a variant of the invention
- FIG. 6 illustrates another embodiment of the invention.
- ⁇ upstream>> and ⁇ downstream>> are used in the present description in relation to the direction of circulation of the air in the present device.
- FIG. 1 is a cross-sectional view of a fuel injection and air supply device 1 opening onto a combustion chamber 2 of a pilot stage or of a main stage of a gas turbine for example.
- This device 1 of longitudinal axis YY′, comprises a liquid fuel inlet pipe 3 leading said fuel to a delivery pipe or ramp 4 of substantially annular shape.
- a multiplicity of channels or pipes 5 communicating with pipe 4 by means of injection points 16 extend substantially axially in the space contained between two blades 6 of a hollow body 10 of substantially cylindrical shape, this space forming a vein 12 allowing passage of the fluid, as can be seen more clearly in FIG. 2 .
- Hollow body 10 delimits a central zone 11 whose cross-section is illustrated by FIG. 2 .
- a swirling motion of the air due to its passage between blades 6 allows better stabilization of the combustion by favouring recirculation of the combustion gases in space 11 and in combustion chamber 2 .
- Pipes 5 are provided, over the total length thereof, with openings 9 that open substantially in the direction of flow of the air in veins 12 and allowing injection of the liquid fuel in a substantially radial way between said blades, as well as mixing of this fuel with air 7 flowing in, for example, under pressure from the compressor of the turbine (not shown).
- Hollow body 10 is secured to a fixed part 8 of the device by means of a known technique.
- FIG. 2 diagrammatically shows a cross-section of cylindrical body 10 shown in FIG. 1 .
- the pressurized air flows through hollow cylindrical body 10 through fluid veins 12 delimited by blades 6 .
- the median axis XX′ of veins 12 forms an angle ⁇ with radius R between the centre of body 10 and the centre of pipe 5 .
- Angle ⁇ is selected by the man skilled in the art in such a way that the swirling motion in central zone 11 optimizes recirculation of the combustion gases. Angle ⁇ thus generally ranges between 20° and 60°.
- a liquid fuel injection pipe 5 is placed in each vein 12 .
- FIGS. 3A and 3B respectively show a cross section and a longitudinal section of a fluid vein 12 and of pipe 5 present therein.
- Pressurized air 7 flows through fluid veins 12 as shown by arrows 17 and it mixes therein with the fuel coming from an injection point 16 and flowing out of openings 9 in a direction illustrated by arrows 18 .
- Arrows 17 and 18 are colinear in FIGS. 3A and 3B , i.e. said pipes 5 are pierced with openings that open onto the central volume of the hollow cylindrical body substantially in the direction of flow of the air in the fluid veins.
- This pattern has the advantage, within the context of a liquid injection, of limiting the formation of coke on walls 19 of the blades and of improving in fluid veins 12 , on the one hand, mixing of the air and of the fuel and, on the other hand, spraying of said fuel downstream from pipes 5 according to the principles described above.
- the turbulence zone in the wake of pipe 5 generated by the high-velocity flow of air 7 , greatly favours spraying of the liquid fuel and contributes to improving the homogeneity of the air/fuel mixture in said zone.
- the work done within the framework of the present invention has also shown that the velocity of flow of the air has to be of the order of some ten m/s, preferably of the order of about 100 m/s, while the velocity of the fuel has to be as low as possible (of the order of 0.1 m/s to 10 m/s, preferably between about 0.5 m/s and 2 m/s) to favour said spraying and said mixing.
- the cross section of the fluid veins illustrated by arrows 14 and 15 , exhibits a significant narrowing from upstream to downstream so as to increase the velocity of the air therein and therefore the turbulence of the flow.
- the cross section of veins 12 can be rectangular or have any other shape known to the man skilled in the art in order to optimize the pressure drop caused by the air flowing through the device.
- it can be provided with a throttle system allowing to adjust the flow of air of the combustion stage according to the load of the turbine, which facilitates reduced load running.
- FIG. 4 illustrates a possible embodiment of a liquid fuel injection pipe 5 according to the invention.
- This pipe has an evolutional section 401 which is a function of the distance to fuel injection point 16 in said pipe.
- the pipe thus comprises two distinct parts: a hollowed part 403 providing passage of the fuel to injection openings 9 and a solid part 404 made according to any technique known to the man skilled in the art so as to progressively limit the section of flow of the fuel in said pipe from the vicinity of injection point 16 up to its free end.
- This layout allows to maintain a substantially identical fuel flow rate in a simple and economical way for each opening 9 .
- the average diameter of the droplets at the outlet of the fluid veins is substantially independent of the air/fuel mass flow rate ratio and that said average diameter is substantially constant over the total outlet section of the fluid veins. This property allows to keep the same spraying performances for different running conditions of the combustion chamber.
- FIGS. 5A and 5B respectively show a cross-section and a longitudinal section of a fluid vein 12 and of a pipe 505 for injecting a gaseous fuel present therein.
- injection openings 509 are oriented perpendicular to the mean direction of flow of the air in the fluid veins.
- the velocity of the mixture is, in this embodiment, all the more efficient as the ratio between the velocities of the gaseous fuel and of the air is high
- FIGS. 3A , 3 B and 5 A, 5 B can be combined to allow liquid-gas bicarburetion supply and operation of the combustion chamber.
- the gaseous fuel supply to the gaseous fuel injection pipes can be carried out through a second delivery pipe of substantially annular shape and substantially similar to the pipe shown in connection with FIG. 1 .
- FIG. 6 diagrammatically shows a cross-section of a cylindrical body 600 similar to the body described in connection with FIG. 2 , and associated with an injection device allowing liquid-gas bicarburetion running.
- the use of two delivery ramps leading to distinct injection pipes in a gas turbine combustion chamber provides high flexibility because it allows to use, alternately or in the same cycle, a gaseous fuel or a liquid fuel, without modifying the fuel supply system and without stopping the turbine. Furthermore, the injection system remains compact and advantageously allows to shift from one to the other in case of ramp damage (gas or liquid) or in case of fuel (gas or liquid) supply problems.
- the present device and/or the present method although it finds an obvious application, is not limited to the sphere of gas turbines, and its use can also be considered in any combustion device or method requiring delivery of a fuel in liquid form and homogeneous mixing of said fuel and air prior to said combustion.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Spray-Type Burners (AREA)
Abstract
Description
Claims (6)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR01/06218 | 2001-05-10 | ||
FR0106218A FR2824625B1 (en) | 2001-05-10 | 2001-05-10 | DEVICE AND METHOD FOR INJECTING A LIQUID FUEL INTO AN AIRFLOW FOR A COMBUSTION CHAMBER |
PCT/FR2002/001381 WO2002090831A1 (en) | 2001-05-10 | 2002-04-22 | Device and method for injecting a liquid fuel in an air flow for a combustion chamber |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040142294A1 US20040142294A1 (en) | 2004-07-22 |
US7249721B2 true US7249721B2 (en) | 2007-07-31 |
Family
ID=8863149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/477,127 Expired - Fee Related US7249721B2 (en) | 2001-05-10 | 2002-04-22 | Device and method for injecting a liquid fuel into an air flow for a combustion chamber |
Country Status (6)
Country | Link |
---|---|
US (1) | US7249721B2 (en) |
EP (1) | EP1387986A1 (en) |
JP (1) | JP4368112B2 (en) |
AU (1) | AU2002310718A1 (en) |
FR (1) | FR2824625B1 (en) |
WO (1) | WO2002090831A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080190113A1 (en) * | 2003-06-19 | 2008-08-14 | Hitachi, Ltd. | Gas turbine combustor and fuel supply method for same |
US20100083664A1 (en) * | 2006-03-01 | 2010-04-08 | General Electric Company | Method and apparatus for assembling gas turbine engine |
US20100089066A1 (en) * | 2007-05-15 | 2010-04-15 | Alstom Technology Ltd | Cool flame combustion |
US20110094240A1 (en) * | 2009-10-23 | 2011-04-28 | Man Diesel & Turbo Se | Swirl Generator |
US20110203284A1 (en) * | 2010-02-25 | 2011-08-25 | Ritland David M | Circumferential biasing and profiling of fuel injection in distribution ring |
US20120227407A1 (en) * | 2009-12-15 | 2012-09-13 | Man Diesel & Turbo Se | Burner for a turbine |
US10378760B2 (en) * | 2013-10-14 | 2019-08-13 | Cogebio | Lean gas burner |
US20200063968A1 (en) * | 2017-04-06 | 2020-02-27 | University Of Cincinnati | Rotating detonation engines and related devices and methods |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0230070D0 (en) * | 2002-12-23 | 2003-01-29 | Bowman Power Systems Ltd | A combustion device |
JP4626251B2 (en) | 2004-10-06 | 2011-02-02 | 株式会社日立製作所 | Combustor and combustion method of combustor |
EP1645805A1 (en) * | 2004-10-11 | 2006-04-12 | Siemens Aktiengesellschaft | burner for fluidic fuels and method for operating such a burner |
US7703288B2 (en) * | 2005-09-30 | 2010-04-27 | Solar Turbines Inc. | Fuel nozzle having swirler-integrated radial fuel jet |
EP1821035A1 (en) * | 2006-02-15 | 2007-08-22 | Siemens Aktiengesellschaft | Gas turbine burner and method of mixing fuel and air in a swirling area of a gas turbine burner |
JP4719059B2 (en) * | 2006-04-14 | 2011-07-06 | 三菱重工業株式会社 | Gas turbine premixed combustion burner |
US8986002B2 (en) * | 2009-02-26 | 2015-03-24 | 8 Rivers Capital, Llc | Apparatus for combusting a fuel at high pressure and high temperature, and associated system |
BRPI1008485B1 (en) * | 2009-02-26 | 2020-06-02 | Palmer Labs, Llc | APPARATUS AND METHOD FOR COMBUSTING A FUEL IN HIGH PRESSURE AND HIGH TEMPERATURE AND ASSOCIATED SYSTEM AND DEVICE. |
US9068743B2 (en) * | 2009-02-26 | 2015-06-30 | 8 Rivers Capital, LLC & Palmer Labs, LLC | Apparatus for combusting a fuel at high pressure and high temperature, and associated system |
ATE540265T1 (en) * | 2009-04-06 | 2012-01-15 | Siemens Ag | SWIRL DEVICE, COMBUSTION CHAMBER AND GAS TURBINE WITH IMPROVED SWIRL |
EP2325542B1 (en) * | 2009-11-18 | 2013-03-20 | Siemens Aktiengesellschaft | Swirler vane, swirler and burner assembly |
JP4894947B2 (en) * | 2010-09-21 | 2012-03-14 | 株式会社日立製作所 | Combustor and combustion method of combustor |
JP5584260B2 (en) * | 2012-08-08 | 2014-09-03 | 日野自動車株式会社 | Exhaust purification device burner |
US9651259B2 (en) | 2013-03-12 | 2017-05-16 | General Electric Company | Multi-injector micromixing system |
US9534787B2 (en) | 2013-03-12 | 2017-01-03 | General Electric Company | Micromixing cap assembly |
US9528444B2 (en) | 2013-03-12 | 2016-12-27 | General Electric Company | System having multi-tube fuel nozzle with floating arrangement of mixing tubes |
US9759425B2 (en) * | 2013-03-12 | 2017-09-12 | General Electric Company | System and method having multi-tube fuel nozzle with multiple fuel injectors |
US9765973B2 (en) | 2013-03-12 | 2017-09-19 | General Electric Company | System and method for tube level air flow conditioning |
US9650959B2 (en) | 2013-03-12 | 2017-05-16 | General Electric Company | Fuel-air mixing system with mixing chambers of various lengths for gas turbine system |
US20140338340A1 (en) * | 2013-03-12 | 2014-11-20 | General Electric Company | System and method for tube level air flow conditioning |
US9671112B2 (en) | 2013-03-12 | 2017-06-06 | General Electric Company | Air diffuser for a head end of a combustor |
WO2018162995A1 (en) | 2017-03-07 | 2018-09-13 | 8 Rivers Capital, Llc | System and method for combustion of solid fuels and derivatives thereof |
AU2018229961B2 (en) | 2017-03-07 | 2023-11-02 | 8 Rivers Capital, Llc | System and method for operation of a flexible fuel combustor for a gas turbine |
EP3827163A1 (en) | 2018-07-23 | 2021-06-02 | 8 Rivers Capital, LLC | System and method for power generation with flameless combustion |
US11719438B2 (en) * | 2021-03-15 | 2023-08-08 | General Electric Company | Combustion liner |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3866413A (en) * | 1973-01-22 | 1975-02-18 | Parker Hannifin Corp | Air blast fuel atomizer |
US5319935A (en) * | 1990-10-23 | 1994-06-14 | Rolls-Royce Plc | Staged gas turbine combustion chamber with counter swirling arrays of radial vanes having interjacent fuel injection |
US5423173A (en) * | 1993-07-29 | 1995-06-13 | United Technologies Corporation | Fuel injector and method of operating the fuel injector |
WO1995016881A1 (en) | 1993-12-17 | 1995-06-22 | Abb Stal Ab | Method and apparatus for atomizing liquid fuel |
US5588824A (en) | 1994-12-19 | 1996-12-31 | Abb Management Ag | Injection nozzle |
EP0762057A1 (en) | 1995-09-01 | 1997-03-12 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Mixing device for fuel and air for gas turbine combustors |
EP0981019A1 (en) | 1998-08-20 | 2000-02-23 | Asea Brown Boveri AG | Method and burner for combustion of liquid fuels |
US6094916A (en) | 1995-06-05 | 2000-08-01 | Allison Engine Company | Dry low oxides of nitrogen lean premix module for industrial gas turbine engines |
US6109038A (en) * | 1998-01-21 | 2000-08-29 | Siemens Westinghouse Power Corporation | Combustor with two stage primary fuel assembly |
US6151899A (en) * | 1998-05-09 | 2000-11-28 | Alstom Gas Turbines Limited | Gas-turbine engine combustor |
US6216466B1 (en) * | 1997-04-10 | 2001-04-17 | European Gas Turbines Limited | Fuel-injection arrangement for a gas turbine combustor |
US6253555B1 (en) * | 1998-08-21 | 2001-07-03 | Rolls-Royce Plc | Combustion chamber comprising mixing ducts with fuel injectors varying in number and cross-sectional area |
US6532726B2 (en) * | 1998-01-31 | 2003-03-18 | Alstom Gas Turbines, Ltd. | Gas-turbine engine combustion system |
US6868676B1 (en) * | 2002-12-20 | 2005-03-22 | General Electric Company | Turbine containing system and an injector therefor |
-
2001
- 2001-05-10 FR FR0106218A patent/FR2824625B1/en not_active Expired - Lifetime
-
2002
- 2002-04-22 AU AU2002310718A patent/AU2002310718A1/en not_active Abandoned
- 2002-04-22 EP EP02735482A patent/EP1387986A1/en not_active Withdrawn
- 2002-04-22 WO PCT/FR2002/001381 patent/WO2002090831A1/en active Application Filing
- 2002-04-22 US US10/477,127 patent/US7249721B2/en not_active Expired - Fee Related
- 2002-04-22 JP JP2002587855A patent/JP4368112B2/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3866413A (en) * | 1973-01-22 | 1975-02-18 | Parker Hannifin Corp | Air blast fuel atomizer |
US5319935A (en) * | 1990-10-23 | 1994-06-14 | Rolls-Royce Plc | Staged gas turbine combustion chamber with counter swirling arrays of radial vanes having interjacent fuel injection |
US5423173A (en) * | 1993-07-29 | 1995-06-13 | United Technologies Corporation | Fuel injector and method of operating the fuel injector |
WO1995016881A1 (en) | 1993-12-17 | 1995-06-22 | Abb Stal Ab | Method and apparatus for atomizing liquid fuel |
US5588824A (en) | 1994-12-19 | 1996-12-31 | Abb Management Ag | Injection nozzle |
US6094916A (en) | 1995-06-05 | 2000-08-01 | Allison Engine Company | Dry low oxides of nitrogen lean premix module for industrial gas turbine engines |
EP0762057A1 (en) | 1995-09-01 | 1997-03-12 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Mixing device for fuel and air for gas turbine combustors |
US6216466B1 (en) * | 1997-04-10 | 2001-04-17 | European Gas Turbines Limited | Fuel-injection arrangement for a gas turbine combustor |
US6109038A (en) * | 1998-01-21 | 2000-08-29 | Siemens Westinghouse Power Corporation | Combustor with two stage primary fuel assembly |
US6532726B2 (en) * | 1998-01-31 | 2003-03-18 | Alstom Gas Turbines, Ltd. | Gas-turbine engine combustion system |
US6151899A (en) * | 1998-05-09 | 2000-11-28 | Alstom Gas Turbines Limited | Gas-turbine engine combustor |
EP0981019A1 (en) | 1998-08-20 | 2000-02-23 | Asea Brown Boveri AG | Method and burner for combustion of liquid fuels |
US6253555B1 (en) * | 1998-08-21 | 2001-07-03 | Rolls-Royce Plc | Combustion chamber comprising mixing ducts with fuel injectors varying in number and cross-sectional area |
US6868676B1 (en) * | 2002-12-20 | 2005-03-22 | General Electric Company | Turbine containing system and an injector therefor |
Non-Patent Citations (1)
Title |
---|
Wang et al, "Experimental Study of a Model Gas Turbine Combustor Swirl Cup, Part II: Droplet Dynamics", Journal of Propulsion and Power, vol. 19, No. 4, Jul.-Aug. 1994, pp. 446-452. * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080190113A1 (en) * | 2003-06-19 | 2008-08-14 | Hitachi, Ltd. | Gas turbine combustor and fuel supply method for same |
US7571609B2 (en) * | 2003-06-19 | 2009-08-11 | Hitachi, Ltd. | Gas turbine combustor and fuel supply method for same |
US20100083664A1 (en) * | 2006-03-01 | 2010-04-08 | General Electric Company | Method and apparatus for assembling gas turbine engine |
US7716931B2 (en) * | 2006-03-01 | 2010-05-18 | General Electric Company | Method and apparatus for assembling gas turbine engine |
US20100089066A1 (en) * | 2007-05-15 | 2010-04-15 | Alstom Technology Ltd | Cool flame combustion |
US20110094240A1 (en) * | 2009-10-23 | 2011-04-28 | Man Diesel & Turbo Se | Swirl Generator |
US20120227407A1 (en) * | 2009-12-15 | 2012-09-13 | Man Diesel & Turbo Se | Burner for a turbine |
US20110203284A1 (en) * | 2010-02-25 | 2011-08-25 | Ritland David M | Circumferential biasing and profiling of fuel injection in distribution ring |
US9746185B2 (en) * | 2010-02-25 | 2017-08-29 | Siemens Energy, Inc. | Circumferential biasing and profiling of fuel injection in distribution ring |
US10378760B2 (en) * | 2013-10-14 | 2019-08-13 | Cogebio | Lean gas burner |
US20200063968A1 (en) * | 2017-04-06 | 2020-02-27 | University Of Cincinnati | Rotating detonation engines and related devices and methods |
US11761635B2 (en) * | 2017-04-06 | 2023-09-19 | University Of Cincinnati | Rotating detonation engines and related devices and methods |
Also Published As
Publication number | Publication date |
---|---|
FR2824625A1 (en) | 2002-11-15 |
US20040142294A1 (en) | 2004-07-22 |
JP4368112B2 (en) | 2009-11-18 |
WO2002090831A1 (en) | 2002-11-14 |
AU2002310718A1 (en) | 2002-11-18 |
JP2004525335A (en) | 2004-08-19 |
EP1387986A1 (en) | 2004-02-11 |
WO2002090831A8 (en) | 2002-12-12 |
FR2824625B1 (en) | 2003-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7249721B2 (en) | Device and method for injecting a liquid fuel into an air flow for a combustion chamber | |
EP3014095B1 (en) | System and method for exhausting combustion gases from gas turbine engines | |
US5974780A (en) | Method for reducing the production of NOX in a gas turbine | |
JP3782822B2 (en) | Fuel injection device and method of operating the fuel injection device | |
US5406799A (en) | Combustion chamber | |
RU2495263C2 (en) | Combustion chamber of gas turbine, and method of reduction of pressure on it | |
RU2309329C2 (en) | Frothing aerodynamic system of injection of the air-fuel mixture into the combustion chamber of the turbomachine, the turbomachine combustion chamber and the turbomachine | |
EP3214278B1 (en) | System and method for mixing tempering air with flue gas for hot scr catalyst | |
US5303554A (en) | Low NOx injector with central air swirling and angled fuel inlets | |
KR20150074155A (en) | Sequential combustion with dilution gas mixer | |
EP1918638A1 (en) | Burner, in particular for a gas turbine | |
JP3977454B2 (en) | Combustion chamber | |
JP2007271257A (en) | Device for injecting mixture of air and fuel, and combustion chamber and turbomachine provided therewith in both | |
JP2004205204A (en) | System with built-in turbine, and injector for the same | |
RU2195575C2 (en) | Method of combustion with low noise level (versions) | |
RU2193686C2 (en) | Injector with two-flow tangential entry and separated flame | |
US8186165B2 (en) | Turbine fuel nozzle having heat control | |
US8413446B2 (en) | Fuel injector arrangement having porous premixing chamber | |
US5146741A (en) | Gaseous fuel injector | |
EP0778443B1 (en) | Fuel injector arrangement; a method of operating a fuel injector arrangement | |
RU2200250C2 (en) | Nozzle with double-flow tangential inlet | |
US5426933A (en) | Dual feed injection nozzle with water injection | |
EP3564585A1 (en) | Swirler arrangement of a burner | |
US20240288170A1 (en) | Fuel injector | |
KR101432293B1 (en) | Counterflow injection mechanism having coaxial fuel-air passages |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TURBOMECA, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIASS, TIDJANI;MARTIN, GERARD;LEBAS, ETIENNE;AND OTHERS;REEL/FRAME:015069/0903;SIGNING DATES FROM 20030611 TO 20031022 Owner name: INSTITUT FRANCAIS DU PETROLE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIASS, TIDJANI;MARTIN, GERARD;LEBAS, ETIENNE;AND OTHERS;REEL/FRAME:015069/0903;SIGNING DATES FROM 20030611 TO 20031022 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: TURBOMECA, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IFP ENERGIES NOUVELLES;REEL/FRAME:029085/0475 Effective date: 20120124 Owner name: IFP ENERGIES NOUVELLES, FRANCE Free format text: CHANGE OF NAME;ASSIGNOR:IFP;REEL/FRAME:029093/0327 Effective date: 20100714 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: SAFRAN HELICOPTER ENGINES, FRANCE Free format text: CHANGE OF NAME;ASSIGNOR:TURBOMECA;REEL/FRAME:046127/0021 Effective date: 20160510 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20190731 |