US6843850B2 - Catalyst-free growth of single-wall carbon nanotubes - Google Patents
Catalyst-free growth of single-wall carbon nanotubes Download PDFInfo
- Publication number
- US6843850B2 US6843850B2 US10/226,733 US22673302A US6843850B2 US 6843850 B2 US6843850 B2 US 6843850B2 US 22673302 A US22673302 A US 22673302A US 6843850 B2 US6843850 B2 US 6843850B2
- Authority
- US
- United States
- Prior art keywords
- nanotubes
- silicon carbide
- wafer
- walled
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B1/00—Single-crystal growth directly from the solid state
- C30B1/02—Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/66—Crystals of complex geometrical shape, e.g. tubes, cylinders
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
- Y10S977/75—Single-walled
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/843—Gas phase catalytic growth, i.e. chemical vapor deposition
Definitions
- the present invention relates to semiconductor devices, and more particularly to a method for growing single-wall carbon nanotubes in the absence of a catalyst.
- Nanotubes In the field of molecular nanoelectronics, few materials show as much promise as nanotubes, and in particular carbon nanotubes, which comprise hollow cylinders of graphite, angstroms in diameter. Nanotubes can be implemented in electronic devices such as diodes and transistors, depending on the nanotube's electrical characteristics. Nanotubes are unique for their size, shape, and physical properties. Structurally a carbon-nanotube resembles a hexagonal lattice of carbon rolled into a cylinder.
- carbon nanotubes exhibit at least two important. characteristics: a nanotube can be either metallic or semiconductor depending on its chirality (i.e., conformatioral geometry). Metallic nanotubes can carry extremely large current densities with constant resistivity. Semiconducting nanotubes can be electrically switched on and off as field-effect transistors (FETs). The two types may be covalently joined (sharing electrons). These characteristics point to nanotubes as excellent materials for making nanometer-sized semiconductor circuits.
- FETs field-effect transistors
- Nanotubes can be formed as a single-wall carbon nanotube (SWNT) or a multi-wall carbon nanotube (MWNT).
- SWNTs can be produced by, for example, arc-discharge and laser ablation of a carbon target.
- Local growth of tubes on a surface can also be obtained by chemical vapor deposition (CVD).
- the growth of the nanotubes is made possible by the presence of metallic particles, such as Co, Fe and/or Ni, acting as catalyst.
- the resultant carbon nanotubes comprise contaminants, e.g., catalyst particles.
- the use of clean nanotubes can be important, for example, where nanotubes are implemented as an active part of electric devices.
- the presence of contaminating atoms and particles can alter the electrical properties of the nanotubes.
- the metallic particles can be removed, however the process of cleaning or purifying the nanotubes can be complicated and can alter the quality of the nanotubes.
- SiC Silicon carbide
- MWNTs multi-walled carbon nanotubes
- SiC is a semiconductor that can crystallize under hexagonal or cubic forms. In the direction of the growth ([ 0001 ] for hexagonal SiC and [ 001 ] for cubic SiC), it is composed of alternate layers of silicon and carbon. SiC wafers of up to 4′′ are commercially available. Because the layers are grouped by pairs, the two opposite faces of a wafer are different. One face is naturally composed of silicon atoms, the other face of carbon. These two faces are thus called the Si-face and the C-face.
- SWNTs have been identified as a potential component of electronic devices.
- the quality of nanotubes e.g., their ability to act as a semiconductor, can be affected by contaminants. Therefore, a need exists for a method of catalyst-free growth of single-wall carbon nanotubes.
- a method for growing single-walled nanotubes comprises providing a silicon carbide semiconductor water, and annealing the silicon face of the silicon carbide semiconductor wafer in a vacuum at a temperature of at least about 1300 degrees Celsius, inducing formation of single-walled nanotubes.
- the vacuum may be about a pressure of less than 10 ⁇ 9 Torr.
- the temperature may be about 1650 degrees Celsius.
- the method further comprises bonding the single-walled nanotubes to a target wafer. Bonding can be promoted by one of thermal annealing, chemical reaction and physical adhesion of the nanotubes to the target wafer.
- the method can further comprise suspending the single-walled nanotubes in a solution, and dispersing the single-walled nanotubes on a target wafer.
- Dispersing may comprise one of random dispersion and self-assembly.
- Self-assembly comprises attaching a coupler to each end of at least one nanotube and providing a corresponding receptor on the target wafer for receiving the coupler.
- a plurality of single-walled nanotubes can form a network.
- the network is arranged according to a structure and a symmetry of the silicon carbide semiconductor.
- a method for growing single-walled nanotubes comprises providing a substrate comprising carbon and annealing the substrate in a vacuum at a temperature of at least about 1350 degrees Celsius, inducing formation of single-walled nanotubes.
- the method further comprises patterning the substrate to form patches.
- the method influences the chirality of a grown nanotube according to a direction of patterning.
- the patterning is by one of lithography and focused electron beam patterning.
- the substrate is one of a silicon carbide wafer, substrate of silicon carbide micro crystals, and graphite.
- a method for growing a network of ordered single-walled nanotubes comprises providing a silicon carbide semiconductor wafer. The method further comprises annealing the silicon carbide semiconductor wafer in a vacuum at a temperature of at least about 1350 degrees Celsius, inducing formation of a network of single-walled nanotubes arranged according to a symmetry of the silicon carbide semiconductor.
- FIG. 1 is a flow chart of a method according to an embodiment of the present invention
- FIGS. 2 a-b show STM images of a first semiconductor wafer according to an embodiment of the present invention
- FIGS. 2 c-d show STM images of a second semiconductor wafer according to an embodiment of the present invention
- FIGS. 3 a-b show non-contact atomic force microscope image of a first sample comprising nanotubes before and after manipulation, respectively, according to an embodiment of the present invention
- FIGS. 3 c-d show non-contact atomic force microscope image of a second sample comprising nanotubes before and after manipulation, respectively, according to an embodiment of the present invention
- FIGS. 3 e-f show non-contact atomic force microscope image of the second sample comprising nanotubes before and after re-annealing, respectively, according to an embodiment of the present invention.
- FIGS. 4 a and 4 b illustrate directed assembly of nanotubes according to an embodiment of the present invention.
- the present invention comprises a method for growing single-walled nanotubes (SWNTs) in the absence of a catalyst.
- SWNTs single-walled nanotubes
- a substrate such as a silicon carbide (SiC) semiconductor wafer or a wafer of SiC micro crystals is provided 101 .
- the substrate is annealed in a vacuum and/or in a substantially inert environment, e.g. an inert gas, at a predetermined temperature 102 .
- the inert gas can be, for example, Argon, Neon or Helium.
- annealing a SiC wafer having a silicon face and a carbon face, can induce the roll-up of graphite pieces into SWNTs on the Si-face of a SiC wafer.
- the annealing can be performed in a vacuum, preferably being an ultra-high vacuum (UHV) (e.g., P ⁇ 10 ⁇ 9 Torr). This transformation is achieved in a sufficiently high temperature. It is observed that a temperature of at least about 1350C is sufficient.
- UHV ultra-high vacuum
- the nanotubes that are formed are predominately SWNTs.
- the SWNTs can be very long and have a good crystalline quality.
- FIGS. 2 a-b and 2 c-d show STM images of two samples, referred to hereinafter as Y and T respectively, after annealing in vacuum at 1650° C. for 15 minutes.
- Sample T was cut along the (1, ⁇ 1,0,0) axis of the wafer and its morphology can be characterized by well-ordered parallel steps in the (1,1, ⁇ 2,0) direction.
- Sample Y was cut 30° off the (1, ⁇ 1,0,0) axis in a different region of the wafer. Its morphology shows no organized step network but larger terraces of hexagonal orientation.
- the white structures are SWNTs.
- the SWNTs extend over several steps or terraces of the SiC wafer and are not present on the samples annealed in vacuum at temperatures below 1400° C. (as confirmed by STM and SEM experiments not shown). It is clear from FIG. 2 , that the nanotubes are not randomly distributed but rather conform to the morphology of the semiconductor surface. Studies of the two types of samples show that this organization is uniform over the entire area.
- the surface morphology comprises terraces (e.g., sample Y, FIGS. 2 a and 2 b )
- the nanotubes form a web-like network with a predominance of 120° angles between straight sections.
- the nanotubes can align either along, or perpendicular to, the step edges. In this case, the tendency to form 90° angles is shown in FIG. 2 d.
- FIGS. 3 a and 3 b show the same area of a SiC surface before and after atomic force microscope (AFM) manipulations.
- the AFM can be used to obtain an image of the nanotube by scanning the AFM tip above the surface of the semiconductor wafer.
- the AFM tip can be brought down to the surface and used to physically move nanotubes.
- the two manipulations marked by arrows in FIG. 3 a show that it is possible to move the position of Y structures ( 301 and 302 ) along the biggest branch which is consistent with the unraveling of a bundle.
- ordered networks of SWNTs can be formed.
- the SWNTs are grown in a random manner and then moved to an ordered position.
- the nanotubes can be organized.
- FIGS. 3 c and 3 d illustrate a manipulation of the nanotubes by AFM to perturb their alignment. After manipulation, the sample is re-annealed in a vacuum at a temperature too low to grow new nanotubes.
- FIG. 3 d shows the same area as in FIG. 3 c after several manipulations. As shown in FIG. 3 d some sections of nanotubes that were straight are now bent, some sections have been divided into several branches and new sections have appeared. The arrow on FIG.
- 3 d marks a new section of nanotube that did not appear in FIG. 3 c . It is clear that this section connects two preexisting sections. Note that no manipulation has been made at the exact position of the new segment but one of the two previously visible segments has been manipulated. This behavior is highly reproducible and all the new sections are connected to older ones. This strongly supports the idea that only part of the grown nanotubes is visible on the surface. The growth of the nanotubes takes place in several atomic layers and the network of nanotubes is composed of nanotubes from different depths connected together. It follows that AFM manipulation can bring sub-layer segments of nanotubes to the surface, wherein the carbon can pass through the silicon at sufficiently high temperatures. The fact that the new segments are aligned in the same direction as the surface ones suggests that the nanotubes are also ordered below the surface.
- the Si-surface of 6H-SiC annealed at high temperature can be considered to be composed of several layers of graphite. It can be difficult to imagine a nanotube being extracted from the sample to the surface through a well-ordered grapheme sheet. The surface is more probably composed of several pieces of graphite layers.
- FIGS. 3 e and 3 f show the same area of the surface before and after this annealing step. It is clear from FIG. 3 f that the nanotubes have moved back to a well-ordered configuration. This demonstrates that the ordering of the nanotubes is due to a diffusion process that follows the growth. This diffusion releases part of the mechanical stress incorporated in the randomly grown network by favoring straight segments and by matching the crystallographic order of the surface. At the same time, formation of bundles contributes to the lowering of the total energy.
- the catalyst-free growth of single-walled nanotubes on silicon carbide takes place in several steps. Silicon is evaporated from the SiC surface leading to a more and more carbon-rich surface. Above 1350° C., the amorphous carbon on the surface starts to crystallize into pieces (or patches) of grapheme. These pieces of graphite contain dangling bonds, particularly at their edges. Nanotubes can be formed when the dangling bonds of the graphite pieces bond together.
- a graphite sample can be used as a substrate 101 .
- a sample of Highly orientated Pyrolytical Graphite (HOPG) can be patterned to into patches 103 .
- Methods for inducing the format-on of grapheme patches include, for example, lithography, focused electron beam patterning techniques.
- the sample can be annealed in vacuum to induce the bonding and rolling of these patches into nanotubes 104 .
- Nanotubes of a given chirality can be produced by tuning the direction of the patch edges.
- the direction of nanotube growth is in the direction of an edge of the patch. Patterning the substrate graphitic patches can favor the growth of tubes with a given chirality.
- the carbon nanotubes produced are located at the surface of the SiC wafer. Therefore, the nanotubes can be transferred onto another substrate, such as an insulting or a patterned surface, by a simple bonding process or other methods involving a dispersion of he nanotubes in a solution.
- Direct bonding comprises bonding the SiC wafer with the nanotubes at the surface to the target wafer using processes that are either promoted by thermal annealing or chemical reaction or physical adhesion between the target surface and the carbon nanotubes. It has the advantage of keeping the structure of the network of tubes formed as in FIG. 2 .
- the solution-based technique comprises making a suspension of the tubes into a solution and disperse them back onto a target wafer using either random dispersion or self-assembly processes.
- the solution can be made from divers solvents (e.g., water, ethanol, dischloroethane, etc.) with the possible addition of surfactants or polymers that help to stabilize the nanotubes and avoid the formation of bundles of tubes.
- nanotubes can be put in place by a method of self- or directed assembly rather than deposited as described above.
- Directed assembly can be used for horizontal and vertical deposition of a nanotube using selective deposition driven by a chemical or a physical process.
- the selective deposition can include forming an adhesion layer or chemical groups acting as receptors to favor a desired deposition of tubes in a given position.
- FIGS. 4 a and 4 b show methods for horizontal and vertical directed assembly, respectively.
- a nanotube 401 can be prepared comprising predetermined chemical groups 402 , for example, a DNA strand or a thiol group, at each end or located on the side walls.
- the nanotube 401 can be brought into the proximity of a substrate 403 comprising receptors 404 , for example, where DNA is implemented, a complementary DNA strand can be used. Where a thiol group is used, gold particles or a contact shape comprising gold, can be designed to bond with the chemical groups 402 of the nanotube 401 .
- the nanotube 401 can thus be placed on the substrate 403 according to directed assembly.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Geometry (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/226,733 US6843850B2 (en) | 2002-08-23 | 2002-08-23 | Catalyst-free growth of single-wall carbon nanotubes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/226,733 US6843850B2 (en) | 2002-08-23 | 2002-08-23 | Catalyst-free growth of single-wall carbon nanotubes |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040035355A1 US20040035355A1 (en) | 2004-02-26 |
US6843850B2 true US6843850B2 (en) | 2005-01-18 |
Family
ID=31887309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/226,733 Expired - Lifetime US6843850B2 (en) | 2002-08-23 | 2002-08-23 | Catalyst-free growth of single-wall carbon nanotubes |
Country Status (1)
Country | Link |
---|---|
US (1) | US6843850B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040120879A1 (en) * | 2001-05-17 | 2004-06-24 | Zyvex Corporation | System and method for manipulating nanotubes |
US20060008403A1 (en) * | 2004-07-09 | 2006-01-12 | Clean Technologies International Corporation | Reactant liquid system for facilitating the production of carbon nanostructures |
US20060008406A1 (en) * | 2004-07-09 | 2006-01-12 | Clean Technologies International Corporation | Method and apparatus for preparing a collection surface for use in producing carbon nanostructures |
US20060008405A1 (en) * | 2004-07-09 | 2006-01-12 | Wagner Anthony S | Method and apparatus for producing carbon nanostructures |
US20060041104A1 (en) * | 2004-08-18 | 2006-02-23 | Zyvex Corporation | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
US20060054866A1 (en) * | 2004-04-13 | 2006-03-16 | Zyvex Corporation. | Methods for the synthesis of modular poly(phenyleneethynlenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials |
US20070018045A1 (en) * | 2005-06-10 | 2007-01-25 | Callahan Kevin S | Method of attaching electrically powered seat track cover to through hole seat track design |
US20070116633A1 (en) * | 2004-07-09 | 2007-05-24 | Clean Technologies International Corporation | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US7241496B2 (en) | 2002-05-02 | 2007-07-10 | Zyvex Performance Materials, LLC. | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
US7244407B2 (en) | 2002-05-02 | 2007-07-17 | Zyvex Performance Materials, Llc | Polymer and method for using the polymer for solubilizing nanotubes |
US20070265379A1 (en) * | 2003-05-22 | 2007-11-15 | Zyvex Corporation | Nanocomposites and methods thereto |
US20070298168A1 (en) * | 2006-06-09 | 2007-12-27 | Rensselaer Polytechnic Institute | Multifunctional carbon nanotube based brushes |
US20080292870A1 (en) * | 2006-08-01 | 2008-11-27 | The Board Of Regents Of The Nev. Sys. Of Higher Ed On Behalf Of The Unlv | Fabrication of patterned and ordered nanoparticles |
US20100003185A1 (en) * | 2004-08-16 | 2010-01-07 | Wagner Anthony S | Method and apparatus for producing fine carbon particles |
US20100132883A1 (en) * | 2006-04-28 | 2010-06-03 | Burke Peter J | Synthesis of pure nanotubes from nanotubes |
US20100316792A1 (en) * | 2009-06-11 | 2010-12-16 | Korea University Industry and Academy Cooperation Foundation | Method of fabricating electron emission source and method of fabricating electronic device by using the method |
US20110311427A1 (en) * | 2008-12-11 | 2011-12-22 | William Marsh Rice University | Strongly Bound Carbon Nanotube Arrays Directly Grown On Substrates And Methods For Production Thereof |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7385266B2 (en) * | 2003-05-14 | 2008-06-10 | Nantero, Inc. | Sensor platform using a non-horizontally oriented nanotube element |
US8471238B2 (en) * | 2004-09-16 | 2013-06-25 | Nantero Inc. | Light emitters using nanotubes and methods of making same |
US20100119435A1 (en) * | 2005-03-15 | 2010-05-13 | David Herbert Roach | Processes for growing carbon nanotubes in the absence of catalysts |
US20100239490A1 (en) * | 2005-03-15 | 2010-09-23 | David Herbert Roach | Processes for growing carbon nanotubes using disordered carbon target |
TWI458678B (en) * | 2011-12-30 | 2014-11-01 | Ind Tech Res Inst | Method of preparing graphene layers |
EP3129133B1 (en) | 2013-03-15 | 2024-10-09 | Seerstone LLC | Systems for producing solid carbon by reducing carbon oxides |
EP3129321B1 (en) | 2013-03-15 | 2021-09-29 | Seerstone LLC | Electrodes comprising nanostructured carbon |
EP3129135A4 (en) | 2013-03-15 | 2017-10-25 | Seerstone LLC | Reactors, systems, and methods for forming solid products |
WO2014151144A1 (en) * | 2013-03-15 | 2014-09-25 | Seerstone Llc | Carbon oxide reduction with intermetallic and carbide catalysts |
WO2014150944A1 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Methods of producing hydrogen and solid carbon |
US9299939B1 (en) | 2014-12-09 | 2016-03-29 | International Business Machines Corporation | Formation of CMOS device using carbon nanotubes |
US11752459B2 (en) | 2016-07-28 | 2023-09-12 | Seerstone Llc | Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6250984B1 (en) * | 1999-01-25 | 2001-06-26 | Agere Systems Guardian Corp. | Article comprising enhanced nanotube emitter structure and process for fabricating article |
US6630722B1 (en) * | 1999-05-26 | 2003-10-07 | Sharp Kabushiki Kaisha | Solid state image sensing device having high image quality and fabricating method thereof |
-
2002
- 2002-08-23 US US10/226,733 patent/US6843850B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6250984B1 (en) * | 1999-01-25 | 2001-06-26 | Agere Systems Guardian Corp. | Article comprising enhanced nanotube emitter structure and process for fabricating article |
US6630722B1 (en) * | 1999-05-26 | 2003-10-07 | Sharp Kabushiki Kaisha | Solid state image sensing device having high image quality and fabricating method thereof |
Non-Patent Citations (1)
Title |
---|
M. Kusunoki et al., A Formation Mechanism of Carbon Nanotube Films on SiC(0001), Applied Physics Letters, vol. 77, No. 4, Jul. 24, 2000, pp. 531-533. |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7344691B2 (en) | 2001-05-17 | 2008-03-18 | Zyvek Performance Materials, Llc | System and method for manipulating nanotubes |
US20040120879A1 (en) * | 2001-05-17 | 2004-06-24 | Zyvex Corporation | System and method for manipulating nanotubes |
US7547472B2 (en) | 2002-05-02 | 2009-06-16 | Zyvex Performance Materials, Inc. | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
US7544415B2 (en) | 2002-05-02 | 2009-06-09 | Zyvex Performance Materials, Inc. | Polymer and method for using the polymer for solubilizing nanotubes |
US20080194737A1 (en) * | 2002-05-02 | 2008-08-14 | Zyvex Performance Materials, Llc | Polymer and method for using the polymer for solubilizing nanotubes |
US7241496B2 (en) | 2002-05-02 | 2007-07-10 | Zyvex Performance Materials, LLC. | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
US7244407B2 (en) | 2002-05-02 | 2007-07-17 | Zyvex Performance Materials, Llc | Polymer and method for using the polymer for solubilizing nanotubes |
US7479516B2 (en) | 2003-05-22 | 2009-01-20 | Zyvex Performance Materials, Llc | Nanocomposites and methods thereto |
US20070265379A1 (en) * | 2003-05-22 | 2007-11-15 | Zyvex Corporation | Nanocomposites and methods thereto |
US20090203867A1 (en) * | 2004-04-13 | 2009-08-13 | Zyvex Performance Materials, Inc. | Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials |
US20060054866A1 (en) * | 2004-04-13 | 2006-03-16 | Zyvex Corporation. | Methods for the synthesis of modular poly(phenyleneethynlenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials |
US20110033366A1 (en) * | 2004-07-09 | 2011-02-10 | Wagner Anthony S | Reactant liquid system for facilitating the production of carbon nanostructures |
US20110189076A1 (en) * | 2004-07-09 | 2011-08-04 | Wagner Anthony S | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US20080050303A1 (en) * | 2004-07-09 | 2008-02-28 | Wagner Anthony S | Reactant Liquid System For Facilitating The Production Of Carbon Nanostructures |
US20080056980A1 (en) * | 2004-07-09 | 2008-03-06 | Wagner Anthony S | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US9133033B2 (en) | 2004-07-09 | 2015-09-15 | Clean Technology International Corp. | Reactant liquid system for facilitating the production of carbon nanostructures |
US20070116633A1 (en) * | 2004-07-09 | 2007-05-24 | Clean Technologies International Corporation | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US8263037B2 (en) | 2004-07-09 | 2012-09-11 | Clean Technology International Corporation | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US7922993B2 (en) | 2004-07-09 | 2011-04-12 | Clean Technology International Corporation | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US7901653B2 (en) | 2004-07-09 | 2011-03-08 | Clean Technology International Corporation | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US20060008403A1 (en) * | 2004-07-09 | 2006-01-12 | Clean Technologies International Corporation | Reactant liquid system for facilitating the production of carbon nanostructures |
US20060008405A1 (en) * | 2004-07-09 | 2006-01-12 | Wagner Anthony S | Method and apparatus for producing carbon nanostructures |
US20090155160A1 (en) * | 2004-07-09 | 2009-06-18 | Wagner Anthony S | Method and Apparatus for Producing Carbon Nanostructures |
US7550128B2 (en) | 2004-07-09 | 2009-06-23 | Clean Technologies International Corporation | Method and apparatus for producing carbon nanostructures |
US7563426B2 (en) | 2004-07-09 | 2009-07-21 | Clean Technologies International Corporation | Method and apparatus for preparing a collection surface for use in producing carbon nanostructures |
US20060008406A1 (en) * | 2004-07-09 | 2006-01-12 | Clean Technologies International Corporation | Method and apparatus for preparing a collection surface for use in producing carbon nanostructures |
US7815885B2 (en) | 2004-07-09 | 2010-10-19 | Clean Technology International Corporation | Method and apparatus for producing carbon nanostructures |
US7815886B2 (en) | 2004-07-09 | 2010-10-19 | Clean Technology International Corporation | Reactant liquid system for facilitating the production of carbon nanostructures |
US20100172817A1 (en) * | 2004-07-09 | 2010-07-08 | Wagner Anthony S | Method And Apparatus For Preparing A Collection Surface For Use In Producing Carbon Nanostructures |
US7814846B2 (en) | 2004-07-09 | 2010-10-19 | Clean Technology International Corporation | Method and apparatus for preparing a collection area for use in producing carbon nanostructures |
US8197787B2 (en) | 2004-08-16 | 2012-06-12 | Clean Technology International Corporation | Method and apparatus for producing fine carbon particles |
US20100003185A1 (en) * | 2004-08-16 | 2010-01-07 | Wagner Anthony S | Method and apparatus for producing fine carbon particles |
US20060041104A1 (en) * | 2004-08-18 | 2006-02-23 | Zyvex Corporation | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
US7296576B2 (en) | 2004-08-18 | 2007-11-20 | Zyvex Performance Materials, Llc | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
US20070018045A1 (en) * | 2005-06-10 | 2007-01-25 | Callahan Kevin S | Method of attaching electrically powered seat track cover to through hole seat track design |
US20100132883A1 (en) * | 2006-04-28 | 2010-06-03 | Burke Peter J | Synthesis of pure nanotubes from nanotubes |
US8343581B2 (en) * | 2006-04-28 | 2013-01-01 | Regents Of The University Of California | Synthesis of pure nanotubes from nanotubes |
US20070298168A1 (en) * | 2006-06-09 | 2007-12-27 | Rensselaer Polytechnic Institute | Multifunctional carbon nanotube based brushes |
US8084101B2 (en) | 2006-08-01 | 2011-12-27 | The Board of Regents of the Nevada Systems of Higher Education on behalf of the University of Nevada, Las Vegas | Fabrication of patterned and ordered nanoparticles |
US20080292870A1 (en) * | 2006-08-01 | 2008-11-27 | The Board Of Regents Of The Nev. Sys. Of Higher Ed On Behalf Of The Unlv | Fabrication of patterned and ordered nanoparticles |
WO2009017830A1 (en) * | 2007-08-01 | 2009-02-05 | The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, | Fabrication of patterned and ordered nanoparticles |
US20110311427A1 (en) * | 2008-12-11 | 2011-12-22 | William Marsh Rice University | Strongly Bound Carbon Nanotube Arrays Directly Grown On Substrates And Methods For Production Thereof |
US8709373B2 (en) * | 2008-12-11 | 2014-04-29 | William Marsh Rice University | Strongly bound carbon nanotube arrays directly grown on substrates and methods for production thereof |
US20100316792A1 (en) * | 2009-06-11 | 2010-12-16 | Korea University Industry and Academy Cooperation Foundation | Method of fabricating electron emission source and method of fabricating electronic device by using the method |
Also Published As
Publication number | Publication date |
---|---|
US20040035355A1 (en) | 2004-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6843850B2 (en) | Catalyst-free growth of single-wall carbon nanotubes | |
Avigal et al. | Growth of aligned carbon nanotubes by biasing during growth | |
JP3183845B2 (en) | Method for producing carbon nanotube and carbon nanotube film | |
US7361579B2 (en) | Method for selective chemical vapor deposition of nanotubes | |
US9108850B2 (en) | Preparing nanoparticles and carbon nanotubes | |
US6800369B2 (en) | Crystals comprising single-walled carbon nanotubes | |
Meyyappan et al. | Carbon nanotube growth by PECVD: a review | |
US7893423B2 (en) | Electrical circuit device having carbon nanotube fabrication from crystallography oriented catalyst | |
Peng et al. | Patterned growth of single-walled carbon nanotube arrays from a vapor-deposited Fe catalyst | |
Yanagi et al. | Self-orientation of short single-walled carbon nanotubes deposited on graphite | |
US9305777B2 (en) | Catalyst free synthesis of vertically aligned CNTs on SiNW arrays | |
US8038795B2 (en) | Epitaxial growth and cloning of a precursor chiral nanotube | |
Chen et al. | The characterization of boron-doped carbon nanotube arrays | |
EP1205436A1 (en) | Crystals comprising single-walled carbon nanotubes | |
KR100335383B1 (en) | Method of fabricating carbon nanotube | |
Biró et al. | Selective nucleation and growth of carbon nanotubes at the CoSi 2/Si interface | |
Wan et al. | Growth of carbon nanotubes by gas source molecular beam epitaxy | |
Bošković et al. | Carbon nanotubes interconnects | |
Kim et al. | Chirality-controlled growth of single-walled carbon nanotubes via nanotube cloning | |
Nidadavolu | Synthesis of carbon nanotubes by microwave plasma enhanced CVD on silicon using iron as catalyst | |
Uchino et al. | Catalyst free low temperature direct growth of carbon nanotubes | |
KR100503123B1 (en) | Method for the formation of open structure carbon nanotubes field emitter by plasma chemical vapor deposition | |
Hsu et al. | Growth behavior and interfacial reaction between carbon nanotubes and Si substrate | |
Lee et al. | Synthesis of controllably grown carbon nanotubes interconnects | |
El Khakani et al. | Lateral growth of single wall carbon nanotubes on various substrates by means of an “all-laser” synthesis approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AVOURIS, PHAEDON;DERYCKE, VINCENT;MARTEL, RICHARD;AND OTHERS;REEL/FRAME:013238/0205 Effective date: 20020819 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
FPAY | Fee payment |
Year of fee payment: 12 |