US6422001B1 - Regeneration control of particulate filter, particularly in a hybrid electric vehicle - Google Patents
Regeneration control of particulate filter, particularly in a hybrid electric vehicle Download PDFInfo
- Publication number
- US6422001B1 US6422001B1 US09/785,723 US78572300A US6422001B1 US 6422001 B1 US6422001 B1 US 6422001B1 US 78572300 A US78572300 A US 78572300A US 6422001 B1 US6422001 B1 US 6422001B1
- Authority
- US
- United States
- Prior art keywords
- internal combustion
- combustion engine
- particulate
- particulate filter
- back pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/46—Series type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
- F02D41/0245—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1448—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/47—Engine emissions
- B60Y2300/476—Regeneration of particle filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
- F02D2041/026—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus using an external load, e.g. by increasing generator load or by changing the gear ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0802—Temperature of the exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
Definitions
- This invention relates to reduction in air pollution, and more particularly to particulate filtration of vehicle exhaust gases.
- Car exhaust regulations have resulted in improvements in emissions of oxides of nitrogen, hydrocarbons, and carbon monoxide, as well as emissions of so-called greenhouse gases.
- Truck and bus emissions are subject to regulations which are becoming more stringent.
- fuel economy has become more important in recent years, as worldwide demand for petroleum-based liquid hydrocarbon fuels causes increases in fuel prices. Increased fuel economy, in turn, tends to reduce exhaust emissions per mile of travel.
- An advantage of hybrid electric vehicles is that the internal combustion engine which generates the electrical power is decoupled from the vehicle drive wheels, so the engine may be run at a speed which is independent of the vehicle speed, at least in the short term. This, in turn, allows the engine to be operated at a speed selected for superior fuel economy, reliability, andor emission control.
- a method is for cleaning a regenerative particulate filter or “trap” associated with a particulate-generating internal combustion engine.
- the method includes the step of passing exhaust gases from the engine through a regenerative particulate filter for removing particulate matter from the filter effluent or output gases.
- a back-pressure signal is generated.
- the back-pressure signal is representative of the average back pressure of the filter.
- the step of generating a back pressure signal representing the average back pressure- may be performed by generating a series of instantaneous back-pressure signals, and integrating the signals, in known manner, to produce an average.
- the engine When the back-pressure signal reaches a predetermined threshold, the engine is set to or toward a speed in the lower portion of its range, and the engine loading is increased, whereby the temperature of the engine exhaust gases tends to increase, and the temperature of the filter also tends to increase, thereby aiding in regenerating the filter.
- the step of increasing the loading comprises the step of adjusting an electrical-energy-producer powered by the engine for generating increased electrical energy, and coupling the increased electrical energy to an electrical load.
- the step of coupling the increased electrical energy includes the step of coupling at least a portion of the increased electrical energy to a resistive dissipating device.
- An embodiment of a resistive dissipating device is a discrete resistor.
- the step of coupling the increased electrical energy to an electrical load includes the step of coupling at least a portion of the increased electrical energy to a traction energy storage device, such as a battery or ultracapacitor.
- a second threshold is provided, which is at a lower level of back pressure than the first-mentioned threshold. Above this threshold value, the traction energy storage device is charged toward a setpoint which represents a lower energy level, so that energy attributable to the increased load can be stored in the traction storage device without overcharging.
- the step of controlling the increased loading is accomplished under at least partial control of the filter temperature.
- FIG. 1 is a simplified block diagram of a hybrid internal-combustion/electrically driven vehicle according to an aspect of the invention, in which the exhaust gas of the internal combustion engine is filtered or trapped;
- FIG. 2 is a simplified flow chart or diagram describing one form which computer logic can take for accomplishing the ends of the invention
- FIG. 3 is a simplified block diagram of a portion of the arrangement of FIG. 2 with the logic flow modified to depend at least partially on the filter temperature;
- FIG. 4 is a plot of engine torque versus engine speed for a Cummins diesel engine, with exhaust temperature as a parameter
- FIG. 5 is a simplified flow chart or diagram representing some details of the flow in a portion of the flow chart of FIG. 2 in a slightly different embodiment of the logic.
- a vehicle hybrid electrical drive system 10 includes an internal combustion engine 12 which has a rotating output shaft 12 s which drives an electrical generator 14 .
- generators for hybrid electric purposes are AC (alternating current) generators, but direct-voltage (DC) generators may be used with some minor system changes.
- DC direct-voltage
- alternating voltage and alternating current are related terms, and that, in general, electrical current cannot exist in the absence of a motive force or voltage.
- the alternating current or alternating voltage produced by generator 14 is applied to a power-handling electrical controller 16 , as known in the art.
- Power-handling controller 16 includes power switches which are controlled or switched in order to allow power flow in either direct voltage or alternating voltage form among an alternating-current induction motor 18 , an alternating-current generator, and a battery or other electrical storage device 22 .
- Motor 18 is mechanically coupled to at least one drive wheel of the vehicle, illustrated as wheel 20 .
- Electrical controller 26 controls the operation of power electrical controller 16 in a field oriented manner, as known in the art, for controlling, among other things, the amount of power applied to or extracted from the motor, for providing driving torque or dynamic braking.
- Electrical controller 26 also interacts with engine 12 by way of a signal path 38 for monitoring engine operation, and for providing control signals to which the engine is responsive.
- Electrical controller 26 also interacts with user controls such as a foot-operated torque demand “accelerator” and a foot-operated brake illustrated as a block 42 , and may also provide indications of engine and system operation to the operator.
- the internal combustion engine 12 produces exhaust gases in an exhaust pipe designated as 28 .
- Exhaust pipe 28 guides the exhaust gases to an input port 30 i of a regenerative particulate filter or trap 30 .
- the filtered exhaust effluent leaves filter 30 by its output port 30 o .
- regenerative particulate filters tend to trap particles entrained within the exhaust gas, so that the filtered effluent is cleaner than the exhaust gas as it leaves the engine.
- filters may be made, for example, from a ceramic honeycomb material which is porous, so that the exhaust gases can pass from input to output, but leave behind at least some of the particulate matter. Deposits of such particulate matter can eventually clog the filter and may result in its destruction.
- Non-regenerative filters must be cleaned periodically. In the context of a vehicle, however, periodic cleaning may be inconvenient because the vehicle must be taken out of service, and cleaning may also be expensive.
- Regenerative filters can be cleaned by heating the particulate matter to a temperature at which it combusts or vaporizes. In ordinary use of a vehicle having a regenerative filter, operation at road speeds under moderate to full load generally produces exhaust gases which are at a high enough temperature to raise the filter temperature above the regeneration temperature. Thus, operation at road speed is generally enough to regenerate or clean the particulate filter.
- Some regenerative filters use electrical heating elements for aiding in heating the filter to a suitable regeneration temperature.
- Some classes of vehicle operation as for example taxis, transit buses, urban delivery vehicles, have operation cycles which include a great deal of idling, and short periods of acceleration, often heavy acceleration. Under these conditions, normal road speeds do not often occur, and the particulate filters do not regenerate as well as in the case of long-distance highway vehicles. Stop-and-go operating regimes, therefore, have a tendency to result in clogging during their normal operation. Such clogging, if allowed to continue, tends to reduce the effective—section of the filter flow path, which in turn tends to increase the temperature in the unclogged portion of the filter. The localized high temperatures in a clogging or clogged filter may result in burn-through of the filter element, which renders it ineffective for its filtering purpose.
- a pressure sensor is associated with the particulate filter, to provide a signal, preferably an electrical signal, representative of at least the existence of an average back pressure exceeding a particular value.
- the pressure sensor 34 is coupled in pipe 28 near the input port 30 i of filter 30 , to produce an electrical signal representative of or indicative of the back pressure.
- the electrical signal from sensor 34 representing the back pressure is coupled to a portion 32 of controller 26 which is provided for control of filter regeneration.
- Portion 32 of controller 26 may, in one version of the invention, also receive signals representing the filter temperature, or the temperature of at least a portion thereof, from a sensor 36 .
- FIG. 2 is a simplified flow chart or flow diagram illustrating a form that the logic of filter controller 32 of FIG. 1 may take.
- the logic starts at a START block 210 , and flows to a block 212 , which represents initial calibration of the pressure sensor with the engine stopped. The indicated pressure is taken as the ambient pressure or baseline for all subsequent pressure measurements, and is stored in memory.
- the logic flows to a block 214 , which represents a delay or pause until receipt of a signal representing the starting of the engine. When such a signal is received, the logic continues from block 214 to a block 216 , which represents sampling of the pressure signal from sensor 34 of FIG. 1 .
- the sampling may be at the clock rate or controlled by a loop, but must produce at least aperiodic samples of the back pressure.
- the pressure samples controlled by block 216 are applied to an integrator 218 , for producing a time average signal.
- the time average should be sufficiently long to encompass at least several cycles of acceleration and deceleration in the context of a vehicle in an urban-duty driving cycle alluded to above.
- the logic flows to a decision block 220 , which compares the pressure represented by the pressure signal from sensor 34 of FIG. 1 with a first threshold value P 1 .
- This first threshold value P 1 is a value somewhat lower than the pressure P 2 deemed to represent the pressure at which regeneration will occur or is desired.
- the logic flows to a block 226 , which represents setting the target value of energy storage in energy storage device 22 of FIG. 1 to a value lower than the value at which it would otherwise be set by the overall controller 26 .
- a block 226 represents setting the target value of energy storage in energy storage device 22 of FIG. 1 to a value lower than the value at which it would otherwise be set by the overall controller 26 .
- Suitable arrangements for overall controller 26 are known to those skilled in the art. This resetting of the target energy storage, in turn, tends to reduce the amount of energy in the battery, so that, when regeneration begins, energy can be stored in the battery without overcharging.
- Block 230 represents the resetting of the target value of engine speed controlled by overall controller 26 of FIG. 1, to set the engine in a lower portion of its range.
- the normal overall control of the engine speed may be dependent upon state of charge of the traction battery, traction demand, and other factors.
- the signals produced by filter control 32 tend to drive the engine speed toward a speed greater than idle, but less than about half-speed, but still under the control of controller 26 .
- Schemes for resetting control values by summing, multiplication or substitution are well known. From block 230 , the logic flows by way of a path 230 o to a block 232 .
- Blocks 232 and 234 represent the application of a significant load to the engine.
- the logic then flows by way of a logic path 234 p to END block 222 .
- the increase of an idle speed to a speed above idle concurrently with the application of the increased load prevents the engine speed from dropping below idle.
- the decreasing of the engine speed from a higher speed concurrently with the application of an increased load tends to increase the exhaust gas temperature above what it might otherwise be.
- the increased exhaust temperature aids in raising the filter temperature to the regeneration temperature.
- block 234 in engaging a load resistance might occur in a scenario in which the traction battery is at less than the current target value, but regenerative braking is taking place so that the current flow charging the battery is at its maximum value.
- the load In order to keep the engine exhaust temperature up and continue regeneration, the load must be maintained. Since the load cannot be maintained by charging the batteries, the operation of the resistor 24 as suggested by block 234 allows maintaining the electrical load on the engine/generator combination 12 , 14 .
- the logic flows to block 236 for resetting engine speed and battery target charge level to full control by overall controller 26 of FIG. 1, and also traverses block 238 for disengaging load resistance 24 . Thereafter, the logic resumes its looping around blocks 216 , 218 , 220 , 236 , 238 , and 222 and path 224 , until the buildup of particulate matter again causes the pre-regeneration and regeneration activity.
- a decision block 310 is interposed in the logic path extending between blocks 230 and 232 of FIG. 2 .
- Decision block 310 compares the filter temperature as measured by sensor 36 of FIG. 1 with a predetermined temperature T R representing the temperature at which proper filter regeneration is deemed to occur. So long as the filter temperature is above the threshold temperature t R , the logic leaves decision block 310 by the YES output, and bypasses block 234 . If the sensed filter temperature is below the temperature which is deemed to be suitable, the load is increased by allowing the logic to flow to block 234 , thereby engaging the power-dissipating resistor.
- FIG. 4 is a plot of engine torque versus engine speed for a Cummins diesel engine, with exhaust temperature as a parameter.
- each isotherm is designated by its temperature in ⁇ F.
- a plot generally similar to that of FIG. 4 can be generated for each different type andor manufacturer of diesel engine.
- a digitized or quantized representation of a plot similar to that of FIG. 4 is loaded into a ROM or equivalent memory associated with filter controller 32 of FIG. 1, and is available to the controller.
- FIG. 5 is a simplified flow chart or diagram illustrating some details of the logic flow in block 230 of FIG. 2 in a slightly different operating mode.
- the logic flow illustrated in FIG. 5 not only controls the engine speed and load, but in addition controls the engine load in dependence on the engine speed and the vehicle load in order to maintain the engine exhaust at or above a threshold temperature.
- the logic of FIG. 5 assumes that the overall controller 26 of FIG. 1 “knows” at least the actual power entering the traction motor 18 , the minimum regeneration temperature required for the filter being used, whether the vehicle is moving or not.
- the logic flow arrives at a block 510 by way of path 230 i .
- Block 510 represents the setting of a default value of engine speed, which exceeds the idling speed.
- block 510 represents the selection of 1000 RPM, for example, to be the default engine speed when the vehicle is not moving, to prevent stalling when a load is applied. This default engine speed exceeds the idling speed, which might be 800 RPM.
- the logic proceeds to a decision block 512 , which examines the vehicle power demand, which can be determined either from the motor torque demand signal produced by user control 42 of FIG. 1, or by actual measurement of the electrical energy entering motor 18 .
- Block 512 compares the vehicle power demand with the available engine power.
- the available engine power is the product of the engine speed and the engine torque.
- Engine speed is known to the controller, and the engine torque can be determined from the power leaving the generator 14 of FIG. 1 .
- the overall controller 26 maintains a setpoint for the battery charge, and adjusts the battery demand to maintain the desired charge.
- the battery power demand plus the motor power demand are provided by the generator under control of the overall controller, so there will be some finite value of generator output at any given generator speed, so the filter controller logic of FIG. 5 will find some finite value of generator demand and therefore of engine load. If the vehicle demand is less than the available power, the logic leaves decision block 512 by the NO output, and proceeds to a block 514 . Block 514 represents the maintaining of the default engine speed and the current load. On the other hand, if decision block 512 finds that the vehicle power demand exceeds the available power, the logic leaves by the YES output, and arrives at a block 516 .
- Block 516 represents increasing the engine speed, and therefore the engine power, to meet the power demand and maintain the exhaust temperature, using the FIG. 4 information preloaded into the filter controller to move along an isotherm.
- the isotherm along which the engine travels is the one representing the minimum regeneration temperature T R , because an engine exhaust temperature exceeding the desired regeneration temperature represents wasted energy.
- the regeneration temperature T R is established by the filter manufacturer, but in general is in the vicinity of 400 ⁇ C, corresponding to about 750 ⁇ F.
- the drive wheel would be a spur gear rather than a drive wheel.
- a diesel engine has been described, any internal combustion engine may be used.
- the temperature of the filter has been described as being used merely for preventing turn-off of the increased engine loading until the regeneration has reached a particular temperature, those skilled in the art will recognize that the temperature may also be used to control the increased-loading setpoint, so that too low a temperature during regeneration results in an increased exhaust temperature.
- a method for regeneration of particulate filters or traps in the context of a hybrid electric vehicle includes the step of measuring the back pressure of the filter, and adjusting the engine parameters when the back pressure exceeds a particular value to increase the exhaust temperature, to aid in regeneration.
- the engine speed and engine load are both reset toward particular target values.
- increasing the load includes the step of increasing the battery charge level setpoint.
- a power-dissipating resistor is coupled to an electric source to increase the load.
- the use of the electrical resistor is made dependent upon the temperature of the filter during regeneration.
- a method is for cleaning a regenerative particulate filter or trap ( 36 ) associated with a particulate-generating internal combustion engine ( 12 ).
- the method includes the step of passing exhaust gases from the engine ( 12 ) through a regenerative particulate filter ( 36 ) for removing particulate matter from the filter ( 36 ) effluent ( 31 ) or output gases.
- a filter back-pressure signal is generated ( 34 ).
- the back-pressure signal is representative of the average back pressure of the filter ( 36 ).
- the step of generating a back pressure signal representing the average back pressure may be performed by generating a series of instantaneous back-pressure signals ( 216 ), and integrating ( 218 ) the signals, in known manner, to produce an average.
- the engine ( 12 ) When the average back-pressure signal reaches a predetermined threshold (p 2 ), the engine ( 12 ) is set to or toward a speed in the lower portion of its range, but above idle, and the engine ( 12 ) loading is increased ( 230 , 232 , 234 ), whereby the temperature of the engine ( 12 ) exhaust gases ( 31 ) tends to increase, and the temperature of the filter ( 36 ) also tends to increase, thereby aiding in regenerating the filter ( 36 ).
- the step ( 230 , 232 , 234 ) of increasing the loading comprises the step of adjusting an electrical-energy-producer ( 14 , 26 ) powered by the engine ( 12 ) for generating increased electrical energy, and coupling the increased electrical energy to an electrical load ( 232 , 234 ).
- the step of coupling the increased electrical energy ( 232 , 234 ) includes the step of coupling at least a portion of the increased electrical energy to a resistive dissipating device ( 234 ).
- An embodiment of a resistive dissipating device is a discrete resistor.
- the step ( 232 , 234 ) of coupling the increased electrical energy to an electrical load includes the step ( 232 ) of coupling at least a portion of the increased electrical energy to a traction energy storage device, such as a battery or ultracapacitor.
- a second threshold (P 1 ) is provided, which is at a lower level of back pressure than the first-mentioned threshold (P 2 ). Above this second threshold value (P 1 ), the traction energy storage device ( 22 ) is charged toward a setpoint which represents a lower energy level than it would otherwise tend toward, so that energy attributable to the increased load can later be stored in the traction storage device without overcharging.
- the step of controlling the increased loading is accomplished under at least partial control of the filter ( 36 ) temperature.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
A method for regeneration of particulate filters or traps in the context of a hybrid electric vehicle includes the step of measuring the back pressure of the filter, and adjusting the engine parameters when the back pressure exceeds a particular value to increase the exhaust temperature, to aid in regeneration. In one mode, the engine speed and engine load are both reset toward particular target values. In another version in which the engine load includes an energy storage device such as a battery, increasing the load includes the step of increasing the battery charge level setpoint. Additionally, for those situations in which the battery cannot accept more charge, a power-dissipating resistor is coupled to an electric source to increase the load. In yet another version, the use of the electrical resistor is made dependent upon the temperature of the filter during regeneration.
Description
This invention relates to reduction in air pollution, and more particularly to particulate filtration of vehicle exhaust gases.
Air cleanliness has become societally important, and government regulations are in force for controlling toxic discharge from factories, industries, and from aircraft and other vehicles. Car exhaust regulations have resulted in improvements in emissions of oxides of nitrogen, hydrocarbons, and carbon monoxide, as well as emissions of so-called greenhouse gases. Truck and bus emissions are subject to regulations which are becoming more stringent. In addition, fuel economy has become more important in recent years, as worldwide demand for petroleum-based liquid hydrocarbon fuels causes increases in fuel prices. Increased fuel economy, in turn, tends to reduce exhaust emissions per mile of travel.
One approach to reduced emissions and improved fuel economy is the use of electrically driven automobiles, trucks and buses. However, electrically driven vehicles tend to have relatively short range, and are difficult to heat and air-condition, and may not be all that economical. Another technique for overcoming some of the problems associated with electrically driven vehicles is the use of hybrid internal-combustion/electrical drive, in which an internal combustion engine drives an electrical generator to produce electricity for recharging batteries, and the vehicle drive is provided by an electrical motor powered at least in part by the batteries. So-called ultracapacitors are expected to approach the performance of electrochemical batteries for electrical storage, and may find use in the future.
An advantage of hybrid electric vehicles is that the internal combustion engine which generates the electrical power is decoupled from the vehicle drive wheels, so the engine may be run at a speed which is independent of the vehicle speed, at least in the short term. This, in turn, allows the engine to be operated at a speed selected for superior fuel economy, reliability, andor emission control.
Improved techniques are desired for reducing the emissions of engines used in vehicle applications.
A method according to an aspect of the invention is for cleaning a regenerative particulate filter or “trap” associated with a particulate-generating internal combustion engine. The method includes the step of passing exhaust gases from the engine through a regenerative particulate filter for removing particulate matter from the filter effluent or output gases. A back-pressure signal is generated. The back-pressure signal is representative of the average back pressure of the filter. The step of generating a back pressure signal representing the average back pressure-may be performed by generating a series of instantaneous back-pressure signals, and integrating the signals, in known manner, to produce an average. When the back-pressure signal reaches a predetermined threshold, the engine is set to or toward a speed in the lower portion of its range, and the engine loading is increased, whereby the temperature of the engine exhaust gases tends to increase, and the temperature of the filter also tends to increase, thereby aiding in regenerating the filter.
In a particular mode of the method of the invention, the step of increasing the loading comprises the step of adjusting an electrical-energy-producer powered by the engine for generating increased electrical energy, and coupling the increased electrical energy to an electrical load. In a version of this mode, the step of coupling the increased electrical energy includes the step of coupling at least a portion of the increased electrical energy to a resistive dissipating device. An embodiment of a resistive dissipating device is a discrete resistor. In another version of this mode, the step of coupling the increased electrical energy to an electrical load includes the step of coupling at least a portion of the increased electrical energy to a traction energy storage device, such as a battery or ultracapacitor.
In a particularly advantageous mode of the invention, a second threshold is provided, which is at a lower level of back pressure than the first-mentioned threshold. Above this threshold value, the traction energy storage device is charged toward a setpoint which represents a lower energy level, so that energy attributable to the increased load can be stored in the traction storage device without overcharging. In a further embodiment of the invention, the step of controlling the increased loading is accomplished under at least partial control of the filter temperature.
FIG. 1 is a simplified block diagram of a hybrid internal-combustion/electrically driven vehicle according to an aspect of the invention, in which the exhaust gas of the internal combustion engine is filtered or trapped;
FIG. 2 is a simplified flow chart or diagram describing one form which computer logic can take for accomplishing the ends of the invention;
FIG. 3 is a simplified block diagram of a portion of the arrangement of FIG. 2 with the logic flow modified to depend at least partially on the filter temperature;
FIG. 4 is a plot of engine torque versus engine speed for a Cummins diesel engine, with exhaust temperature as a parameter; and
FIG. 5 is a simplified flow chart or diagram representing some details of the flow in a portion of the flow chart of FIG. 2 in a slightly different embodiment of the logic.
In FIG. 1, a vehicle hybrid electrical drive system 10 includes an internal combustion engine 12 which has a rotating output shaft 12 s which drives an electrical generator 14. In general, modern generators for hybrid electric purposes are AC (alternating current) generators, but direct-voltage (DC) generators may be used with some minor system changes. Those skilled in the art know that the terms alternating voltage and alternating current are related terms, and that, in general, electrical current cannot exist in the absence of a motive force or voltage. The alternating current or alternating voltage produced by generator 14 is applied to a power-handling electrical controller 16, as known in the art. Power-handling controller 16 includes power switches which are controlled or switched in order to allow power flow in either direct voltage or alternating voltage form among an alternating-current induction motor 18, an alternating-current generator, and a battery or other electrical storage device 22. Motor 18 is mechanically coupled to at least one drive wheel of the vehicle, illustrated as wheel 20. Electrical controller 26 controls the operation of power electrical controller 16 in a field oriented manner, as known in the art, for controlling, among other things, the amount of power applied to or extracted from the motor, for providing driving torque or dynamic braking. Electrical controller 26 also interacts with engine 12 by way of a signal path 38 for monitoring engine operation, and for providing control signals to which the engine is responsive. Electrical controller 26 also interacts with user controls such as a foot-operated torque demand “accelerator” and a foot-operated brake illustrated as a block 42, and may also provide indications of engine and system operation to the operator.
In FIG. 1, the internal combustion engine 12 produces exhaust gases in an exhaust pipe designated as 28. Exhaust pipe 28 guides the exhaust gases to an input port 30 i of a regenerative particulate filter or trap 30. The filtered exhaust effluent leaves filter 30 by its output port 30 o. Those skilled in the art know that regenerative particulate filters tend to trap particles entrained within the exhaust gas, so that the filtered effluent is cleaner than the exhaust gas as it leaves the engine. Such filters may be made, for example, from a ceramic honeycomb material which is porous, so that the exhaust gases can pass from input to output, but leave behind at least some of the particulate matter. Deposits of such particulate matter can eventually clog the filter and may result in its destruction. Non-regenerative filters must be cleaned periodically. In the context of a vehicle, however, periodic cleaning may be inconvenient because the vehicle must be taken out of service, and cleaning may also be expensive. Regenerative filters, by contrast, can be cleaned by heating the particulate matter to a temperature at which it combusts or vaporizes. In ordinary use of a vehicle having a regenerative filter, operation at road speeds under moderate to full load generally produces exhaust gases which are at a high enough temperature to raise the filter temperature above the regeneration temperature. Thus, operation at road speed is generally enough to regenerate or clean the particulate filter. Some regenerative filters use electrical heating elements for aiding in heating the filter to a suitable regeneration temperature.
Some classes of vehicle operation, as for example taxis, transit buses, urban delivery vehicles, have operation cycles which include a great deal of idling, and short periods of acceleration, often heavy acceleration. Under these conditions, normal road speeds do not often occur, and the particulate filters do not regenerate as well as in the case of long-distance highway vehicles. Stop-and-go operating regimes, therefore, have a tendency to result in clogging during their normal operation. Such clogging, if allowed to continue, tends to reduce the effective—section of the filter flow path, which in turn tends to increase the temperature in the unclogged portion of the filter. The localized high temperatures in a clogging or clogged filter may result in burn-through of the filter element, which renders it ineffective for its filtering purpose.
According to an aspect of the invention, a pressure sensor is associated with the particulate filter, to provide a signal, preferably an electrical signal, representative of at least the existence of an average back pressure exceeding a particular value. In a preferred embodiment of the arrangement of FIG. 1, the pressure sensor 34 is coupled in pipe 28 near the input port 30 i of filter 30, to produce an electrical signal representative of or indicative of the back pressure. The electrical signal from sensor 34 representing the back pressure is coupled to a portion 32 of controller 26 which is provided for control of filter regeneration. Portion 32 of controller 26 may, in one version of the invention, also receive signals representing the filter temperature, or the temperature of at least a portion thereof, from a sensor 36.
FIG. 2 is a simplified flow chart or flow diagram illustrating a form that the logic of filter controller 32 of FIG. 1 may take. In FIG. 2, the logic starts at a START block 210, and flows to a block 212, which represents initial calibration of the pressure sensor with the engine stopped. The indicated pressure is taken as the ambient pressure or baseline for all subsequent pressure measurements, and is stored in memory. From block 212, the logic flows to a block 214, which represents a delay or pause until receipt of a signal representing the starting of the engine. When such a signal is received, the logic continues from block 214 to a block 216, which represents sampling of the pressure signal from sensor 34 of FIG. 1. The sampling may be at the clock rate or controlled by a loop, but must produce at least aperiodic samples of the back pressure. The pressure samples controlled by block 216 are applied to an integrator 218, for producing a time average signal. The time average should be sufficiently long to encompass at least several cycles of acceleration and deceleration in the context of a vehicle in an urban-duty driving cycle alluded to above. From integrator 218, the logic flows to a decision block 220, which compares the pressure represented by the pressure signal from sensor 34 of FIG. 1 with a first threshold value P1. This first threshold value P1, is a value somewhat lower than the pressure P2 deemed to represent the pressure at which regeneration will occur or is desired. At back pressure value P1, regeneration is deemed to be imminent. At values of back pressure less than the first threshold P1, the logic leaves decision block 220 by the NO output, and proceeds by way of blocks 236 and 238 to an END block 222. From END block 222, the logic returns by way of a logic path 224 to block 216, to continue the pressure sampling.
Eventually, as operation of the vehicle continues, the back pressure of the filter will reach the first threshold value P1, and the logic leaves decision block 220 of FIG. 2 by the YES output, thereby indicating that regeneration is imminent. From the YES output of decision block 220, the logic flows to a block 226, which represents setting the target value of energy storage in energy storage device 22 of FIG. 1 to a value lower than the value at which it would otherwise be set by the overall controller 26. Suitable arrangements for overall controller 26 are known to those skilled in the art. This resetting of the target energy storage, in turn, tends to reduce the amount of energy in the battery, so that, when regeneration begins, energy can be stored in the battery without overcharging.
From block 226 of FIG. 2, the logic flows to a further decision block 228, which compares the current value of the average back pressure with second threshold value P2, which represents the back pressure at which regeneration is to begin. If the current value of the back pressure is less than the second threshold value P2, the logic leaves decision block 228 by the NO output, and flows to the END block 222. If the current value of the back pressure is equal to or exceeds the limit or threshold value P2, the logic exits decision block 228 by the YES output, and flows by way of a path 230 i to a block 230. Block 230 represents the resetting of the target value of engine speed controlled by overall controller 26 of FIG. 1, to set the engine in a lower portion of its range. As an example, for a diesel-electric hybrid omnibus intended for urban use, the normal overall control of the engine speed may be dependent upon state of charge of the traction battery, traction demand, and other factors. The signals produced by filter control 32 tend to drive the engine speed toward a speed greater than idle, but less than about half-speed, but still under the control of controller 26. Schemes for resetting control values by summing, multiplication or substitution are well known. From block 230, the logic flows by way of a path 230 o to a block 232. Blocks 232 and 234 represent the application of a significant load to the engine. This is accomplished by setting upward the target energy storage level in the battery as suggested by block 232, or by applying electrical energy from the battery 22 and the generator 14 to an electrical power dissipating device such as resistor 24 as suggested by block 234, or possibly both. The logic then flows by way of a logic path 234 p to END block 222. The increase of an idle speed to a speed above idle concurrently with the application of the increased load prevents the engine speed from dropping below idle. The decreasing of the engine speed from a higher speed concurrently with the application of an increased load tends to increase the exhaust gas temperature above what it might otherwise be. The increased exhaust temperature, in turn, aids in raising the filter temperature to the regeneration temperature.
It should be noted that the action of block 234 in engaging a load resistance might occur in a scenario in which the traction battery is at less than the current target value, but regenerative braking is taking place so that the current flow charging the battery is at its maximum value. In order to keep the engine exhaust temperature up and continue regeneration, the load must be maintained. Since the load cannot be maintained by charging the batteries, the operation of the resistor 24 as suggested by block 234 allows maintaining the electrical load on the engine/ generator combination 12, 14.
When regeneration is complete, the particulate matter in filter 30 of FIG. 1 is burned off, and the back pressure of the filter decreases. When the back pressure on the filter decreases below the second or greater threshold P2, iteration around the loop diverts the logic away from logic blocks 230, 232, and 234 of FIG. 2, but the state of regeneration continues because these three blocks are not reset. Resetting of the conditions established by blocks 230, 232, and 234 occurs only when the back pressure drops below the first or lower reference pressure P1. At that time, the logic iterating around the loop is diverted away from the YES output of decision block 220, and flows instead to the NO output. From the NO output of decision block 220, the logic flows to block 236 for resetting engine speed and battery target charge level to full control by overall controller 26 of FIG. 1, and also traverses block 238 for disengaging load resistance 24. Thereafter, the logic resumes its looping around blocks 216, 218, 220, 236, 238, and 222 and path 224, until the buildup of particulate matter again causes the pre-regeneration and regeneration activity.
In FIG. 3, a decision block 310 is interposed in the logic path extending between blocks 230 and 232 of FIG. 2. Decision block 310 compares the filter temperature as measured by sensor 36 of FIG. 1 with a predetermined temperature TR representing the temperature at which proper filter regeneration is deemed to occur. So long as the filter temperature is above the threshold temperature tR, the logic leaves decision block 310 by the YES output, and bypasses block 234. If the sensed filter temperature is below the temperature which is deemed to be suitable, the load is increased by allowing the logic to flow to block 234, thereby engaging the power-dissipating resistor.
FIG. 4 is a plot of engine torque versus engine speed for a Cummins diesel engine, with exhaust temperature as a parameter. In FIG. 4, each isotherm is designated by its temperature in ΕF. A plot generally similar to that of FIG. 4 can be generated for each different type andor manufacturer of diesel engine. A digitized or quantized representation of a plot similar to that of FIG. 4 is loaded into a ROM or equivalent memory associated with filter controller 32 of FIG. 1, and is available to the controller.
FIG. 5 is a simplified flow chart or diagram illustrating some details of the logic flow in block 230 of FIG. 2 in a slightly different operating mode. The logic flow illustrated in FIG. 5 not only controls the engine speed and load, but in addition controls the engine load in dependence on the engine speed and the vehicle load in order to maintain the engine exhaust at or above a threshold temperature. The logic of FIG. 5 assumes that the overall controller 26 of FIG. 1 “knows” at least the actual power entering the traction motor 18, the minimum regeneration temperature required for the filter being used, whether the vehicle is moving or not. In FIG. 5, the logic flow arrives at a block 510 by way of path 230 i. Block 510 represents the setting of a default value of engine speed, which exceeds the idling speed. Referring to the plot of FIG. 4, block 510 represents the selection of 1000 RPM, for example, to be the default engine speed when the vehicle is not moving, to prevent stalling when a load is applied. This default engine speed exceeds the idling speed, which might be 800 RPM. From block 510, the logic proceeds to a decision block 512, which examines the vehicle power demand, which can be determined either from the motor torque demand signal produced by user control 42 of FIG. 1, or by actual measurement of the electrical energy entering motor 18. Block 512 compares the vehicle power demand with the available engine power. The available engine power is the product of the engine speed and the engine torque. Engine speed is known to the controller, and the engine torque can be determined from the power leaving the generator 14 of FIG. 1. The overall controller 26 maintains a setpoint for the battery charge, and adjusts the battery demand to maintain the desired charge. The battery power demand plus the motor power demand are provided by the generator under control of the overall controller, so there will be some finite value of generator output at any given generator speed, so the filter controller logic of FIG. 5 will find some finite value of generator demand and therefore of engine load. If the vehicle demand is less than the available power, the logic leaves decision block 512 by the NO output, and proceeds to a block 514. Block 514 represents the maintaining of the default engine speed and the current load. On the other hand, if decision block 512 finds that the vehicle power demand exceeds the available power, the logic leaves by the YES output, and arrives at a block 516. Block 516 represents increasing the engine speed, and therefore the engine power, to meet the power demand and maintain the exhaust temperature, using the FIG. 4 information preloaded into the filter controller to move along an isotherm. Preferably, the isotherm along which the engine travels is the one representing the minimum regeneration temperature TR, because an engine exhaust temperature exceeding the desired regeneration temperature represents wasted energy. The regeneration temperature TR is established by the filter manufacturer, but in general is in the vicinity of 400ΕC, corresponding to about 750ΕF.
Other embodiments of the invention will be apparent to those skilled in the art. For example, if the vehicle were a cog railway, the drive wheel would be a spur gear rather than a drive wheel. While a diesel engine has been described, any internal combustion engine may be used. While the temperature of the filter has been described as being used merely for preventing turn-off of the increased engine loading until the regeneration has reached a particular temperature, those skilled in the art will recognize that the temperature may also be used to control the increased-loading setpoint, so that too low a temperature during regeneration results in an increased exhaust temperature.
Thus, in general, a method for regeneration of particulate filters or traps in the context of a hybrid electric vehicle includes the step of measuring the back pressure of the filter, and adjusting the engine parameters when the back pressure exceeds a particular value to increase the exhaust temperature, to aid in regeneration. In one mode, the engine speed and engine load are both reset toward particular target values. In another version in which the engine load includes an energy storage device such as a battery, increasing the load includes the step of increasing the battery charge level setpoint. Additionally, for those situations in which the battery cannot accept more charge, a power-dissipating resistor is coupled to an electric source to increase the load. In yet another version, the use of the electrical resistor is made dependent upon the temperature of the filter during regeneration.
More particularly, a method according to an aspect of the invention is for cleaning a regenerative particulate filter or trap (36) associated with a particulate-generating internal combustion engine (12). The method includes the step of passing exhaust gases from the engine (12) through a regenerative particulate filter (36) for removing particulate matter from the filter (36) effluent (31) or output gases. A filter back-pressure signal is generated (34). The back-pressure signal is representative of the average back pressure of the filter (36). The step of generating a back pressure signal representing the average back pressure may be performed by generating a series of instantaneous back-pressure signals (216), and integrating (218) the signals, in known manner, to produce an average. When the average back-pressure signal reaches a predetermined threshold (p2), the engine (12) is set to or toward a speed in the lower portion of its range, but above idle, and the engine (12) loading is increased (230, 232, 234), whereby the temperature of the engine (12) exhaust gases (31) tends to increase, and the temperature of the filter (36) also tends to increase, thereby aiding in regenerating the filter (36).
In a particular mode of the method of the invention, the step (230, 232, 234) of increasing the loading comprises the step of adjusting an electrical-energy-producer (14, 26) powered by the engine (12) for generating increased electrical energy, and coupling the increased electrical energy to an electrical load (232, 234). In a version of this mode, the step of coupling the increased electrical energy (232, 234) includes the step of coupling at least a portion of the increased electrical energy to a resistive dissipating device (234). An embodiment of a resistive dissipating device is a discrete resistor. In another version of this mode, the step (232, 234) of coupling the increased electrical energy to an electrical load includes the step (232) of coupling at least a portion of the increased electrical energy to a traction energy storage device, such as a battery or ultracapacitor.
In a particularly advantageous mode of the invention, a second threshold (P1) is provided, which is at a lower level of back pressure than the first-mentioned threshold (P2). Above this second threshold value (P1), the traction energy storage device (22) is charged toward a setpoint which represents a lower energy level than it would otherwise tend toward, so that energy attributable to the increased load can later be stored in the traction storage device without overcharging. In a further embodiment of the invention, the step of controlling the increased loading is accomplished under at least partial control of the filter (36) temperature.
Claims (9)
1. A method for cleaning a regenerative particulate filter associated with a particulate-generating internal combustion engine, the steps comprising:
a) providing an internal combustion engine having a range of selectable operating speeds and producing exhaust gas comprising particulate matter, said exhaust gas being temperature dependent, at least in part, upon a selected operating speed of said internal combustion engine;
b) providing an electrical generator operatively connected to and powered by said internal combustion engine;
c) passing said exhaust gas from said internal combustion engine through a regenerative particulate filter for removing and capturing therein at least a portion of said particulate matter from said exhaust gas, said particulate filter having a back pressure dependent at least in part upon a quantity of said particulate matter captured therein;
d) generating a first back pressure signal representative of a first, predetermined back pressure of said particulate filter;
e) upon receipt of said first back pressure signal, setting said operating speed of said internal combustion engine to a speed selected from the low end of said range of selectable operating speeds; and
f) controlling a load applied to said internal combustion engine substantially simultaneously with said setting step (e);
whereby said temperature of said exhaust gas is increased and a temperature of said particulate filter is also increased in response thereto, thereby facilitating the cleaning thereof.
2. The method for cleaning a regenerative particulate filter associated with a particulate-generating, internal combustion engine, as recited in claim 1 , wherein said controlling a load step (f) further comprises the sub-steps:
i) coupling the output of said generator to an electrical load; and
ii) adjusting said electrical load until a desired loading is applied to said internal combustion engine.
3. The method for cleaning a regenerative particulate filter associated-with a particulate-generating internal combustion engine, as recited in claim 2 , herein said electrical load comprises a resistive dissipating device.
4. The method for cleaning a regenerative particulate filter associated with a particulate-generating internal combustion engine, as recited in claim 3 , wherein said resistive dissipating device comprises a load resistor.
5. The method for cleaning a regenerative particulate filter associated with a particulate-generating internal combustion engine, as recited in claim 2 , wherein said electrical load comprises an energy storage device.
6. The method for cleaning a regenerative particulate filter associated with a particulate-generating internal combustion engine, as recited in claim 5 , wherein said energy storage device comprises at least one from the group: battery and ultracapacitor.
7. The method for cleaning a regenerative particulate filter associated with a particulate-generating internal combustion engine, as recited in claim 5 , the steps further comprising:
a) generating a second back pressure signal representative of a second, predetermined back pressure of said regenerative particulate filter, said second predetermined back pressure being lower than said first, predetermined back pressure; and
b) modifying a set point associated with said energy storage device so that said increased energy output may later be accommodated by said energy storage device while minimizing overcharging thereof.
8. The method for cleaning a regenerative particulate filter associated with a particulate-generating internal combustion engine, as recited in claim 1 , wherein said controlling a load step (f) is responsive to a temperature of at least a portion of said regenerative particulate filter.
9. The method for cleaning a regenerative particulate filter associated with a particulate-generating internal combustion engine, as recited in claim 1 , wherein said internal combustion engine is adapted to propel a vehicle having a traction demand, and wherein said controlling a load step (f) is responsive to said traction demand so as to operate said internal combustion engine near a torque-speed temperature isotherm.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/785,723 US6422001B1 (en) | 2000-10-10 | 2000-10-10 | Regeneration control of particulate filter, particularly in a hybrid electric vehicle |
AT01120904T ATE325940T1 (en) | 2000-10-10 | 2001-08-30 | CONTROL SYSTEM FOR THE REGENERATION OF A PARTICLE FILTER, PARTICULARLY FOR AN ELECTRIC HYBRID VEHICLE |
EP01120904A EP1197642B1 (en) | 2000-10-10 | 2001-08-30 | Regeneration control of particulate filter, particularly in a hybrid electric vehicle |
DE60119469T DE60119469T2 (en) | 2000-10-10 | 2001-08-30 | Control system for the regeneration of a particulate filter, in particular for a hybrid electric vehicle |
KR1020010056178A KR100823912B1 (en) | 2000-10-10 | 2001-09-12 | Regeneration control of particulate filter, particularly in a hybrid electric vehicle |
JP2001308460A JP3895572B2 (en) | 2000-10-10 | 2001-10-04 | Particulate filter regeneration control especially in hybrid electric vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/785,723 US6422001B1 (en) | 2000-10-10 | 2000-10-10 | Regeneration control of particulate filter, particularly in a hybrid electric vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
US6422001B1 true US6422001B1 (en) | 2002-07-23 |
Family
ID=25136430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/785,723 Expired - Lifetime US6422001B1 (en) | 2000-10-10 | 2000-10-10 | Regeneration control of particulate filter, particularly in a hybrid electric vehicle |
Country Status (6)
Country | Link |
---|---|
US (1) | US6422001B1 (en) |
EP (1) | EP1197642B1 (en) |
JP (1) | JP3895572B2 (en) |
KR (1) | KR100823912B1 (en) |
AT (1) | ATE325940T1 (en) |
DE (1) | DE60119469T2 (en) |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030066286A1 (en) * | 2001-09-04 | 2003-04-10 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification device of an engine |
US20030106308A1 (en) * | 2001-11-28 | 2003-06-12 | Isuzu Motors Limited | Exhaust gas purification system and method for controlling regeneration thereof |
US20030217549A1 (en) * | 2002-03-04 | 2003-11-27 | Tetsuya Watanabe | Exhaust emission control device for internal combustion engine |
US20040055279A1 (en) * | 2000-11-11 | 2004-03-25 | Holger Plote | Method and device for controlling an exhaust gas aftertreatment system |
US20040103645A1 (en) * | 2002-08-09 | 2004-06-03 | Prakash Bedapudi | Particulate filter aftertreatment of diesel engine exhaust |
US20040112045A1 (en) * | 2002-12-12 | 2004-06-17 | Detroit Diesel Corporation | System and method for regenerating exhaust system filtering and catalyst components |
US20040159099A1 (en) * | 2003-02-13 | 2004-08-19 | Denso Corporation | Exhaust emission control device for internal combustion engine |
US20040200213A1 (en) * | 2003-04-08 | 2004-10-14 | Hino Motors, Ltd. | Method for regenerating particulate filter |
US20040226287A1 (en) * | 2003-02-18 | 2004-11-18 | Edgar Bradley L. | Automated regeneration apparatus and method for a particulate filter |
US20040237513A1 (en) * | 2002-02-01 | 2004-12-02 | Bunting Bruce G. | System for controlling particulate filter temperature |
US20050060991A1 (en) * | 2003-09-19 | 2005-03-24 | Nissan Motor Co., Ltd. | Filter regeneration in engine exhaust gas purification device |
US20050268601A1 (en) * | 2004-06-04 | 2005-12-08 | Andreas Pfaeffle | Method for regenerating a particle filter |
US20060108956A1 (en) * | 2004-10-28 | 2006-05-25 | Textron Inc. | AC drive system for electrically operated vehicle |
US7076945B2 (en) * | 2004-12-22 | 2006-07-18 | Detroit Diesel Corporation | Method and system for controlling temperatures of exhaust gases emitted from an internal combustion engine to facilitate regeneration of a particulate filter |
US20060168951A1 (en) * | 2005-01-31 | 2006-08-03 | Caterpillar Inc. | Regeneration management system for a work machine |
US20060168952A1 (en) * | 2005-01-31 | 2006-08-03 | Caterpillar Inc. | Adaptive regeneration system for a work machine |
US20060191258A1 (en) * | 2005-02-28 | 2006-08-31 | Caterpillar Inc. | Particulate trap regeneration control system |
US20060240940A1 (en) * | 2005-04-22 | 2006-10-26 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for vehicle and hybrid vehicle |
US20070039311A1 (en) * | 2003-05-26 | 2007-02-22 | Andreas Pfaeffle | Method for operating a component part disposed in an exhaust gas region of an internal combustion engine and device for implementing the method |
US20070044453A1 (en) * | 2005-08-31 | 2007-03-01 | Caterpillar Inc. | Parasitic load control system for exhaust temperature control |
DE102005018575B4 (en) * | 2004-04-22 | 2007-12-20 | Toyota Jidosha Kabushiki Kaisha, Toyota | Exhaust gas control device and exhaust gas control method |
US20080093153A1 (en) * | 2006-10-20 | 2008-04-24 | International Truck Intellectual Property Company, Llc | System and method for driver-initiated regeneration of a diesel particulate filter while a motor vehicle is parked |
US20080164106A1 (en) * | 2007-01-04 | 2008-07-10 | Textron Inc. | Electric Brake for Utility Vehicles |
US20080264041A1 (en) * | 2004-05-05 | 2008-10-30 | Robert Bosch Gmbh | Method For Introducing A Reagent Medium Into An Exhaust Gas Conduit Of An Internal Combustion Engine, And Apparatus For Carrying Out The Method |
US20080295493A1 (en) * | 2007-05-31 | 2008-12-04 | Applegate Brian C | Catalyst temperature control system for a hybrid engine |
US20090044520A1 (en) * | 2007-08-17 | 2009-02-19 | Gm Global Technology Operations, Inc. | Intake Air Heater for Assisting DPF Regeneration |
US20090107740A1 (en) * | 2007-10-29 | 2009-04-30 | Textron Inc. | Hill Hold For An Electric Vehicle |
US20090113874A1 (en) * | 2007-11-02 | 2009-05-07 | Caterpillar Inc. | System and method for electrically regenerating a particulate filter assembly of a generator set |
US20090266050A1 (en) * | 2004-12-13 | 2009-10-29 | Renault S.A.S | Method for controlling the regeneration of an electrostatic particle filter |
US20100005785A1 (en) * | 2004-12-29 | 2010-01-14 | Norbert Breuer | Method for Reducing Emissions in a Motor Vehicle by Controlling the Generator Output |
US20100089035A1 (en) * | 2007-09-25 | 2010-04-15 | Hitachi Construction Machinery Co., Ltd. | Exhaust gas cleaning system for construction machine |
US20100187030A1 (en) * | 2009-01-26 | 2010-07-29 | Chris Conway Gearhart | Energy Management System and Method for Hybrid Electric Vehicles |
US20100313551A1 (en) * | 2006-06-14 | 2010-12-16 | Volvo Lastvagnar Ab | Method and system for regenerating an exhaust gas purification unit |
US20110056194A1 (en) * | 2009-09-10 | 2011-03-10 | Bucyrus International, Inc. | Hydraulic system for heavy equipment |
US20110056192A1 (en) * | 2009-09-10 | 2011-03-10 | Robert Weber | Technique for controlling pumps in a hydraulic system |
US20110061364A1 (en) * | 2009-12-23 | 2011-03-17 | Venkatesh Raman | Method and system for utilization of regenerative braking electrical energy for operating auxiliary system in an off-highway vehicle |
US20110064706A1 (en) * | 2008-01-11 | 2011-03-17 | U.S. Nutraceuticals, Llc D/B/A Valensa International | Method of preventing, controlling and ameliorating urinary tract infections and supporting digestive health by using a synergistic cranberry derivative, a d-mannose composition and a proprietary probiotic blend |
WO2011100279A1 (en) * | 2010-02-12 | 2011-08-18 | International Engine Intellectual Property Company, Llc | System for disabling diesel particulate filter regeneration during electric operation |
US20110233931A1 (en) * | 2010-03-23 | 2011-09-29 | Bucyrus International, Inc. | Energy management system for heavy equipment |
US20120003131A1 (en) * | 2010-07-01 | 2012-01-05 | Rypos, Inc. | Integrated diesel particulate filter and electric load bank |
GB2498534A (en) * | 2012-01-17 | 2013-07-24 | Gm Global Tech Operations Inc | Operation of hybrid vehicle with NOx trap regeneration |
US20130204476A1 (en) * | 2012-02-07 | 2013-08-08 | Robert Bosch Gmbh | Method and device for regenerating a particle filter present in a hybrid drive |
CN103382873A (en) * | 2012-05-04 | 2013-11-06 | 通用汽车环球科技运作有限责任公司 | System and method for controlling exhaust regeneration |
US8584446B2 (en) | 2008-08-08 | 2013-11-19 | Pirelli & C. Eco Technology S.P.A. | Method and device for controlling the regeneration of a particulate filter |
US8606451B2 (en) | 2010-10-06 | 2013-12-10 | Caterpillar Global Mining Llc | Energy system for heavy equipment |
US8626403B2 (en) | 2010-10-06 | 2014-01-07 | Caterpillar Global Mining Llc | Energy management and storage system |
US8718845B2 (en) | 2010-10-06 | 2014-05-06 | Caterpillar Global Mining Llc | Energy management system for heavy equipment |
US20150033716A1 (en) * | 2013-07-31 | 2015-02-05 | Denyo Co., Ltd. | Dpf system for an engine generator |
US9190852B2 (en) | 2012-09-21 | 2015-11-17 | Caterpillar Global Mining Llc | Systems and methods for stabilizing power rate of change within generator based applications |
DE102015014931A1 (en) | 2015-11-18 | 2017-05-18 | Audi Ag | Method for monitoring a state of a device |
US9719434B2 (en) | 2015-02-24 | 2017-08-01 | Electro-Motive Diesel, Inc. | Locomotive control system having thermal management |
US20180128211A1 (en) * | 2012-10-14 | 2018-05-10 | Alberto Martin Perez | Liquefied light hydrocarbon fuel system for hybrid vehicle and methods thereto |
US10024258B2 (en) * | 2013-11-13 | 2018-07-17 | Volvo Truck Corporation | Method and an apparatus for controlling the regeneration of an exhaust gas aftertreatment device |
US11624329B2 (en) * | 2020-09-30 | 2023-04-11 | Johnson Matthey Public Limited Company | Diesel particulate filter regeneration |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2828710B1 (en) * | 2001-08-20 | 2004-02-20 | Peugeot Citroen Automobiles Sa | ASSISTANCE SYSTEM FOR THE REGENERATION OF A PARTICLE FILTER INTEGRATED IN AN EXHAUST SYSTEM OF A VEHICLE DIESEL ENGINE |
US6738702B2 (en) * | 2002-08-29 | 2004-05-18 | Ford Global Technologies, Llc | Method for particulate filter regeneration in vehicles having an automatically controlled transmission |
ITMI20032556A1 (en) * | 2003-12-22 | 2005-06-23 | Iveco Spa | METHOD FOR RECOVERY OF BRAKING ENERGY IN A HYBRID PLANT AND HYBRID MOTOR SYSTEM |
JP2006220036A (en) * | 2005-02-09 | 2006-08-24 | Hino Motors Ltd | Control system for hybrid engine with filter |
JP4293154B2 (en) | 2005-03-30 | 2009-07-08 | 三菱ふそうトラック・バス株式会社 | Motor controller for hybrid vehicle |
EP1885473A1 (en) * | 2005-06-03 | 2008-02-13 | Emitec Gesellschaft für Emissionstechnologie mbH | Method and device for treating exhaust gases of internal combusting engines |
JP4100440B2 (en) * | 2006-09-26 | 2008-06-11 | トヨタ自動車株式会社 | Control device for hybrid vehicle |
DE112007002313T5 (en) * | 2006-09-29 | 2009-07-30 | Caterpillar Inc., Peoria | drive system |
KR100841689B1 (en) * | 2007-03-08 | 2008-06-26 | 쌍용자동차 주식회사 | Controlling method of electric heater type soot filtering device of diesel hybrid vehicle for lowering particle material |
DE102008030520B4 (en) * | 2007-07-02 | 2014-02-27 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Control module and method for thermal protection of vehicle components |
US20090033095A1 (en) * | 2007-08-01 | 2009-02-05 | Deepak Aswani | Regenerating an engine exhaust gas particulate filter in a hybrid electric vehicle |
GB2453561B (en) | 2007-10-11 | 2012-07-25 | Ford Global Tech Llc | A method of regenerating an exhaust aftertreatment device |
US8001771B2 (en) | 2008-08-08 | 2011-08-23 | Deere & Company | Dual engine work vehicle with control for exhaust aftertreatment regeneration |
DE102010044978A1 (en) * | 2010-09-10 | 2012-03-15 | Claas Selbstfahrende Erntemaschinen Gmbh | Agricultural machine |
FR2967387B1 (en) * | 2010-11-17 | 2012-11-16 | Peugeot Citroen Automobiles Sa | A VEHICLE CONTROL METHOD AND A VEHICLE SUITABLE FOR CARRYING OUT SAID METHOD |
CN102031800B (en) * | 2010-11-24 | 2012-07-25 | 三一重机有限公司 | Hybrid power regeneration control method and device for excavator |
WO2012098744A1 (en) * | 2011-01-21 | 2012-07-26 | 日野自動車株式会社 | Regeneration control device, hybrid automobile, regeneration control method, and program |
JP5803726B2 (en) * | 2012-02-16 | 2015-11-04 | トヨタ自動車株式会社 | Control device for idling stop vehicle |
DE102012204352B4 (en) * | 2012-03-01 | 2023-09-07 | Robert Bosch Gmbh | Method for operating a drive device |
JP2015202832A (en) * | 2014-04-16 | 2015-11-16 | トヨタ自動車株式会社 | hybrid vehicle |
JP5882408B2 (en) * | 2014-07-09 | 2016-03-09 | デンヨー株式会社 | Engine drive electric machine load device |
JP6405207B2 (en) * | 2014-12-01 | 2018-10-17 | 北越工業株式会社 | Regeneration method and regeneration device for exhaust gas aftertreatment device in engine driven generator |
FR3029964B1 (en) * | 2014-12-12 | 2019-04-05 | Renault S.A.S. | METHOD FOR REGENERATING A PARTICLE FILTER OF AN EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE BELONGING TO A HYBRID MOTOR PUSH GROUP AND VEHICLE THEREFOR |
DE102016207667B4 (en) | 2016-05-03 | 2024-11-07 | Volkswagen Aktiengesellschaft | Method and device for regenerating a particle filter in a motor vehicle with hybrid drive |
DE102016218858A1 (en) | 2016-09-29 | 2018-03-29 | Audi Ag | Time-optimized particle filter regeneration in hybrid vehicles |
DE102016120938A1 (en) * | 2016-11-03 | 2018-05-03 | Volkswagen Aktiengesellschaft | Method and device for the regeneration of a particulate filter in a motor vehicle with hybrid drive |
DE102017130695A1 (en) | 2017-12-20 | 2019-06-27 | Volkswagen Aktiengesellschaft | A method for exhaust aftertreatment of an internal combustion engine in a hybrid vehicle and hybrid vehicle with an exhaust aftertreatment system |
JP6900929B2 (en) | 2018-04-11 | 2021-07-14 | トヨタ自動車株式会社 | vehicle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4665690A (en) * | 1985-01-14 | 1987-05-19 | Mazda Motor Corporation | Exhaust gas cleaning system for vehicle |
US4934142A (en) * | 1987-12-16 | 1990-06-19 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control device for a diesel engine |
US5050376A (en) * | 1990-02-08 | 1991-09-24 | Allied-Signal Inc. | Control system for diesel particulate trap regeneration system |
US5305602A (en) * | 1991-08-09 | 1994-04-26 | Nippon Soken, Inc. | Device for catching and removing particulates for a diesel engine |
US5489319A (en) * | 1992-09-09 | 1996-02-06 | Matsushita Electric Industrial Co., Ltd. | Apparatus for purifying exhaust gas of diesel engine |
US5716586A (en) * | 1993-06-03 | 1998-02-10 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Exhaust gas purifier |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3619397A1 (en) * | 1986-06-09 | 1987-12-10 | Pierburg Gmbh | Method for the regeneration of a soot filter and diesel engine with soot burn-off filter |
DE4217668C1 (en) * | 1992-05-28 | 1993-05-06 | Daimler Benz Ag | Method for controlling a hybrid drive that drives a vehicle |
GB2344059A (en) * | 1998-11-27 | 2000-05-31 | Rover Group | Engine exhaust with a particulate trap regenerated when a load is applied to the engine |
-
2000
- 2000-10-10 US US09/785,723 patent/US6422001B1/en not_active Expired - Lifetime
-
2001
- 2001-08-30 DE DE60119469T patent/DE60119469T2/en not_active Expired - Lifetime
- 2001-08-30 EP EP01120904A patent/EP1197642B1/en not_active Expired - Lifetime
- 2001-08-30 AT AT01120904T patent/ATE325940T1/en not_active IP Right Cessation
- 2001-09-12 KR KR1020010056178A patent/KR100823912B1/en not_active IP Right Cessation
- 2001-10-04 JP JP2001308460A patent/JP3895572B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4665690A (en) * | 1985-01-14 | 1987-05-19 | Mazda Motor Corporation | Exhaust gas cleaning system for vehicle |
US4934142A (en) * | 1987-12-16 | 1990-06-19 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control device for a diesel engine |
US5050376A (en) * | 1990-02-08 | 1991-09-24 | Allied-Signal Inc. | Control system for diesel particulate trap regeneration system |
US5305602A (en) * | 1991-08-09 | 1994-04-26 | Nippon Soken, Inc. | Device for catching and removing particulates for a diesel engine |
US5489319A (en) * | 1992-09-09 | 1996-02-06 | Matsushita Electric Industrial Co., Ltd. | Apparatus for purifying exhaust gas of diesel engine |
US5716586A (en) * | 1993-06-03 | 1998-02-10 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Exhaust gas purifier |
Cited By (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040055279A1 (en) * | 2000-11-11 | 2004-03-25 | Holger Plote | Method and device for controlling an exhaust gas aftertreatment system |
US7017337B2 (en) * | 2000-11-11 | 2006-03-28 | Robert Bosch Gmbh | Method and device for controlling an exhaust gas aftertreatment system |
US20030066286A1 (en) * | 2001-09-04 | 2003-04-10 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification device of an engine |
US6672050B2 (en) * | 2001-09-04 | 2004-01-06 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification device of an engine |
US20030106308A1 (en) * | 2001-11-28 | 2003-06-12 | Isuzu Motors Limited | Exhaust gas purification system and method for controlling regeneration thereof |
US6802180B2 (en) * | 2001-11-28 | 2004-10-12 | Isuzu Motors Limited | Exhaust gas purification system and method for controlling regeneration thereof |
US6901751B2 (en) * | 2002-02-01 | 2005-06-07 | Cummins, Inc. | System for controlling particulate filter temperature |
US20040237513A1 (en) * | 2002-02-01 | 2004-12-02 | Bunting Bruce G. | System for controlling particulate filter temperature |
US6910329B2 (en) | 2002-02-01 | 2005-06-28 | Cummins, Inc. | System for controlling particulate filter temperature |
US20030217549A1 (en) * | 2002-03-04 | 2003-11-27 | Tetsuya Watanabe | Exhaust emission control device for internal combustion engine |
US6763659B2 (en) * | 2002-03-04 | 2004-07-20 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust emission control device for internal combustion engine |
US20040103645A1 (en) * | 2002-08-09 | 2004-06-03 | Prakash Bedapudi | Particulate filter aftertreatment of diesel engine exhaust |
US6912848B2 (en) * | 2002-08-09 | 2005-07-05 | General Electric Company | Particulate filter aftertreatment of diesel engine exhaust |
US6865883B2 (en) * | 2002-12-12 | 2005-03-15 | Detroit Diesel Corporation | System and method for regenerating exhaust system filtering and catalyst components |
US20040112045A1 (en) * | 2002-12-12 | 2004-06-17 | Detroit Diesel Corporation | System and method for regenerating exhaust system filtering and catalyst components |
US20040159099A1 (en) * | 2003-02-13 | 2004-08-19 | Denso Corporation | Exhaust emission control device for internal combustion engine |
US7028467B2 (en) * | 2003-02-13 | 2006-04-18 | Denso Corporation | Exhaust emission control device for internal combustion engine |
US20040226287A1 (en) * | 2003-02-18 | 2004-11-18 | Edgar Bradley L. | Automated regeneration apparatus and method for a particulate filter |
US7021051B2 (en) * | 2003-04-08 | 2006-04-04 | Hino Motors, Ltd. | Method for regenerating particulate filter |
US20040200213A1 (en) * | 2003-04-08 | 2004-10-14 | Hino Motors, Ltd. | Method for regenerating particulate filter |
US20070039311A1 (en) * | 2003-05-26 | 2007-02-22 | Andreas Pfaeffle | Method for operating a component part disposed in an exhaust gas region of an internal combustion engine and device for implementing the method |
US20050060991A1 (en) * | 2003-09-19 | 2005-03-24 | Nissan Motor Co., Ltd. | Filter regeneration in engine exhaust gas purification device |
US7219493B2 (en) * | 2003-09-19 | 2007-05-22 | Nissan Motor Co., Ltd. | Filter regeneration in engine exhaust gas purification device |
DE102005018575B4 (en) * | 2004-04-22 | 2007-12-20 | Toyota Jidosha Kabushiki Kaisha, Toyota | Exhaust gas control device and exhaust gas control method |
US20080264041A1 (en) * | 2004-05-05 | 2008-10-30 | Robert Bosch Gmbh | Method For Introducing A Reagent Medium Into An Exhaust Gas Conduit Of An Internal Combustion Engine, And Apparatus For Carrying Out The Method |
US8176726B2 (en) * | 2004-05-05 | 2012-05-15 | Robert Bosch Gmbh | Method for introducing a reagent medium into an exhaust gas conduit of an internal combustion engine, and apparatus for carrying out the method |
US20050268601A1 (en) * | 2004-06-04 | 2005-12-08 | Andreas Pfaeffle | Method for regenerating a particle filter |
US20060108956A1 (en) * | 2004-10-28 | 2006-05-25 | Textron Inc. | AC drive system for electrically operated vehicle |
US7825616B2 (en) | 2004-10-28 | 2010-11-02 | Textron Innovations Inc. | AC drive system for electrically operated vehicle |
US8120291B2 (en) | 2004-10-28 | 2012-02-21 | Textron Innovations Inc. | Drive system for electrically operated vehicle |
US20080121443A1 (en) * | 2004-10-28 | 2008-05-29 | Textron Inc. | Ac drive system for electrically operated vehicle |
US20090266050A1 (en) * | 2004-12-13 | 2009-10-29 | Renault S.A.S | Method for controlling the regeneration of an electrostatic particle filter |
US7076945B2 (en) * | 2004-12-22 | 2006-07-18 | Detroit Diesel Corporation | Method and system for controlling temperatures of exhaust gases emitted from an internal combustion engine to facilitate regeneration of a particulate filter |
US20060218897A1 (en) * | 2004-12-22 | 2006-10-05 | Detroit Diesel Corporation | Method and system for controlling temperatures of exhaust gases emitted from an internal combustion engine to facilitate regeneration of a particulate filter |
US7322183B2 (en) | 2004-12-22 | 2008-01-29 | Detroit Diesel Corporation | Method and system for controlling temperatures of exhaust gases emitted from an internal combustion engine to facilitate regeneration of a particulate filter |
US20100005785A1 (en) * | 2004-12-29 | 2010-01-14 | Norbert Breuer | Method for Reducing Emissions in a Motor Vehicle by Controlling the Generator Output |
US20060168951A1 (en) * | 2005-01-31 | 2006-08-03 | Caterpillar Inc. | Regeneration management system for a work machine |
US20060168952A1 (en) * | 2005-01-31 | 2006-08-03 | Caterpillar Inc. | Adaptive regeneration system for a work machine |
US7762062B2 (en) | 2005-01-31 | 2010-07-27 | Caterpillar Inc | Adaptive regeneration system |
US20060191258A1 (en) * | 2005-02-28 | 2006-08-31 | Caterpillar Inc. | Particulate trap regeneration control system |
US7438664B2 (en) * | 2005-04-22 | 2008-10-21 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for vehicle and hybrid vehicle |
US20060240940A1 (en) * | 2005-04-22 | 2006-10-26 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for vehicle and hybrid vehicle |
US7523606B2 (en) | 2005-08-31 | 2009-04-28 | Caterpillar Inc. | Parasitic load control system for exhaust temperature control |
US20070044453A1 (en) * | 2005-08-31 | 2007-03-01 | Caterpillar Inc. | Parasitic load control system for exhaust temperature control |
US9027327B2 (en) * | 2006-06-14 | 2015-05-12 | Volvo Lasivagnar AB | Method and system for regenerating an exhaust gas purification unit |
US20100313551A1 (en) * | 2006-06-14 | 2010-12-16 | Volvo Lastvagnar Ab | Method and system for regenerating an exhaust gas purification unit |
US7685815B2 (en) * | 2006-10-20 | 2010-03-30 | International Truck Intellectual Property Company, Llc | System and method for driver-initiated regeneration of a diesel particulate filter while a motor vehicle is parked |
US20080093153A1 (en) * | 2006-10-20 | 2008-04-24 | International Truck Intellectual Property Company, Llc | System and method for driver-initiated regeneration of a diesel particulate filter while a motor vehicle is parked |
US20080164106A1 (en) * | 2007-01-04 | 2008-07-10 | Textron Inc. | Electric Brake for Utility Vehicles |
US8650860B2 (en) | 2007-05-31 | 2014-02-18 | Caterpillar Inc. | Catalyst temperature control system for a hybrid engine |
US20080295493A1 (en) * | 2007-05-31 | 2008-12-04 | Applegate Brian C | Catalyst temperature control system for a hybrid engine |
US20090044520A1 (en) * | 2007-08-17 | 2009-02-19 | Gm Global Technology Operations, Inc. | Intake Air Heater for Assisting DPF Regeneration |
US8042326B2 (en) * | 2007-08-17 | 2011-10-25 | GM Global Technology Operations LLC | Intake air heater for assisting DPF regeneration |
US20100089035A1 (en) * | 2007-09-25 | 2010-04-15 | Hitachi Construction Machinery Co., Ltd. | Exhaust gas cleaning system for construction machine |
US8250858B2 (en) * | 2007-09-25 | 2012-08-28 | Hitachi Construction Machinery Co., Ltd. | Exhaust gas cleaning system for construction machine |
US20110172869A1 (en) * | 2007-10-29 | 2011-07-14 | Textron Inc. | Hill Hold For An Electric Vehicle |
US7926889B2 (en) | 2007-10-29 | 2011-04-19 | Textron Innovations Inc. | Hill hold for an electric vehicle |
US20090107740A1 (en) * | 2007-10-29 | 2009-04-30 | Textron Inc. | Hill Hold For An Electric Vehicle |
US8201897B2 (en) | 2007-10-29 | 2012-06-19 | Textron Inc. | Hill hold for an electric vehicle |
US20090113874A1 (en) * | 2007-11-02 | 2009-05-07 | Caterpillar Inc. | System and method for electrically regenerating a particulate filter assembly of a generator set |
US20110064706A1 (en) * | 2008-01-11 | 2011-03-17 | U.S. Nutraceuticals, Llc D/B/A Valensa International | Method of preventing, controlling and ameliorating urinary tract infections and supporting digestive health by using a synergistic cranberry derivative, a d-mannose composition and a proprietary probiotic blend |
US8584446B2 (en) | 2008-08-08 | 2013-11-19 | Pirelli & C. Eco Technology S.P.A. | Method and device for controlling the regeneration of a particulate filter |
US8650861B2 (en) | 2008-08-08 | 2014-02-18 | Pirelli & C. Eco Technology S.P.A. | Control of the regeneration of a particulate filter |
CN102165152B (en) * | 2008-08-08 | 2015-01-07 | 倍耐力&C.Eco技术股份公司 | Control of the regeneration of a particulate filter |
US20100187030A1 (en) * | 2009-01-26 | 2010-07-29 | Chris Conway Gearhart | Energy Management System and Method for Hybrid Electric Vehicles |
US8151916B2 (en) * | 2009-01-26 | 2012-04-10 | Ford Global Technologies, Llc | Energy management system and method for hybrid electric vehicles |
US20110056194A1 (en) * | 2009-09-10 | 2011-03-10 | Bucyrus International, Inc. | Hydraulic system for heavy equipment |
US20110056192A1 (en) * | 2009-09-10 | 2011-03-10 | Robert Weber | Technique for controlling pumps in a hydraulic system |
US8327623B2 (en) * | 2009-12-23 | 2012-12-11 | General Electric Company | Method and system for utilization of regenerative braking electrical energy for operating auxiliary system in an off-highway vehicle |
US20110061364A1 (en) * | 2009-12-23 | 2011-03-17 | Venkatesh Raman | Method and system for utilization of regenerative braking electrical energy for operating auxiliary system in an off-highway vehicle |
WO2011100279A1 (en) * | 2010-02-12 | 2011-08-18 | International Engine Intellectual Property Company, Llc | System for disabling diesel particulate filter regeneration during electric operation |
US8362629B2 (en) | 2010-03-23 | 2013-01-29 | Bucyrus International Inc. | Energy management system for heavy equipment |
US20110233931A1 (en) * | 2010-03-23 | 2011-09-29 | Bucyrus International, Inc. | Energy management system for heavy equipment |
US20120003131A1 (en) * | 2010-07-01 | 2012-01-05 | Rypos, Inc. | Integrated diesel particulate filter and electric load bank |
US9120387B2 (en) | 2010-10-06 | 2015-09-01 | Caterpillar Global Mining Llc | Energy management system for heavy equipment |
US8626403B2 (en) | 2010-10-06 | 2014-01-07 | Caterpillar Global Mining Llc | Energy management and storage system |
US8718845B2 (en) | 2010-10-06 | 2014-05-06 | Caterpillar Global Mining Llc | Energy management system for heavy equipment |
US8606451B2 (en) | 2010-10-06 | 2013-12-10 | Caterpillar Global Mining Llc | Energy system for heavy equipment |
GB2498534A (en) * | 2012-01-17 | 2013-07-24 | Gm Global Tech Operations Inc | Operation of hybrid vehicle with NOx trap regeneration |
US20130204476A1 (en) * | 2012-02-07 | 2013-08-08 | Robert Bosch Gmbh | Method and device for regenerating a particle filter present in a hybrid drive |
CN103382873A (en) * | 2012-05-04 | 2013-11-06 | 通用汽车环球科技运作有限责任公司 | System and method for controlling exhaust regeneration |
CN103382873B (en) * | 2012-05-04 | 2016-04-13 | 通用汽车环球科技运作有限责任公司 | For controlling the system and method for exhaust gas regeneration |
US9190852B2 (en) | 2012-09-21 | 2015-11-17 | Caterpillar Global Mining Llc | Systems and methods for stabilizing power rate of change within generator based applications |
US20180128211A1 (en) * | 2012-10-14 | 2018-05-10 | Alberto Martin Perez | Liquefied light hydrocarbon fuel system for hybrid vehicle and methods thereto |
US10221816B2 (en) * | 2012-10-14 | 2019-03-05 | Alberto Martin Perez | Hybrid vehicle with a liquefied light hydrocarbon or hydrogen fuel system and methods thereto |
US20150033716A1 (en) * | 2013-07-31 | 2015-02-05 | Denyo Co., Ltd. | Dpf system for an engine generator |
AU2014206159B2 (en) * | 2013-07-31 | 2017-06-15 | Denyo Kabushiki Kaisha | DPF system for an engine generator |
RU2628817C2 (en) * | 2013-07-31 | 2017-08-22 | Денио Кабусики Кайся | Diesel particle filter system for engine-generator |
US9366164B2 (en) * | 2013-07-31 | 2016-06-14 | Denyo Co., Ltd. | DPF system for an engine generator |
US10024258B2 (en) * | 2013-11-13 | 2018-07-17 | Volvo Truck Corporation | Method and an apparatus for controlling the regeneration of an exhaust gas aftertreatment device |
US9719434B2 (en) | 2015-02-24 | 2017-08-01 | Electro-Motive Diesel, Inc. | Locomotive control system having thermal management |
DE102015014931A1 (en) | 2015-11-18 | 2017-05-18 | Audi Ag | Method for monitoring a state of a device |
DE102015014931B4 (en) * | 2015-11-18 | 2021-01-07 | Audi Ag | Method for monitoring a condition of a device |
US11624329B2 (en) * | 2020-09-30 | 2023-04-11 | Johnson Matthey Public Limited Company | Diesel particulate filter regeneration |
Also Published As
Publication number | Publication date |
---|---|
DE60119469T2 (en) | 2006-11-16 |
ATE325940T1 (en) | 2006-06-15 |
EP1197642A2 (en) | 2002-04-17 |
JP2002195024A (en) | 2002-07-10 |
DE60119469D1 (en) | 2006-06-14 |
JP3895572B2 (en) | 2007-03-22 |
EP1197642A3 (en) | 2003-02-12 |
KR100823912B1 (en) | 2008-04-21 |
KR20020028775A (en) | 2002-04-17 |
EP1197642B1 (en) | 2006-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6422001B1 (en) | Regeneration control of particulate filter, particularly in a hybrid electric vehicle | |
RU2741531C2 (en) | Method of regenerating filter of solid particles of engine exhaust system (versions) | |
KR101773734B1 (en) | Hybrid vehicle and control method for hybrid vehicle | |
EP0511654B1 (en) | Drive apparatus for hybrid vehicle | |
CN112888840B (en) | Energy-optimized forced regeneration of a particle filter of a hybrid vehicle | |
US20080078166A1 (en) | Hybrid engine exhaust gas temperature control system | |
CN108688647A (en) | The control method of automobile, the control device of automobile and automobile | |
JP4396600B2 (en) | Control device for hybrid vehicle | |
JP2007502735A (en) | Hybrid vehicle and method of operating a hybrid vehicle | |
JP3755406B2 (en) | Hybrid vehicle | |
JP5808997B2 (en) | Control device for hybrid vehicle | |
US6362535B1 (en) | Method and apparatus for after-treatment of hev exhaust | |
JP3775391B2 (en) | Power control device for vehicle | |
KR102383250B1 (en) | Vehicular system and method of heating particulate filter usign the same | |
JP3706956B2 (en) | Exhaust gas purification member regeneration device | |
US10968805B2 (en) | Motor vehicle and a method for operating a motor vehicle | |
JP6149510B2 (en) | Hybrid vehicle and control method thereof | |
JP6459583B2 (en) | Control method of hybrid vehicle | |
JP2016155409A (en) | Control method of hybrid vehicle | |
CN109572679B (en) | Method for operating a drive train of a motor vehicle with a combustion engine and a further machine | |
JP2006220036A (en) | Control system for hybrid engine with filter | |
JP3719393B2 (en) | Control device for hybrid system | |
JP6145076B2 (en) | Hybrid work machine | |
US12110816B1 (en) | Hybrid vehicle gasoline particulate filter regeneration | |
CN114013421B (en) | Method and device for removing carbon deposit of particle catcher |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAE SYSTEMS CONTROLS, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHERMAN, JAMES ALAN;LYONS, ARTHUR PAULL;REEL/FRAME:011851/0547;SIGNING DATES FROM 20000925 TO 20001002 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
FPAY | Fee payment |
Year of fee payment: 12 |