Nothing Special   »   [go: up one dir, main page]

US6272894B1 - Method of blow molding - Google Patents

Method of blow molding Download PDF

Info

Publication number
US6272894B1
US6272894B1 US09/712,476 US71247600A US6272894B1 US 6272894 B1 US6272894 B1 US 6272894B1 US 71247600 A US71247600 A US 71247600A US 6272894 B1 US6272894 B1 US 6272894B1
Authority
US
United States
Prior art keywords
metal tubular
tubular member
molding tool
portions
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/712,476
Inventor
John Hudson
David Lee Prichard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAC Products Inc
Original Assignee
JAC Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAC Products Inc filed Critical JAC Products Inc
Priority to US09/712,476 priority Critical patent/US6272894B1/en
Application granted granted Critical
Publication of US6272894B1 publication Critical patent/US6272894B1/en
Assigned to LASALLE BANK MIDWEST NATIONAL ASSOCIATION reassignment LASALLE BANK MIDWEST NATIONAL ASSOCIATION SECURITY AGREEMENT Assignors: JAC PRODUCTS, INC.
Assigned to JAC PRODUCTS, INC. reassignment JAC PRODUCTS, INC. RELEASE OF SECURITY INTEREST IN PATENTS AS RECORDED ON 06/28/06, REEL 017846, FRAME 0368. Assignors: BANK OF AMERICA N.A., AS SUCCESSOR BY MERGER TO LASALLE BANK MIDWEST NATIONAL ASSOCIATION
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/053Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure characterised by the material of the blanks
    • B21D26/055Blanks having super-plastic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/041Means for controlling fluid parameters, e.g. pressure or temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0811Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/079Auxiliary parts or inserts
    • B29C2949/08Preforms made of several individual parts, e.g. by welding or gluing parts together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/258Tubular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S72/00Metal deforming
    • Y10S72/709Superplastic material

Definitions

  • This invention relates to molding techniques, and more particularly to a technique for blow molding a tubular metal part to cause the part to assume a desired shape along at least a portion of the length of the part.
  • injection molding a quantity of molten plastic is injected into a mold under pressure. The molten plastic is then allowed to cool. When removed from the mold, the plastic will have assumed the shape of the cavity of the mold.
  • the above and other objects are provided by a preferred method for blow molding metal parts.
  • the method involves providing a molding tool having first and second portions. Each of the first and second portions includes an access opening in communication with a cavity portion. When the first and second molding portions are placed together, they cooperatively form an access passageway in communication with an internal molding cavity.
  • the internal molding cavity forms a desired shape, such as the outer contour of an end support for a side rail of a vehicle article carrier.
  • the molding tool is heated to a temperature between about 1000° F. and 1200° F., and more preferably to a temperature of about 1130° F.
  • the heating may be accomplished by any suitable means, but is preferably through direct induction heating techniques or electromagnetic induction heating techniques.
  • the gas injected into the tubular part is preferably nitrogen gas under a pressure of between about 400 psi-500 psi.
  • first and second portions of the molding tool each include a pair of access openings which both communicate with the molding cavity.
  • a pair of access passageways are formed through which a portion of a metal part may be extended. In this manner a portion of the metal part intermediate the two extreme ends of the part can be molded to assume a desired shape.
  • the preferred method of the present invention provides a quick, easy and economical means for molding tubular metal parts to assume complex shapes.
  • the method of the present invention is particularly well suited for molding the end support portions of a side rail of a vehicle article carrier.
  • FIG. 1 is a perspective view of a portion of a vehicle showing a vehicle article carrier disposed thereon, wherein the vehicle article carrier includes a pair of side rails adapted to be secured to an outer body surface of the vehicle;
  • FIG. 2 is a perspective view of a molding tool having first and second portions separated from one another, illustrating the cavity of each portion of the molding tool;
  • FIG. 3 is an exploded, perspective view of the molding tool of FIG. 2 showing a portion of a length of tubular metal material placed within one portion of the molding tool;
  • FIG. 4 is a perspective view showing the molding tool closed over a portion of the tubular metal part with a source of pressurized gas coupled to the tubular metal part and applying pressurized gas into the metal part;
  • FIG. 5 is a view showing the first and second portions of the molding tool separated after the molding tool is cooled and the metal part removed therefrom.
  • the vehicle article carrier 12 includes a pair of side rails 14 which are adapted to be fixedly secured to an outer body surface 16 of the vehicle 10 .
  • a pair of cross bars 18 are also preferably included for helping to support articles above the outer body surface 16 .
  • the method of the present invention lends itself particularly well to the manufacture of one piece side rails of a vehicle article carrier, such as side rails 14 illustrated in FIG. 1, the method is not limited to merely the production of side rails, but is applicable to the manufacture of virtually any form of part in which at least a portion of a length of metal material is required to be modified in shape.
  • the drawings and the following description make reference to the forming of an end support of a one piece side rail of a vehicle article carrier.
  • each of the side rails 14 includes a pair of enlarged end support is portions 14 a and a center support portion 14 b .
  • Each of the side rails 14 are formed from an extruded length of aluminum, although it will be appreciated that a variety of other metals and processes could also be used to form the side rails 14 .
  • the method of the present invention involves providing a molding tool 20 having first and second portions 20 a and 20 b , respectively.
  • Portions 20 a and 20 b are mirror images of one another and therefore only portion 20 b will be described.
  • Portion 20 b is formed from a block of metal to include at least one access opening 22 , and more preferably a pair of access openings 22 , which may extend longitudinally in line with one another or which may be offset from one another as illustrated in FIG. 2 .
  • Access openings 22 are essentially recessed portions in a face 24 of the molding portion 20 b which are machined during manufacture of the molding tool 20 in accordance with the desired cross-sectional profile of the tubular workpiece.
  • a mold cavity 26 is also machined or otherwise formed in the molding portion 20 b .
  • the molding cavity 26 is in communication with both access openings 22 .
  • Each molding portion 20 a and 20 b also includes heating elements 27 formed therein during its manufacture or added thereafter in the vicinity of the molding cavity 26 .
  • These heating elements for example, in one embodiment comprise one or more resistive coiled wires within a stainless steel sleeve.
  • the wire 26 is coupled to an external electric current source 29 which is used to heat the tube which will form the side rail 14 during the molding process.
  • This is understood as direct induction heating or resistance heating.
  • the heating could be performed by generating an electromagnetic flux from either inside the tubular workpiece which is inserted into the molding tool 20 or outside of the tubular workpiece. This is known in the art as electromagnetic induction heating or simply induction heating.
  • conduction heating from resistive heating elements placed inside the tubular workpiece could be used to heat the molding tool 20 .
  • combinations of direct induction heating and conduction heating, or a combination of electromagnetic induction heating and conduction heating could be used to heat the tubular workpiece.
  • each portion 20 a and 20 b of the molding tool 20 preferably includes a plurality of openings 31 which are either formed during manufacture of the portions 20 a and 20 b or drilled into the portions subsequently.
  • the openings 31 permit the areas of the molding tool 20 b adjacent the access openings 22 to cool slightly. The advantage of this will be described momentarily.
  • a portion of a tubular, elongated metal part in this instance a portion of side rail 14 shown in FIG. 1, is placed within portion 20 b of the molding tool 20 such that it extends through the access openings 22 .
  • the mold portions 20 a and 20 b are closed over the side rail 14 and the molding tool 20 is heated to a temperature of between about 1000° F. and 1200° F., and more preferably to about 1130° F.
  • a conductor 30 attached to a power source provides electric current to the resistive heating element 27 to heat the molding tool 20 .
  • the molding tool is heated for a time which varies upon the size of the portion of the work piece or part which is being molded, but is sufficient to bring the temperature of the tool up to a temperature within the above-described temperature range.
  • one end of the side rail 14 is sealed or “capped” by a cap or other like member 32 and a source of pressurized gas 34 is coupled to the opposite end of the side rail 14 .
  • the pressurized gas is preferably a nitrogen gas delivered under a pressure of preferably about 400 psi-500 psi, and more preferably about 400 psi-500 psi.
  • the pressurized gas is applied for a time of about 10 seconds-60 seconds, and more preferably about 15 seconds. This causes the portion of the side rail 14 residing within the internal mold cavity 26 (FIGS. 2 and 3) to expand and assume the contour of the internal mold cavity.
  • the side rail 14 is allowed to cool for a brief length of time, and preferably at least about 5 seconds-10 seconds, before the mold portions 20 a and 20 b are separated.
  • the side rail 14 is then removed from the molding portion 20 b of the molding tool 20 .
  • the side rail 14 now includes an end support portion 14 a in the shape of the internal mold cavity 26 .
  • the side rail 14 after the molding process is completed, will still include a scrap portion 14 c .
  • Portion 14 c represents the end of the side rail 14 that was sealed during the molding process. This portion may be simply cut off and a lower surface 14 d of the end support portion 14 a de-burred to form a smooth lower surface which is adapted to be secured against the outer body surface 16 of the vehicle 10 (FIG. 1 ).
  • blow molding process of the present invention provides a means for readily and easily modifying the shape of tubular metal parts into complex shapes which would not be possible with other forms of molding or extrusion techniques.
  • a side rail such as side rail 14
  • steps described in connection with FIGS. 2-5 are performed at each end, and possibly the middle, of the side rail 14 to produce the support portions 14 a for each side rail 14 .
  • These operations may be performed simultaneously when the high pressure nitrogen gas is injected into the intermediate portion 14 b of the side rail 14 , and provided that two independent molding tools 20 are disposed at each support location ends of the side rail 14 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

A blow molding method for use with tubular metal work pieces. The method involves placing a tubular metal component part into a molding tool having an internal molding cavity and at least one access passageway into which the component is inserted. The molding tool is then heated to a temperature between about 1000° F. and 1200° F. and a high pressure gas is injected into the tubular component. The high pressure gas causes the portion of the work component residing within the internal mold cavity of the molding tool to expand and assume the shape of the internal molding cavity. After a cooling period, the component is removed from the molding tool. The process is particularly well suited for forming the end support portions of side rails used with vehicle article carriers, but can be used to form a wide variety of complexly shaped forms from tubular metal workpieces.

Description

This is a continuation of U.S. patent application Ser. No. 09/387,226, filed Aug. 31, 1999 now abandoned and U.S. patent application Ser. No. 09/023,446 filed Feb. 13, 1998 now U.S. Pat. No. 5,960,658.
BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates to molding techniques, and more particularly to a technique for blow molding a tubular metal part to cause the part to assume a desired shape along at least a portion of the length of the part.
2. Discussion
Various molding techniques are used in a wide variety of applications to form various components, most typically from plastics. One common technique is known in the art as injection molding. With injection molding, a quantity of molten plastic is injected into a mold under pressure. The molten plastic is then allowed to cool. When removed from the mold, the plastic will have assumed the shape of the cavity of the mold.
While molding techniques such as injection molding have proved to be valuable in forming a wide variety of components, until the present time there has been no means for modifying the shape of existing tubular components through conventional molding techniques. Accordingly, up until the present time it has not been possible to take, for example, a tubular, extruded length of metal such as aluminum and form a portion of the metal into an enlarged shape. More specifically, it has not been possible to take a tubular, extruded length of aluminum, which is to form a component of a vehicle article carrier, and to mold the aluminum via the use of a heated molding tool and a pressurized gas such that a portion is enlarged in the shape of an end support. Such a process would permit elongated, tubular lengths of metal such as aluminum to be molded into various complex shapes.
It is therefore a principal object of the present invention to provide a molding process by which a tubular length of material such as aluminum can be modified such that one or more portions of the length of aluminum are formed into a desired, complex shape.
It is still another object of the present invention to provide a method of molding by which a length of tubular metal material such as aluminum may have one or more portions of its length modified to a desired complex shape, without affecting other portions of the length of material which do not need to be modified in shape.
It is still another object of the present invention to provide a method of molding by which a length of elongated, metal material may be quickly and easily inserted into a molding tool which causes one or more portions of the length of material to be enlarged into a desired shape without the need to perform numerous steps in the molding process.
SUMMARY OF THE INVENTION
The above and other objects are provided by a preferred method for blow molding metal parts. The method involves providing a molding tool having first and second portions. Each of the first and second portions includes an access opening in communication with a cavity portion. When the first and second molding portions are placed together, they cooperatively form an access passageway in communication with an internal molding cavity. The internal molding cavity forms a desired shape, such as the outer contour of an end support for a side rail of a vehicle article carrier.
A length of tubular metal material is inserted through the access passageway and into the internal molding cavity of the molding tool. The ends of the metal part are capped or otherwise sealed. The molding tool, having been pre-heated to a relatively high temperature for a predetermined length of time, heats the portion of the metal part residing within the internal molding cavity. A gas under pressure is then injected into the tubular metal part which causes the portion of the part residing within the internal molding cavity to expand and conform to the contour of the internal molding cavity. The molding tool is then allowed to cool before separating the first and second portions thereof and removing the metal part. The finished metal part has a portion which assumes the shape of the internal molding cavity.
In the preferred embodiment the molding tool is heated to a temperature between about 1000° F. and 1200° F., and more preferably to a temperature of about 1130° F. The heating may be accomplished by any suitable means, but is preferably through direct induction heating techniques or electromagnetic induction heating techniques. The gas injected into the tubular part is preferably nitrogen gas under a pressure of between about 400 psi-500 psi.
In an alternative preferred method the first and second portions of the molding tool each include a pair of access openings which both communicate with the molding cavity. When the first and second portions of the molding tool are placed together, a pair of access passageways are formed through which a portion of a metal part may be extended. In this manner a portion of the metal part intermediate the two extreme ends of the part can be molded to assume a desired shape.
The preferred method of the present invention provides a quick, easy and economical means for molding tubular metal parts to assume complex shapes. In particular, the method of the present invention is particularly well suited for molding the end support portions of a side rail of a vehicle article carrier.
BRIEF DESCRIPTION OF THE DRAWINGS
The various advantages of the present invention will become apparent to one skilled in the art by reading the following specification and subjoined claims and by referencing the following drawings in which:
FIG. 1 is a perspective view of a portion of a vehicle showing a vehicle article carrier disposed thereon, wherein the vehicle article carrier includes a pair of side rails adapted to be secured to an outer body surface of the vehicle;
FIG. 2 is a perspective view of a molding tool having first and second portions separated from one another, illustrating the cavity of each portion of the molding tool;
FIG. 3 is an exploded, perspective view of the molding tool of FIG. 2 showing a portion of a length of tubular metal material placed within one portion of the molding tool;
FIG. 4 is a perspective view showing the molding tool closed over a portion of the tubular metal part with a source of pressurized gas coupled to the tubular metal part and applying pressurized gas into the metal part; and
FIG. 5 is a view showing the first and second portions of the molding tool separated after the molding tool is cooled and the metal part removed therefrom.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to FIG. 1, there is shown a vehicle 10 having a vehicle article carrier 12 disposed thereon. The vehicle article carrier 12 includes a pair of side rails 14 which are adapted to be fixedly secured to an outer body surface 16 of the vehicle 10. A pair of cross bars 18 are also preferably included for helping to support articles above the outer body surface 16. While the method of the present invention lends itself particularly well to the manufacture of one piece side rails of a vehicle article carrier, such as side rails 14 illustrated in FIG. 1, the method is not limited to merely the production of side rails, but is applicable to the manufacture of virtually any form of part in which at least a portion of a length of metal material is required to be modified in shape. Merely as an example, the drawings and the following description make reference to the forming of an end support of a one piece side rail of a vehicle article carrier.
With further reference to FIG. 1, it will be noted that each of the side rails 14 includes a pair of enlarged end support is portions 14 a and a center support portion 14 b. Each of the side rails 14, through the method of the present invention, are formed from an extruded length of aluminum, although it will be appreciated that a variety of other metals and processes could also be used to form the side rails 14.
Referring now to FIG. 2, the process of forming the end support portions 14 a of the side rail 14 will be described. Initially, the method of the present invention involves providing a molding tool 20 having first and second portions 20 a and 20 b, respectively. Portions 20 a and 20 b are mirror images of one another and therefore only portion 20 b will be described. Portion 20 b is formed from a block of metal to include at least one access opening 22, and more preferably a pair of access openings 22, which may extend longitudinally in line with one another or which may be offset from one another as illustrated in FIG. 2. Access openings 22 are essentially recessed portions in a face 24 of the molding portion 20 b which are machined during manufacture of the molding tool 20 in accordance with the desired cross-sectional profile of the tubular workpiece. A mold cavity 26 is also machined or otherwise formed in the molding portion 20 b. The molding cavity 26 is in communication with both access openings 22.
Each molding portion 20 a and 20 b also includes heating elements 27 formed therein during its manufacture or added thereafter in the vicinity of the molding cavity 26. These heating elements, for example, in one embodiment comprise one or more resistive coiled wires within a stainless steel sleeve. The wire 26 is coupled to an external electric current source 29 which is used to heat the tube which will form the side rail 14 during the molding process. This is understood as direct induction heating or resistance heating. Alternatively, the heating could be performed by generating an electromagnetic flux from either inside the tubular workpiece which is inserted into the molding tool 20 or outside of the tubular workpiece. This is known in the art as electromagnetic induction heating or simply induction heating. Still further, conduction heating from resistive heating elements placed inside the tubular workpiece could be used to heat the molding tool 20. Still further, combinations of direct induction heating and conduction heating, or a combination of electromagnetic induction heating and conduction heating could be used to heat the tubular workpiece.
Referring further to FIG. 2, each portion 20 a and 20 b of the molding tool 20 preferably includes a plurality of openings 31 which are either formed during manufacture of the portions 20 a and 20 b or drilled into the portions subsequently. The openings 31 permit the areas of the molding tool 20 b adjacent the access openings 22 to cool slightly. The advantage of this will be described momentarily.
Referring now to FIG. 3, a portion of a tubular, elongated metal part, in this instance a portion of side rail 14 shown in FIG. 1, is placed within portion 20 b of the molding tool 20 such that it extends through the access openings 22. In FIG. 4, the mold portions 20 a and 20 b are closed over the side rail 14 and the molding tool 20 is heated to a temperature of between about 1000° F. and 1200° F., and more preferably to about 1130° F. A conductor 30 attached to a power source provides electric current to the resistive heating element 27 to heat the molding tool 20. The molding tool is heated for a time which varies upon the size of the portion of the work piece or part which is being molded, but is sufficient to bring the temperature of the tool up to a temperature within the above-described temperature range.
Referring to FIG. 4, one end of the side rail 14 is sealed or “capped” by a cap or other like member 32 and a source of pressurized gas 34 is coupled to the opposite end of the side rail 14. The pressurized gas is preferably a nitrogen gas delivered under a pressure of preferably about 400 psi-500 psi, and more preferably about 400 psi-500 psi. The pressurized gas is applied for a time of about 10 seconds-60 seconds, and more preferably about 15 seconds. This causes the portion of the side rail 14 residing within the internal mold cavity 26 (FIGS. 2 and 3) to expand and assume the contour of the internal mold cavity.
Referring now to FIG. 5, after the source of pressurized gas 34 has been removed from the side rail 14 the side rail is allowed to cool for a brief length of time, and preferably at least about 5 seconds-10 seconds, before the mold portions 20 a and 20 b are separated. The side rail 14 is then removed from the molding portion 20 b of the molding tool 20. The side rail 14 now includes an end support portion 14 a in the shape of the internal mold cavity 26.
Referring further to FIG. 5, the side rail 14, after the molding process is completed, will still include a scrap portion 14 c. Portion 14 c represents the end of the side rail 14 that was sealed during the molding process. This portion may be simply cut off and a lower surface 14 d of the end support portion 14 a de-burred to form a smooth lower surface which is adapted to be secured against the outer body surface 16 of the vehicle 10 (FIG. 1).
From the above it can be seen that the blow molding process of the present invention provides a means for readily and easily modifying the shape of tubular metal parts into complex shapes which would not be possible with other forms of molding or extrusion techniques. It will also be appreciated that when a side rail such as side rail 14 is to be formed, that the steps described in connection with FIGS. 2-5 are performed at each end, and possibly the middle, of the side rail 14 to produce the support portions 14 a for each side rail 14. These operations may be performed simultaneously when the high pressure nitrogen gas is injected into the intermediate portion 14 b of the side rail 14, and provided that two independent molding tools 20 are disposed at each support location ends of the side rail 14.
Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present invention can be implemented in a variety of forms. Therefore, while this invention has been described in connection with particular examples thereof, the true scope of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification and following claims.

Claims (4)

What is claimed is:
1. A method for blow forming a metal tubular component into a single piece article carrier component such as an end support rail, the method comprising the steps of:
providing a molding tool having a first piece and a second piece with each of said first and second pieces forming an internal mold cavity when placed adjacent one another, each one of said first and second pieces including access portions which, when said first and second portions of said mold tool are placed adjacent one another, form first and second access openings at laterally offset locations on said molding tool such that a portion of a metal tubular member may be placed within said first and second pieces and have its end portions protruding from said access portions before said first and second pieces are placed adjacent one another;
placing said metal tubular member in one of said first and second pieces of said molding tool such that said end portions protrude out of said access portions, and placing the other one of said first and second pieces against said piece holding said metal tubular member;
heating said molding tool to a temperature of about 900° F.;
capping one end of said metal tubular member;
injecting a gas into said metal tubular member, said gas being under pressure to force said portion of said metal tubular member disposed within said internal mold cavity to expand and conform to the contour of said internal mold cavity;
interrupting the flow of gas into said metal tubular member;
allowing said mold tool to cool; and
separating said first and second portions of said molding tool and removing said metal tubular member from said internal mold cavity.
2. A method for flow forming a metal tubular component into a single piece article carrier component having an integrally formed support portion, the method comprising the steps of:
providing a molding tool having a first component and a second component, each of said first and second components cooperatively forming an internal mold cavity when placed adjacent one another, each one of said first and second components including access portions which, when said first and second portions of said molding tool are placed together, form first and second access openings at laterally offset locations on said molding tool and in communication with said internal mold cavity such that a substantial portion of an elongated metal tubular member may be placed within said molding tool while having its outermost ends projecting out of said access openings when said first and second components are placed together to close said molding tool, said internal molding cavity forming an end support portion and at least a section of a center support portion of said article carrier component;
placing said metal tubular member in one of said first and second pieces of said molding tool such that said outermost ends protrude out of said access portions, and placing the other one of said first and second components against said one component to encase said substantial portion of said metal tubular member within said molding tool;
capping one of said outermost ends of said metal tubular member;
heating said molding tool to a temperature of at least about 900° F.;
injecting a pressurized gas into the other one of said outermost ends, said pressurized gas being under a pressure sufficient to expand a portion of said metal tubular member within said mold cavity to cause said portion to form to the contour of said mold cavity to thereby form at least said end support portion and a section of said center support section as an integrally formed component;
interrupting the flow of gas into said metal tubular member;
allowing said mold tool to cool; and
separating said first and second portions of said molding tool and removing said metal tubular member from said internal mold cavity.
3. A method for blow forming a metal tubular component into a single piece article carrier component such as an end support rail, the method comprising the steps of:
providing a molding tool having a first piece and a second piece with each of said first and second pieces forming an internal mold cavity when placed adjacent one another, each one of said first and second pieces including access portions which, when said first and second portions of said mold tool are placed adjacent one another, form first and second access openings at laterally offset locations on said molding tool such that a portion of a metal tubular member may be placed within said first and second pieces and have its end portions adjacent said access portions before said first and second pieces are placed adjacent one another;
placing said metal tubular member in one of said first and second pieces of said molding tool such that said end portions protrude out of said access portions, and placing the other one of said first and second pieces against said piece holding said metal tubular member;
heating said molding tool;
capping one end of said metal tubular member;
injecting a gas into said metal tubular member, said gas being under pressure to force said portion of said metal tubular member disposed within said internal mold cavity to expand and to conform to the contour of said internal mold cavity;
interrupting the flow of gas into said metal tubular member;
allowing said metal tubular member to cool; and
separating said first and second portions of said molding tool and removing said metal tubular member from said internal mold cavity.
4. A method for blow forming a metal tubular end support rail, the method comprising the steps of:
providing a molding tool having a first piece and a second piece with each of said first and second pieces forming an internal mold cavity when placed adjacent one another, each one of said first and second pieces including access portions which, when said first and second portions of said mold tool are placed adjacent one another, form first and second access openings at laterally offset locations on said molding tool such that a portion of a metal tubular member may be placed within said first and second pieces and have at least its end portions disposed adjacent said access portions before said first and second pieces are placed adjacent one another;
placing said metal tubular member in one of said first and second pieces of said molding tool such that said end portions protrude out of said access portions, and placing the other one of said first and second pieces against said piece holding said metal tubular member;
heating said molding tool;
using an implement to temporarily close off one end of said metal tubular member;
injecting a pressurized gas into said metal tubular member to force said portion of said metal tubular member disposed within said internal mold cavity to expand and to conform to the contour of said internal mold cavity;
interrupting the flow of said pressurized gas into said metal tubular member; and
separating said first and second portions of said molding tool and removing said metal tubular member from said internal mold cavity.
US09/712,476 1998-02-13 2000-11-14 Method of blow molding Expired - Fee Related US6272894B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/712,476 US6272894B1 (en) 1998-02-13 2000-11-14 Method of blow molding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/023,446 US5960658A (en) 1998-02-13 1998-02-13 Method of blow molding
US38722699A 1999-08-31 1999-08-31
US09/712,476 US6272894B1 (en) 1998-02-13 2000-11-14 Method of blow molding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US38722699A Continuation 1998-02-13 1999-08-31

Publications (1)

Publication Number Publication Date
US6272894B1 true US6272894B1 (en) 2001-08-14

Family

ID=21815164

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/023,446 Expired - Fee Related US5960658A (en) 1998-02-13 1998-02-13 Method of blow molding
US09/712,476 Expired - Fee Related US6272894B1 (en) 1998-02-13 2000-11-14 Method of blow molding

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/023,446 Expired - Fee Related US5960658A (en) 1998-02-13 1998-02-13 Method of blow molding

Country Status (1)

Country Link
US (2) US5960658A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338428B1 (en) * 1999-09-30 2002-01-15 Gp Daikyo Corporation Vehicle roof rack
US20040069039A1 (en) * 2002-10-11 2004-04-15 Hammar Richard Harry Heated metal forming tool
US20060075799A1 (en) * 2004-10-07 2006-04-13 Schroth James G Heated die for hot forming
US20100024503A1 (en) * 2008-07-31 2010-02-04 Gm Global Technology Operations, Inc. Electromagnetic shape calibration of tubes
US20100095728A1 (en) * 2008-10-16 2010-04-22 The Coca-Cola Company Vessel forming station
WO2013102217A1 (en) * 2011-12-30 2013-07-04 The Coca-Cola Company System and method for forming a metal beverage container using blow molding
US8747722B2 (en) 2011-06-23 2014-06-10 Jac Products, Inc. Single piece end support for a vehicle article carrier and method of making same
CN106694680A (en) * 2017-01-05 2017-05-24 哈尔滨工业大学(威海) Thermal-state metal pneumatic molding die for metal tube parts
CN107052123A (en) * 2017-01-05 2017-08-18 哈尔滨工业大学(威海) A kind of metal tube part thermal state metal air-pressure forming method
TWI607812B (en) * 2016-12-05 2017-12-11 財團法人金屬工業研究發展中心 Forming apparatus
US10166590B2 (en) 2015-09-25 2019-01-01 Tesla, Inc. High speed blow forming processes

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2332163B (en) * 1997-12-13 2002-03-13 Gkn Sankey Ltd A hydroforming process
US5960658A (en) * 1998-02-13 1999-10-05 Jac Products, Inc. Method of blow molding
DE19928873B4 (en) * 1999-06-24 2004-08-12 Benteler Ag Method and device for the internal pressure molding of a hollow metallic workpiece made of aluminum or an aluminum alloy
DE19944679C2 (en) * 1999-09-17 2002-11-28 Peter Amborn Process for producing a hollow metal body and a tool mold for carrying out the process
US7024897B2 (en) * 1999-09-24 2006-04-11 Hot Metal Gas Forming Intellectual Property, Inc. Method of forming a tubular blank into a structural component and die therefor
US6322645B1 (en) 1999-09-24 2001-11-27 William C. Dykstra Method of forming a tubular blank into a structural component and die therefor
DE10000054A1 (en) * 2000-01-03 2001-07-05 Anton Bauer Werkzeug Und Masch Internal high pressure deformation process, involving weakening workpiece in first wall region and deforming by pressing material from it into second wall region
GB0000529D0 (en) * 2000-01-11 2000-03-01 Loades Plc Forming large titanium parts
GB0002044D0 (en) * 2000-01-28 2000-03-22 Loades Plc Forming tubular titanium components
KR100447138B1 (en) * 2001-08-11 2004-09-04 윤선영 Appararus of hollow forming metal product with double well
KR100616750B1 (en) * 2004-02-24 2006-08-28 주식회사 성우하이텍 A warm hydro-forming device
US7393421B2 (en) * 2006-04-10 2008-07-01 Gm Global Technology Operations, Inc. Method for in-die shaping and quenching of martensitic tubular body
KR101229919B1 (en) 2010-10-29 2013-02-05 주식회사화신 Hot forming apparatus and forming method thereof
US8627989B2 (en) 2011-03-29 2014-01-14 Jac Products, Inc. Support rail for a vehicle article carrier having blow molded decorative rail structure
US9174263B2 (en) * 2012-05-23 2015-11-03 Temper Ip, Llc Tool and shell using induction heating
KR102472392B1 (en) * 2015-08-28 2022-11-29 스미도모쥬기가이고교 가부시키가이샤 molding device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896648A (en) * 1973-10-02 1975-07-29 Alter Licensing Ets Blow molding process for container of superplastic alloy
US5273707A (en) * 1988-12-05 1993-12-28 Icp Systems, Inc. Method of injection molding
US5303570A (en) * 1991-02-01 1994-04-19 Hde Metallwerk Gmbh Hydrostatically deforming a hollow body
US5439365A (en) * 1992-03-23 1995-08-08 Icp Systems, Inc. Apparatus for fluid compression of injection molded plastic material
US5622298A (en) * 1995-06-30 1997-04-22 Jac Products, Inc. One-piece end support and method of forming thereof
US5649439A (en) * 1994-04-15 1997-07-22 The Boeing Co. Tool for sealing superplastic tube
US5716560A (en) * 1995-09-14 1998-02-10 Icp Systems, Inc. Gas assisted injection molding combining internal and external gas pressures
US5765737A (en) 1995-06-30 1998-06-16 Jac Products, Inc. One-piece end support and method of forming thereof
US5960658A (en) * 1998-02-13 1999-10-05 Jac Products, Inc. Method of blow molding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149735A (en) * 1984-08-15 1986-03-11 Ryoda Sato Method for forming projected part on metallic pipe
DE3543523A1 (en) * 1985-12-10 1987-06-11 Messerschmitt Boelkow Blohm METHOD FOR PRODUCING CONTAINERS BY SUPERPLASTIC FORMING
JPS62259624A (en) * 1986-05-02 1987-11-12 Yamaha Motor Co Ltd Hot bulging device
JPS62270228A (en) * 1986-05-16 1987-11-24 Yamaha Motor Co Ltd Hot bulging device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896648A (en) * 1973-10-02 1975-07-29 Alter Licensing Ets Blow molding process for container of superplastic alloy
US5273707A (en) * 1988-12-05 1993-12-28 Icp Systems, Inc. Method of injection molding
US5303570A (en) * 1991-02-01 1994-04-19 Hde Metallwerk Gmbh Hydrostatically deforming a hollow body
US5439365A (en) * 1992-03-23 1995-08-08 Icp Systems, Inc. Apparatus for fluid compression of injection molded plastic material
US5649439A (en) * 1994-04-15 1997-07-22 The Boeing Co. Tool for sealing superplastic tube
US5622298A (en) * 1995-06-30 1997-04-22 Jac Products, Inc. One-piece end support and method of forming thereof
US5765737A (en) 1995-06-30 1998-06-16 Jac Products, Inc. One-piece end support and method of forming thereof
US5716560A (en) * 1995-09-14 1998-02-10 Icp Systems, Inc. Gas assisted injection molding combining internal and external gas pressures
US5960658A (en) * 1998-02-13 1999-10-05 Jac Products, Inc. Method of blow molding

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338428B1 (en) * 1999-09-30 2002-01-15 Gp Daikyo Corporation Vehicle roof rack
US20040069039A1 (en) * 2002-10-11 2004-04-15 Hammar Richard Harry Heated metal forming tool
US6810709B2 (en) * 2002-10-11 2004-11-02 General Motors Corporation Heated metal forming tool
US20060075799A1 (en) * 2004-10-07 2006-04-13 Schroth James G Heated die for hot forming
US7159437B2 (en) * 2004-10-07 2007-01-09 General Motors Corporation Heated die for hot forming
US8099989B2 (en) * 2008-07-31 2012-01-24 GM Global Technology Operations LLC Electromagnetic shape calibration of tubes
US20100024503A1 (en) * 2008-07-31 2010-02-04 Gm Global Technology Operations, Inc. Electromagnetic shape calibration of tubes
US8448487B2 (en) 2008-10-16 2013-05-28 The Coca-Cola Company Vessel forming station
US20100095728A1 (en) * 2008-10-16 2010-04-22 The Coca-Cola Company Vessel forming station
US8857232B2 (en) 2008-10-16 2014-10-14 The Coca-Cola Company Method of forming a vessel
US8747722B2 (en) 2011-06-23 2014-06-10 Jac Products, Inc. Single piece end support for a vehicle article carrier and method of making same
WO2013102217A1 (en) * 2011-12-30 2013-07-04 The Coca-Cola Company System and method for forming a metal beverage container using blow molding
US10328477B2 (en) 2011-12-30 2019-06-25 The Coca-Cola Company System and method for forming a metal beverage container using pressure molding
US10166590B2 (en) 2015-09-25 2019-01-01 Tesla, Inc. High speed blow forming processes
TWI607812B (en) * 2016-12-05 2017-12-11 財團法人金屬工業研究發展中心 Forming apparatus
CN106694680A (en) * 2017-01-05 2017-05-24 哈尔滨工业大学(威海) Thermal-state metal pneumatic molding die for metal tube parts
CN107052123A (en) * 2017-01-05 2017-08-18 哈尔滨工业大学(威海) A kind of metal tube part thermal state metal air-pressure forming method

Also Published As

Publication number Publication date
US5960658A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
US6272894B1 (en) Method of blow molding
US6183681B1 (en) Multi-stage insert molding method
US8075301B2 (en) Suction blowmold for producing extrusion suction-blowmolded plastic molded parts
JP2006521217A (en) Injection molding nozzle
EP0953419A3 (en) Method and apparatus for producing painted or lacquered moulded plastic articles
DE50310576D1 (en) MOLDING TOOL AND METHOD FOR MANUFACTURING PLASTIC ARTICLES
KR910004345A (en) Decorative plastic trim strips and manufacturing method and apparatus thereof
US20090260760A1 (en) Method of molding a hollow molded article, hollow molded article, and apparatus for manufacturing the same
US3969060A (en) Apparatus for deforming a tubular slug of thermoplastic material
EP1498250A3 (en) Injection molding method and injection molding apparatus
MX2013008546A (en) A method for the manufacture of a mould part with channel for temperature regulation and a mould part made by the method.
US2774993A (en) Process for making grips for handles of pliers and similar handles
US5534218A (en) Process for the production of a hollow body of thermoplastic material
JP2006526521A (en) Gate cooling structure in the mold stack
GB1513067A (en) Method and apparatus for producing parisons of thermoplastic material
JP2001205681A (en) Mold for molding hollow product and method for molding
JPS6315892B2 (en)
EP1396324A3 (en) Method for injection moulding of thermoplastic material with foaming agent
US20070128443A1 (en) Method for altering the shape of a tube
US20030163920A1 (en) Method of making a structural member for use in the automobile industry
US5302337A (en) Method for making a coated gas-assisted injection molded article
JPS5876240A (en) Method of forming wrap-around closure article
JPH041020A (en) Preparation of handled bottle
EP1162006A2 (en) A method, a device, and a work piece for producing a heat transfer member
JPH06143341A (en) Injection molding method of molded article having three layer structure and mold thereof

Legal Events

Date Code Title Description
CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: LASALLE BANK MIDWEST NATIONAL ASSOCIATION, MICHIGA

Free format text: SECURITY AGREEMENT;ASSIGNOR:JAC PRODUCTS, INC.;REEL/FRAME:017846/0368

Effective date: 20060525

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20090814

AS Assignment

Owner name: JAC PRODUCTS, INC., MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AS RECORDED ON 06/28/06, REEL 017846, FRAME 0368.;ASSIGNOR:BANK OF AMERICA N.A., AS SUCCESSOR BY MERGER TO LASALLE BANK MIDWEST NATIONAL ASSOCIATION;REEL/FRAME:023796/0618

Effective date: 20091216