US5960825A - Laser hardened reed valve - Google Patents
Laser hardened reed valve Download PDFInfo
- Publication number
- US5960825A US5960825A US08/883,008 US88300897A US5960825A US 5960825 A US5960825 A US 5960825A US 88300897 A US88300897 A US 88300897A US 5960825 A US5960825 A US 5960825A
- Authority
- US
- United States
- Prior art keywords
- valve member
- tabs
- accordance
- hardened portion
- slot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/02—Lubrication
- F04B39/0215—Lubrication characterised by the use of a special lubricant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/10—Adaptations or arrangements of distribution members
- F04B39/1073—Adaptations or arrangements of distribution members the members being reed valves
- F04B39/108—Adaptations or arrangements of distribution members the members being reed valves circular reed valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/14—Check valves with flexible valve members
- F16K15/1401—Check valves with flexible valve members having a plurality of independent valve members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/14—Check valves with flexible valve members
- F16K15/144—Check valves with flexible valve members the closure elements being fixed along all or a part of their periphery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/14—Check valves with flexible valve members
- F16K15/16—Check valves with flexible valve members with tongue-shaped laminae
- F16K15/162—Check valves with flexible valve members with tongue-shaped laminae with limit stop
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
- C21D1/10—Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
- C21D7/06—Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0448—Steel
- F05C2201/0454—Case-hardened steel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2251/00—Material properties
- F05C2251/10—Hardness
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2253/00—Other material characteristics; Treatment of material
- F05C2253/12—Coating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K2200/00—Details of valves
- F16K2200/20—Common housing having a single inlet, a single outlet and multiple valve members
- F16K2200/204—Common housing having a single inlet, a single outlet and multiple valve members in series
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7838—Plural
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7879—Resilient material valve
- Y10T137/7888—With valve member flexing about securement
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7879—Resilient material valve
- Y10T137/7888—With valve member flexing about securement
- Y10T137/7891—Flap or reed
- Y10T137/7892—With stop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7904—Reciprocating valves
- Y10T137/7922—Spring biased
- Y10T137/7929—Spring coaxial with valve
- Y10T137/7937—Cage-type guide for stemless valves
Definitions
- the present invention relates generally to pressure responsive valve assemblies. More particularly, the present invention relates to valve assemblies which include laser and induction hardened reed valves. The valve assemblies are adapted for use in reciprocating piston type compressors, such as refrigerant type compressors.
- Reciprocating piston type compressors typically employ suction and discharge pressure actuated valving mounted at the end of the cylinder housing.
- suction and discharge pressure actuated valving mounted at the end of the cylinder housing.
- the valving system and the cylinder top end wall should have a shape which is complimentary with the shape of the piston to enable the piston to reduce the volume of the compression chamber to a minimum when the piston is at top dead center of its stroke without restricting gas flow. While it may be possible to accomplish this objective by designing a complex piston head shape, manufacturing of this complex shape becomes excessively expensive, the assembly becomes more difficult and throttling losses generally occur as the piston approaches top dead center. Reduction of the re-expansion volume is of great importance in refrigeration compressors having relatively low mass flow rates, such as those units employed in very low temperature refrigeration systems, as well as in compressors used in heat pump applications.
- valve assemblies disclosed in the aforesaid Letters patent No. 4,877,382 and particularly the suction valve insert in the form of an annular ring have performed satisfactorily in prior art compressor assemblies.
- These prior art compressor assemblies used a chlorofluorocarbon (CFC) refrigerant or a hydrochlorofluorocarbon (HCFC) refrigerant.
- CFC chlorofluorocarbon
- HCFC hydrochlorofluorocarbon
- the lubricating oil for these CFC and HCFC compressors has been a mineral oil based lubricant.
- the combination of the CFC or HCFC refrigerant and the mineral oil based lubricant provides sufficient cooling and lubrication for the insert in these prior art compressors.
- CFC and HCFC refrigerants are being phased out in refrigerant compressors due to the well known problems associated with the ozone layer.
- One refrigerant which is being utilized to replace the CFC and HCFC refrigerant is a hydrofluorocarbon (HFC) refrigerant.
- HFC hydrofluorocarbon
- HFC refrigerants do not have an adverse affect on the ozone layer and they are quickly becoming the choice of refrigerant to replace the CFC and HCFC refrigerants.
- the mineral oil based lubricants lose some of their effectiveness and they need to be replaced with alternate and more effective lubricating oils.
- One lubricant which has shown to be compatible with and effective with HFC refrigerants is a polyolester based lubricant. While the polyolester based lubricants have proven to be a suitable replacement for the mineral oil based lubricants when using HFC refrigerants, there has always been the need to improve and extend the durability of the reciprocating piston designs of compressors.
- One component which is being continuously improved is the reed valves associated with the discharge and suction valves of the compressor.
- the present invention provides the art with a reed valve having a laser hardened retention tab which significantly improves the durability of the reed valve.
- FIG. 1 is a sectional view of a valve assembly incorporating a laser hardened reed valve in accordance with the present invention
- FIG. 2 is a bottom plan view (from inside the cylinder chamber) of the valve assembly shown in FIG. 1;
- FIG. 3 is a plan view of the laser hardened reed valve in accordance with the present invention.
- FIG. 4 is an enlarged view of a portion of the reed valve shown in FIG. 3 illustrating the area of the reed valve which is laser hardened in accordance with the present invention
- FIG. 5 is an enlarged view similar to FIG. 4 but illustrating the area of the reed valve which is shot peened in accordance with the present invention
- FIG. 6 is a plan view of an induction heat treat process in accordance with another embodiment of the present invention.
- FIG. 7 is an end view of the induction heat treat process shown in FIG. 6.
- Valve assembly 10 comprises a valve plate assembly 12 having a relatively large irregularly shaped generally annular recessed portion or suction chamber 14 extending into the lower surface 16 thereof.
- a discharge chamber 18 of frusto conical shape is also provided, being defined by a radially inwardly inclined or beveled sidewall 20 extending between an upper surface 22 and lower surface 16 of valve plate assembly 12.
- a surface 24 of sidewall 20 provides a valve seat for a discharge valve member 26 which is urged in to sealing engagement therewith by gas pressure and a Belleville spring 28 extending between valve member 26 and a bridge-like retainer 30.
- discharge valve member 26 is of a size and shape relative to discharge chamber 18 so as to place a lower surface 32 thereof in substantially coplanar relationship to lower surface 16 of valve plate 12.
- Belleville spring 28 is located in a recess 36 provided in retainer 30.
- Discharge valve member 26 is essentially pressure actuated and Belleville spring 28 is chosen primarily to provide stability and also an initial closing bias or preload to establish an initial seal. Other types of springs, other than Belleville springs may of course be used for this purpose.
- Retainer 30, which also serves as a stop to limit the opening movement of valve member 26 is secured to valve plate 12 by a pair of suitable fasteners 38.
- a generally annular valve plate insert 40 is disposed within recessed suction chamber 14 into which fasteners 38 extend so as to secure retainer 30.
- Valve plate assembly 12 is secured to a cylinder housing 42 using a plurality of bolts 44 which extend through a valve cover 46, through valve plate assembly 12 and are threadingly received within cylinder housing 42.
- a plurality of spaced cutout areas or radially extending slots are provided through valve plate insert 40 so as to allow suction fluid flow between radially inner and outer sides thereof.
- Valve plate assembly 12 defines an annular valve seat 48 and sidewall 20 defines an annular valve seat 54 at its terminal end. Disposed between valve seat 48 and valve seat 54 is a suction input passage 56.
- Valve seat 54 of sidewall 20 is positioned in coplanar relationship with valve seat 48 of valve plate assembly 12.
- a suction reed valve member 60 in the form of an annular ring sealingly engages, in its closed position, valve seat 54 of sidewall 20 and valve seat 48 of valve plate assembly 12 to prevent passage of fluid from suction chamber 14 through passage 56 and into a compression chamber 62.
- a central opening 64 is provided in suction reed valve member 60 and is arranged coaxially with discharge chamber 18 so as to allow direct fluid flow communication between compression chamber 62 and lower surface 32 of discharge valve member 26.
- Suction reed valve member 60 also includes a pair of diametrically opposed radially outwardly extending tabs 66 each of which is provided with a suitable opening or slot 68 extending therethrough. Tabs 66 are received in a notched portion 70 of cylinder housing 42 with a pair of pins 72 extending through openings 68 so as to retain suction reed valve member 60 in operative relationship thereto.
- suction reed valve member 60 As the reciprocating piston (not shown) disposed within compression chamber 62 moves away from valve assembly 10 during a suction stroke, the pressure differential between compression chamber 62 and suction chamber 14 will cause suction reed valve member 60 to deflect inwardly with respect to compression chamber 62, to its open position, as shown in phantom in FIG. 1, thereby enabling fluid flow from suction chamber 14 into compression chamber 62 through input passage 56 disposed between valve seats 48 and 54. Because only tabs 66 of suction reed valve member 60 extend outwardly beyond the sidewalls of compression chamber 62, suction fluid flow will readily flow into compression chamber 62 around substantially the entire inner and outer peripheries of suction valve member 60.
- valve plate assembly 12 and reed valve member 60 allow substantially the entire available surface area overlying compression chamber 62 to be utilized for suction and discharge valving and porting, thereby allowing maximum fluid flow both into and out of compression chamber 62.
- Cylinder housing 42 includes an angled or curved portion 74 at the outer edge of compression chamber 62 to provide a friendly surface for suction reed valve member 60 to bend against, thereby significantly reducing the bending stresses generated within tabs 66.
- the present invention is directed to a unique process for the heat treating and surface finishing for tabs 66 which provides a significant increase in both the wear and the flexural fatigue life of tabs 66.
- the suction reed valve member 60 of the present invention is shown in FIG. 3 and includes a generally circular body 76 defining central opening 64.
- the pair of diametrically opposed radially outwardly extending tabs 66 are each provided with slot 68.
- a typical prior art suction reed valve member similar to valve member 60 is manufactured from a quenched and tempered stainless steel such as Uddeholm 716. These prior art reed valve members have a hardness of HRC 49-53. This hardness provides a wear resistant suction reed valve member that exhibits satisfactory flexural fatigue life characteristics.
- FIG. 4 illustrates an area 80 which is through hardened using a laser hardening process to provide a localized wear surface for slots 68.
- the laser hardening process begins by coating the area to be heat treated with a graphite spray to allow the laser to couple with the metal. Without the coating, the laser beam will tend to be reflected from the surface instead of being absorbed into and heating the metal.
- GRAFO 203G Dry Film Lubricant from Grafo Colloids Division of Fuchs Lubricants Company in Emlento, Pa. has provided acceptable results when combined with N-propyl alcohol in a ratio of 4 parts alcohol to 1 part graphite.
- the coating thickness should be such that the surface of reed valve member 60 is not visible through the coating.
- the coating should be allowed to dry for at least 5 minutes but not longer than 2 hours before reed valve members 60 are laser heat treated.
- the coated reed valve member 10 is then positioned with the laser hardening machine which is equipped with a CNC table for movement of reed valve member 60 with respect to the laser.
- the area which is hardened is shown in FIG. 4 as area 80 and can be monitored and corrected by making slight changes in the coordinates of the CNC table.
- the top and bottom surface of area 80 being exposed to the laser is bathed in a nitrogen atmosphere during the heat treating operation.
- Area 80 around each slot 68, as shown in FIG. 4, is then exposed to the laser for the proper length of time and power settings to produce the through hardening of area 80.
- a transmissive beam integrator is used to achieve a uniform power distribution on the surface of valve member 60 and to focus the laser beam onto area 80.
- a CO 2 Continuous Wave Photon Versa-Laser V1200 having a wave length of 10600 nanometers, a maximum design power of 1350 watts and a maximum current of 35 amps, 60 Hz has provided acceptable heat treated patterns when the power level has been allowed to stabilize at a value above 550 watts.
- a time exposure range of 0.8 to 1.2 seconds has been found to be acceptable for a 0.022 inch reed thickness.
- An optimal power/time setting is one that puts the most heat into the reed in the shortest amount of time and thus produces the required hardness values with little or no visible surface melting when looked at through a 20X magnifier.
- the above power and time settings will produce an acceptable reed valve member when the reed valve member has a thickness of 0.022 inches.
- a thicker reed valve member may require a higher power and/or increased time setting while a thinner reed valve member by require a lower power and/or decreased time setting.
- the change to the thickness of the reed valve member will thus require a re-optimization of both the power and the time settings.
- reed valve member 60 After being laser hardened, reed valve member 60 is cold soaked at a part temperature of -120° F. Max for a minimum of 2 hours. Reed valve member 60 should begin the cold soak cycle no more than 3 hours after being heat treated. The cold soak cycle is used to minimize the amount of retained austenite in the material.
- reed valve member 60 Upon the completion of the cold soak, reed valve member 60 should be allowed to return to ambient temperature and then it should be tempered at a part temperature of 325° to 350° F. for 90 minutes. Reed valve member 60 should begin the temper cycle no more than 2 hours after being cold soaked.
- the matrix microstructure in the laser hardened region should be tempered martensite.
- the chromium carbides should be partly decomposed in this region. No visual retained austenite when viewed at 500X should be detected in the matrix. The presence of melting is undesirable unless it is limited to a thin surface layer.
- the minimum hardness reading after tempering shall be 88.0 Rockwell 15N, within area 80.
- transition zone While there will be a transition zone between the base material of tab 66 and its associated hardened area 80, this transitional zone should be kept to a minimum.
- the above described laser hardening process is capable of keeping the transitional zone below the preferred maximum allowable 0.060 inches in width.
- FIG. 5 illustrates an area 82 of tab 66 of reed valve member 60 which is shot peened after completion of the laser heat treating operation described above.
- the heat treating operation of tabs 66 removes residual compressive stresses from the surface of tabs 66.
- the shot peening of the surface restores the compressive stresses, eliminating sub-surface cracks and significantly increasing the fatigue life of tabs 66.
- Tabs 66 are shot peened on both sides of both tabs including the inside periphery of slot 68 in area 82. Small non-ferrous shot such as glass or ceramic is used so that contaminants are not imparted on the surface and to provide complete coverage inside slot 68.
- the intensity of the peening process should be monitored in accordance to Military Specification Mil-S-13165C, for a steel part with a thickness equal to that of reed valve member 60. This is to be measured with a Type N, Grade II Almen Strip, at an intensity of 0.005-0.007.
- Tab 66 should be masked to ensure 0% overspray. Tab 66 must yield compressive stresses of 150 Ksi minimum at the surface in the heat treated area after shot peening.
- a second embodiment of the present invention replaces the laser heat treating process with an Impulse Induction Hardening Process.
- the final heat treat specifications are identical for both the laser heat treating process and the impulse induction hardening process and both processes include the shot peening of area 82 described above.
- the induction hardening process is illustrated in FIGS. 6 and 7.
- FIGS. 6 and 7 illustrate suction reed valve member 60 positioned between a pair of induction coils 90 which are part of an induction hardening machine (not shown).
- Impulse Induction Hardening uses capacitively stored energy and developed electronics to generate a rectangular pulse with a high power peak.
- This rectangular pulse with an accurately controlled energy and duration, is coupled into area 80 of reed valve member 60 by induction coils 90.
- Induction coils 90 are custom shaped in order to obtain the desired localized hardening in area 80.
- One machine which is capable of providing this rectangular pulse is manufactured by Tanne Induction of Germany.
- Tanne model "DAVID" with a power rating of 0-8.5 kV working frequency of 27.12 Megahertz has proven to provide acceptable heat treat patterns.
- Reed valve member 60 is positioned manually or automatically in a fixture on the induction hardening machine. The positioning of reed valve member 60 would ensure proper x-y alignment with respect to induction coils 90. Tabs 66 of reed valve member 60 are located between an end loop 92 of each induction coil 90 as shown in FIGS. 6 and 7. A specified gap 94 is maintained between each end loop 92 of induction coils 90.
- Area 80 of each tab 66 is exposed to the induction pulse for the proper length of time and the proper power settings of the machine.
- a flux concentrator may be used as well as covering area 80 with an inert gas as described above.
- a machine setting of 6.5 kV with a 70 millisecond pulse has shown acceptable results for a reed thickness of 0.022 inch.
- the power and duration of the pulse must be controlled so that adequate hardening takes place but care must be taken to not melt or blow the coil as a result of too much power. Burning and melting are not desired within area 80 as described above for laser heat treating.
- a change to the thickness of the reed valve member will require a re-optimization to the machine settings of the induction hardener in order to allow the reed valve member to meet the performance requirements.
- the rate of heat input and heat extraction is very rapid. There is no need for quenchant to assist in heat removal. After the heat treating is turned off, the part self quenches. This is the case for both laser and induction hardening.
- suction reed valve members 60 provide reed valve members which significantly out-perform the prior art reed valve members.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Compressor (AREA)
- Self-Closing Valves And Venting Or Aerating Valves (AREA)
- Check Valves (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
Claims (17)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/883,008 US5960825A (en) | 1997-06-26 | 1997-06-26 | Laser hardened reed valve |
DE1998631037 DE69831037T2 (en) | 1997-06-26 | 1998-05-11 | Laser hardened leaf valve |
EP19980303657 EP0887551B1 (en) | 1997-06-26 | 1998-05-11 | Laser hardened reed valve |
JP17961898A JPH1172173A (en) | 1997-06-26 | 1998-06-11 | Pressure responding valve device, reed valve and manufacture of reed valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/883,008 US5960825A (en) | 1997-06-26 | 1997-06-26 | Laser hardened reed valve |
Publications (1)
Publication Number | Publication Date |
---|---|
US5960825A true US5960825A (en) | 1999-10-05 |
Family
ID=25381801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/883,008 Expired - Lifetime US5960825A (en) | 1997-06-26 | 1997-06-26 | Laser hardened reed valve |
Country Status (4)
Country | Link |
---|---|
US (1) | US5960825A (en) |
EP (1) | EP0887551B1 (en) |
JP (1) | JPH1172173A (en) |
DE (1) | DE69831037T2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6113369A (en) * | 1997-07-26 | 2000-09-05 | Knorr-Bremse Systems For Commerical Vehicles Ltd. | Reed valve arrangement and gas compressor employing a reed valve arrangement |
US20040164268A1 (en) * | 2003-02-25 | 2004-08-26 | Copeland Corporation | Compressor discharge valve retainer |
US20070231167A1 (en) * | 2006-03-31 | 2007-10-04 | Hideaki Tsukamoto | Reciprocating compressor |
US20070264140A1 (en) * | 2006-05-09 | 2007-11-15 | Chou Wen S | Air compressor having improved valve device |
US20080112829A1 (en) * | 2004-12-23 | 2008-05-15 | Bsh Bosch Und Siemens Hausgerate Gmbh | Compressor for a Refrigeration Device |
US20090087329A1 (en) * | 2007-10-02 | 2009-04-02 | Obara Richard A | Compressor Having Improved Valve Plate |
WO2009157874A1 (en) * | 2008-06-24 | 2009-12-30 | Panasonic Corporation | Method and system for processing a sheet of material |
US20100155382A1 (en) * | 2005-08-05 | 2010-06-24 | Valeo Thermal Systems Japan Corporation | Method for Machining Valve Mechanism Component Member |
US20130180969A1 (en) * | 2012-01-18 | 2013-07-18 | Purdue Research Foundation | Laser shock peening apparatuses and methods |
US20150068485A1 (en) * | 2014-11-18 | 2015-03-12 | Caterpillar Inc. | Cylinder head having wear resistant laser peened portions |
US10208740B2 (en) | 2012-09-04 | 2019-02-19 | Carrier Corporation | Reciprocating refrigeration compressor suction valve seating |
US10436187B2 (en) | 2015-10-29 | 2019-10-08 | Emerson Climate Technologies, Inc. | Cylinder head assembly for reciprocating compressor |
US10648581B2 (en) * | 2017-12-15 | 2020-05-12 | Hamilton Sundstrand Corporation | Check valves |
US10961603B2 (en) | 2013-11-25 | 2021-03-30 | Magna International Inc. | Structural component including a tempered transition zone |
US20220397109A1 (en) * | 2021-06-14 | 2022-12-15 | Danfoss Commercial Compressors | Discharge valve arrangement for a refrigerant compressor |
US20230160482A1 (en) * | 2020-05-11 | 2023-05-25 | Knf Flodos Ag | Valve and diaphragm pump with inlet and outlet valves |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310068A (en) * | 2001-04-16 | 2002-10-23 | Matsushita Refrig Co Ltd | Compressor intake valve device and compressor for refrigeration-air conditioning |
US6823891B2 (en) * | 2003-02-25 | 2004-11-30 | Copeland Corporation | Compressor suction reed valve |
CN210173454U (en) * | 2018-10-31 | 2020-03-24 | 长春东睦富奥新材料有限公司 | Clamping tool for press-fitting pins of planetary gear carrier products |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3504148A (en) * | 1967-02-13 | 1970-03-31 | Boleslav Ivanovich Maximovich | Method and apparatus for producing bimetallic articles by inductive heating and positioning means |
US4193424A (en) * | 1976-10-06 | 1980-03-18 | Enfo Grundlagen Forschungs Ag | Lamina valve for reciprocating compressors |
US4332997A (en) * | 1980-07-15 | 1982-06-01 | Dudko Daniil A | Apparatus for delivery of valves and melting rings to an inductor heater for hard facing |
US4336432A (en) * | 1980-09-19 | 1982-06-22 | Ford Motor Company | Induction hardening of valve seat inserts |
US4438310A (en) * | 1980-05-08 | 1984-03-20 | Park Ohio Industries, Inc. | Method and apparatus for inductively heating valve seat inserts |
US4469126A (en) * | 1981-11-04 | 1984-09-04 | Copeland Corporation | Discharge valve assembly for refrigeration compressors |
US4470774A (en) * | 1981-11-04 | 1984-09-11 | Copeland Corporation | Valve plate assembly for refrigeration compressors |
US4543989A (en) * | 1981-11-04 | 1985-10-01 | Copeland Corporation | Discharge valve assembly for refrigeration compressors |
US4548234A (en) * | 1981-11-04 | 1985-10-22 | Copeland Corporation | Discharge valve assembly |
US4642037A (en) * | 1984-03-08 | 1987-02-10 | White Consolidated Industries, Inc. | Reed valve for refrigeration compressor |
US4643139A (en) * | 1983-07-20 | 1987-02-17 | Hargreaves Bernard J | Reed valves for internal combustion engines |
US4696263A (en) * | 1985-07-12 | 1987-09-29 | Performance Industries, Inc. | Reed valves for internal combustion engines |
US4729402A (en) * | 1986-08-01 | 1988-03-08 | Copeland Corporation | Compressor valve noise attenuation |
US4791259A (en) * | 1987-01-28 | 1988-12-13 | Tocco, Inc. | Method and apparatus for retaining a valve seat insert |
US4796855A (en) * | 1988-03-15 | 1989-01-10 | General Motors Corporation | PWM electromagnetic valve with selective case hardening |
US4875503A (en) * | 1987-06-30 | 1989-10-24 | Wabco Westinghouse Fahrzeugbremsen Gmbh | Stop for compressor plate valve |
US5192200A (en) * | 1990-06-08 | 1993-03-09 | Empresa Brasileira De Compressores S/A-Embraco | Reed valve for a hermetic compressor |
US5213125A (en) * | 1992-05-28 | 1993-05-25 | Thomas Industries Inc. | Valve plate with a recessed valve assembly |
US5277556A (en) * | 1990-07-10 | 1994-01-11 | Westonbridge International Limited | Valve and micropump incorporating said valve |
US5364244A (en) * | 1993-08-26 | 1994-11-15 | Carr-Griff, Inc. | Pump arrangement including flag type inlet valves with spherical seating |
US5466276A (en) * | 1991-02-27 | 1995-11-14 | Honda Giken Kogyo Kabushiki Kaisha | Valve seat made of secondary hardening-type high temperature wear-resistant sintered alloy |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3472446A (en) * | 1968-04-29 | 1969-10-14 | Trane Co | Compressor |
US3540470A (en) * | 1968-06-17 | 1970-11-17 | Vilter Manufacturing Corp | Diaphragm valve for compressors |
AT292906B (en) * | 1970-07-08 | 1971-09-10 | Hoerbiger Ventilwerke Ag | Lamella valve for reciprocating compressors |
US4877382A (en) | 1986-08-22 | 1989-10-31 | Copeland Corporation | Scroll-type machine with axially compliant mounting |
US5266016A (en) * | 1989-09-18 | 1993-11-30 | Tecumseh Products Company | Positive stop for a suction leaf valve of a compressor |
-
1997
- 1997-06-26 US US08/883,008 patent/US5960825A/en not_active Expired - Lifetime
-
1998
- 1998-05-11 EP EP19980303657 patent/EP0887551B1/en not_active Expired - Lifetime
- 1998-05-11 DE DE1998631037 patent/DE69831037T2/en not_active Expired - Fee Related
- 1998-06-11 JP JP17961898A patent/JPH1172173A/en active Pending
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3504148A (en) * | 1967-02-13 | 1970-03-31 | Boleslav Ivanovich Maximovich | Method and apparatus for producing bimetallic articles by inductive heating and positioning means |
US4193424A (en) * | 1976-10-06 | 1980-03-18 | Enfo Grundlagen Forschungs Ag | Lamina valve for reciprocating compressors |
US4438310A (en) * | 1980-05-08 | 1984-03-20 | Park Ohio Industries, Inc. | Method and apparatus for inductively heating valve seat inserts |
US4332997A (en) * | 1980-07-15 | 1982-06-01 | Dudko Daniil A | Apparatus for delivery of valves and melting rings to an inductor heater for hard facing |
US4336432A (en) * | 1980-09-19 | 1982-06-22 | Ford Motor Company | Induction hardening of valve seat inserts |
US4469126A (en) * | 1981-11-04 | 1984-09-04 | Copeland Corporation | Discharge valve assembly for refrigeration compressors |
US4470774A (en) * | 1981-11-04 | 1984-09-11 | Copeland Corporation | Valve plate assembly for refrigeration compressors |
US4543989A (en) * | 1981-11-04 | 1985-10-01 | Copeland Corporation | Discharge valve assembly for refrigeration compressors |
US4548234A (en) * | 1981-11-04 | 1985-10-22 | Copeland Corporation | Discharge valve assembly |
US4643139A (en) * | 1983-07-20 | 1987-02-17 | Hargreaves Bernard J | Reed valves for internal combustion engines |
US4642037A (en) * | 1984-03-08 | 1987-02-10 | White Consolidated Industries, Inc. | Reed valve for refrigeration compressor |
US4696263A (en) * | 1985-07-12 | 1987-09-29 | Performance Industries, Inc. | Reed valves for internal combustion engines |
US4729402A (en) * | 1986-08-01 | 1988-03-08 | Copeland Corporation | Compressor valve noise attenuation |
US4791259A (en) * | 1987-01-28 | 1988-12-13 | Tocco, Inc. | Method and apparatus for retaining a valve seat insert |
US4875503A (en) * | 1987-06-30 | 1989-10-24 | Wabco Westinghouse Fahrzeugbremsen Gmbh | Stop for compressor plate valve |
US4796855A (en) * | 1988-03-15 | 1989-01-10 | General Motors Corporation | PWM electromagnetic valve with selective case hardening |
US5192200A (en) * | 1990-06-08 | 1993-03-09 | Empresa Brasileira De Compressores S/A-Embraco | Reed valve for a hermetic compressor |
US5277556A (en) * | 1990-07-10 | 1994-01-11 | Westonbridge International Limited | Valve and micropump incorporating said valve |
US5466276A (en) * | 1991-02-27 | 1995-11-14 | Honda Giken Kogyo Kabushiki Kaisha | Valve seat made of secondary hardening-type high temperature wear-resistant sintered alloy |
US5213125A (en) * | 1992-05-28 | 1993-05-25 | Thomas Industries Inc. | Valve plate with a recessed valve assembly |
US5364244A (en) * | 1993-08-26 | 1994-11-15 | Carr-Griff, Inc. | Pump arrangement including flag type inlet valves with spherical seating |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6113369A (en) * | 1997-07-26 | 2000-09-05 | Knorr-Bremse Systems For Commerical Vehicles Ltd. | Reed valve arrangement and gas compressor employing a reed valve arrangement |
US20040164268A1 (en) * | 2003-02-25 | 2004-08-26 | Copeland Corporation | Compressor discharge valve retainer |
US6840271B2 (en) * | 2003-02-25 | 2005-01-11 | Copeland Corporation | Compressor discharge valve retainer |
CN100480512C (en) * | 2003-02-25 | 2009-04-22 | 爱默生气候技术公司 | Compressor discharge valve assembly |
US20080112829A1 (en) * | 2004-12-23 | 2008-05-15 | Bsh Bosch Und Siemens Hausgerate Gmbh | Compressor for a Refrigeration Device |
US20100155382A1 (en) * | 2005-08-05 | 2010-06-24 | Valeo Thermal Systems Japan Corporation | Method for Machining Valve Mechanism Component Member |
US20070231167A1 (en) * | 2006-03-31 | 2007-10-04 | Hideaki Tsukamoto | Reciprocating compressor |
US20070264140A1 (en) * | 2006-05-09 | 2007-11-15 | Chou Wen S | Air compressor having improved valve device |
US20090087329A1 (en) * | 2007-10-02 | 2009-04-02 | Obara Richard A | Compressor Having Improved Valve Plate |
US8197240B2 (en) * | 2007-10-02 | 2012-06-12 | Emerson Climate Technologies, Inc. | Compressor having improved valve plate |
CN101801607A (en) * | 2008-06-24 | 2010-08-11 | 松下电器产业株式会社 | Method and system for processing a sheet of material |
WO2009157874A1 (en) * | 2008-06-24 | 2009-12-30 | Panasonic Corporation | Method and system for processing a sheet of material |
US20130180969A1 (en) * | 2012-01-18 | 2013-07-18 | Purdue Research Foundation | Laser shock peening apparatuses and methods |
US10208740B2 (en) | 2012-09-04 | 2019-02-19 | Carrier Corporation | Reciprocating refrigeration compressor suction valve seating |
US10961603B2 (en) | 2013-11-25 | 2021-03-30 | Magna International Inc. | Structural component including a tempered transition zone |
US20150068485A1 (en) * | 2014-11-18 | 2015-03-12 | Caterpillar Inc. | Cylinder head having wear resistant laser peened portions |
US10436187B2 (en) | 2015-10-29 | 2019-10-08 | Emerson Climate Technologies, Inc. | Cylinder head assembly for reciprocating compressor |
US11225959B2 (en) | 2015-10-29 | 2022-01-18 | Emerson Climate Technologies, Inc. | Cylinder head assembly for reciprocating compressor |
US10648581B2 (en) * | 2017-12-15 | 2020-05-12 | Hamilton Sundstrand Corporation | Check valves |
US20230160482A1 (en) * | 2020-05-11 | 2023-05-25 | Knf Flodos Ag | Valve and diaphragm pump with inlet and outlet valves |
US11959555B2 (en) * | 2020-05-11 | 2024-04-16 | Knf Flodos Ag | Valve and diaphragm pump with inlet and outlet valves |
US20220397109A1 (en) * | 2021-06-14 | 2022-12-15 | Danfoss Commercial Compressors | Discharge valve arrangement for a refrigerant compressor |
US12018666B2 (en) * | 2021-06-14 | 2024-06-25 | Danfoss Commercial Compressors | Discharge valve arrangement for a refrigerant compressor |
Also Published As
Publication number | Publication date |
---|---|
DE69831037T2 (en) | 2006-04-20 |
EP0887551A3 (en) | 2001-05-23 |
EP0887551A2 (en) | 1998-12-30 |
DE69831037D1 (en) | 2005-09-08 |
JPH1172173A (en) | 1999-03-16 |
EP0887551B1 (en) | 2005-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5960825A (en) | Laser hardened reed valve | |
WO2007018002A1 (en) | Method for processing valve mechanism constituting member | |
JP4944706B2 (en) | Swash plate compressor | |
EP1533548B1 (en) | Side rail for combination oil ring and method of nitriding the same | |
US7658173B2 (en) | Tappet for an internal combustion engine | |
US8647751B2 (en) | Coated valve retainer | |
JP2003013710A (en) | Sliding device, and valve system of internal combustion engine | |
EP1416125B1 (en) | Hydraulic tensioner | |
JPH02285024A (en) | Manufacturing roller bearing member from solid-hardened roller bearing steel | |
US4247972A (en) | Method of manufacturing a piston ring | |
US20020170425A1 (en) | Shoe for swash plate type compressor and method of producing the same | |
CN110468259B (en) | Preparation method of wear-resistant hydraulic pump part | |
EP0937867A2 (en) | Light weight hollow valve assembly | |
KR20040042801A (en) | A control valve for variable displacement compressor | |
KR20060049014A (en) | Valve lifter and forming and processing method therefor | |
US6044862A (en) | Compressor reed valve | |
CN111102185A (en) | Bimetallic cylinder body, friction pair and processing method for axial variable plunger pump | |
US4791259A (en) | Method and apparatus for retaining a valve seat insert | |
KR100849255B1 (en) | Diecasting valve | |
KR20110096181A (en) | Method of processing contact portions between valve plate and suction valve and/or discharge valve of reciprocating compressor, and reciprocating compressor | |
Senatorski et al. | Tribology of Nitrided and Nitrocarburized steels | |
CN114774639B (en) | Laser tempering quenching method | |
KR19990009039A (en) | Engine tappet with excellent wear resistance and its manufacturing method | |
CN113528793A (en) | Camshaft strengthening treatment process | |
CN105033654B (en) | A kind of engine valve tappet and its manufacture method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COPELAND CORPORATION, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCANCARELLO, MARC JOSEPH;GATES, WILLIAM CHRISTIAN;SCHULZE, BRAD ANTHONY;REEL/FRAME:008659/0861 Effective date: 19970619 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: COPELAND CORPORATION LLC, OHIO Free format text: CERTIFICATE OF CONVERSION AND ARTICLES OF FORMATION;ASSIGNOR:COPELAND CORPORATION;REEL/FRAME:019215/0250 Effective date: 20060927 |
|
FPAY | Fee payment |
Year of fee payment: 12 |