US5836357A - Pressure-expandable conduit liner - Google Patents
Pressure-expandable conduit liner Download PDFInfo
- Publication number
- US5836357A US5836357A US08/548,375 US54837595A US5836357A US 5836357 A US5836357 A US 5836357A US 54837595 A US54837595 A US 54837595A US 5836357 A US5836357 A US 5836357A
- Authority
- US
- United States
- Prior art keywords
- laminate
- liner
- conduit
- glass
- fabric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/16—Devices for covering leaks in pipes or hoses, e.g. hose-menders
- F16L55/162—Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
- F16L55/165—Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section
- F16L55/1656—Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section materials for flexible liners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C53/00—Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
- B29C53/36—Bending and joining, e.g. for making hollow articles
- B29C53/38—Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges
- B29C53/382—Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges using laminated sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/26—Lining or sheathing of internal surfaces
- B29C63/34—Lining or sheathing of internal surfaces using tubular layers or sheathings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/56—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
- B29C65/62—Stitching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2023/00—Tubular articles
- B29L2023/005—Hoses, i.e. flexible
- B29L2023/006—Flexible liners
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1362—Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
- Y10T428/1366—Textile, fabric, cloth, or pile is sandwiched between two distinct layers of material unlike the textile, fabric, cloth, or pile layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/139—Open-ended, self-supporting conduit, cylinder, or tube-type article
- Y10T428/1393—Multilayer [continuous layer]
Definitions
- This invention relates to conduit liners for making repairs in underground piping systems, and more particularly to laminated liner configurations that provide improved strength and handling for such repairs.
- Underground piping systems are essential in providing the transportation of liquids and gases to homes and businesses. Used mostly by utilities in sewer pipes, water pipes, water mains, gas mains, and other applications, such pipes are often found many feet underground or in inaccessible areas, such as under buildings or roadways.
- Glass fiber mats are attractive replacements for polyester tubing material for making pipe repairs since they can achieve the same mechanical properties with less than half the wall thickness of comparable polyester liners.
- the present invention provides pressure-expandable conduit liners which include, in a first embodiment, a first flexible fabric layer mechanically bonded to a glass-containing layer and folded to form a smooth tubular laminate.
- This laminate is penetrable by a resinous liquid capable of setting to form a substantially continuous matrix within the pores of the tubular laminate following expansion within a conduit to be repaired.
- this invention fully meets American liner thickness standards for vibration resistance without wasting expensive glass fiber material, and simultaneously provides a stronger liner than that which could be achieved with polyester fabric alone.
- the laminated conduit liners of this invention include strong mechanical bonds and provide composite-like reinforcement when combined with thermoplastic or thermosetting resins. Combining these materials is no minor task, since any bonding procedure used to join the fabric- and glass-containing layers together must maintain the porous nature of the liner, yet must be strong enough bond to resist delamination during installation and expansion of the liner.
- conduit liners which include a flexible polyester-containing layer and a pair of overlapping glass-containing layers of chopped glass fibers.
- the polyester-containing and glass-containing layers are sewn together with a thread to produce a tubular laminate sandwich having first and second non-overlapping longitudinal seam portions.
- This laminate also includes a resinous liquid which preferably penetrates through the polyester-containing and glass-containing layers to form a continuous solid matrix following expansion of the laminate within a damaged conduit.
- This particular embodiment provides non-overlapping longitudinal seam portions so as to avoid through-thickness radial discontinuities in the liner. This feature not only provides a stronger liner during pressure expansion, but also helps to keep a uniform outer diameter for the liner for more closely matching the interior diameter of a pipe or conduit.
- the resulting tubular laminate can have a six or eight mil minimum thickness with a tensile strength of at least about 7,000-9,000 psi.
- a glass liner is provided with a lap joint.
- This liner is also reinforced with a resinous liquid.
- FIG. 1 is a front perspective view of the conduit liner of this invention
- FIG. 2 is a side-plan view of a stitched laminated precursor of the conduit liner of FIG. 1;
- FIG. 3 is a cross-sectional side view of a damaged pipe being repaired with the preferred conduit liner of FIG. 1.
- Expandable conduit liners methods of manufacturing these liners and methods of installing them within damaged conduits are provided by this invention. These liners provide high tensile modulus and strength but still meet the minimum thicknesses required to meet American vibration resistance standards. This can be achieved, as explained below, by mechanically bonding fabric and glass-containing layers together prior to impregnation with a resinous material.
- FIGS. 1 and 2 there is shown a preferred conduit liner 100 containing a fabric layer 10 mechanically bonded to a pair of glass-containing layers 20. This can be accomplished, for example, by stitch thread 30 woven to bond the fabric layer 10 and glass-containing layers 20 together.
- the resulting tubular laminated form, shown in FIG. 1, includes a pair of longitudinal seam portions, specifically an outer seam portion 44 and an inner seam portion 42 which are preferably not radially aligned so as to avoid a continuous radial discontinuity through the wall thickness of the conduit liner 100.
- the glass-containing layers 20 represents the reinforcement layers and are preferably of a thinner cross-sectional thickness then the fabric layer 10. They can also be located radially outward and radially inward from the fabric-containing layer 10 so as to provide abrasion resistance and strength where they are most needed.
- the preferred fabric layer 10 which can be two or more sewn or bonded fabric layers, comprises a natural or synthetic fibrous material in woven or nonwoven mat form. Suitable materials should be water and corrosion-resistant. Good examples include pulp fiber, cotton, polyethylene, polypropylene, and polyester fibers. In certain instances, woven or nonwoven glass material can be used, in addition to, or as a substitute for these other fibers.
- the most preferred embodiment is a needle-punched nonwoven polyester mat employing standard technology for manufacturing needle-punched materials. Thicknesses of about 3-6 mils would be suitable for this layer 10.
- the glass-containing layers 20 of this invention preferably contains chopped glass fibers, such as E or ECR-type glass fibers. Such fibers can be blended with thermoplastic or thermosetting resinous fibers, although this is not necessary for performance. Alternatively, one hundred percent chopped glass fibers can be distributed over the fabric layer 10 and mechanically bonded thereto to produce the liner layers of the conduit liner 100. This can be accomplished using a stitch mat process in which the preferred needle-punched polyester mat is stitched to a plurality of chopped glass fibers on its top surface. This results in a fiber glass-coated-polyester substrate laminate. Preferably, unidirectional polymer or glass rovings can be provided in the machine direction or cross-machine direction or both directions to allow for the handling of the resulting laminate without significant stretching.
- chopped glass fibers such as E or ECR-type glass fibers.
- Such fibers can be blended with thermoplastic or thermosetting resinous fibers, although this is not necessary for performance.
- one hundred percent chopped glass fibers can be distributed over the fabric layer
- the conduit liners of this invention have a tensile modulus of at least about 900,000 to 1,000,000 psi with a tensile strength of at least about 7,000-9,000 psi. This is a tremendous improvement over polyester conduit liners having a tensile strength of only about 3,000 psi.
- the liners of this invention include an overall thickness falling within conventional American standards, for example, 6 mils. In these forms, this invention preferably uses at least 1-3 mils of glass with the balance being polyester material, although a full thickness glass liner could be used with some additional cost.
- the resinous liquid of this invention can be any number of thermosetting or thermoplastic compositions which can be introduced into either the fabric- or glass-containing layers, or both, and thereafter set or hardened to provide a solid matrix.
- Suitable thermoplastic compositions include thermoplastic polyvinyl chloride, polyolefins, and the like.
- Suitable thermosetting resins can include those containing a heat activated curing agent, a curing agent, or a heat deactivated curing retarding agent. Such examples include vinyl ester, epoxy and thermosetting polyester.
- This improved method is designed to repair a crack 201 in a ruptured underground conduit, such as pipes, mains or drains.
- Man holes when not already present, can be provided on opposite sides of the ruptured pipe sections after the pipe 200 has been suitably emptied and the particular section is uncoupled from adjacent sections.
- the unexpanded conduit liner 101 is then inserted into the cleaned pipe 200 and clamped by end plates to the pipe end fringes.
- Hot pressured fluids such as air or water, can be pumped into the liner until it expands. This pressure can remain within the liner until the thermosetting or thermoplastic resin impregnated therein sets or cures.
- the end plates can then be removed and the repaired section recoupled to the adjacent pipe sections.
- the linings of this invention may also be used with undamaged conduit before installation.
- a polyester needle-punched carrier composed of approximately fifteen denier per filament polyester and having a basis weight of about 200-1000 gram/meter 2 square is provided from raw stock and introduced into a stitch mat processing line. Unidirectional rovings of 750 tex to 2,200 tex spaced at about 1-6 inches are then applied in the machine direction on top of the polyester needle-punched carrier. Additionally, chopped fiber glass fiber is applied to the top of the carrier layer. This fiber contains 2,400 tex chopped glass fibers dispersed at about 200 grams-1000 grams/meter 2 . The roving and chopped glass fibers are stitched together with polyester stitch yarn. The rovings are placed substantially parallel to the length of the liner so that when the liner is pulled into a pipe the rovings carry the weight of the product to relieve stress and avoid stretching and tearing.
- a pair of glass layered stitched mat polyester layers are then severed from the web and mechanically bonded, for example, by stitching, or needling, back to back so that the polyester fabric layers are facing one another.
- This stitching is also a polyester stitch yarn.
- These two layers are laterally offset from one another, so as to provide a step on either side of the laminated construction. This process results in a relatively flat sandwich having fiber glass outer surfaces and a polyester core.
- the flat sandwich construction is processed through a folder which transforms it into a tubular form.
- the step areas produced by the second stitch mat step are positioned to overlap one another, and an adhesive is dispensed into this overlapping area so as to adhesively bond them together in "lap-joint" fashion.
- the adhesive preferably is a polyamide type.
- the adhesive should be chemically and thermally resistant to the thermosetting chemistries of the saturants; otherwise the seam may fail and may not attach properly.
- thermosetting polyester saturant is used to impregnate the glass and polyester layers. Following saturation, the material is preferably cooled to prevent curing until installed within a conduit, which may take up to five days.
- the thermosetting polyester saturant is exothermic during curing and may achieve temperatures in an excess of 300° F.
- the product of this Example achieved excellent interlayer adhesion with the overlapping layers and stitch mat processing.
- the product had good handling characteristics for repair applications without damaging the polyester or glass layers due to the reinforcement of the unidirectional roving. Since there is no overlapping on the outer diameter of the liner such as with prior art examples, and there was not a through-thickness radial seam, which would otherwise provide a point of failure, the product possessed uniform properties around its circumference and could be easily expanded by internal fluid pressure without posing a significant risk of failure.
- this invention provides improved conduit liners having a uniform circumference, high tensile modulus, high strength and sufficient thickness to meet vibration resistant codes in the United States.
- liner laminates were described, it is understood that this invention could contain any number of glass-containing and fabric layers, in any order of layering so long as the overall thickness meets the usual guidelines for vibration thickness minimums.
- the liners of this invention are suitable for conduit repairs in sewers, water pipes, gas lines, and also in new piping constructions where a corrosion and wear resistant lining material is desirable.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Pipe Accessories (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Conduit liners and methods for their construction and use are provided. The liners include a first flexible layer mechanically bonded to at least one glass-containing layer and folded to form a tubular laminate. The laminate can be penetrable by resinous liquid capable of setting the form of substantially continuous matrix within the laminate following the expansion of the laminate within a conduit. In preferred versions of the liner, multiple glass layers are provided on the inner and outer diameter of the construction with a polyester core so as to meet minimum thickness requirements for vibration resistance under American in situ pipe vibration resistance codes.
Description
This invention relates to conduit liners for making repairs in underground piping systems, and more particularly to laminated liner configurations that provide improved strength and handling for such repairs.
Underground piping systems are essential in providing the transportation of liquids and gases to homes and businesses. Used mostly by utilities in sewer pipes, water pipes, water mains, gas mains, and other applications, such pipes are often found many feet underground or in inaccessible areas, such as under buildings or roadways.
Due to cyclical loadings, premature wear, manufacturing defects, corrosion, and other factors, these pipes can often develop ruptured or weakened areas requiring repair. Although the surest way to repair such leaks is to replace the damaged section, replacement is often difficult and expensive.
Recently, in situ pipe repair procedures have been developed which include the insertion of a pliable polyester felt sleeve impregnated with a thermosetting resin. The sleeve is inserted coaxially through the damaged pipe portion and pressurized so that the resin-impregnated sleeve presses firmly against the inner wall of the damaged pipe. The expanded liner is then permitted to cure to form a new lining within the original pipe.
In Europe, where fiberglass liners have been developed, higher strengths have been provided without the use of polyester, by simply impregnating glass fiber laminates with synthetic resin.
Glass fiber mats are attractive replacements for polyester tubing material for making pipe repairs since they can achieve the same mechanical properties with less than half the wall thickness of comparable polyester liners. Unfortunately, since only polyester tubing has been contemplated, many United States pipe repair specifications call for a minimum liner thickness requirement for different circumstances. These thicknesses vary between 6 and 18 mils. Manufacturing an all glass liner within these tolerances would be wasteful, not to mention costly, since only about two mills of glass fabric is necessary to provide sufficient tensile strength for an underground pipe repair.
There appears to be some recognition of a weakness along the longitudinal seams of current conduit liners made from either polyester or glass fiber. Since most of these liners are made from folded mats which are joined with a longitudinal butt-seam for bonding the opposite lateral edges of the mat, a discontinuity in the liner's sidewall is created which is significantly weaker than the remaining cross-section at any other point along the circumference of the liner. This discontinuity presents a threat of delamination or separation during insertion and pressurized expansion of the liner inside a pipe.
Efforts to overcome this weakness in the wall structure have included laminating or sewing a polyester patch to the seam of polyester liners. Although this effort to reinforce an apparent weakness in the side wall has been somewhat successful, it results in a distortion of the smooth circumference of the liner, making it rather difficult to match the inner diameter of the pipe to be repaired. This technique has also not been very successful with glass liners since the irregular texture of the fiberglass resists efforts to create a sound joint. Accordingly, fiberglass liners are usually butt-joined together by a longitudinal stitch or line of adhesive, leaving a weak site through the entire cross-section of the liner.
The present invention provides pressure-expandable conduit liners which include, in a first embodiment, a first flexible fabric layer mechanically bonded to a glass-containing layer and folded to form a smooth tubular laminate. This laminate is penetrable by a resinous liquid capable of setting to form a substantially continuous matrix within the pores of the tubular laminate following expansion within a conduit to be repaired.
Accordingly, this invention fully meets American liner thickness standards for vibration resistance without wasting expensive glass fiber material, and simultaneously provides a stronger liner than that which could be achieved with polyester fabric alone. The laminated conduit liners of this invention include strong mechanical bonds and provide composite-like reinforcement when combined with thermoplastic or thermosetting resins. Combining these materials is no minor task, since any bonding procedure used to join the fabric- and glass-containing layers together must maintain the porous nature of the liner, yet must be strong enough bond to resist delamination during installation and expansion of the liner.
In further embodiments of this invention, conduit liners are provided which include a flexible polyester-containing layer and a pair of overlapping glass-containing layers of chopped glass fibers. The polyester-containing and glass-containing layers are sewn together with a thread to produce a tubular laminate sandwich having first and second non-overlapping longitudinal seam portions. This laminate also includes a resinous liquid which preferably penetrates through the polyester-containing and glass-containing layers to form a continuous solid matrix following expansion of the laminate within a damaged conduit. This particular embodiment provides non-overlapping longitudinal seam portions so as to avoid through-thickness radial discontinuities in the liner. This feature not only provides a stronger liner during pressure expansion, but also helps to keep a uniform outer diameter for the liner for more closely matching the interior diameter of a pipe or conduit. The resulting tubular laminate can have a six or eight mil minimum thickness with a tensile strength of at least about 7,000-9,000 psi.
In still another embodiment of this invention, a glass liner is provided with a lap joint. This liner is also reinforced with a resinous liquid.
The accompanying drawings illustrate preferred embodiments of the invention according to the practical application of the principles thereof and in which:
FIG. 1: is a front perspective view of the conduit liner of this invention;
FIG. 2: is a side-plan view of a stitched laminated precursor of the conduit liner of FIG. 1;
FIG. 3: is a cross-sectional side view of a damaged pipe being repaired with the preferred conduit liner of FIG. 1.
Expandable conduit liners, methods of manufacturing these liners and methods of installing them within damaged conduits are provided by this invention. These liners provide high tensile modulus and strength but still meet the minimum thicknesses required to meet American vibration resistance standards. This can be achieved, as explained below, by mechanically bonding fabric and glass-containing layers together prior to impregnation with a resinous material.
With reference to the drawings, and particularly FIGS. 1 and 2 thereof, there is shown a preferred conduit liner 100 containing a fabric layer 10 mechanically bonded to a pair of glass-containing layers 20. This can be accomplished, for example, by stitch thread 30 woven to bond the fabric layer 10 and glass-containing layers 20 together. The resulting tubular laminated form, shown in FIG. 1, includes a pair of longitudinal seam portions, specifically an outer seam portion 44 and an inner seam portion 42 which are preferably not radially aligned so as to avoid a continuous radial discontinuity through the wall thickness of the conduit liner 100.
In the preferred conduit liner 100 of this invention, the glass-containing layers 20 represents the reinforcement layers and are preferably of a thinner cross-sectional thickness then the fabric layer 10. They can also be located radially outward and radially inward from the fabric-containing layer 10 so as to provide abrasion resistance and strength where they are most needed.
The preferred fabric layer 10, which can be two or more sewn or bonded fabric layers, comprises a natural or synthetic fibrous material in woven or nonwoven mat form. Suitable materials should be water and corrosion-resistant. Good examples include pulp fiber, cotton, polyethylene, polypropylene, and polyester fibers. In certain instances, woven or nonwoven glass material can be used, in addition to, or as a substitute for these other fibers. The most preferred embodiment is a needle-punched nonwoven polyester mat employing standard technology for manufacturing needle-punched materials. Thicknesses of about 3-6 mils would be suitable for this layer 10.
The glass-containing layers 20 of this invention preferably contains chopped glass fibers, such as E or ECR-type glass fibers. Such fibers can be blended with thermoplastic or thermosetting resinous fibers, although this is not necessary for performance. Alternatively, one hundred percent chopped glass fibers can be distributed over the fabric layer 10 and mechanically bonded thereto to produce the liner layers of the conduit liner 100. This can be accomplished using a stitch mat process in which the preferred needle-punched polyester mat is stitched to a plurality of chopped glass fibers on its top surface. This results in a fiber glass-coated-polyester substrate laminate. Preferably, unidirectional polymer or glass rovings can be provided in the machine direction or cross-machine direction or both directions to allow for the handling of the resulting laminate without significant stretching.
Because of the glass fiber reinforcement, the conduit liners of this invention have a tensile modulus of at least about 900,000 to 1,000,000 psi with a tensile strength of at least about 7,000-9,000 psi. This is a tremendous improvement over polyester conduit liners having a tensile strength of only about 3,000 psi. Desirably, the liners of this invention include an overall thickness falling within conventional American standards, for example, 6 mils. In these forms, this invention preferably uses at least 1-3 mils of glass with the balance being polyester material, although a full thickness glass liner could be used with some additional cost.
The resinous liquid of this invention can be any number of thermosetting or thermoplastic compositions which can be introduced into either the fabric- or glass-containing layers, or both, and thereafter set or hardened to provide a solid matrix. Suitable thermoplastic compositions include thermoplastic polyvinyl chloride, polyolefins, and the like. Suitable thermosetting resins can include those containing a heat activated curing agent, a curing agent, or a heat deactivated curing retarding agent. Such examples include vinyl ester, epoxy and thermosetting polyester.
With respect to FIG. 3, one procedure for inserting the preferred conduit liner 100 of this invention will now be described. This improved method is designed to repair a crack 201 in a ruptured underground conduit, such as pipes, mains or drains. Man holes, when not already present, can be provided on opposite sides of the ruptured pipe sections after the pipe 200 has been suitably emptied and the particular section is uncoupled from adjacent sections. The unexpanded conduit liner 101 is then inserted into the cleaned pipe 200 and clamped by end plates to the pipe end fringes. Hot pressured fluids, such as air or water, can be pumped into the liner until it expands. This pressure can remain within the liner until the thermosetting or thermoplastic resin impregnated therein sets or cures. The end plates can then be removed and the repaired section recoupled to the adjacent pipe sections. The linings of this invention may also be used with undamaged conduit before installation.
A polyester needle-punched carrier composed of approximately fifteen denier per filament polyester and having a basis weight of about 200-1000 gram/meter2 square is provided from raw stock and introduced into a stitch mat processing line. Unidirectional rovings of 750 tex to 2,200 tex spaced at about 1-6 inches are then applied in the machine direction on top of the polyester needle-punched carrier. Additionally, chopped fiber glass fiber is applied to the top of the carrier layer. This fiber contains 2,400 tex chopped glass fibers dispersed at about 200 grams-1000 grams/meter2. The roving and chopped glass fibers are stitched together with polyester stitch yarn. The rovings are placed substantially parallel to the length of the liner so that when the liner is pulled into a pipe the rovings carry the weight of the product to relieve stress and avoid stretching and tearing.
A pair of glass layered stitched mat polyester layers are then severed from the web and mechanically bonded, for example, by stitching, or needling, back to back so that the polyester fabric layers are facing one another. This stitching is also a polyester stitch yarn. These two layers are laterally offset from one another, so as to provide a step on either side of the laminated construction. This process results in a relatively flat sandwich having fiber glass outer surfaces and a polyester core.
Finally, the flat sandwich construction is processed through a folder which transforms it into a tubular form. The step areas produced by the second stitch mat step are positioned to overlap one another, and an adhesive is dispensed into this overlapping area so as to adhesively bond them together in "lap-joint" fashion. The adhesive preferably is a polyamide type. The adhesive should be chemically and thermally resistant to the thermosetting chemistries of the saturants; otherwise the seam may fail and may not attach properly.
Once the seams have been set, a thermosetting polyester saturant is used to impregnate the glass and polyester layers. Following saturation, the material is preferably cooled to prevent curing until installed within a conduit, which may take up to five days. The thermosetting polyester saturant is exothermic during curing and may achieve temperatures in an excess of 300° F.
The product of this Example achieved excellent interlayer adhesion with the overlapping layers and stitch mat processing. The product had good handling characteristics for repair applications without damaging the polyester or glass layers due to the reinforcement of the unidirectional roving. Since there is no overlapping on the outer diameter of the liner such as with prior art examples, and there was not a through-thickness radial seam, which would otherwise provide a point of failure, the product possessed uniform properties around its circumference and could be easily expanded by internal fluid pressure without posing a significant risk of failure.
From the foregoing it can be realized that this invention provides improved conduit liners having a uniform circumference, high tensile modulus, high strength and sufficient thickness to meet vibration resistant codes in the United States. Although specific examples of liner laminates were described, it is understood that this invention could contain any number of glass-containing and fabric layers, in any order of layering so long as the overall thickness meets the usual guidelines for vibration thickness minimums. The liners of this invention are suitable for conduit repairs in sewers, water pipes, gas lines, and also in new piping constructions where a corrosion and wear resistant lining material is desirable. Although various embodiments have been illustrated, this is for the purpose of describing, but not limiting the invention. Various modifications, which will become apparent to one skilled in the art, are within the scope of this invention described in the attached claims.
10 fabric layer
20 glass-containing layers
30 stitch thread
42 inner seam portion
44 outer seam portion
48 unidirectional rovings
100 conduit liner
101 unexpanded conduit liner
200 pipe
201 crack
Claims (10)
1. A pressure-expandable conduit liner, comprising:
a first flexible fabric layer mechanically bonded to a glass-containing layer and folded to form a tubular laminate; said laminate being penetrable by a resinous liquid capable of setting to form a substantially continuous matrix within said laminate following expansion of said laminate within a conduit,
wherein the fabric layer includes an inner fabric layer and an outer fabric layer, the inner and outer fabric layers being laterally offset from one another in a step configuration, so that, when the liner is folded to form a tubular laminate, the tubular laminate has first and second longitudinal seam portions which are not in radial alignment along said tubular laminate.
2. A pressure-expandable conduit liner, comprising:
a first flexible fabric layer mechanically bonded to a glass-containing layer and folded to form a tubular laminate; said laminate being penetrable by a resinous liquid capable of setting to form a substantially continuous matrix within said laminate following expansion of said laminate within a conduit,
wherein said fabric layer comprises a woven polyester web.
3. The liner of claim 1 wherein said glass-containing layer comprises a plurality of chopped glass fibers.
4. A pressure-expandable conduit liner, comprising:
a first flexible fabric layer mechanically bonded to a glass-containing layer and folded to form a tubular laminate, said laminate being penetrable by a resinous liquid capable of setting to form a substantially continuous matrix within said laminate following expansion of said laminate within a conduit,
wherein said glass-containing layer comprises a plurality of chopped glass fibers, and said chopped glass fibers are retained by stitch yarns introduced into said fabric layer.
5. The liner of claim 4 wherein said tubular laminate comprises first and second longitudinal seam portions.
6. The liner of claim 5 wherein said first and second longitudinal seam portions are not in radial alignment along said tubular laminate.
7. The liner of claim 1 further comprising a thermoplastic or thermosetting resin impregnating said tubular laminate.
8. A pressure-expandable conduit liner, comprising:
a first flexible fabric layer mechanically bonded to a glass-containing layer and folded to form a tubular laminate; and
a thermoplastic or thermosetting resin impregnating said tubular laminate, to form a substantially continuous matrix within said laminate following expansion of said laminate within a conduit,
wherein said glass-containing layer is located radially outward from said fabric layer, and is relatively thinner in cross-sectional thickness.
9. The liner of claim 8 further comprising a second glass-containing layer located radially inward from said fabric layer and mechanically bonded thereto.
10. A method of installing a pressure-expandable conduit liner within a damaged conduit, comprising:
providing a conduit liner comprising a first flexible fabric layer and a glass-containing layer mechanically bonded thereto and formed into a tubular laminate, wherein said glass-containing layer is substantially thinner in cross-section than said fabric layer;
impregnating said tubular laminate with a resinous liquid to form a filled tubular laminate;
inserting said filled tubular laminate coaxially within a conduit having a defect therein;
expanding the diameter of said filled tubular laminate to approximately match an inner diameter of said conduit;
and
permitting said resinous liquid to set to substantially repair said conduit.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/548,375 US5836357A (en) | 1995-10-26 | 1995-10-26 | Pressure-expandable conduit liner |
EP00116368A EP1085250B1 (en) | 1995-10-26 | 1996-10-25 | Pressure expandable conduit liner |
EP96307733A EP0770812B1 (en) | 1995-10-26 | 1996-10-25 | Pressure expandable conduit liner |
DK96307733T DK0770812T3 (en) | 1995-10-26 | 1996-10-25 | Pressure expanding pipe liner |
AT96307733T ATE212426T1 (en) | 1995-10-26 | 1996-10-25 | PRESSURE EXPANDABLE PIPE LINING |
DE69618743T DE69618743T2 (en) | 1995-10-26 | 1996-10-25 | Pipe lining expandable under pressure |
ES00116368T ES2255926T3 (en) | 1995-10-26 | 1996-10-25 | EXPANDABLE DRIVING COVERING AT PRESSURE. |
AT00116368T ATE314604T1 (en) | 1995-10-26 | 1996-10-25 | PRESSURE EXPANDABLE PIPE LINING |
DE69635678T DE69635678T2 (en) | 1995-10-26 | 1996-10-25 | Pressure expandable tubular liner |
US09/012,057 US5931199A (en) | 1995-10-26 | 1998-01-22 | Pressure-expandable conduit liner |
US09/010,744 US5911246A (en) | 1995-10-26 | 1998-01-22 | Pressure-expandable conduit liner |
US09/010,635 US5873391A (en) | 1995-10-26 | 1998-01-22 | Pressure-expandable conduit liner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/548,375 US5836357A (en) | 1995-10-26 | 1995-10-26 | Pressure-expandable conduit liner |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/010,744 Division US5911246A (en) | 1995-10-26 | 1998-01-22 | Pressure-expandable conduit liner |
US09/010,635 Division US5873391A (en) | 1995-10-26 | 1998-01-22 | Pressure-expandable conduit liner |
US09/012,057 Division US5931199A (en) | 1995-10-26 | 1998-01-22 | Pressure-expandable conduit liner |
Publications (1)
Publication Number | Publication Date |
---|---|
US5836357A true US5836357A (en) | 1998-11-17 |
Family
ID=24188593
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/548,375 Expired - Fee Related US5836357A (en) | 1995-10-26 | 1995-10-26 | Pressure-expandable conduit liner |
US09/010,744 Expired - Fee Related US5911246A (en) | 1995-10-26 | 1998-01-22 | Pressure-expandable conduit liner |
US09/012,057 Expired - Fee Related US5931199A (en) | 1995-10-26 | 1998-01-22 | Pressure-expandable conduit liner |
US09/010,635 Expired - Fee Related US5873391A (en) | 1995-10-26 | 1998-01-22 | Pressure-expandable conduit liner |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/010,744 Expired - Fee Related US5911246A (en) | 1995-10-26 | 1998-01-22 | Pressure-expandable conduit liner |
US09/012,057 Expired - Fee Related US5931199A (en) | 1995-10-26 | 1998-01-22 | Pressure-expandable conduit liner |
US09/010,635 Expired - Fee Related US5873391A (en) | 1995-10-26 | 1998-01-22 | Pressure-expandable conduit liner |
Country Status (6)
Country | Link |
---|---|
US (4) | US5836357A (en) |
EP (2) | EP0770812B1 (en) |
AT (2) | ATE314604T1 (en) |
DE (2) | DE69635678T2 (en) |
DK (1) | DK0770812T3 (en) |
ES (1) | ES2255926T3 (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6360780B1 (en) | 2000-08-30 | 2002-03-26 | Owens Corning Fiberglas Technology, Inc. | Liner for reinforcing a pipe and method of making the same |
US6401815B1 (en) * | 2000-03-10 | 2002-06-11 | Halliburton Energy Services, Inc. | Apparatus and method for connecting casing to lateral casing using thermoset plastic molding |
US20030104738A1 (en) * | 2001-11-29 | 2003-06-05 | Saint-Gobain Technical Fabrics Canada, Ltd. | Energy absorbent laminate |
US20030217777A1 (en) * | 2002-05-24 | 2003-11-27 | Lantor, Inc. | Stretch-resistant pipe liner |
WO2004001275A1 (en) | 2002-06-19 | 2003-12-31 | Saint-Gobain Technical Fabrics Canada, Ltd. | Inversion liner and liner components for conduits |
US20040025465A1 (en) * | 2002-07-30 | 2004-02-12 | Corina-Maria Aldea | Inorganic matrix-fabric system and method |
US6769455B2 (en) * | 2001-02-20 | 2004-08-03 | Certainteed Corporation | Moisture repellent air duct products |
US20040151888A1 (en) * | 2002-05-08 | 2004-08-05 | Ruid John O. | Duct board having a facing with aligned fibers |
US20050031819A1 (en) * | 2003-01-14 | 2005-02-10 | Mankell Kurt O. | Duct board with low weight water repellant mat |
US20050281970A1 (en) * | 2004-06-16 | 2005-12-22 | Lamarca Louis J Ii | Lateral liner substrates |
WO2007054350A1 (en) * | 2005-11-14 | 2007-05-18 | Impreg Holding Aps | Flexible insert tube for the lining of pipelines and of ducts, in particular of sewers |
US7220470B2 (en) | 2001-02-20 | 2007-05-22 | Certainteed Corporation | Moisture repellent air duct products |
US7279438B1 (en) | 1999-02-02 | 2007-10-09 | Certainteed Corporation | Coated insulation board or batt |
US20080277012A1 (en) * | 2007-05-10 | 2008-11-13 | Anders Richard M | Reinforcing Liner |
US20080277013A1 (en) * | 2007-05-10 | 2008-11-13 | Anders Richard M | Pipe and Tube Rehabilitation Liners and Corresponding Resins |
US20090314409A1 (en) * | 2008-06-18 | 2009-12-24 | Ehsani Mohammad R | Apparatus and Method of Reinforcing a Conduit or Vessel |
US20100078118A1 (en) * | 2008-09-19 | 2010-04-01 | Ehsani Mohammad R | Repair and strengthening of small diameter pipes with frp laminates |
US20100170576A1 (en) * | 2009-01-05 | 2010-07-08 | Airbus Operations Gmbh | Apparatus for preventing fluid spray at leakage areas of a fluid pipe |
US20100243091A1 (en) * | 2009-03-27 | 2010-09-30 | Perma-Liner Industries, Inc. | Scrim-Enforced Pipe Liner |
US8215083B2 (en) | 2004-07-26 | 2012-07-10 | Certainteed Corporation | Insulation board with air/rain barrier covering and water-repellent covering |
US20130291987A1 (en) * | 2012-05-07 | 2013-11-07 | Brandenburger Patentverwertung Gdbr | Tubular liner for the rehabilitation of defective sewers with an integral longitudinal pull strap and reinforcing layer |
US20150068632A1 (en) * | 2012-04-12 | 2015-03-12 | Ashimori Industry Co., Ltd. | Lining method for conduit and lining material for conduit |
US20160178108A1 (en) * | 2013-11-06 | 2016-06-23 | Mohammad Reza Ehsani | Repair and reinforcement of pressurized pipes |
US9376782B1 (en) | 2008-09-19 | 2016-06-28 | Mohammad R. Ehsani | Repair and strengthening of piles and pipes with FRP laminates |
US20170082220A1 (en) * | 2015-09-22 | 2017-03-23 | Ina Acquisition Corp. | Method of lining pipe with high strength liner, high strength liner, and pipe lined with high strength liner |
US20180003332A1 (en) * | 2016-07-01 | 2018-01-04 | Infrastructure Technologies, LLC | Cured in place pipe system having integrated thermoplastic with improved melt-flow characteristics |
US9933104B2 (en) | 2011-04-18 | 2018-04-03 | Fyfe Co. Llc | Expandable liner for the protection and strengthening of existing pipes |
US9993992B2 (en) | 2015-04-17 | 2018-06-12 | Fyfe Co. Llc | Structural fabric useful for lining pipe |
US10197209B2 (en) | 2014-07-14 | 2019-02-05 | Fyfe Co., Llc | High-strength, watertight pipe lining |
US10704728B2 (en) | 2018-03-20 | 2020-07-07 | Ina Acquisition Corp. | Pipe liner and method of making same |
US11105455B2 (en) * | 2018-03-20 | 2021-08-31 | Buergofol GmbH | Tubular liner for the rehabilitation of a sewer pipe |
CN113442471A (en) * | 2021-06-03 | 2021-09-28 | 安徽永高塑业发展有限公司 | Online continuous injection moulding equipment of power cable pipe |
US11173634B2 (en) | 2018-02-01 | 2021-11-16 | Ina Acquisition Corp | Electromagnetic radiation curable pipe liner and method of making and installing the same |
US11204111B2 (en) * | 2017-10-25 | 2021-12-21 | Evonik Operations Gmbh | Method for producing a pipe lined with an inner liner |
WO2023126529A3 (en) * | 2021-12-30 | 2023-09-14 | Relineeurope Gmbh | Textile with two matrix-forming components |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6508974B1 (en) * | 1996-02-15 | 2003-01-21 | David Loving | Process for fiberglass molding using a vacuum |
SE9801504L (en) * | 1998-04-29 | 1999-07-12 | Inpipe Sweden Ab | Laminates for lining pipelines |
US6143394A (en) * | 1998-08-18 | 2000-11-07 | Kg Fibers, Inc. | Nonwoven sorbent manhole apron |
DE19850227C1 (en) * | 1998-10-26 | 2000-06-21 | Siegfried Schwert | Hose for lining pipes |
US6196271B1 (en) * | 1999-02-23 | 2001-03-06 | Michael Braun | Liner hose for reconstruction of conduits and pipelines and a method for manufacture thereof |
FR2804686B1 (en) * | 2000-02-08 | 2003-07-04 | Inst Francais Du Petrole | EXPANDABLE AND CURABLE FLEXIBLE PREFORM CONTAINING UNSATURATED RESINS, FOR TUBING OF A WELL OR PIPE |
US6540438B2 (en) | 2000-06-27 | 2003-04-01 | Terre Hill Silo Company | Inflatable underground structure liner |
US6615875B2 (en) * | 2000-08-30 | 2003-09-09 | Owens Corning Composites Sprl. | Liner for reinforcing a pipe and method of making the same |
GB0108384D0 (en) * | 2001-04-04 | 2001-05-23 | Weatherford Lamb | Bore-lining tubing |
US6932116B2 (en) * | 2002-03-14 | 2005-08-23 | Insituform (Netherlands) B.V. | Fiber reinforced composite liner for lining an existing conduit and method of manufacture |
US6708729B1 (en) * | 2002-03-14 | 2004-03-23 | Instituform B.V. | Fiber reinforced composite liner for lining an existing conduit and method of manufacture |
US7478650B2 (en) * | 2002-06-19 | 2009-01-20 | Saint-Gobain Technical Fabrics Canada, Ltd. | Inversion liner and liner components for conduits |
US6837273B2 (en) * | 2002-06-19 | 2005-01-04 | Saint-Gobain Technical Fabrics Canada, Ltd. | Inversion liner and liner components for conduits |
US7374127B2 (en) * | 2005-01-12 | 2008-05-20 | Smart Pipe Company, Inc. | Systems and methods for making pipe liners |
US20060151042A1 (en) * | 2005-01-12 | 2006-07-13 | Stringfellow William D | Pipe liner |
US8567448B2 (en) | 2007-12-26 | 2013-10-29 | Smart Pipe Company, Inc. | Methods and systems for in situ pipe lining |
US8567450B2 (en) * | 2005-01-12 | 2013-10-29 | Smart Pipe Company Lp | Methods and systems for in situ manufacture and installation of non-metallic high pressure pipe and pipe liners |
WO2007047619A2 (en) * | 2005-10-17 | 2007-04-26 | Gartner Gerry J | System and method for mounting a plate to an adhesive member |
DE102005056266A1 (en) * | 2005-11-14 | 2007-05-16 | Impreg Gmbh | Insertion hose for lining pipeline and channel, e.g. sewer, has layers doped with hardened bulk molding component and proportion of component amounts to certain percentage of fibers |
US9453606B2 (en) * | 2007-12-26 | 2016-09-27 | Smart Pipe Company, Inc. | Movable factory for simultaneous mobile field manufacturing and installation of non-metallic pipe |
EP2148125A1 (en) * | 2008-07-25 | 2010-01-27 | Armacell Enterprise GmbH | Composite insulation structure for the insulation of the interior surface of annular ducts |
WO2011070353A2 (en) | 2009-12-07 | 2011-06-16 | Smart Pipe Company, Lp | Systems and methods for making pipe, and method of installing the pipe in a pipeline |
WO2014062539A1 (en) * | 2012-10-16 | 2014-04-24 | Ocv Intellectual Capital, Llc | Liner for reinforcing a pipe and method of making the same |
US9339080B2 (en) * | 2013-03-15 | 2016-05-17 | Nike, Inc. | Method of manufacturing a fluid-filled chamber with a tensile element |
DE102014107672A1 (en) * | 2014-05-30 | 2015-12-03 | Trelleborg Pipe Seals Duisburg Gmbh | Lining element for rehabilitation of a pipeline |
US9581279B1 (en) * | 2015-11-23 | 2017-02-28 | William G. Higman | Multi-layered conduit repair system |
CN105508809B (en) * | 2015-12-11 | 2017-10-13 | 浙江鑫宙竹基复合材料科技有限公司 | A kind of inner liner of bamboo coiled composite tube and preparation method thereof |
KR102652114B1 (en) * | 2021-10-26 | 2024-03-29 | 김성훈 | Liner tube and manufacturing method thereof |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1722764A (en) * | 1928-09-10 | 1929-07-30 | Gustave C Rasch | Fibrous fabric and method of making the same |
US3261374A (en) * | 1963-05-17 | 1966-07-19 | Cons Edison Co New York Inc | Method and means for sealing leaking pipes |
US3996967A (en) * | 1972-10-18 | 1976-12-14 | Takata Kojyo Co., Ltd. | Reinforced lining for tubes |
US4009063A (en) * | 1970-09-22 | 1977-02-22 | Insituform (Pipes And Structures) Limited | Method of lining a pipe |
US4227957A (en) * | 1977-02-24 | 1980-10-14 | Pnc Company | Process and apparatus for manufacturing a non-woven fabric and the product thereof |
US4283457A (en) * | 1979-11-05 | 1981-08-11 | Huyck Corporation | Laminate structures for acoustical applications and method of making them |
US4390574A (en) * | 1980-07-31 | 1983-06-28 | Insituform International Inc. | Felt material of layer of fine denier felt and layer of coarse denier felt |
DE3339305C2 (en) * | 1983-10-29 | 1987-08-27 | Saerbeck-Textil Wagener Kg, 4401 Saerbeck, De | |
DE3716476C1 (en) * | 1987-05-16 | 1987-12-17 | Wagener Saerbeck Textil | Process and apparatus for the production of a filter mat |
US4768562A (en) * | 1987-06-15 | 1988-09-06 | Insta-Pipe Research Limited Partnership | Pipe liner |
DE3819657C1 (en) * | 1988-06-09 | 1989-07-20 | Saerbeck-Textil Wagener Kg, 4401 Saerbeck, De | |
US4851274A (en) * | 1986-12-08 | 1989-07-25 | Ozite Corporation | Moldable fibrous composite and methods |
DE3305348C2 (en) * | 1983-02-17 | 1990-01-11 | Saerbeck-Textil Wagener Gmbh & Co Kg, 4401 Saerbeck, De | |
US4976290A (en) * | 1989-06-12 | 1990-12-11 | Ozite Corporation | Tubular member having a liner |
DE4103980C1 (en) * | 1991-02-09 | 1992-06-11 | Saerbeck-Textil Wagener Gmbh & Co Kg, 4401 Saerbeck, De | |
US5285741A (en) * | 1990-03-10 | 1994-02-15 | Insituform (Netherlands) B. V. | Method of producing a flexible tubular lining |
US5334429A (en) * | 1991-06-24 | 1994-08-02 | Ashimori Industry Co., Ltd. | Lining material for pipe lines and a process for providing pipe lines therewith |
US5451351A (en) * | 1991-09-13 | 1995-09-19 | Composite Components, Inc. | Method for rehabilitating a pipe with a liner having an electrically conductive layer |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1280909A (en) * | 1916-02-05 | 1918-10-08 | Metalco Company | Manufacture of pipes. |
US2175283A (en) * | 1937-07-23 | 1939-10-10 | Joseph O Cote | Tubular article and method of making same |
US2424315A (en) * | 1944-03-09 | 1947-07-22 | Columbus Coated Fabrics Corp | Fabric tube |
US2468493A (en) * | 1945-07-16 | 1949-04-26 | Arrowhead Rubber Company | Duct |
US2848151A (en) * | 1954-10-06 | 1958-08-19 | Safe Pack Container Co | Sealed container |
US3246621A (en) * | 1963-03-01 | 1966-04-19 | Rubco Products Inc | Waterproof seam construction |
EP0009402A1 (en) * | 1978-09-22 | 1980-04-02 | Insituform International Inc. | A method of forming laminated hoses and laminated hoses obtained |
US4478661A (en) * | 1981-03-20 | 1984-10-23 | Dayco Corporation | Method of making a reinforced collapsible hose construction |
DE3614963A1 (en) * | 1986-03-29 | 1987-10-01 | Roeders Ag Geb | Process for producing a renewal tube for pipelines and a renewal tube produced by this process |
JP2736368B2 (en) * | 1990-04-10 | 1998-04-02 | 芦森工業株式会社 | Pipe liner and pipe line lining method |
SE9100525D0 (en) * | 1991-02-22 | 1991-02-22 | Inpipe Sweden Ab | LAMINATE |
BE1004649A3 (en) * | 1991-03-04 | 1993-01-05 | Capelle Robert | Adapted to shaft tube lines interior trim tube. |
JP2702086B2 (en) * | 1995-02-13 | 1998-01-21 | 株式会社湘南合成樹脂製作所 | Manufacturing method of pipe lining material |
-
1995
- 1995-10-26 US US08/548,375 patent/US5836357A/en not_active Expired - Fee Related
-
1996
- 1996-10-25 AT AT00116368T patent/ATE314604T1/en not_active IP Right Cessation
- 1996-10-25 EP EP96307733A patent/EP0770812B1/en not_active Expired - Lifetime
- 1996-10-25 DE DE69635678T patent/DE69635678T2/en not_active Expired - Fee Related
- 1996-10-25 DE DE69618743T patent/DE69618743T2/en not_active Expired - Fee Related
- 1996-10-25 DK DK96307733T patent/DK0770812T3/en active
- 1996-10-25 ES ES00116368T patent/ES2255926T3/en not_active Expired - Lifetime
- 1996-10-25 EP EP00116368A patent/EP1085250B1/en not_active Expired - Lifetime
- 1996-10-25 AT AT96307733T patent/ATE212426T1/en not_active IP Right Cessation
-
1998
- 1998-01-22 US US09/010,744 patent/US5911246A/en not_active Expired - Fee Related
- 1998-01-22 US US09/012,057 patent/US5931199A/en not_active Expired - Fee Related
- 1998-01-22 US US09/010,635 patent/US5873391A/en not_active Expired - Fee Related
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1722764A (en) * | 1928-09-10 | 1929-07-30 | Gustave C Rasch | Fibrous fabric and method of making the same |
US3261374A (en) * | 1963-05-17 | 1966-07-19 | Cons Edison Co New York Inc | Method and means for sealing leaking pipes |
US4009063A (en) * | 1970-09-22 | 1977-02-22 | Insituform (Pipes And Structures) Limited | Method of lining a pipe |
US3996967A (en) * | 1972-10-18 | 1976-12-14 | Takata Kojyo Co., Ltd. | Reinforced lining for tubes |
US4227957A (en) * | 1977-02-24 | 1980-10-14 | Pnc Company | Process and apparatus for manufacturing a non-woven fabric and the product thereof |
US4283457A (en) * | 1979-11-05 | 1981-08-11 | Huyck Corporation | Laminate structures for acoustical applications and method of making them |
US4390574A (en) * | 1980-07-31 | 1983-06-28 | Insituform International Inc. | Felt material of layer of fine denier felt and layer of coarse denier felt |
DE3305348C2 (en) * | 1983-02-17 | 1990-01-11 | Saerbeck-Textil Wagener Gmbh & Co Kg, 4401 Saerbeck, De | |
DE3339305C2 (en) * | 1983-10-29 | 1987-08-27 | Saerbeck-Textil Wagener Kg, 4401 Saerbeck, De | |
US4851274A (en) * | 1986-12-08 | 1989-07-25 | Ozite Corporation | Moldable fibrous composite and methods |
DE3716476C1 (en) * | 1987-05-16 | 1987-12-17 | Wagener Saerbeck Textil | Process and apparatus for the production of a filter mat |
US4768562A (en) * | 1987-06-15 | 1988-09-06 | Insta-Pipe Research Limited Partnership | Pipe liner |
DE3819657C1 (en) * | 1988-06-09 | 1989-07-20 | Saerbeck-Textil Wagener Kg, 4401 Saerbeck, De | |
US4976290A (en) * | 1989-06-12 | 1990-12-11 | Ozite Corporation | Tubular member having a liner |
EP0403133A2 (en) * | 1989-06-12 | 1990-12-19 | Ozite Corporation | A tubular member having a liner and a method of lining a tubular member |
US5285741A (en) * | 1990-03-10 | 1994-02-15 | Insituform (Netherlands) B. V. | Method of producing a flexible tubular lining |
DE4103980C1 (en) * | 1991-02-09 | 1992-06-11 | Saerbeck-Textil Wagener Gmbh & Co Kg, 4401 Saerbeck, De | |
US5334429A (en) * | 1991-06-24 | 1994-08-02 | Ashimori Industry Co., Ltd. | Lining material for pipe lines and a process for providing pipe lines therewith |
US5451351A (en) * | 1991-09-13 | 1995-09-19 | Composite Components, Inc. | Method for rehabilitating a pipe with a liner having an electrically conductive layer |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7279438B1 (en) | 1999-02-02 | 2007-10-09 | Certainteed Corporation | Coated insulation board or batt |
US6401815B1 (en) * | 2000-03-10 | 2002-06-11 | Halliburton Energy Services, Inc. | Apparatus and method for connecting casing to lateral casing using thermoset plastic molding |
US6360780B1 (en) | 2000-08-30 | 2002-03-26 | Owens Corning Fiberglas Technology, Inc. | Liner for reinforcing a pipe and method of making the same |
US6769455B2 (en) * | 2001-02-20 | 2004-08-03 | Certainteed Corporation | Moisture repellent air duct products |
US7220470B2 (en) | 2001-02-20 | 2007-05-22 | Certainteed Corporation | Moisture repellent air duct products |
US20060135022A1 (en) * | 2001-11-29 | 2006-06-22 | Porter John F | Energy absorbent laminate |
US20030104738A1 (en) * | 2001-11-29 | 2003-06-05 | Saint-Gobain Technical Fabrics Canada, Ltd. | Energy absorbent laminate |
US7087296B2 (en) | 2001-11-29 | 2006-08-08 | Saint-Gobain Technical Fabrics Canada, Ltd. | Energy absorbent laminate |
US20040151888A1 (en) * | 2002-05-08 | 2004-08-05 | Ruid John O. | Duct board having a facing with aligned fibers |
US20030217777A1 (en) * | 2002-05-24 | 2003-11-27 | Lantor, Inc. | Stretch-resistant pipe liner |
US6732763B2 (en) * | 2002-05-24 | 2004-05-11 | Lantor, Inc. | Stretch-resistant pipe liner |
WO2004001275A1 (en) | 2002-06-19 | 2003-12-31 | Saint-Gobain Technical Fabrics Canada, Ltd. | Inversion liner and liner components for conduits |
US20040025465A1 (en) * | 2002-07-30 | 2004-02-12 | Corina-Maria Aldea | Inorganic matrix-fabric system and method |
US20050139308A1 (en) * | 2002-07-30 | 2005-06-30 | Corina-Maria Aldea | Inorganic matrix-fabric system and method |
US7311964B2 (en) | 2002-07-30 | 2007-12-25 | Saint-Gobain Technical Fabrics Canada, Ltd. | Inorganic matrix-fabric system and method |
US20100147449A1 (en) * | 2002-07-30 | 2010-06-17 | Saint-Gobain Technical Fabrics Canada, Ltd. | Inorganic matrix-fabric system and method |
US7223455B2 (en) | 2003-01-14 | 2007-05-29 | Certainteed Corporation | Duct board with water repellant mat |
US20050031819A1 (en) * | 2003-01-14 | 2005-02-10 | Mankell Kurt O. | Duct board with low weight water repellant mat |
US20050281970A1 (en) * | 2004-06-16 | 2005-12-22 | Lamarca Louis J Ii | Lateral liner substrates |
US8215083B2 (en) | 2004-07-26 | 2012-07-10 | Certainteed Corporation | Insulation board with air/rain barrier covering and water-repellent covering |
WO2007054350A1 (en) * | 2005-11-14 | 2007-05-18 | Impreg Holding Aps | Flexible insert tube for the lining of pipelines and of ducts, in particular of sewers |
US20090139593A1 (en) * | 2005-11-14 | 2009-06-04 | Robert Papp | Flexible Insert Tube for the Lining of Pipelines and of Ducts, in Particular of Sewers |
US20080277013A1 (en) * | 2007-05-10 | 2008-11-13 | Anders Richard M | Pipe and Tube Rehabilitation Liners and Corresponding Resins |
US20080277012A1 (en) * | 2007-05-10 | 2008-11-13 | Anders Richard M | Reinforcing Liner |
US7891381B2 (en) | 2007-05-10 | 2011-02-22 | Novoc Performance Resins | Pipe and tube rehabilitation liners and corresponding resins |
US20090314409A1 (en) * | 2008-06-18 | 2009-12-24 | Ehsani Mohammad R | Apparatus and Method of Reinforcing a Conduit or Vessel |
US20100078118A1 (en) * | 2008-09-19 | 2010-04-01 | Ehsani Mohammad R | Repair and strengthening of small diameter pipes with frp laminates |
US9376782B1 (en) | 2008-09-19 | 2016-06-28 | Mohammad R. Ehsani | Repair and strengthening of piles and pipes with FRP laminates |
US20100170576A1 (en) * | 2009-01-05 | 2010-07-08 | Airbus Operations Gmbh | Apparatus for preventing fluid spray at leakage areas of a fluid pipe |
US8584710B2 (en) * | 2009-01-05 | 2013-11-19 | Airbus Operations Gmbh | Apparatus for preventing fluid spray at leakage areas of a fluid pipe |
US8590575B2 (en) * | 2009-03-27 | 2013-11-26 | Perma-Liner Industries, Llc | Scrim-enforced pipe liner |
US20100243091A1 (en) * | 2009-03-27 | 2010-09-30 | Perma-Liner Industries, Inc. | Scrim-Enforced Pipe Liner |
US9933104B2 (en) | 2011-04-18 | 2018-04-03 | Fyfe Co. Llc | Expandable liner for the protection and strengthening of existing pipes |
US20150068632A1 (en) * | 2012-04-12 | 2015-03-12 | Ashimori Industry Co., Ltd. | Lining method for conduit and lining material for conduit |
US9429265B2 (en) * | 2012-04-12 | 2016-08-30 | Ashimori Industry Co., Ltd. | Lining method for conduit and lining material composite for conduit |
US8978708B2 (en) * | 2012-05-07 | 2015-03-17 | Brandenburger Patentverwertung Gbr | Tubular liner for the rehabilitation of defective sewers with an integral longitudinal pull strap and reinforcing layer |
US20130291987A1 (en) * | 2012-05-07 | 2013-11-07 | Brandenburger Patentverwertung Gdbr | Tubular liner for the rehabilitation of defective sewers with an integral longitudinal pull strap and reinforcing layer |
US20160178108A1 (en) * | 2013-11-06 | 2016-06-23 | Mohammad Reza Ehsani | Repair and reinforcement of pressurized pipes |
US10197209B2 (en) | 2014-07-14 | 2019-02-05 | Fyfe Co., Llc | High-strength, watertight pipe lining |
US9993992B2 (en) | 2015-04-17 | 2018-06-12 | Fyfe Co. Llc | Structural fabric useful for lining pipe |
US10077855B2 (en) * | 2015-09-22 | 2018-09-18 | Ina Acquisition Corp. | Method of lining pipe with high strength liner, high strength liner, and pipe lined with high strength liner |
US20170082220A1 (en) * | 2015-09-22 | 2017-03-23 | Ina Acquisition Corp. | Method of lining pipe with high strength liner, high strength liner, and pipe lined with high strength liner |
US11708919B2 (en) | 2015-09-22 | 2023-07-25 | Ina Acquisition Corp. | High strength, stretchable liner, for pipe |
US10816112B2 (en) | 2015-09-22 | 2020-10-27 | Ina Acquisition Corp. | Method of lining pipe with high strength liner, high strength liner, and pipe lined with high strength liner |
US10914416B2 (en) * | 2016-07-01 | 2021-02-09 | Infrastructure Technologies, Llc. | Cured in place pipe system having integrated thermoplastic with improved melt-flow characteristics |
US20180003332A1 (en) * | 2016-07-01 | 2018-01-04 | Infrastructure Technologies, LLC | Cured in place pipe system having integrated thermoplastic with improved melt-flow characteristics |
US11204111B2 (en) * | 2017-10-25 | 2021-12-21 | Evonik Operations Gmbh | Method for producing a pipe lined with an inner liner |
US11173634B2 (en) | 2018-02-01 | 2021-11-16 | Ina Acquisition Corp | Electromagnetic radiation curable pipe liner and method of making and installing the same |
US11384889B2 (en) | 2018-03-20 | 2022-07-12 | Ina Acquisition Corp. | Pipe liner and method of making and installing the same |
US11105455B2 (en) * | 2018-03-20 | 2021-08-31 | Buergofol GmbH | Tubular liner for the rehabilitation of a sewer pipe |
US11708931B2 (en) | 2018-03-20 | 2023-07-25 | Buergofol GmbH | Tubular liner for the rehabilitation of a sewer pipe |
US10704728B2 (en) | 2018-03-20 | 2020-07-07 | Ina Acquisition Corp. | Pipe liner and method of making same |
CN113442471A (en) * | 2021-06-03 | 2021-09-28 | 安徽永高塑业发展有限公司 | Online continuous injection moulding equipment of power cable pipe |
WO2023126529A3 (en) * | 2021-12-30 | 2023-09-14 | Relineeurope Gmbh | Textile with two matrix-forming components |
Also Published As
Publication number | Publication date |
---|---|
EP0770812B1 (en) | 2002-01-23 |
EP1085250A1 (en) | 2001-03-21 |
US5873391A (en) | 1999-02-23 |
DE69618743T2 (en) | 2002-10-10 |
DK0770812T3 (en) | 2002-03-18 |
EP1085250B1 (en) | 2005-12-28 |
ATE212426T1 (en) | 2002-02-15 |
ES2255926T3 (en) | 2006-07-16 |
US5931199A (en) | 1999-08-03 |
DE69635678D1 (en) | 2006-02-02 |
DE69618743D1 (en) | 2002-03-14 |
EP0770812A1 (en) | 1997-05-02 |
ATE314604T1 (en) | 2006-01-15 |
DE69635678T2 (en) | 2006-09-07 |
US5911246A (en) | 1999-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5836357A (en) | Pressure-expandable conduit liner | |
US7096890B2 (en) | Inversion liner and liner components for conduits | |
US7478650B2 (en) | Inversion liner and liner components for conduits | |
US6837273B2 (en) | Inversion liner and liner components for conduits | |
US6932116B2 (en) | Fiber reinforced composite liner for lining an existing conduit and method of manufacture | |
US6732763B2 (en) | Stretch-resistant pipe liner | |
US6708729B1 (en) | Fiber reinforced composite liner for lining an existing conduit and method of manufacture | |
US9052053B2 (en) | Method of lining a conduit using a scrim-reinforced pipe liner | |
US11384889B2 (en) | Pipe liner and method of making and installing the same | |
US20030113489A1 (en) | Fiber reinforced cured in place liner for lining an existing conduit and method of manufacture | |
GB2563779B (en) | Method of lining pipe with high strength liner, high strength liner, and pipe lined with high strength liner | |
KR102457755B1 (en) | Non-excavation repair/reinforcement tube applied with coated composite fiber and its manufacturing method | |
KR102457749B1 (en) | Non-excavation repair/reinforcement tube applied with coated felt and manufacturing method therefor | |
US20190232532A1 (en) | Electromagnetic radiation curable pipe liner and method of making and installing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAY MILLS LTD., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KITTSON, MARK;KULAWIC, STEVE;REEL/FRAME:007724/0209 Effective date: 19951012 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20101117 |