US5872127A - Method of regulating immune function - Google Patents
Method of regulating immune function Download PDFInfo
- Publication number
- US5872127A US5872127A US08/780,727 US78072797A US5872127A US 5872127 A US5872127 A US 5872127A US 78072797 A US78072797 A US 78072797A US 5872127 A US5872127 A US 5872127A
- Authority
- US
- United States
- Prior art keywords
- prolactin
- bromocriptine
- mammal
- patient
- administered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 230000036737 immune function Effects 0.000 title description 14
- 230000001105 regulatory effect Effects 0.000 title description 5
- 108010057464 Prolactin Proteins 0.000 claims abstract description 308
- 102000003946 Prolactin Human genes 0.000 claims abstract description 308
- 229940097325 prolactin Drugs 0.000 claims abstract description 308
- 210000000987 immune system Anatomy 0.000 claims abstract description 28
- 238000013459 approach Methods 0.000 claims abstract description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 9
- 206010061598 Immunodeficiency Diseases 0.000 claims abstract description 8
- 239000000952 serotonin receptor agonist Substances 0.000 claims abstract description 8
- 208000029462 Immunodeficiency disease Diseases 0.000 claims abstract description 7
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 7
- 239000003136 dopamine receptor stimulating agent Substances 0.000 claims abstract description 7
- 230000007813 immunodeficiency Effects 0.000 claims abstract description 7
- 101000687438 Homo sapiens Prolactin Proteins 0.000 claims abstract 2
- OZVBMTJYIDMWIL-AYFBDAFISA-N bromocriptine Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@]2(C(=O)N3[C@H](C(N4CCC[C@H]4[C@]3(O)O2)=O)CC(C)C)C(C)C)C2)=C3C2=C(Br)NC3=C1 OZVBMTJYIDMWIL-AYFBDAFISA-N 0.000 claims description 79
- 229960002802 bromocriptine Drugs 0.000 claims description 78
- 239000003623 enhancer Substances 0.000 claims description 39
- 239000003638 chemical reducing agent Substances 0.000 claims description 33
- 241000124008 Mammalia Species 0.000 claims description 31
- 208000023275 Autoimmune disease Diseases 0.000 claims description 17
- TTWJBBZEZQICBI-UHFFFAOYSA-N metoclopramide Chemical group CCN(CC)CCNC(=O)C1=CC(Cl)=C(N)C=C1OC TTWJBBZEZQICBI-UHFFFAOYSA-N 0.000 claims description 14
- 229960004503 metoclopramide Drugs 0.000 claims description 14
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 10
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 claims description 7
- FGXWKSZFVQUSTL-UHFFFAOYSA-N domperidone Chemical compound C12=CC=CC=C2NC(=O)N1CCCN(CC1)CCC1N1C2=CC=C(Cl)C=C2NC1=O FGXWKSZFVQUSTL-UHFFFAOYSA-N 0.000 claims description 7
- 229960001253 domperidone Drugs 0.000 claims description 7
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 claims description 7
- 229960003987 melatonin Drugs 0.000 claims description 7
- 208000011231 Crohn disease Diseases 0.000 claims description 6
- 208000001640 Fibromyalgia Diseases 0.000 claims description 6
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 230000004064 dysfunction Effects 0.000 claims description 5
- LDCYZAJDBXYCGN-UHFFFAOYSA-N oxitriptan Natural products C1=C(O)C=C2C(CC(N)C(O)=O)=CNC2=C1 LDCYZAJDBXYCGN-UHFFFAOYSA-N 0.000 claims description 5
- 201000000596 systemic lupus erythematosus Diseases 0.000 claims description 5
- LDCYZAJDBXYCGN-VIFPVBQESA-N 5-hydroxy-L-tryptophan Chemical compound C1=C(O)C=C2C(C[C@H](N)C(O)=O)=CNC2=C1 LDCYZAJDBXYCGN-VIFPVBQESA-N 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 208000035475 disorder Diseases 0.000 claims description 4
- 231100000252 nontoxic Toxicity 0.000 claims description 4
- 230000003000 nontoxic effect Effects 0.000 claims description 4
- DBGIVFWFUFKIQN-VIFPVBQESA-N (+)-Fenfluramine Chemical compound CCN[C@@H](C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-VIFPVBQESA-N 0.000 claims description 3
- BGRJTUBHPOOWDU-NSHDSACASA-N (S)-(-)-sulpiride Chemical compound CCN1CCC[C@H]1CNC(=O)C1=CC(S(N)(=O)=O)=CC=C1OC BGRJTUBHPOOWDU-NSHDSACASA-N 0.000 claims description 3
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 claims description 3
- 229940000681 5-hydroxytryptophan Drugs 0.000 claims description 3
- USSIQXCVUWKGNF-UHFFFAOYSA-N 6-(dimethylamino)-4,4-diphenylheptan-3-one Chemical compound C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 USSIQXCVUWKGNF-UHFFFAOYSA-N 0.000 claims description 3
- UJYGDMFEEDNVBF-UHFFFAOYSA-N Ergocorninine Natural products C1=CC(C=2C(N(C)CC(C=2)C(=O)NC2(C(=O)N3C(C(N4CCCC4C3(O)O2)=O)C(C)C)C(C)C)C2)=C3C2=CNC3=C1 UJYGDMFEEDNVBF-UHFFFAOYSA-N 0.000 claims description 3
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical class OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 claims description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 claims description 3
- DPWPWRLQFGFJFI-UHFFFAOYSA-N Pargyline Chemical compound C#CCN(C)CC1=CC=CC=C1 DPWPWRLQFGFJFI-UHFFFAOYSA-N 0.000 claims description 3
- BKRGVLQUQGGVSM-KBXCAEBGSA-N Revanil Chemical class C1=CC(C=2[C@H](N(C)C[C@H](C=2)NC(=O)N(CC)CC)C2)=C3C2=CNC3=C1 BKRGVLQUQGGVSM-KBXCAEBGSA-N 0.000 claims description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 claims description 3
- 229960004205 carbidopa Drugs 0.000 claims description 3
- TZFNLOMSOLWIDK-JTQLQIEISA-N carbidopa (anhydrous) Chemical class NN[C@@](C(O)=O)(C)CC1=CC=C(O)C(O)=C1 TZFNLOMSOLWIDK-JTQLQIEISA-N 0.000 claims description 3
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 claims description 3
- 229960001076 chlorpromazine Drugs 0.000 claims description 3
- 229960004597 dexfenfluramine Drugs 0.000 claims description 3
- 229960004290 dihydroergocornine Drugs 0.000 claims description 3
- SEALOBQTUQIVGU-QNIJNHAOSA-N dihydroergocornine Chemical compound C1=CC([C@H]2C[C@H](CN(C)[C@@H]2C2)C(=O)N[C@]3(C(=O)N4[C@H](C(N5CCC[C@H]5[C@]4(O)O3)=O)C(C)C)C(C)C)=C3C2=CNC3=C1 SEALOBQTUQIVGU-QNIJNHAOSA-N 0.000 claims description 3
- XQUUDUKVJKNJNP-OGGGUQDZSA-N ergocornine Chemical compound C([C@H]1N(C)C2)C([C]34)=CN=C4C=CC=C3C1=C[C@H]2C(=O)N[C@@]1(C(C)C)C(=O)N2[C@@H](C(C)C)C(=O)N3CCC[C@H]3[C@]2(O)O1 XQUUDUKVJKNJNP-OGGGUQDZSA-N 0.000 claims description 3
- 229940011871 estrogen Drugs 0.000 claims description 3
- 239000000262 estrogen Substances 0.000 claims description 3
- 229960003878 haloperidol Drugs 0.000 claims description 3
- 229960003587 lisuride Drugs 0.000 claims description 3
- 229960001797 methadone Drugs 0.000 claims description 3
- 229960001779 pargyline Drugs 0.000 claims description 3
- 229950000688 phenothiazine Drugs 0.000 claims description 3
- YVUQSNJEYSNKRX-UHFFFAOYSA-N pimozide Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)CCCN1CCC(N2C(NC3=CC=CC=C32)=O)CC1 YVUQSNJEYSNKRX-UHFFFAOYSA-N 0.000 claims description 3
- 229960003634 pimozide Drugs 0.000 claims description 3
- 229960004940 sulpiride Drugs 0.000 claims description 3
- 230000002618 waking effect Effects 0.000 claims description 2
- AWFDCTXCTHGORH-HGHGUNKESA-N 6-[4-[(6ar,9r,10ar)-5-bromo-7-methyl-6,6a,8,9,10,10a-hexahydro-4h-indolo[4,3-fg]quinoline-9-carbonyl]piperazin-1-yl]-1-methylpyridin-2-one Chemical class O=C([C@H]1CN([C@H]2[C@@H](C=3C=CC=C4NC(Br)=C(C=34)C2)C1)C)N(CC1)CCN1C1=CC=CC(=O)N1C AWFDCTXCTHGORH-HGHGUNKESA-N 0.000 claims 2
- 229960004799 tryptophan Drugs 0.000 claims 2
- 206010025135 lupus erythematosus Diseases 0.000 claims 1
- 230000028993 immune response Effects 0.000 description 44
- 230000000694 effects Effects 0.000 description 31
- 230000033764 rhythmic process Effects 0.000 description 30
- 230000004044 response Effects 0.000 description 27
- 238000007799 mixed lymphocyte reaction assay Methods 0.000 description 25
- 238000002474 experimental method Methods 0.000 description 22
- 230000001965 increasing effect Effects 0.000 description 22
- 241000699670 Mus sp. Species 0.000 description 21
- 230000004043 responsiveness Effects 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 19
- 230000002829 reductive effect Effects 0.000 description 19
- 238000002560 therapeutic procedure Methods 0.000 description 18
- 239000000126 substance Substances 0.000 description 17
- 241001465754 Metazoa Species 0.000 description 16
- 238000002347 injection Methods 0.000 description 16
- 239000007924 injection Substances 0.000 description 16
- 208000027930 type IV hypersensitivity disease Diseases 0.000 description 16
- 230000027288 circadian rhythm Effects 0.000 description 15
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 14
- 230000006872 improvement Effects 0.000 description 14
- 230000005951 type IV hypersensitivity Effects 0.000 description 14
- 230000008961 swelling Effects 0.000 description 13
- 230000008901 benefit Effects 0.000 description 11
- 208000024891 symptom Diseases 0.000 description 11
- 230000001419 dependent effect Effects 0.000 description 10
- 241000282412 Homo Species 0.000 description 9
- 206010028980 Neoplasm Diseases 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 9
- 208000026278 immune system disease Diseases 0.000 description 9
- 230000001506 immunosuppresive effect Effects 0.000 description 9
- 230000002401 inhibitory effect Effects 0.000 description 9
- 230000001594 aberrant effect Effects 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 8
- 230000003190 augmentative effect Effects 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 208000015181 infectious disease Diseases 0.000 description 8
- 206010062016 Immunosuppression Diseases 0.000 description 7
- 210000003719 b-lymphocyte Anatomy 0.000 description 7
- 229940088597 hormone Drugs 0.000 description 7
- 239000005556 hormone Substances 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- 210000004698 lymphocyte Anatomy 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 230000000961 alloantigen Effects 0.000 description 6
- 230000004075 alteration Effects 0.000 description 6
- 239000000427 antigen Substances 0.000 description 6
- 108091007433 antigens Proteins 0.000 description 6
- 102000036639 antigens Human genes 0.000 description 6
- 230000006399 behavior Effects 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 230000037396 body weight Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000003054 hormonal effect Effects 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 239000013641 positive control Substances 0.000 description 6
- 210000001541 thymus gland Anatomy 0.000 description 6
- 210000001744 T-lymphocyte Anatomy 0.000 description 5
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 5
- 210000000577 adipose tissue Anatomy 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 230000002060 circadian Effects 0.000 description 5
- 230000001900 immune effect Effects 0.000 description 5
- 230000036039 immunity Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000001537 neural effect Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 230000004936 stimulating effect Effects 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- ITRMROGJSNWFKO-FOCLMDBBSA-N 4,4'-azodibenzenearsonic acid Chemical compound C1=CC([As](O)(=O)O)=CC=C1\N=N\C1=CC=C([As](O)(O)=O)C=C1 ITRMROGJSNWFKO-FOCLMDBBSA-N 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 208000008589 Obesity Diseases 0.000 description 4
- 208000002193 Pain Diseases 0.000 description 4
- 230000003416 augmentation Effects 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 230000008034 disappearance Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 206010016256 fatigue Diseases 0.000 description 4
- -1 i.e. Substances 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 229920006008 lipopolysaccharide Polymers 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 235000020824 obesity Nutrition 0.000 description 4
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 4
- 229960004618 prednisone Drugs 0.000 description 4
- 230000035755 proliferation Effects 0.000 description 4
- 208000018556 stomach disease Diseases 0.000 description 4
- 239000000724 thymus hormone Substances 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical class CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- 241000699800 Cricetinae Species 0.000 description 3
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- 238000000692 Student's t-test Methods 0.000 description 3
- 230000005867 T cell response Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 230000001363 autoimmune Effects 0.000 description 3
- 230000005784 autoimmunity Effects 0.000 description 3
- 230000036765 blood level Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000005965 immune activity Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 230000000968 intestinal effect Effects 0.000 description 3
- 210000001503 joint Anatomy 0.000 description 3
- 208000030159 metabolic disease Diseases 0.000 description 3
- 201000006417 multiple sclerosis Diseases 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 230000036470 plasma concentration Effects 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 210000004989 spleen cell Anatomy 0.000 description 3
- 210000004988 splenocyte Anatomy 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 229940072651 tylenol Drugs 0.000 description 3
- 206010000087 Abdominal pain upper Diseases 0.000 description 2
- 208000006820 Arthralgia Diseases 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 238000011740 C57BL/6 mouse Methods 0.000 description 2
- 208000000094 Chronic Pain Diseases 0.000 description 2
- 108010062580 Concanavalin A Proteins 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 206010021450 Immunodeficiency congenital Diseases 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 2
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 2
- 206010023232 Joint swelling Diseases 0.000 description 2
- 102000008072 Lymphokines Human genes 0.000 description 2
- 108010074338 Lymphokines Proteins 0.000 description 2
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002074 deregulated effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229960003638 dopamine Drugs 0.000 description 2
- 229940052760 dopamine agonists Drugs 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 208000031424 hyperprolactinemia Diseases 0.000 description 2
- 229960001680 ibuprofen Drugs 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 230000008105 immune reaction Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 230000004073 interleukin-2 production Effects 0.000 description 2
- 230000037356 lipid metabolism Effects 0.000 description 2
- 230000004132 lipogenesis Effects 0.000 description 2
- 230000003520 lipogenic effect Effects 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 230000002297 mitogenic effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229960002009 naproxen Drugs 0.000 description 2
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 2
- 230000000955 neuroendocrine Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000009696 proliferative response Effects 0.000 description 2
- 230000033458 reproduction Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000002992 thymic effect Effects 0.000 description 2
- 229940056547 tylenol with codeine Drugs 0.000 description 2
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 2
- AOFUBOWZWQFQJU-SNOJBQEQSA-N (2r,3s,4s,5r)-2,5-bis(hydroxymethyl)oxolane-2,3,4-triol;(2s,3r,4s,5s,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O.OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O AOFUBOWZWQFQJU-SNOJBQEQSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 208000010543 22q11.2 deletion syndrome Diseases 0.000 description 1
- YLDCUKJMEKGGFI-QCSRICIXSA-N 4-acetamidobenzoic acid;9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3h-purin-6-one;1-(dimethylamino)propan-2-ol Chemical compound CC(O)CN(C)C.CC(O)CN(C)C.CC(O)CN(C)C.CC(=O)NC1=CC=C(C(O)=O)C=C1.CC(=O)NC1=CC=C(C(O)=O)C=C1.CC(=O)NC1=CC=C(C(O)=O)C=C1.O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(NC=NC2=O)=C2N=C1 YLDCUKJMEKGGFI-QCSRICIXSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 208000029483 Acquired immunodeficiency Diseases 0.000 description 1
- 201000000736 Amenorrhea Diseases 0.000 description 1
- 206010001928 Amenorrhoea Diseases 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 102000005738 B7 Antigens Human genes 0.000 description 1
- 108010045634 B7 Antigens Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 206010006811 Bursitis Diseases 0.000 description 1
- 241000272201 Columbiformes Species 0.000 description 1
- 206010010099 Combined immunodeficiency Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 208000000398 DiGeorge Syndrome Diseases 0.000 description 1
- 206010060742 Endocrine ophthalmopathy Diseases 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 206010060378 Hyperinsulinaemia Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 206010022489 Insulin Resistance Diseases 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 206010023230 Joint stiffness Diseases 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 1
- 206010052904 Musculoskeletal stiffness Diseases 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 102000007999 Nuclear Proteins Human genes 0.000 description 1
- 108010089610 Nuclear Proteins Proteins 0.000 description 1
- 102000052812 Ornithine decarboxylases Human genes 0.000 description 1
- 108700005126 Ornithine decarboxylases Proteins 0.000 description 1
- 208000031964 Other metabolic disease Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 108010002519 Prolactin Receptors Proteins 0.000 description 1
- 102100029000 Prolactin receptor Human genes 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000219061 Rheum Species 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000179387 Zonotrichia albicollis Species 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 239000003329 adenohypophysis hormone Substances 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 208000030961 allergic reaction Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 231100000540 amenorrhea Toxicity 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 230000003474 anti-emetic effect Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 229940125683 antiemetic agent Drugs 0.000 description 1
- 239000002111 antiemetic agent Substances 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940082992 antihypertensives mao inhibitors Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000006472 autoimmune response Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 208000007118 chronic progressive multiple sclerosis Diseases 0.000 description 1
- 208000030499 combat disease Diseases 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 235000021045 dietary change Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000003210 dopamine receptor blocking agent Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000000551 effect on thymus Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003386 epithelial cell of thymus gland Anatomy 0.000 description 1
- 230000008556 epithelial cell proliferation Effects 0.000 description 1
- RHGUXDUPXYFCTE-ZWNOBZJWSA-N ergoline Chemical class C1=CC([C@@H]2[C@H](NCCC2)C2)=C3C2=CNC3=C1 RHGUXDUPXYFCTE-ZWNOBZJWSA-N 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000003451 hyperinsulinaemic effect Effects 0.000 description 1
- 201000008980 hyperinsulinism Diseases 0.000 description 1
- 230000009390 immune abnormality Effects 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 201000002364 leukopenia Diseases 0.000 description 1
- 231100001022 leukopenia Toxicity 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000008176 mammary development Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000006371 metabolic abnormality Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- 230000008747 mitogenic response Effects 0.000 description 1
- 239000002899 monoamine oxidase inhibitor Substances 0.000 description 1
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical class O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 230000012177 negative regulation of immune response Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000027758 ovulation cycle Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000027317 positive regulation of immune response Effects 0.000 description 1
- 238000009258 post-therapy Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 210000001978 pro-t lymphocyte Anatomy 0.000 description 1
- VTGOHKSTWXHQJK-UHFFFAOYSA-N pyrimidin-2-ol Chemical class OC1=NC=CC=N1 VTGOHKSTWXHQJK-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/225—Calcitonin gene related peptide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/137—Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
- A61K31/166—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the carbon of a carboxamide group directly attached to the aromatic ring, e.g. procainamide, procarbazine, metoclopramide, labetalol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
- A61K31/405—Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4515—Non condensed piperidines, e.g. piperocaine having a butyrophenone group in position 1, e.g. haloperidol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/454—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/475—Quinolines; Isoquinolines having an indole ring, e.g. yohimbine, reserpine, strychnine, vinblastine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/48—Ergoline derivatives, e.g. lysergic acid, ergotamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4985—Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
- A61K31/5415—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with carbocyclic ring systems, e.g. phenothiazine, chlorpromazine, piroxicam
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/2257—Prolactin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/06—Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/06—Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH
- A61P5/08—Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH for decreasing, blocking or antagonising the activity of the anterior pituitary hormones
Definitions
- This invention relates to methods for rectifying or ameliorating abnormal responses of the mammalian immune system, and modifying normal responses of the mammalian immune system. More particularly, this invention relates to methods employing the alteration of prolactin rhythms as a method of adjusting mammalian immune response.
- prolactin in immunity is exemplified by studies demonstrating exogenous prolactin-induced restoration of immune competence in hypophysectomized mammals (Gala, R. R., Proc. Soc. Exp. Biol. Med. 198:5-13, 1991; Bercal, I. et al., Acta Endocrinol. 98:506-513, 1981).
- prolactin administration has been associated with numerous immunological effects including stimulation of cellular or antibody responses, as well as stimulation of various immune system upregulating substances such as IL-2 (both IL-2 production and IL-2 receptor expression); enhancement of lymphocyte number, activity and mitogenic responses; and augmentation of macrophage cytotoxicity (Gala, R. R., Proc.
- Another line of research has specifically focused on suppression of autoimmune diseases, which are characterized by the inability of the immune system to recognize self tissue as "self” and by the mounting of an immune response against self tissue as though it were a foreign antigenic substance.
- immunomodulatory agents are under current investigation by third parties for clinical usefulness. These agents include biologically derived compounds such as interferons and interleukins (and synthetic compounds such as isoprinosine and pyrimidinones). Although interferons and other cytokines and lymphokines are naturally occurring substances, their clinical use (which has involved administration by injection) has not been consistently beneficial (and/or the favorable results have been short-lived). Furthermore, cytokine and lymphokine therapies are most often accompanied by severe side effects such as toxicity and fever.
- biologically derived compounds such as interferons and interleukins (and synthetic compounds such as isoprinosine and pyrimidinones).
- interferons and other cytokines and lymphokines are naturally occurring substances, their clinical use (which has involved administration by injection) has not been consistently beneficial (and/or the favorable results have been short-lived).
- cytokine and lymphokine therapies are most often accompanied by severe side effects such as toxicity and fever.
- Eleftherton and Sprott 469-549, 1975 illustrate how circadian rhythms regulate prolactin activities.
- the resulting daily variations in responsiveness of various cell types to prolactin have a primary role in regulating numerous physiological processes, including fat storage, lipogenic responsiveness to insulin, migratory behavior, metamorphosis, reproduction, growth, pigeon cropsac development and mammary development (Meier, A. H., Gen. Comp. Endocrinol. 3(Suppl 1):488-508, 1972; Meier, A. H., Amer. Zool. 15:905-916, 1975; Meier, A. H. et al., Science 173:1240-1242, 1971).
- prolactin may be observed to produce a stimulatory or an inhibitory effect on a given activity, or to have no effect on it.
- These varying effects have recently been shown in animals to be a function of the time of the daily endogenous peak (i.e. acrophase) of the rhythm of plasma prolactin concentration or a function of the time of daily injection of exogenous hormone (or of a substance that increases prolactin levels) or of the relation between endogenous peak and any induced peak.
- high levels of prolactin restricted to a discreet daily interval have a much greater physiologic (e.g. metabolic) effect in animals than do constant high levels throughout a day (Cincotta, A. H.
- phase relationships of these stimulus and response rhythms are believed to be expressions of neural circadian centers which in turn can be reset by neurotransmitter agents and hormone injections (including prolactin) to produce either fat or lean animals
- neurotransmitter agents and hormone injections including prolactin
- hormone injections including prolactin
- timed prolactin administration or enhancement acts directly upon tissues (e.g. liver in lipogenesis) undergoing circadian rhythms of responsiveness to the hormone to produce daily variations in net physiologic effects (Cincotta, A. H. et al., Horm. Metab. Res.
- prolactin or substances that affect circulating prolactin levels, also affect circadian rhythms and in fact can be used to modify such rhythms (so that they more closely resemble the rhythms of lean, healthy, young individuals of the same sex) and to reset such rhythms (so that they persist in the modified condition). See, e.g. U.S. patent applications Ser. Nos. 08/158,153 07850!, 07/995,292 07788!, 07/719,745 17849!, 07/999,685 07848! and 08/171,569. This prior work by the present inventors has been clinically tested in humans afflicted with various metabolic disorders (obesity, diabetes and others) with very favorable results.
- the foregoing application discloses methods for: (i) assessing the daily prolactin level cycles of a normal (healthy) human or vertebrate animal (free of obesity, disease or other disorder); (ii) diagnosing aberrant daily prolactin level cycles of a human or vertebrate animal; and (iii) determining the appropriate adjustments that need to be made to normalize such aberrant prolactin level cycles.
- This method involves the administration of at least one of a prolactin reducer and/or a prolactin enhancer at a first predetermined time (or times) within a 24-hour period (if only a prolactin reducer is administered) and/or at a second predetermined time (or times) of a 24-hour period (if a prolactin enhancer is administered).
- This therapy when continued for several days, weeks or months, results in the long-term adjustment of aberrant or abnormal prolactin level cycles so that they conform to (or simulate) normal prolactin level cycles. This benefit persists over the long-term even after cessation of therapy. As a result, aberrant physiological parameters associated with various metabolic disorders are restored to normal levels or are modified to approach normal levels.
- this method is applied to all persons having aberrant prolactin levels during at least a portion of a 24-hour period, it does not mention the possibility of applying it to persons suffering from immune dysfunction.
- the mutual dependence of prolactin and circadian rhythms and particularly the time-sensitivity of such dependence has not previously been correlated with immune function or dysfunction.
- the present inventors postulated (i) a similar daily variation of the response of the immune system to prolactin and (ii) an ability of timed, induced variations in prolactin levels to modulate immune responses by influencing production of naturally occurring immune system (up- or down-) regulators. Experimental confirmation of these postulates gave rise to the present invention, and resolved the apparent conflicts in the effects of prolactin on immunity.
- One aspect of the present invention is directed to a method of ameliorating or rectifying immune system abnormalities in a mammal in need of such treatment.
- the method involves the administration to the mammal of a prolactin reducer and/or enhancer at a predetermined time or times during a 24-hour period that results in modification of the mammal's abnormal prolactin profile so that it approaches or conforms to the prolactin profile of a young healthy mammal of the same species.
- Another aspect of the present invention is directed to a method of ameliorating or rectifying immune system abnormalities on a long-term basis by continuing the foregoing timed administration(s) of the prolactin reducer and/or enhancer until the altered prolactin rhythm of the subject is reset and persists in this reset condition for an extended period of time even after cessation of therapy, resulting in persistence of the improvement of immune system abnormalities.
- Yet another aspect of the invention is directed to a method of augmenting (upregulating) immune response in a mammal (e.g., for the purpose of increasing the subject's ability to mount an immune response against infection).
- the method involves the timed administration of a prolactin reducer and/or enhancer at a time or times (respectively) at which reducing (or enhancing) the subject's plasma prolactin levels would enhance the subject's ability to mount an immune response.
- This method may also be practiced on subjects having a normal immune system.
- the present invention is directed to adjusting the phase relationship between the circadian rhythms for prolactin and for one or more immune responses.
- the invention involves normalizing (or resetting) the circadian rhythm for prolactin to resemble that of a healthy young subject.
- the invention also involves manipulating the circadian rhythm for prolactin to bring it in such a phase and amplitude relation with the immunologic responsiveness to prolactin as to exert an amplifying effect on a predetermined aspect of the immune response.
- Immunodeficiency or “immune abnormality” means individually or collectively a state of immunodeficiency or immunosuppression (marked by inability or compromised ability to mount an immune response against a pathogen or other affliction such as a tumor) and/or a state of mistargeted immune activity such as autoimmunity.
- Immunodeficiency and immunosuppression include situations where a subject has reduced ability to mount a T-cell response or a B-cell response (as evidenced for example by reduced mixed lymphocyte reaction, reduced delayed-type hypersensitivity or reduced T- or B-cell proliferation to a stimulus); or has reduced ability to produce cytokines or lymphokines or antibodies; or exhibits reduced expression of lymphokine receptors or reduced antigen-presenting ability (as evidenced for example by reduced expression of Class I or Class II Major Histocompatibility Complex).
- Such compromised ability to mount an immune response can be the result of congenital or acquired immunodeficiency or the result of chemotherapy or radiation, or other drug-induced immunosuppression. Consequently, a rectification or amelioration of immune dysfunction is the total or partial restoration of one or more of the foregoing immune responses.
- Prolactin reducer is a substance or composition that has the ability to lower circulating prolactin levels upon administration to a mammal
- prolactin enhancer is a substance or composition that has the ability to raise circulating prolactin levels, and includes prolactin itself.
- Prolactin reducers and prolactin enhancers are referred to collectively as “prolactin modulators”.
- Prolactin profile of a subject is a depiction of circulating prolactin levels and their variation over all or part of a 24-hour period, and therefore an expression of all or part of the subject's plasma prolactin daily rhythm.
- Healthy is a young, lean subject free of disease including malignancies, immune system dysfunctions and metabolic abnormalities.
- a healthy subject is one with a normal prolactin profile, i.e., a prolactin profile that does not depart from the baseline of that subject's species and sex by more than one standard error of the mean (SEM).
- SEM standard error of the mean
- the subject's daytime blood prolactin level is at least 1 SEM higher than the baseline at two (or more) time points during daytime spaced apart by at least one and preferably by at least two hours; or
- the subject's daytime blood prolactin level is at least 2 SEM higher than the baseline at one time point during daytime;
- the subject's night time blood prolactin level is at least 1 SEM below the base line at two (or more) spaced apart time points (as in (a)); or
- the subject night time blood prolactin level is at least 2 SEM below the base line at one time point during night time.
- the human male and female baselines are depicted in FIG. 1.
- One SEM during waking hours (07:00-22:00) is about 1-2 ng/ml for males and about 1-3 ng/ml for females;
- one SEM during night time (22:00-07:00) is about 3 ng/ml for males and about 3-6 ng/ml for females.
- the characteristics of the prolactin level daily rhythm or profile that are to be approached or conformed in humans include achieving low prolactin levels (2-7 ng/ml of plasma) for males and 2-10 ng/ml for females) during most or all of the time period between 07:00 and 22:00 h.
- a peak prolactin level should also be achieved between the hours of 22:00 and 07:00 (preferably between 1:00 and 4:00) (the peak should be at least 10 ng/ml and most preferably between 10-15 ng/ml for males and at least 15 ng/ml and preferably between 15 and 25 ng/ml for females).
- the benefits of the present invention may persist long-term even after cessation of the administration of prolactin modulators.
- FIG. 1 is the baseline prolactin daily rhythm or profile curve for healthy males ("M") and females (“F”).
- FIGS. 2 and 3 are bar diagrams showing the relationship between mixed lymphocyte reaction (MLR) and time of day of prolactin administration.
- MLR mixed lymphocyte reaction
- An asterisk denotes a significant difference from control (p ⁇ 0.05; Student's t test).
- FIG. 4 is the same type of diagram as FIG. 3 but showing the relationship between MLR and time of day of administration of the prolactin-enhancer domperidone.
- FIG. 5 is the same type of diagram as FIG. 4 but the prolactin enhancer is 5HTP.
- FIGS. 6A and 6B are the same type of diagrams as FIG. 3 but showing the relationship between MLR and time of day of a prolactin reducer administration; FIG. 6A: 200 ⁇ g bromocriptine; FIG. 6B: 50 ⁇ g bromocriptine.
- FIG. 7 is a bar diagram showing the relationship between T-cell response to the stimulus Concanavallin A (ConA) and the time of bromocriptine administration.
- FIG. 8 is the same type of diagram as FIG. 7 but for B-cell response to the stimulus lipopolysaccharide (LPS).
- LPS stimulus lipopolysaccharide
- FIG. 9 is a bar diagram showing the relationship between delayed-type hypersensitivity (DTH) responses (foot pad swelling) and time of day of prolactin administration.
- DTH delayed-type hypersensitivity
- FIG. 10 is the same type of diagram as FIG. 9 but represents the mean percent inhibition of foot pad swelling compared to the positive controls obtained from 4 experiments.
- An asterisk denotes a significant difference from the positive control in millimeters of footpad swelling (p ⁇ 0.008; Student's t test).
- FIG. 11 is a bar diagram showing the relationship between thymus cell number and time of day of prolactin administration in treated and control mice. The results represent the mean cell number +/-SEM of 8-10 mice per group. An asterisk denotes a significant difference from control (p ⁇ 0.01; Student's t test).
- FIG. 12 is a series of tracings depicting the male base prolactin profile (i.e the normal prolactin profile for healthy young males) MB, and, superimposed on it, prolactin level profiles (ng/ml plasma) pre-therapy (black line) and in-therapy (grey line and dotted line) prolactin profiles for a male patient suffering from Crohn's disease.
- prolactin level profiles ng/ml plasma pre-therapy
- in-therapy grey line and dotted line
- FIGS. 13 and 14 respectively contain the female base prolactin profile FB and tracings similar to those of FIG. 12 for two female rheumatoid arthritis patients.
- FIGS. 15 and 16 respectively contain the female base prolactin profile FB and tracings similar to those of FIG. 12 for two female fibromyalgia patients.
- the alteration of prolactin levels in a subject having a normal immune system has been found to augment or reduce a subject's ability to mount an immune response to a given challenge. Whether the effect on the immune response is stimulatory or suppressive is dependent on the time of day the alteration of the prolactin levels occurs and on the nature of the alteration.
- increasing the plasma levels of the hormone at or near a time when cellular responsiveness to high prolactin is at its peak in mice preferably about 10-12 hours after light onset (HALO), normal immune responses (and immune responses to alloantigens) are augmented.
- mice 4-12 HALO preferably 10-12 HALO
- immune responses are often (but not always) suppressed.
- prolactin injections 9-12 HALO cause an increase in the mouse mixed lymphocyte response (MLR) to alloantigens and an increase in the proliferation of nonstimulated mouse splenocytes as compared to naive controls.
- MLR mouse mixed lymphocyte response
- Prolactin injections (or enhancer administration) at light onset resulted in significant inhibition of mouse immune responsiveness (as measured by MLR) as compared to naive controls.
- DTH delayed-type hypersensitivity
- a time of day dependent role for prolactin in immune responses is also indicated by results of experiments on mice which decrease prolactin blood levels (by administration of a prolactin reducer) during specific daily intervals of daily immune responsiveness to exogenous prolactin (i.e. during an interval about 9-12 HALO in mice and another interval about 0 HALO in mice).
- Dose-response studies with bromocriptine, a D2 dopamine agonist which inhibits endogenous prolactin secretion indicate that bromocriptine exerted an inhibitory action on the DTH response at 10 HALO but not at 0 HALO.
- Bromocriptine was also found to be inhibitory for T and B cell proliferative responses to mitogenic stimulation with either concanavalin A (100%; p ⁇ 0.01) or lipopolysaccharide (47%; p ⁇ 0.01) respectively, when administered at 10 but not at 0 HALO.
- Thymic hormones are essential for the differentiation of progenitor T cells within the thymus. Moreover, thymic hormones enhance peripheral T cell activity (Baxevanis, C. N. et al., Immunopharm 15:73-84, 1988), major histocompatibility complex class II antigen expression (Baxevanis, C. N. et al., J. Immunol. 148: 1979-1984, 1992), and augment antigen presenting function (Tzehoval, E. et al., Immunopharm. 18:107-113, 1989), all of which can promote MLR and DTH reactivity.
- prolactin stimulates thymic epithelial cell proliferation as well as thymic hormone production (Dardenne, M. et al., Endocrinology 125:3-12, 1989), prolactin should also have an effect on thymus cell number. Indeed, daily prolactin injections were given to 5 week old mice either at light onset or at 11 HALO for one month. Prolactin treatment at 11 HALO significantly increased thymus cell number relative to controls whereas prolactin injections at light onset did not.
- the alteration of prolactin levels of a subject at particular times of day provides methods of improving immune responsiveness of the subject or restoring or augmenting normal immune responses or ameliorating abnormal immune responses.
- the method may be used to increase the protection of subjects that are immunosuppressed (or even subjects that do not suffer from immunosuppression) against infection. Augmenting the immune response will provide an increased level of protection against invading pathogens such as viruses, bacterial, or fungal infections in susceptible individuals. This method will also be useful in the treatment of individuals who are immunocompromised or immunodeficient independent of the cause.
- Additional subjects who could benefit from this treatment method include without limitation allograft recipients, surgery patients, allergy sufferers, burn victims, cancer patients receiving chemotherapy or radiation therapy, patients suffering from HIV-infection or a congenital immunodeficiency such as severe combined immunodeficiency (SCID) or DiGeorge Syndrome.
- SCID severe combined immunodeficiency
- Any subject whose immune system has been deregulated (but not completely ablated) by a congenital or clinical condition or by medication will benefit from the present invention.
- An augmentation in immune responses is also of value in groups sharing common quarters, such as military recruits, summer campers, or disaster victims, or with the aged in nursing homes, who are at a high risk of contracting infections.
- the method can also be used to reduce or eliminate damage to a subject caused by a deleterious immune reaction.
- autoimmune diseases whether such conditions are mediated or dependent on B-cells, T-cells or both.
- Nonlimiting examples include rheumatoid arthritis, multiple sclerosis, endocrine ophthalmopathy, uveoretinitis, the autoimmune phase of Type 1 diabetes, systemic lupus erythematosus, myasthenia gravis, Grave's disease, glomerulonephritis, autoimmune hepatological disorder, autoimmune inflammatory bowel disease, and Crohn's disease.
- Subjects suffering from inflammation having immune reaction characteristics e.g. anaphylaxis, allergic reaction
- This method is also useful in the treatment of recipients of tissue or organ transplants to reduce host-induced allograft rejection.
- phase relationship between the daily peaks of the stimulus (plasma prolactin) rhythm and response (immunocellular rhythm) to prolactin is of critical importance to the status of immune function.
- Environmental and pharmaceutical factors influencing either of these rhythms can be expected to impact immune function.
- phase shifts in either or both of these rhythms may be associated with immunologic disorders, as well as cancer (Bartsch, C. et al., J. Pineal Res. 2:121-132, 1985; Bartsch, C. et al., Cancer 64:426-433, 1989).
- This adjustment can be accomplished by administration to such individuals of one or both of the following:
- a prolactin reducer at a first predetermined time (or at more than one first predetermined time) and in a first amount effective to reduce day time prolactin levels if these levels are too high;
- a prolactin enhancer at a second predetermined time (or at more than one second predetermined times) and in a second amount effective to increase night time prolactin levels if these levels are too low.
- prolactin altering substance In general, if a prolactin level altering substance is to be administered, appropriate allowance should be made with respect to the time of administration to permit that substance (depending on its pharmacokinetic properties) to affect prolactin levels such that prolactin levels would be modified during the appropriate time of day.
- the prolactin altering substance will be administered as follows:
- prolactin if prolactin is administered, it will be administered during the time interval that prolactin levels need to be raised;
- prolactin enhancer other than prolactin if a prolactin enhancer other than prolactin is administered, it will be administered during or slightly prior to the time interval when prolactin levels need to be raised (how much prior depends on pharmacokinetic properties: generally 0-3 hours prior will be effective);
- a prolactin reducer if a prolactin reducer is administered it will also be administered during or slightly prior to the time that prolactin levels need to be reduced (again, 0-3 hours prior will be generally effective).
- prolactin enhancer includes prolactin as well as substances which increase circulating prolactin levels (e.g. by stimulating prolactin secretion).
- a prolactin enhancer include prolactin; melatonin; dopamine antagonists such as metoclopramide, haloperidol, pimozide, phenothiazine, domperidone, sulpiride and chlorpromazine; serotonin agonists, i.e., MAO inhibitors, e.g., pargyline, synthetic morphine analogs, e.g., methadone; antiemetics, e.g., metoclopramide; estrogens; and various other serotonin agonists, e.g., tryptophan, 5-hydroxytryptophan (5-HTP), fluoxitane, and dexfenfluramine.
- non-toxic salts of the foregoing include prolactin; melatonin; dop
- prolactin reducers include prolactin-inhibiting dopamine agonists such as dopamine and certain ergot-related prolactin-inhibiting compounds.
- dopamine agonists are 2-bromo-alpha-ergocriptine; 6-methyl-8 beta-carbobenzyloxy-aminoethyl-10-alpha-ergoline; 8-acylaminoergolines, are 6-methyl-8-alpha-(N-acyl)amino-9-ergoline and 6-methyl-8 alpha-(N-phenylacetyl) amino-9-ergoline; ergocornine; 9,10-dihydroergocornine; and D-2-halo-6-alkyl-8-substituted ergolines, e.g., D-2-bromo-6-methyl-8-cyanomethylergoline; carbi-dopa and L-dopa; and lisuride.
- non-toxic salts of the prolactin-reducer compounds formed with pharmaceutically acceptable acids are also useful in the practice of this invention.
- Bromocriptine, or 2-bromo-alpha-ergocryptine, has been found particularly useful in the practice of this invention.
- the modulation of immune responses induced by prolactin enhancers or reducers is expected to be dose-dependent over a range of dosages.
- dosages of the prolactin reducer and/or enhancer are each given, generally once a day, generally over a period ranging from about 10 days to about 180 days, but treatment can continue indefinitely (if necessary or desired) for months or even years.
- the preferred prolactin reducer accelerated release bromocriptine
- the preferred prolactin enhancer metaloclopramide
- Administration of either or both prolactin altering substances can be continued for a time sufficient to reset the circadian plasma prolactin rhythm to the phase and amplitude modified by administration of the prolactin altering substance, at which time treatment may be discontinued. If the subject suffers a relapse, treatment may be resumed.
- the time needed for resetting varies but is generally within the range of 30-180 days.
- the prolactin reducer (accelerated release bromocriptine) is generally given at daily dosage levels ranging from about 3 micrograms to about 100 micrograms, preferably from about 10 micrograms to about 40 micrograms, per kg. of body weight (typically 0.2-1.5 mg/person/day; preferably 0.8-8 mg).
- the prolactin enhancer metoclopramide is generally given at daily dosage levels ranging from about 1 micrograms to about 50 micrograms, preferably from about 5 micrograms to about 20 micrograms, per kg. of body weight per day.
- Period daily dosages range of metoclopramide are typically 0.5 to 5.0 mg; preferably 0.5 to 2.0 mg.
- Such treatment is typically continued over a period of time ranging from about 10 days to usually about 180 days, resulting in modification and resetting of the immune functions of the patient to that of a lean, young, healthy person, at which time treatment may be discontinued.
- time treatment may be discontinued.
- some patients e.g. patients in particularly poor physical condition, or those of an advanced age
- the dosage and timing information set forth above is designed for bromocriptine and metoclopramide and will have to be altered for other agents using the dosage and timing methodology disclosed herein.
- a prolactin reducing compound, and/or a prolactin enhancer are administered daily to a subject preferably orally, or by subcutaneous, intravenous or intramuscular injection.
- Dermal delivery systems e.g., skin patches, as well as suppositories and other well-known systems for administration of pharmaceutical agents can also be employed.
- Treatment generally lasts between about 10 and about 180 days on average in humans.
- the administration of the prolactin reducer and/or prolactin enhancer in this manner will thus reset the phase and amplitude of the neural oscillators that control the immune system to rectify or ameliorate immune function on a long term basis (e.g., several months or years).
- an improvement or amelioration in immune function can be assessed by observation of partial or total restoration of the ability to mount immune response as described above in connection with the definition of immune dysfunction.
- an improvement or amelioration can best be assessed by a significant reduction or disappearance of a clinical symptom associated with inflammation caused by the autoimmune disease, for example: joint pain or swelling or stiffness in rheumatoid arthritis; number of major attacks in chronic-relapsing multiple sclerosis; stabilization or improvement of motor function in chronic progressive multiple sclerosis; intestinal inflammation in the case of Chron's disease; and serological measurements (such as antibody to double-stranded DNA, complement components and circulating immune complexes), number and severity of skin flare-ups or myalgras, arthralgia, leukopenia, or thrombocytopenia for systemic lupus erythematosus.
- the symptoms which can be used to monitor efficacy of a regimen in autoimmune disease are generally well-known in the art.
- Improvement in ability to mount an immune response against infection can also be measured by testing for the infectious agent.
- bromocriptine administration timing for a period of treatment of approximately 26 weeks:
- prolactin levels is equal to or higher than 5.0 ng/ml for males or 7.0 ng/ml for females, then 0.8 mg of accelerated release bromocriptine is administered at 06:00 daily.
- a second dosage containing 0.8 mg of accelerated release bromocriptine is also administered at 10:30 daily.
- prolactin values are still equal to or higher than 5.0 ng/ml for males or 7.0 ng/ml for females, then 1.6 mg of accelerated release bromocriptine are administered at 06:00. Otherwise, 0.8 mg of accelerated release bromocriptine is administered at 06:00 daily.
- the second dosage of 0.8 mg of accelerated release bromocriptine is administered at 08:30 daily instead of at 10:30. If the 19:00 prolactin level is higher than 1.5 ng/ml for males and females, then the second dosage continues to administered at 10:30 daily.
- prolactin level is less than 1.0 ng/ml for males and females, then there is no administration of second dosage.
- time and amount schedules given above are intended as guidelines for bromocriptine administration and those skilled in the art can further adjust the precise timing and amount of bromocriptine administration based on the actual prolactin profile or key prolactin levels of a patient to be treated. For example, if a patient does not respond (or does not respond adequately) to a given dosage or dosages (e.g. 0.8 mg) it (or they) can be increased (e.g. to 1.6 mg).
- metoclopramide When needed, metoclopramide (generally daily dosage range is 0.5-5.0 mg/person; preferred daily dosage range is 0.5-2.0 mg/person) can be administered once about one hour before bedtime.
- the aspect of the invention directed to a modulation of the immune system by resetting the prolactin level profile of a vertebrate subject (animal or human) having an aberrant prolactin profile to conform to or approach the prolactin profiles for young healthy members of the same species and sex involves administration of a prolactin reducers, or a prolactin enhancer, or both, at predetermined dosages and times dictated by the aberrant (pre-treatment) prolactin profile of the subject to be treated.
- prolactin reducers and/or enhancers that are required to bring about this modification are within the same ranges as set forth above, but the time(s) of administration of these prolactin modulator(s) is determined by reference to how much and when the aberrant profile differs from the normal prolactin profile (baseline curve).
- Methods for determining the amounts and timing of administration are also set forth in our copending U.S. patent application Ser. No. 07/995,292 U.S. Pat. No. 5,585,347 and its C-I-P, Ser. No. 08/264,558, abandoned filed Jun. 23, 1994, both incorporated by reference.
- a preferred accelerated release bromocriptine dosage form has been disclosed in our copending U.S. patent application Ser. No. 08/171,897, abandoned, also incorporated by reference.
- the present invention provides a method for augmenting immune responses (e.g. increased T-cell response or B-cell response etc. as described above in connection with the definition of immune dysfunctions) to increase a subject's ability to fight infection.
- This can be accomplished by administration of prolactin or another prolactin enhancer at a predetermined time during a 24-hour period at which increased bloodstream levels of prolactin enhance immune response.
- prolactin injections or administration of prolactin enhancers were shown to be immunostimulatory during the interval of 4-12 HALO during which time the immune system responds positively to increased prolactin levels.
- the appropriate interval of positive immunoresponsiveness to increased prolactin must first be ascertained. This can be accomplished by experiment similar to those of Examples 1-5. Instead of MLR or DTH measurements, well-known lymphocyte proliferation or lymphocyte activation assays or lymphocyte characterization methods can be used to assess the effect of increased prolactin. Once a time point within the appropriate time interval has been identified, administration of the prolactin enhancer can be undertaken. The time of administration can be further optimized by repeating experiments such as those of Examples 1-5 at time points spaced apart from (e.g. within 3 hours of) a time point where prolactin enhancement has been found to be effective in augmenting immune response.
- dosages for mammals can be determined by beginning with a relatively low dose (e.g., 0-8 mg bromocriptine or 0.5 mg of metoclopramide), progressively increasing it (e.g. logarithmically) and assessing the immune responses of the mammal according to well-known methods, as detailed in Examples 1-5, below.
- the optimum dosage will be the one generating the maximum or minimum MLR, DTH response, thymic cell count or other measurement of immune responsiveness.
- An effective dosage range will be one that causes at least a statistically significant alteration of at least one measurement of immune response.
- prolactin enhancer for mammals, generally the amount of prolactin enhancer to augment immune response will be within the range of
- prolactin For humans, the amounts of prolactin will generally be the same as above; those for domperidone will be 0.17 to 17 mg/kg/day; 5HTP, 1 to 50 mg/kg/day.
- prolactin receptors have been identified on polymorphonucleocytes and macrophages, as well as lymphocytes (Gala, R. R., Proc. Soc. Exp. Biol. Med. 198:5-13, 1991)
- this "preactivation" may serve to target various cell activities enhancing immune responses (e.g. MLR and DTH), including the production of thymic hormones known to stimulate MLR (Baxevanis, C. N. et al., Immunopharm 15:73-84, 1988), the production of cytokines (Tzehoval, E. et al., Immunopharm. 18:107-113, 1989), and enhancement of antigen-presenting ability by increasing expression of class II MHC (Baxevanis, C. N. et al., J. Immun. 148: 1979-1984, 1992) and/or possibly B7 antigens.
- Humoral factors include for example corticosteroid (Meier, A. H., Trans. Am. Fish. Soc. 113:422-431, 1984; Meier, A. H. et al., Current Ornithology II (ed Johnston R. E.) 303-343, 1984; Cincotta, A. H. et al., J. Endocrinol. 120:385-391, 1989).
- Neural factors include for example dopamine (Emata, A. C. et al., J. Exp. Zool.
- mice Male BALB/c and C57BL/6 mice (Charles River, Wilmington, Mass.) were maintained from birth on 12 hour daily photoperiods. Ovine prolactin available from Sigma Chemical Co., St. Louis, Mo.) was injected intraperitoneally (1 mg/kg body weight, 20 ⁇ g/animal/day for 10 days) at 0/24, 4, 8, 12, 16 or 20 HALO. A control group remained untreated.
- spleen cells were then obtained from control or experimental mice by standard methods, erythrocytes lysed, and the splenocytes were resuspended in RPMI 1640 (Gibco, Grand Island, N.Y.) supplemented with 1 mM L-glutamine lo penicillin/streptomycin, 0.01M HEPES, and 1% heat-inactivated normal mouse serum.
- Stimulator spleen cells were obtained from normal male C57BL/6 mice, irradiated with 4000 rad of gamma irradiation, washed with Hank's balanced salt solution, and resuspended in culture media.
- 5 ⁇ 10 5 responder cells were added to 5 ⁇ 10 5 stimulator cells or media alone in a total volume of 0.2 ml in 96 well flat-bottomed plates. After 96 hr, cell proliferation was assayed by incubation with 1 ⁇ Ci of 3 H-thymidine (New England Nuclear, Boston, Mass.) and, after an additional 18 hours, cells were harvested and counted in a scintillation counter. Cell suspensions from each animal were assayed in sextuplicate and expressed as the mean +/-SEM of 3-6 mice per group.
- FIG. 2 shows a representative experiment of three separate experiments.
- prolactin injections made 4-12 HALO substantially increased (114%, p ⁇ 0.05) MLR response to alloantigens. Also increased (to a lesser albeit still significant extent) was the proliferation of nonstimulated responder splenocytes from treated animals as compared to the negative controls. It should be noted that injections made 16-20 HALO had no significant effect on MLR response. Additionally, injections at light onset (0/24 HALO) resulted in a 66% inhibition of MLR compared to controls.
- the experiment of this example illustrates dramatically the importance of timing of increases in prolactin level.
- Increasing the amount of circulating prolactin at different times causes augmentation of immune response to alloantigen or suppression of immune response to alloantigen or produces no significant effect.
- mice Female BALB/c mice (5-6 mice per group) maintained on 12 hour daily photoperiods were injected daily for 12 days with bromocriptine at 0.5, 1.5, 2.5, or 5.0 mg/kg body weight at either 0 or 10 HALO. A control group remained untreated. Six days after the initiation of drug treatment, treated and positive control (sensitized but no bromocriptine) mice were sensitized to azobenzene arsonate (ABA) by subcutaneous injection of 3.0 ⁇ 10 7 ABA-coupled syngeneic male spleen cells (Bach, B. A. et al., J. Immunol. 121:1460-1468, 1978). A negative control group remained unsensitized.
- ABA azobenzene arsonate
- FIG. 10 represents the mean percent inhibition of footpad swelling compared to the positive controls obtained from 4 experiments.
- bromocriptine produced different effects on the immune system depending on the time of their administration.
- 0.5 mg/kg or 1.5 mg/kg or 2.5 mg/kg of bromocriptine had no significant effect in inhibiting footpad swelling.
- 5.0 mg/kg of bromocriptine administered 0 HALO produced significant inhibition of DTH responses (i.e. had a significant immunosuppressive effect).
- FIG. 10 graphically represents the effect on the delayed-type hypersensitivity response in mice of 1.5 mg/kg of bromocriptine administered at 0 HALO and at 11 HALO compared to controls. Bromocriptine inhibits prolactin secretion in mice for about 4-6 hours when administered at 1.5 mg/kg and for about 16 hours when administered at 5 mg/kg.
- the 5.0 mg/kg dosage at 0 HALO produced a long-lasting suppression of endogenous prolactin that most likely carried over to the window of immunoresponsiveness to prolactin.
- the dosage of prolactin reducer should not be so high as to ablate the daily prolactin level cycle of the treated mammal but should be kept at levels that reduce prolactin substantially only during the desired interval of day.
- the results of this Example 2 also show that the immune responsiveness to prolactin obeys a daily rhythm.
- the experiment of this Example 2 also provides a method for determining the appropriate dosage or dosage range for a prolactin modulator.
- Example 1 The MLR experiment of Example 1 was repeated but bromocriptine (200 ⁇ g/animal/day or 50 ⁇ g/animal/day) was administered for 7 days at 0 and 9 HALO. The results are shown in FIGS. 6 (A and B). Bromocriptine (prolactin reduction) was found to have no effect on MLR at 0 HALO but was significantly inhibiting at 9 HALO.
- Bromocriptine (50 ⁇ g/animal/day for 10 days) was also found to be significantly more inhibitory of both T-cell and B-cell proliferative responses to mitogenic stimulation with either concanavalin A (ConA) in the culture medium (100% inhibition; p ⁇ 0.01) (FIG. 7) or lipopolysaccharide (47% inhibition; p ⁇ 0.01) (FIG. 8) when bromocriptine was administered at 10 HALO as compared to administration of the same amount of bromocriptine at 0 HALO in MLR experiments similar to those of Ex. 1. This supports the existence of a daily rhythm of immune responsiveness to prolactin.
- ConA concanavalin A
- the results, shown in FIG. 4 are that domperidone significantly increased MLR when administered at 10 HALO but not at 23 HALO.
- the same experiment was conducted with 5-hydroxytryptophane (5-HTP) in an amount of 25 mg/kg/day for seven days. ⁇ gain 5HTP did not change MLR when administered at 0 HALO but significantly increased MLR when administered at 9 HALO.
- the results are in FIG. 5.
- mice Adult (5 week old) male BALB/c mice (8-10 animals/group) maintained on 12 hour daily photoperiods were injected daily for 28 days with ovine prolactin (2.25 mg/kg) at 0 or 11 HALO. A control group remained untreated. On day 29 thymuses were removed, cell suspensions were obtained by mechanical dissociation, and total cell number was determined by counting in a hemocytometer chamber. The results of FIG. 11 represent the mean cell number +/-SEM of 8-10 mice per group.
- prolactin treatment at 11 HALO significantly increased to 42% the thymus cell number relative to controls (p ⁇ 0.01) whereas prolactin injections at light onset did not.
- the subject male; 20 yrs was diagnosed with Crohn's disease in 1992 based on exploratory surgery and barium X-ray. Approximately 12 inches of the small intestine were inflamed. The subject received prednisone 40 mg/day tapered to zero over a 16 week period.
- the subject's 24-hour pre-therapy prolactin profile (generated about 5 months after he stopped taking prednisone) is shown graphically as the line labelled "Visit 1" in FIG. 12. It shows prolactin levels that are too high throughout the daytime.
- the subject was given 1.25 mg of bromocriptine at 08:30 h each day for 20 weeks.
- a reevaluation profile was generated for this subject after 20 weeks of treatment and is graphically shown as the line labelled "Visit 2" in FIG. 12. (Already at Visit 2, the area under the daytime prolactin curve was substantially reduced which shows progress but prolactin remained too high from 10:00-13:00 and from 16:00-22:00.
- the clinical improvements to this patient included: (1) avoidance for surgical resection within this time period (3 yrs.); (2) no increase in inflamed area of intestine despite discontinuance of prednisone for 2 years, based on a comparison of X-rays from first diagnosis with most recent (post-therapy); (3) during the time from first diagnosis to end of treatment scarring was minimal as determined by intestinal response to prednisone treatment; and (4) the patient reported no major intestinal discomfort during bromocriptine treatment despite no major dietary changes from pre-diagnosis.
- the subject's 24 hour pre-therapy prolactin profile is shown graphically as the black line in FIG. 13 (Week O.B.).
- the subject's prolactin level was too high throughout the day, particularly at 07:00 h.
- the night time peak was shifted forward.
- the subject was given 1.6 mg of bromocriptine at 09:00 for the first two weeks and for the following four weeks, the subject was given 0.8 mg of bromocriptine at 05:00 and 1.6 mg of bromocriptine at 09:00.
- the time of the dosage of 1.6 mg of bromocriptine was changed from 09:00 hr to 10:00 hr. Reevaluation profiles were generated for this patient after 2, 6 (not shown) and 10 weeks.
- prolactin profile of this patient after two weeks consisted of prolactin levels throughout the afternoon and early evening that were normalized or very close to normal. However, the prolactin level was still too high at 07:00.
- the patient's total dosage was increased beginning with week 3, to include 0.8 mg of bromocriptine at 05:00 hr. in an attempt to lower the patient's prolactin level at 07:00 h. Indeed, the patient's prolactin level at 07:00 hr was reduced to near normal after six weeks of treatment. Therapy lasted 18 weeks. As can also be seen in FIG. 13, after 10 weeks of treatment the daytime prolactin level of the patient remained normal but the night time prolactin level was reduced below normal levels.
- the clinical improvements in this patient included: cessation of all arthritis medication after week 12 of the treatment and disappearance of the following symptoms: swelling, pain and stiffness in the joints; and a loss of body fat of approximately 20 pounds, from 65 pounds to 45 pounds. The patient's total weight also dropped over the course of the study by 25 lbs. An additional important clinical benefit to this patient was that the clinical improvements described above have thus far persisted for 8 months following cessation of the treatment.
- the subject's 24 hour pre-therapy prolactin profile is shown graphically as the black line in FIG. 14. It shows that pretreatment prolactin levels (WEEK O.B.) were too high throughout the day, particularly at 07:00 h.
- pretreatment prolactin levels WEEK O.B.
- the subject was given 1.6 mg of bromocriptine at 09:30. From week six through week ten, the subject was given 0.8 mg of bromocriptine at 05:00 hr and 1.6 mg of bromocriptine at 10:00 hr. From week 10 through week 18, the subject was given 1.6 mg of bromocriptine at 05:00 hr and 0.8 mg of bromocriptine at 10:00 hr.
- Reevaluation prolactin profiles were taken at several intervals, including after 10 and 18 weeks.
- the subject's prolactin profile after 18 weeks is shown graphically in FIG. 14.
- This graph shows that the patient's daytime prolactin levels have been reduced to normal or near normal throughout most of the day.
- This graph also shows that the patient lacks a proper night time peak.
- This patient's profile worsened somewhat after her dosage was changed from week 10 to week 18 in that a peak appeared at 19:00.
- Bromocriptine therapy lasted for a total of 18 weeks.
- the subject (female; 38 yrs); presented with fibromyalgia. Symptoms included chronic fatigue, stomach disorders and chronic pain in the extremities, including the upper and lower legs. Patient was diagnosed approximately one year before beginning treatment. There were no pre-treatment medications.
- the subject's 24 hour base (pre-therapy) prolactin profile is shown graphically as the solid black line in FIG. 8. It shows that pre-treatment prolactin levels were moderately elevated during the day and that there was no proper night time peak.
- Initial dosage of bromocriptine was 0.625 mg at 6:00 am and metoclopramide was 2.5 mg at 10 pm. After four weeks, dosage was changed to 1.25 mg of bromocriptine at 6:00 am and 1.25 mg of metoclopramide at 10 pm. After 8 weeks (4 weeks on the modified dosage) the dosage was not further modified. After 10 more weeks (total 18 weeks) metoclopramide was discontinued but bromocriptine therapy was continued for a further 4 weeks when it was discontinued as the symptoms had virtually disappeared. Reevaluation prolactin profiles were taken at several intervals, including after 17 weeks (visit 3, daytime profile not taken).
- the subject's prolactin profile after 4 weeks is shown graphically as the solid gray line in FIG. 15 and the prolactin profile after 17 weeks is shown as the dotted black line in FIG. 15.
- These graphs show that the patient's daytime prolactin levels have decreased somewhat at certain points of the day and that the patient has a better night time peak.
- the subject (female; 27 yrs); presented with fibromyalgia. Symptoms included chronic fatigue, stomach disorders, pain and swelling in all joints, amenorrhea and swelling in the breasts.
- the patient had been diagnosed approximately five years before beginning treatment. Patient had been taking 650 mg of tylenol (daily) and 16 mg of tylenol with codeine (daily).
- the subject's 24-hour base pre-therapy prolactin profile is shown graphically as the solid black line in FIG. 15. It shows that prolactin levels are too high throughout the day, particularly at 13:00 hr.
- the patient was administered 0.625 mg of bromocriptine at 08:30.
- the patient was administered 0.625 mg of bromocriptine at 05:30 and 0.625 mg of bromocriptine at 09:30.
- Reevaluation prolactin profiles were taken at several intervals, including after approximately 24 weeks and 35 weeks of treatment.
- the subject's prolactin profile after 24 weeks is shown graphically as the dotted black line in FIG. 16.
- This graph shows that the patient's daytime prolactin levels have been reduced, particularly from 10:00 hr to 16:00 hr.
- the patient's prolactin level is still somewhat too high in the late afternoon.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Endocrinology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Rheumatology (AREA)
- Neurology (AREA)
- Emergency Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Diabetes (AREA)
- Genetics & Genomics (AREA)
- Pain & Pain Management (AREA)
- Molecular Biology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Transplantation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Steroid Compounds (AREA)
- Control Of Eletrric Generators (AREA)
- Oscillators With Electromechanical Resonators (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
Disclosed are methods for treating a disorder to the immune system or an immunodeficiency state which comprise the steps of administering to a patient an effective amount of at least one serotonin agonist and at least one dopamine agonist, where the combination of the serotonin agonist and the dopamine agonist are present in an amount effective to treat the patient's condition, where administration of each of the agents is confined to the time of day during which the administration is capable of adjusting the prolactin profile of the patient to conform or to approach the standard human prolactin profile.
Description
This is a continuation of application Ser. No. 08/271,881, filed Jul. 7, 1994, U.S. Pat. No. 5,696,128.
This invention relates to methods for rectifying or ameliorating abnormal responses of the mammalian immune system, and modifying normal responses of the mammalian immune system. More particularly, this invention relates to methods employing the alteration of prolactin rhythms as a method of adjusting mammalian immune response.
The importance of neuroendocrine regulation of immunity has become increasingly evident during the past decade (Besedovsky, H. O. et al., J. Immunol. 135:750s-754s, 1985; Blalock, J. E., Physiol. Rev. 69: 1-54, 1989; Berozi, I., Dev. Comp. Immunol. 13:329-341, 1989). Much of this interest has focused on the anterior pituitary hormone prolactin, which has been reported to have potent, albeit inconsistent and often conflicting, effects on immune activity (Gala, R. R., Proc. Soc. Exp. Biol. Med. 198:5-13, 1991; Nicoletti, J. et al., Reprod. Immunol. 15:113-121, 1989; Vidaller, A., et al., Clin. Immunol. Immunopathol. 38:337-343, 1986; Gerli, R. et al., Clin. Immunol. 7:463-470, 1987).
The role of prolactin in immunity is exemplified by studies demonstrating exogenous prolactin-induced restoration of immune competence in hypophysectomized mammals (Gala, R. R., Proc. Soc. Exp. Biol. Med. 198:5-13, 1991; Bercal, I. et al., Acta Endocrinol. 98:506-513, 1981). In intact animals, prolactin administration has been associated with numerous immunological effects including stimulation of cellular or antibody responses, as well as stimulation of various immune system upregulating substances such as IL-2 (both IL-2 production and IL-2 receptor expression); enhancement of lymphocyte number, activity and mitogenic responses; and augmentation of macrophage cytotoxicity (Gala, R. R., Proc. Soc. Exp. Biol. Med. 198:5-13, 1991; Bernton, E. W. et al., Science 239:401-404, 1988; Rovensky, J. et al., Int. J. Immuno. Pharmac. 13:267, 1991.)
Other lines of evidence reveal an association between hyperprolactinemia (i.e. elevated levels of circulating endogenous prolactin) which is due to natural, pathological, pharmaceutical, or stress conditions, and states of immune dysfunction, such as immunosuppression or autoimmune diseases. The autoimmune diseases for which exacerbative associations with prolactin have been observed in the past include rheumatoid arthritis, systemic lupus erythematosus (SLE) and multiple sclerosis. Nicoletti, J. et al., Reprod. Immunol. 15:113-121, 1989; Vidaller, A., et al., Clin. Immunol. Immunopathol. 38:337-343, 1986; Gerli, R. et al., Clin. Immunol. 7:463-470, 1987, McMurray, R. et al., J. Immunol. 147:3780, 1991.
In light of these apparently conflicting results, (increased prolactin level-associated augmentation of allo-immune response, exacerbated auto-immune response, and immunosuppression) the effects of elevated blood prolactin levels on the immune system have been far from clear.
In recent years, research has focused on improving the ability of the immune system to combat various diseases including malignancies. Experimental evidence that major histocompatibility antigens have an important role in host defenses against the development and spread of tumors has been rapidly accumulating.
Another line of research has specifically focused on suppression of autoimmune diseases, which are characterized by the inability of the immune system to recognize self tissue as "self" and by the mounting of an immune response against self tissue as though it were a foreign antigenic substance.
Yet another area of intensive immunological research is focused on various immunodeficiencies including AIDS. Despite intense research however, progress is slow and the immune mechanisms involved are proving elusive.
Numerous potential immunomodulatory agents are under current investigation by third parties for clinical usefulness. These agents include biologically derived compounds such as interferons and interleukins (and synthetic compounds such as isoprinosine and pyrimidinones). Although interferons and other cytokines and lymphokines are naturally occurring substances, their clinical use (which has involved administration by injection) has not been consistently beneficial (and/or the favorable results have been short-lived). Furthermore, cytokine and lymphokine therapies are most often accompanied by severe side effects such as toxicity and fever.
Accordingly, there is a need in the field of immunology for agents which modify pathological immune system responsiveness and regulate the endogenous production of substances which are in turn native immune system regulators. Use of such agents to "re-program" the immune system: (i) would improve host resistance to infection and ability to combat existing infections; (ii) overcome immunosuppression, abate immunodeficiency, and improve immunity against tumors and restore normal immune function; and (iii) prevent or suppress autoimmunity and restore normal immune function.
Research has demonstrated that circadian rhythms play important roles in regulating prolactin activities and vice versa.
Publications such as Meier, A. H., Gen. Comp. Endocrinol. 3(Suppl 1):488-508, 1972; Meier, A. H., Trans. Am. Fish. Soc. 113:422-431, 1984; Meier, A. H. et al., Current Ornithology II (ed Johnston R. E.) 303-343, 1984; Cincotta, A. H. et al., J. Endocrinol. 120:385-391, 1989; Meier, A. H., Amer. Zool. 15:905-916, 1975; Meier, A. H., Hormonal Correlates of Behavior (eds. Eleftherton and Sprott) 469-549, 1975 illustrate how circadian rhythms regulate prolactin activities. The resulting daily variations in responsiveness of various cell types to prolactin have a primary role in regulating numerous physiological processes, including fat storage, lipogenic responsiveness to insulin, migratory behavior, metamorphosis, reproduction, growth, pigeon cropsac development and mammary development (Meier, A. H., Gen. Comp. Endocrinol. 3(Suppl 1):488-508, 1972; Meier, A. H., Amer. Zool. 15:905-916, 1975; Meier, A. H. et al., Science 173:1240-1242, 1971). In regulating one of the foregoing physiological activities, prolactin may be observed to produce a stimulatory or an inhibitory effect on a given activity, or to have no effect on it. These varying effects have recently been shown in animals to be a function of the time of the daily endogenous peak (i.e. acrophase) of the rhythm of plasma prolactin concentration or a function of the time of daily injection of exogenous hormone (or of a substance that increases prolactin levels) or of the relation between endogenous peak and any induced peak. Furthermore, high levels of prolactin restricted to a discreet daily interval have a much greater physiologic (e.g. metabolic) effect in animals than do constant high levels throughout a day (Cincotta, A. H. et al., Horm. Metab. Res. 21:64-68, 1989; Borer, K. T. in The Hamster: Reproduction and Behavior (ed. Siegel, H. I.) 363-408, 1985). Such findings demonstrate the existence of daily response rhythms to prolactin by certain types of cells.
The first demonstration of a daily variation in physiological responsiveness to any hormone was the dramatic variation in fattening responsiveness to prolactin in the white-throated sparrow (Meier, A. H. et al., Gen. Comp. Endocrinol. 8:110-114, 1967). Injections at midday of a 16-hour daily photoperiod stimulated 3-fold increases in body fat levels, whereas injections given early in the photoperiod reduced fat stores by 50%. Such daily variations in fattening responses to prolactin were subsequently demonstrated in numerous species of all the major vertebrate classes (Meier, A. H., Amer. Zool. 15:905-916, 1975; Meier, A. H., Hormonal Correlates of Behavior (eds. Eleftherton and Sprott) 469-549, 1975) indicating the fundamental nature of such a temporal organization. The fattening response rhythm persists under constant light conditions (Meier, A. H. et al., Proc. Soc. Exp. Biol. Med. 137:408-415, 1971) indicating that it, like many other endogenous daily variations, is a circadian rhythm.
Additional studies have demonstrated that circadian rhythms have primary roles in regulating numerous physiologic activities such as, lipid metabolism and body fat stores (Meier, A. H. et al., Current Ornithology II (ed Johnston R. E.) 303-343, 1984; Meier, A. H., Amer. Zool. 15:905-916, 1975; Meier, A. H., Hormonal Correlates of Behavior (eds. Eleftherton and Sprott) 469-549, 1975; Meier, A. H. et al., J. Am. Zool. 16:649-659, 1976); Cincotta et al., Life Sciences 45:2247-2254, 1989; Cincotta et al., Ann. Nutr. Metab. 33:305-14, 1989; and Cincotta et al., Horm. Metabol. Res. 21:64-68, 1989. These experiments showed that an interaction of circadian rhythms of liporegulatory hormones (stimuli) and of circadian responses to these hormones (in target cells) determines amount of lipogenesis and fat storage. Thus, high plasma concentrations of prolactin (which serves as the stimulus) occur during the daily interval of maximal fattening responsiveness to prolactin in fat animals, but occur at other unresponsive times of day in lean animals (Meier, A. H., Amer. Zool. 15:905-916, 1975; Meier, A. H., Hormonal Correlates of Behavior (eds. Eleftherton and Sprott) 469-549, 1975; Speiler, R. E. et al., Nature 271:469-471, 1978). Similarly, plasma insulin (which acts as the stimulus) levels are highest during the daily interval of greatest hepatic lipogenic response to insulin in obese hamsters, but at a different time of day in lean hamsters (deSouza, C. J. et al., Chronobiol. Int. 4:141-151, 1987; Cincotta, A. H. et al., J. Endocr. 103:141-146, 1984). The phase relationships of these stimulus and response rhythms are believed to be expressions of neural circadian centers which in turn can be reset by neurotransmitter agents and hormone injections (including prolactin) to produce either fat or lean animals (Meier, A. H., Trans. Am. Fish. Soc. 113:422-431, 1984; Meier, A. H. et al., Current Ornithology II (ed Johnston R. E.) 303-343, 1984; Cincotta, A. H. et al., J. Endocrinol. 120:385-391, 1989; Emata, A. C. et al., J. Exp. Zool. 233:29-34, 1985; Cincotta, A. H. et al., Chronobiol. Int'l 10:244-258, 1993; Miller, L. J. et al., J. Interdisc. Cycles Res. 14:85-94, 1983). Accordingly, timed prolactin administration or enhancement acts directly upon tissues (e.g. liver in lipogenesis) undergoing circadian rhythms of responsiveness to the hormone to produce daily variations in net physiologic effects (Cincotta, A. H. et al., Horm. Metab. Res. 21:64-68, 1989) and acts indirectly by resetting one of the circadian neuroendocrine oscillations of a multi-oscillatory circadian pacemaker system to establish different phase relations between the multiple circadian (neural, hormonal, and tissue) expressions that control lipid metabolism (Meier, A. H., Trans. Am. Fish. Soc. 113:422-431, 1984; Meier, A. H. et al., Current Ornithology II (ed Johnston R. E.) 303-343, 1984; Cincotta, A. H. et al., J. Endocrinol. 120:385-391, 1989; Emata, A. C. et al., J. Exp. Zool. 233:29-34, 1985; Cincotta, A. H. et al., Chronobiol. Int'l 10:244-258, 1993; Miller, L. J. et al., J. Interdisc. Cycles Res. 14:85-94, 1983).
The present inventors have previously shown that prolactin, or substances that affect circulating prolactin levels, also affect circadian rhythms and in fact can be used to modify such rhythms (so that they more closely resemble the rhythms of lean, healthy, young individuals of the same sex) and to reset such rhythms (so that they persist in the modified condition). See, e.g. U.S. patent applications Ser. Nos. 08/158,153 07850!, 07/995,292 07788!, 07/719,745 17849!, 07/999,685 07848! and 08/171,569. This prior work by the present inventors has been clinically tested in humans afflicted with various metabolic disorders (obesity, diabetes and others) with very favorable results.
In particular, in U.S. patent application Ser. No. 07/995,292, and in its continuation-in-part Ser. No. 08/264,558, filed Jun. 23, 1994, the present inventors disclose a method for the reduction in a subject, vertebrate animal or human, of body fat stores, and reduction of at least one of insulin resistance, hyperinsulinemia, and hyperglycemia, and other metabolic diseases, especially those associated with Type II diabetes. More specifically, the foregoing application discloses methods for: (i) assessing the daily prolactin level cycles of a normal (healthy) human or vertebrate animal (free of obesity, disease or other disorder); (ii) diagnosing aberrant daily prolactin level cycles of a human or vertebrate animal; and (iii) determining the appropriate adjustments that need to be made to normalize such aberrant prolactin level cycles. This method involves the administration of at least one of a prolactin reducer and/or a prolactin enhancer at a first predetermined time (or times) within a 24-hour period (if only a prolactin reducer is administered) and/or at a second predetermined time (or times) of a 24-hour period (if a prolactin enhancer is administered). This therapy, when continued for several days, weeks or months, results in the long-term adjustment of aberrant or abnormal prolactin level cycles so that they conform to (or simulate) normal prolactin level cycles. This benefit persists over the long-term even after cessation of therapy. As a result, aberrant physiological parameters associated with various metabolic disorders are restored to normal levels or are modified to approach normal levels. Although this method is applied to all persons having aberrant prolactin levels during at least a portion of a 24-hour period, it does not mention the possibility of applying it to persons suffering from immune dysfunction.
Thus, the mutual dependence of prolactin and circadian rhythms and particularly the time-sensitivity of such dependence has not previously been correlated with immune function or dysfunction. The present inventors postulated (i) a similar daily variation of the response of the immune system to prolactin and (ii) an ability of timed, induced variations in prolactin levels to modulate immune responses by influencing production of naturally occurring immune system (up- or down-) regulators. Experimental confirmation of these postulates gave rise to the present invention, and resolved the apparent conflicts in the effects of prolactin on immunity.
One aspect of the present invention is directed to a method of ameliorating or rectifying immune system abnormalities in a mammal in need of such treatment. The method involves the administration to the mammal of a prolactin reducer and/or enhancer at a predetermined time or times during a 24-hour period that results in modification of the mammal's abnormal prolactin profile so that it approaches or conforms to the prolactin profile of a young healthy mammal of the same species.
Another aspect of the present invention is directed to a method of ameliorating or rectifying immune system abnormalities on a long-term basis by continuing the foregoing timed administration(s) of the prolactin reducer and/or enhancer until the altered prolactin rhythm of the subject is reset and persists in this reset condition for an extended period of time even after cessation of therapy, resulting in persistence of the improvement of immune system abnormalities.
Yet another aspect of the invention is directed to a method of augmenting (upregulating) immune response in a mammal (e.g., for the purpose of increasing the subject's ability to mount an immune response against infection). The method involves the timed administration of a prolactin reducer and/or enhancer at a time or times (respectively) at which reducing (or enhancing) the subject's plasma prolactin levels would enhance the subject's ability to mount an immune response. This method may also be practiced on subjects having a normal immune system.
Thus, the present invention is directed to adjusting the phase relationship between the circadian rhythms for prolactin and for one or more immune responses. The invention involves normalizing (or resetting) the circadian rhythm for prolactin to resemble that of a healthy young subject. The invention also involves manipulating the circadian rhythm for prolactin to bring it in such a phase and amplitude relation with the immunologic responsiveness to prolactin as to exert an amplifying effect on a predetermined aspect of the immune response.
"Immune dysfunction" or "immune abnormality" means individually or collectively a state of immunodeficiency or immunosuppression (marked by inability or compromised ability to mount an immune response against a pathogen or other affliction such as a tumor) and/or a state of mistargeted immune activity such as autoimmunity. Immunodeficiency and immunosuppression include situations where a subject has reduced ability to mount a T-cell response or a B-cell response (as evidenced for example by reduced mixed lymphocyte reaction, reduced delayed-type hypersensitivity or reduced T- or B-cell proliferation to a stimulus); or has reduced ability to produce cytokines or lymphokines or antibodies; or exhibits reduced expression of lymphokine receptors or reduced antigen-presenting ability (as evidenced for example by reduced expression of Class I or Class II Major Histocompatibility Complex). Such compromised ability to mount an immune response can be the result of congenital or acquired immunodeficiency or the result of chemotherapy or radiation, or other drug-induced immunosuppression. Consequently, a rectification or amelioration of immune dysfunction is the total or partial restoration of one or more of the foregoing immune responses.
"Prolactin reducer" is a substance or composition that has the ability to lower circulating prolactin levels upon administration to a mammal; "prolactin enhancer" is a substance or composition that has the ability to raise circulating prolactin levels, and includes prolactin itself.
Prolactin reducers and prolactin enhancers are referred to collectively as "prolactin modulators".
"Prolactin profile" of a subject is a depiction of circulating prolactin levels and their variation over all or part of a 24-hour period, and therefore an expression of all or part of the subject's plasma prolactin daily rhythm.
"Healthy" is a young, lean subject free of disease including malignancies, immune system dysfunctions and metabolic abnormalities. A healthy subject is one with a normal prolactin profile, i.e., a prolactin profile that does not depart from the baseline of that subject's species and sex by more than one standard error of the mean (SEM). The normal or baseline profile for healthy male and female humans is depicted in FIG. 1.
In order to avoid "false positives" a subject will not generally be considered to have an abnormal prolactin profile unless:
(a) the subject's daytime blood prolactin level is at least 1 SEM higher than the baseline at two (or more) time points during daytime spaced apart by at least one and preferably by at least two hours; or
(b) the subject's daytime blood prolactin level is at least 2 SEM higher than the baseline at one time point during daytime; or
(c) the subject's night time blood prolactin level is at least 1 SEM below the base line at two (or more) spaced apart time points (as in (a)); or
(d) the subject night time blood prolactin level is at least 2 SEM below the base line at one time point during night time.
The human male and female baselines are depicted in FIG. 1. One SEM during waking hours (07:00-22:00) is about 1-2 ng/ml for males and about 1-3 ng/ml for females; one SEM during night time (22:00-07:00) is about 3 ng/ml for males and about 3-6 ng/ml for females.
The characteristics of the prolactin level daily rhythm or profile that are to be approached or conformed in humans include achieving low prolactin levels (2-7 ng/ml of plasma) for males and 2-10 ng/ml for females) during most or all of the time period between 07:00 and 22:00 h.
Ideally, a peak prolactin level should also be achieved between the hours of 22:00 and 07:00 (preferably between 1:00 and 4:00) (the peak should be at least 10 ng/ml and most preferably between 10-15 ng/ml for males and at least 15 ng/ml and preferably between 15 and 25 ng/ml for females).
Advantages of the present invention include:
upregulation of immune responses when needed to combat disease;
restoration of normal immune responses (abatement of autoimmunity, immunodeficiency).
The benefits of the present invention may persist long-term even after cessation of the administration of prolactin modulators.
Other features and advantages of the present invention will be apparent from the following description taken in conjunction with the accompanying drawings.
FIG. 1 is the baseline prolactin daily rhythm or profile curve for healthy males ("M") and females ("F").
FIGS. 2 and 3 are bar diagrams showing the relationship between mixed lymphocyte reaction (MLR) and time of day of prolactin administration. An asterisk denotes a significant difference from control (p<0.05; Student's t test).
FIG. 4 is the same type of diagram as FIG. 3 but showing the relationship between MLR and time of day of administration of the prolactin-enhancer domperidone.
FIG. 5 is the same type of diagram as FIG. 4 but the prolactin enhancer is 5HTP.
FIGS. 6A and 6B are the same type of diagrams as FIG. 3 but showing the relationship between MLR and time of day of a prolactin reducer administration; FIG. 6A: 200 μg bromocriptine; FIG. 6B: 50 μg bromocriptine.
FIG. 7 is a bar diagram showing the relationship between T-cell response to the stimulus Concanavallin A (ConA) and the time of bromocriptine administration.
FIG. 8 is the same type of diagram as FIG. 7 but for B-cell response to the stimulus lipopolysaccharide (LPS).
FIG. 9 is a bar diagram showing the relationship between delayed-type hypersensitivity (DTH) responses (foot pad swelling) and time of day of prolactin administration.
FIG. 10 is the same type of diagram as FIG. 9 but represents the mean percent inhibition of foot pad swelling compared to the positive controls obtained from 4 experiments. An asterisk denotes a significant difference from the positive control in millimeters of footpad swelling (p<0.008; Student's t test).
FIG. 11 is a bar diagram showing the relationship between thymus cell number and time of day of prolactin administration in treated and control mice. The results represent the mean cell number +/-SEM of 8-10 mice per group. An asterisk denotes a significant difference from control (p<0.01; Student's t test).
FIG. 12 is a series of tracings depicting the male base prolactin profile (i.e the normal prolactin profile for healthy young males) MB, and, superimposed on it, prolactin level profiles (ng/ml plasma) pre-therapy (black line) and in-therapy (grey line and dotted line) prolactin profiles for a male patient suffering from Crohn's disease.
FIGS. 13 and 14, respectively contain the female base prolactin profile FB and tracings similar to those of FIG. 12 for two female rheumatoid arthritis patients.
FIGS. 15 and 16, respectively contain the female base prolactin profile FB and tracings similar to those of FIG. 12 for two female fibromyalgia patients.
All patents, patent applications, and literature references discussed in this specification are hereby incorporated by reference. In case of conflict, the present disclosure controls.
The alteration of prolactin levels in a subject having a normal immune system (either by administering prolactin, or by administering substances that alter prolactin blood levels) has been found to augment or reduce a subject's ability to mount an immune response to a given challenge. Whether the effect on the immune response is stimulatory or suppressive is dependent on the time of day the alteration of the prolactin levels occurs and on the nature of the alteration. Thus, increasing the plasma levels of the hormone at or near a time when cellular responsiveness to high prolactin is at its peak, in mice preferably about 10-12 hours after light onset (HALO), normal immune responses (and immune responses to alloantigens) are augmented. Conversely, decreasing prolactin plasma levels at or near the peak of responsiveness, in mice 4-12 HALO, preferably 10-12 HALO, suppresses immune response. On the other hand, causing the circulating prolactin levels to increase at a time when cellular responsiveness to prolactin is at its lowest, in mice preferably at approximately light onset (20-24 HALO and 0-3 HALO; preferably 22-24 HALO and 0-2 HALO), immune responses are often (but not always) suppressed.
The experimental data described herein show that prolactin injections (or prolactin enhancer administration) 9-12 HALO cause an increase in the mouse mixed lymphocyte response (MLR) to alloantigens and an increase in the proliferation of nonstimulated mouse splenocytes as compared to naive controls. Prolactin injections (or prolactin enhancer administration) made 16-24 HALO did not have a significant effect on MLR. Prolactin injections (or enhancer administration) at light onset resulted in significant inhibition of mouse immune responsiveness (as measured by MLR) as compared to naive controls. These results indicate that the effect of in vivo prolactin modulation of in vitro immune responses to foreign antigen is time-of-day dependent. In vivo response to antigen as measured by delayed-type hypersensitivity (DTH) experiments is also described herein. As with the MLR above, prolactin injections made at light onset often (but not always) inhibited the footpad swelling response, indicating that prolactin caused a reduced immune response; however, prolactin administration at 10 HALO was significantly stimulatory relative to control.
A time of day dependent role for prolactin in immune responses is also indicated by results of experiments on mice which decrease prolactin blood levels (by administration of a prolactin reducer) during specific daily intervals of daily immune responsiveness to exogenous prolactin (i.e. during an interval about 9-12 HALO in mice and another interval about 0 HALO in mice). Dose-response studies with bromocriptine, a D2 dopamine agonist which inhibits endogenous prolactin secretion, indicate that bromocriptine exerted an inhibitory action on the DTH response at 10 HALO but not at 0 HALO. Bromocriptine was also found to be inhibitory for T and B cell proliferative responses to mitogenic stimulation with either concanavalin A (100%; p<0.01) or lipopolysaccharide (47%; p<0.01) respectively, when administered at 10 but not at 0 HALO.
The above in vitro and in vivo immune responses are dependent on mature T cell activation. Thymic hormones are essential for the differentiation of progenitor T cells within the thymus. Moreover, thymic hormones enhance peripheral T cell activity (Baxevanis, C. N. et al., Immunopharm 15:73-84, 1988), major histocompatibility complex class II antigen expression (Baxevanis, C. N. et al., J. Immunol. 148: 1979-1984, 1992), and augment antigen presenting function (Tzehoval, E. et al., Immunopharm. 18:107-113, 1989), all of which can promote MLR and DTH reactivity. Inasmuch as prolactin stimulates thymic epithelial cell proliferation as well as thymic hormone production (Dardenne, M. et al., Endocrinology 125:3-12, 1989), prolactin should also have an effect on thymus cell number. Indeed, daily prolactin injections were given to 5 week old mice either at light onset or at 11 HALO for one month. Prolactin treatment at 11 HALO significantly increased thymus cell number relative to controls whereas prolactin injections at light onset did not.
The above results indicate the immunomodulatory effects of prolactin levels and the relationship of cellular responsiveness to exogenous prolactin (or prolactin enhancers or reducers), and the time of day of prolactin reduction or enhancement.
Although the foregoing experiments were conducted in mice, they are dependent on features of the immune system that are common to mammals having a prolactin daily rhythm including humans. These results show that the blood levels of prolactin can be manipulated during predetermined intervals to bring about a desirable effect on the immune system.
According to the method of the present invention, the alteration of prolactin levels of a subject at particular times of day provides methods of improving immune responsiveness of the subject or restoring or augmenting normal immune responses or ameliorating abnormal immune responses. The method may be used to increase the protection of subjects that are immunosuppressed (or even subjects that do not suffer from immunosuppression) against infection. Augmenting the immune response will provide an increased level of protection against invading pathogens such as viruses, bacterial, or fungal infections in susceptible individuals. This method will also be useful in the treatment of individuals who are immunocompromised or immunodeficient independent of the cause. Additional subjects who could benefit from this treatment method include without limitation allograft recipients, surgery patients, allergy sufferers, burn victims, cancer patients receiving chemotherapy or radiation therapy, patients suffering from HIV-infection or a congenital immunodeficiency such as severe combined immunodeficiency (SCID) or DiGeorge Syndrome. Any subject whose immune system has been deregulated (but not completely ablated) by a congenital or clinical condition or by medication will benefit from the present invention. An augmentation in immune responses is also of value in groups sharing common quarters, such as military recruits, summer campers, or disaster victims, or with the aged in nursing homes, who are at a high risk of contracting infections.
The method can also be used to reduce or eliminate damage to a subject caused by a deleterious immune reaction. Specifically, subjects suffering from autoimmune diseases whether such conditions are mediated or dependent on B-cells, T-cells or both. Nonlimiting examples include rheumatoid arthritis, multiple sclerosis, endocrine ophthalmopathy, uveoretinitis, the autoimmune phase of Type 1 diabetes, systemic lupus erythematosus, myasthenia gravis, Grave's disease, glomerulonephritis, autoimmune hepatological disorder, autoimmune inflammatory bowel disease, and Crohn's disease. Subjects suffering from inflammation having immune reaction characteristics (e.g. anaphylaxis, allergic reaction) would also benefit from the present treatment method. This method is also useful in the treatment of recipients of tissue or organ transplants to reduce host-induced allograft rejection.
(a) Adjusting Prolactin Rhythms of Subjects With Immune Dysfunction
It is known that young adult healthy mammals of a given species (and sex), e.g. humans (suffering from no hormonal or metabolic disorders or cancer or other infection or ailment) have highly predictable daily prolactin level rhythms or profiles. The baseline curve for healthy human males and females in FIG. 1 is derived from such young healthy individuals.
It is also known that persons suffering from immune dysfunction have abnormal prolactin rhythms. Nicoletti, supra; Vidaller, supra; Gerli, supra; McMurray, supra, Fraga, A. et al., Arthritis Rheum. 32:524, 1989; and Laualle, C., J. Rheumatol. 14:266, 1987.
The phase relationship between the daily peaks of the stimulus (plasma prolactin) rhythm and response (immunocellular rhythm) to prolactin is of critical importance to the status of immune function. Environmental and pharmaceutical factors influencing either of these rhythms can be expected to impact immune function. Furthermore, phase shifts in either or both of these rhythms may be associated with immunologic disorders, as well as cancer (Bartsch, C. et al., J. Pineal Res. 2:121-132, 1985; Bartsch, C. et al., Cancer 64:426-433, 1989).
For example, persons with autoimmune disease commonly have hyperprolactinemia during the day, especially in AM after dawn at which time, in humans, it is believed that the excess (above baseline) prolactin deregulates immune function. By adjusting (reducing) the daytime prolactin levels of such individuals the deregulation of immune function can be rectified or ameliorated. In terms of the foregoing experiments this would be equivalent to an animal the immune function of which has been deregulated by administration of prolactin, e.g. at zero HALO. The immune function can be restored by administration of a prolactin reducer at zero HALO.
Persons with immune dysfunction thus benefit to a significant extent by adjustment of their prolactin daily rhythms (as expressed by their prolactin profile) to conform to or approach the normal or baseline prolactin curve of FIG. 1. An adjusted profile approaches a normal or healthy profile, if all or a portion of the abnormal profile moves in the correct direction by at least 2 ng/ml.
This adjustment can be accomplished by administration to such individuals of one or both of the following:
a prolactin reducer at a first predetermined time (or at more than one first predetermined time) and in a first amount effective to reduce day time prolactin levels if these levels are too high; and
a prolactin enhancer at a second predetermined time (or at more than one second predetermined times) and in a second amount effective to increase night time prolactin levels if these levels are too low.
In general, if a prolactin level altering substance is to be administered, appropriate allowance should be made with respect to the time of administration to permit that substance (depending on its pharmacokinetic properties) to affect prolactin levels such that prolactin levels would be modified during the appropriate time of day. Thus, the prolactin altering substance will be administered as follows:
(a) if prolactin is administered, it will be administered during the time interval that prolactin levels need to be raised;
(b) if a prolactin enhancer other than prolactin is administered, it will be administered during or slightly prior to the time interval when prolactin levels need to be raised (how much prior depends on pharmacokinetic properties: generally 0-3 hours prior will be effective); and
(c) if a prolactin reducer is administered it will also be administered during or slightly prior to the time that prolactin levels need to be reduced (again, 0-3 hours prior will be generally effective).
In the method of the present invention, "prolactin enhancer" includes prolactin as well as substances which increase circulating prolactin levels (e.g. by stimulating prolactin secretion). Non-limiting examples of a prolactin enhancer include prolactin; melatonin; dopamine antagonists such as metoclopramide, haloperidol, pimozide, phenothiazine, domperidone, sulpiride and chlorpromazine; serotonin agonists, i.e., MAO inhibitors, e.g., pargyline, synthetic morphine analogs, e.g., methadone; antiemetics, e.g., metoclopramide; estrogens; and various other serotonin agonists, e.g., tryptophan, 5-hydroxytryptophan (5-HTP), fluoxitane, and dexfenfluramine. Moreover, the non-toxic salts of the foregoing prolactin enhancing compounds formed from pharmaceutically acceptable acids are also useful in the practice of this invention. Metoclopramide has been found particularly useful in the practice of this invention.
Nonlimiting examples of prolactin reducers include prolactin-inhibiting dopamine agonists such as dopamine and certain ergot-related prolactin-inhibiting compounds. Nonlimiting examples of dopamine agonists are 2-bromo-alpha-ergocriptine; 6-methyl-8 beta-carbobenzyloxy-aminoethyl-10-alpha-ergoline; 8-acylaminoergolines, are 6-methyl-8-alpha-(N-acyl)amino-9-ergoline and 6-methyl-8 alpha-(N-phenylacetyl) amino-9-ergoline; ergocornine; 9,10-dihydroergocornine; and D-2-halo-6-alkyl-8-substituted ergolines, e.g., D-2-bromo-6-methyl-8-cyanomethylergoline; carbi-dopa and L-dopa; and lisuride. Moreover, the non-toxic salts of the prolactin-reducer compounds formed with pharmaceutically acceptable acids are also useful in the practice of this invention. Bromocriptine, or 2-bromo-alpha-ergocryptine, has been found particularly useful in the practice of this invention.
The modulation of immune responses induced by prolactin enhancers or reducers is expected to be dose-dependent over a range of dosages.
In treating mammals, generally, dosages of the prolactin reducer and/or enhancer, respectively, are each given, generally once a day, generally over a period ranging from about 10 days to about 180 days, but treatment can continue indefinitely (if necessary or desired) for months or even years. The preferred prolactin reducer (accelerated release bromocriptine) is given daily at dosage levels ranging from about 3 micrograms to about 100 micrograms, preferably from about 10 micrograms to about 40 micrograms, per kg. of body weight, and the preferred prolactin enhancer (metoclopramide) is given daily at dosage levels ranging from about 5 micrograms to about 200 micrograms, preferably from about 5 micrograms to about 100 micrograms, per kg. of body weight per day to modify, or alter, the prolactin profile.
Administration of either or both prolactin altering substances can be continued for a time sufficient to reset the circadian plasma prolactin rhythm to the phase and amplitude modified by administration of the prolactin altering substance, at which time treatment may be discontinued. If the subject suffers a relapse, treatment may be resumed. The time needed for resetting varies but is generally within the range of 30-180 days.
In treating humans, in particular, the prolactin reducer (accelerated release bromocriptine) is generally given at daily dosage levels ranging from about 3 micrograms to about 100 micrograms, preferably from about 10 micrograms to about 40 micrograms, per kg. of body weight (typically 0.2-1.5 mg/person/day; preferably 0.8-8 mg). The prolactin enhancer metoclopramide is generally given at daily dosage levels ranging from about 1 micrograms to about 50 micrograms, preferably from about 5 micrograms to about 20 micrograms, per kg. of body weight per day. (Per person daily dosages range of metoclopramide are typically 0.5 to 5.0 mg; preferably 0.5 to 2.0 mg.) Such treatment (using one or both types of prolactin altering substances) is typically continued over a period of time ranging from about 10 days to usually about 180 days, resulting in modification and resetting of the immune functions of the patient to that of a lean, young, healthy person, at which time treatment may be discontinued. For some patients (e.g. patients in particularly poor physical condition, or those of an advanced age) it may not be possible to reset their prolactin rhythm within the above time periods and such patients may require a longer, or even continuous, treatment with prolactin enhancers and/or reducers. The dosage and timing information set forth above is designed for bromocriptine and metoclopramide and will have to be altered for other agents using the dosage and timing methodology disclosed herein.
In the practice of this invention, a prolactin reducing compound, and/or a prolactin enhancer are administered daily to a subject preferably orally, or by subcutaneous, intravenous or intramuscular injection. Dermal delivery systems e.g., skin patches, as well as suppositories and other well-known systems for administration of pharmaceutical agents can also be employed. Treatment generally lasts between about 10 and about 180 days on average in humans. The administration of the prolactin reducer and/or prolactin enhancer in this manner will thus reset the phase and amplitude of the neural oscillators that control the immune system to rectify or ameliorate immune function on a long term basis (e.g., several months or years). An improvement or amelioration in immune function can be assessed by observation of partial or total restoration of the ability to mount immune response as described above in connection with the definition of immune dysfunction. In the case of autoimmune disease, an improvement or amelioration can best be assessed by a significant reduction or disappearance of a clinical symptom associated with inflammation caused by the autoimmune disease, for example: joint pain or swelling or stiffness in rheumatoid arthritis; number of major attacks in chronic-relapsing multiple sclerosis; stabilization or improvement of motor function in chronic progressive multiple sclerosis; intestinal inflammation in the case of Chron's disease; and serological measurements (such as antibody to double-stranded DNA, complement components and circulating immune complexes), number and severity of skin flare-ups or myalgras, arthralgia, leukopenia, or thrombocytopenia for systemic lupus erythematosus. The symptoms which can be used to monitor efficacy of a regimen in autoimmune disease are generally well-known in the art.
Improvement in ability to mount an immune response against infection can also be measured by testing for the infectious agent.
The following more specific guidelines will generally be followed to initially determine bromocriptine administration timing, for a period of treatment of approximately 26 weeks:
a) Week 1 to Week 6
First Dosage
If any one of a patient's 07:00, 08:00, 16:00 or 19:00 prolactin levels is equal to or higher than 5.0 ng/ml for males or 7.0 ng/ml for females, then 0.8 mg of accelerated release bromocriptine is administered at 06:00 daily.
Second Dosage
Beginning in week 3, a second dosage containing 0.8 mg of accelerated release bromocriptine is also administered at 10:30 daily.
b) Week 7 to Week 12
First dosage
If any one of the 07:00, 08:00, 16:00, or 19:00 prolactin values is still equal to or higher than 5.0 ng/ml for males or 7.0 ng/ml for females, then 1.6 mg of accelerated release bromocriptine are administered at 06:00. Otherwise, 0.8 mg of accelerated release bromocriptine is administered at 06:00 daily.
Second Dosage
In addition, if the 19:00 prolactin level is less than or equal to 1.5 ng/ml for males or females then the second dosage of 0.8 mg of accelerated release bromocriptine is administered at 08:30 daily instead of at 10:30. If the 19:00 prolactin level is higher than 1.5 ng/ml for males and females, then the second dosage continues to administered at 10:30 daily.
If the 19:00 prolactin level is less than 1.0 ng/ml for males and females, then there is no administration of second dosage.
c) Week 13 to Week 26
For both first and second dosages the rules are the same set forth for Weeks 7-12, subject to the following:
(i) If either the 16:00 or 19:00 prolactin level is equal to or higher than 5.0 ng/ml for males or 7.0 ng/ml for females, then add an additional 0.8 mg of accelerated release bromocriptine to the first dosage, unless the patient is already receiving 2.4 mg of bromocriptine in total. In that case, add the additional 0.8 mg of accelerated release bromocriptine to the second dosage;
(ii) If the 19:00 prolactin level is lower than 1.5 ng/ml for males or females, then the second dosage time is adjusted by administering it 2 hours earlier; and
(iii) If each of the 08:00, 16:00 and 19:00 prolactin levels is less than 1.0 ng/ml for males or females, then subtract 0.8 mg of accelerated release bromocriptine from the second dosage, or, if there is no second dosage, then subtract 0.8 mg of accelerated release bromocriptine from the first dosage. In the vast majority of patients, the first dosage must contain a minimum of 0.8 mg of accelerated release bromocriptine.
The time and amount schedules given above are intended as guidelines for bromocriptine administration and those skilled in the art can further adjust the precise timing and amount of bromocriptine administration based on the actual prolactin profile or key prolactin levels of a patient to be treated. For example, if a patient does not respond (or does not respond adequately) to a given dosage or dosages (e.g. 0.8 mg) it (or they) can be increased (e.g. to 1.6 mg).
When needed, metoclopramide (generally daily dosage range is 0.5-5.0 mg/person; preferred daily dosage range is 0.5-2.0 mg/person) can be administered once about one hour before bedtime.
Of course, the foregoing dosages are subject to optimization and it is expected that there will be minimum and maximum effective dosages. In other words, adjustment of the prolactin rhythm or levels to regulate immune response will occur within a specific dosage range. (This is also illustrated in Example 2 below for downregulation of immune responses using bromocriptine as the prolactin modulator.)
The aspect of the invention directed to a modulation of the immune system by resetting the prolactin level profile of a vertebrate subject (animal or human) having an aberrant prolactin profile to conform to or approach the prolactin profiles for young healthy members of the same species and sex (e.g. the baselines of FIG. 12 et seq.) involves administration of a prolactin reducers, or a prolactin enhancer, or both, at predetermined dosages and times dictated by the aberrant (pre-treatment) prolactin profile of the subject to be treated. The amounts of prolactin reducers and/or enhancers that are required to bring about this modification are within the same ranges as set forth above, but the time(s) of administration of these prolactin modulator(s) is determined by reference to how much and when the aberrant profile differs from the normal prolactin profile (baseline curve). Methods for determining the amounts and timing of administration are also set forth in our copending U.S. patent application Ser. No. 07/995,292 U.S. Pat. No. 5,585,347 and its C-I-P, Ser. No. 08/264,558, abandoned filed Jun. 23, 1994, both incorporated by reference. A preferred accelerated release bromocriptine dosage form has been disclosed in our copending U.S. patent application Ser. No. 08/171,897, abandoned, also incorporated by reference.
(b) Augmenting Immune Responses
As illustrated in Examples 1-5, the present invention provides a method for augmenting immune responses (e.g. increased T-cell response or B-cell response etc. as described above in connection with the definition of immune dysfunctions) to increase a subject's ability to fight infection. This can be accomplished by administration of prolactin or another prolactin enhancer at a predetermined time during a 24-hour period at which increased bloodstream levels of prolactin enhance immune response.
In mice, prolactin injections or administration of prolactin enhancers were shown to be immunostimulatory during the interval of 4-12 HALO during which time the immune system responds positively to increased prolactin levels.
In treating any mammal having a prolactin daily rhythm in accordance with this aspect of the method of the present invention, the appropriate interval of positive immunoresponsiveness to increased prolactin must first be ascertained. This can be accomplished by experiment similar to those of Examples 1-5. Instead of MLR or DTH measurements, well-known lymphocyte proliferation or lymphocyte activation assays or lymphocyte characterization methods can be used to assess the effect of increased prolactin. Once a time point within the appropriate time interval has been identified, administration of the prolactin enhancer can be undertaken. The time of administration can be further optimized by repeating experiments such as those of Examples 1-5 at time points spaced apart from (e.g. within 3 hours of) a time point where prolactin enhancement has been found to be effective in augmenting immune response.
Ascertaining the effective dosage range as well as the optimum amount is well within the skill in the art. For example, dosages for mammals can be determined by beginning with a relatively low dose (e.g., 0-8 mg bromocriptine or 0.5 mg of metoclopramide), progressively increasing it (e.g. logarithmically) and assessing the immune responses of the mammal according to well-known methods, as detailed in Examples 1-5, below. The optimum dosage will be the one generating the maximum or minimum MLR, DTH response, thymic cell count or other measurement of immune responsiveness. An effective dosage range will be one that causes at least a statistically significant alteration of at least one measurement of immune response.
For mammals, generally the amount of prolactin enhancer to augment immune response will be within the range of
1 to 50 μg/kg/day
If the enhancer is prolactin, the range will be
10 to 1000 ng/kg/day
For humans, the amounts of prolactin will generally be the same as above; those for domperidone will be 0.17 to 17 mg/kg/day; 5HTP, 1 to 50 mg/kg/day.
Without being bound by theory, it is hypothesized that daily administration of exogenous prolactin or increase of endogenous prolactin levels mediates a coordinated cellular preactivation state which readies cells for immune responsiveness. Prolactin stimulation of lymphocytes induces the activation of ornithine decarboxylase, nuclear protein kinase C, IL-2 production, and IL-2 receptor expression necessary for enhanced responses to foreign antigen (Gala, R. R., Proc. Soc. Exp. Biol. Med. 198:5-13, 1991; Russel, D. H., Trends Pharm. Sci. 10:40-44, 1989). Since prolactin receptors have been identified on polymorphonucleocytes and macrophages, as well as lymphocytes (Gala, R. R., Proc. Soc. Exp. Biol. Med. 198:5-13, 1991), this "preactivation" may serve to target various cell activities enhancing immune responses (e.g. MLR and DTH), including the production of thymic hormones known to stimulate MLR (Baxevanis, C. N. et al., Immunopharm 15:73-84, 1988), the production of cytokines (Tzehoval, E. et al., Immunopharm. 18:107-113, 1989), and enhancement of antigen-presenting ability by increasing expression of class II MHC (Baxevanis, C. N. et al., J. Immun. 148: 1979-1984, 1992) and/or possibly B7 antigens.
Based on previous observations in other physiological systems, the phase (i.e. daily peak) of this immunocellular response rhythm to prolactin may be entrained directly or centrally by other humoral or neural factors. Humoral factors include for example corticosteroid (Meier, A. H., Trans. Am. Fish. Soc. 113:422-431, 1984; Meier, A. H. et al., Current Ornithology II (ed Johnston R. E.) 303-343, 1984; Cincotta, A. H. et al., J. Endocrinol. 120:385-391, 1989). Neural factors include for example dopamine (Emata, A. C. et al., J. Exp. Zool. 233:29-34, 1985; Cincotta, A. H. et al., Chronobiol. Int. (in press); Miller, L. J. et al., J. Interdisc. Cycles Res. 14:85-94, 1983). It should be clarified that the daily variation of immunologic responsiveness to prolactin is distinct from the well-established circadian rhythm of immune activity (Fernandez, J. in Biologic Rhythms in Clinical and Laboratory Medicine (eds. Y. Touitou & E. Haus) 493-503, 1992).
The present invention may be better understood by experiments described in the Examples below. These Examples are to be considered illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. Accordingly, all suitable modifications and equivalents may be used and will fall within the scope of the invention and the appended claims.
Groups (n=3-6) of adult male BALB/c and C57BL/6 mice (Charles River, Wilmington, Mass.) were maintained from birth on 12 hour daily photoperiods. Ovine prolactin available from Sigma Chemical Co., St. Louis, Mo.) was injected intraperitoneally (1 mg/kg body weight, 20 μg/animal/day for 10 days) at 0/24, 4, 8, 12, 16 or 20 HALO. A control group remained untreated. Individual spleen cells (responder cells) were then obtained from control or experimental mice by standard methods, erythrocytes lysed, and the splenocytes were resuspended in RPMI 1640 (Gibco, Grand Island, N.Y.) supplemented with 1 mM L-glutamine lo penicillin/streptomycin, 0.01M HEPES, and 1% heat-inactivated normal mouse serum. Stimulator spleen cells were obtained from normal male C57BL/6 mice, irradiated with 4000 rad of gamma irradiation, washed with Hank's balanced salt solution, and resuspended in culture media. 5×105 responder cells were added to 5×105 stimulator cells or media alone in a total volume of 0.2 ml in 96 well flat-bottomed plates. After 96 hr, cell proliferation was assayed by incubation with 1 μCi of 3 H-thymidine (New England Nuclear, Boston, Mass.) and, after an additional 18 hours, cells were harvested and counted in a scintillation counter. Cell suspensions from each animal were assayed in sextuplicate and expressed as the mean +/-SEM of 3-6 mice per group. FIG. 2 shows a representative experiment of three separate experiments.
As can be seen by reference to FIG. 2, prolactin injections made 4-12 HALO substantially increased (114%, p<0.05) MLR response to alloantigens. Also increased (to a lesser albeit still significant extent) was the proliferation of nonstimulated responder splenocytes from treated animals as compared to the negative controls. It should be noted that injections made 16-20 HALO had no significant effect on MLR response. Additionally, injections at light onset (0/24 HALO) resulted in a 66% inhibition of MLR compared to controls.
Thus, the experiment of this example illustrates dramatically the importance of timing of increases in prolactin level. Increasing the amount of circulating prolactin at different times causes augmentation of immune response to alloantigen or suppression of immune response to alloantigen or produces no significant effect.
The foregoing results have been repeated in another similar experiment the results of which are shown in FIG. 3 (n=5).
Adult male BALB/c mice (5-6 mice per group) maintained on 12 hour daily photoperiods were injected daily for 12 days with bromocriptine at 0.5, 1.5, 2.5, or 5.0 mg/kg body weight at either 0 or 10 HALO. A control group remained untreated. Six days after the initiation of drug treatment, treated and positive control (sensitized but no bromocriptine) mice were sensitized to azobenzene arsonate (ABA) by subcutaneous injection of 3.0×107 ABA-coupled syngeneic male spleen cells (Bach, B. A. et al., J. Immunol. 121:1460-1468, 1978). A negative control group remained unsensitized. Six days following sensitization, all mice were challenged in the footpad with 30 μl of 10 mM ABA solution. Footpads were measured 24 hours later and the swelling response was determined by subtracting the thickness of the non-injected footpad from that of the injected footpad. FIG. 10 represents the mean percent inhibition of footpad swelling compared to the positive controls obtained from 4 experiments.
Different amounts of bromocriptine produced different effects on the immune system depending on the time of their administration. Thus, at 0 HALO, 0.5 mg/kg or 1.5 mg/kg or 2.5 mg/kg of bromocriptine had no significant effect in inhibiting footpad swelling. 5.0 mg/kg of bromocriptine administered 0 HALO produced significant inhibition of DTH responses (i.e. had a significant immunosuppressive effect).
On the other hand, at 10 HALO, dosages of 1.5, 2.5 and 5.0 bromocriptine had a significant suppressive effect. This indicates that the DTH inhibitory (i.e. immunosuppressive) effect of bromocriptine when bromocriptine is given at 10 HALO is much greater than if given at 0 HALO. FIG. 10 graphically represents the effect on the delayed-type hypersensitivity response in mice of 1.5 mg/kg of bromocriptine administered at 0 HALO and at 11 HALO compared to controls. Bromocriptine inhibits prolactin secretion in mice for about 4-6 hours when administered at 1.5 mg/kg and for about 16 hours when administered at 5 mg/kg. Thus, the 5.0 mg/kg dosage at 0 HALO produced a long-lasting suppression of endogenous prolactin that most likely carried over to the window of immunoresponsiveness to prolactin. These results show that the dosage of prolactin reducer should not be so high as to ablate the daily prolactin level cycle of the treated mammal but should be kept at levels that reduce prolactin substantially only during the desired interval of day. The results of this Example 2 also show that the immune responsiveness to prolactin obeys a daily rhythm. The experiment of this Example 2 also provides a method for determining the appropriate dosage or dosage range for a prolactin modulator.
The same type of experiment was conducted with prolactin administered at 20 μg per animal per day for 12 days at 0 HALO or at 11 HALO. The DTH response (expressed as foot pad swelling mm) is shown in FIG. 9 compared to negative and positive control. The asterisk denotes a significant difference from positive control.
The foregoing DTH experiments validate the usefulness of the present invention in augmenting and suppressing immune responses, including immune responses to alloantigen (e.g., allograft rejection).
The MLR experiment of Example 1 was repeated but bromocriptine (200 μg/animal/day or 50 μg/animal/day) was administered for 7 days at 0 and 9 HALO. The results are shown in FIGS. 6 (A and B). Bromocriptine (prolactin reduction) was found to have no effect on MLR at 0 HALO but was significantly inhibiting at 9 HALO.
Bromocriptine (50 μg/animal/day for 10 days) was also found to be significantly more inhibitory of both T-cell and B-cell proliferative responses to mitogenic stimulation with either concanavalin A (ConA) in the culture medium (100% inhibition; p<0.01) (FIG. 7) or lipopolysaccharide (47% inhibition; p<0.01) (FIG. 8) when bromocriptine was administered at 10 HALO as compared to administration of the same amount of bromocriptine at 0 HALO in MLR experiments similar to those of Ex. 1. This supports the existence of a daily rhythm of immune responsiveness to prolactin.
The experiment of Example 1 was repeated but the prolactin enhancer domperidone (which does not cross the blood-brain barrier) was administered to mice (n=5 per group) at 23 at 10 HALO to mice in an amount of 1.7 mg/kg/day for seven days. The results, shown in FIG. 4 are that domperidone significantly increased MLR when administered at 10 HALO but not at 23 HALO. The same experiment was conducted with 5-hydroxytryptophane (5-HTP) in an amount of 25 mg/kg/day for seven days. μgain 5HTP did not change MLR when administered at 0 HALO but significantly increased MLR when administered at 9 HALO. The results are in FIG. 5. These experiments show that prolactin increase can be achieved indirectly by administration of substances that raise circulating (blood) prolactin levels.
Adult (5 week old) male BALB/c mice (8-10 animals/group) maintained on 12 hour daily photoperiods were injected daily for 28 days with ovine prolactin (2.25 mg/kg) at 0 or 11 HALO. A control group remained untreated. On day 29 thymuses were removed, cell suspensions were obtained by mechanical dissociation, and total cell number was determined by counting in a hemocytometer chamber. The results of FIG. 11 represent the mean cell number +/-SEM of 8-10 mice per group.
As can be seen in reference to FIG. 11, prolactin treatment at 11 HALO significantly increased to 42% the thymus cell number relative to controls (p<0.01) whereas prolactin injections at light onset did not. These results indicate that the stimulatory effect of prolactin on the immune system extends to thymic cells. Additionally, these findings also support that immune responsiveness obeys a circadian rhythm.
In the following Examples 6-10, patients with various autoimmune diseases have been treated with bromocriptine to normalize (or make closer to normal) and reset their daily prolactin profiles. As a result, the immune function of these individuals improved, in that at least one symptom due to inflammation associated with the autoimmune diseases that afflicted each individual was measurably reduced, and/or medication was reduced or discontinued.
The subject (male; 20 yrs) was diagnosed with Crohn's disease in 1992 based on exploratory surgery and barium X-ray. Approximately 12 inches of the small intestine were inflamed. The subject received prednisone 40 mg/day tapered to zero over a 16 week period.
The subject's 24-hour pre-therapy prolactin profile (generated about 5 months after he stopped taking prednisone) is shown graphically as the line labelled "Visit 1" in FIG. 12. It shows prolactin levels that are too high throughout the daytime. The subject was given 1.25 mg of bromocriptine at 08:30 h each day for 20 weeks. A reevaluation profile was generated for this subject after 20 weeks of treatment and is graphically shown as the line labelled "Visit 2" in FIG. 12. (Already at Visit 2, the area under the daytime prolactin curve was substantially reduced which shows progress but prolactin remained too high from 10:00-13:00 and from 16:00-22:00. Ablation of the undesirable early morning peak was also observed.) From this time, the dosage was increased to 2.5 mg per day at 08:30 h to achieve lower prolactin levels during the day. The effects of this change in dosage upon the further prolactin profile of the patient (generated 10 months after the commencement of the 2.5 mg administration) are shown in the line labelled Visit 3 in FIG. 1, which shows that the daytime male prolactin levels of the subject were between 2 and 7 ng/ml for most of the daytime period (07:00-22:00) and its prolactin profile has approached the standard profile in the daytime.
At 15 months from commencement of therapy, the subject still did not have a proper night time peak although daytime prolactin levels remained clearly improved. Bromocriptine therapy was continued at 2.5 mg,/day for a further 24 weeks (total therapy 20 months).
The clinical improvements to this patient included: (1) avoidance for surgical resection within this time period (3 yrs.); (2) no increase in inflamed area of intestine despite discontinuance of prednisone for 2 years, based on a comparison of X-rays from first diagnosis with most recent (post-therapy); (3) during the time from first diagnosis to end of treatment scarring was minimal as determined by intestinal response to prednisone treatment; and (4) the patient reported no major intestinal discomfort during bromocriptine treatment despite no major dietary changes from pre-diagnosis.
The subject (female; 55 yrs old; 5 ft 2in.; 171.25 lbs) presented with:
(a) rheumatoid arthritis diagnosed in 1972; bursitis in the neck was diagnosed in 1992; symptoms included degeneration of the bones in the fingers; medication: 1800 mg of ibuprofen daily (since October 1992) reduced to 400 mg of ibuprofen (ADVIL) twice daily during bromocriptine treatment and discontinued entirely after 12 weeks of treatment.
(b) obesity: 136% IBW (based on the standard table of Metropolitan Life Insurance Co. NY, N.Y. available from the company).
The subject's 24 hour pre-therapy prolactin profile is shown graphically as the black line in FIG. 13 (Week O.B.). The subject's prolactin level was too high throughout the day, particularly at 07:00 h. In addition, the night time peak was shifted forward. The subject was given 1.6 mg of bromocriptine at 09:00 for the first two weeks and for the following four weeks, the subject was given 0.8 mg of bromocriptine at 05:00 and 1.6 mg of bromocriptine at 09:00. For the next four weeks (weeks 6-10 of the study), the time of the dosage of 1.6 mg of bromocriptine was changed from 09:00 hr to 10:00 hr. Reevaluation profiles were generated for this patient after 2, 6 (not shown) and 10 weeks.
The improvements observed in the prolactin profile of this patient after two weeks consisted of prolactin levels throughout the afternoon and early evening that were normalized or very close to normal. However, the prolactin level was still too high at 07:00. The patient's total dosage was increased beginning with week 3, to include 0.8 mg of bromocriptine at 05:00 hr. in an attempt to lower the patient's prolactin level at 07:00 h. Indeed, the patient's prolactin level at 07:00 hr was reduced to near normal after six weeks of treatment. Therapy lasted 18 weeks. As can also be seen in FIG. 13, after 10 weeks of treatment the daytime prolactin level of the patient remained normal but the night time prolactin level was reduced below normal levels. Based on substantial clinical experience in prolactin rhythm modifications, however, the inventors believe that a patient afflicted with autoimmune disease whose prolactin daytime levels have been normalized (or made closer to normal) benefits from the therapy even though night time levels may still be or may have become abnormal. The present inventors believe that the benefits to this patient will be further increased when the night time levels are also normalized.
The clinical improvements in this patient included: cessation of all arthritis medication after week 12 of the treatment and disappearance of the following symptoms: swelling, pain and stiffness in the joints; and a loss of body fat of approximately 20 pounds, from 65 pounds to 45 pounds. The patient's total weight also dropped over the course of the study by 25 lbs. An additional important clinical benefit to this patient was that the clinical improvements described above have thus far persisted for 8 months following cessation of the treatment.
The subject (female; 46 yrs old; 5 ft. 5.7 ins; 235 lbs) presented with:
(a) rheumatoid arthritis for approximately six years; the patient was taking both naproxen (1500 mg) and aspirin (680 mg) daily, as well as ibuprofen (200 mg) as needed.
(b) obesity: 156% IBW (based on the standard table of Metropolitan Life Insurance Co.);
The subject's 24 hour pre-therapy prolactin profile is shown graphically as the black line in FIG. 14. It shows that pretreatment prolactin levels (WEEK O.B.) were too high throughout the day, particularly at 07:00 h. For the first 6 weeks of treatment, the subject was given 1.6 mg of bromocriptine at 09:30. From week six through week ten, the subject was given 0.8 mg of bromocriptine at 05:00 hr and 1.6 mg of bromocriptine at 10:00 hr. From week 10 through week 18, the subject was given 1.6 mg of bromocriptine at 05:00 hr and 0.8 mg of bromocriptine at 10:00 hr. Reevaluation prolactin profiles were taken at several intervals, including after 10 and 18 weeks.
The subject's prolactin profile after 18 weeks is shown graphically in FIG. 14. This graph shows that the patient's daytime prolactin levels have been reduced to normal or near normal throughout most of the day. This graph also shows that the patient lacks a proper night time peak. This patient's profile, however, worsened somewhat after her dosage was changed from week 10 to week 18 in that a peak appeared at 19:00.
Bromocriptine therapy lasted for a total of 18 weeks.
The clinical improvements in this patient included: discontinuance of naproxen (except for one two-week interval during treatment) and substitution of tylenol after 18 weeks of treatment, considerable reduction in or disappearance of the following symptoms: pain, joint swelling and stiffness and a loss of body fat of approximately 15 pounds. These improvements have thus far persisted for approximately four months after cessation of treatment.
The subject: (female; 38 yrs); presented with fibromyalgia. Symptoms included chronic fatigue, stomach disorders and chronic pain in the extremities, including the upper and lower legs. Patient was diagnosed approximately one year before beginning treatment. There were no pre-treatment medications.
The subject's 24 hour base (pre-therapy) prolactin profile is shown graphically as the solid black line in FIG. 8. It shows that pre-treatment prolactin levels were moderately elevated during the day and that there was no proper night time peak. Initial dosage of bromocriptine was 0.625 mg at 6:00 am and metoclopramide was 2.5 mg at 10 pm. After four weeks, dosage was changed to 1.25 mg of bromocriptine at 6:00 am and 1.25 mg of metoclopramide at 10 pm. After 8 weeks (4 weeks on the modified dosage) the dosage was not further modified. After 10 more weeks (total 18 weeks) metoclopramide was discontinued but bromocriptine therapy was continued for a further 4 weeks when it was discontinued as the symptoms had virtually disappeared. Reevaluation prolactin profiles were taken at several intervals, including after 17 weeks (visit 3, daytime profile not taken).
The subject's prolactin profile after 4 weeks is shown graphically as the solid gray line in FIG. 15 and the prolactin profile after 17 weeks is shown as the dotted black line in FIG. 15. These graphs show that the patient's daytime prolactin levels have decreased somewhat at certain points of the day and that the patient has a better night time peak.
The clinical improvements in this patient included the disappearance of the following symptoms: chronic fatigue, stomach disorders and chronic pain in the extremities, including the upper and lower legs. These clinical improvements have persisted for approximately 8 months following termination of treatment, which lasted 22 weeks total.
The subject: (female; 27 yrs); presented with fibromyalgia. Symptoms included chronic fatigue, stomach disorders, pain and swelling in all joints, amenorrhea and swelling in the breasts. The patient had been diagnosed approximately five years before beginning treatment. Patient had been taking 650 mg of tylenol (daily) and 16 mg of tylenol with codeine (daily).
The subject's 24-hour base pre-therapy prolactin profile is shown graphically as the solid black line in FIG. 15. It shows that prolactin levels are too high throughout the day, particularly at 13:00 hr. For the first 24 weeks of treatment, the patient was administered 0.625 mg of bromocriptine at 08:30. For the following 9 weeks of treatment, the patient was administered 0.625 mg of bromocriptine at 05:30 and 0.625 mg of bromocriptine at 09:30. Reevaluation prolactin profiles were taken at several intervals, including after approximately 24 weeks and 35 weeks of treatment.
The subject's prolactin profile after 24 weeks is shown graphically as the dotted black line in FIG. 16. This graph shows that the patient's daytime prolactin levels have been reduced, particularly from 10:00 hr to 16:00 hr. The patient's prolactin level is still somewhat too high in the late afternoon.
The clinical improvements in this patient included: discontinuance of both tylenol and tylenol with codeine, and reduction in the following symptoms: fatigue, stomach disorders and pain in all joints. In addition, a normal menstrual cycle was reinstated and swelling of breasts subsided.
Claims (23)
1. A method of treating an immune system dysfunction in a mammal suffering from said dysfunction to at least ameliorate said dysfunction comprising administering to said mammal at least one of:
a prolactin reducer only at a time or times predetermined to reduce the mammal's waking hours prolactin levels to cause the mammal's daytime prolactin profile to conform to or approach the standard daytime prolactin profile; and
a prolactin enhancer only at a time or times predetermined to increase the mammal's night time prolactin levels to cause the mammal's night time prolactin profile to conform to or approach the standard night time prolactin profile.
2. The method of claim 1 wherein said prolactin enhancer is selected from the group consisting of metoclopramide, domperidone, 5-hydroxytryptophan, haloperidol, pimozide, phenothiazine, sulpiride, chlorpromazine, serotonin agonists, pargyline, methadone, estrogens, tryptophan, melatonin, fluoxitane, dexfenfluramine, and non-toxic salts thereof.
3. The method of claim 1 wherein said prolactin reducer is a member selected from the group consisting of bromocriptine, 6-methyl-8-beta-carbobenzyloxy-aminoethyl-10-alpha-ergoline, an 8-acylaminoergoline, ergocornine, 9,10-dihydroergocornine, a D-2-halo-6-alkyl-8-substituted ergoline, carbidopa, L-dihydroxyphenylalanine, lisuride, and pharmaceutically acceptable acid addition salts thereof.
4. The method of claim 3 wherein said mammal in need of treatment is a human, said prolactin reducer is bromocriptine, and said bromocriptine is administered in an amount within the range of 0.8 to 8.0 mg/person/day.
5. The method of claim 2 wherein said prolactin enhancer is melatonin, said mammal is a human and said melatonin is administered in an amount within the range of 0.5-5.0 mg/person/day.
6. A method for treating an autoimmune disease in a mammal suffering from said autoimmune disease comprising administering to said mammal at least one of:
a prolactin reducer only at a time or times predetermined to reduce the patient's daytime prolactin levels to cause the patient's daytime prolactin profile to conform to or approach the standard daytime prolactin profile; and
a prolactin enhancer only at a time or times predetermined to increase the patient's night time prolactin levels to cause the patient's night time prolactin profile to conform to or approach the standard night time prolactin profile.
7. The method of claim 6 wherein said autoimmune disease is selected from the group consisting of Crohn's disease, systemic lupus erythematosus, rheumatoid arthritis and fibromyalgia.
8. The method of claim 7 wherein said prolactin enhancer is selected from the group consisting of metoclopramide, domperidone, 5-hydroxytryptophan, haloperidol, pimozide, phenothiazine, sulpiride, chlorpromazine, serotonin agonists, pargyline, methadone, estrogens, tryptophan, melatonin, fluoxitane, dexfenfluramine, and non-toxic salts thereof.
9. The method of claim 7 wherein said prolactin reducer is a member selected from the group consisting of bromocriptine, 6-methyl-8-beta-carbobenzyloxy-aminoethyl-10-alpha-ergoline, an 8-acylaminoergoline, ergocornine, 9,10-dihydroergocornine, a D-2-halo-6-alkyl-8-substituted ergoline, carbidopa, L-dihydroxyphenylalanine, lisuride, and pharmaceutically acceptable acid addition salts thereof.
10. The method of claim 8 wherein said prolactin enhancer is melatonin, said mammal is a human and said melatonin is administered in an amount within the range of 0.5-5.0 mg/person/day.
11. A method of treating a disorder to the immune system or an immunodeficiency state comprising:
administering to a patient in a need of same an effective amount of at least one serotonin agonist and at least one dopamine agonist
wherein the combination of the serotonin agonist and the dopamine agonist are present in an amount effective to treat the patient's condition, and
confining administration of each of said agents respectively to the time of day during which said administration is capable of adjusting the prolactin profile of said patient to conform or to approach the standard human prolactin profile.
12. The method of claim 6 wherein said autoimmune disease comprises rheumatoid arthritis.
13. The method of claim 6 wherein said autoimmune disease comprises Crohn's disease.
14. The method of claim 6 wherein said autoimmune disease comprises lupus erythematosus.
15. The method of claim 9 wherein said mammal is human and said prolactin reducer is bromocriptine administered at a predetermined time or times between about 05:00 and about 13:00.
16. The method of claim 15 wherein said mammal is human and said bromocriptine is administered at a predetermined time or times between about 05:00 and about 10:30.
17. The method of claim 12 wherein said mammal is human and said prolactin reducer is bromocriptine administered at a predetermined time or times between about 05:00 and about 10:30.
18. The method of claim 13 wherein said mammal is human and said prolactin reducer is bromocriptine administered at a predetermined time or times between about 05:00 and about 10:30.
19. The method of claim 14 wherein said mammal is human and said prolactin reducer is bromocriptine administered at a predetermined time or times between about 05:00 and about 10:30.
20. The method of claim 16 wherein said bromocriptine is administered in an amount in the range of 0.8-8.0 mg/patient/day.
21. The method of claim 17 wherein said bromocriptine is administered in an amount in the range of 0.8-8.0 mg/patient/day.
22. The method of claim 18 wherein said bromocriptine is administered in an amount in the range of 0.8-8.0 mg/patient/day.
23. The method of claim 19 wherein said bromocriptine is administered in an amount in the range of 0.8-8.0 mg/patient/day.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/780,727 US5872127A (en) | 1994-07-07 | 1997-01-09 | Method of regulating immune function |
US09/204,839 US6075020A (en) | 1994-07-07 | 1998-12-03 | Method of regulating immune function |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/271,881 US5696128A (en) | 1994-07-07 | 1994-07-07 | Method of regulating immune function |
US08/780,727 US5872127A (en) | 1994-07-07 | 1997-01-09 | Method of regulating immune function |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/271,881 Continuation US5696128A (en) | 1992-12-22 | 1994-07-07 | Method of regulating immune function |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/204,839 Continuation US6075020A (en) | 1994-07-07 | 1998-12-03 | Method of regulating immune function |
Publications (1)
Publication Number | Publication Date |
---|---|
US5872127A true US5872127A (en) | 1999-02-16 |
Family
ID=23037482
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/271,881 Expired - Lifetime US5696128A (en) | 1992-12-22 | 1994-07-07 | Method of regulating immune function |
US08/458,960 Expired - Lifetime US5872133A (en) | 1992-12-22 | 1995-06-02 | Method of regulating the immune response |
US08/459,114 Expired - Lifetime US5905083A (en) | 1992-12-22 | 1995-06-02 | Method of treating rheumatoid arthritis |
US08/780,727 Expired - Lifetime US5872127A (en) | 1994-07-07 | 1997-01-09 | Method of regulating immune function |
US09/204,839 Expired - Lifetime US6075020A (en) | 1994-07-07 | 1998-12-03 | Method of regulating immune function |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/271,881 Expired - Lifetime US5696128A (en) | 1992-12-22 | 1994-07-07 | Method of regulating immune function |
US08/458,960 Expired - Lifetime US5872133A (en) | 1992-12-22 | 1995-06-02 | Method of regulating the immune response |
US08/459,114 Expired - Lifetime US5905083A (en) | 1992-12-22 | 1995-06-02 | Method of treating rheumatoid arthritis |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/204,839 Expired - Lifetime US6075020A (en) | 1994-07-07 | 1998-12-03 | Method of regulating immune function |
Country Status (20)
Country | Link |
---|---|
US (5) | US5696128A (en) |
EP (2) | EP1275392B1 (en) |
JP (2) | JPH10502644A (en) |
AT (2) | ATE440606T1 (en) |
AU (1) | AU702392B2 (en) |
BR (1) | BR9507858A (en) |
CA (1) | CA2194501C (en) |
CZ (1) | CZ4997A3 (en) |
DE (2) | DE69535996D1 (en) |
DK (2) | DK1275392T3 (en) |
ES (2) | ES2333848T3 (en) |
FI (1) | FI970059A (en) |
HU (1) | HUT76727A (en) |
IL (1) | IL114502A0 (en) |
NO (1) | NO970038L (en) |
NZ (1) | NZ290672A (en) |
PT (2) | PT772396E (en) |
SK (1) | SK1597A3 (en) |
WO (1) | WO1996001561A1 (en) |
ZA (1) | ZA955683B (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6075020A (en) * | 1994-07-07 | 2000-06-13 | The General Hopital Corporation | Method of regulating immune function |
US6103748A (en) * | 1998-06-19 | 2000-08-15 | Bryan; Thomas B. | Method of treating an autoimmune disorder |
US6277875B1 (en) | 2000-07-17 | 2001-08-21 | Andrew J. Holman | Use of dopamine D2/D3 receptor agonists to treat fibromyalgia |
US20020165246A1 (en) * | 2001-03-05 | 2002-11-07 | Andrew Holman | Administration of sleep restorative agents |
US20030180332A1 (en) * | 2000-08-24 | 2003-09-25 | Stephan Rimpler | Novel pharmaceutical composition |
US20040038918A1 (en) * | 2002-02-07 | 2004-02-26 | Baylor College Of Medicine | Modified pituitary gland development in offspring from expectant mother animals treated with growth hormone releasing hormone therapy |
US20040220153A1 (en) * | 2002-09-24 | 2004-11-04 | Jost-Price Edward Roydon | Methods and reagents for the treatment of diseases and disorders associated with increased levels of proinflammatory cytokines |
US20050032737A1 (en) * | 2003-08-04 | 2005-02-10 | Advisys, Inc. | Canine specific growth hormone releasing hormone |
US20060110325A1 (en) * | 2003-02-21 | 2006-05-25 | Hinz Martin C | Serotonin and catecholamine segment optimization technology |
US20060178423A1 (en) * | 2002-03-21 | 2006-08-10 | Hinz Martin C | Serotonin and catecholamine system segment optimization technology |
US20070293571A1 (en) * | 2006-06-08 | 2007-12-20 | Hinz Martin C | Adminstration of dopa precursors with sources of dopa to effectuate optimal catecholamine neurotransmitter outcomes |
US20090143390A1 (en) * | 2007-06-21 | 2009-06-04 | Cincotta Anthony H | Parenteral Formulations of Dopamine Agonists |
US20090311795A1 (en) * | 2002-03-21 | 2009-12-17 | Hinz Martin C | Bilateral control of functions traditionally regulated by only serotonin or only dopamine |
US20110104281A1 (en) * | 2006-06-22 | 2011-05-05 | Ucb Pharma Gmbh | Method for treating pain using a substituted 2-aminotetralin compound |
US9352025B2 (en) | 2009-06-05 | 2016-05-31 | Veroscience Llc | Combination of dopamine agonists plus first phase insulin secretagogues for the treatment of metabolic disorders |
US9364515B2 (en) | 2002-08-09 | 2016-06-14 | Veroscience Llc | Therapeutic process for the treatment of the metabolic syndrome and associated metabolic disorders |
US9415005B2 (en) | 2007-06-21 | 2016-08-16 | Veroscience Llc | Parenteral formulations of dopamine agonists |
US9522117B2 (en) | 2012-04-30 | 2016-12-20 | Veroscience Llc | Bromocriptine formulations |
US9655865B2 (en) | 2002-07-29 | 2017-05-23 | Veroscience, Llc | Therapeutic treatment for metabolic syndrome, type 2 diabetes, obesity, or prediabetes |
US9925186B2 (en) | 2007-06-21 | 2018-03-27 | Veroscience Llc | Method of treating metabolic disorders and depression with dopamine receptor agonists |
US10894791B2 (en) | 2016-04-20 | 2021-01-19 | Veroscience Llc | Composition and method for treating metabolic disorders |
US11382885B2 (en) | 2017-06-07 | 2022-07-12 | The Regents Of The University Of California | Compositions for treating fungal and bacterial biofilms and methods of using the same |
US11510921B2 (en) | 2017-10-18 | 2022-11-29 | Veroscience Llc | Bromocriptine formulations |
US11607455B2 (en) | 2019-09-23 | 2023-03-21 | Veroscience Llc | Method for inducing tumor regression |
US12109176B1 (en) | 2023-04-20 | 2024-10-08 | Thomas Bryan | Effect of glycerol on biofilm forming bacteria and fungi that changes the microbes sensitivity to pro and anti-biofilm non-toxic, non-bonded plasma amino acids and amino acid derivatives |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU6028298A (en) * | 1997-01-21 | 1998-08-07 | Genzyme Corporation | Enhancement of hematopoietic cells |
US6342611B1 (en) * | 1997-10-10 | 2002-01-29 | Cytovia, Inc. | Fluorogenic or fluorescent reporter molecules and their applications for whole-cell fluorescence screening assays for capsases and other enzymes and the use thereof |
KR100261114B1 (en) * | 1998-01-24 | 2000-07-01 | 박종헌 | Composition for treatment of rheumatoid arthritis containing histone |
MXPA02010410A (en) * | 2000-04-21 | 2003-04-25 | Upjohn Co | Treatment of fibromyalgia and chronic fatigue syndrome. |
GB0019357D0 (en) | 2000-08-07 | 2000-09-27 | Melacure Therapeutics Ab | Novel phenyl guanidines |
AU2001278135A1 (en) | 2000-08-03 | 2002-02-18 | Cytovia, Inc. | Method of identifying immunosuppressive agents |
DE10053397A1 (en) * | 2000-10-20 | 2002-05-02 | Schering Ag | Use of a dopaminergic active ingredient for the treatment of dopaminerg treatable diseases |
DE10043321B4 (en) * | 2000-08-24 | 2005-07-28 | Neurobiotec Gmbh | Use of a transdermal therapeutic system for the treatment of Parkinson's disease, for the treatment and prevention of premenstrual syndrome and for lactation inhibition |
US20070243240A9 (en) * | 2000-08-24 | 2007-10-18 | Fred Windt-Hanke | Transdermal therapeutic system |
DE10064453A1 (en) * | 2000-12-16 | 2002-07-04 | Schering Ag | Use of a dopaminergic active ingredient for the treatment of dopaminerg treatable diseases |
US6855729B2 (en) * | 2001-02-20 | 2005-02-15 | Timothy G. Dinan | Treatment of fibromyalgia and related fatigue syndromes using antagonists or partial agonists of 5HT1a receptors |
US20030212085A1 (en) * | 2001-04-17 | 2003-11-13 | Mccall Robert B. | Treatment of fibromyalgia and chronic fatigue syndrome |
WO2002083141A1 (en) * | 2001-04-17 | 2002-10-24 | Pharmacia & Upjohn Company | Treatment of fibromyalgia and chronic fatigue syndrome |
JP2003081829A (en) * | 2001-09-13 | 2003-03-19 | Ajinomoto Co Inc | Circadian rhythm regulator |
US7582670B2 (en) * | 2001-12-13 | 2009-09-01 | Natrogen Therapeutics, Inc. | Methods of treating an inflammatory-related disease |
US20050154046A1 (en) * | 2004-01-12 | 2005-07-14 | Longgui Wang | Methods of treating an inflammatory-related disease |
US8563525B2 (en) | 2004-01-12 | 2013-10-22 | Natrogen Therapeutics International, Inc. | Methods of treating an inflammatory-related disease |
CA2611256A1 (en) * | 2005-06-10 | 2006-12-21 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Modulation of peripheral clocks in adipose tissue |
US7507716B2 (en) * | 2005-07-06 | 2009-03-24 | Board Of Regents, The University Of Texas System | Method for treating pain with prolactin antagonists |
DE102005041613A1 (en) * | 2005-09-01 | 2007-03-08 | Ergonex Pharma Gmbh | Use of octahydro-indolo-quinoline compound in the preparation of pharmaceutical composition for the treatment and prophylaxis of gastrointestinal and endocardial disease and carcinoid syndrome |
CN101426268B (en) * | 2007-11-02 | 2010-08-25 | 大唐移动通信设备有限公司 | Pilot resource distribution method, system and equipment |
GB2473095A (en) * | 2009-07-31 | 2011-03-02 | Anamar Ab | 5-HT2B receptor antagonists for the treatment of inflammation or pain |
JP6051378B2 (en) * | 2011-05-02 | 2016-12-27 | 国立大学法人 熊本大学 | Low molecular weight compound that promotes differentiation induction from stem cells to insulin producing cells, and method for inducing differentiation from stem cells to insulin producing cells using the compounds |
WO2024020641A1 (en) * | 2022-07-27 | 2024-02-01 | Macquarie University | Vascular endothelial growth factor inhibitors for the treatment of joint disorders |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4310535A (en) * | 1976-11-30 | 1982-01-12 | Walter Pierpaoli | Combination of drugs and a method for the selective control of the immune reactions evoked in a host by the administration of antigens |
US4665086A (en) * | 1983-05-18 | 1987-05-12 | Monash University | Method for minimizing disturbances in circadian rhythms of bodily performance and function |
GB2192541A (en) * | 1986-07-14 | 1988-01-20 | Sandoz Ltd | Bromocriptine |
DE3719687A1 (en) * | 1986-05-07 | 1988-12-29 | Vysoka Skola Chem Tech | Composition for improving the germination of orchid seeds |
EP0308197A2 (en) * | 1987-09-14 | 1989-03-22 | Pitman-Moore, Inc. | Method for stimulating the immune system |
US5028591A (en) * | 1987-09-14 | 1991-07-02 | Pitman-Moore, Inc. | Method for stimulating the immune system |
US5145837A (en) * | 1988-06-06 | 1992-09-08 | Sandoz Ltd. | Treatment of arthritis |
US5344832A (en) * | 1990-01-10 | 1994-09-06 | The Board Of Supervisors Of Louisiana University And Agricultural And Mechanical College | Method for the long term reduction of body fat stores, insulin resistance, hyperinsulinemia and hyperglycemia in vertebrates |
WO1994022451A1 (en) * | 1993-04-07 | 1994-10-13 | Oklahoma Medical Research Foundation | Selective regulation of b lymphocyte precursors by hormones |
US5519047A (en) * | 1994-04-20 | 1996-05-21 | University Of Utah Research Foundation | Immunomodulatory activity of exogenous melatonin following traumatic injury |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5585347A (en) * | 1988-05-10 | 1996-12-17 | Ergo Science Incorporated | Methods for the determination and adjustment of prolactin daily rhythms |
DK469989D0 (en) * | 1989-09-22 | 1989-09-22 | Bukh Meditec | PHARMACEUTICAL PREPARATION |
RU2104698C1 (en) * | 1991-12-23 | 1998-02-20 | Дзе Борд оф Сьюпервайзорз оф Луизиана Стейт Юниверсити энд Эгрикалчурал энд Мекэникал Колледж | Method of treatment of pathological deviations at diabetes mellitus of type-2 |
US5696128A (en) * | 1994-07-07 | 1997-12-09 | The Board Of Supervisors Of Louisiana University And Agricultural And Mechanical College | Method of regulating immune function |
-
1994
- 1994-07-07 US US08/271,881 patent/US5696128A/en not_active Expired - Lifetime
-
1995
- 1995-06-02 US US08/458,960 patent/US5872133A/en not_active Expired - Lifetime
- 1995-06-02 US US08/459,114 patent/US5905083A/en not_active Expired - Lifetime
- 1995-07-07 AT AT02017154T patent/ATE440606T1/en not_active IP Right Cessation
- 1995-07-07 AU AU31479/95A patent/AU702392B2/en not_active Ceased
- 1995-07-07 DK DK02017154T patent/DK1275392T3/en active
- 1995-07-07 HU HU9700028A patent/HUT76727A/en unknown
- 1995-07-07 EP EP02017154A patent/EP1275392B1/en not_active Expired - Lifetime
- 1995-07-07 DK DK95927448T patent/DK0772396T3/en active
- 1995-07-07 DE DE69535996T patent/DE69535996D1/en not_active Expired - Lifetime
- 1995-07-07 SK SK15-97A patent/SK1597A3/en unknown
- 1995-07-07 NZ NZ290672A patent/NZ290672A/en unknown
- 1995-07-07 ES ES02017154T patent/ES2333848T3/en not_active Expired - Lifetime
- 1995-07-07 PT PT95927448T patent/PT772396E/en unknown
- 1995-07-07 DE DE69531737T patent/DE69531737T2/en not_active Expired - Lifetime
- 1995-07-07 ZA ZA955683A patent/ZA955683B/en unknown
- 1995-07-07 IL IL11450295A patent/IL114502A0/en unknown
- 1995-07-07 CZ CZ9749A patent/CZ4997A3/en unknown
- 1995-07-07 BR BR9507858A patent/BR9507858A/en not_active Application Discontinuation
- 1995-07-07 AT AT95927448T patent/ATE249216T1/en not_active IP Right Cessation
- 1995-07-07 PT PT02017154T patent/PT1275392E/en unknown
- 1995-07-07 WO PCT/US1995/009419 patent/WO1996001561A1/en active IP Right Grant
- 1995-07-07 EP EP95927448A patent/EP0772396B1/en not_active Expired - Lifetime
- 1995-07-07 CA CA2194501A patent/CA2194501C/en not_active Expired - Fee Related
- 1995-07-07 JP JP8504489A patent/JPH10502644A/en not_active Withdrawn
- 1995-07-07 ES ES95927448T patent/ES2210305T3/en not_active Expired - Lifetime
-
1997
- 1997-01-06 NO NO970038A patent/NO970038L/en not_active Application Discontinuation
- 1997-01-07 FI FI970059A patent/FI970059A/en unknown
- 1997-01-09 US US08/780,727 patent/US5872127A/en not_active Expired - Lifetime
-
1998
- 1998-12-03 US US09/204,839 patent/US6075020A/en not_active Expired - Lifetime
-
2008
- 2008-10-06 JP JP2008259671A patent/JP2009046504A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4310535A (en) * | 1976-11-30 | 1982-01-12 | Walter Pierpaoli | Combination of drugs and a method for the selective control of the immune reactions evoked in a host by the administration of antigens |
US4665086A (en) * | 1983-05-18 | 1987-05-12 | Monash University | Method for minimizing disturbances in circadian rhythms of bodily performance and function |
DE3719687A1 (en) * | 1986-05-07 | 1988-12-29 | Vysoka Skola Chem Tech | Composition for improving the germination of orchid seeds |
GB2192541A (en) * | 1986-07-14 | 1988-01-20 | Sandoz Ltd | Bromocriptine |
EP0308197A2 (en) * | 1987-09-14 | 1989-03-22 | Pitman-Moore, Inc. | Method for stimulating the immune system |
US5028591A (en) * | 1987-09-14 | 1991-07-02 | Pitman-Moore, Inc. | Method for stimulating the immune system |
US5145837A (en) * | 1988-06-06 | 1992-09-08 | Sandoz Ltd. | Treatment of arthritis |
US5344832A (en) * | 1990-01-10 | 1994-09-06 | The Board Of Supervisors Of Louisiana University And Agricultural And Mechanical College | Method for the long term reduction of body fat stores, insulin resistance, hyperinsulinemia and hyperglycemia in vertebrates |
WO1994022451A1 (en) * | 1993-04-07 | 1994-10-13 | Oklahoma Medical Research Foundation | Selective regulation of b lymphocyte precursors by hormones |
US5519047A (en) * | 1994-04-20 | 1996-05-21 | University Of Utah Research Foundation | Immunomodulatory activity of exogenous melatonin following traumatic injury |
Non-Patent Citations (68)
Title |
---|
Barnett et al., Postgraduate Med. J., 56:11 14, 1980. * |
Barnett et al., Postgraduate Med. J., 56:11-14, 1980. |
Berczi, I. et al., Acta Endocrinologica, 98:506 513, 1980. * |
Berczi, I. et al., Acta Endocrinologica, 98:506-513, 1980. |
Berczi, I., Dev. Comp. Immunol., 13:329 341, 1989. * |
Berczi, I., Dev. Comp. Immunol., 13:329-341, 1989. |
Bernton, E.S. et al., Science , 239:401 4, 1989, Jan. * |
Bernton, E.S. et al., Science, 239:401-4, 1989, Jan. |
Besedovsky, H.O. et al., J. Immunol., 135:750s 4s, 1985. * |
Besedovsky, H.O. et al., J. Immunol., 135:750s-4s, 1985. |
Blalock, J.E., Physiol. Rev., 69:1 32, 1989. * |
Blalock, J.E., Physiol. Rev., 69:1-32, 1989. |
Blizhakov, J. Med. N.Y., 1980, 11(2/3):81 105. * |
Blizhakov, J. Med. N.Y., 1980, 11(2/3):81-105. |
Folomeev et al., Biological Abstracts, vol. 90, abstract No. 75731, Ter Arkh, 62:62 63, 1990. * |
Folomeev et al., Biological Abstracts, vol. 90, abstract No. 75731, Ter Arkh, 62:62-63, 1990. |
Gala. R.R., Proc. Soc. Exp. Biol. Med. 198 :513 27, 1991. * |
Gala. R.R., Proc. Soc. Exp. Biol. Med. 198:513-27, 1991. |
Gutierrez, M.A., Rev. Rhum. Fr. Ed., 1994, 61:278 85. * |
Gutierrez, M.A., Rev. Rhum. Fr. Ed., 1994, 61:278-85. |
Hedner et al., Am. J. Ophthalmology, Oct. 1985, 618 19, vol. 100. * |
Hedner et al., Am. J. Ophthalmology, Oct. 1985, 618-19, vol. 100. |
Holaday, J.W., "Neuroendocrine--Immune Interaction", 1991, 69 (Suppl. XXVI): 13-19, Klin Wochenschr. |
Holaday, J.W., Neuroendocrine Immune Interaction , 1991, 69 (Suppl. XXVI): 13 19, Klin Wochenschr. * |
J. W. Holaday, "Neuroendocrine-. . . Medicine", Klin Wochenschr, vol. 69, Suppl. XXVI, pp. 13-19, 1991. |
J. W. Holaday, Neuroendocrine . . . Medicine , Klin Wochenschr, vol. 69, Suppl. XXVI, pp. 13 19, 1991. * |
Jara et al., Ame. J. of the Med. Sci., 303:222 226, Apr. 1992. * |
Jara et al., Ame. J. of the Med. Sci., 303:222-226, Apr. 1992. |
Jara et al., Semin, Arthritis Rheum., 5:273 284, 1991, vol. 20. * |
Jara et al., Semin, Arthritis Rheum., 5:273-284, 1991, vol. 20. |
Kukhtevich et al., The Genuine Article, abstract No. FX734, Terapevtichdki Ardhiv, 63:99 101, 1991. * |
Kukhtevich et al., The Genuine Article, abstract No. FX734, Terapevtichdki Ardhiv, 63:99-101, 1991. |
L o pez Korpovitch et al., AJRI, 1994, 31:32 39, Jan. * |
Lissoni et al., Eur J. Cancer, 30:167 170, 1994. * |
Lissoni et al., Eur J. Cancer, 30:167-170, 1994. |
Lissoni et al., Oncology , 51:344 347, 1994. * |
Lissoni et al., Oncology, 51:344-347, 1994. |
Lissoni et al., Oncology, 52:163 166, 1995. * |
Lissoni et al., Oncology, 52:163-166, 1995. |
Lopez-Korpovitch et al., AJRI, 1994, 31:32-39, Jan. |
Mattsson et al. Clin. Exp. Immunol., 85:41 47., 1991. * |
Mattsson et al. Clin. Exp. Immunol., 85:41-47., 1991. |
McMurray, R. et al., J. Immunol. 147 :3780 7, 1991. * |
McMurray, R. et al., J. Immunol. 147:3780-7, 1991. |
Meier et al., Experientia 48 , 148 153, 1992. * |
Meier et al., Experientia 48, 148-153, 1992. |
Neri et al., Cancer , 73:3015 3019, 1994, Jun. * |
Neri et al., Cancer, 73:3015-3019, 1994, Jun. |
Nicoletti, I. et al., J. Reprod. Immunol., 15:113 121, 1989. * |
Nicoletti, I. et al., J. Reprod. Immunol., 15:113-121, 1989. |
P.M. Reber, "Prolactin & Immunomodulation", American J. of Medicine, vol. 96(6), pp. 637-644, Dec. 1993. |
P.M. Reber, Prolactin & Immunomodulation , American J. of Medicine, vol. 96(6), pp. 637 644, Dec. 1993. * |
Parraques et al., J. Dev. Physiol. (1991) 16(2): 57 62. * |
Parraques et al., J. Dev. Physiol. (1991) 16(2): 57-62. |
Reber, P.M., Am J. Med., 1993 95 (6):637 644. * |
Reber, P.M., Am J. Med., 1993 95 (6):637-644. |
Reder, A.T. and Lowry, M.T., J. Neurological Sci., 117:192 196, 1992. * |
Reder, A.T. and Lowry, M.T., J. Neurological Sci., 117:192-196, 1992. |
Regelson et al., Cancer Investigation, 5:379 385, 1987. * |
Regelson et al., Cancer Investigation, 5:379-385, 1987. |
Reichlin, S., NEJM 329 : 1246 53, 1993, Oct. * |
Reichlin, S., NEJM 329: 1246-53, 1993, Oct. |
Rovensky, J. et al., Int. J. Immunopharmac., 13:267 272, 1991. * |
Rovensky, J. et al., Int. J. Immunopharmac., 13:267-272, 1991. |
Vidaller, A. et al., J. Clin. Immunol ., 12:210 5, 1992. * |
Vidaller, A. et al., J. Clin. Immunol., 12:210-5, 1992. |
Vidaller, A. et al.,, Clin. Immunol. Immunopathol, 38:337 43, 1986. * |
Vidaller, A. et al.,, Clin. Immunol. Immunopathol, 38:337-43, 1986. |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6075020A (en) * | 1994-07-07 | 2000-06-13 | The General Hopital Corporation | Method of regulating immune function |
US6103748A (en) * | 1998-06-19 | 2000-08-15 | Bryan; Thomas B. | Method of treating an autoimmune disorder |
US6274612B1 (en) | 1998-06-19 | 2001-08-14 | Thomas B. Bryan | Method of treating an autoimmune disorder |
US6277875B1 (en) | 2000-07-17 | 2001-08-21 | Andrew J. Holman | Use of dopamine D2/D3 receptor agonists to treat fibromyalgia |
US20030180332A1 (en) * | 2000-08-24 | 2003-09-25 | Stephan Rimpler | Novel pharmaceutical composition |
US20020165246A1 (en) * | 2001-03-05 | 2002-11-07 | Andrew Holman | Administration of sleep restorative agents |
US20080089859A1 (en) * | 2001-03-05 | 2008-04-17 | Andrew Holman | Administration of sleep restorative agents |
US20040038918A1 (en) * | 2002-02-07 | 2004-02-26 | Baylor College Of Medicine | Modified pituitary gland development in offspring from expectant mother animals treated with growth hormone releasing hormone therapy |
US7250405B2 (en) | 2002-02-07 | 2007-07-31 | Baylor College Of Medicine | Modified pituitary gland development in offspring from expectant mother animals treated with growth hormone releasing hormone therapy |
US20080207543A1 (en) * | 2002-02-07 | 2008-08-28 | Baylor College Of Medicine | Modified pituitary gland development in offspring from expectant mother animals treated with growth hormone releasing hormone therapy |
US20090311795A1 (en) * | 2002-03-21 | 2009-12-17 | Hinz Martin C | Bilateral control of functions traditionally regulated by only serotonin or only dopamine |
US20060178423A1 (en) * | 2002-03-21 | 2006-08-10 | Hinz Martin C | Serotonin and catecholamine system segment optimization technology |
US20090234012A1 (en) * | 2002-03-21 | 2009-09-17 | Martin C. Hinz | Administration of dopa precursors with sources of dopa to effectuate optimal catecholamine neurotransmitter outcomes |
US20080241278A1 (en) * | 2002-03-21 | 2008-10-02 | Hinz Martin C | Serotonin and catecholamine system segment optimization technology |
US9655865B2 (en) | 2002-07-29 | 2017-05-23 | Veroscience, Llc | Therapeutic treatment for metabolic syndrome, type 2 diabetes, obesity, or prediabetes |
US9999653B2 (en) | 2002-08-09 | 2018-06-19 | Veroscience Llc | Therapeutic process for the treatment of the metabolic syndrome and associated metabolic disorders |
US9364515B2 (en) | 2002-08-09 | 2016-06-14 | Veroscience Llc | Therapeutic process for the treatment of the metabolic syndrome and associated metabolic disorders |
US20040220153A1 (en) * | 2002-09-24 | 2004-11-04 | Jost-Price Edward Roydon | Methods and reagents for the treatment of diseases and disorders associated with increased levels of proinflammatory cytokines |
US20060110325A1 (en) * | 2003-02-21 | 2006-05-25 | Hinz Martin C | Serotonin and catecholamine segment optimization technology |
US20080221034A1 (en) * | 2003-08-04 | 2008-09-11 | Vgx Pharmaceuticals, Inc. | Canine specific growth hormone releasing hormone |
US7361642B2 (en) | 2003-08-04 | 2008-04-22 | Vgx Pharmaceuticals, Inc. | Canine specific growth hormone releasing hormone |
US20050032737A1 (en) * | 2003-08-04 | 2005-02-10 | Advisys, Inc. | Canine specific growth hormone releasing hormone |
US20070293571A1 (en) * | 2006-06-08 | 2007-12-20 | Hinz Martin C | Adminstration of dopa precursors with sources of dopa to effectuate optimal catecholamine neurotransmitter outcomes |
US20110104281A1 (en) * | 2006-06-22 | 2011-05-05 | Ucb Pharma Gmbh | Method for treating pain using a substituted 2-aminotetralin compound |
US9415005B2 (en) | 2007-06-21 | 2016-08-16 | Veroscience Llc | Parenteral formulations of dopamine agonists |
US10675282B2 (en) | 2007-06-21 | 2020-06-09 | Veroscience Llc | Method of treating metabolic disorders and depression with dopamine receptor agonists |
US11241429B2 (en) | 2007-06-21 | 2022-02-08 | Veroscience Llc | Method of treating metabolic disorders and depression with dopamine receptor agonists |
US8741918B2 (en) | 2007-06-21 | 2014-06-03 | Veroscience Llc | Parenteral formulations of dopamine agonists |
US11045464B2 (en) | 2007-06-21 | 2021-06-29 | Veroscience Llc | Parenteral formulations of dopamine agonists |
US9925186B2 (en) | 2007-06-21 | 2018-03-27 | Veroscience Llc | Method of treating metabolic disorders and depression with dopamine receptor agonists |
US20090143390A1 (en) * | 2007-06-21 | 2009-06-04 | Cincotta Anthony H | Parenteral Formulations of Dopamine Agonists |
US10137132B2 (en) | 2007-06-21 | 2018-11-27 | Veroscience, Llc | Parenteral formulations of dopamine agonists |
US10238653B2 (en) | 2007-06-21 | 2019-03-26 | Veroscience Llc | Method of treating metabolic disorders and depression with dopamine receptor agonists |
US9895422B2 (en) | 2009-06-05 | 2018-02-20 | Veroscience Llc | Combination of dopamine agonists plus first phase insulin secretagogues for the treatment of metabolic disorders |
US9352025B2 (en) | 2009-06-05 | 2016-05-31 | Veroscience Llc | Combination of dopamine agonists plus first phase insulin secretagogues for the treatment of metabolic disorders |
US10688155B2 (en) | 2009-06-05 | 2020-06-23 | Veroscience Llc | Combination of dopamine agonists plus first phase insulin secretagogues for the treatment of metabolic disorders |
US9993474B2 (en) | 2012-04-30 | 2018-06-12 | Veroscience Llc | Bromocriptine formulations |
US11666567B2 (en) | 2012-04-30 | 2023-06-06 | Veroscience Llc | Bromocriptine formulations |
US10688094B2 (en) | 2012-04-30 | 2020-06-23 | Veroscience Llc | Bromocriptine formulations |
US11000522B2 (en) | 2012-04-30 | 2021-05-11 | Veroscience Llc | Bromocriptine formulations |
US9700555B2 (en) | 2012-04-30 | 2017-07-11 | Veroscience Llc | Bromocriptine formulations |
US9522117B2 (en) | 2012-04-30 | 2016-12-20 | Veroscience Llc | Bromocriptine formulations |
US10307421B2 (en) | 2012-04-30 | 2019-06-04 | Veroscience Llc | Bromocriptine formulations |
US10894791B2 (en) | 2016-04-20 | 2021-01-19 | Veroscience Llc | Composition and method for treating metabolic disorders |
US11878974B2 (en) | 2016-04-20 | 2024-01-23 | Veroscience Llc | Composition and method for treating metabolic disorders |
US11560375B2 (en) | 2016-04-20 | 2023-01-24 | Veroscience Llc | Composition and method for treating metabolic disorders |
US11382885B2 (en) | 2017-06-07 | 2022-07-12 | The Regents Of The University Of California | Compositions for treating fungal and bacterial biofilms and methods of using the same |
US11779559B2 (en) | 2017-06-07 | 2023-10-10 | The Regents Of The University Of California | Compositions for treating fungal and bacterial biofilms and methods of using the same |
US11510921B2 (en) | 2017-10-18 | 2022-11-29 | Veroscience Llc | Bromocriptine formulations |
US11883399B2 (en) | 2017-10-18 | 2024-01-30 | Veroscience Llc | Bromocriptine formulations |
US11607455B2 (en) | 2019-09-23 | 2023-03-21 | Veroscience Llc | Method for inducing tumor regression |
US12109176B1 (en) | 2023-04-20 | 2024-10-08 | Thomas Bryan | Effect of glycerol on biofilm forming bacteria and fungi that changes the microbes sensitivity to pro and anti-biofilm non-toxic, non-bonded plasma amino acids and amino acid derivatives |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5872127A (en) | Method of regulating immune function | |
Gessa et al. | Role of brain monoamines in male sexual behavior | |
JP2007302701A (en) | Agent for inhibiting growth of neoplasm in mammal | |
Cardinali et al. | Melatonin role in experimental arthritis | |
Cardinali et al. | Circadian disorganization in experimental arthritis | |
US20190134023A1 (en) | Method of Restoring the Incretin Effect | |
EP0833636B1 (en) | Method for inhibiting neoplastic disease in mammals | |
MXPA97009756A (en) | The use of a prolactin reducer to prepare useful containers to inhibit neoplastic diseases in mamife | |
MXPA97009755A (en) | The use of an increment of prolactin to prepare useful compositions to inhibit neoplastic diseases in mamife |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
REMI | Maintenance fee reminder mailed | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
SULP | Surcharge for late payment |
Year of fee payment: 11 |