US5640706A - Method and apparatus for producing a product in a regenerator furnace from impure waste containing a non-gasifiable impurity - Google Patents
Method and apparatus for producing a product in a regenerator furnace from impure waste containing a non-gasifiable impurity Download PDFInfo
- Publication number
- US5640706A US5640706A US08/041,772 US4177293A US5640706A US 5640706 A US5640706 A US 5640706A US 4177293 A US4177293 A US 4177293A US 5640706 A US5640706 A US 5640706A
- Authority
- US
- United States
- Prior art keywords
- waste
- feed component
- gasified
- impurity
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/16—Introducing a fluid jet or current into the charge
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/48—Sulfur dioxide; Sulfurous acid
- C01B17/50—Preparation of sulfur dioxide
- C01B17/501—Preparation of sulfur dioxide by reduction of sulfur compounds
- C01B17/503—Preparation of sulfur dioxide by reduction of sulfur compounds of sulfuric acid
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/48—Sulfur dioxide; Sulfurous acid
- C01B17/50—Preparation of sulfur dioxide
- C01B17/508—Preparation of sulfur dioxide by oxidation of sulfur compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/69—Sulfur trioxide; Sulfuric acid
- C01B17/74—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/19—Fluorine; Hydrogen fluoride
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
- F27B3/22—Arrangements of air or gas supply devices
- F27B3/225—Oxygen blowing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/18—Charging particulate material using a fluid carrier
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/08—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
- F27B3/085—Arc furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
- F27B3/20—Arrangements of heating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/001—Extraction of waste gases, collection of fumes and hoods used therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/004—Systems for reclaiming waste heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/008—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/16—Introducing a fluid jet or current into the charge
- F27D2003/162—Introducing a fluid jet or current into the charge the fluid being an oxidant or a fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/16—Introducing a fluid jet or current into the charge
- F27D2003/162—Introducing a fluid jet or current into the charge the fluid being an oxidant or a fuel
- F27D2003/163—Introducing a fluid jet or current into the charge the fluid being an oxidant or a fuel the fluid being an oxidant
- F27D2003/164—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/16—Introducing a fluid jet or current into the charge
- F27D2003/166—Introducing a fluid jet or current into the charge the fluid being a treatment gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D99/00—Subject matter not provided for in other groups of this subclass
- F27D99/0001—Heating elements or systems
- F27D99/0033—Heating elements or systems using burners
- F27D2099/0051—Burning waste as a fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/15—Tapping equipment; Equipment for removing or retaining slag
- F27D3/1509—Tapping equipment
- F27D3/1518—Tapholes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27M—INDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
- F27M2001/00—Composition, conformation or state of the charge
- F27M2001/02—Charges containing ferrous elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27M—INDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
- F27M2001/00—Composition, conformation or state of the charge
- F27M2001/05—Waste materials, refuse
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S423/00—Chemistry of inorganic compounds
- Y10S423/09—Reaction techniques
- Y10S423/12—Molten media
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S588/00—Hazardous or toxic waste destruction or containment
- Y10S588/90—Apparatus
Definitions
- wastes such as toxic or radioactive wastes
- wastes include components which could be employed as feed to a regenerator furnace for forming useful chemical products.
- Such wastes include organic, inorganic, organometallic and radioactive materials.
- wastes containing potential feed components for a regenerator furnace include coke wastes, petroleum residuals, inner tubes, tires, polyvinyl chlorides, chlorobenzenes, polychlorinated biphenyls, teflon, pesticides, spent sulfuric acid, and uranium hexafluoride.
- wastes without separating out valuable components or producing valuable products constitutes an economic loss of valuable chemical constituents.
- some of these wastes have been converted in chemical process furnaces to generate useful products, such as sulfuric acid, hydrochloric acid and hydrofluoric acid.
- useful products such as sulfuric acid, hydrochloric acid and hydrofluoric acid.
- the types of wastes previously processed by the chemical process furnaces have been limited to gasifiable wastes containing little ash-forming or metallic species. Processing impure wastes, such as those containing non-gasifiable components, has typically resulted in the fouling and loss of efficiency of chemical process furnaces, necessitating furnace down-time for removal of impurities deposited in the furnace.
- the present invention relates to a method and an apparatus for producing a product in a regenerator furnace subsystem from a waste containing a non-gasifiable impurity for the regenerator furnace subsystem.
- the method of the invention involves introducing a waste, containing a non-gasifiable impurity, into a molten metal bath in a reactor maintained under conditions sufficient to dissociate the waste and to form a gasified feed component and a non-gasifiable impurity.
- the gasified feed component is then directed from the reactor to a regenerator furnace subsystem, which is maintained under conditions sufficient to convert the gasified feed component to a desired product.
- a method for producing a product in a regenerator furnace subsystem includes introducing a waste into a molten metal bath.
- the molten metal bath includes a vitreous layer which is disposed in an upper portion of the molten metal bath.
- the molten metal bath is maintained under conditions sufficient to dissociate the waste and form a gasified feed component for the regenerator furnace subsystem.
- the waste dissociates and forms the gasified feed component and a non-gasifiable impurity.
- the vitreous layer removes the impurity from the gasified feed component.
- the gasified feed component is then directed into the regenerator furnace that converts the gasified feed component into a product.
- the apparatus involves a reactor, suitable for containing a molten metal, having a waste inlet and a feed outlet.
- the apparatus also involves a molten-metal bath for dissociating a waste, containing a non-gasifiable impurity, and forming a gasified feed component, and means to direct said waste into or onto the reaction zone containing the molten metal bath.
- the apparatus further involves a regenerator furnace subsystem, for converting the gasified feed component to a desired product, and a means for directing the gasified feed component from the reactor into the regenerator furnace subsystem.
- This invention has the advantage of generating a product in a regenerator furnace subsystem from a waste containing a non-gasifiable impurity for the regenerator furnace. This reduces regenerator furnace fouling and also furnace downtime required for cleaning the furnace.
- An additional advantage of this invention is that it provides a method for processing waste of diverse chemical nature and for recovering metals, and metal compounds, such as metal oxides, metal phosphates and metal sulfides, from waste containing a potential feed for a regenerator furnace wherein the metal or metal compound would be a regenerator furnace impurity.
- FIGURE shows a cut-away side elevational illustration of an apparatus suitable for producing a product in a regenerator furnace from a waste, containing a non-gasifiable impurity for the regenerator furnace.
- the method of this invention employs a method for destroying waste by dissociating the waste to its atomic constituents in a molten metal bath and for reforming these atomic constituents to form various products, such as the Bach/Nagel method disclosed in U.S. Pat. Nos. 4,574,714 and 4,602,574.
- the teachings of U.S. Pat. Nos. 4,574,714 and 4,602,574 are incorporated herein by reference.
- Apparatus 10 includes reactor 12.
- suitable reactors, fitted with appropriate injection means include "T"-shaped reactors, top and bottom-blown basic oxygen process reactors (K-BOP and Q-BOP, respectively), argon-oxygen decarbonization furnaces, electric arc furnaces, which have been fitted with a suitable means for charging or injection through the top, bottom or sides of the reactor, such as is known in conventional steelmaking practices.
- Reactor 12 includes upper portion 14 and lower portion 16. Gaseous effluent outlet 18, which extends from upper portion 14, is suitable for conducting a gasified feed component out of reactor 12.
- Suitable introduction means such as lance 20, which can be consumable, is disposed at upper portion 14 of reactor 12.
- Lance 20 provides fluid communication between waste source 22 and upper portion 14 of reactor 12 through waste inlet 23.
- Waste inlet 23 is disposed in upper portion 14 of reactor 12 at the end of lance 20.
- a second suitable introduction means includes tuyere 24, which is disposed at lower portion 16 of reactor 12.
- Tuyere 24 is dimensioned and configured for introducing a waste, which can also function as a shroud gas, and an agent into the reactor.
- Tuyere 24 includes agent inlet tube 26, which provides fluid communication between oxidant source 28 and lower portion 16 of reactor 12 through agent inlet 30.
- Agent inlet 30 is disposed in lower portion 16 of reactor 12 at the end of agent inlet tube 26.
- An agent as defined herein is a substance that reacts with the waste, for example, through oxidation, reduction, addition, substitution or exchange reactions.
- Oxidants suitable as agents include oxygen, air and iron oxide.
- Hydrogen is a reducing agent that is suitable as a agent.
- Waste inlet tube 32 of tuyere 24 provides fluid communication between waste source 22 and lower portion 16 of reactor 12.
- Waste inlet 34 is disposed in lower portion 16 of reactor 12 at the end of waste inlet tube 32.
- a third suitable introduction means such as bulk waste inlet 36, which extends from upper portion 14 of reactor 12, provides a means for directing bulky waste into reactor 12.
- suitable means for introducing waste into reactor 12 includes tuyeres, lances, inlets and other components capable of directing waste into the reactor. It is also to be understood that the means of introducing waste can direct waste into reactor 12 through the top, bottom or sides of reactor 12. Furthermore, it is to be understood that one or more means of introducing waste into reactor 12 can be disposed at the top, bottom and/or sides of reactor 12.
- second agent inlet tube 38 which provides fluid communication between agent source 28 and upper portion 14 of reactor 12.
- waste and the agent can be introduced into reactor 12 continuously, sequentially or intermittently. It is also to be understood that waste, agent and a separate shroud gas, when needed to shroud the inlet tube, can be injected into reactor 12 through other suitable configurations, such as a conjoined tuyere, a multiple concentric tuyere or separate waste and an agent tuyeres. Additionally, it is to be understood that means for injecting an agent include other suitable forms, for example, a lance disposed at lower portion 16 of reactor 12 or an inlet disposed at upper portion 14 of reactor 12. Furthermore, it is to be understood that more than one means of injecting an agent can be disposed at reactor 12.
- the waste and agent are introduced according to the method and system described in U.S. patent application Ser. No. 07/737,199, filed Jul. 29, 1991, which discloses the formation of oxides of dissolved atomic constituents in a molten metal bath.
- the teachings of U.S. patent application Ser. No. 07/737,199 are incorporated herein by reference.
- Bottom tap 40 extends from lower portion 16 of reactor 12 and is suitable for removal of molten metal from reactor 12. Additional drains may be provided as a means of removing continuously, or discretely, additional phases. Material can also be removed by other methods, such as are known in the art.
- Induction coil 42 is disposed at lower portion 16 of reactor 12 for heating molten metal bath 44 in reactor 12. It is to be understood that, alternatively, reactor 12 can be heated by other suitable means, such as by oxyfuel burners, electric arcs, etc.
- Trunions 46 can be disposed at reactor 12 for manipulation of reactor 12.
- Seal 48 is disposed between reactor 12 and gaseous effluent outlet 18 and is suitable for allowing partial rotation of reactor 12 about trunions 46 without breaking seal 48.
- Molten metal bath 44 is disposed within reactor 12.
- molten metal bath 44 includes a metal having a free energy of oxidation, at the operating conditions of reactor 12 which is greater than that of the conversion of atomic carbon to carbon monoxide.
- molten metal bath 44 examples include iron, chromium, manganese, copper, nickel, cobalt, etc. It is to be understood that molten metal bath 44 can include more than one metal.
- molten metal bath 44 can include a solution of metals, such as iron with chromium, manganese, copper, nickel or cobalt.
- molten metal bath 44 can include oxides of the molten metals. As disclosed in U.S. Pat. No. 5,177,304, the teachings of which are incorporated by reference, molten metal bath 44 can include more than one phase of molten metal.
- Molten metal bath 44 is formed by partially filling reactor 12 with suitable metal. The metal is then heated to a suitable temperature by activating induction coil 42 or by other means, not shown. Where two immiscible metals are introduced into the reactor, the metals separate during melting and heating to form two distinct molten phases. In one embodiment, the viscosity of molten metal bath 44 is no greater than about 10 centipoise at the operating conditions of apparatus 10.
- Suitable operating conditions of reactor 12 include a temperature of molten metal bath 44 which is sufficient to dissociate waste, containing a non-gasifiable impurity, to form components contained in a gaseous phase and in a molten metal and/or a vitreous phase.
- the gaseous phase components can include a gasified feed component, which may include sulfur, chlorine or fluorine atoms, and additional gaseous components such as hydrogen, carbon monoxide and small hydrocarbons, containing up to about six carbon atoms.
- the non-gasifiable product which may include, for example, metal, aluminate or silicate, remains in the metal and/or vitreous phases.
- Vitreous layer 50 is disposed in reactor 12 on molten metal bath 44. Vitreous layer 50 is substantially immiscible with molten metal bath 44. Vitreous layer 50 can have a lower thermal conductivity than that of molten metal bath 44. Radiant heat loss from molten metal bath 44 can thereby be reduced to significantly below the radiant heat loss from molten bath where no vitreous layer is present.
- vitreous layer 50 examples include titanium oxide (TiO), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), calcium oxide (CaO), etc.
- suitable components of vitreous layer 50 include halides, sulfides, phosphates, heavy metals, etc. It is to be understood that vitreous layer 50 can include more than one metal oxide. Vitreous layer 50 is fluid and monatomic species and other gases can pass across vitreous layer 50 from molten metal bath 44. When the chemical composition of the vitreous layer is chosen to be non-reactive.
- a vitreous composition of 40 mole percent CaO, 10 mole percent Al 2 O 3 and 50 mole percent SiO 2 allows chlorine and chlorinated species to pass through the vitreous layer, while a sulfur-bearing species can pass through a vitreous layer that is free of CaO.
- Vitreous layer 50 is formed by directing suitable components, such as metals, metal oxides, halogens, sulfur, phosphorus, heavy metals, fluxes, sludges, etc., from flux source 52 through inlet tube 54 and onto and into molten metal bath 44 or from below the surface of molten metal bath 44.
- the components form oxides by exposure of the components to an oxidant directed into reactor 12 or from other stable compounds at system conditions by reacting with other less stable components, such as alkali metal or alkaline earth metal cations. Examples of such stable reacting products include calcium fluoride (CaF 2 ) and magnesium phosphate (Mg 3 (PO 4 ) 2 ).
- a thin vitreous layer 50 facilitates the passage of carbon monoxide, gasified organics, monatomic species and other gaseous species across vitreous layer 50 to gas layer 56.
- Gas layer 56 develops over vitreous layer 50.
- Gas layer 56 can comprise an agent directed into upper portion 14 of reactor 12 from agent source 28 through second inlet tube 38 when chemical processing within gas layer 56 so warrants.
- gas layer 56 extends from upper portion 14 of reactor 12 through gaseous effluent outlet 18.
- a reacton zone within reactor 12 includes molten metal bath 44, vitreous layer 50 and gas layer 56.
- Reactants such as waste and an agent, can be introduced anywhere within the reaction zone.
- a substantial portion of the reaction within reactor 12 occurs within the reaction zone.
- Exothermic reaction of atomic constituents formed from the waste such as formation of hydrogen chloride or carbon oxide gas can generate heat for chemical reaction of the waste components in the reaction zone.
- gas layer 56 comprises gasified feed formed in the reaction zone and may include other gaseous components such as various highly caloric short-chain hydrocarbons, hydrogen and/or carbon oxide gas, etc.
- baffles 58 Means for physically separating impurities, such as condensible gases or particulate material, from the gasified feed component, for example baffles 58, are disposed at gaseous effluent outlet 18.
- Baffles 58 are suitable to remove entrained physical impurities from a gasified component as the gasified component is directed through baffles 58. It is to be known that baffles 58 can be disposed upstream, downstream or in gaseous effluent outlet 18.
- separation means can include horizontal baffles, vertical baffles, centrifugal separators, chevron separators and any other means known in the art of separating a physical impurity from a gas stream.
- Regenerator furnace subsystem 60 is provided to convert a gasified feed component of an impure waste, containing a non-gasifiable impurity for a regenerator furnace, into a purified product.
- Suitable regenerator furnace subsystems include, for example, regenerator systems known in the art for producing sulfuric acid, hydrogen chloride and hydrogen fluoride.
- Furnace inlet 62 disposed at regenerator furnace subsystem 60, is suitable for directing a gasified component into regenerator furnace subsystem 60.
- Gas conduit 64 disposed between gaseous effluent outlet 18 of reactor 12 and furnace inlet 62 of regenerator furnace subsystem 60, provides fluid communication for a gasified feed component from gas layer 56 in upper portion 14 of reactor 12, through gaseous effluent outlet 18 and furnace inlet 62, to regenerator furnace subsystem 60.
- Waste is waste containing a specific chemical species, such as halogen or sulfur, wherein the specific chemical species can be separated from the waste and then processed in a regenerator furnace subsystem to form a useful product, for example, hydrogen halide gases or sulfuric acid, or the chemical species can be used to ameliorate the formation of a useful product, for example carbon, hydrogen or oxygen.
- a specific chemical species such as halogen or sulfur
- the specific chemical species can be separated from the waste and then processed in a regenerator furnace subsystem to form a useful product, for example, hydrogen halide gases or sulfuric acid, or the chemical species can be used to ameliorate the formation of a useful product, for example carbon, hydrogen or oxygen.
- a useful product for example, hydrogen halide gases or sulfuric acid
- a wide variety of waste material is suitable for treatment by this invention.
- This waste can include organic, organometallic and inorganic wastes.
- a suitable waste can contain chlorine, fluorine and/or sulfur.
- Suitable wastes include chlorobenzenes, polyvinyl chlorides, polychlorinated biphenyls, polytetrafluoroethylene, spent pot linings, coke wastes, petroleum residuals, inner tubes, tires and spent sulfuric acid.
- Radioactive wastes such as uranium hexafluoride, can also be processed.
- waste containing a non-gasifiable impurity is directed into at least one portion of the reaction zone, specifically gas layer 56, vitreous layer 50 and/or molten metal bath 44 by injecting the waste into upper portion 14 of reactor 12.
- the waste is directed from waste source 22 through lance 20 into the reaction zone through upper portion 14 of reactor 12.
- the waste gasifies, and/or is dissociated and partially gasifies, to form at least one gasified feed component.
- the gasified feed component migrates into, or remains in, gas layer 56.
- a non-gasifiable impurity is retained in vitreous layer 50 and/or molten metal bath 44.
- the non-gasifiable impurity can include metals, which could be retained in molten metal bath 44, light metals, or vitreous agents.
- a vitreous agent as defined herein is a condensible material that, under the operating conditions of reactor 12, is not in its elemental form. Such agents include, for example, SiO 2 , Ca 5 , CaF 2 , etc.
- the non-gasifiable impurity can also contain metal salts, such as oxides, or ash-forming substances, such as silicate or aluminate, which could be retained in vitreous layer 50.
- the waste is directed through bulk waste inlet 36 into upper portion 14 into the reaction zone in reactor 12.
- the waste injected into reactor 12 through lance 20 contains sulfur and hydrocarbons
- the waste partially dissociates to form a gaseous feed product containing organic sulfur-bearing species, such as methyl sulfide, inorganic sulfur-bearing species, such as hydrogen sulfide, and various short chain hydrocarbons. Elemental sulfur formed from decomposition remains in vitreous layer 50 and molten metal bath 44.
- gas layer 56 is comprised of hydrogen sulfide, short chain hydrocarbons and gaseous sulfur-bearing organic species.
- This composition of gas layer 56 can function as a component source and as a fuel supply, wherein the fuel is the organics, carbon oxide gas or the gasified component, for regenerator furnace subsystem 60. It is to be understood that the hydrogen injected as and an agent could also be injected through an alternate lance into lower portion 16 of molten metal bath 44.
- waste is directed from waste source 22 through waste inlet 34 into molten metal bath 44 in lower portion 16 of reactor 12.
- the waste Upon introduction of the waste into molten metal bath 44, the waste dissociates to its atomic constituents to form a gasified feed component, or a gasifiable feed component, and a non-gasifiable impurity.
- the waste includes sulfur
- the sulfur component can remain non-gasified during decomposition in molten metal bath 44 or in vitreous layer 50.
- halogen atoms are gasified during decomposition. The halogen atoms then form halogen molecules, or when hydrogen is present in reactor 12, hydrogen halide gases.
- the gasified halogen feed component then migrates through vitreous layer 50 into gas layer 56.
- an oxidant can also be directed as an agent from agent source 28 through agent inlet 30 into molten metal bath 44 in lower portion 16 of reactor 12.
- the oxidant will react with the atomic constituents contained in molten metal bath 44, which are oxidizable, to form gasified oxides such as carbon monoxide, carbon dioxide or sulfur dioxide. These gasified oxides then migrate through vitreous layer 50 into gas layer 56.
- oxidizable decomposition products contained in gas layer 56 such as monatomic hydrogen or diatomic hydrogen, will also react with the oxidant to form gaseous oxides, for example, water.
- the gasified component specifically the gasified feed component and other gaseous species contained in gas layer 56, is then directed out of upper portion 14 of reactor 12 through baffles 58 and gaseous effluent outlet 18. Impurities, such as condensible gases and particulate material, entrained with the gasified component will then be trapped by baffles 58 and separated from the gasified component.
- regenerator furnace subsystem 60 produces a hydrogen halide gas, from a gaseous feed component containing a halogen, by means known in the hydrogen halide regeneration art. Suitable halogens include fluorine and chlorine. In another preferred embodiment, the hydrogen halide is hydrogen fluoride gas.
- regenerator furnace subsystem 60 produces sulfuric acid from hydrogen sulfide gas or sulfur dioxide gas by means known in the sulfuric acid regeneration art.
- hydrogen sulfide gas is oxidized to form sulfur dioxide and water.
- Sulfur dioxide is sequentially dried, to remove water, and then catalytically converted to form sulfur trioxide.
- the sulfur trioxide is then hydrated to form sulfuric acid.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
Claims (15)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/041,772 US5640706A (en) | 1993-04-02 | 1993-04-02 | Method and apparatus for producing a product in a regenerator furnace from impure waste containing a non-gasifiable impurity |
US08/437,845 US5640709A (en) | 1993-04-02 | 1995-05-09 | Method and apparatus for producing a product in a regenerator furnace from impure waste containing a non-gasifiable impurity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/041,772 US5640706A (en) | 1993-04-02 | 1993-04-02 | Method and apparatus for producing a product in a regenerator furnace from impure waste containing a non-gasifiable impurity |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/437,845 Division US5640709A (en) | 1993-04-02 | 1995-05-09 | Method and apparatus for producing a product in a regenerator furnace from impure waste containing a non-gasifiable impurity |
Publications (1)
Publication Number | Publication Date |
---|---|
US5640706A true US5640706A (en) | 1997-06-17 |
Family
ID=21918238
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/041,772 Expired - Fee Related US5640706A (en) | 1993-04-02 | 1993-04-02 | Method and apparatus for producing a product in a regenerator furnace from impure waste containing a non-gasifiable impurity |
US08/437,845 Expired - Fee Related US5640709A (en) | 1993-04-02 | 1995-05-09 | Method and apparatus for producing a product in a regenerator furnace from impure waste containing a non-gasifiable impurity |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/437,845 Expired - Fee Related US5640709A (en) | 1993-04-02 | 1995-05-09 | Method and apparatus for producing a product in a regenerator furnace from impure waste containing a non-gasifiable impurity |
Country Status (1)
Country | Link |
---|---|
US (2) | US5640706A (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080304970A1 (en) * | 2003-07-14 | 2008-12-11 | Cooper Paul V | Pump with rotating inlet |
US7731891B2 (en) | 2002-07-12 | 2010-06-08 | Cooper Paul V | Couplings for molten metal devices |
US7906068B2 (en) | 2003-07-14 | 2011-03-15 | Cooper Paul V | Support post system for molten metal pump |
US8178037B2 (en) | 2002-07-12 | 2012-05-15 | Cooper Paul V | System for releasing gas into molten metal |
US8337746B2 (en) | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
US8361379B2 (en) | 2002-07-12 | 2013-01-29 | Cooper Paul V | Gas transfer foot |
US8366993B2 (en) | 2007-06-21 | 2013-02-05 | Cooper Paul V | System and method for degassing molten metal |
US8444911B2 (en) | 2009-08-07 | 2013-05-21 | Paul V. Cooper | Shaft and post tensioning device |
US8449814B2 (en) | 2009-08-07 | 2013-05-28 | Paul V. Cooper | Systems and methods for melting scrap metal |
US8524146B2 (en) | 2009-08-07 | 2013-09-03 | Paul V. Cooper | Rotary degassers and components therefor |
US8529828B2 (en) | 2002-07-12 | 2013-09-10 | Paul V. Cooper | Molten metal pump components |
US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
US9108244B2 (en) | 2009-09-09 | 2015-08-18 | Paul V. Cooper | Immersion heater for molten metal |
US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11358216B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19637195C2 (en) * | 1996-02-16 | 1998-12-17 | Thermoselect Ag | Process for operating a high-temperature reactor for the treatment of waste |
WO1999039356A1 (en) * | 1998-01-30 | 1999-08-05 | Hitachi, Ltd. | Solid material melting apparatus |
JP3370297B2 (en) * | 1999-07-26 | 2003-01-27 | 安斎 節 | Polychlorinated biphenyl detoxification equipment |
IT1307301B1 (en) * | 1999-12-21 | 2001-10-30 | Ct Sviluppo Materiali Spa | ECOLOGICAL PROCESS OF CONTINUOUS INERTIZATION OF HALOGENIC ORGANIC MATERIALS THROUGH THERMAL DESTRUCTION IN STEEL REACTORS, |
WO2009081282A2 (en) * | 2007-12-21 | 2009-07-02 | Gi-Gasification International, Sa | Method of using injector system for making fuel gas |
CN104266479B (en) * | 2014-09-21 | 2016-08-24 | 奉化市精翔热处理设备厂 | Coal gasification and heat treatment all-in-one oven |
CN118391913B (en) * | 2024-06-25 | 2024-08-30 | 陕西省双菱化工股份有限公司 | Novel roasting furnace doped with waste sulfuric acid |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3203758A (en) * | 1962-10-30 | 1965-08-31 | Horizons Inc | Utilization of steel mill pickle liquor |
US3527178A (en) * | 1968-12-24 | 1970-09-08 | Pyro Magnetics Corp | Apparatus for the destruction of refuse |
US3616767A (en) * | 1968-12-24 | 1971-11-02 | Pyro Magnetics Corp | Apparatus for the destruction of refuse |
US3616768A (en) * | 1968-12-24 | 1971-11-02 | Pyro Magnetics Corp | Apparatus for the destruction of refuse |
US3648629A (en) * | 1970-07-09 | 1972-03-14 | Pyro Magnetics Corp | Apparatus for the destruction of refuse |
US3744438A (en) * | 1968-12-24 | 1973-07-10 | Pyro Magnetics Corp | Incinerating |
CA945824A (en) * | 1970-07-17 | 1974-04-23 | Kenneth J. Southwick | Method and apparatus for the destruction of refuse |
US3845190A (en) * | 1972-06-20 | 1974-10-29 | Rockwell International Corp | Disposal of organic pesticides |
US3916617A (en) * | 1974-03-29 | 1975-11-04 | Rockwell International Corp | Process for production of low BTU gas |
US3933989A (en) * | 1971-03-04 | 1976-01-20 | Kawasaki Jukogyo Kabushiki Kaisha | Method for disposal of waste synthetic high polymer |
US3969490A (en) * | 1972-12-16 | 1976-07-13 | Basf Aktiengesellschaft | Production of hydrogen chloride by thermal dissociation of organic substances containing chlorine |
US4100107A (en) * | 1975-04-14 | 1978-07-11 | Hydrocarbon Research, Inc. | Desulfurization of fuel gas at high temperature using supported molten metal carbonate absorbent |
US4269817A (en) * | 1979-07-27 | 1981-05-26 | Battelle Memorial Institute | Production of chlorine from chloride salts |
US4399108A (en) * | 1982-01-19 | 1983-08-16 | Krikorian Oscar H | Method for reprocessing and separating spent nuclear fuels |
US4447262A (en) * | 1983-05-16 | 1984-05-08 | Rockwell International Corporation | Destruction of halogen-containing materials |
US4574714A (en) * | 1984-11-08 | 1986-03-11 | United States Steel Corporation | Destruction of toxic chemicals |
US4602574A (en) * | 1984-11-08 | 1986-07-29 | United States Steel Corporation | Destruction of toxic organic chemicals |
US4666696A (en) * | 1985-03-29 | 1987-05-19 | Detox International Corporation | Destruction of nerve gases and other cholinesterase inhibitors by molten metal reduction |
US4957551A (en) * | 1987-04-02 | 1990-09-18 | Elkem A/S | Method for treatment of dust recovered from off gases in metallurgical processes |
US5177304A (en) * | 1990-07-24 | 1993-01-05 | Molten Metal Technology, Inc. | Method and system for forming carbon dioxide from carbon-containing materials in a molten bath of immiscible metals |
US5359947A (en) * | 1990-05-16 | 1994-11-01 | Wagner Anthony S | Equipment and process for waste pyrolysis and off gas oxidative treatment |
-
1993
- 1993-04-02 US US08/041,772 patent/US5640706A/en not_active Expired - Fee Related
-
1995
- 1995-05-09 US US08/437,845 patent/US5640709A/en not_active Expired - Fee Related
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3203758A (en) * | 1962-10-30 | 1965-08-31 | Horizons Inc | Utilization of steel mill pickle liquor |
US3527178A (en) * | 1968-12-24 | 1970-09-08 | Pyro Magnetics Corp | Apparatus for the destruction of refuse |
US3616767A (en) * | 1968-12-24 | 1971-11-02 | Pyro Magnetics Corp | Apparatus for the destruction of refuse |
US3616768A (en) * | 1968-12-24 | 1971-11-02 | Pyro Magnetics Corp | Apparatus for the destruction of refuse |
US3744438A (en) * | 1968-12-24 | 1973-07-10 | Pyro Magnetics Corp | Incinerating |
US3648629A (en) * | 1970-07-09 | 1972-03-14 | Pyro Magnetics Corp | Apparatus for the destruction of refuse |
CA945824A (en) * | 1970-07-17 | 1974-04-23 | Kenneth J. Southwick | Method and apparatus for the destruction of refuse |
US3933989A (en) * | 1971-03-04 | 1976-01-20 | Kawasaki Jukogyo Kabushiki Kaisha | Method for disposal of waste synthetic high polymer |
US3845190A (en) * | 1972-06-20 | 1974-10-29 | Rockwell International Corp | Disposal of organic pesticides |
US3969490A (en) * | 1972-12-16 | 1976-07-13 | Basf Aktiengesellschaft | Production of hydrogen chloride by thermal dissociation of organic substances containing chlorine |
US3916617A (en) * | 1974-03-29 | 1975-11-04 | Rockwell International Corp | Process for production of low BTU gas |
US4100107A (en) * | 1975-04-14 | 1978-07-11 | Hydrocarbon Research, Inc. | Desulfurization of fuel gas at high temperature using supported molten metal carbonate absorbent |
US4269817A (en) * | 1979-07-27 | 1981-05-26 | Battelle Memorial Institute | Production of chlorine from chloride salts |
US4399108A (en) * | 1982-01-19 | 1983-08-16 | Krikorian Oscar H | Method for reprocessing and separating spent nuclear fuels |
US4447262A (en) * | 1983-05-16 | 1984-05-08 | Rockwell International Corporation | Destruction of halogen-containing materials |
US4574714A (en) * | 1984-11-08 | 1986-03-11 | United States Steel Corporation | Destruction of toxic chemicals |
US4602574A (en) * | 1984-11-08 | 1986-07-29 | United States Steel Corporation | Destruction of toxic organic chemicals |
US4666696A (en) * | 1985-03-29 | 1987-05-19 | Detox International Corporation | Destruction of nerve gases and other cholinesterase inhibitors by molten metal reduction |
US4957551A (en) * | 1987-04-02 | 1990-09-18 | Elkem A/S | Method for treatment of dust recovered from off gases in metallurgical processes |
US5359947A (en) * | 1990-05-16 | 1994-11-01 | Wagner Anthony S | Equipment and process for waste pyrolysis and off gas oxidative treatment |
US5177304A (en) * | 1990-07-24 | 1993-01-05 | Molten Metal Technology, Inc. | Method and system for forming carbon dioxide from carbon-containing materials in a molten bath of immiscible metals |
Cited By (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8409495B2 (en) | 2002-07-12 | 2013-04-02 | Paul V. Cooper | Rotor with inlet perimeters |
US9435343B2 (en) | 2002-07-12 | 2016-09-06 | Molten Meal Equipment Innovations, LLC | Gas-transfer foot |
US8529828B2 (en) | 2002-07-12 | 2013-09-10 | Paul V. Cooper | Molten metal pump components |
US9034244B2 (en) | 2002-07-12 | 2015-05-19 | Paul V. Cooper | Gas-transfer foot |
US8110141B2 (en) | 2002-07-12 | 2012-02-07 | Cooper Paul V | Pump with rotating inlet |
US8178037B2 (en) | 2002-07-12 | 2012-05-15 | Cooper Paul V | System for releasing gas into molten metal |
US7731891B2 (en) | 2002-07-12 | 2010-06-08 | Cooper Paul V | Couplings for molten metal devices |
US8361379B2 (en) | 2002-07-12 | 2013-01-29 | Cooper Paul V | Gas transfer foot |
US8440135B2 (en) | 2002-07-12 | 2013-05-14 | Paul V. Cooper | System for releasing gas into molten metal |
US8501084B2 (en) | 2003-07-14 | 2013-08-06 | Paul V. Cooper | Support posts for molten metal pumps |
US20080304970A1 (en) * | 2003-07-14 | 2008-12-11 | Cooper Paul V | Pump with rotating inlet |
US8075837B2 (en) | 2003-07-14 | 2011-12-13 | Cooper Paul V | Pump with rotating inlet |
US7906068B2 (en) | 2003-07-14 | 2011-03-15 | Cooper Paul V | Support post system for molten metal pump |
US8475708B2 (en) | 2003-07-14 | 2013-07-02 | Paul V. Cooper | Support post clamps for molten metal pumps |
US9017597B2 (en) | 2007-06-21 | 2015-04-28 | Paul V. Cooper | Transferring molten metal using non-gravity assist launder |
US10352620B2 (en) | 2007-06-21 | 2019-07-16 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US11185916B2 (en) | 2007-06-21 | 2021-11-30 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel with pump |
US11130173B2 (en) | 2007-06-21 | 2021-09-28 | Molten Metal Equipment Innovations, LLC. | Transfer vessel with dividing wall |
US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
US11103920B2 (en) | 2007-06-21 | 2021-08-31 | Molten Metal Equipment Innovations, Llc | Transfer structure with molten metal pump support |
US8753563B2 (en) | 2007-06-21 | 2014-06-17 | Paul V. Cooper | System and method for degassing molten metal |
US11020798B2 (en) | 2007-06-21 | 2021-06-01 | Molten Metal Equipment Innovations, Llc | Method of transferring molten metal |
US9855600B2 (en) | 2007-06-21 | 2018-01-02 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US11759854B2 (en) | 2007-06-21 | 2023-09-19 | Molten Metal Equipment Innovations, Llc | Molten metal transfer structure and method |
US8366993B2 (en) | 2007-06-21 | 2013-02-05 | Cooper Paul V | System and method for degassing molten metal |
US10562097B2 (en) | 2007-06-21 | 2020-02-18 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
US10458708B2 (en) | 2007-06-21 | 2019-10-29 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US11167345B2 (en) | 2007-06-21 | 2021-11-09 | Molten Metal Equipment Innovations, Llc | Transfer system with dual-flow rotor |
US10345045B2 (en) | 2007-06-21 | 2019-07-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9383140B2 (en) | 2007-06-21 | 2016-07-05 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US10274256B2 (en) | 2007-06-21 | 2019-04-30 | Molten Metal Equipment Innovations, Llc | Vessel transfer systems and devices |
US10195664B2 (en) | 2007-06-21 | 2019-02-05 | Molten Metal Equipment Innovations, Llc | Multi-stage impeller for molten metal |
US8337746B2 (en) | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
US10072891B2 (en) | 2007-06-21 | 2018-09-11 | Molten Metal Equipment Innovations, Llc | Transferring molten metal using non-gravity assist launder |
US9982945B2 (en) | 2007-06-21 | 2018-05-29 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US9925587B2 (en) | 2007-06-21 | 2018-03-27 | Molten Metal Equipment Innovations, Llc | Method of transferring molten metal from a vessel |
US9909808B2 (en) | 2007-06-21 | 2018-03-06 | Molten Metal Equipment Innovations, Llc | System and method for degassing molten metal |
US9566645B2 (en) | 2007-06-21 | 2017-02-14 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9581388B2 (en) | 2007-06-21 | 2017-02-28 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9862026B2 (en) | 2007-06-21 | 2018-01-09 | Molten Metal Equipment Innovations, Llc | Method of forming transfer well |
US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
US9080577B2 (en) | 2009-08-07 | 2015-07-14 | Paul V. Cooper | Shaft and post tensioning device |
US9657578B2 (en) | 2009-08-07 | 2017-05-23 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US8449814B2 (en) | 2009-08-07 | 2013-05-28 | Paul V. Cooper | Systems and methods for melting scrap metal |
US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
US9506129B2 (en) | 2009-08-07 | 2016-11-29 | Molten Metal Equipment Innovations, Llc | Rotary degasser and rotor therefor |
US9382599B2 (en) | 2009-08-07 | 2016-07-05 | Molten Metal Equipment Innovations, Llc | Rotary degasser and rotor therefor |
US9470239B2 (en) | 2009-08-07 | 2016-10-18 | Molten Metal Equipment Innovations, Llc | Threaded tensioning device |
US8524146B2 (en) | 2009-08-07 | 2013-09-03 | Paul V. Cooper | Rotary degassers and components therefor |
US9464636B2 (en) | 2009-08-07 | 2016-10-11 | Molten Metal Equipment Innovations, Llc | Tension device graphite component used in molten metal |
US8444911B2 (en) | 2009-08-07 | 2013-05-21 | Paul V. Cooper | Shaft and post tensioning device |
US10570745B2 (en) | 2009-08-07 | 2020-02-25 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US9328615B2 (en) | 2009-08-07 | 2016-05-03 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US9422942B2 (en) | 2009-08-07 | 2016-08-23 | Molten Metal Equipment Innovations, Llc | Tension device with internal passage |
US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
US9377028B2 (en) | 2009-08-07 | 2016-06-28 | Molten Metal Equipment Innovations, Llc | Tensioning device extending beyond component |
US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
US10309725B2 (en) | 2009-09-09 | 2019-06-04 | Molten Metal Equipment Innovations, Llc | Immersion heater for molten metal |
US9108244B2 (en) | 2009-09-09 | 2015-08-18 | Paul V. Cooper | Immersion heater for molten metal |
US9482469B2 (en) | 2010-05-12 | 2016-11-01 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US11391293B2 (en) | 2013-03-13 | 2022-07-19 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US10641279B2 (en) | 2013-03-13 | 2020-05-05 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened tip |
US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
US10126058B2 (en) | 2013-03-14 | 2018-11-13 | Molten Metal Equipment Innovations, Llc | Molten metal transferring vessel |
US10126059B2 (en) | 2013-03-14 | 2018-11-13 | Molten Metal Equipment Innovations, Llc | Controlled molten metal flow from transfer vessel |
US10302361B2 (en) | 2013-03-14 | 2019-05-28 | Molten Metal Equipment Innovations, Llc | Transfer vessel for molten metal pumping device |
US9587883B2 (en) | 2013-03-14 | 2017-03-07 | Molten Metal Equipment Innovations, Llc | Ladle with transfer conduit |
US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10307821B2 (en) | 2013-03-15 | 2019-06-04 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10322451B2 (en) | 2013-03-15 | 2019-06-18 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10465688B2 (en) | 2014-07-02 | 2019-11-05 | Molten Metal Equipment Innovations, Llc | Coupling and rotor shaft for molten metal devices |
US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US11939994B2 (en) | 2014-07-02 | 2024-03-26 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US11286939B2 (en) | 2014-07-02 | 2022-03-29 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US11933324B2 (en) | 2015-02-02 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US11098720B2 (en) | 2016-01-13 | 2021-08-24 | Molten Metal Equipment Innovations, Llc | Tensioned rotor shaft for molten metal |
US11098719B2 (en) | 2016-01-13 | 2021-08-24 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US11519414B2 (en) | 2016-01-13 | 2022-12-06 | Molten Metal Equipment Innovations, Llc | Tensioned rotor shaft for molten metal |
US10641270B2 (en) | 2016-01-13 | 2020-05-05 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US12031550B2 (en) | 2017-11-17 | 2024-07-09 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11976672B2 (en) | 2017-11-17 | 2024-05-07 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11759853B2 (en) | 2019-05-17 | 2023-09-19 | Molten Metal Equipment Innovations, Llc | Melting metal on a raised surface |
US11858037B2 (en) | 2019-05-17 | 2024-01-02 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
US11858036B2 (en) | 2019-05-17 | 2024-01-02 | Molten Metal Equipment Innovations, Llc | System and method to feed mold with molten metal |
US11931802B2 (en) | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal controlled flow launder |
US11931803B2 (en) | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and method |
US11850657B2 (en) | 2019-05-17 | 2023-12-26 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11471938B2 (en) | 2019-05-17 | 2022-10-18 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
US11358217B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | Method for melting solid metal |
US11358216B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
Also Published As
Publication number | Publication date |
---|---|
US5640709A (en) | 1997-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5640706A (en) | Method and apparatus for producing a product in a regenerator furnace from impure waste containing a non-gasifiable impurity | |
US5435982A (en) | Method for dissociating waste in a packed bed reactor | |
US5395405A (en) | Method for producing hydrocarbon gas from waste | |
US5695732A (en) | Method for treating a halogenated organic waste to produce halogen gas and carbon oxide gas streams | |
EP0813438B1 (en) | Feed processing employing dispersed molten droplets | |
US5776420A (en) | Apparatus for treating a gas formed from a waste in a molten metal bath | |
EP0600906B1 (en) | Method for oxidation in a molten bath | |
US5585532A (en) | Method for treating a gas formed from a waste in a molten metal bath | |
US5301620A (en) | Reactor and method for disassociating waste | |
US5358697A (en) | Method and system for controlling chemical reaction in a molten bath | |
US5491279A (en) | Method for top-charging solid waste into a molten metal bath | |
US5354940A (en) | Method for controlling chemical reaction in a molten metal bath | |
US5298233A (en) | Method and system for oxidizing hydrogen- and carbon-containing feed in a molten bath of immiscible metals | |
US5537940A (en) | Method for treating organic waste | |
EP0830182B1 (en) | Vaporizable material injection into molten bath | |
CA2135082A1 (en) | Method for indirect chemical reduction of metals in waste | |
JP2001516321A (en) | Process for producing halogenated organisms from metal halide materials | |
JPH11500060A (en) | Method for capturing chlorine dissociated from chlorine-containing compounds | |
AU667118B2 (en) | Method for treating organic waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MOLTEN METAL TECHNOLOGY, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAGEL, CHRISTOPHER J.;HANEY, WILLIAM M., III;YATES, IAN C.;REEL/FRAME:006548/0934;SIGNING DATES FROM 19930430 TO 19930505 |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: RESTART PARTNERS V. L.P., NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC.;MMT OF TENNESSEE INC.;MMT FEDERAL HOLDINGS, INC.;AND OTHERS;REEL/FRAME:008975/0826 Effective date: 19980119 Owner name: RESTART PARTNERS, L.P., NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC.;MMT OF TENNESSEE INC.;MMT FEDERAL HOLDINGS, INC.;AND OTHERS;REEL/FRAME:008975/0826 Effective date: 19980119 Owner name: RESTART PARTNERS IV, L.P., NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC.;MMT OF TENNESSEE INC.;MMT FEDERAL HOLDINGS, INC.;AND OTHERS;REEL/FRAME:008975/0826 Effective date: 19980119 Owner name: MORGENS, WATERFALL, VINTIADIS & CO., INC., NEW YOR Free format text: SECURITY INTEREST;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC.;MMT OF TENNESSEE INC.;MMT FEDERAL HOLDINGS, INC.;AND OTHERS;REEL/FRAME:008975/0826 Effective date: 19980119 Owner name: MORGENS WATERFALL INCOME PARTNERS, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC.;MMT OF TENNESSEE INC.;MMT FEDERAL HOLDINGS, INC.;AND OTHERS;REEL/FRAME:008975/0826 Effective date: 19980119 Owner name: RESTART PARTNERS II, L.P., NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC.;MMT OF TENNESSEE INC.;MMT FEDERAL HOLDINGS, INC.;AND OTHERS;REEL/FRAME:008975/0826 Effective date: 19980119 Owner name: ENDOWMENET RESTART L.L.C., NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC.;MMT OF TENNESSEE INC.;MMT FEDERAL HOLDINGS, INC.;AND OTHERS;REEL/FRAME:008975/0826 Effective date: 19980119 Owner name: RESTART PARTNERS III, L.P., NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC.;MMT OF TENNESSEE INC.;MMT FEDERAL HOLDINGS, INC.;AND OTHERS;REEL/FRAME:008975/0826 Effective date: 19980119 |
|
AS | Assignment |
Owner name: MORGENS, WATERFALL, VINTIADIS & CO., INC., NEW YOR Free format text: AMENDED SECURITY AGREEMENT;ASSIGNOR:MOLTEN METAL TECHNOLOGY INC.;REEL/FRAME:009245/0763 Effective date: 19980320 |
|
AS | Assignment |
Owner name: RESTART PARTNERS II, L.P., A DELAWARE LIMITED, NEW Free format text: AMENDED SECURITY AGREEMENT;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC., A DELAWARE CORP.;MMT OF TENNESSEE INC., A DELAWARE CORPORATION;MMT FEDERAL HOLDINGS, INC., A DELAWARE CORPORATION;AND OTHERS;REEL/FRAME:009414/0793 Effective date: 19980720 Owner name: ENDOWMENT RESTART L.L.C., A DELAWARE LIMITED, NEW Free format text: AMENDED SECURITY AGREEMENT;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC., A DELAWARE CORP.;MMT OF TENNESSEE INC., A DELAWARE CORPORATION;MMT FEDERAL HOLDINGS, INC., A DELAWARE CORPORATION;AND OTHERS;REEL/FRAME:009414/0793 Effective date: 19980720 Owner name: MORGENS WATERFALL INCOME PARTNERS, A NEW YORK, NEW Free format text: AMENDED SECURITY AGREEMENT;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC., A DELAWARE CORP.;MMT OF TENNESSEE INC., A DELAWARE CORPORATION;MMT FEDERAL HOLDINGS, INC., A DELAWARE CORPORATION;AND OTHERS;REEL/FRAME:009414/0793 Effective date: 19980720 Owner name: RESTART PARTNERS, L.P., A DELAWARE LIMITED PART-, Free format text: AMENDED SECURITY AGREEMENT;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC., A DELAWARE CORP.;MMT OF TENNESSEE INC., A DELAWARE CORPORATION;MMT FEDERAL HOLDINGS, INC., A DELAWARE CORPORATION;AND OTHERS;REEL/FRAME:009414/0793 Effective date: 19980720 Owner name: MORGENS, WATERFALL, VINTIADIS & CO., INC., NEW YOR Free format text: AMENDED SECURITY AGREEMENT;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC., A DELAWARE CORP.;MMT OF TENNESSEE INC., A DELAWARE CORPORATION;MMT FEDERAL HOLDINGS, INC., A DELAWARE CORPORATION;AND OTHERS;REEL/FRAME:009414/0793 Effective date: 19980720 Owner name: RESTART PARTNERS IV, L.P., A DELAWARE LIMITED PART Free format text: AMENDED SECURITY AGREEMENT;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC., A DELAWARE CORP.;MMT OF TENNESSEE INC., A DELAWARE CORPORATION;MMT FEDERAL HOLDINGS, INC., A DELAWARE CORPORATION;AND OTHERS;REEL/FRAME:009414/0793 Effective date: 19980720 Owner name: RESTART PARTNERS III, L.P., A DELAWARE LIMITED, NE Free format text: AMENDED SECURITY AGREEMENT;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC., A DELAWARE CORP.;MMT OF TENNESSEE INC., A DELAWARE CORPORATION;MMT FEDERAL HOLDINGS, INC., A DELAWARE CORPORATION;AND OTHERS;REEL/FRAME:009414/0793 Effective date: 19980720 Owner name: RESTART PARTNERS V, L.P., A DELAWARE LIMITED PARTN Free format text: AMENDED SECURITY AGREEMENT;ASSIGNORS:MOLTEN METAL TECHNOLOGY, INC., A DELAWARE CORP.;MMT OF TENNESSEE INC., A DELAWARE CORPORATION;MMT FEDERAL HOLDINGS, INC., A DELAWARE CORPORATION;AND OTHERS;REEL/FRAME:009414/0793 Effective date: 19980720 |
|
AS | Assignment |
Owner name: QUANTUM CATALYTICS, L.L.C., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRAY, STEPHEN S., CHAPTER 11 TRUSTEE OF MOLTEN METAL TECHNOLOGY, INC., MMT OF TENNSSEE INC., MMT FEDERAL HOLDINGS, INC., M4 ENVIRONMENTAL MANAGEMENT INC., AND M4 ENVIRONMENTAL L.P.;REEL/FRAME:009773/0115 Effective date: 19981201 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20050617 |