US5374531A - Immunoassay for determination of cells - Google Patents
Immunoassay for determination of cells Download PDFInfo
- Publication number
- US5374531A US5374531A US08/034,138 US3413893A US5374531A US 5374531 A US5374531 A US 5374531A US 3413893 A US3413893 A US 3413893A US 5374531 A US5374531 A US 5374531A
- Authority
- US
- United States
- Prior art keywords
- reagent
- separation
- analyte
- particulate
- antigen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/544—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/544—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
- G01N33/545—Synthetic resin
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
- G01N33/56972—White blood cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/975—Kit
Definitions
- the present invention relates to diagnostic testing and in particular to a method for determining the presence or quantity of selected analytes, each having at least one characteristic determinant, within a mixed population of same, and to test kits used in performing such methods.
- the method of the invention facilitates screening of complex biological fluids, such as whole blood, containing small fractions of particular cell types or subsets of interest, and provides an efficient and reliable assay for cell monitoring of AIDs patients.
- Flow cytometry has decided advantages over other cell marker analysis techniques of the prior art, such as immunofluorescence microscopy, immunocytochemistry, and enzyme immunoassay.
- One particular advantage of flow cytometry over bulk methods of marker analysis is the utilization of multiple detectors to simultaneously analyze multiple signals from each cell.
- marker analysis e.g., fluorimetry or enzyme immunoassay
- U.S. Pat. No. 4,727,020 to Recktenwald describes the use of two fluorescent channels to detect cells in a subpopulation specifically labelled with two different immunofluorescent agents.
- U.S. Pat. No. 4,284,412 to Hansen et al. describes the use of fluorescence channels to detect forward and right angle light scatter of cells of different subpopulations in blood.
- At least one parameter is used for gating so that a signal from a cell (e.g., fluorescence from a fluorochrome) is electronically measured only if the cell falls within the gated subpopulation of interest.
- a signal from a cell e.g., fluorescence from a fluorochrome
- Such multiparametric measurement is useful for enumerating cell types of interest within a complex population of cells (e.g., whole blood). This method is time consuming, however, since each sample must be analyzed one cell at a time for the parameters of interest.
- ELISA enzyme-linked immunosorbent assay
- Another method for detection of cell surface antigens or antibodies thereto measures agglutination of fluorochrome labelled erythrocytes.
- This method has particular application for blood typing or the detection of antibodies to blood group antigens. Fluorochromes are used to label erythrocyte membranes and the presence of the antibodies or antigens is then determined from fluctuations in the fluorescence signal (detected by a fiber optic probe) due to agglutination of the erythrocytes.
- This system can produce only qualitative or, at best, semi-quantitative results as to the presence or absence of antigens or antibodies of interest.
- the assay is employed to measure the presence of antibodies in plasma, erythrocytes in the blood sample are removed by the addition of colloidal magnetite particles and exposure of the sample to a magnetic field.
- a binding molecule e.g., monoclonal antibody
- a binding molecule is typically conjugated to the magnetic particles, and added to a test sample under conditions causing binding to a characteristic determinant on the analyte of interest, after which the test sample is exposed to a magnetic field. See, for example, the immunomagnetic separation technique described by Leivestad et al., supra. The magnetic particles and analyte affixed thereto can then be separated from the rest of the population.
- the number of nuclei counted corresponded to the number of cells in the sample in the subpopulation of interest. While this procedure may be used to enumerate the cells in a subpopulation of interest, manual enumeration of the cell nuclei is very time consuming and susceptible to technical error in sample loading of the hemocytometer and counting. Such a procedure would not be suitable for use in a clinical setting.
- the characteristics of such improved methods should include: sensitivity comparable to or greater than methods heretofore available, ability to analyze samples comprising a plurality of cells in a relatively brief time, and elimination of the need for expensive equipment and highly skilled personnel to perform the method.
- the present invention provides a convenient, reliable and relatively inexpensive method for conducting analyses of various particulate analytes, e.g., human cells.
- the method of the invention involves analyte-specific interaction between a pair of reagents, comprising a detection reagent and a separation reagent, and a characteristic determinant associated with the particulate analyte at spaced apart locations on the surface thereof.
- the preferred embodiment of this method is independent of the concentration or density of the characteristic determinant on the analyte particles, which can vary from one analyte to another, or from particle to particle within a single analyte.
- the separation reagent used in the practice of this invention comprises an insolubilized phase for facilitating separation from the test sample of analyte particles that become attached thereto in performing the present method.
- a specific binding substance that binds specifically to a characteristic determinant of the analyte is affixed to the insolubilized phase.
- the detection reagent comprises a detectable label in particulate form which is also preferably associated with an insolubilized phase.
- the detection reagent also comprises a specific binding substance that binds specifically to a characteristic determinant of the analyte, which may be the same as or different from the determinant which is bound by the specific binding substance associated with the separation reagent.
- the detection reagent when unbound, must be separable from the analyte-bound detection reagent via the analyte-bound separation reagent. It must also be separable from the unbound separation reagent. This enables quantitation of the analyte concentration via monitoring either the analyte-bound or unbound detection reagent.
- the detection reagent and separation reagent are added substantially simultaneously to the sample containing the analyte of interest.
- the amounts of added separation and detection reagent should be sufficient to substantially completely cover the surfaces of the analyte particles, thereby to form rosettes.
- the ratio of added separation reagent to added detection reagent should be such as to effect separation of a constant or fixed fraction of said rosettes and render said separated rosettes detectable.
- the method is carried out under conditions whereby the rosettes are substantially completely separable from the sample.
- the sample is thereafter subjected to conditions promoting rosette formation between the separation and detection reagents and the analyte particles and the resulting rosettes are separated from unbound detection reagent.
- the label in either the separated rosettes or in the separated unbound detection reagent is then measured, the measurement being determinative of the presence or concentration of the particulate analyte in the sample.
- the method of the present invention is performed on whole blood for lymphocyte subset monitoring of AIDS patients.
- This embodiment of the invention is performed by adding to a sample of whole blood an admixture of the aforementioned separation reagent and detection reagent.
- the separation reagent comprises finely divided, magnetically responsive particles, to which are affixed monoclonal antibody that binds specifically to a cell surface antigen on the lymphocytes of interest, e.g., anti-CD4 or anti-CD8.
- the diameter of separation reagent particles with antibody affixed thereto should be at least 0.1 microns.
- the detection reagent also comprises a finely divided particulate support, but one which is nonmagnetic and bears a detectable fluorescent substance.
- the detection reagent is rendered immunologically reactive toward the target lymphocyte by affixing thereto monoclonal antibody that binds specifically to an antigen on the lymphocytes of interest, preferably the same antigen to which the separation agent specifically binds.
- the diameter of the fluorescence substance-bearing particles comprising the detection reagent should be at least 0.1 microns.
- the amounts of the added separation and detection reagents should be sufficient to substantially completely cover the surfaces of the lymphocytes of interest, so as to form rosettes, with the detection reagent generally comprising about 30 to 70 percent of the assay reagent solid phase components, by particle count, weight or concentration (depending on the nature of the reagent).
- the solid phase which constitutes the separation system comprises the remaining 30 to 70 percent of the solid phase assay components.
- the resulting sample is then subjected to conditions causing rosette formation between the separation and detection reagents and the lymphocytes of interest, after which the rosettes thus formed are magnetically separated from the non-magnetic components of the test sample.
- the separated rosettes are then washed to remove unbound detection reagent and the label in the separated rosettes is measured, the measurement being determinative of the presence or concentration of the lymphocytes of interest in the blood sample.
- a test kit for performing the method of the invention.
- Such a test kit may include various components depending on the nature of the cells sought to be determined.
- a test kit would typically comprise primary assay reagents consisting of containers of detection and separation reagents specific for the target cell type, as well as containers of detection and separation reagents which are not targeted to a specific cell type, as non-specific binding control reagents. Separate containers of calibrator reagents would also be provided. Assay plates and a set of user instructions would also typically be included in the kits.
- the test kits may also include other accessories useful in carrying out the methods of the invention.
- the method of the invention may be used as an adjunct to, and in certain instances as a replacement for, the above noted analytical techniques currently applied in clinical laboratories, whose purpose is to screen for changes in cell frequency, viz., flow cytometry or fluorescence microscopy.
- the methods described herein utilize multiparametric measurement, which previously was limited to flow cytometric analysis, while substantially reducing the time burden inherent in flow cytometry. Moreover, unlike flow cytometry, the methods of the invention do not require complex, expensive equipment and highly skilled personnel.
- the cell subset of interest may be reliably quantitated from whole blood in the clinical setting without extraneous analysis.
- Other methods for determining the absolute concentration of cells in a subset of interest utilize two or more different measurements to obtain the value of interest. For example, flow cytometry measures the proportional number, rather than absolute number of lymphocytes of interest in a sample.
- flow cytometry measures the proportional number, rather than absolute number of lymphocytes of interest in a sample.
- a cell type of interest e.g., CD4 lymphocytes
- flow cytometry cytometric analysis
- white blood cell count a measure of the flow cytometric analysis
- differential white cell count a measure of the flow cytometric analysis
- the flow cytometric analysis is performed in an immunology laboratory while the white blood cell and differential counts are performed in a hematology laboratory.
- these may be different laboratories within the same facility or may be located at different facilities.
- the data from both laboratories must be compiled in order to obtain the results which are reported to the clinician.
- cytometric analysis is essential for proper diagnosis. For example, the decision of whether to initiate azidothymidine (AZT) therapy in AIDS patients rests on a measurement of the number of CD4 lymphocytes per liter of the patient's blood. If this number falls below 0.500 ⁇ 10 9 CD4 cells per liter, AZT therapy is recommended. See State-of-the-Art conference on Azidothymidine Therapy for Early HIV Infection, Am. J. Medicine, 89: 335-44 (September 1990). Since flow cytometric analysis involves the calculations described above, any alteration in the fraction of lymphocytes in blood will cause an error in the calculated CD4 lymphocyte concentration.
- Neutrophils which typically comprise half or more of the white blood cells, are fragile and may degrade during specimen storage or transport to the clinical laboratory. A decrease in the fraction of neutrophils in the white blood cells would cause a concomitant increase in the measured fraction of lymphocytes, and thus a potentially erroneous measurement of CD4 lymphocytes per liter of blood. Such a result could lead a physician to recommend against AZT therapy when, in fact, the patient should be receiving it.
- the methods of the invention provide a bulk assay technique for directly quantitating analytes of interest in a given biological sample, i.e., no correlation of an antigen's total expression with a cell concentration is required.
- FIG. 1 is a photomicrograph which illustrates the principle of bead rosetting. The figure shows a rosetted CD4 lymphocyte after equilibrium binding with a CD4 immunomagnetic separation reagent, and magnetic washing to remove unbound cells.
- FIG. 2 is a schematic depiction of an assay for CD4-bearing target cells in which both the immunomagnetic separation reagent and immunofluorescent detection reagent are targeted to the CD4 antigen.
- FIG. 2A depicts the binding step, in which both the detection and separation reagents simultaneously bind to the target cells, forming a rosette. At equilibrium, CD4-bearing cells are completely coated by the two reagents, while other cells are not.
- FIG. 2B the previously formed rosettes are depicted, washed free of non-target cells and unbound detection reagent, so that the only detection reagent remaining is bound to target cells, providing the means to quantify them.
- FIG. 3 is a graphic illustration of the determination of optimum ratio of non-magnetic, immunofluorescent detection reagent to immunomagnetic separation reagent for assaying lymphocytes, in accordance with the method of the invention, on the basis of CD4 or CD8 as the characteristic determinant.
- FIG. 4 shows the correlation between results obtained in lymphocyte assays using the method of the invention versus a reference method comprised of the combination of CDC/differential counting and flow cytometry.
- FIG. 4A sets forth the results of a CD4 lymphocyte assay.
- FIG. 4B sets forth the results of a CD8 lymphocyte assay.
- the present invention provides methodology for efficiently and reliably determining the presence or concentration of various particulate analytes, which may be any constituent of a particle nature that is present in a test sample or specimen, the presence of which analyte may be determined by selective interaction with a specific binding substance.
- the term "particulate analyte”, as used herein, thus includes a variety of substances of potential biological or medical interest which may be measurable individually or as a group.
- Representative examples of "particulate analytes” include cells, both eucaryotic (e.g., leukocytes, erythrocytes or fungi) and procaryotic (e.g., bacteria, protozoa or mycoplasma), viruses, cell components, macromolecules and the like.
- a particular cell type for diagnostic or therapeutic purposes. Examples include the determination of leukocytes within a population of blood cells, helper T lymphocytes within a population of lymphocytes, fetal cells within maternal circulation, virus-infected cells within a population of uninfected and infected cells, or neoplastic cells within a population of normal and neoplastic cells.
- the method of this invention is useful for the determination of many different types of particulate analyte, it will be described hereinbelow with particular reference to the detection of human blood cells.
- analyte determinations can be performed using the method of the invention, which takes advantage of the phenomenon known in the field of hematology as "rosetting".
- a characteristic determinant e.g., a surface antigen
- the target cells are rosetted by the particulate reagent. That is to say, the reagent particles completely coat the cell surface.
- the total number of reagent particles, i.e., detection reagent and separation reagent, which bind the cell type of interest is a function of the relative sizes of the reagent particles and cells and the total cell concentration.
- determinant is used herein in its broad sense to denote an element that identifies or determines the nature of something.
- “determinant” means that portion of an analyte which is involved in and responsible for selective binding to a specific binding substance, the presence of which is required for selective binding to occur.
- characteristic determinant when used herein in reference to cells, for example, signifies an epitope (or group of epitopes) that serves to identify a particular cell type and distinguish it from other cell types.
- Cell-associated determinants include, for example, components of the cell membrane, such as membrane-bound proteins or glycoproteins, including cell surface antigens of either host cell or viral origin, histocompatibility antigens or membrane receptors.
- the characteristic antigen may be one or more of CD2, CD3, CD4, CD8, CD16, CD19, CD34 and CD56.
- specific binding substance refers to any substance that selectively recognizes and interacts with a characteristic determinant on an analyte of interest, to the substantial exclusion of determinants present on analytes that are not of interest.
- One class of specific binding substances used to selectively interact with the above-mentioned cellular determinants are antibodies capable of immunospecifically recognizing same. Based on such selective recognition, the specific binding substance is capable of selective interaction and binding with a cell type of interest to form rosettes that are physically separable from the test medium and other components therein which are not of interest.
- antibody includes monoclonal or polyclonal immunoglobulins and immunoreactive immunoglobulin fragments.
- characteristic determinants and their specific binding substances are: receptor-hormone, receptor-ligand, receptor-agonist, receptor-antagonist, Protein A-IgG Fc component, Protein G-IgG Fc component, avidin-biotin, receptor-virus and receptor-lectin.
- Analytes of potential biological or medical interest may be present in test samples or specimens of varying origin, including biological fluids such as whole blood, serum, plasma, saliva, urine, cerebrospinal fluid, amniotic fluid, lavage fluids and tissue extracts.
- biological fluids such as whole blood, serum, plasma, saliva, urine, cerebrospinal fluid, amniotic fluid, lavage fluids and tissue extracts.
- the methods of the invention may also be performed on other test samples of interest, including environmental waters, e.g., waste water, well drilling fluids, and the like.
- Cell types that are determinable in accordance with the present invention include cells of human or animal origin or cultured cells.
- lymphocytes including B cells, T cells and recognized T cell subsets, such as helper T cells or suppressor/cytotoxic T cells.
- Different lineages of cells are characterized by expression of characteristic antigens or ligands.
- B cells from mammalian blood samples express a number of surface antigens distinct from those expressed by T cells from the same sample. Quantitation of one cell type from a sample may be important in assessing certain pathological conditions.
- T helper cells bearing CD4 glycoprotein for purposes of determining the stage of disease and monitoring treatment.
- direct measurement of these cells at the time the sample is taken is important for the accurate assessment of the condition of the patient.
- an abnormally large proportion of a single B cell clone in a patient's blood may be indicative of a leukemic condition.
- Cells from the same lineage at different stages of differentiation are also distinguishable by expression of characteristic antigens or ligands.
- characteristic antigens or ligands For example, as a B lymphocyte develops from a stem cell to a pre-B cell and ultimately to a mature B cell, the cell membrane markers change in a predictable manner as the cell matures.
- a mature B cell expresses immunoglobulins as ligands on the cell membrane, whereas a pre-B cell expresses only cytoplasmic immunoglobulin heavy chains, which provides the basis for differential reactivity of these cell subsets, permitting subsequent determination.
- Differential expression of ligands can further provide a basis for assessing pathogenesis such as viral infection.
- Virally infected cells may express viral markers which are absent from uninfected cells within the cell population.
- the two principal reagents used in performing the assay of the invention are a separation reagent and a detection reagent.
- a set of calibration reagents are also beneficially employed in performing this assay, as will be discussed below.
- the separation reagent comprises an insolubilized or solid phase that facilitates separation of target analyte from the test sample.
- the separation reagent also comprises a specific binding substance capable of binding specifically to a characteristic determinant of the analyte.
- the insolubilized phase of the separation reagent is preferably a particulate magnetic material.
- Suitable particulate magnetic materials are those exhibiting ferromagnetism, paramagnetism or superparamagnetism, the latter material becoming magnetized only upon exposure to a magnetic field. Such magnetic materials may be impregnated or embedded in, or coated on or by various organic or inorganic materials.
- Suitable organic particulate supports include biocompatible homopolymers, e.g., polystyrene and co-polymers, e.g., styrene-acrylate. Ceramic materials of diverse composition may also be used as the insolubilized phase of the separation reagent.
- the chemical composition of the particulate support for the separation reagent is not critical, apart from the requirement that it be compatible with biological analytes.
- the separation reagent may be prepared from any material to which protein may be absorbed or covalently coupled, either directly or indirectly.
- the separation reagent is an immunomagnetic particle capable of binding specifically to a characteristic determinant of the analyte of interest. Particularly preferred are polymeric spheres enveloping or coated with magnetic material.
- the detection reagent is in particulate form, comprising a detectable label and a specific binding substance that binds specifically to a characteristic determinant of the analyte of interest.
- detectable label is used herein to refer to any substance whose detection or measurement, either directly or indirectly, by physical or chemical means, is indicative of the presence of the analyte of interest in the test sample.
- useful detectable labels include, but are not limited to, the following: molecules or ions directly or indirectly detectable based on light absorbance, fluorescence, reflectance, light scatter, phosphorescence, or luminescence properties; molecules or ions detectable by their radioactive properties; and molecules or ions detectable by their nuclear magnetic resonance or paramagnetic properties.
- the detectable label is incorporated into a particulate, insoluble support or carrier.
- a particulate, insoluble support or carrier Particularly preferred are polymeric spheres impregnated with fluorescent dyes.
- detectable macromolecules that are intrinsically particulate may be used if desired.
- Specific binding substance may be conveniently affixed to a particulate material (solid phase or insoluble fluid phase) according to techniques well known in the art. Suitable techniques for this purpose include cross-linking, covalent binding or physical adsorption.
- a procedure for coupling specific binding substances to a magnetic solid phase, e.g., particulate magnetite, is described in E. Menz et al., Am. Biotech. Lab. (1986).
- a primary specific binding substance may be used in conjunction with a secondary or auxiliary specific binding substance which is capable of interacting selectively with the primary specific binding substance and which is affixed to a particulate support.
- Representative primary and auxiliary specific binding substances useful for this purpose are: murine antibody/Protein A affixed to a solid phase; murine antibody/anti-mouse immunoglobulin raised in another species and affixed to a solid phase; and biotinylated antibody/avidin affixed to a solid phase.
- auxiliary antibody e.g., rat anti-mouse IgG1 specific
- Preparation of assay reagents in this way has three advantages. First, it allows the use of the same "core particle" in the preparation of various different cell-specific reagents. Second, isotype-specific capture optimizes the presentation of the active binding sites for the cell-specific antibodies. Third, the auxiliary antibody provides a functional spacer between the particulate support and the specific antibody, which is believed to improve the binding of the reagents to cells.
- a cell-specific antibody could be covalently conjugated to a particulate support through a previously covalently conjugated spacer molecule.
- the length of such a spacer could be varied as desired, depending on the analyte sought to be determined.
- the binding specifity (rat anti-mouse IgG1 specific) and nature (monoclonal/polyclonal) of the auxiliary antibody is not critical.
- the isotype specificity could be changed, i.e., IgG2a, to match the isotype of a different cell-specific antibody.
- the auxiliary antibody could be produced in a different species (e.g., chicken or rabbit).
- the auxiliary antibody or the cell-specific antibody
- a polyclonal goat anti-mouse serum would be expected to produce comparable results.
- the specific binding substance incorporated in the separation reagent and the detection reagent should be directed against the same characteristic determinant on the analyte of interest, so that the labelling of the target analyte is independent of antigen density above a minimum threshold, thereby achieving the most accurate quantitation.
- the antibodies bound to the reagents are directed against the same target antigen, so as to maintain the antigen density independence of the analysis.
- the methods of the invention may be carried out with reagents comprising antibodies directed against different characteristic antigens on the cell types of interest and enable qualitative cell determinations, provided the target antigens are stably and uniformly expressed. Even if the target antigens are not stably and uniformly expressed, the methods of the invention are nonetheless useful for the purpose of qualitative cell determinations.
- target analyte refers to those analyte particles possessing the target determinant above a threshold density defined by the ability of the assay reagents to successfully label and separate said analytes under the conditions of practice of the assay.
- the particulate support for the separation and detection reagents may be of any relative size and density, so long as the diameter of the particles is relatively larger than the average spacing between the target characteristic determinants on the surface of the particulate analyte of interest.
- the average inter-antigen spacing for any given antigen on any given cell type may be readily determined by a Scatchard binding analysis of the specific binding substance to the target cell type. For this analysis, the total number of binding sites for the specific binding substance is determined in a fixed concentration of target cells. With this information, the average inter-antigen spacing can be calculated.
- the average diameters of the particulate separation and detection reagents are at least 0.1 microns, and may be as large as 10 microns.
- the particulate supports of both such reagents are of substantially uniform particle size, which is within the range of 4-6 microns.
- Cell analysis in accordance with the methods of this invention is conveniently performed using an immunomagnetic separation reagent and a non-magnetic, immunofluorescent detection reagent in 96-well microtiter plates which are then read on a fluorescence reader. The results from the fluorescence reader are obtained as raw data (fluorescence signal per well). Calculations are then made to determine the absolute target cell counts of the test sample or specimen (reported in cells/mm 3 ).
- the fluorescence reader used in carrying out the methods of the invention should be calibrated and operated according to the manufacturer's recommendations.
- Working mixtures of the separation reagent, detection reagent and an isotype control reagent should be prepared daily, by mixing appropriate amounts of respective reagent, as will be discussed in further detail below. Ordinarily, the resulting working reagent mixture will be stable for up to five hours at 4°-8° C. Before preparing the working mixture, the containers of the individual reagents should be agitated to make sure the individual particles are suspended and well mixed.
- the detection and separation reagents are added to a test sample in various amounts, depending on the nature of the analyte sought to be determined.
- the amount used must be sufficient to substantially completely cover the surfaces of the particulate analytes, thereby to form rosettes.
- the appropriate amount of each reagent for assaying a specific cell type can be determined by routine experimentation.
- rosette is a term of art well known in the field of biology, which is used to refer to a cell analysis technique in which surface structures are determined by interaction with indicator particles (typically erythrocytes) to form a group of cells consisting of a centrally located cell of interest which is surrounded by adherent indicator particles.
- indicator particles typically erythrocytes
- the phenomenon of rosetting is to be distinguished from agglutination, the latter term referring to a process involving the formation of clumps or networks of cells or microorganisms, due to immunological interaction between cell-surface antigens and antibodies.
- the relative amounts of detection reagent and separation reagent used in carrying out the method of the invention should be such as to effect separation of a fixed fraction of the analyte of interest and produce a fluorescent signal with adequate sensitivity. It is particularly preferred that substantially complete separation of the analyte of interest be effected. Separation of the analyte of interest is considered to be substantially complete when greater than 95 percent of the analyte of interest is removed from the sample by the separation system, as can be determined by flow cytometric analysis of the remainder of the sample.
- the assay of the invention is performed by adding to a test sample, substantially simultaneously, the above-described separation reagent and detection reagent in the relative amounts previously noted. Substantially simultaneous addition of the primary assay reagents to the sample is essential in order to form rosettes having appropriate amounts of reagents bound thereto, so as to make the analyte both separable and detectable. If the detection reagent and separation reagent are added serially over an interval of time sufficient for the first added reagent to substantially cover the surface of the analyte of interest, an accurate measurement of the analyte concentration is not possible. The preferred practice, therefore, is to premix the detection and separation reagents, at the optimum ratio as determined in Example 2, below, to form a working reagent mixture.
- the sample containing the added primary reagents is incubated, generally at a temperature of about 4° C. to about 37° C., or possibly higher depending on the nature of the target cells (mammalian versus non-mammalian), and the denaturation temperature of the antibody used as the specific binding substance. Typically, incubation is carried out at a temperature of about 15° to about 25° C. for a time sufficient to promote rosette formation between the primary reagents and the analyte particles. Generally, the time required for rosette formation is on the order of 5 minutes.
- the sample is generally agitated such that the analyte and particulate reagents remain uniformly mixed.
- the resulting rosettes are separated from any unbound detection reagent and other potentially interfering matter present in the test sample.
- the separation step is facilitated by including magnetic material as a component of the separation reagent. Accordingly, separation may be readily performed using various commercially available magnetic separation devices.
- separation includes the act of physically withdrawing one distinct phase from another (e.g., removal of solid phase from liquid phase), or the act of segregating two phases while the phases remain in contact, e.g., by magnetic sedimentation.
- the label may be detected either in the separated rosettes or in the separated unbound detection reagent, the former procedure being preferred.
- the measurement thus obtained is determinative of the presence or concentration of the analyte of interest in the test sample.
- the measured label may be correlated to a pre-determined standard.
- the amount of measured label is compared to the amount of label detected in, e.g., one or more pre-measured quantities of similarly labelled cells, so as to establish the absolute quantity of the cell type of interest in the sample.
- Quantitative cell determinations usually involve the preparation of a standard curve, containing increasing known quantities of appropriately labelled cells. These known quantities of cells are plotted against the amount of measured label. Based on the standard curve, the quantity of cells comprising a particular cell type in the test sample may be derived from the amount of label detected therein.
- the cell standard curve must be calibrated against known quantities of detectable label.
- a linear series of calibration reagent is prepared from standard amounts of the detectable label, which is incorporated into the same particulate support used for the detection reagent.
- the known amount of detectable label present in the separated portion can be measured.
- a standard curve can be derived which is independent of the previously mentioned variable parameters.
- the absolute number of cells in an unknown sample can then be calculated from the ratio of the amount of detectable label in the unknown sample to the slope of the same linear calibration reagent and comparing the result to the standard curve.
- the calibration reagents are prepared essentially as a dilution series of the particulate support to which the detectable label is attached, as will be discussed in the examples.
- the reporter substance may be detected in several ways, well known to those skilled in the art.
- the quantity of detectable label in either of the above-mentioned separated components of the test sample is preferably determined directly from measurements using automated techniques.
- a test kit for use in the practice of this invention would typically be comprised of: (1) containers of particulate detection reagent incorporating a specific binding substance directed to the target analyte; (2) containers of particulate separation reagent incorporating a specific binding substance directed to the target analyte; (3) a container of particulate detection reagent incorporating a non-specific binding substance as a non-specific binding control reagent; (4) a container of particulate separation reagent incorporating a non-specific binding substance as a non-specific binding control reagent; (5) one or more containers of assay calibration reagents consisting of various concentrations of the particulate labelling reagent used in the assay detection system; (6) 96-well assay plates or other appropriate containers (test tubes, etc.) in which to run the assay; and (7) a set of user instructions.
- Detection reagent and the separation reagent were prepared using substantially the same procedure, the essential difference between the reagents being the nature of the particulate support.
- Fluorescent polystyrene particles Polyscience, Inc.
- magnetite coated styrene-acrylate particles Nippon Paint, Inc.
- the particulate supports were washed twice with a high pH protein-free buffer (0.1M boric acid, pH 8.5).
- the washed particles were then exposed to 200 ⁇ g/ml of a rat anti-mouse IgG1 isotype specific monoclonal antibody in the same wash buffer for 18-24 hours.
- the antibody adsorbed onto the surface of the particles.
- the free antibody was removed by several wash steps.
- the antibody-coated particles were then exposed to mouse antibodies of the IgG1 isotype directed against the appropriate cell type of interest, such as anti-CD4, anti-CD8 or non-specific IgG1 to provide a non-specific binding control reagent, for a period of two hours.
- the concentration of the solutions of monoclonal antibody directed against the target cell type were within the range of 20-100 ⁇ g/ml in the aforesaid high pH buffer, with 1% bovine serum albumin (BSA) added.
- BSA bovine serum albumin
- the calibration reagents were prepared as a serial dilution of the particulate support to which the detectable label was attached.
- the particulate concentration of the high calibrator (C3) was adjusted such that the fluorescence intensity of a 100 microliter aliquot was three-fold brighter than a specimen containing 1000 CD4 cells/mm 3 of whole blood, when assayed with a matched set of primary reagents, as defined in Example 2.
- An aliquot of the high calibrator was diluted 2:3 to form the second calibrator (C2).
- the third calibrator (C1) was formed by diluting an aliquot of the second calibrator 1:2.
- the fourth calibrator (C0) was a buffer blank.
- the resultant calibrator series (C0, C1, C2, C3) exhibited a linear fluorescence intensity scale corresponding approximately to the signals generated by 0, 1000, 2000 and 3000 CD4 cells/mm 3 of whole blood.
- the total volume of each particulate reagent mixture was 50 ⁇ l and the total reagent concentration (sum of fluorescent and magnetic reagents) in the well was 3 ⁇ 10 7 particles/ml.
- FIG. 2A schematically depicts the equilibrium point in the binding reaction for the 1:1 mixture of magnetic and fluorescent beads.
- FIG. 2A it is assumed that the binding constants of each bead are the same. Although optimal performance is obtained when this assumption is met, this is not an absolute requirement for the assay methodology to perform adequately.
- CD4-expressing cells have been rosetted by the bead mixture. Non-CD4 cells are unbound and excess magnetic and fluorescent beads remain in suspension. In this experiment, specific binding of the reagent particles to the target cell population was confirmed by flow cytometric analysis of remaining cells in a cell depleted specimen after reagent treatment.
- FIG. 2B schematically depicts the resultant sample after magnetic washing.
- the unbound cells and unbound fluorescent reagent have been washed out of the sample, leaving rosetted target cells and excess magnetic reagent.
- the plate was placed in a conventional fluorescence plate reader and scanned.
- the CD4 and CD8 cell concentrations in the blood specimen were determined by multiplying the percent CD4 or CD8 lymphocytes in the specimen (determined by flow cytometry) by the lymphocyte concentration (determined by CBC differential counting).
- the measured fluorescence intensities were divided by the appropriate cell concentration (CD4 or CD8) and the results plotted versus the percent fluorescent beads. This plot is shown in FIG. 3.
- the optimum bead mixture was determined to lie on the approximately linearly increasing up-slope of the optimization curve, displaying sufficiently high intensity per cell to give adequate sensitivity at cell concentrations of 1000 cell/mm 3 of whole blood for CD4 lymphocytes and 500 cell/mm 3 of whole blood for CD8 lymphocytes.
- the optimum fraction of fluorescent reagent appears to be 37.5 or 50.0 percent fluorescent beads. Since a 1:1 mixture was considered easier to make-up, 50% fluorescent beads was chosen and used in the assays reported in Example 4, below.
- a 50 ⁇ l sample of whole blood was placed in a well of a 96-well round bottom polypropylene microtiter plate.
- the plate was placed on a conventional plate shaker for five minutes at room temperature. The speed was set such that it was high enough to keep the reagent particles suspended without shaking the blood out of the wells.
- Four magnetic washes were then employed to remove unbound cells from the well.
- the 96-well plate was placed on a commercially available plate shaped magnet (Advanced Magnetics, Inc., Cambridge, Mass.) and the sample was allowed to stand for 60 seconds. The supernatant was carefully removed by pipet followed by removal of the plate from the magnet and resuspension of the sample with 200 ⁇ l of phosphate buffered saline solution. This procedure was repeated 3 more times.
- FIG. 1 shows a CD4 lymphocyte which has been rosetted (i.e., completely covered) by magnetic particle reagent affixed to anti-CD4.
- the slope of the standard curve i.e., the emitted fluorescence intensity per cell
- the emitted fluorescence intensity was measured for a series of whole blood samples which covered a wide cell concentration range (approximately 0-2000 cells/mm 3 ).
- the assay reagent mixture used for these measurements was the optimum mixture described in Example 2, above.
- CD4 fluorescent and magnetic particle reagents at 3 ⁇ 10 7 particles/ml were mixed in a ratio of 1:1. 50 ⁇ l of this mixture was then added to the wells of a 96-well round bottom polypropylene plate. Similar mixtures of CD8 and non-specific isotype-matched control reagent were made and added to sets of separate wells. The later reagent type was used to control for non-specific binding of the CD4 and CD8 reagents. 50 ⁇ l of whole blood was then added to each reagent-containing well and the plate was placed on a commercially available plate shaker for five minutes at room temperature. The speed was set as previously determined in Example 2. Four magnetic washes were then performed as previously described to remove unbound cells and unbound fluorescent reagent.
- the CD4 and CD8 cell concentrations in each blood specimen were determined by multiplying the percent CD4 or CD8 lymphocytes in the specimen (determined by flow cytometry) by the lymphocyte concentration (determined by CBC differential counting). For each specimen, the isotype control fluorescence intensity (non-specific binding signal) was subtracted from the CD4 or CD8 fluorescence intensity and the resultant values were divided by the slope of the linear reagent calibration curve, as shown below:
- FI CD4 , FI CD8 and FI IC represent the fluorescence intensities measured in the wells corresponding to CD4, CD8 and the isotype matched non-specific binding control, respectively.
- S CAL represents the slope of the calibration reagent line. The calculated intensities, which are independent of the variable parameters, previously discussed, were plotted versus the appropriate cell concentrations. The slopes of the resulting standard curves were determined via regression analysis. These slopes represent the fluorescence intensity per unit cell concentration in the assay wells. The inverse of the standard curve slope values represent the proportionality constants (i.e., calibration factors) between the measured fluorescence intensity in an assay and the absolute cell concentration. These calibration factors are specific to each lot of reagents prepared for use in cell concentration assays.
- the absolute CD4 and CD8 cell concentrations were determined using the formulas shown below.
- FI CD4 , FI CD8 and FI IC represent the fluorescence intensities measured in the wells corresponding to CD4, CD8 and the isotype matched non-specific binding control, respectively.
- S CAL represents the slope of the calibration reagent line.
- CD4 factor and CD8 factor represent the proportionality constants between the respective cell concentration and the assay result as defined by the calibrated standard curves, discussed previously.
- the calculated absolute CD4 or CD8 cell concentrations are compared to those measured by the flow cytometric reference method.
- the CD4 and CD8 cell concentrations in each blood specimen were determined by multiplying the percent CD4 or CD8 lymphocytes in the specimen (determined by flow cytometry) by the lymphocyte concentration (determined by CBC differential counting).
- whole blood may be assayed for CD4-bearing lymphocytes, using immunomagnetic reagent particles targeted to the CD4 antigen and immunofluorescent reagent particles targeted to a coexpressed antigen, such as CD3 (T-cell antigen receptor).
- both fluorescent and magnetic reagent particles simultaneously bind to the target cells.
- the CD4-bearing lymphocytes are rosetted with the primary assay reagents and CD8 lymphocytes are rosetted with the immunofluorescent reagent particles. All other cells are unbound. After magnetic sedimentation to wash out non-target cells and unbound detection reagent, the only detection reagent remaining in the test sample is bound to the lymphocytes of interest, providing the means to quantify them.
- CD4- and CD8-bearing cells may be simultaneously determined in the same test sample.
- immunomagnetic reagent particles and immunofluorescent particles are targeted to a single antigen.
- the detection reagent for the respective subtypes of interest must have an independently detectable label, i.e., each with a different fluorochrome having a distinctly different emission wavelengths.
- both the immunofluorescent reagent particles and the immunomagnetic reagent particles bind simultaneously to their respective target cells.
- the CD4-bearing cells are rosetted with the CD4-directed reagents and the CD8-bearing cells are rosetted with the CD8-directed reagents. All other cells are unbound.
- the only immunofluorescent detection reagent remaining in the sample is bound to the cell types of interest. Independent measurements at each emission wavelength are then made to simultaneously and individually quantitate the CD4 and CD8 cell concentrations.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Cell Biology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Zoology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
#CD4 lymphocytes per liter blood=(% CD4) lymphocytes)×(% lymphocytes in white blood cells)×(#white blood cells per liter blood)
______________________________________ Detection Separation % Reagent Reagent Fluorescent Wells Volume (μl) Volume (μl) Beads ______________________________________ 1 & 2 0.00 50.00 0.0 3 & 4 6.25 43.75 12.5 5 & 6 12.50 37.50 25.0 7 & 8 18.75 31.25 37.5 9 & 10 25.00 25.00 50.0 11 & 12 31.25 18.75 62.5 13 & 14 37.50 12.50 75.0 15 & 16 43.75 6.25 87.5 17 & 18 50.00 0.00 100.0 ______________________________________
CD4 intensity=(FI.sub.CD4 -FI.sub.IC)/S.sub.CAL
CD8 intensity=(FI.sub.CD8 -FI.sub.IC)/S.sub.CAL,
[CD4](cell/mm.sup.3)=(FI.sub.CD4 -FI.sub.IC)/S.sub.CAL *CD4 factor
[CD4](cell/mm.sup.3)=(FI.sub.CD8 -FI.sub.IC)/S.sub.CAL *CD8 factor
Claims (14)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/034,138 US5374531A (en) | 1993-03-22 | 1993-03-22 | Immunoassay for determination of cells |
IL10900894A IL109008A (en) | 1993-03-22 | 1994-03-17 | Antigen density-independent immunoassay for determination of cells |
EP94910979A EP0690987A4 (en) | 1993-03-22 | 1994-03-22 | Immunoassay for determination of cells |
AU63678/94A AU695012B2 (en) | 1993-03-22 | 1994-03-22 | Immunoassay for determination of cells |
PCT/US1994/003033 WO1994022013A1 (en) | 1993-03-22 | 1994-03-22 | Immunoassay for determination of cells |
JP6521300A JPH08511340A (en) | 1993-03-22 | 1994-03-22 | Immunoassay for cell determination |
KR1019950704056A KR960702616A (en) | 1993-03-22 | 1994-03-22 | IMMUNOASSAY FOR DETERMINATION OF CELLS |
CA002158839A CA2158839A1 (en) | 1993-03-22 | 1994-03-22 | Immunoassay for determination of cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/034,138 US5374531A (en) | 1993-03-22 | 1993-03-22 | Immunoassay for determination of cells |
Publications (1)
Publication Number | Publication Date |
---|---|
US5374531A true US5374531A (en) | 1994-12-20 |
Family
ID=21874552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/034,138 Expired - Fee Related US5374531A (en) | 1993-03-22 | 1993-03-22 | Immunoassay for determination of cells |
Country Status (8)
Country | Link |
---|---|
US (1) | US5374531A (en) |
EP (1) | EP0690987A4 (en) |
JP (1) | JPH08511340A (en) |
KR (1) | KR960702616A (en) |
AU (1) | AU695012B2 (en) |
CA (1) | CA2158839A1 (en) |
IL (1) | IL109008A (en) |
WO (1) | WO1994022013A1 (en) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5773232A (en) * | 1996-03-26 | 1998-06-30 | Biotechnology Transfer, Inc. | Methods for measurement of lymphocyte function |
WO1998028622A1 (en) * | 1996-12-20 | 1998-07-02 | Fodstad Oeystein | Method for characterization of abnormal cells |
US5888835A (en) * | 1996-05-10 | 1999-03-30 | Chiron Diagnostics Corporation | Method and apparatus for wash, resuspension, recollection and localization of magnetizable particles in assays using magnetic separation technology |
US5932097A (en) * | 1997-12-01 | 1999-08-03 | International Business Machines Corporation | Microfabricated magnetic particles for applications to affinity binding |
US5998224A (en) * | 1997-05-16 | 1999-12-07 | Abbott Laboratories | Magnetically assisted binding assays utilizing a magnetically responsive reagent |
US6124429A (en) * | 1996-04-10 | 2000-09-26 | Miura; Kin-Ichiro | Genetically engineered alpha helix polypeptide |
US6143578A (en) * | 1996-05-10 | 2000-11-07 | Bayer Corporation | Method and apparatus for wash, resuspension, recollection and localization of magnetizable particles in assays using magnetic separation technology |
WO2000067021A1 (en) * | 1999-05-04 | 2000-11-09 | Pankowsky Dan A | Products and methods for single parameter and multiparameter phenotyping of cells |
US6184043B1 (en) | 1992-09-14 | 2001-02-06 | FODSTAD øYSTEIN | Method for detection of specific target cells in specialized or mixed cell population and solutions containing mixed cell populations |
US6265229B1 (en) * | 1994-03-10 | 2001-07-24 | Oystein Fodstad | Method and device for detection of specific target cells in specialized or mixed cell populations and solutions containing mixed cell populations |
US6294342B1 (en) | 1999-09-29 | 2001-09-25 | Abbott Laboratories | Magnetically assisted binding assays utilizing a magnetically responsive reagent |
US6437563B1 (en) | 1997-11-21 | 2002-08-20 | Quantum Design, Inc. | Method and apparatus for making measurements of accumulations of magnetically susceptible particles combined with analytes |
US20020146848A1 (en) * | 2000-11-09 | 2002-10-10 | Reeve Michael Alan | Separation particles |
US20020150952A1 (en) * | 2001-04-17 | 2002-10-17 | Peter Sottong | Methods for measuring lymphocyte activation by mitogens and antigens |
US6479302B1 (en) * | 1997-01-30 | 2002-11-12 | Merck Patent Gesellschaft Mit | Method for the immunological determination of an analyte |
US20030008331A1 (en) * | 1998-04-06 | 2003-01-09 | Lerner Michael R. | Directed evolution biosensors |
US20030129665A1 (en) * | 2001-08-30 | 2003-07-10 | Selvan Gowri Pyapali | Methods for qualitative and quantitative analysis of cells and related optical bio-disc systems |
US20030134813A1 (en) * | 1994-09-08 | 2003-07-17 | Photocure As | Transfer of molecules into the cytosol of cells |
US20030219713A1 (en) * | 2001-11-20 | 2003-11-27 | Valencia Ramoncito Magpantay | Optical bio-discs and fluidic circuits for analysis of cells and methods relating thereto |
US6682940B2 (en) * | 1999-05-04 | 2004-01-27 | Dan A. Pankowsky | Products and methods for single parameter and multiparameter phenotyping of cells |
US6828157B1 (en) | 1999-05-04 | 2004-12-07 | Dan A. Pankowsky | Products and methods for single parameter and multiparameter phenotyping of cells |
US20050069923A1 (en) * | 1996-07-08 | 2005-03-31 | Mullis Kary Banks | Dual bead assays using cleavable spacers and/or ligation to improve specificity and sensitivity including related methods and apparatus |
US20060024756A1 (en) * | 2002-02-14 | 2006-02-02 | Arjan Tibbe | Methods and algorithms for cell enumeration in low-cost cytometer |
WO2006102233A2 (en) * | 2005-03-18 | 2006-09-28 | Immunivest Corporation | Method and apparatus for imaging target components in a biological sample using permanent magnets |
US7169571B2 (en) | 1997-09-12 | 2007-01-30 | Cylex, Inc. | Methods for measurement of lymphocyte function |
US7198787B2 (en) | 1996-03-13 | 2007-04-03 | Oystein Fodstad | Method of killing target cells in harvested cell populations with one or more immuno-toxins |
US7432105B2 (en) * | 2002-08-27 | 2008-10-07 | Kimberly-Clark Worldwide, Inc. | Self-calibration system for a magnetic binding assay |
US20090061477A1 (en) * | 2007-08-30 | 2009-03-05 | Tibbe Arjan G J | Method and apparatus for imaging target components in a biological sample using permanent magnets |
US20090061476A1 (en) * | 2007-08-30 | 2009-03-05 | Tibbe Arian G J | Method and apparatus for imaging target components in a biological sample using permanent magnets |
US7651841B2 (en) | 2001-12-24 | 2010-01-26 | Kimberly-Clark Worldwide, Inc. | Polyelectrolytic internal calibration system of a flow-through assay |
US7662643B2 (en) | 2002-12-19 | 2010-02-16 | Kimberly-Clark Worldwide, Inc. | Reduction of the hook effect in membrane-based assay devices |
US7713748B2 (en) | 2003-11-21 | 2010-05-11 | Kimberly-Clark Worldwide, Inc. | Method of reducing the sensitivity of assay devices |
US7745142B2 (en) | 1997-09-15 | 2010-06-29 | Molecular Devices Corporation | Molecular modification assays |
US20100190155A1 (en) * | 2006-07-28 | 2010-07-29 | The Research Foundation Of State University Of New York | Methods and kits for measurement of lymphocyte function |
US7781172B2 (en) | 2003-11-21 | 2010-08-24 | Kimberly-Clark Worldwide, Inc. | Method for extending the dynamic detection range of assay devices |
US20110052037A1 (en) * | 2004-07-30 | 2011-03-03 | Veridex, Llc | Methods and Algorithms For Cell Enumeration in a Low-Cost Cytometer |
US7927561B2 (en) | 2008-01-10 | 2011-04-19 | Becton, Dickinson And Company | Rapid particle detection assay |
US7943395B2 (en) | 2003-11-21 | 2011-05-17 | Kimberly-Clark Worldwide, Inc. | Extension of the dynamic detection range of assay devices |
US8508737B2 (en) * | 2007-07-17 | 2013-08-13 | Hach Company | Spatial frequency optical measurement instrument and method |
US20150241422A1 (en) * | 2012-10-11 | 2015-08-27 | Orgentec Diagnostika Gmbh | Detecting an Analyte and Determining the Concentration of an Analyte Using Magnetizable Beads |
EP3495799A3 (en) * | 2012-07-25 | 2020-11-18 | Labrador Diagnostics LLC | A method for measurement of a component in cells |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1218182C (en) * | 1999-05-28 | 2005-09-07 | 干细胞技术公司 | Method for separating cells using immunorosettes |
SE0102220D0 (en) * | 2001-06-25 | 2001-06-25 | Pharmacia Diagnostics Ab | Method for estimating the amount of specific cell types |
EP2584360A1 (en) * | 2007-12-05 | 2013-04-24 | Zyomyx Inc. | Cell assay kit and method |
CN101221181B (en) * | 2007-12-06 | 2011-07-20 | 甘肃省医学科学研究院 | Indirect method for detecting lymphocyte subgroup with mono-clone antibody SPA hematid rosette method |
CN108627653B (en) * | 2018-06-28 | 2021-01-05 | 热景(廊坊)生物技术有限公司 | Composition and kit for separating and detecting alpha-fetoprotein heteroplasmon |
CN108761088B (en) * | 2018-06-28 | 2021-01-05 | 北京热景生物技术股份有限公司 | Composition, kit and method for separating and detecting abnormal sugar chain protein and application |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3970518A (en) * | 1975-07-01 | 1976-07-20 | General Electric Company | Magnetic separation of biological particles |
US4018886A (en) * | 1975-07-01 | 1977-04-19 | General Electric Company | Diagnostic method and device employing protein-coated magnetic particles |
US4115535A (en) * | 1977-06-22 | 1978-09-19 | General Electric Company | Diagnostic method employing a mixture of normally separable protein-coated particles |
US4376110A (en) * | 1980-08-04 | 1983-03-08 | Hybritech, Incorporated | Immunometric assays using monoclonal antibodies |
US4486530A (en) * | 1980-08-04 | 1984-12-04 | Hybritech Incorporated | Immunometric assays using monoclonal antibodies |
US4576912A (en) * | 1978-11-30 | 1986-03-18 | Technicon Instruments Corporation | Fluoroimmunoassaying |
WO1986006493A1 (en) * | 1985-04-29 | 1986-11-06 | Labsystems Oy | Method and device for carrying out immunological assays |
US4642284A (en) * | 1983-06-13 | 1987-02-10 | Scripps Clinic And Research Foundation | Method and system for detection of complement pathway activation |
US4731337A (en) * | 1984-07-26 | 1988-03-15 | Labsystems Oy | Fluorimetric immunological assay with magnetic particles |
US4745077A (en) * | 1984-01-19 | 1988-05-17 | Amersham International Plc. | Method of performing assay for analyte in liquid medium |
US4777145A (en) * | 1984-10-12 | 1988-10-11 | Labsystems Oy | Immunological assay method using magnetic particles |
WO1989001161A1 (en) * | 1987-07-28 | 1989-02-09 | International Institute Of Cellular & Molecular Pa | Turbidimetric assay |
AU2294888A (en) * | 1987-09-30 | 1989-04-06 | Sanofi-Synthelabo | Immunometric assay kit and method applicable to whole cells |
WO1989003533A1 (en) * | 1987-10-09 | 1989-04-20 | Nygene Corporation | Process for detecting biochemical species and apparatus useful therein |
EP0357786A1 (en) * | 1988-01-29 | 1990-03-14 | Mitsubishi Chemical Corporation | Method for assaying antigen or antibody |
US5145784A (en) * | 1988-05-04 | 1992-09-08 | Cambridge Biotech Corporation | Double capture assay method employing a capillary flow device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4510244A (en) * | 1980-04-17 | 1985-04-09 | The Board Of Trustees Of The Leland Stanford Jr. University | Cell labeling with antigen-coupled microspheres |
FI850481A0 (en) * | 1985-02-06 | 1985-02-06 | Labsystems Oy | FOERFARANDE FOER BESTAEMNING AV MOTMEDEL ELLER ANTIGENER. |
JPS61225656A (en) * | 1985-03-29 | 1986-10-07 | Toshiba Corp | Sample inspector |
US5223398A (en) * | 1987-03-13 | 1993-06-29 | Coulter Corporation | Method for screening cells or formed bodies for enumeration of populations expressing selected characteristics |
HUT67053A (en) * | 1990-11-23 | 1995-01-30 | Coulter Corp | Method and apparatus for optically screening microscopic cells |
US5213960A (en) * | 1992-03-09 | 1993-05-25 | Tanox Biosystems, Inc. | Methods for selecting low frequency antigen-specific single B lymphocytes |
-
1993
- 1993-03-22 US US08/034,138 patent/US5374531A/en not_active Expired - Fee Related
-
1994
- 1994-03-17 IL IL10900894A patent/IL109008A/en not_active IP Right Cessation
- 1994-03-22 KR KR1019950704056A patent/KR960702616A/en not_active Application Discontinuation
- 1994-03-22 WO PCT/US1994/003033 patent/WO1994022013A1/en not_active Application Discontinuation
- 1994-03-22 JP JP6521300A patent/JPH08511340A/en active Pending
- 1994-03-22 CA CA002158839A patent/CA2158839A1/en not_active Abandoned
- 1994-03-22 EP EP94910979A patent/EP0690987A4/en not_active Withdrawn
- 1994-03-22 AU AU63678/94A patent/AU695012B2/en not_active Ceased
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3970518A (en) * | 1975-07-01 | 1976-07-20 | General Electric Company | Magnetic separation of biological particles |
US4018886A (en) * | 1975-07-01 | 1977-04-19 | General Electric Company | Diagnostic method and device employing protein-coated magnetic particles |
US4115535A (en) * | 1977-06-22 | 1978-09-19 | General Electric Company | Diagnostic method employing a mixture of normally separable protein-coated particles |
US4576912A (en) * | 1978-11-30 | 1986-03-18 | Technicon Instruments Corporation | Fluoroimmunoassaying |
US4376110A (en) * | 1980-08-04 | 1983-03-08 | Hybritech, Incorporated | Immunometric assays using monoclonal antibodies |
US4486530A (en) * | 1980-08-04 | 1984-12-04 | Hybritech Incorporated | Immunometric assays using monoclonal antibodies |
US4642284A (en) * | 1983-06-13 | 1987-02-10 | Scripps Clinic And Research Foundation | Method and system for detection of complement pathway activation |
US4745077A (en) * | 1984-01-19 | 1988-05-17 | Amersham International Plc. | Method of performing assay for analyte in liquid medium |
US4731337A (en) * | 1984-07-26 | 1988-03-15 | Labsystems Oy | Fluorimetric immunological assay with magnetic particles |
US4777145A (en) * | 1984-10-12 | 1988-10-11 | Labsystems Oy | Immunological assay method using magnetic particles |
WO1986006493A1 (en) * | 1985-04-29 | 1986-11-06 | Labsystems Oy | Method and device for carrying out immunological assays |
WO1989001161A1 (en) * | 1987-07-28 | 1989-02-09 | International Institute Of Cellular & Molecular Pa | Turbidimetric assay |
AU2294888A (en) * | 1987-09-30 | 1989-04-06 | Sanofi-Synthelabo | Immunometric assay kit and method applicable to whole cells |
WO1989003533A1 (en) * | 1987-10-09 | 1989-04-20 | Nygene Corporation | Process for detecting biochemical species and apparatus useful therein |
EP0357786A1 (en) * | 1988-01-29 | 1990-03-14 | Mitsubishi Chemical Corporation | Method for assaying antigen or antibody |
US5145784A (en) * | 1988-05-04 | 1992-09-08 | Cambridge Biotech Corporation | Double capture assay method employing a capillary flow device |
Non-Patent Citations (8)
Title |
---|
Brinchmann et al, 1988, Direct Immunomagnetic Quantification of Lymphoctye Subsets in Blood. Clin Exp. Immunol. 71:182 6. * |
Brinchmann et al, 1988, Direct Immunomagnetic Quantification of Lymphoctye Subsets in Blood. Clin Exp. Immunol. 71:182-6. |
Dynal, 1989, Dynabeads M 450 Technical Handbook. Dynal A.S., Oslo. * |
Dynal, 1989, Dynabeads M-450 Technical Handbook. Dynal A.S., Oslo. |
Goding, 1983. Monoclonal Antibodies: Principles and Practice , Academc Press, Inc., London. p. 239. * |
Goding, 1983. Monoclonal Antibodies: Principles and Practice, Academc Press, Inc., London. p. 239. |
King, 1984. Simultaneous Detection of Two Cell Surface Antigens by a Red Blood Cell Rosette Microsphere Binding Methol, and its Application to the Study of Multiple Myeloma J Immunol. Meth. 72:481 8. * |
King, 1984. Simultaneous Detection of Two Cell Surface Antigens by a Red Blood Cell Rosette-Microsphere Binding Methol, and its Application to the Study of Multiple Myeloma J Immunol. Meth. 72:481-8. |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6893881B1 (en) | 1992-09-14 | 2005-05-17 | Abbott Laboratories, Inc. | Method for detection of specific target cells in specialized or mixed cell population and solutions containing mixed cell populations |
US6184043B1 (en) | 1992-09-14 | 2001-02-06 | FODSTAD øYSTEIN | Method for detection of specific target cells in specialized or mixed cell population and solutions containing mixed cell populations |
USRE43979E1 (en) | 1992-09-14 | 2013-02-05 | Abbott Laboratories | Method for detection of specific target cells in specialized or mixed cell population and solutions containing mixed cell populations |
US6265229B1 (en) * | 1994-03-10 | 2001-07-24 | Oystein Fodstad | Method and device for detection of specific target cells in specialized or mixed cell populations and solutions containing mixed cell populations |
US20030134813A1 (en) * | 1994-09-08 | 2003-07-17 | Photocure As | Transfer of molecules into the cytosol of cells |
US6680301B2 (en) | 1994-09-08 | 2004-01-20 | Photocure As | Transfer of molecules into the cytosol of cells |
US7198787B2 (en) | 1996-03-13 | 2007-04-03 | Oystein Fodstad | Method of killing target cells in harvested cell populations with one or more immuno-toxins |
US5773232A (en) * | 1996-03-26 | 1998-06-30 | Biotechnology Transfer, Inc. | Methods for measurement of lymphocyte function |
US6630316B1 (en) | 1996-03-26 | 2003-10-07 | Cylex, Inc. | Method for measurement of lymphocyte function |
US6124429A (en) * | 1996-04-10 | 2000-09-26 | Miura; Kin-Ichiro | Genetically engineered alpha helix polypeptide |
US5888835A (en) * | 1996-05-10 | 1999-03-30 | Chiron Diagnostics Corporation | Method and apparatus for wash, resuspension, recollection and localization of magnetizable particles in assays using magnetic separation technology |
US6143578A (en) * | 1996-05-10 | 2000-11-07 | Bayer Corporation | Method and apparatus for wash, resuspension, recollection and localization of magnetizable particles in assays using magnetic separation technology |
US20050069923A1 (en) * | 1996-07-08 | 2005-03-31 | Mullis Kary Banks | Dual bead assays using cleavable spacers and/or ligation to improve specificity and sensitivity including related methods and apparatus |
WO1998028622A1 (en) * | 1996-12-20 | 1998-07-02 | Fodstad Oeystein | Method for characterization of abnormal cells |
US6479302B1 (en) * | 1997-01-30 | 2002-11-12 | Merck Patent Gesellschaft Mit | Method for the immunological determination of an analyte |
US5998224A (en) * | 1997-05-16 | 1999-12-07 | Abbott Laboratories | Magnetically assisted binding assays utilizing a magnetically responsive reagent |
US7169571B2 (en) | 1997-09-12 | 2007-01-30 | Cylex, Inc. | Methods for measurement of lymphocyte function |
US7745142B2 (en) | 1997-09-15 | 2010-06-29 | Molecular Devices Corporation | Molecular modification assays |
US6483303B2 (en) | 1997-11-21 | 2002-11-19 | Quantum Design, Inc. | Computer program for making measurements of accumulations of magnetic particles |
US6437563B1 (en) | 1997-11-21 | 2002-08-20 | Quantum Design, Inc. | Method and apparatus for making measurements of accumulations of magnetically susceptible particles combined with analytes |
US6597176B2 (en) | 1997-11-21 | 2003-07-22 | Quantum Design, Inc. | Method and apparatus for making measurements of patterns of magnetic particles in lateral flow membranes and microfluidic systems |
US6337215B1 (en) | 1997-12-01 | 2002-01-08 | International Business Machines Corporation | Magnetic particles having two antiparallel ferromagnetic layers and attached affinity recognition molecules |
US5932097A (en) * | 1997-12-01 | 1999-08-03 | International Business Machines Corporation | Microfabricated magnetic particles for applications to affinity binding |
US20030008331A1 (en) * | 1998-04-06 | 2003-01-09 | Lerner Michael R. | Directed evolution biosensors |
US20040132116A1 (en) * | 1999-05-04 | 2004-07-08 | Pankowsky Dan A. | Products and methods for single parameter and multiparameter phenotyping of cells |
US7537907B2 (en) | 1999-05-04 | 2009-05-26 | Pankowsky Dan A | Products and methods for single parameter and multiparameter phenotyping of cells |
US6828157B1 (en) | 1999-05-04 | 2004-12-07 | Dan A. Pankowsky | Products and methods for single parameter and multiparameter phenotyping of cells |
US7364906B2 (en) | 1999-05-04 | 2008-04-29 | Pankowsky Dan A | Products and methods for single parameter and multiparameter phenotyping of cells |
US20050090022A1 (en) * | 1999-05-04 | 2005-04-28 | Pankowsky Dan A. | Products and methods for single parameter and multiparameter phenotyping of cells |
US6682940B2 (en) * | 1999-05-04 | 2004-01-27 | Dan A. Pankowsky | Products and methods for single parameter and multiparameter phenotyping of cells |
WO2000067021A1 (en) * | 1999-05-04 | 2000-11-09 | Pankowsky Dan A | Products and methods for single parameter and multiparameter phenotyping of cells |
US7351589B2 (en) | 1999-05-04 | 2008-04-01 | Pankowsky Dan A | Products and methods for single parameter and multiparameter phenotyping of cells |
US6294342B1 (en) | 1999-09-29 | 2001-09-25 | Abbott Laboratories | Magnetically assisted binding assays utilizing a magnetically responsive reagent |
US7332352B2 (en) * | 2000-11-09 | 2008-02-19 | Ge Healthcare Limited | Separation particles |
US20020146848A1 (en) * | 2000-11-09 | 2002-10-10 | Reeve Michael Alan | Separation particles |
US20020150952A1 (en) * | 2001-04-17 | 2002-10-17 | Peter Sottong | Methods for measuring lymphocyte activation by mitogens and antigens |
US20070243576A1 (en) * | 2001-04-17 | 2007-10-18 | Peter Sottong | Method to confirm immunosuppression in human patients by measuring lymphocyte activation |
US20030129665A1 (en) * | 2001-08-30 | 2003-07-10 | Selvan Gowri Pyapali | Methods for qualitative and quantitative analysis of cells and related optical bio-disc systems |
US7157049B2 (en) | 2001-11-20 | 2007-01-02 | Nagaoka & Co., Ltd. | Optical bio-discs and fluidic circuits for analysis of cells and methods relating thereto |
US20030219713A1 (en) * | 2001-11-20 | 2003-11-27 | Valencia Ramoncito Magpantay | Optical bio-discs and fluidic circuits for analysis of cells and methods relating thereto |
US7651841B2 (en) | 2001-12-24 | 2010-01-26 | Kimberly-Clark Worldwide, Inc. | Polyelectrolytic internal calibration system of a flow-through assay |
US20060024756A1 (en) * | 2002-02-14 | 2006-02-02 | Arjan Tibbe | Methods and algorithms for cell enumeration in low-cost cytometer |
US7943397B2 (en) * | 2002-02-14 | 2011-05-17 | Veridex, Llc | Methods and algorithms for cell enumeration in low-cost cytometer |
US20110044527A1 (en) * | 2002-02-14 | 2011-02-24 | Veridex, Llc | Methods and Algorithms for Cell Enumeration in a Low-Cost Cytometer |
US8128890B2 (en) | 2002-02-14 | 2012-03-06 | Veridex, Llc | Methods and algorithms for cell enumeration in a low-cost cytometer |
US7432105B2 (en) * | 2002-08-27 | 2008-10-07 | Kimberly-Clark Worldwide, Inc. | Self-calibration system for a magnetic binding assay |
US7662643B2 (en) | 2002-12-19 | 2010-02-16 | Kimberly-Clark Worldwide, Inc. | Reduction of the hook effect in membrane-based assay devices |
US7943395B2 (en) | 2003-11-21 | 2011-05-17 | Kimberly-Clark Worldwide, Inc. | Extension of the dynamic detection range of assay devices |
US7781172B2 (en) | 2003-11-21 | 2010-08-24 | Kimberly-Clark Worldwide, Inc. | Method for extending the dynamic detection range of assay devices |
US7713748B2 (en) | 2003-11-21 | 2010-05-11 | Kimberly-Clark Worldwide, Inc. | Method of reducing the sensitivity of assay devices |
US8189899B2 (en) | 2004-07-30 | 2012-05-29 | Veridex, Llc | Methods and algorithms for cell enumeration in a low-cost cytometer |
US20110052037A1 (en) * | 2004-07-30 | 2011-03-03 | Veridex, Llc | Methods and Algorithms For Cell Enumeration in a Low-Cost Cytometer |
WO2006102233A2 (en) * | 2005-03-18 | 2006-09-28 | Immunivest Corporation | Method and apparatus for imaging target components in a biological sample using permanent magnets |
WO2006102233A3 (en) * | 2005-03-18 | 2008-09-04 | Immunivest Corp | Method and apparatus for imaging target components in a biological sample using permanent magnets |
US20100190155A1 (en) * | 2006-07-28 | 2010-07-29 | The Research Foundation Of State University Of New York | Methods and kits for measurement of lymphocyte function |
US8771971B2 (en) * | 2006-07-28 | 2014-07-08 | The Research Foundation Of State University Of New York | Methods and kits for measurement of lymphocyte function |
US8508737B2 (en) * | 2007-07-17 | 2013-08-13 | Hach Company | Spatial frequency optical measurement instrument and method |
US20110014686A1 (en) * | 2007-08-30 | 2011-01-20 | Tibbe Arjan G J | Method and apparatus for imaging target components in a biological sample using permanent magnets |
US8110101B2 (en) * | 2007-08-30 | 2012-02-07 | Veridex, Llc | Method and apparatus for imaging target components in a biological sample using permanent magnets |
US7828968B2 (en) * | 2007-08-30 | 2010-11-09 | Veridex, Llc | Method and apparatus for imaging target components in a biological sample using permanent magnets |
US20090061476A1 (en) * | 2007-08-30 | 2009-03-05 | Tibbe Arian G J | Method and apparatus for imaging target components in a biological sample using permanent magnets |
US20090061477A1 (en) * | 2007-08-30 | 2009-03-05 | Tibbe Arjan G J | Method and apparatus for imaging target components in a biological sample using permanent magnets |
US7927561B2 (en) | 2008-01-10 | 2011-04-19 | Becton, Dickinson And Company | Rapid particle detection assay |
EP3495799A3 (en) * | 2012-07-25 | 2020-11-18 | Labrador Diagnostics LLC | A method for measurement of a component in cells |
US20150241422A1 (en) * | 2012-10-11 | 2015-08-27 | Orgentec Diagnostika Gmbh | Detecting an Analyte and Determining the Concentration of an Analyte Using Magnetizable Beads |
US10571464B2 (en) * | 2012-10-11 | 2020-02-25 | Orgentec Diagnostika Gmbh | Detecting an analyte and determining the concentration of an analyte using magnetizable beads |
Also Published As
Publication number | Publication date |
---|---|
KR960702616A (en) | 1996-04-27 |
WO1994022013A1 (en) | 1994-09-29 |
AU695012B2 (en) | 1998-08-06 |
IL109008A0 (en) | 1994-06-24 |
AU6367894A (en) | 1994-10-11 |
CA2158839A1 (en) | 1994-09-29 |
JPH08511340A (en) | 1996-11-26 |
EP0690987A4 (en) | 1998-02-25 |
IL109008A (en) | 1999-05-09 |
EP0690987A1 (en) | 1996-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5374531A (en) | Immunoassay for determination of cells | |
EP0559738B1 (en) | Methods for detection and quantitation of cell subsets within subpopulations of a mixed cell population | |
US5122453A (en) | Method for discriminating surface stained lymphocytes | |
TW297094B (en) | ||
US5256532A (en) | Methods, reagents and test kits for determination of subpopulations of biological entities | |
US5236826A (en) | Immunoassay for the detection or quantitation of an analyte | |
US5776711A (en) | Simultaneous human ABO and RH(D) blood typing or antibody screening by flow cytometry | |
EP0870195B1 (en) | Flow cytometer calibration method and kit | |
US8956823B2 (en) | Anti-antibody reagent | |
EP0809807B1 (en) | A cell enumeration immunoassay | |
GB2045431A (en) | Immunoassay utilising two particulate reagents | |
FI95752B (en) | Determination kit and method for immunological measurement of whole cells | |
CN108291909B (en) | Analyte detection and methods thereof | |
JP4127724B2 (en) | Method for measuring lymphocyte function | |
US6461825B1 (en) | Immunometric assay kit and method applicable to whole cells | |
EP0170345B1 (en) | Flow cytometry | |
US6951716B2 (en) | Anti-platelet immunoglobulin bead positive control | |
Scheffold et al. | 1 Phenotyping and Separation of Leukocyte Populations Based on Affinity Labelling | |
JPS6281566A (en) | Quantification method by measurement of fluorescent intensity of fine particle | |
Chun et al. | Granulocyte storage and antigen stability | |
EP1497652B1 (en) | Method, system and kit for detecting an analyte in a sample |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
AS | Assignment |
Owner name: ZYNAXIS, INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JENSEN, BRUCE D.;REEL/FRAME:007147/0562 Effective date: 19940919 |
|
AS | Assignment |
Owner name: CORESTATES ENTERPRISE FUND, PENNSYLVANIA Free format text: SECURITY AGREEMENT;ASSIGNOR:INTRACEL CORPORATION;REEL/FRAME:008246/0433 Effective date: 19960611 |
|
AS | Assignment |
Owner name: CREDITANSTALT BANKVEREIN, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTRACEL CORPORATION;REEL/FRAME:008085/0674 Effective date: 19951116 |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: NORTHSTAR HIGH TOTAL RETURN FUND II, CONNECTICUT Free format text: SECURITY INTEREST;ASSIGNORS:INTRACEL CORPORATION;BARTELS, INC.;PERIMMUNE HOLDINGS, INC.;AND OTHERS;REEL/FRAME:009423/0124 Effective date: 19980825 Owner name: NORTHSTAR STRATEGIC INCOME FUND, CONNECTICUT Free format text: SECURITY INTEREST;ASSIGNORS:INTRACEL CORPORATION;BARTELS, INC.;PERIMMUNE HOLDINGS, INC.;AND OTHERS;REEL/FRAME:009423/0124 Effective date: 19980825 Owner name: NORTHSTAR HIGH YIELD FUND, CONNECTICUT Free format text: SECURITY INTEREST;ASSIGNORS:INTRACEL CORPORATION;BARTELS, INC.;PERIMMUNE HOLDINGS, INC.;AND OTHERS;REEL/FRAME:009423/0124 Effective date: 19980825 Owner name: NORTHSTAR HIGH TOTAL RETURN FUND, CONNECTICUT Free format text: SECURITY INTEREST;ASSIGNORS:INTRACEL CORPORATION;BARTELS, INC.;PERIMMUNE HOLDINGS, INC.;AND OTHERS;REEL/FRAME:009423/0124 Effective date: 19980825 |
|
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19981220 |
|
AS | Assignment |
Owner name: INTRACEL ACQUISITION HOLDING COMPANY, LLC, DELAWAR Free format text: SECURITY AGREEMENT;ASSIGNORS:INTRACEL CORPORATION;BARTELS, INC.;PERIMMUNE HOLDINGS, INC.;AND OTHERS;REEL/FRAME:010676/0788 Effective date: 20000320 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |