US3911693A - Hazardous duty room air conditioner - Google Patents
Hazardous duty room air conditioner Download PDFInfo
- Publication number
- US3911693A US3911693A US467146A US46714674A US3911693A US 3911693 A US3911693 A US 3911693A US 467146 A US467146 A US 467146A US 46714674 A US46714674 A US 46714674A US 3911693 A US3911693 A US 3911693A
- Authority
- US
- United States
- Prior art keywords
- air conditioner
- air
- compressor
- evaporator
- triac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
- F24F1/03—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by mounting arrangements
- F24F1/031—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by mounting arrangements penetrating a wall or window
Definitions
- ABSTRACT An air conditioner suitable for use in a hazardous environment.
- the air conditioner which may be of the conventional window type, is modified in such a manner that sparks are either eliminated, suppressed or contained to the extent that there is no danger of igniting an atmosphere that may contain an excess of dangerous particles. Any switching required in the electrical circuit is done by solid state devices, or with open contacts that carry such low power that sparking cannot occur, with the main load of the air conditioner being carried by the solid state device.
- the air conditioner is designed to withstand hostile elements such as salt spray from the ocean without excessive corrosion.
- a bypass valve is included to prevent frost collection on the evaporator coils if the air conditioner is unattended for long periods of time.
- the present invention relates to air conditioners; and, more particularly, to air conditioners for use in a hazardous or hostile environment.
- the present invention was developed in conjunction with offshore drilling activities, wherein it was desirable to keep the equipment room at a constant temperature Over long periods of time when the oil drilling platform was unattended. Because of the gas that could escape during the drilling operations or while pumping and storing oil, an economical air conditioner that could be left alone over these extended periods of time and not ignite an atmosphere that may contain an excess of explosive gas became imperative. Also, the air conditioner that was used must be able to withstand the hostile elements of the salt spray atmosphere over these extended periods of operation. The atmosphere outside the air conditioned room could not be co-mingled with the cooled air inside the air conditioned room for fear of introducing a possible explosive gas. With these requirements in mind, the present air conditioner was developed.
- the present invention would have a number of other uses, such as mining operations, where a large amount of explosive dust particles and explosive material may be in the atmosphere.
- FIG. 1 is a pictorial view of the air conditioner for use in hostile environments with the cover removed and having appropriate partial sections.
- FIG. 2 is another pictorial view of the air conditioner shown in FIG. 1 taken from the rear thereof.
- FIG. 3 is a pictorial view of the air conditioner mounted in the cover.
- FIG. 4 is a front view of theprinted circuit board visible in FIG. 1.
- FIG. 5 is a back view of the printed circuit board visible in FIG. 1 and shown in FIG. 4.
- FIG. 6 is an exploded pictorial view of the triac and heat sink visible in the cutaway section of FIG. 1.
- FIG. 7 is a side view of the switch shown in FIG. 1.
- FIG. 8 is a front view of the switch shown in FIG. 1.
- FIG. 9 is an isolated pictorial view of the bypass valve shown in FIGS. 1 and 2.
- FIG. 10 is an isolated pictorial view of the power cord and connector shown in FIG. 1.
- FIG. 11 is the wiring diagram of the air conditioner shown in FIGS. 1 and 2.
- FIG. 12 is the electrical schematic of the air conditioner shown in FIGS. 1 and 2.
- FIG. 13 is an alternative design for the electrical schematic shown in FIG. 12.
- FIGS. 1 and 2 of the drawings there is shown pictorial views of a window air conditioner embodying the present invention.
- a general description of the operation of window type room air conditioners will be discussed before going into the improvements of the present invention.
- the Hazardous Duty Air Conditioner is represented generally by the reference numeral and has a compressor 16 for pressurizing a refrigerant such as diclorod, flouromethane CI CF (commonly called Freon) for use in the cooling system.
- a refrigerant such as diclorod, flouromethane CI CF (commonly called Freon) for use in the cooling system.
- Freon is the refrigerant used.
- the Freon After the Freon has been pressurized to a high pressure vapor, it flows from the compressor 16 to the condenser 17. While in the condensor 17, the high pressure vapor is cooled by means of a fan 18 blowing air over the condenser 17 and out the rear of the Hazardous Duty Air Conditioner 15.
- the fan 18 is driven by motor 19 in a manner similar to previously designed and manufactured air conditioner.
- the cooling of the high pressure vapor in the condenser 17 transforms the vapor into a liquid state. Thereafter, the liquid freon flows through a filter drier and then to the evaporator 20 by means of a capillary tube,
- the compressor 16 which is attached to the opposite end of the evaporato. 20, creates a suction pressure on the evaporator.
- This suction pressure on the evaporator 20 allows the liquid to expand very rapidly within the evaporator 20. This rapid expansion of the liquid freon within the evaporator 20 causes the liquid to change back to a low pressure vapor and at the same time absorb heat from the nearby surroundings.
- blower 19 By the use of a fan blowing over the evaporator 20, cool air is generated for the air conditioned room.
- a blower (not visible) contained within the front portion 21 of the Hazardous Duty.Air Conditioner 15.
- This blower which shall be called the evaporator blower, sucks air in over evaporator coils 20 from the front of the air conditioning unit and blows the cooled air out of ducts 22 into the air conditioned room.
- Motor 19 may consist of one motor or may be two separate motors that are attached together with one motor driving the condenser fan 18 and the other motor driving the evaporator blower.
- the air conditioner may be left for long periods of time in environments that may have explosive gas vapors, it is very important that the air within the air conditioned room not be contaminated by the atmosphere that provides the cooling of the condenser coil 17. Therefore, the front portion 21 is a sealed unit with the only air entering the front portion 21 being the air that flows over evaporator coils 20 from the air conditioned room and out ducts 22. None of the air that flows in the side vents 48 (see FIG. 3) of Hazardous Duty Air Conditioner l5 and over the condenser coils by means of fan 18 can mix with the room atmosphere as is common in other air conditioners. The seal between outside and inside atmosphere is not absolute, but the amount of mixing under the worst of conditions would be very nominal.
- Evaporator coil 20 has a drain pan and tubing for connecting the drain pan to the rear of the air conditioner, however, water within the tubing prevents outside atmosphere from entering the air conditioned room.
- the tubing has been formed by a trough 51 normally having a cover (not shown in the present invention for the purposes ofillustration) wherein the trough 51 forms an airtight seal with dividing wall 50.
- the trough 51 which extends through the lower corner of the dividing wall 50 has a V-pocket 52 to which all the collected water from the evaporator coil 20 will flow by normal sloping of the drain pan 55.
- An upwardly sloping bank 53 will retain a portion of the water in the V- pocket 52 so that some of the water will always touch the lower portion of a downwardly extending wedge 54 thereby preventing the outside atmosphere from reaching the air conditioned area through the hazardous duty air conditioner 15.
- the water collected on the evaporator coils 20, which flows to the rear of the Hazardous Duty Air Conditioner 15, is evaporated on the hot condenser coil 17 by means of a slinger.
- the slinger which is operated by the fan motor 19, is of the traditional type which picks up the collected water and slings it onto the hot condenser coil 17. This is a method commonly used in the industry to dispose of the collected water without allowing it to drip outside of the air conditioned room.
- a bypass valve 23 connects the output of compressor 16 to the input, with the bypass valve being normally closed under most operating conditions. If the suction pressure of the compressor 16 is within the normal operating range of seventy to eighty pounds, the bypass valve 23 is cut off and nothing can flow therethrough.
- the bypass valve 23 will cut on allowing flow of the high pressurized gas from the output side of the compressor 16 to flow to the input side.
- This drop in the suction pressure of the compressor 17 is caused by an excess accumulation of frost or ice on the evaporator 20, which prevents the proper transfer of heat from the atmosphere to the evaporator coils.
- the bypass valve 23 is spring loaded to remain open until the suction pressure has returned to a normal operating level. By bypassing the pressurized vapor from the output of the compressor 17 back to the input, the evaporator 20 will return to ambient room temperature causing any frost or ice collected thereon to melt.
- FIG. 9 A better view of the bypass valve 23 is shown in FIG. 9 as it is connected to the conduit 24 that connects the output to the input of the compressor 17.
- the present invention was designed initially for use to cool equipment rooms in offshore drilling platforms that may be left unoccupied over extended periods of time. Because of the environment and the hazardous working conditions, an air conditioner used under these circumstances must meet special requirements. These requirements are published by the National Fire Protection Association International, NFPA No. 70-68, Vol. 5, Art. 500, in Boston, Massachusetts. This publication sets out the guidelines that must be met for electrically safe circuits.
- the air conditioner described 'in this invention will meet Underwriter Laboratories Inc. requirements for Class I, Division 2, Group D hazardous location, which is the classification within which an offshore drilling platform would fall.
- a definition of Class l, Division 2 is a location in which volatile, flammable liquids or flammable gases are handled, processed or used, but in which hazardous liquids, vapors or gases will normally be confined within closed containers or closed systems from which they can escape only in case of accidental rupture or breakdown of such containers or systems or in case of abnormal operation of the equipment.
- a definition of Division 2 equipment is equipment in which normal operation would not ignite a specific hazardous atmosphere in its most easily ignited concentration.
- Group D is the specific hazardous gas vapor or liquid present in the Class I, Division 2 location.
- FIG. 12 shows the schematic diagram of the control circuit for the Hazardous Duty Air Conditioner 15.
- the power source is of a normal type of AC line voltage at approximately 230 volts. It should be realized that other types of power can be used and transformed to the desired condition for use.
- the power source 25 connects directly to the compressor 16 and the shunt or run capacitor 26. Also, the line voltage is connected to fan motor 19 and its shunt or run capacitor 27.
- the fan motor 19 is connected to the opposite side of the power source 25 by means of triac 28.
- the compressor 16 is connected to the opposite side of the power source 25 by means of triac 29.
- the gate of the triacs 28 and 29 are controlled by a double pole, single throw switch 30.
- the switch 30, which is the ON/OFF switch for the Hazardous Duty Air Conditioner 15, has resistors 31 and 32 in se-' ries with the gates of triacs 28 and 29, respectively, to limit the current flow.
- a thermostat 33 In series with resistor 32 and the side of switch connected to the gate of triac 29 is a thermostat 33 that closes if the room temperature is above a predetermined level.
- the double pole,.single throw switch 30 is shown in more detail in FIGS. 7 and 8.
- the switch 30 is environmentally sealed so that if any explosive gas or vapor seeped into the switch 30, any explosion resulting from the turning of the switch 30 ON or OFF will be contained within the switch 30 itself.
- the thermostat 33 has gold plated contacts to prevent corrosion due to the salt water atmosphere
- Fan motor 19 also has an overload switch contained within the fan motor to open if a locked fan condition exists more than a predetermined amount of time with power applied. Again the overload switch is bimetal operated within the fan motor 19 and sealed to prevent explosions due to gases in the atmosphere. The overload for fan motor 19 is double potted to insure a good seal and preventing possible explosions.
- the small electrical components shown in FIG. 12 are mounted on a terminal board 39 which is mounted as shown in FIG. 1.
- the terminal board can be seen in more detail in FIGS. 4 and 5, with the components mounted thereon.
- the terminal board 39 which was designed especially for the Hazardous Duty Air Conditioner 15, has quick disconnect terminals 40 for easy connection.
- the rear of the terminal board 39, as shown in FIG. 5, shows the connection between the various electrical elements-by means of conducting strips 41.
- FIG. 11 A pictorial wiring diagram for the Hazardous Duty Air Conditioner 15 is shown in FIG. 11 with the numerals designating the like parts. Notice the capacitors 26 and 27 are contained within a common case and have a common connection. The assembly of the triac 69 to the heat sink 38 is shown in more detail in FIG. 6. Referring to FIG. 10, the power connection is through plug 42 and cord 43 with the plug and cord being of an explosive proof type to prevent arcing upon connection and disconnection -of the Hazardous Duty Air Conditioner 15. The cord 43 has quick connect terminals 44 and ground terminals 45 attached.
- the electrical components may be as given in the following table with the numbers representing the components. However, it should be realized that other components may be used and still be within the scope and the purpose of the present invention.
- FIG. 13 of the drawings there is shown an alternative schematic for the Hazardous Duty Air Conditioner wherein only one triac is required.
- the power source 25 is connected to the compressor motor 16 and run capacitor 26, which is connected in parallel with fan motor 19 and run capacitor 27.
- the compressor 16 should be rated for 2,400 watts at 230 volts with a full load amperage of 11.8 amps and a locked rotor amperage of fifty amps.
- compressor 16 has an overload switch 46 connected in series with the windings of the compressor 16.
- the overload switch 46 is contained within the sealed unit of the compressor 16 so that explosive gases or vapors cannot get to the overload switch 46.
- fan motor 19 has an overload switch 47 connected in series therewith and again sealed within the motor unit 19.
- the overload switches 46 and 47 would prevent a burn-out of the compressor 16 or fan motor 19, respectively, and consequently prevent any explosion thatmay result thereby.
- the fan motor 19 should be rated for 414 watts at 230 volts with a full load amperage of 1.8 amps and a locked rotor amperage of 3.2
- the compressor 16 and the fan motor 19 are connected in parallel, with the entire load of both being carried by the series triac 29.
- the triac 29 is controlled in its gate circuit by thermostat 33 and power switch 30 in a manner as previously described in conjunction with FIG. 12. If the temperature inside the room exceeds a predetermined point, the thermostat 33 will close so that upon closing the power switch 30 current will flow through current limiting resistor 32 to the gate of triac 29. Current flowing in the gate of triac 29 will cause the triac 29 to turn on, thereby connecting the compressor 16 and fan motor 19 across the power source 25. Resistor 36 and capacitor 37 again prevent a false turn-on of the triac 29 and allow for a bypass for the transient conditions of an inductive load.
- the thermostat 33 could be a magnetically operated Reed switch provided it has low contact resistance.
- a triac that carries the compressor current should be rated for approximately 40 amps and can expect a transient turn-on current of approximately 50 amps.
- the overload switch will open after approximately seconds, thereby stopping the current flow through triac 29 and preventing damage due to overheating.
- the Hazardous Duty Air Conditioner 15 has been tested with ambient conditions, both inside and outside of the air conditioner, being 104 Fahrenheit. Another series of tests was conducted with the indoor temperature being 60 Fahrenheit, with the outdoor ambient temperature being 45 Fahrenheit. In both cases the Hazardous Duty Air Conditioner 15 operated over continuous periods of time without failure, explosion or freeze-up in a Class 1, Division 2, Group D type of atmosphere as required for Underwriters Laboratories Inc. safety standards UL 698 and UL 913 as applicable to Class 1, Division 2, Group D equipment.
- the Hazardous Duty Air Conditioner 15 should meet the rugged requirements for a salt water atmosphere.
- the normal shaft of fan motor 19 was replaced with a stainless steel shaft to prevent corrosion and motor lock-up.
- the evaporator 20 and the condenser 17 have been treated to prevent corrosion due to salt water atmosphere.
- the treatment consists of dipping both the condenser 17 and evaporator 20 in a solution of Alodine, which is the trade name of a solution sold by American Chemical Company. Alodine, which forms a thin layer over the condenser 17 and evaporator 20, protects against the rugged atmospheric conditions on an offshore drilling rig.
- An air conditioner for use in a hazardous environment said air conditioner including a condenser, evaporator and compressor connected in the normal man ner with the compressor compressing refrigerant to a high pressurized gaseous state, the condenser changing the gas refrigerant to a liquid by giving off heat, and the evaporator allowing a rapid expansion of the liquid refrigerant to change the refrigerant to a gas by absorbing heat, thereafter the gaseous refrigerant being returned to the compressor, first means for circulating air over said condenser to aid in giving off heat with said heated air being moved to a non-air-conditioned area, second means for circulating air over said evaporator and having heat absorbed therefrom with said cooled air being used to air condition an area, improvements in said air conditioner includes:
- means for controlling said air conditioner being automatic for use in hazardous environments so that sparks from said control means will not ignite said hazardous environment;
- freeze-up preventing means bypassing refrigerant from the normal cycle to prevent ice accumulation on the evaporator
- said freeze-up preventing means including a bypass valve for connecting the output of said compressor to the input thereof if input pressure goes below a predetermined level;
- said excluding means including a dividing wall between said condenser and said evaporator to keep air from the air conditioned area from mixing with atmosphere in the hazardous environment, including a draining means for removing fluid formed on said evaporator without said mixing, said draining means extending through said dividing wall for providing a water trap in a recess thereof to prevent said mixing through said draining means;
- controlling means including a solid state control device for applying power to said air conditioner, said solid state control means carrying the load current of said air conditioner and being operable by a manual switching means.
- the solid state control means includes a triac connected in series with the compressor and fan, said triac being controlled by a manual ON/OFF switch connected in series with the gate thereof.
- the air conditioner as recited in claim 2 further including a thermostat means for controlling said gate of said triac to prevent triggering of said triac if room temperature is below a predetermined level, said thermostat means, gate and manual switch requiring a very small current flow.
- thermostat has golden plated contacts to prevent corrosion and resistance increases, connections to a power source being of an explosive proof plug and cord.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US467146A US3911693A (en) | 1974-05-06 | 1974-05-06 | Hazardous duty room air conditioner |
US05/598,334 US3982405A (en) | 1974-05-06 | 1975-07-23 | Hazardous duty room air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US467146A US3911693A (en) | 1974-05-06 | 1974-05-06 | Hazardous duty room air conditioner |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/598,334 Division US3982405A (en) | 1974-05-06 | 1975-07-23 | Hazardous duty room air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
US3911693A true US3911693A (en) | 1975-10-14 |
Family
ID=23854554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US467146A Expired - Lifetime US3911693A (en) | 1974-05-06 | 1974-05-06 | Hazardous duty room air conditioner |
Country Status (1)
Country | Link |
---|---|
US (1) | US3911693A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5623836A (en) * | 1995-09-14 | 1997-04-29 | Paragon Electric Company, Inc. | Electronic refrigeration control system |
US6571570B1 (en) * | 2002-06-12 | 2003-06-03 | Whirlpool Corporation | Exhaust door mechanism for a room air conditioner |
US6836615B1 (en) | 2003-07-15 | 2004-12-28 | Ken A. Bradenbaugh | Heat dissipation device and water heater including the same |
US20050183451A1 (en) * | 2004-02-23 | 2005-08-25 | Roston Edward A. | Air conditioning system |
DE102009029392A1 (en) * | 2009-09-11 | 2011-03-24 | WESKA Kälteanlagen GmbH | Explosion-proof refrigeration system with flammable refrigerant |
US20110120167A1 (en) * | 2009-11-24 | 2011-05-26 | Lingrey David J | Room Air Conditioner And/Or Heat Pump |
US20110120155A1 (en) * | 2009-11-24 | 2011-05-26 | Friedrich Air Conditioning Co., A Division Of U.S. Natural Resources, Inc. | Room Air Conditioner And/Or Heater |
US20110125328A1 (en) * | 2009-11-24 | 2011-05-26 | Friedrich Air Conditioning Co., A Division Of U.S. Natural Resources, Inc. | Control System for a Room Air Conditioner and/or Heat Pump |
US8631769B1 (en) | 2008-08-04 | 2014-01-21 | Hurst Boiler & Welding Company, Inc. | Firetube steam boiler having improved efficiency |
US20150217625A1 (en) * | 2014-02-06 | 2015-08-06 | Halla Visteon Climate Control Corp. | Heat pump system for vehicle |
US9157670B2 (en) | 2013-10-25 | 2015-10-13 | Kooltronic, Inc. | Hazardous location heat transfer unit |
WO2016036284A1 (en) * | 2014-09-02 | 2016-03-10 | Telefonaktiebolaget L M Ericsson (Publ) | Apparatus for ventilation of enclosure with battery |
US9559517B2 (en) * | 2014-09-16 | 2017-01-31 | Hoffman Enclosures, Inc. | Encapsulation of components and a low energy circuit for hazardous locations |
US20170117835A1 (en) * | 2012-10-25 | 2017-04-27 | Texas Instruments Incorporated | Back EMF Monitor for Motor Control |
US10156369B2 (en) | 2015-05-12 | 2018-12-18 | Alliance For Sustainable Energy, Llc | Split heating and cooling systems |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2208428A (en) * | 1938-06-04 | 1940-07-16 | Carrier Corp | Apparatus for controlling compressor capacity |
US2286961A (en) * | 1938-06-04 | 1942-06-16 | Carrier Corp | Air conditioning apparatus |
US2363273A (en) * | 1943-06-02 | 1944-11-21 | Buensod Stacey Inc | Refrigeration |
US3385077A (en) * | 1967-02-23 | 1968-05-28 | Philco Ford Corp | Air conditioner |
US3398889A (en) * | 1966-01-24 | 1968-08-27 | Borg Warner | Control system for air conditioners and the like |
US3514967A (en) * | 1968-06-20 | 1970-06-02 | Whirlpool Co | Air conditioner control |
-
1974
- 1974-05-06 US US467146A patent/US3911693A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2208428A (en) * | 1938-06-04 | 1940-07-16 | Carrier Corp | Apparatus for controlling compressor capacity |
US2286961A (en) * | 1938-06-04 | 1942-06-16 | Carrier Corp | Air conditioning apparatus |
US2363273A (en) * | 1943-06-02 | 1944-11-21 | Buensod Stacey Inc | Refrigeration |
US3398889A (en) * | 1966-01-24 | 1968-08-27 | Borg Warner | Control system for air conditioners and the like |
US3385077A (en) * | 1967-02-23 | 1968-05-28 | Philco Ford Corp | Air conditioner |
US3514967A (en) * | 1968-06-20 | 1970-06-02 | Whirlpool Co | Air conditioner control |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5623836A (en) * | 1995-09-14 | 1997-04-29 | Paragon Electric Company, Inc. | Electronic refrigeration control system |
US6571570B1 (en) * | 2002-06-12 | 2003-06-03 | Whirlpool Corporation | Exhaust door mechanism for a room air conditioner |
US6836615B1 (en) | 2003-07-15 | 2004-12-28 | Ken A. Bradenbaugh | Heat dissipation device and water heater including the same |
US20050013597A1 (en) * | 2003-07-15 | 2005-01-20 | Bradenbaugh Ken A. | Heat dissipation device and water heater including the same |
US20050183451A1 (en) * | 2004-02-23 | 2005-08-25 | Roston Edward A. | Air conditioning system |
US7249468B2 (en) | 2004-02-23 | 2007-07-31 | Roston Edward A | Air conditioning system |
US8631769B1 (en) | 2008-08-04 | 2014-01-21 | Hurst Boiler & Welding Company, Inc. | Firetube steam boiler having improved efficiency |
DE102009029392A1 (en) * | 2009-09-11 | 2011-03-24 | WESKA Kälteanlagen GmbH | Explosion-proof refrigeration system with flammable refrigerant |
US8752399B2 (en) | 2009-11-24 | 2014-06-17 | Friedrich Air Conditioning Co., Ltd. | Room air conditioner and/or heater |
US20110120155A1 (en) * | 2009-11-24 | 2011-05-26 | Friedrich Air Conditioning Co., A Division Of U.S. Natural Resources, Inc. | Room Air Conditioner And/Or Heater |
US8640480B2 (en) | 2009-11-24 | 2014-02-04 | Friedrich Air Conditioning Co., Ltd. | Room air conditioner and/or heat pump |
US20110120167A1 (en) * | 2009-11-24 | 2011-05-26 | Lingrey David J | Room Air Conditioner And/Or Heat Pump |
US20110125328A1 (en) * | 2009-11-24 | 2011-05-26 | Friedrich Air Conditioning Co., A Division Of U.S. Natural Resources, Inc. | Control System for a Room Air Conditioner and/or Heat Pump |
US9535408B2 (en) | 2009-11-24 | 2017-01-03 | Friedrich Air Conditioning Co., Ltd | Control system for a room air conditioner and/or heat pump |
US20170117835A1 (en) * | 2012-10-25 | 2017-04-27 | Texas Instruments Incorporated | Back EMF Monitor for Motor Control |
US10211767B2 (en) * | 2012-10-25 | 2019-02-19 | Texas Instruments Incorporated | Back EMF monitor for motor control |
US9157670B2 (en) | 2013-10-25 | 2015-10-13 | Kooltronic, Inc. | Hazardous location heat transfer unit |
US9551519B2 (en) | 2013-10-25 | 2017-01-24 | Kooltronic, Inc. | Hazardous location heat transfer unit |
US9551520B2 (en) | 2013-10-25 | 2017-01-24 | Kooltronic, Inc. | Hazardous location heat transfer unit |
US20150217625A1 (en) * | 2014-02-06 | 2015-08-06 | Halla Visteon Climate Control Corp. | Heat pump system for vehicle |
US9834063B2 (en) * | 2014-02-06 | 2017-12-05 | Hanon Systems | Heat pump system for vehicle |
WO2016036284A1 (en) * | 2014-09-02 | 2016-03-10 | Telefonaktiebolaget L M Ericsson (Publ) | Apparatus for ventilation of enclosure with battery |
US9559517B2 (en) * | 2014-09-16 | 2017-01-31 | Hoffman Enclosures, Inc. | Encapsulation of components and a low energy circuit for hazardous locations |
US20170125181A1 (en) * | 2014-09-16 | 2017-05-04 | Hoffman Enclosures, Inc. | Encapsulation of Components and a Low Energy Circuit for Hazardous Locations |
US10332697B2 (en) * | 2014-09-16 | 2019-06-25 | Hoffman Enclosures, Inc. | Encapsulation of components and a low energy circuit for hazardous locations |
US10156369B2 (en) | 2015-05-12 | 2018-12-18 | Alliance For Sustainable Energy, Llc | Split heating and cooling systems |
US10760795B2 (en) | 2015-05-12 | 2020-09-01 | Alliance For Sustainable Energy, Llc | Split heating and cooling systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3911693A (en) | Hazardous duty room air conditioner | |
US3982405A (en) | Hazardous duty room air conditioner | |
US4787212A (en) | Air conditioner with automatic shutdown | |
US11920806B2 (en) | Ultraviolet (UV) light-based refrigerant leak detection system and method | |
US3744267A (en) | Liquid level protection system for refrigeration compressor | |
CA1087708A (en) | Protection system for electric motor | |
US9478971B2 (en) | Power cord apparatus for remotely detecting excessive operational parameters in an electrically powered machine | |
KR890012143A (en) | Air conditioner | |
US12025337B2 (en) | Baffle for directing refrigerant leaks | |
US2934323A (en) | Air conditioning apparatus | |
US3803866A (en) | Start winding protection device | |
US3829010A (en) | Thermostat for power ventilators and the like | |
JPH06101913A (en) | Air-conditioner and housing box for controller thereof | |
EP0726430B1 (en) | Air conditioning apparatus and method having a refrigerating fluid which is not harmful to at least the ozone layer | |
CN202546936U (en) | Integrated explosion-proof air conditioner | |
CN110212415B (en) | Anti-condensation electrical appliance system and method | |
CN102901153A (en) | Overhead anti-explosion air conditioner | |
US5054293A (en) | Apparatus and method for protecting a compressor in a heat pump | |
JPS575582A (en) | Refrigerator controller | |
DE102004030785B3 (en) | Cooling device for electrical cabinet for explosive environments, has welded sealed housing containing components not certified for explosive environments, and second housing for certified components | |
CN202902482U (en) | Top explosion-proof air-conditioner | |
KR20040049896A (en) | Explosion proof air conditioner | |
DE202004006820U1 (en) | Electrical cabinet for accommodating electronic components in explosive environments, has welded sealed housing containing cooling device components not certified for explosive environments | |
KR870010368A (en) | Control method of air conditioner | |
CN202902480U (en) | Overhead type anti-explosion air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MARLEY-WYLAIN COMPANY THE Free format text: CHANGE OF NAME;ASSIGNOR:WYLAIN, INC.;REEL/FRAME:003827/0418 Effective date: 19800604 |
|
AS | Assignment |
Owner name: FRIEDRICH AIR CONDITIONING AND REFRIGERATION CO. I Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MARLEY-WYLAIN COMPANY,THE,;REEL/FRAME:003984/0037 Effective date: 19820422 |
|
AS | Assignment |
Owner name: FRIEDRICH AIR CONDITIONING & REFRIGERATION CO. Free format text: MERGER;ASSIGNORS:FRIEDRICH AIR CONDITIONING & REFRIGERATION CO. (MERGED INTO);FRIEDRICH COMPANY THE(CHANGED TO);REEL/FRAME:003990/0256 Effective date: 19810507 |
|
AS | Assignment |
Owner name: FRIEDRICH COMPANY THE, A TX CORP. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MARLEY-WYLAIN COMPANY THE;REEL/FRAME:004168/0908 Effective date: 19830819 |
|
AS | Assignment |
Owner name: CITICORP INDUSTRIAL CREDIT, INC., 717 NORTH HARWOO Free format text: SECURITY INTEREST;ASSIGNOR:SYNDER GENERAL CORPORATION A TX CORP;REEL/FRAME:004307/0351 Effective date: 19840726 |
|
AS | Assignment |
Owner name: SNYDER GENERAL CORPRATION Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP INDUSTRIAL CREDIT, INC.;REEL/FRAME:004484/0810 Effective date: 19850816 |
|
AS | Assignment |
Owner name: CITICORP INDUSTRIAL CREDIT, INC. Free format text: DISCLAIMER OF OWNERSHIP;ASSIGNOR:SNYDER GENERAL;REEL/FRAME:004557/0452 Effective date: 19860506 Owner name: NATIONAL PATENT DEVELOPMENT CORPORATION, 375 PARK Free format text: DISCLAIMER OF OWNERSHIP;ASSIGNOR:SNYDER GENERAL;REEL/FRAME:004557/0452 Effective date: 19860506 |
|
AS | Assignment |
Owner name: U.S. NATURAL RESOURCES, INC. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FRIEDRICH AIR CONDITIONING & REFRIGERATION COMPANY, (A TX CORP.);REEL/FRAME:004925/0434 Effective date: 19880620 |
|
AS | Assignment |
Owner name: MCQUAY INC., A CORP. OF MINNESOTA, MINNESOTA Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP NORTH AMERICA, INC.;REEL/FRAME:005278/0013 Effective date: 19881117 Owner name: SNYDERGENERAL CORPORATION, A CORP. OF MINNESOTA, T Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP NORTH AMERICA, INC.;REEL/FRAME:005278/0013 Effective date: 19881117 |