Nothing Special   »   [go: up one dir, main page]

US3803708A - Method for making a resistor - Google Patents

Method for making a resistor Download PDF

Info

Publication number
US3803708A
US3803708A US00332791A US33279173A US3803708A US 3803708 A US3803708 A US 3803708A US 00332791 A US00332791 A US 00332791A US 33279173 A US33279173 A US 33279173A US 3803708 A US3803708 A US 3803708A
Authority
US
United States
Prior art keywords
resistor
film
transfer film
inside surface
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00332791A
Inventor
M Wada
M Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to US00332791A priority Critical patent/US3803708A/en
Application granted granted Critical
Publication of US3803708A publication Critical patent/US3803708A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/07Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by resistor foil bonding, e.g. cladding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49099Coating resistive material on a base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4981Utilizing transitory attached element or associated separate material

Definitions

  • FIGJS 'Flsfl 1 METHOD FOR MAKING A RESISTOR in that the'hollow substrate acts as a film supporter and as a protector for protecting the resistor films from environmental. conditions.
  • One inside t-ype resistor is made as follows.
  • a resistor film is deposited on the-entire inside surface of an insulating hollow substrate such one having a cylindrical form by spraying rawresistor liquid, in the case of a .metal' oxide, or vacuum-evaporating metal or alloy in the case of a r netalor alloy resistor film.
  • the resistor filrn on'por'tions of the hollow" substrate are rern'oved'by cutting, e.g., spirally, or in a similar manner.
  • FIG.3 is a cross-sectional view of a resistor which is made by the method of this invention. and which has further been air-tightly sealed with a furthercoating on the inside surface;
  • FIG. 4 is a cross-sectional view of a resistor made by v the method of this invention which-is air-tightly'sealed face of an insulating substrate such as one having a cylindrical form, which type is called the outside type,
  • FIG. 5 is a perspective view of a transfer film having FIG. 6 is a graph showing the surface temperature distribution in'the direction of the length of a resistor made by the method of this invention using a'pattern of resistor film as shown in FIG. 5; and.
  • FIG. 7 is a perspective view of a transfer film having still another pattern of resistor paste and electrode paste thereon.
  • the method of this invention comprises: applying a resistor paste 4 and an electrode paste 3 in a given pattern on one surface of a flexible transfer film 2; attaching the flexible transfer film 2 to an inside surface Got a hollow heat-resistant substrate 7; heating the heat-resistant substrate 7 with the transfer film 2 attached. thereto so as toburn out the transfer film 2 and totransfer the resistor paste 4 and electrode paste 3 to the inside surface 6 of the heatresistant substrate '7 :as at least one resistor film and to leave a complicated pattern of the resistor film and
  • These cutting steps are verydifficult because they must be carried out on th'e'inside surface of the hollow substrate. Moreover, waste of resistor material caused by the cutting step cannot be overlooked, and-the production yield thereof isfvery low.
  • a complicated pattern of the resistor film is very much desired, e.g obtaining a desiredresistance value, providing a resistor film which does not suffer a surface corona discharge, obtaining plural resistor elements,,controlling the temperature distributionlof theresistor, and so forth. These are even more desirable.featureswhere the resistor is used under high power consumption conditions.
  • a principal object of this invention is to provide a method for making a-resistor comprising at least one resistor film and electrode films adhered to the inside surfaceof a hollow substrate, in which it is very easy to carryoutthemethod, it is very easyto makea desired pattern of-the-resistor film, and the method requires .a small amount of resistor material and makes passible inexpensive production and high production yield, n I
  • Another object of this invention is toprovide a method for making such a resistorwhichis stable with respect to environmental conditions suchas humidity.
  • @FIG. 1 is a perspective view of ;a transfer film on'a carrier sheet and having one pattern of resistor paste and electrode paste applied thereto; v
  • FIG. 2 is a'p'erspective view, partially cut away, of a heat resistant hollow substrate having a cylindrical form having a transfer filmattached thereto;
  • FIG. 1 shows one example of a substantially flat transfer film 2having a given pattern-of resistor paste 4 and electrode paste3 applied'thereto.
  • These pastes can be applied byusing any techniques. For example, well known methods such as a screenprinting method, a spraying method, a brushing method, a gravurep'rint ing'inethod and a relief printing method can be used. It is' clear that it is very easy to apply the resistor and electrode pastes even .in a complicated pattern on a substantially flat surface of the transfer film, compared with the direct application of the pastes to the inside surface of a hollow substrate.
  • the method of this invention exhibits its advantage when the sub strate is a hollow substrate, the inside surface of which is curved, such as a substrate having a cylindrical form or an elliptical form.
  • the inside surface of the I hollow substrate is irregularly curved, itis especially difficult to cut the resistor film coated on the entire inside surface by using a conventionalmethod as mentioned beforehand.
  • the method of the present invention can be easily performed even in the case of such an irregularly curved inside surface.
  • the material which can be usedfor the transfer film is' a film that can'carry the resistor paste without damaging the pat-' tern of the resistor paste even when it is rolled orbent so that it can be attached to the inside surface of the hollow substrate and that can beburned out by a heating step carried out at a high temperature. It isfurther preferred that the transfer film becomes sticky when subjected to the heating step until ⁇ the transfer tilm burns out (e.g.,. during heating at a'temperat ureof tures of these materials.
  • the range of the thickness of the transfer film depends on the material used for the transfer film.
  • a transfer film having a thickness which is too small is not suitable because of its mechanical'weakness and a transfer film having a thickness which is too great is also not suitable because it is very difficult to-attach such a thick transfer film to the inside surface of the hollow substrate along the curve of the inside surface and also because such a thick transfer film does not burn out easily during the heating step.
  • the preferred range of the thickness of the transfer film is between 1 micron and 100 microns.
  • a polyvinyl butyrate resin film having a thickness of to 50 microns is very suitable for the transfer film
  • the resistor paste and the electrode paste in the given pattern on the transfer film can be checked for pin holes and cracksJThis is a step which is almost impossible to carry out in the conventional method as described above, because the desired pattern of a resistor film is made after a complete resistor film is provided; on the inside surface of a hollow substrate according to the conventional method.
  • the transfer film be light transparent, although such is not an essential condition. If such a check is carried out, the production yield .which is attributable to this'invention and which is much higher than that of the conventional method can be still further increased.
  • a carrier sheet 1 as shown in FIG. 1 can be used, although it is not necessary to use such a carrier sheet.
  • the assembly of a carrier sheet 1 and a transfer film 2 on said carrier constitutes a transfer sheet 5. All thatis required with the transfer sheet is that it beeasy to strip the transfer film'from the carrier sheet manually or-mechanically. If acheck of the resistor paste and electrode paste in the given pattern is required while they are still on the transfer sheet, it is preferred that the transfer film andthe carrier sheet both be light transparent, although such is not required.
  • A-ny resistor pastes which can be coated on a transfer film in a given pattern and'can be fixed to the substrate by the heating step can be used for the resistor pastes plying the resistor paste to the transfer film is a screen printing method.
  • any known electrode pastes can be used. In forming the pattern of pastes, it is necessary that a portion of the electrode paste be in contact with the resistor paste.
  • FIG. 2 shows is a perspective view, partially broken away, of a hollow substrate'7 having a cylindrical form inthemethod of this invention.
  • a resistor paste mainly comprising conductive particles and glass frit dispersed in a liquid vehicle and in which the'conductiv'e particles are preferably of metal or inetal oxide powder, or a mixture or alloy of 7 these powders such as silver, palladium, gold, palladium oxide, ruthenium oxide, indium oxide or cadmium oxide.
  • One typical resistor paste preferred'in the method of this invention comprises, as solid.
  • ingredients to percent by weight of a mixture consisting essentially of 20 to 92 percent by weight of finely divided ,CdO and 8 to 80 percent by weight of finely divided glass frit, and 1 0 to 45 percent by weight of liquid vehicle, whichresistor paste is very stable during the heating step.
  • the thickness of a resistor paste applied to the flexible transfer filrn according to this invention is preferably l: to microns in order to obtain good electric stability and good results in the successive steps.
  • l to microns in order to obtain good electric stability and good results in the successive steps.
  • any hollow substrate having an irregularly curved inside surface can be used.
  • Any heat resistant material which can withstand the heat during the heating step and having a electrically insulating characteristic can be used for the hollow substrate.
  • ceramics and heatresistant glasses such as alumina, forsterite, mullite, zirconia, beryllia steatite, Pylex (trade name: Corning Glass Works) and dehydro ceramic glass can be used as a material for the substrate.
  • Any suitable technique can be used for attaching the transfer film to the inside surface 6 of the hollow substrate along the curve of the inside surface.
  • One method is to use an electrostatic attractive force, in which an electrostatic charge of one polarity is applied to the inside surface 6 and an electrostatic charge of the opposite polarity is applied to the transfer film.
  • Another-method is to attach the transfer film mechanically and forcibly to the inside surface 6.
  • Still another method which is very preferable is to use the surface tension of a thin liquid layer interposed between the inside surface 6 and the transfer film.
  • a rod or something like that which is smaller in crosssection than the hollow and can be inserted in the hollow may be necessary.
  • the heating temperature and heating time depend on the kinds of materials .used for the transfer film, substrate and pastes and also on the desired resistance values. What is required is that the heating step burns out the-transfer film and changes the resistor paste and the electrode paste to at least one rigid resistor film having a desired resistance value and electrode films, respectively.
  • the heating temperature therefore, the maximum heating temperature is usually higher than 500C and lower than 900C.
  • the heatingtime it is-difficult and is almost useless to express it in figures, because it depends very much on the factors as set forth above.
  • a heating time of at least a-few minutes is required for heating at a maximum temperature.
  • Electrical conductors 10 can then be connected to the electrode films.
  • the thus formed resistor has a resistance value deviating very little from the desired value.
  • the deviation is much less than in the case of the conventional method.
  • FIG. 3 is a cross-sectional view of a resistor which is heat-resistant substrate is further coated with a thin layer of organic resin 8 so as to cover the resistor film and the electrode films for protecting the resistor film from corona discharge more completely than when the effect of corona discharge is reduced by designing a suitable pattern of resistor film and so forth for that purpose.
  • the material of the thin layer of organic resin can be e.g., epoxy, phenol, meramin and silicon resin.
  • the hollow substrate is airtightly sealed at both end openings by end caps 9.
  • the end caps can be of metal and are connected to electrical conductors (lead wires) 10.
  • rubber seal caps 11 can be provided as shown in FIG. 4.
  • the voltage load life characteristics of the resistor can be further improved when it is applied to e.g. a hollow substrate having a cylindrical form.
  • the pattern of FIG. 5 is designed in a manner so that the density of the path of the resistor paste is higher towards the ends than towards the center.
  • the curve B of FIG. 6 represents the temperature distribution of a resistor in a cylindrical substrate and having a pattern as shown in FIG. 5, while the curve A of FIG. 6 represents the temperature distribution of a resistor in a cylindrical substrate and having a uniform pattern as shown in FIG. 1.
  • the curve B is flat, while the curve A is not.
  • the resistor having the characteristic represented by the curve B has a longer voltage load life in this respect.
  • the pattern of FIG. 5 can be formed just as easily as the pattern of FIG. 1. However, the pattern as of FIG. 5 is difficult to form by the conventional method as described above.
  • a plurality of resistor film segments 4 and electrode film segments 3 can be made as easily as forming the pattern of FIG. 1.
  • a pattern such as that of FIG. 7 is very difficult or almost impossible to formby the conventional method as described above.
  • EXAMPLE 1 A flexible transfer film was placed on a carrier paper having a thickness of about 150 microns.
  • This mixture was mixed with a liquid vehicle consisting of 20 percent by weight of cellulose acetate butyrate and percent by weight of carbitol acetate to form a resistor paste having a composition consisting of 74 percent by weight of the mixture of the glass frit and CdO and 26 percent by weight of the liquid vehicle.
  • the resistor paste was applied by using a screen printing method to one surface of the flexible transfer film in a pattern in which the parts of the pattern were at a uniform pitch as shown in FIG. II and having a total path 225mm long and 1.5mm wide.
  • the transfer film was polyvinyl butylate resin having a thickness of 15 microns and was light transparent.
  • the resistor paste had a viscosity of 1200 poises and the surface resistivity of the resistor paste was adjusted to 10 kilo ohms per square by heating.
  • the printed paste was then dried in an oven at 60C for 30 minutes for evaporating off the liquid vehicle. Thereafter, an electrode paste mainly comprising Ag-Pd (No.
  • a hollow substrate having a cylindrical form (inside diameter: 12mm; outside diameter: 18mm; length: mm) of forsterite ceramic was prepared.
  • the transfer film was then wound on the surface of an assist rod having a diameter of 10 mm in a aasfier aemsmhe surface of the transfer film having the resistor paste thereon was toward the assist rod.
  • the inside surface of the hollow substrate was wetted with a thin water layer.
  • the assist rod was inserted into the hollow of the substrate and was touched to the inside surface of the hollow substrate and then was rotated slowly with the assist rod being in contact with the inside surface so as to attach the transfer film to the curved inside surface with the aid of the thin water layer in a manner such that the surface of the transfer film having the resistor paste thereon did not touch the inside surface. Then, the substrate was heated in an oven at a temperature of 90C for 30 minutes so as to soften the transfer film and increase the adherence of the transfer film to the inside surface of the hollow substrate. Thereafter, the substrate with the transfer film was heated in a tunnel furnace at a maximum temperature of 760C for 10 minutes. Thus, a resistor film and electrode films fixed in a desired pattern to the inside surface of the hollow substrate were obtained.
  • the inside surface of the hollow substrate except for a portion of the electrode films was coated with a silicon resin film by a dipping method and cured at a temperature of 180C for 2 hours for the purpose of resin curing. Then, metal end caps each having a lead wire therein were fitted tightly on both ends of the substrate with the lead wires connected to the electrode films on the inside of the substrate.
  • the resistance of this resistor was 1550 kilo ohms.
  • EXAMPLE 2 A resistor was prepared in a similar manner to that in Example 1. The difference between Example '2 and Example 1 was in the structure of the air-tight sealing and electrical insulation at both ends of the hollow substrate as shown in FIG. 4. Both end portions of the resistor were sealed air-tightly by coating conductive silver paste thereon. Thereafter, insulation caps of silicon rubber were fitted on the both ends. A lead wire with an insulation coating extended outwardly through the center portion of each cap.
  • Example 3 A resistor was prepared in a similar manner to Example 1. The difference between Example 3 and Example 1 was in the pattemof the resistor paste. In this Example 3, a pattern as shown in FIG. 5 was employed. The pitch of the parts of the path of the pattern was three times higher at an end part than at the center portion as shown in FIG. 5. By changing not only the pitch but also the width of the pitch, the length of the path at the center portion was about three-fifths of the total length of the path. The temperature distribution of this resistor was measured under an applied power of 6 watts. The maximum temperature measured was 90C and was located at the center part of the resistor. A resistor having the same size but having a uniform pattern as shown in FIG. 1 had a maximum temperature of 108C under the same conditions.
  • EXAMPLE 4 A resistor was prepared in a similar manner to that in Example 1. The difference between Example 4 and Examfli' wasin tire'psfierfierrfieisrsrar ssre and the electrode paste. The pattern was that of FIG. 7. Thus, a plurality of resistor film segments and electrode film segments were formed. Four insulated lead wires were soldered to the electrode film segments.
  • a method for making a resistor comprising: applying a resistor paste and an electrode paste in a given pattern of at least one resistor film with two electrode films in contact therewith on one surface of a flexible transfer film which will burn out when heated; attaching said flexible transfer film to an inside surface of a hollow heat-resistant substrate; heating said heatresistant substrate with said transfer film therein so as to burn out said transfer film and to transfer said resistor paste and said electrode paste to said inside surface of said heat-resistant substrate in the form of said at least one resistor film and said electrode films, respectively; and connecting electrical conductors to said electrode films.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

This disclosure provides a method for making a resistor comprising at least one resistor film and electrode films adhered to the inside surface of a hollow substrate such as one having a cylindrical form. The method includes attaching a flexible transfer film having resistor and electrode pastes thereon to the inside surface of the substrate and burning out the transfer film so as to fix the pastes onto the inside surface as films. The method, therefore, is very easy to carry out and makes it possible to obtain a desired pattern of resistor film or films easily.

Description

United States Patent 191 Smiley 338/258 x [111 3,803,708 Wada et al. Apr. 16, 1974 54] METHOD FOR MAKING A RESISTOR 7 3,300,842 l/l967 Weill.. 29/423 X [75] Inventors: Misuo wada Suita; asa oki 3,643,200 2/l972 Brandi 338/258 X N b th f J eyagawa o o apan Primary ExaminerCharles W. Lanham [73] Assignee: Matsushita Electric Industrial Co., Assistant, E vi t A, Di P lma L m Osaka, Japan Attorney, Agent, or Firm-Wenderoth, Lind & Ponack [22] Filed: Feb. 16, 1973 21 1 Appl. No.: 332791 [57] ABSTRACT This disclosure provides a method for making a resistor comprising at least one resistor filrn and electrode [52] US. Cl Q g7 4 42 55 films adhered to the inside surface of a hollow sub- 51 int. Cl HOlc 7/00, H616 17/00 f i 3 fi he [58] Field of Search 29/620, 621, 613, 423, 3 g a 29/424; 338/290, 294, 310 333, 258 mg resistor an e ectro e pastes t ereon to e msi e surface of the substrate and burning out the transfer [561 212, 32: xefsos i'hzizzzisiz vzfii 223 x2522: UNITED STATES PATENTS and makes it possihle to obtain a desired pattern of re- 2,067,746 l/l937 Zabel 29/423 X i t r film or films easi] 2,360,263 10/1944 Osterheld.. 338/294 X y 2,942,331 6/1960 15 Claims, 7 Drawing Figures cmmimg PATENTEUAPR 16 I974 xHEET 1 BF 3 PATENTEUAPR 1 6 19%;
- SHEEIB UF3 FIG.5
LENGTH OF RESISTOR FIGJS 'Flsfl 1 METHOD FOR MAKING A RESISTOR in that the'hollow substrate acts as a film supporter and as a protector for protecting the resistor films from environmental. conditions.
One inside t-ype resistor is made as follows. A resistor film is deposited on the-entire inside surface of an insulating hollow substrate such one having a cylindrical form by spraying rawresistor liquid, in the case of a .metal' oxide, or vacuum-evaporating metal or alloy in the case of a r netalor alloy resistor film Then, the resistor filrn on'por'tions of the hollow" substrate are rern'oved'by cutting, e.g., spirally, or in a similar manner.
' In this" methodehoweverfihere are-disadvant ges that it is very difficult to remove portions of "the resistor'fil'rn a complicated cutting method is required for making a desired pattern and trimming the resistance 'value.
. 2 FIG.3 is a cross-sectional view of a resistor which is made by the method of this invention. and which has further been air-tightly sealed with a furthercoating on the inside surface;
FIG. 4 is a cross-sectional view of a resistor made by v the method of this invention which-is air-tightly'sealed face of an insulating substrate such as one having a cylindrical form, which type is called the outside type,
another pattern of resistor paste thereon;
and is provided with a further coating on the insidesurface of the end caps; a
FIG. 5 is a perspective view of a transfer film having FIG. 6 is a graph showing the surface temperature distribution in'the direction of the length of a resistor made by the method of this invention using a'pattern of resistor film as shown in FIG. 5; and.
FIG. 7 is a perspective view of a transfer film having still another pattern of resistor paste and electrode paste thereon. n
Referring to FIGS. 1 and 2, the method of this invention comprises: applying a resistor paste 4 and an electrode paste 3 in a given pattern on one surface of a flexible transfer film 2; attaching the flexible transfer film 2 to an inside surface Got a hollow heat-resistant substrate 7; heating the heat-resistant substrate 7 with the transfer film 2 attached. thereto so as toburn out the transfer film 2 and totransfer the resistor paste 4 and electrode paste 3 to the inside surface 6 of the heatresistant substrate '7 :as at least one resistor film and to leave a complicated pattern of the resistor film and These cutting steps are verydifficult because they must be carried out on th'e'inside surface of the hollow substrate. Moreover, waste of resistor material caused by the cutting step cannot be overlooked, and-the production yield thereof isfvery low. i
' However, a complicated pattern of the resistor film is very much desired, e.g obtaining a desiredresistance value, providing a resistor film which does not suffer a surface corona discharge, obtaining plural resistor elements,,controlling the temperature distributionlof theresistor, and so forth. These are even more desirable.featureswhere the resistor is used under high power consumption conditions.
Therefore, ,a principal object of this invention is to provide a method for making a-resistor comprising at least one resistor film and electrode films adhered to the inside surfaceof a hollow substrate, in which it is very easy to carryoutthemethod, it is very easyto makea desired pattern of-the-resistor film, and the method requires .a small amount of resistor material and makes passible inexpensive production and high production yield, n I
Another object of this invention is toprovide a method for making such a resistorwhichis stable with respect to environmental conditions suchas humidity.
Theseand other objects-and the; features of this invention will become apparent upon consideration of thefollowingdetailddescriptiontaken together with theaccompanying drawings, in which: 7
@FIG. 1 is a perspective view of ;a transfer film on'a carrier sheet and having one pattern of resistor paste and electrode paste applied thereto; v
. FIG. 2 is a'p'erspective view, partially cut away, of a heat resistant hollow substrate having a cylindrical form having a transfer filmattached thereto;
electrode films, respectively; and connecting electrical conductors 10 to the electrodes. l
FIG. 1 shows one example ofa substantially flat transfer film 2having a given pattern-of resistor paste 4 and electrode paste3 applied'thereto. These pastes can be applied byusing any techniques. For example, well known methods such as a screenprinting method, a spraying method, a brushing method, a gravurep'rint ing'inethod and a relief printing method can be used. It is' clear that it is very easy to apply the resistor and electrode pastes even .in a complicated pattern on a substantially flat surface of the transfer film, compared with the direct application of the pastes to the inside surface of a hollow substrate. Particularly, the method of this invention exhibits its advantage when the sub strate is a hollow substrate, the inside surface of which is curved, such asa substrate having a cylindrical form or an elliptical form. When the inside surface of the I hollow substrate is irregularly curved, itis especially difficult to cut the resistor film coated on the entire inside surface by using a conventionalmethod as mentioned beforehand. However, the method of the present invention can be easily performed even in the case of such an irregularly curved inside surface. The material which can be usedfor the transfer film is' a film that can'carry the resistor paste without damaging the pat-' tern of the resistor paste even when it is rolled orbent so that it can be attached to the inside surface of the hollow substrate and that can beburned out by a heating step carried out at a high temperature. It isfurther preferred that the transfer film becomes sticky when subjected to the heating step until {the transfer tilm burns out (e.g.,. during heating at a'temperat ureof tures of these materials. The range of the thickness of the transfer film depends on the material used for the transfer film. However, it should be noted that a transfer film having a thickness which is too small is not suitable because of its mechanical'weakness and a transfer film having a thickness which is too great is also not suitable because it is very difficult to-attach such a thick transfer film to the inside surface of the hollow substrate along the curve of the inside surface and also because such a thick transfer film does not burn out easily during the heating step. Usually, the preferred range of the thickness of the transfer film is between 1 micron and 100 microns. For example, a polyvinyl butyrate resin film having a thickness of to 50 microns is very suitable for the transfer film,
If necessary, the resistor paste and the electrode paste in the given pattern on the transfer film can be checked for pin holes and cracksJThis is a step which is almost impossible to carry out in the conventional method as described above, because the desired pattern of a resistor film is made after a complete resistor film is provided; on the inside surface of a hollow substrate according to the conventional method. In order to make possible such a check during the carrying out of the method according to this invention, it is preferred that-the transfer film be light transparent, although such is not an essential condition. If such a check is carried out, the production yield .which is attributable to this'invention and which is much higher than that of the conventional method can be still further increased. I
- In order tomake iteasy tohold the transfer film tempor arily before it is attached to the inside-surface of a hollow substrate, a carrier sheet 1 as shown in FIG. 1 can be used, although it is not necessary to use such a carrier sheet. The assembly of a carrier sheet 1 and a transfer film 2 on said carrier constitutes a transfer sheet 5. All thatis required with the transfer sheet is that it beeasy to strip the transfer film'from the carrier sheet manually or-mechanically. If acheck of the resistor paste and electrode paste in the given pattern is required while they are still on the transfer sheet, it is preferred that the transfer film andthe carrier sheet both be light transparent, although such is not required.
A-ny resistor pastes which can be coated on a transfer film in a given pattern and'can be fixed to the substrate by the heating step can be used for the resistor pastes plying the resistor paste to the transfer film is a screen printing method.
As for the electrode paste, any known electrode pastes can be used. In forming the pattern of pastes, it is necessary that a portion of the electrode paste be in contact with the resistor paste.
FIG. 2 shows is a perspective view, partially broken away, of a hollow substrate'7 having a cylindrical form inthemethod of this invention. For example there can be used a resistor paste mainly comprising conductive particles and glass frit dispersed in a liquid vehicle and in which the'conductiv'e particles are preferably of metal or inetal oxide powder, or a mixture or alloy of 7 these powders such as silver, palladium, gold, palladium oxide, ruthenium oxide, indium oxide or cadmium oxide. One typical resistor paste preferred'in the method of this invention comprises, as solid. ingredients, to percent by weight of a mixture consisting essentially of 20 to 92 percent by weight of finely divided ,CdO and 8 to 80 percent by weight of finely divided glass frit, and 1 0 to 45 percent by weight of liquid vehicle, whichresistor paste is very stable during the heating step.
The thickness of a resistor paste applied to the flexible transfer filrn according to this invention is preferably l: to microns in order to obtain good electric stability and good results in the successive steps. For obtaining such a thickness,.a very goodmethod for aphaving a transfer film already attached thereto.
With respect to the hollow substrate 7, not only such the cylindrical substrate shown but any hollow substrate having an irregularly curved inside surface can be used. Any heat resistant material which can withstand the heat during the heating step and having a electrically insulating characteristic can be used for the hollow substrate. For example, ceramics and heatresistant glasses such as alumina, forsterite, mullite, zirconia, beryllia steatite, Pylex (trade name: Corning Glass Works) and dehydro ceramic glass can be used as a material for the substrate.
In attaching the transfer film to the inside surface 6, it is necessary that the side of the transfer film which is opposite to the side thereof having the resistor paste and electrode paste thereon be against the inside surface 6. If the transfer film is attached to the inside surface 6 with the side of the transfer film having the pastes thereon against the inside surface 6, then good adhesion of the pastes to the inside surface can not be obtained.
Any suitable technique can be used for attaching the transfer film to the inside surface 6 of the hollow substrate along the curve of the inside surface. One method is to use an electrostatic attractive force, in which an electrostatic charge of one polarity is applied to the inside surface 6 and an electrostatic charge of the opposite polarity is applied to the transfer film. Thus, the inside surface and the transfer film attract each other. Another-method is to attach the transfer film mechanically and forcibly to the inside surface 6. Still another method which is very preferable is to use the surface tension of a thin liquid layer interposed between the inside surface 6 and the transfer film. For inserting the transfer film into the hollow of the substrate, a rod or something like that which is smaller in crosssection than the hollow and can be inserted in the hollowmay be necessary.
In carrying out the heating step, the heating temperature and heating time depend on the kinds of materials .used for the transfer film, substrate and pastes and also on the desired resistance values. What is required is that the heating step burns out the-transfer film and changes the resistor paste and the electrode paste to at least one rigid resistor film having a desired resistance value and electrode films, respectively. As for the heating temperature, therefore, the maximum heating temperature is usually higher than 500C and lower than 900C. As for the heatingtime, it is-difficult and is almost useless to express it in figures, because it depends very much on the factors as set forth above. Usually, a heating time of at least a-few minutes is required for heating at a maximum temperature.
Electrical conductors 10 can then be connected to the electrode films.
The thus formed resistor has a resistance value deviating very little from the desired value. The deviation is much less than in the case of the conventional method.
FIG. 3 is a cross-sectional view of a resistor which is heat-resistant substrate is further coated with a thin layer of organic resin 8 so as to cover the resistor film and the electrode films for protecting the resistor film from corona discharge more completely than when the effect of corona discharge is reduced by designing a suitable pattern of resistor film and so forth for that purpose. The material of the thin layer of organic resin can be e.g., epoxy, phenol, meramin and silicon resin. Furthermore, in FIG. 3, the hollow substrate is airtightly sealed at both end openings by end caps 9. The end caps can be of metal and are connected to electrical conductors (lead wires) 10. This air-tight sealing'is to improve the electrical characteristics with respect to such conditions as humidity and load life of the resultant resistor. However, the provision of these organic resin layer 8 and the end caps 9 is not required for the resistor to fall within the inventive scope of this invention. Moreover, in order to further improve the airtight sealing, conductive organic paints or solder can be used to fill the gaps between each end cap and the inside surface of the substrate.
Further, when protection of the resistor from corona discharge produced at, e.g., the high voltage side and at the electrical conductors-10 is required, rubber seal caps 11 can be provided as shown in FIG. 4.
By designing the pattern of the resistor paste on the transfer film in a manner as'shown'in FIG. 5, the voltage load life characteristics of the resistor can be further improved when it is applied to e.g. a hollow substrate having a cylindrical form. The pattern of FIG. 5 is designed in a manner so that the density of the path of the resistor paste is higher towards the ends than towards the center. The curve B of FIG. 6 represents the temperature distribution of a resistor in a cylindrical substrate and having a pattern as shown in FIG. 5, while the curve A of FIG. 6 represents the temperature distribution of a resistor in a cylindrical substrate and having a uniform pattern as shown in FIG. 1. The curve B is flat, while the curve A is not. Therefore, the resistor having the characteristic represented by the curve B has a longer voltage load life in this respect. The pattern of FIG. 5 can be formed just as easily as the pattern of FIG. 1. However, the pattern as of FIG. 5 is difficult to form by the conventional method as described above.
Moreover, referring to FIG. 7, a plurality of resistor film segments 4 and electrode film segments 3 can be made as easily as forming the pattern of FIG. 1. However, a pattern such as that of FIG. 7 is very difficult or almost impossible to formby the conventional method as described above.
The following Examples are given to illustrate the invention. In the Examples, all the possible combinations of the materials usable for the method of this invention are not illustrated, because it would require an unduly large number of pages to illustrate all the possible combinations. However, since the point of this invention is in the method, this invention should not be limited to the materials used in the Examples. Similarly, the con ception of the method of this invention should not be limited to the specific details of the method described in the Examples.
EXAMPLE 1 A flexible transfer film was placed on a carrier paper having a thickness of about 150 microns. A conventionally prepared glass frit having a composition of percent by weight of PbO, 8 percent by weight of ZnO, 12 percent by weight of Pbl and 10 percent by weight of B 0; was pulverized. 'l'he pulverized glass frit was mixed with CdO powder in a ratio of 40 percent by wieght of glass frit and 60 percent by weight of CdO. This mixture was mixed with a liquid vehicle consisting of 20 percent by weight of cellulose acetate butyrate and percent by weight of carbitol acetate to form a resistor paste having a composition consisting of 74 percent by weight of the mixture of the glass frit and CdO and 26 percent by weight of the liquid vehicle.
The resistor paste was applied by using a screen printing method to one surface of the flexible transfer film in a pattern in which the parts of the pattern were at a uniform pitch as shown in FIG. II and having a total path 225mm long and 1.5mm wide. The transfer film was polyvinyl butylate resin having a thickness of 15 microns and was light transparent. The resistor paste had a viscosity of 1200 poises and the surface resistivity of the resistor paste was adjusted to 10 kilo ohms per square by heating. The printed paste was then dried in an oven at 60C for 30 minutes for evaporating off the liquid vehicle. Thereafter, an electrode paste mainly comprising Ag-Pd (No. 8151 DuPont, U.S.A.) was applied to the transfer film having the printed resistor paste thereon in a form as shown in FIG. I and then was dried in a manner the same as mentioned above in connection with the resistor paste. Then, the transfer film was stripped from the carrier sheet manually. The resistor paste on the transfer film was checked for pin holes, scratches and uniformity of thickness mainly by eye with the aid of a light beam.
A hollow substrate having a cylindrical form (inside diameter: 12mm; outside diameter: 18mm; length: mm) of forsterite ceramic was prepared. The transfer film was then wound on the surface of an assist rod having a diameter of 10 mm in a aasfier aemsmhe surface of the transfer film having the resistor paste thereon was toward the assist rod. The inside surface of the hollow substrate was wetted with a thin water layer. The assist rod was inserted into the hollow of the substrate and was touched to the inside surface of the hollow substrate and then was rotated slowly with the assist rod being in contact with the inside surface so as to attach the transfer film to the curved inside surface with the aid of the thin water layer in a manner such that the surface of the transfer film having the resistor paste thereon did not touch the inside surface. Then, the substrate was heated in an oven at a temperature of 90C for 30 minutes so as to soften the transfer film and increase the adherence of the transfer film to the inside surface of the hollow substrate. Thereafter, the substrate with the transfer film was heated in a tunnel furnace at a maximum temperature of 760C for 10 minutes. Thus, a resistor film and electrode films fixed in a desired pattern to the inside surface of the hollow substrate were obtained.
Then, the inside surface of the hollow substrate except for a portion of the electrode films was coated with a silicon resin film by a dipping method and cured at a temperature of 180C for 2 hours for the purpose of resin curing. Then, metal end caps each having a lead wire therein were fitted tightly on both ends of the substrate with the lead wires connected to the electrode films on the inside of the substrate.
The resistance of this resistor was 1550 kilo ohms.
The voltage load life characteristic of this resistor was measured and compared with that of a conventional outside type resistor which had the same resistance 1550 kilo ohms) and had the same size as the resistor made by the method of this invention, with the results shown in Table 1.
TABLE 1. Load life test (for 1000 hours at 70C under 6 watts) lnitial Resistance resistance change (kilo ohms) This invention 1550 0.5 Outside type 1550 4.8
EXAMPLE 2 A resistor was prepared in a similar manner to that in Example 1. The difference between Example '2 and Example 1 was in the structure of the air-tight sealing and electrical insulation at both ends of the hollow substrate as shown in FIG. 4. Both end portions of the resistor were sealed air-tightly by coating conductive silver paste thereon. Thereafter, insulation caps of silicon rubber were fitted on the both ends. A lead wire with an insulation coating extended outwardly through the center portion of each cap.
A humidity test of this resistor was carried out. The result was compared with that of a resistor which was not air-tightly sealed, with'the results shown in Table 2. A voltage load life test of the resultant resistor was carried out. The result was compared with that of a conventional outside type resistor, with the results shown in Table 3.
TABLE 2. Humidity test 90% R.H. at 600C for 1000 hours) lnitial Resistance Scaling resistance change (kilo ohms) air-tight 1550 0.3
not I air-tight 1550 2.3
TABLE 3. Load life test (under.90% RH. and 6 watts at 60C for 1000 hours) lnitial Resistance resistance change (kilo ohms) (711) This invention 1550 0.2 Outside type 1550 3.5
EXAMPLE 3 A resistor was prepared in a similar manner to Example 1. The difference between Example 3 and Example 1 was in the pattemof the resistor paste. In this Example 3, a pattern as shown in FIG. 5 was employed. The pitch of the parts of the path of the pattern was three times higher at an end part than at the center portion as shown in FIG. 5. By changing not only the pitch but also the width of the pitch, the length of the path at the center portion was about three-fifths of the total length of the path. The temperature distribution of this resistor was measured under an applied power of 6 watts. The maximum temperature measured was 90C and was located at the center part of the resistor. A resistor having the same size but having a uniform pattern as shown in FIG. 1 had a maximum temperature of 108C under the same conditions.
EXAMPLE 4 A resistor was prepared in a similar manner to that in Example 1. The difference between Example 4 and Examfli' wasin tire'psfierfierrfieisrsrar ssre and the electrode paste. The pattern was that of FIG. 7. Thus, a plurality of resistor film segments and electrode film segments were formed. Four insulated lead wires were soldered to the electrode film segments.
What we claim is:
l. A method for making a resistor comprising: applying a resistor paste and an electrode paste in a given pattern of at least one resistor film with two electrode films in contact therewith on one surface of a flexible transfer film which will burn out when heated; attaching said flexible transfer film to an inside surface of a hollow heat-resistant substrate; heating said heatresistant substrate with said transfer film therein so as to burn out said transfer film and to transfer said resistor paste and said electrode paste to said inside surface of said heat-resistant substrate in the form of said at least one resistor film and said electrode films, respectively; and connecting electrical conductors to said electrode films.
2. A method as claimed in claim '1, wherein said transfer film is placed on a carrier sheet prior to having the pastes applied thereto to form a transfer sheet and is separated from said carrier sheet after the pastes have been applied thereto and prior to being attached to said inside surface of said hollow heat resistant substrate.
3. A method as claimed in claim 1, wherein a flexible synthetic resin film is used for said transfer film.
4. A method as claimed in claim 3, wherein a synthetic resin film having a thickness of 1 to microns is used for said flexible synthetic resin film.
5. A method as claimed in claim 3, wherein a film consisting essentially of polyvinyl butylate resin having a thickness of 5 to 50 microns is used for said flexible synthetic resin film.
6. A method as claimed in claim 1, wherein said resistor paste and said electrode paste are applied to said flexible transfer film by a screen printing method.
7. A method as claimed in claim 1, wherein said transfer film is attached to said inside surface of said hollow heat-resistant substrate with the side of said transfer film which is opposite to the side thereof having said resistor paste and said electrode paste thereon against the inside surface of said heat-resistant substrate.
8. A method as' claimed in claim 1, wherein said transfer film is attached to said inside surface of said hollow heat-resistant substrate by placing a thin liquid layer on the inside surface of said hollow heat-resistant substrate and adhering said transfer film to the inside surface by the surface tension of the thin liquid layer.
9. A method as claimed in claim 1, wherein said heatresistant substrate with said transfer film thereon is heated at a temperature higher than 500C.
10. A method as claimed in claim 1, wherein the inside surface of said heat-resistant substrate is further coated with a thin layer of organic resin after the heating stepso as to cover said resistor film and said elec trode films therewith.
11. A method as claimed in claim 1, wherein said heat-resistant substrate 'has an inside surface which is curved.
12. A method as claimed in claim 1, wherein said heat-resistant substrate has a cylindrical form.
13. A method as claimed in claim 1, further comprising air tightly sealing both end openings of the heat-v for forming plural resistor film segments.

Claims (15)

1. A method for making a resistor comprising: applying a resistor paste and an electrode paste in a given pattern of at least one resistor film with two electrode films in contact therewith on one surface of a flexible transfer film which will burn out when heated; attaching said flexible transfer film to an inside surface of a hollow heat-resistant substrate; heating said heat-resistant substrate with said transfer film therein so as to burn out said transfer film and to transfer said resistor paste and said electrode paste to said inside surface of said heatresistant substrate in the form of said at least one resistor film and said electrode films, respectively; and connecting electrical conductors to said electrode films.
2. A method as claimed in claim 1, wherein said transfer film is placed on a carrier sheet prior to having the pastes applied thereto to form a transfer sheet and is separated from said carrier sheet after the pastes have been applied thereto and prior to being attached to said inside surface of said hollow heat resistant substrate.
3. A method as claimed in claim 1, wherein a flexible synthetic resin film is used for said transfer film.
4. A method as claimed in claim 3, wherein a synthetic resin film having a thickness of 1 to 100 microns is used for said flexible synthetic resin film.
5. A method as claimed in claim 3, wherein a film consisting essentially of polyvinyl butylate resin having a thickness of 5 to 50 microns is used for said flexible synthetic resin film.
6. A method as claimed in claim 1, wherein said resistor paste and said electrode paste are applied to said flexible transfer film by a screen printing method.
7. A method as claimed in claim 1, wherein said transfer film is attached to said inside surface of said hollow heat-resistant substrate with the side of said transfer film which is opposite to the side thereof having said resistor paste and said electRode paste thereon against the inside surface of said heat-resistant substrate.
8. A method as claimed in claim 1, wherein said transfer film is attached to said inside surface of said hollow heat-resistant substrate by placing a thin liquid layer on the inside surface of said hollow heat-resistant substrate and adhering said transfer film to the inside surface by the surface tension of the thin liquid layer.
9. A method as claimed in claim 1, wherein said heat-resistant substrate with said transfer film thereon is heated at a temperature higher than 500*C.
10. A method as claimed in claim 1, wherein the inside surface of said heat-resistant substrate is further coated with a thin layer of organic resin after the heating step so as to cover said resistor film and said electrode films therewith.
11. A method as claimed in claim 1, wherein said heat-resistant substrate has an inside surface which is curved.
12. A method as claimed in claim 1, wherein said heat-resistant substrate has a cylindrical form.
13. A method as claimed in claim 1, further comprising air tightly sealing both end openings of the heat-resistant substrate after the heating step.
14. Method as claimed in claim 1, wherein a paste comprising cadmium oxide powder, a glass frit and a liquid vehicle is used as a material for said resistor paste.
15. Method as claimed in claim 1, wherein said electrode paste is applied to said transfer film in a pattern for forming plural resistor film segments.
US00332791A 1973-02-16 1973-02-16 Method for making a resistor Expired - Lifetime US3803708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00332791A US3803708A (en) 1973-02-16 1973-02-16 Method for making a resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00332791A US3803708A (en) 1973-02-16 1973-02-16 Method for making a resistor

Publications (1)

Publication Number Publication Date
US3803708A true US3803708A (en) 1974-04-16

Family

ID=23299866

Family Applications (1)

Application Number Title Priority Date Filing Date
US00332791A Expired - Lifetime US3803708A (en) 1973-02-16 1973-02-16 Method for making a resistor

Country Status (1)

Country Link
US (1) US3803708A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159459A (en) * 1977-06-23 1979-06-26 Angstrohm Precision, Inc. Non-inductive cylindrical thin film resistor
US4201970A (en) * 1978-08-07 1980-05-06 Rca Corporation Method and apparatus for trimming resistors
US4804940A (en) * 1985-03-25 1989-02-14 Hitachi, Ltd. Resistor and electron device employing the same
US4909079A (en) * 1987-07-13 1990-03-20 Hitachi, Ltd. Heat wire airflow meter
US5129732A (en) * 1989-11-14 1992-07-14 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Sensor for determining the temperature averaged on the basis of mass flow density
US5801436A (en) * 1995-12-20 1998-09-01 Serizawa; Seiichi Lead frame for semiconductor device and process for producing the same
EP0921384A1 (en) * 1997-12-04 1999-06-09 Mannesmann VDO Aktiengesellschaft Method for manufacturing an electrical resistor and a mechanical-electrical transducer
WO1999063553A1 (en) * 1998-05-29 1999-12-09 E.I. Du Pont De Nemours And Company Thick film resistor compositions for making heat-transfer tapes and use thereof
EP1156709A1 (en) * 1999-09-07 2001-11-21 Asahi Glass Company Ltd. Method of forming transferable printed pattern, and glass with printed pattern
US20020192540A1 (en) * 1998-02-24 2002-12-19 Kodas Toivo T. Fuel cells and batteries including metal-carbon composite powders
US20030013606A1 (en) * 1998-02-24 2003-01-16 Hampden-Smith Mark J. Method for the production of electrocatalyst powders
WO2001093999A3 (en) * 2000-06-08 2003-01-23 Superior Micropowders Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same
US20030049517A1 (en) * 1998-02-24 2003-03-13 Hampden-Smith Mark J. Metal-air battery components and methods for making same
US20030118884A1 (en) * 1998-02-24 2003-06-26 Hampden-Smith Mark J. Method for fabricating membrane eletrode assemblies
US6660680B1 (en) 1997-02-24 2003-12-09 Superior Micropowders, Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same
US20040080270A1 (en) * 2001-02-06 2004-04-29 Morio Fujitani Plasma display panel and method for manufacture thereof
DE19633675B4 (en) * 1996-08-21 2007-07-19 Robert Bosch Gmbh Method for transferring layers or layer systems to a sinterable substrate
US20090021342A1 (en) * 2007-07-18 2009-01-22 Watlow Electric Manufacturing Company Thick Film Layered Resistive Device Employing a Dielectric Tape
US20130113600A1 (en) * 2008-02-06 2013-05-09 Vishay Dale Electronics, Inc. Resistor and method for making same
US20140306035A1 (en) * 2011-12-22 2014-10-16 Eisenmann Ag Electrode assembly and electrostatic atomizer having such an electrode assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067746A (en) * 1934-11-08 1937-01-12 Hygrade Sylvania Corp Lamp filament and method of manufacture thereof
US2360263A (en) * 1942-11-02 1944-10-10 Mcgraw Electric Co Encased resistor unit
US2942331A (en) * 1957-11-29 1960-06-28 Frenchtown Porcelain Company Resistor and method of preparing same
US3300842A (en) * 1963-06-12 1967-01-31 Csf Method of making delay line structures
US3643200A (en) * 1970-06-01 1972-02-15 Henry W Brandi Hermetically sealed resistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067746A (en) * 1934-11-08 1937-01-12 Hygrade Sylvania Corp Lamp filament and method of manufacture thereof
US2360263A (en) * 1942-11-02 1944-10-10 Mcgraw Electric Co Encased resistor unit
US2942331A (en) * 1957-11-29 1960-06-28 Frenchtown Porcelain Company Resistor and method of preparing same
US3300842A (en) * 1963-06-12 1967-01-31 Csf Method of making delay line structures
US3643200A (en) * 1970-06-01 1972-02-15 Henry W Brandi Hermetically sealed resistor

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159459A (en) * 1977-06-23 1979-06-26 Angstrohm Precision, Inc. Non-inductive cylindrical thin film resistor
US4201970A (en) * 1978-08-07 1980-05-06 Rca Corporation Method and apparatus for trimming resistors
US4804940A (en) * 1985-03-25 1989-02-14 Hitachi, Ltd. Resistor and electron device employing the same
US4909079A (en) * 1987-07-13 1990-03-20 Hitachi, Ltd. Heat wire airflow meter
US5129732A (en) * 1989-11-14 1992-07-14 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Sensor for determining the temperature averaged on the basis of mass flow density
US5801436A (en) * 1995-12-20 1998-09-01 Serizawa; Seiichi Lead frame for semiconductor device and process for producing the same
DE19633675B4 (en) * 1996-08-21 2007-07-19 Robert Bosch Gmbh Method for transferring layers or layer systems to a sinterable substrate
US6660680B1 (en) 1997-02-24 2003-12-09 Superior Micropowders, Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same
EP0921384A1 (en) * 1997-12-04 1999-06-09 Mannesmann VDO Aktiengesellschaft Method for manufacturing an electrical resistor and a mechanical-electrical transducer
US20020192540A1 (en) * 1998-02-24 2002-12-19 Kodas Toivo T. Fuel cells and batteries including metal-carbon composite powders
US20030144134A1 (en) * 1998-02-24 2003-07-31 Hampden-Smith Mark J. Method for the fabrication of an electrocatalyst layer
US7517606B2 (en) 1998-02-24 2009-04-14 Cabot Corporation Fuel cells and batteries including metal-carbon composite powders
US20030049517A1 (en) * 1998-02-24 2003-03-13 Hampden-Smith Mark J. Metal-air battery components and methods for making same
US20030054218A1 (en) * 1998-02-24 2003-03-20 Hampden-Smith Mark J. Method for making composite particles including a polymer phase
US7087341B2 (en) 1998-02-24 2006-08-08 Cabot Corporation Metal-air battery components and methods for making same
US20030118884A1 (en) * 1998-02-24 2003-06-26 Hampden-Smith Mark J. Method for fabricating membrane eletrode assemblies
US7138354B2 (en) 1998-02-24 2006-11-21 Cabot Corporation Method for the fabrication of an electrocatalyst layer
US20030013606A1 (en) * 1998-02-24 2003-01-16 Hampden-Smith Mark J. Method for the production of electrocatalyst powders
US7211345B2 (en) 1998-02-24 2007-05-01 Cabot Corporation Membrane electrode assemblies for use in fuel cells
US6753108B1 (en) 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
US6911412B2 (en) 1998-02-24 2005-06-28 Cabot Corporation Composite particles for electrocatalytic applications
US7066976B2 (en) 1998-02-24 2006-06-27 Cabot Corporation Method for the production of electrocatalyst powders
US6991754B2 (en) 1998-02-24 2006-01-31 Cabot Corporation Method for making composite particles including a polymer phase
WO1999063553A1 (en) * 1998-05-29 1999-12-09 E.I. Du Pont De Nemours And Company Thick film resistor compositions for making heat-transfer tapes and use thereof
US6967183B2 (en) 1998-08-27 2005-11-22 Cabot Corporation Electrocatalyst powders, methods for producing powders and devices fabricated from same
EP1156709A1 (en) * 1999-09-07 2001-11-21 Asahi Glass Company Ltd. Method of forming transferable printed pattern, and glass with printed pattern
EP1156709A4 (en) * 1999-09-07 2003-05-21 Asahi Glass Co Ltd Method of forming transferable printed pattern, and glass with printed pattern
WO2001093999A3 (en) * 2000-06-08 2003-01-23 Superior Micropowders Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same
US20040080270A1 (en) * 2001-02-06 2004-04-29 Morio Fujitani Plasma display panel and method for manufacture thereof
US7471042B2 (en) * 2001-02-06 2008-12-30 Panasonic Corporation Plasma display panel with an improved electrode
US20090021342A1 (en) * 2007-07-18 2009-01-22 Watlow Electric Manufacturing Company Thick Film Layered Resistive Device Employing a Dielectric Tape
JP2010533982A (en) * 2007-07-18 2010-10-28 ワトロウ エレクトリック マニュファクチュアリング カンパニー Thick film multilayer resistor device using dielectric tape
US8089337B2 (en) * 2007-07-18 2012-01-03 Watlow Electric Manufacturing Company Thick film layered resistive device employing a dielectric tape
US20130113600A1 (en) * 2008-02-06 2013-05-09 Vishay Dale Electronics, Inc. Resistor and method for making same
US8730003B2 (en) * 2008-02-06 2014-05-20 Vishay Dale Electronics, Inc. Resistor and method for making same
US9378872B2 (en) 2008-02-06 2016-06-28 Vishay Dale Electronics, Llc Resistor and method for making same
US10147524B2 (en) 2008-02-06 2018-12-04 Vishay Dale Electronics, Llc Resistor and method for making same
US20140306035A1 (en) * 2011-12-22 2014-10-16 Eisenmann Ag Electrode assembly and electrostatic atomizer having such an electrode assembly

Similar Documents

Publication Publication Date Title
US3803708A (en) Method for making a resistor
US4733056A (en) Heater backed with a ceramic substrate
US4343833A (en) Method of manufacturing thermal head
US5938957A (en) Planar heating device for a mirror and method of producing the same
US4053864A (en) Thermistor with leads and method of making
GB1474095A (en) Resistors
CA1073556A (en) Article with electrically-resistive glaze for use in high-electric fields and method of making same
GB2044546A (en) Vitreous enamel resistor and method of making the same
US4510195A (en) Flexible insulative substrates having two glass layers at least one side thereof and a method for making such substrates
EP0167392A2 (en) Method of producing electrostrictive effect element
JPH09180541A (en) Conductive paste, conductive body using it, and ceramic substrate
DE2309214A1 (en) METHOD OF MANUFACTURING A RESISTOR
KR100807217B1 (en) Ceramic component and Method for the same
JPH0256826B2 (en)
US3711328A (en) Resistor paste
JP3303025B2 (en) Chip type micro gap type surge absorber
JPH0350397B2 (en)
JP2000311764A (en) Surge absorbing element, and manufacture thereof
JP2862465B2 (en) Heating roller for fixing toner
JPS6220864Y2 (en)
JPS60178678A (en) Manufacture of electronic component of ceramic lamination
JP3265827B2 (en) Chip type micro gap type surge absorber
CN114284665A (en) High-power microwave load sheet and preparation method thereof
US3611047A (en) Printed circuit with components
JPH0744081B2 (en) High voltage resistor