US3874003A - Artificial hip joint - Google Patents
Artificial hip joint Download PDFInfo
- Publication number
- US3874003A US3874003A US347621A US34762173A US3874003A US 3874003 A US3874003 A US 3874003A US 347621 A US347621 A US 347621A US 34762173 A US34762173 A US 34762173A US 3874003 A US3874003 A US 3874003A
- Authority
- US
- United States
- Prior art keywords
- hip joint
- artificial hip
- ball head
- artificial
- femur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000004394 hip joint Anatomy 0.000 title claims abstract description 65
- 210000000689 upper leg Anatomy 0.000 claims abstract description 49
- 210000002391 femur head Anatomy 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims description 11
- 239000004033 plastic Substances 0.000 claims description 7
- 229920003023 plastic Polymers 0.000 claims description 7
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 5
- 230000002787 reinforcement Effects 0.000 claims description 3
- 210000004197 pelvis Anatomy 0.000 abstract description 12
- 210000000588 acetabulum Anatomy 0.000 description 10
- 210000001624 hip Anatomy 0.000 description 8
- 210000001503 joint Anatomy 0.000 description 7
- 210000000988 bone and bone Anatomy 0.000 description 5
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000004568 cement Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 241000131317 Capitulum Species 0.000 description 2
- 210000002436 femur neck Anatomy 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- -1 such as Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000002639 bone cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000000501 femur body Anatomy 0.000 description 1
- 210000000527 greater trochanter Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
- A61F2/4603—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
- A61F2/4609—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of acetabular cups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1659—Surgical rasps, files, planes, or scrapers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1662—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
- A61B17/1664—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip
- A61B17/1668—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip for the upper femur
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D49/00—Tractors
- B62D49/005—Tractors for semi-trailers
- B62D49/007—Tractors for handling trailers, e.g. roll-trailers in terminals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1742—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the hip
- A61B17/175—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the hip for preparing the femur for hip prosthesis insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
- A61F2/4603—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30159—Concave polygonal shapes
- A61F2002/30179—X-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
- A61F2002/30332—Conically- or frustoconically-shaped protrusion and recess
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30537—Special structural features of bone or joint prostheses not otherwise provided for adjustable
- A61F2002/30538—Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting angular orientation
- A61F2002/3054—Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting angular orientation about a connection axis or implantation axis for selecting any one of a plurality of radial orientations between two modular parts, e.g. Morse taper connections, at discrete positions, angular positions or continuous positions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30772—Apertures or holes, e.g. of circular cross section
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30879—Ribs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30891—Plurality of protrusions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30891—Plurality of protrusions
- A61F2002/30892—Plurality of protrusions parallel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2002/30906—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth shot- sand- or grit-blasted
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/34—Acetabular cups
- A61F2002/3412—Acetabular cups with pins or protrusions, e.g. non-sharp pins or protrusions projecting from a shell surface
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/34—Acetabular cups
- A61F2002/3412—Acetabular cups with pins or protrusions, e.g. non-sharp pins or protrusions projecting from a shell surface
- A61F2002/3417—Acetabular cups with pins or protrusions, e.g. non-sharp pins or protrusions projecting from a shell surface the outer shell having protrusions on meridian lines, e.g. equidistant fins or wings around the equatorial zone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/34—Acetabular cups
- A61F2002/3429—Acetabular cups with an integral peripheral collar or flange, e.g. oriented away from the shell centre line
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/36—Femoral heads ; Femoral endoprostheses
- A61F2/3609—Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
- A61F2002/3625—Necks
- A61F2002/3631—Necks with an integral complete or partial peripheral collar or bearing shoulder at its base
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/36—Femoral heads ; Femoral endoprostheses
- A61F2/3609—Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
- A61F2002/365—Connections of heads to necks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/40—Joints for shoulders
- A61F2/4014—Humeral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic humeral shafts
- A61F2002/4037—Connections of heads to necks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
- A61F2/4603—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
- A61F2002/4619—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof for extraction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
- A61F2002/4631—Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor the prosthesis being specially adapted for being cemented
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00Â -Â A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0033—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00Â -Â A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/0058—X-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30Â -Â A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00029—Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
Definitions
- A61F l/00 tools for fixing the socket in the pelvis in a proper po- [58] Field of Search....3/ 1; 128/92 C, 92 CA, 92 R, sition particularly determined by bores taking up said 128/92 BA, 92 BB, 83 pins, and the ball head may be located in different positions on a pin of the femur shank and is secured [56] References Cited from unintentional twisting once it is mounted thereon UNITED STATES PATENTS final p 2,719,522 10/1955 Hudack 128/92 CA 21 Claims, 17 Drawing Figures PATENTEDAPR 1 I975 EHL .llllll-llll-Illllll' ll/ 2 I I ARTIFICIAL HIP JOINT BACKGROUND OF THE INVENTION
- the present invention concerns an artificial hip joint.
- artificial hip joints The purpose of artificial hip joints is the replacement of natural hip joints in order to return freedom of movement to a person with a diseased hip joint.
- Conventional artificial femur heads have a capitulum in contact with the acetabulum and a shank portion intended for insertion into the medullar cavity of the femur; a demountable joint being provided between the capitulum and the shank part.
- Another known embodiment comprises a rod-like portion and an enlarged portion and a ball head which is intended to be provided on the top of the remainder femur by a supporting surface and the center of the ball head is disposed externally of the longitudinal axis of the stem.
- the ball head is provided on a neck part and the plane through the center of the ball head and the supporting surface, viewed in the direction of the narrow side of the artificial joint to the center plane of the flat stem, subtends an angle, and that the supporting surface on the underside of the neck member, viewed in the direction of the wide side of the artificial joint, is arranged perpendicularly to the said plane through the middle of the ball head, whilst the lower rod-like part of the shank is approximately twice as long as its enlarged part.
- the ball In conventional artificial joints, the ball is mounted on a cylindrical part. If, for any reason, the ball does not run freely in the socket, attrition occurs on account of the friction of the ball on the pin of the shank and is considerable because of the relatively small diameter of the pin leading rapidly to an unsteady connection. Furthermore, in a subsequent operation for replacing the artificial joint, there are often difficulties in extracting the rooted or cemented-in artificial joint, so that the operation takes a long time, a feature which has extremely harmful consequences on the patient.
- total artificial hips are also known in which both parts of the joint, that is to say, both the ball and the socket, can be replaced.
- both parts of the joint that is to say, both the ball and the socket.
- difficulties arise which should not be neglected, since, due to the strong forces arising with the loading of the joints, the originally good joint surfaces become deformed or even damaged.
- the resultant bad qualities or frictional characteristics of the joint make movement difficult, causing pain and the surrounding tissues may, due to the resultant products of attrition, tend to produce corresponding reactions and this may lead to the artificial joints having to be replaced in a further operation.
- the plastics material socket was cemented into the pelvis.
- the outer radius of the plastics material socket depends on the structure of the skeleton, just as its wall thickness depends on the loads to be expected. The consequence of this is that the inner radius and, therefore, the radius of the ball, are small, whereby, after a certain lapse of time the socket becomes worn out from friction, since the resultant forces exceed the resistance of the surface of the plastics material socket, and this naturally necessitates the replacement of the joint.
- Another object of the present invention is to provide a total artificial hip joint having none of the disadvantages of conventional joints of this kind.
- a further object of the present invention is to provide a hip joint which can be adjusted to the given conditions of the skeleton.
- Yet another object of the present invention is to construct an artificial hip joint in which all the individual parts are inserted into the body in a predetermined position.
- a further object to be achieved by means of the present invention is to provide an artificial hip joint which can be easily and rapidly inserted.
- Another object of the present invention is to indicate a method of operating for inserting the artificial hip joint.
- an artificial hip joint comprising an artificial femur head with a femur body and ball head and a joint socket, in which the ball head is located on a pin of the femur shank and is secured against unintentional twisting by means of pegs which engage in depressions in the collar of the femur shank, and the joint socket has two pins which determine and secure its position in the pelvis.
- a preferred embodiment of the artificial hip joint of the present invention is characterised in that the ball head has a ball neck extension on which the pegs are disposed.
- the most important advantages of the present invention reside in the feature that it is possible to comply within very wide limits with the given conditions of the skeleton, since it is possible to copy the direction of the bones, medially, laterally, posteriorly and anteriorly, so that the ball head is mounted on the pins of the artificial femur head in the appropriate corresponding position.
- the two pins of the socket are protected from small movements which could lead to subsequent loosening.
- FIG. 1 shows a section through part of a skeleton with inserted artificial joints, the right hip joint being replaced by an artificial femur head and a left hip joint by a total artificial hip according to the present invennon;
- FIG. 2 is a side elevation of the artificial femur head with a mounted ball head of this invention
- FIG. 3 is a plan view of the artificial femur shank shown in FIG. 2;
- FIG. 4 is a section through a joint socket of the pres ent invention
- FIG. 5 is a plan view of the socket shown in FIG. 4;
- FIG. 7 is an alternative embodiment of the upper part of an artificial femur shank with an alternative mounting of the ball head according to the present invention.
- FIG. 8 shows a view of a rasp used for shaping the medullar cavity in the femur shank
- FIG. 8a shows a milling cutter associated with the rasp according to FIG. 8;
- FIG. 9 is a section through a socket inserting device with mounted socket
- FIG. 10 is a section through a drill gauge for drilling two holes in the acetabulum, in which the pins of the joint socket engage;
- FIG. 10a is a plan view of the drill gauge according to FIG. 10.
- FIG. 1 shows a pelvis l3 and two femurs 14 and 15, in which shanks 16 and 17 of artificial femur heads are inserted'in the medullar cavities 56 and 57.
- the artificial femur heads are positioned on the surfaces 22 and 23 of the remaining part of the femurs by bearing surfaces 18 and 19 of collars 20 and 21.
- the left side of FIG. 1 shows a right hip joint in which a ball head 24 extends directly into the natural socket 25 of the joint and co-operates therewith.
- the right side of FIG. 1 shows a left hip joint which is replaced by a total artificial hip, since the natural socket is replaced by an artificial socket 26.
- FIGS. 2 and 3 shows in more detail how the artificial femur head is constructed.
- the length of the shank 16 can be adapted in accordance with the dimension of the skeleton and the forces involved.
- the bearing surface 18 has been considerably enlarged on the medial side.
- the lateral reinforcement 27 on the shank minimises twisting in the femur 14.
- the collar 20 is provided in its rear portion with a bore 28 serving to secure the possibly separated trochanter major in position again by means of anscienceling. Alternatively, in the event of infection, an extracting device can be engaged in this bore.
- the collar 20 is provided with four depressions 29 on its side opposite to the shank 16 and the bearing surface 18, shown in plan in FIG. 3 and in a side elevation in FIG. 2.
- the artificial femur shank 16 has, at the point of intersection of the depressions 29, a tapered pin 30, the axis 58 of which normally forms an angle of 126 with the axis of the shank.
- the surface of the shank 16 is smooth or sand-blasted.
- FIGS. 4 and 5 show a hip socket 26 constructed in accordance with the present invention. Its shape, which is adapted as far as possible to that of the natural socket, is clearly shown.
- Two pins 31 and 32 are provided which accurately secure the socket 26 in holes in the acetabulum and, may be considered as a special feature.
- the two pins are each provided with a groove 34 through which excess cement can flow out during the cementing-in process.
- Radially extending ribs 33 also serve to secure the position of the socket 26 in the pelvis 13.
- the inner surface 35 of the socket 26 is not damaged in'any way by the use of the hip joint. Hence any replacement of the cemented-in socket 26, with all its disadvantages is completely unnecessary, except in the case of infections.
- FIG. 2 shows another ball head 36 with a symmetrical neck extension 64 and a bore 65 which is slipped on the taper pin 30 of the femur shank.
- FIG. 7 shows a ball head 37 with an asymmetrical neck extension 66 and a decentred bore 67, the axis 68 of which subtends, with the center line 69 of the ball head 37, an angle of between 5 and 15.
- FIGS. 6a,b,c,d,e and f show the various basic directions of the axes of the hip joint which may be considered with the same artificial femur head, and also with a single total artificial hip without replacing any cemented-in artificial part. It is sufficient if the ball head 36, shown in FIG. 2, by means of which the normal direction shown in FIGS. 6a and 6d is achieved, is replaced by the ball head 37 shown in FIG. 7, a feature which can be realised without difficulty, since both ball heads 36 and 37 are simply slipped on the taper pin 30. The lateral direction, FIG. 6b, is obtained if the ball head 37 is slipped on the pin 30 so that the centre 61 of the ball is disposed above the axis 38 of the pin.
- the medial direction, FIG. 6c is obtained if the same ball head 37 is slipped on the pin 30 so that the centre 61 of the ball is below the axis 58 of the pin.
- the anterior and posterior directions are obtained with the same ball head 37 if the latter, as shown in FIGS. 6e and 6f, are slipped on the taper pin 30 sothat the centre 61 of the ball is disposed behind or in front of the axis 58 of the pin.
- the artificial femur shank 16, shown in FIG. 2 is cemented-in, as is the socket 26.
- cementingin involves undesirable side effects, heat development with the setting of the cement, monomer separation and also longterm effects which have not yet been completely explained, is is a great advantage if the use of bone cement can be abandoned.
- the shank 16 is initially rasped approximately to the thickness A.
- the residual bone material is rasped away by the teeth 39 of the shank 40 so that this material collects in the depressions between the teeth 39, a feature which may lead to adhesion of the artificial femur shank.
- the artificial shank then becomes firmly rooted in the femur.
- this artificial femur shank 40 corresponds in all other requirements to that according to FIGS. 2 and 3, since otherwise the replaceability of the individual ball heads would be placed in question.
- the artificial hip joint of the present invention represents an artificial hip on a building block system, in which only the ball heads have to be replaced in order to obtain the most natural positions of the femur possible. It is obvious that extreme conditions of the bones can be further compensated by suitably adapted artificial femur shanks and sockets.
- a rasp as shown in FIG. 8, is required, comprising a rasp member 41 and a handle slipped and fixed on a pin.
- the medullar cavity 56 of the femur 14 is shaped with the rasp 41.
- This rasp 41 should preferably have the same dimensions as the artificial femur shank 16, or thickness A of the shank 40.
- the handle is removed and the rasp 60 left in the medullar cavity so that the surface B is flush with the stump of the femur neck.
- the pin now projects above the bone.
- the stump of the femur neck is milled accurately plane using a milling cutter as shown in FIG. 80 by way of this pin, and the correct anglefor the bearing surface 18 of the artificial shank is also accurately obtained thereby.
- FIG. shows the drill gauge of the present invention for drilling the holes in the acetabulum. It has a spherical end 49, the shape of which approximately matches the shape of the socket part 26. After the introduction of the drill gauge in the initially milled acetabulum it is brought to the correct position (45 to the axis of the body and l020 anteversion) and fixed by means of the two small pins 52 and 53 which are axially displaceable and have points 62 and 63, which are hammered into the acetabulum. The depth of penetration of the pin is accurately determined by the stops 54, 55.
- the two holes for receiving the pins 21 and 22 of the socket 26 are drilled in the acetabulum in this position by a special spiral drill through the holes C in the drill gauge.
- the spiral drill is also provided with a stop so that the necessary drilling depth can be accurately observed. The position of the socket 26 is thus accurately determined.
- a socket inserting device 42 may also be used with advantage, this device having a spherical end 43 of the shape of the inner surface 35 of the socket 26, or, in the form of the ball head 24, on which end 43 the socket 26 can be clamped. This is effected by means of an elastic holder 44 slipped over an edge 45 of the socket 26.
- the handle 46 is pressed in the direction of the pelvis or towards the end 43, so that the socket 26 is pressed firmly into the acetabulum, the result of which is that the two pins 31 and 32 engage in the prepared holes in the acetabulum.
- a part 48 is then drawn towards the handle 46 against the bias of a spring 47.
- the holder 44 is removed from the end 43 so that it releases the edge 45 of the socket 46.
- the socket 26 is thus inserted in the pelvis and the inserting device can be withdrawn.
- the ball head 36 or 37 selected and positioned according to the condition of the skeleton, can be slipped on the taper pin 30. The actual insertion of the artificial hip joint is thus completed.
- An artificial hip joint comprising an artificial femur head having a femur shank and ball head mounted thereon, and a socket, said femur shank having a support pin projecting from an upper end thereof and a collar about the base of said pin, said ball head having a bore which is disposed on said pin of the femur shank and is secured from unintentional twisting by pegs projecting axially at a face of the ball head for cooperative engagement with depressions in said collar of the femur shank, said bore of the ball head having an axis offset from a diameter line of the ball head, whereby said ball head may be disposed on said pin and fixed by said pegs and'depressions in various relative angular positions for selection of various positions of said ball head relatively to said femur shank.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Dentistry (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physical Education & Sports Medicine (AREA)
- Prostheses (AREA)
Abstract
An artificial hip joint, wherein an artificial femur head is fixed in the femur and a socket having two pins is secured in the pelvis. The apparatus includes special tools for fixing the socket in the pelvis in a proper position particularly determined by bores taking up said pins, and the ball head may be located in different positions on a pin of the femur shank and is secured from unintentional twisting once it is mounted thereon in its final position.
Description
United States Patent 1191 Moser et al. Apr. 1, 1975 1 ARTIFICIAL HIP JOINT 3,102,536 9/1963 Rose et a1. 128/92 CA 3.320.951 5/1967 Wittebol 128/92 CA [751 lnvemorsl Hem Selzach; P" Karl, 3,584,318 6/1971 Scales et a1. 128/92 c Holderbank, both Of swltzerland 3,656,184 4/1972 Chambers 128/92 c 3,685,058 8/1972 T ronzo... 128/92 C [73] Assgnee' Selzach Solothum 3,744,061 7/1973 Frost 3/1 Sw1tzerland [22] Filed: Apr. 4, 1973 Primary Examiner-Richard A. Gaudet Assistant Examiner-1.1. Yasko [2]] Appl' 347621 Attorney, Agent, or Firm-Imirie, Smiley & Linn [30] Foreign Application Priority Data [57] ABSTRACT Apr. 6, 1972 Switzerland 4854/72 An artificial hip joint, wherein an artificial femur head is fixed in the femur and a socket having two pins is [52] US. Cl. 3/1, 128/92 C, 128/92 CA secured in the pelvis. The apparatus includes special [51] Int. Cl. A61F l/00 tools for fixing the socket in the pelvis in a proper po- [58] Field of Search....3/ 1; 128/92 C, 92 CA, 92 R, sition particularly determined by bores taking up said 128/92 BA, 92 BB, 83 pins, and the ball head may be located in different positions on a pin of the femur shank and is secured [56] References Cited from unintentional twisting once it is mounted thereon UNITED STATES PATENTS final p 2,719,522 10/1955 Hudack 128/92 CA 21 Claims, 17 Drawing Figures PATENTEDAPR 1 I975 EHL .llllll-llll-Illllll' ll/ 2 I I ARTIFICIAL HIP JOINT BACKGROUND OF THE INVENTION The present invention concerns an artificial hip joint.
The purpose of artificial hip joints is the replacement of natural hip joints in order to return freedom of movement to a person with a diseased hip joint.
Artificial joints for the replacement of the hip joint are known. It should be noted that at first only the ball at the top of the femur was replaced. Only later were both parts of the hip joint replaced, that is to say, the socket in the pelvis and the ball at the top of the femur. Operations which require only the replacement of the ball of the joint were and still are today carried out using an artificial femur head. This artificial femur head has a shank for insertion into the medullar cavity of the femur, the shank being provided near one end with an enlargement having a bearing surface for abutting the upper surface of the femur and adjoining this, a pin for receiving the ball of the joint. Conventional artificial femur heads have a capitulum in contact with the acetabulum and a shank portion intended for insertion into the medullar cavity of the femur; a demountable joint being provided between the capitulum and the shank part.
Another known embodiment comprises a rod-like portion and an enlarged portion and a ball head which is intended to be provided on the top of the remainder femur by a supporting surface and the center of the ball head is disposed externally of the longitudinal axis of the stem. The ball head is provided on a neck part and the plane through the center of the ball head and the supporting surface, viewed in the direction of the narrow side of the artificial joint to the center plane of the flat stem, subtends an angle, and that the supporting surface on the underside of the neck member, viewed in the direction of the wide side of the artificial joint, is arranged perpendicularly to the said plane through the middle of the ball head, whilst the lower rod-like part of the shank is approximately twice as long as its enlarged part.
In conventional artificial joints, the ball is mounted on a cylindrical part. If, for any reason, the ball does not run freely in the socket, attrition occurs on account of the friction of the ball on the pin of the shank and is considerable because of the relatively small diameter of the pin leading rapidly to an unsteady connection. Furthermore, in a subsequent operation for replacing the artificial joint, there are often difficulties in extracting the rooted or cemented-in artificial joint, so that the operation takes a long time, a feature which has extremely harmful consequences on the patient.
In addition to these artificial femur heads, total artificial hips are also known in which both parts of the joint, that is to say, both the ball and the socket, can be replaced. However, with such artificial joints difficulties arise which should not be neglected, since, due to the strong forces arising with the loading of the joints, the originally good joint surfaces become deformed or even damaged. The resultant bad qualities or frictional characteristics of the joint make movement difficult, causing pain and the surrounding tissues may, due to the resultant products of attrition, tend to produce corresponding reactions and this may lead to the artificial joints having to be replaced in a further operation.
These disadvantages were avoided by the feature that different materials were used for the socket and the ball. Plastics materials were used for the sockets and metals for the balls. The metal heads were fixed into the previously prepared medullar cavity of the femur. Either the artificial femur shank had so-called windows for this purpose, through which it was possible for the bone to grow or a plain shank was cemented into the medullar cavity.
Similarly,the plastics material socket was cemented into the pelvis. The outer radius of the plastics material socket, however, depends on the structure of the skeleton, just as its wall thickness depends on the loads to be expected. The consequence of this is that the inner radius and, therefore, the radius of the ball, are small, whereby, after a certain lapse of time the socket becomes worn out from friction, since the resultant forces exceed the resistance of the surface of the plastics material socket, and this naturally necessitates the replacement of the joint.
SUMMARY OF THE INVENTION It is an object of the present invention to overcome the disadvantages of conventional artificial femur heads.
Another object of the present invention is to provide a total artificial hip joint having none of the disadvantages of conventional joints of this kind.
A further object of the present invention is to provide a hip joint which can be adjusted to the given conditions of the skeleton.
Yet another object of the present invention is to construct an artificial hip joint in which all the individual parts are inserted into the body in a predetermined position.
A further object to be achieved by means of the present invention is to provide an artificial hip joint which can be easily and rapidly inserted.
Another object of the present invention is to indicate a method of operating for inserting the artificial hip joint.
These objects are achieved in accordance with the present invention, on the one hand, by an artificial hip joint, comprising an artificial femur head with a femur body and ball head and a joint socket, in which the ball head is located on a pin of the femur shank and is secured against unintentional twisting by means of pegs which engage in depressions in the collar of the femur shank, and the joint socket has two pins which determine and secure its position in the pelvis.
A preferred embodiment of the artificial hip joint of the present invention is characterised in that the ball head has a ball neck extension on which the pegs are disposed.
The most important advantages of the present invention reside in the feature that it is possible to comply within very wide limits with the given conditions of the skeleton, since it is possible to copy the direction of the bones, medially, laterally, posteriorly and anteriorly, so that the ball head is mounted on the pins of the artificial femur head in the appropriate corresponding position.
Furthermore, the two pins of the socket are protected from small movements which could lead to subsequent loosening.
The present invention will be described further, by way of example, with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a section through part of a skeleton with inserted artificial joints, the right hip joint being replaced by an artificial femur head and a left hip joint by a total artificial hip according to the present invennon;
FIG. 2 is a side elevation of the artificial femur head with a mounted ball head of this invention;
FIG. 3 is a plan view of the artificial femur shank shown in FIG. 2;
FIG. 4 is a section through a joint socket of the pres ent invention;
FIG. 5 is a plan view of the socket shown in FIG. 4;
FIGS. 6a,b,c,d,e and fare side views of the present ball head in the normal, lateral and medial directions and plan views in the normal, anterior and posterior directions;
FIG. 7 is an alternative embodiment of the upper part of an artificial femur shank with an alternative mounting of the ball head according to the present invention;
FIG. 8 shows a view of a rasp used for shaping the medullar cavity in the femur shank;
FIG. 8a shows a milling cutter associated with the rasp according to FIG. 8;
FIG. 9 is a section through a socket inserting device with mounted socket;
FIG. 10 is a section through a drill gauge for drilling two holes in the acetabulum, in which the pins of the joint socket engage; and
FIG. 10a is a plan view of the drill gauge according to FIG. 10.
DETAILED DESCRIPTION OF THE INVENTION FIG. 1 shows a pelvis l3 and two femurs 14 and 15, in which shanks 16 and 17 of artificial femur heads are inserted'in the medullar cavities 56 and 57. The artificial femur heads are positioned on the surfaces 22 and 23 of the remaining part of the femurs by bearing surfaces 18 and 19 of collars 20 and 21. The left side of FIG. 1 shows a right hip joint in which a ball head 24 extends directly into the natural socket 25 of the joint and co-operates therewith. The right side of FIG. 1 shows a left hip joint which is replaced by a total artificial hip, since the natural socket is replaced by an artificial socket 26.
FIGS. 2 and 3 shows in more detail how the artificial femur head is constructed. It should be noted that the length of the shank 16 can be adapted in accordance with the dimension of the skeleton and the forces involved. In order to protect the shank 16 from unintentionally sinking into the femur 14, the bearing surface 18 has been considerably enlarged on the medial side. Similarly, the lateral reinforcement 27 on the shank minimises twisting in the femur 14. The collar 20 is provided in its rear portion with a bore 28 serving to secure the possibly separated trochanter major in position again by means of an incercling. Alternatively, in the event of infection, an extracting device can be engaged in this bore. The collar 20 is provided with four depressions 29 on its side opposite to the shank 16 and the bearing surface 18, shown in plan in FIG. 3 and in a side elevation in FIG. 2. In order to receive the ball head 36, the artificial femur shank 16 has, at the point of intersection of the depressions 29, a tapered pin 30, the axis 58 of which normally forms an angle of 126 with the axis of the shank. The surface of the shank 16 is smooth or sand-blasted.
FIGS. 4 and 5 show a hip socket 26 constructed in accordance with the present invention. Its shape, which is adapted as far as possible to that of the natural socket, is clearly shown. Two pins 31 and 32 are provided which accurately secure the socket 26 in holes in the acetabulum and, may be considered as a special feature. The two pins are each provided with a groove 34 through which excess cement can flow out during the cementing-in process. Radially extending ribs 33 also serve to secure the position of the socket 26 in the pelvis 13.
Due to the fact that metal, such as a Cr-Co-Mo alloy, is used as socket material, and the ball head consists of plastics material, such as, polyethylene, the inner surface 35 of the socket 26 is not damaged in'any way by the use of the hip joint. Hence any replacement of the cemented-in socket 26, with all its disadvantages is completely unnecessary, except in the case of infections.
FIG. 2 shows another ball head 36 with a symmetrical neck extension 64 and a bore 65 which is slipped on the taper pin 30 of the femur shank.
In contrast to this, FIG. 7 shows a ball head 37 with an asymmetrical neck extension 66 and a decentred bore 67, the axis 68 of which subtends, with the center line 69 of the ball head 37, an angle of between 5 and 15.
FIGS. 6a,b,c,d,e and f show the various basic directions of the axes of the hip joint which may be considered with the same artificial femur head, and also with a single total artificial hip without replacing any cemented-in artificial part. It is sufficient if the ball head 36, shown in FIG. 2, by means of which the normal direction shown in FIGS. 6a and 6d is achieved, is replaced by the ball head 37 shown in FIG. 7, a feature which can be realised without difficulty, since both ball heads 36 and 37 are simply slipped on the taper pin 30. The lateral direction, FIG. 6b, is obtained if the ball head 37 is slipped on the pin 30 so that the centre 61 of the ball is disposed above the axis 38 of the pin. However, the medial direction, FIG. 6c, is obtained if the same ball head 37 is slipped on the pin 30 so that the centre 61 of the ball is below the axis 58 of the pin. The anterior and posterior directions, in turn, are obtained with the same ball head 37 if the latter, as shown in FIGS. 6e and 6f, are slipped on the taper pin 30 sothat the centre 61 of the ball is disposed behind or in front of the axis 58 of the pin. These five basic directions are accurately determined by the position of the pegs 38 of the ball heads 36 and 37 and the position of the corresponding depressions 29 of the collar 30, into which they fit.
The artificial femur shank 16, shown in FIG. 2 is cemented-in, as is the socket 26. However, as cementingin involves undesirable side effects, heat development with the setting of the cement, monomer separation and also longterm effects which have not yet been completely explained, is is a great advantage if the use of bone cement can be abandoned.
However, in order to fix the artificial shank in position, it must be formed as shown in FIG. 7. The shank 16 is initially rasped approximately to the thickness A. When the shank is subsequently introduced into the medullar cavity 56 of the femur 14 (FIG. 1), the residual bone material is rasped away by the teeth 39 of the shank 40 so that this material collects in the depressions between the teeth 39, a feature which may lead to adhesion of the artificial femur shank. During the subsequent ossification the artificial shank then becomes firmly rooted in the femur.
The rest of the construction of this artificial femur shank 40 corresponds in all other requirements to that according to FIGS. 2 and 3, since otherwise the replaceability of the individual ball heads would be placed in question.
It will be easily seen that the artificial hip joint of the present invention, whether as an artificial femur head or as a total artififical hip joint, represents an artificial hip on a building block system, in which only the ball heads have to be replaced in order to obtain the most natural positions of the femur possible. It is obvious that extreme conditions of the bones can be further compensated by suitably adapted artificial femur shanks and sockets.
In order to insert the artificial hip of the present invention as rapidly and as easily as possible, a few special instruments or tools are necessary, as will be apparent from the following description. For example, a rasp, as shown in FIG. 8, is required, comprising a rasp member 41 and a handle slipped and fixed on a pin. The medullar cavity 56 of the femur 14 is shaped with the rasp 41. This rasp 41 should preferably have the same dimensions as the artificial femur shank 16, or thickness A of the shank 40. After the initial rasping process, the handle is removed and the rasp 60 left in the medullar cavity so that the surface B is flush with the stump of the femur neck. The pin now projects above the bone. The stump of the femur neck is milled accurately plane using a milling cutter as shown in FIG. 80 by way of this pin, and the correct anglefor the bearing surface 18 of the artificial shank is also accurately obtained thereby.
FIG. shows the drill gauge of the present invention for drilling the holes in the acetabulum. It has a spherical end 49, the shape of which approximately matches the shape of the socket part 26. After the introduction of the drill gauge in the initially milled acetabulum it is brought to the correct position (45 to the axis of the body and l020 anteversion) and fixed by means of the two small pins 52 and 53 which are axially displaceable and have points 62 and 63, which are hammered into the acetabulum. The depth of penetration of the pin is accurately determined by the stops 54, 55. The two holes for receiving the pins 21 and 22 of the socket 26 are drilled in the acetabulum in this position by a special spiral drill through the holes C in the drill gauge. The spiral drill is also provided with a stop so that the necessary drilling depth can be accurately observed. The position of the socket 26 is thus accurately determined.
A socket inserting device 42, as shown in FIG. 9, may also be used with advantage, this device having a spherical end 43 of the shape of the inner surface 35 of the socket 26, or, in the form of the ball head 24, on which end 43 the socket 26 can be clamped. This is effected by means of an elastic holder 44 slipped over an edge 45 of the socket 26. As soon as the socket 26, the outside of which is filled with cement between the ribs 33 before the insertion in the pelvis 13, is in its final position, determined by the two bores in the acetabulum, the handle 46 is pressed in the direction of the pelvis or towards the end 43, so that the socket 26 is pressed firmly into the acetabulum, the result of which is that the two pins 31 and 32 engage in the prepared holes in the acetabulum. A part 48 is then drawn towards the handle 46 against the bias of a spring 47. Thus the holder 44 is removed from the end 43 so that it releases the edge 45 of the socket 46. The socket 26 is thus inserted in the pelvis and the inserting device can be withdrawn. After the shank 16 or 40 of the artificial femur head is cemented in the medullar cavity 52 or pressed therein, the ball head 36 or 37, selected and positioned according to the condition of the skeleton, can be slipped on the taper pin 30. The actual insertion of the artificial hip joint is thus completed.
The fact that none of the cemented-in or grown-in parts is subjected to wear, has proved to be extremely advantageous if for any reason the ball head has to be replaced, since a small operative opening is sufficient for removing the ball head from the taper pin of the artificial femur and mounting a new one.
It is obvious that alterations may be made to the artificial hip itself, to the method of operation and the set of instruments used for the purpose without departing from the scope of the present invention.
What we claim is:
1. An artificial hip joint, comprising an artificial femur head having a femur shank and ball head mounted thereon, and a socket, said femur shank having a support pin projecting from an upper end thereof and a collar about the base of said pin, said ball head having a bore which is disposed on said pin of the femur shank and is secured from unintentional twisting by pegs projecting axially at a face of the ball head for cooperative engagement with depressions in said collar of the femur shank, said bore of the ball head having an axis offset from a diameter line of the ball head, whereby said ball head may be disposed on said pin and fixed by said pegs and'depressions in various relative angular positions for selection of various positions of said ball head relatively to said femur shank.
2. An artificial hip joint as claimed in claim 1, in which the ball head has a neck extension on which the pegs are disposed.
3. An artificial hip joint as claimed in claim 1, in which the ball head has a bore, the axis of which is offset between 5 and 15 from a diameter line.
4. An artificial hip joint as claimed in claim 1, in which the ball head has four axially projecting pegs arranged cross-wise.
5. An artificial hip joint as claimed in claim 1, in which the artificial femur shank has at least approximately smooth surfaces.
6. An artificial hip joint as claimed in claim 1, in which the shank has annular teeth.
7. An artificial hip joint as claimed in claim 1, in which the collar has a bore in its rear portion.
8. An artificial hip joint as claimed in claim 1, in which the collar has four depressions arranged crosswise at whose point of intersection said pin is disposed and is tapered.
9. An artificial hip joint as claimed in claim 1, in which the axis of the shaft and the axis of the pin subtend an angle of 126.
10. Anartificial hip joint as claimed in claim 1, in which the neck of the ball head is symmetrical.
11. An artificial hip joint as claimed in claim 1, in which the ball head has an asymmetrical neck.
12. An artificial hip joint as claimed in claim 1, in which the femur shank is curved and the rear part of its upper end is provided with a reinforcement.
13. An artificial hip joint as claimed in claim 1, in which the ball head consists of plastics material.
14. An artificial hip joint as claimed in claim 1, in which the shank consists of Co Cr Mo alloy.
15. An artificial hip joint as claimed in claim 1, in which the femur shank is sand-blasted.
16. An artificial hip joint as claimed in claim 1, in which the socket has two pins.
17. An artificial hip joint as claimed in claim 1, in which the socket is provided on its outer surface with which the socket consists of a Co-Cr-Mo alloy.
Claims (21)
1. An artificial hip joint, comprising an artificial femur head having a femur shank and ball head mounted thereon, and a socket, said femur shank having a support pin projecting from an upper end thereof and a collar about the base of said pin, said ball head having a bore which is disposed on said pin of the femur shank and is secured from unintentional twisting by pegs projecting axially at a face of the ball head for cooperative engagement with depressions in said collar of the femur shank, said bore of the ball head having an axis offset from a diameter line of the ball head, whereby said ball head may be disposed on said pin and fixed by said pegs and depressions in various relative angular positions for selection of various positions of said ball head relatively to said femur shank.
2. An artificial hip joint as claimed in claim 1, in which the ball head has a neck extension on which the pegs are disposed.
3. An artificial hip joint as claimed in claim 1, in which the ball head has a bore, the axis of which is offset between 5* and 15* from a diameter line.
4. An artificial hip joint as claimed in claim 1, in which the ball head has four axially projecting pegs arranged cross-wise.
5. An artificial hip joint as claimed in claim 1, in which the artificial femur shank has at least approximately smooth surfaces.
6. An artificial hip joint as claimed in claim 1, in which the shank has annular teeth.
7. An artificial hip joint as claimed in claim 1, in which the collar has a bore in its rear portion.
8. An artificial hip joint as claimed in claim 1, in which the collar has four depressions arranged cross-wise at whose point of intersection said pin is disposed and is tapered.
9. An artificial hip joint as claimed in claim 1, in which the axis of the shaft and the axis of the pin subtend an angle of 126*.
10. An artificial hip joint as claimed in claim 1, in which the neck of the ball head is symmetrical.
11. An artificial hip joint as claimed in claim 1, in which the ball head has an asymmetrical neck.
12. An artificial hip joint as claimed in claim 1, in which the femur shank is curved and the rear part of its upper end is provided with a reinforcement.
13. An artificial hip joint as claimed in claim 1, in which the ball head consists of plastics material.
14. An artificial hip joint as claimed in claim 1, in which the shank consists of Co - Cr - Mo alloy.
15. An artificial hip joint as claimed in claim 1, in which the femur shank is sand-blasted.
16. An artificial hip joint as claimed in claim 1, in which the socket has two pins.
17. An artificial hip joint as claimed in claim 1, in which the socket is provided on its outer surface with radially extending ribs.
18. An artificial hip joint as claimed in claim 1, in which the socket is at least partially provided with a rim on its circumference.
19. An artificial hip joint as claimed in claim 1, in which the socket is chamfered on the medial side.
20. An artificial hip joint as claimed in claim 1, in which the inner radius of the socket corresponds approximately to that of the ball head.
21. An artificial hip joint as claimed in claim 1, in which the socket consists of a Co-Cr-Mo alloy.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH485472A CH552383A (en) | 1972-04-06 | 1972-04-06 | Femoral head prosthesis. |
Publications (1)
Publication Number | Publication Date |
---|---|
US3874003A true US3874003A (en) | 1975-04-01 |
Family
ID=4283699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US347621A Expired - Lifetime US3874003A (en) | 1972-04-06 | 1973-04-04 | Artificial hip joint |
Country Status (5)
Country | Link |
---|---|
US (1) | US3874003A (en) |
CH (1) | CH552383A (en) |
DE (1) | DE2220304C3 (en) |
FR (1) | FR2179166B1 (en) |
SE (1) | SE7304737L (en) |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4324006A (en) * | 1977-05-30 | 1982-04-13 | Charnley Surgical Inventions Limited | Blank for acetabular prosthesis |
US4459708A (en) * | 1979-07-10 | 1984-07-17 | Bernard Buttazzoni | Joint prosthesis |
EP0122670A2 (en) * | 1983-04-15 | 1984-10-24 | Pfizer Hospital Products Group, Inc. | Rasp handle |
US4587964A (en) * | 1985-02-05 | 1986-05-13 | Zimmer, Inc. | Rasp tool |
US4589883A (en) * | 1983-06-06 | 1986-05-20 | Pfizer Hospital Products Group, Inc. | Femoral hip prosthesis |
US4666450A (en) * | 1983-08-26 | 1987-05-19 | Pfizer Hospital Products Group, Inc. | Acetabular cup assembly prosthesis |
US4739750A (en) * | 1985-07-19 | 1988-04-26 | Andre Masse | Rasp for preparing the medullary canal of a bone for receiving a prothesis |
US4904265A (en) * | 1988-09-09 | 1990-02-27 | Boehringer Mannheim Corporation | Cementless acetabular implant |
US4921493A (en) * | 1986-08-11 | 1990-05-01 | Zimmer, Inc. | Rasp tool |
GB2225722A (en) * | 1988-10-18 | 1990-06-13 | Univ London | Attachment device for joint implant |
US4950300A (en) * | 1987-08-03 | 1990-08-21 | Omci Sa | Hip prosthesis with interchangeable epiphysus |
US5002580A (en) * | 1988-10-07 | 1991-03-26 | Pfizer Hospital Products Group, Inc. | Prosthetic device and method of implantation |
US5007936A (en) * | 1988-02-18 | 1991-04-16 | Cemax, Inc. | Surgical method for hip joint replacement |
US5062854A (en) * | 1988-10-07 | 1991-11-05 | Pfizer Hospital Products Group | Prosthetic device and method of implantation |
US5089003A (en) * | 1989-12-22 | 1992-02-18 | Zimmer, Inc. | Rasp tool including detachable handle member |
WO1992003991A1 (en) | 1990-09-04 | 1992-03-19 | Mikhail Wassef E Michael | Femoral stem prosthesis with preapplied cement mantle |
US5124106A (en) * | 1991-03-25 | 1992-06-23 | Zimmer, Inc. | Method of making a femoral rasp |
US5147408A (en) * | 1988-10-07 | 1992-09-15 | Pfizer Hospital Products Group, Inc. | Prosthetic device and method of implantation |
US5169401A (en) * | 1991-12-20 | 1992-12-08 | Zimmer, Inc. | Surgical reamer assembly |
US5389107A (en) * | 1992-05-11 | 1995-02-14 | Antoine A. Nassar | Shock absorbent prosthetic hip joint |
US5697932A (en) * | 1994-11-09 | 1997-12-16 | Osteonics Corp. | Bone graft delivery system and method |
US5755811A (en) * | 1995-08-25 | 1998-05-26 | Zimmer, Inc. | Prosthetic implant with fins |
US5904688A (en) * | 1997-12-30 | 1999-05-18 | Bristol-Myers Squibb Co. | Orthopaedic assembly including an acetabular cup and cup inserter |
US5951564A (en) * | 1996-12-18 | 1999-09-14 | Bristol-Myers Squibb Company | Orthopaedic positioning apparatus |
US5961555A (en) * | 1998-03-17 | 1999-10-05 | Huebner; Randall J. | Modular shoulder prosthesis |
US6494913B1 (en) | 1998-03-17 | 2002-12-17 | Acumed, Inc. | Shoulder prosthesis |
US20030074080A1 (en) * | 1998-04-14 | 2003-04-17 | Murray Ian P. | Modular neck for femur replacement surgery |
US20030187514A1 (en) * | 2002-03-26 | 2003-10-02 | Mcminn Derek James Wallace | Hip joint prosthesis |
US20040030401A1 (en) * | 2002-05-22 | 2004-02-12 | Michel Hassler | Conical coupling and prosthesis comprising such a coupling |
US20040153063A1 (en) * | 2003-02-04 | 2004-08-05 | Harris Brian R. | Acetabular impactor |
US20050075735A1 (en) * | 2000-04-10 | 2005-04-07 | Berelsman Brian K. | Method and apparatus for adjusting height and angle for a radial head |
US20050081867A1 (en) * | 2003-10-21 | 2005-04-21 | Murphy Stephen B. | Tissue preserving and minimally invasive hip replacement surgical procedure |
US20050085823A1 (en) * | 2003-10-21 | 2005-04-21 | Murphy Stephen B. | Acetabular impactor |
US6997928B1 (en) | 2002-06-10 | 2006-02-14 | Wright Medical Technology, Inc. | Apparatus for and method of providing a hip replacement |
US20060217814A1 (en) * | 2002-09-13 | 2006-09-28 | Smith & Nephew, Inc. | Hip prostheses |
US20070043448A1 (en) * | 1998-04-14 | 2007-02-22 | Encore Medical Asset Corporation | Intrinsic stability in a total hip stem |
US7238208B2 (en) | 1995-06-08 | 2007-07-03 | Depuy Products, Inc. | Large taper modular shoulder prosthesis |
US7323013B2 (en) | 1998-04-14 | 2008-01-29 | Encore Medical Asset Corporation | Differential porosity prosthetic hip system |
US20080114461A1 (en) * | 2006-11-13 | 2008-05-15 | Howmedica Osteonics Corp. | Modular humeral head |
US20080281430A1 (en) * | 2005-02-22 | 2008-11-13 | Kelman David C | Long Sleeves for Use with Stems |
US20090018546A1 (en) * | 2007-07-11 | 2009-01-15 | Daley Robert J | Methods and apparatus for determining pin placement during hip surgery |
US20100137870A1 (en) * | 2007-02-28 | 2010-06-03 | Smith & Nephew, Inc. | Acetabular liner inserter guide |
US20100241236A1 (en) * | 2000-04-10 | 2010-09-23 | Biomet Manufacturing Corp. | Modular Radial Head Prosthesis |
US8535382B2 (en) | 2000-04-10 | 2013-09-17 | Biomet Manufacturing, Llc | Modular radial head prostheses |
US9039778B2 (en) | 2013-04-16 | 2015-05-26 | Brian G. Burnikel | Modular, adjustable, prosthetic, hip/shoulder spacer |
US9345576B2 (en) | 2011-12-07 | 2016-05-24 | Smith & Nephew, Inc. | Orthopedic augments having recessed pockets |
US9439781B2 (en) | 2011-05-03 | 2016-09-13 | Smith & Nephew, Inc. | Patient-matched guides for orthopedic implants |
US9549826B2 (en) | 2004-12-01 | 2017-01-24 | Mayo Foundation For Medical Research And Education | Sigmoid notch implant |
US9636228B2 (en) | 2007-02-10 | 2017-05-02 | Howmedica Osteonics Corp. | Radial head implant |
US9655726B2 (en) | 2004-12-01 | 2017-05-23 | Mayo Foundation For Medical Research And Education | Radial-capitellar implant |
US9707097B2 (en) | 2011-12-07 | 2017-07-18 | Smith & Nephew, Inc. | Orthopedic implant augments |
US9901451B2 (en) | 2010-06-08 | 2018-02-27 | Smith & Nephew, Inc. | Implant components and methods |
US10390846B2 (en) | 2002-06-10 | 2019-08-27 | Microport Orthopedics Holdings Inc. | Apparatus for and method of providing a hip replacement |
US10456262B2 (en) | 2016-08-02 | 2019-10-29 | Howmedica Osteonics Corp. | Patient-specific implant flanges with bone side porous ridges |
US11202668B2 (en) * | 2016-01-11 | 2021-12-21 | Kambiz Behzadi | Prosthesis installation |
US11234840B2 (en) | 2016-01-11 | 2022-02-01 | Kambiz Behzadi | Bone preparation apparatus and method |
US11241248B2 (en) | 2016-01-11 | 2022-02-08 | Kambiz Behzadi | Bone preparation apparatus and method |
US11331069B2 (en) | 2016-01-11 | 2022-05-17 | Kambiz Behzadi | Invasive sense measurement in prosthesis installation |
US11375975B2 (en) | 2016-01-11 | 2022-07-05 | Kambiz Behzadi | Quantitative assessment of implant installation |
US11399946B2 (en) | 2016-01-11 | 2022-08-02 | Kambiz Behzadi | Prosthesis installation and assembly |
US11717310B2 (en) | 2016-01-11 | 2023-08-08 | Kambiz Behzadi | Bone preparation apparatus and method |
US11751807B2 (en) | 2016-01-11 | 2023-09-12 | Kambiz Behzadi | Invasive sense measurement in prosthesis installation and bone preparation |
US11969336B2 (en) | 2018-10-08 | 2024-04-30 | Kambiz Behzadi | Connective tissue grafting |
US11974876B2 (en) | 2016-01-11 | 2024-05-07 | Kambiz Behzadi | Quantitative assessment of prosthesis press-fit fixation |
US11974877B2 (en) | 2016-01-11 | 2024-05-07 | Kambiz Behzadi | Quantitative assessment of implant bone preparation |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH568753A5 (en) * | 1973-08-31 | 1975-11-14 | Oscobal Ag | |
DE2451275C2 (en) * | 1974-10-29 | 1982-08-26 | Feldmühle AG, 4000 Düsseldorf | Head part of a hip joint prosthesis to be implanted |
FR2289160A2 (en) * | 1974-10-30 | 1976-05-28 | Tornier Rene | Ball and socket prosthetic hip joint - can have ball end changed to suit thigh bone socket alterations |
CH598806A5 (en) * | 1975-10-27 | 1978-05-12 | Sulzer Ag | |
DE2627569C2 (en) * | 1976-06-19 | 1982-03-11 | Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim | Thigh part of a hip joint prosthesis |
DE2935511A1 (en) * | 1979-09-03 | 1981-03-19 | Schunk & Ebe Gmbh, 6301 Heuchelheim | Thigh part of a hip joint endoprosthesis |
DE3205577C2 (en) * | 1981-02-23 | 1989-11-02 | Inc. Zweigniederlassung Kiel 2314 Schönkirchen Howmedica International | Endoprosthesis for femoral or tibial articular bone parts and adjacent femoral or tibial bone sections |
CH657266A5 (en) * | 1982-10-15 | 1986-08-29 | Sulzer Ag | JOINT OPROTHESIS. |
FR2558053B1 (en) * | 1983-12-08 | 1988-10-14 | Brunet Jean Louis | METHOD FOR PRODUCING A HIP PROSTHESIS AND DEVICE FOR ITS IMPLEMENTATION |
EP0238860B1 (en) * | 1984-03-23 | 1990-11-14 | orthoplant Endoprothetik GmbH | Femoral part of a endoprosthesis for a hip joint |
FR2574283B1 (en) * | 1984-12-07 | 1989-09-08 | Tornier Sa | PROSTHESIS OF THE FEMUR'S NECK WITH AN Eccentric Ball |
FR2581336B1 (en) * | 1985-05-02 | 1989-05-05 | Collomb Jean | WRENCH FOR SCREWING A PART WITH A HEAD WITH A SIZE AND A THREADED BORE |
FR2592786B1 (en) * | 1986-01-10 | 1991-07-26 | Legrange Jean | HIP PROSTHESIS ROD |
DE3813944A1 (en) * | 1988-04-26 | 1989-11-09 | S & G Implants Gmbh | ENDOPROTHESIS FOR A JOINT |
FR2631543B1 (en) * | 1988-05-20 | 1997-04-04 | Schwartz Claude | PROSTHETIC FEMORAL HEAD WITH VARIABLE SPATIAL ORIENTATION |
DE3903438C2 (en) * | 1989-02-06 | 1998-07-09 | Gmt Medizinische Technik Gmbh | Modular hip joint endoprosthesis |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2719522A (en) * | 1952-07-08 | 1955-10-04 | Stephen S Hudack | Articular replacement |
US3102536A (en) * | 1960-12-07 | 1963-09-03 | Robert M Rose | Hip prosthesis |
US3320951A (en) * | 1964-04-21 | 1967-05-23 | Wittebol Paul | Intramedullary prostheses |
US3584318A (en) * | 1965-01-14 | 1971-06-15 | Nat Res Dev | Artificial joints for use in surgery |
US3656184A (en) * | 1969-03-13 | 1972-04-18 | Harold Victor Chambers | Artificial hip joint |
US3685058A (en) * | 1970-10-19 | 1972-08-22 | Raymond G Tronzo | Hip prosthesis |
US3744061A (en) * | 1971-09-13 | 1973-07-10 | H Frost | Artificial hip joint and method of implanting in a patient |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2668531A (en) * | 1952-02-15 | 1954-02-09 | Edward J Haboush | Prosthesis for hip joint |
BE516826A (en) * | 1952-09-26 | |||
US2910978A (en) * | 1955-03-28 | 1959-11-03 | Marshall R Urist | Hip socket means |
FR1481424A (en) * | 1965-05-26 | 1967-05-19 | Hip joint prosthesis | |
CH507704A (en) * | 1969-03-05 | 1971-05-31 | Osteo Ag Arzt Und Krankenhausb | Femoral head prosthesis |
FR2088764A5 (en) * | 1970-04-24 | 1972-01-07 | Rua Et Cie | |
CH529552A (en) * | 1970-10-13 | 1972-10-31 | Mathys Robert | Femoral neck prosthesis |
FR2094904A6 (en) * | 1971-01-20 | 1972-02-04 | Muller Jean Nicolas | |
GB1296162A (en) * | 1971-03-03 | 1972-11-15 | Thackray C F Ltd |
-
1972
- 1972-04-06 CH CH485472A patent/CH552383A/en not_active IP Right Cessation
- 1972-04-25 DE DE2220304A patent/DE2220304C3/en not_active Expired
-
1973
- 1973-04-04 US US347621A patent/US3874003A/en not_active Expired - Lifetime
- 1973-04-04 SE SE7304737A patent/SE7304737L/sv unknown
- 1973-04-05 FR FR7312300A patent/FR2179166B1/fr not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2719522A (en) * | 1952-07-08 | 1955-10-04 | Stephen S Hudack | Articular replacement |
US3102536A (en) * | 1960-12-07 | 1963-09-03 | Robert M Rose | Hip prosthesis |
US3320951A (en) * | 1964-04-21 | 1967-05-23 | Wittebol Paul | Intramedullary prostheses |
US3584318A (en) * | 1965-01-14 | 1971-06-15 | Nat Res Dev | Artificial joints for use in surgery |
US3656184A (en) * | 1969-03-13 | 1972-04-18 | Harold Victor Chambers | Artificial hip joint |
US3685058A (en) * | 1970-10-19 | 1972-08-22 | Raymond G Tronzo | Hip prosthesis |
US3744061A (en) * | 1971-09-13 | 1973-07-10 | H Frost | Artificial hip joint and method of implanting in a patient |
Cited By (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4324006A (en) * | 1977-05-30 | 1982-04-13 | Charnley Surgical Inventions Limited | Blank for acetabular prosthesis |
US4459708A (en) * | 1979-07-10 | 1984-07-17 | Bernard Buttazzoni | Joint prosthesis |
EP0122670A2 (en) * | 1983-04-15 | 1984-10-24 | Pfizer Hospital Products Group, Inc. | Rasp handle |
EP0122670A3 (en) * | 1983-04-15 | 1985-07-03 | Howmedica Inc. | Rasp handle |
US4589883A (en) * | 1983-06-06 | 1986-05-20 | Pfizer Hospital Products Group, Inc. | Femoral hip prosthesis |
US4666450A (en) * | 1983-08-26 | 1987-05-19 | Pfizer Hospital Products Group, Inc. | Acetabular cup assembly prosthesis |
US4587964A (en) * | 1985-02-05 | 1986-05-13 | Zimmer, Inc. | Rasp tool |
US4739750A (en) * | 1985-07-19 | 1988-04-26 | Andre Masse | Rasp for preparing the medullary canal of a bone for receiving a prothesis |
US4921493A (en) * | 1986-08-11 | 1990-05-01 | Zimmer, Inc. | Rasp tool |
US4950300A (en) * | 1987-08-03 | 1990-08-21 | Omci Sa | Hip prosthesis with interchangeable epiphysus |
US5007936A (en) * | 1988-02-18 | 1991-04-16 | Cemax, Inc. | Surgical method for hip joint replacement |
US4904265A (en) * | 1988-09-09 | 1990-02-27 | Boehringer Mannheim Corporation | Cementless acetabular implant |
US5147408A (en) * | 1988-10-07 | 1992-09-15 | Pfizer Hospital Products Group, Inc. | Prosthetic device and method of implantation |
US5002580A (en) * | 1988-10-07 | 1991-03-26 | Pfizer Hospital Products Group, Inc. | Prosthetic device and method of implantation |
US5062854A (en) * | 1988-10-07 | 1991-11-05 | Pfizer Hospital Products Group | Prosthetic device and method of implantation |
GB2225722A (en) * | 1988-10-18 | 1990-06-13 | Univ London | Attachment device for joint implant |
GB2225722B (en) * | 1988-10-18 | 1992-09-09 | Univ London | Attachment device |
US5080676A (en) * | 1988-10-18 | 1992-01-14 | University College London | Attachment device |
US5089003A (en) * | 1989-12-22 | 1992-02-18 | Zimmer, Inc. | Rasp tool including detachable handle member |
WO1992003991A1 (en) | 1990-09-04 | 1992-03-19 | Mikhail Wassef E Michael | Femoral stem prosthesis with preapplied cement mantle |
US5124106A (en) * | 1991-03-25 | 1992-06-23 | Zimmer, Inc. | Method of making a femoral rasp |
US5169401A (en) * | 1991-12-20 | 1992-12-08 | Zimmer, Inc. | Surgical reamer assembly |
US5389107A (en) * | 1992-05-11 | 1995-02-14 | Antoine A. Nassar | Shock absorbent prosthetic hip joint |
US5697932A (en) * | 1994-11-09 | 1997-12-16 | Osteonics Corp. | Bone graft delivery system and method |
US6045555A (en) * | 1994-11-09 | 2000-04-04 | Osteonics Corp. | Bone graft delivery system and method |
US6309395B1 (en) | 1994-11-09 | 2001-10-30 | Howmedica Osteonics Corp. | Bone graft delivery surgical instruments |
US6142998A (en) * | 1994-11-09 | 2000-11-07 | Howmedica Osteonics Corp. | Bone graft delivery surgical instruments |
US7238208B2 (en) | 1995-06-08 | 2007-07-03 | Depuy Products, Inc. | Large taper modular shoulder prosthesis |
US5755811A (en) * | 1995-08-25 | 1998-05-26 | Zimmer, Inc. | Prosthetic implant with fins |
US5951564A (en) * | 1996-12-18 | 1999-09-14 | Bristol-Myers Squibb Company | Orthopaedic positioning apparatus |
US5904688A (en) * | 1997-12-30 | 1999-05-18 | Bristol-Myers Squibb Co. | Orthopaedic assembly including an acetabular cup and cup inserter |
US6193758B1 (en) | 1998-03-17 | 2001-02-27 | Acumed, Inc. | Shoulder prosthesis |
US7918892B2 (en) | 1998-03-17 | 2011-04-05 | Acumed Llc | Shoulder prosthesis |
US6168627B1 (en) | 1998-03-17 | 2001-01-02 | Acumed, Inc. | Shoulder prosthesis |
US6102953A (en) * | 1998-03-17 | 2000-08-15 | Acumed, Inc. | Shoulder prosthesis |
US6494913B1 (en) | 1998-03-17 | 2002-12-17 | Acumed, Inc. | Shoulder prosthesis |
US5961555A (en) * | 1998-03-17 | 1999-10-05 | Huebner; Randall J. | Modular shoulder prosthesis |
US20110196491A1 (en) * | 1998-03-17 | 2011-08-11 | Acumed Llc | Bone prosthesis |
US6168628B1 (en) | 1998-03-17 | 2001-01-02 | Acumed, Inc. | Shoulder Prosthesis |
US7297163B2 (en) | 1998-03-17 | 2007-11-20 | Acumed Llc | Shoulder prosthesis |
US20080306600A1 (en) * | 1998-03-17 | 2008-12-11 | Huebner Randall J | Shoulder prosthesis |
US7323013B2 (en) | 1998-04-14 | 2008-01-29 | Encore Medical Asset Corporation | Differential porosity prosthetic hip system |
US20070043448A1 (en) * | 1998-04-14 | 2007-02-22 | Encore Medical Asset Corporation | Intrinsic stability in a total hip stem |
US6974483B2 (en) | 1998-04-14 | 2005-12-13 | Encore Medical Corporation | Modular neck for femur replacement surgery |
US20030074080A1 (en) * | 1998-04-14 | 2003-04-17 | Murray Ian P. | Modular neck for femur replacement surgery |
US9439784B2 (en) | 2000-04-10 | 2016-09-13 | Biomet Manufacturing, Llc | Modular radial head prosthesis |
US20110144759A1 (en) * | 2000-04-10 | 2011-06-16 | Biomet Manufacturing Corp. | Modular prosthesis and use thereof for replacing a radial head |
US8535382B2 (en) | 2000-04-10 | 2013-09-17 | Biomet Manufacturing, Llc | Modular radial head prostheses |
US8425615B2 (en) | 2000-04-10 | 2013-04-23 | Biomet Manufacturing Corp. | Method and apparatus for adjusting height and angle for a radial head |
US8366781B2 (en) | 2000-04-10 | 2013-02-05 | Biomet Manufacturing Corp. | Modular prosthesis and use thereof for replacing a radial head |
US8114163B2 (en) | 2000-04-10 | 2012-02-14 | Biomet Manufacturing Corp. | Method and apparatus for adjusting height and angle for a radial head |
US8110005B2 (en) | 2000-04-10 | 2012-02-07 | Biomet Manufacturing Corp. | Modular prosthesis and use thereof for replacing a radial head |
US20110125276A1 (en) * | 2000-04-10 | 2011-05-26 | Biomet Manufacturing Corp. | Modular prosthesis and use thereof for replacing a radial head |
US20100312349A1 (en) * | 2000-04-10 | 2010-12-09 | Biomet Manufacturing Corp. | Modular prosthesis and use thereof for replacing a radial head |
US20100262252A1 (en) * | 2000-04-10 | 2010-10-14 | Biomet Manufacturing Corp. | Modular prosthesis and use thereof for replacing a radial head |
US20100241236A1 (en) * | 2000-04-10 | 2010-09-23 | Biomet Manufacturing Corp. | Modular Radial Head Prosthesis |
US8920509B2 (en) | 2000-04-10 | 2014-12-30 | Biomet Manufacturing, Llc | Modular radial head prosthesis |
US20050075735A1 (en) * | 2000-04-10 | 2005-04-07 | Berelsman Brian K. | Method and apparatus for adjusting height and angle for a radial head |
US9333084B2 (en) | 2000-04-10 | 2016-05-10 | Biomet Manufacturing, Llc | Modular prosthesis and use thereof for replacing a radial head |
US9579208B2 (en) | 2000-04-10 | 2017-02-28 | Biomet Manufacturing, Llc | Modular radial head prosthesis |
US20100030339A1 (en) * | 2000-04-10 | 2010-02-04 | Biomet Manufacturing Corp. | Method and apparatus for adjusting height and angle for a radial head |
US8808391B2 (en) * | 2002-03-26 | 2014-08-19 | T.J. Smith & Nephew, Limited | Hip joint prosthesis |
US8177852B2 (en) | 2002-03-26 | 2012-05-15 | Smith & Nephew, Inc. | Hip joint prosthesis |
US20130123933A1 (en) * | 2002-03-26 | 2013-05-16 | T. J. Smith & Nephew Limited | Hip joint prosthesis |
US20030187514A1 (en) * | 2002-03-26 | 2003-10-02 | Mcminn Derek James Wallace | Hip joint prosthesis |
US7879106B2 (en) * | 2002-03-26 | 2011-02-01 | Smith & Nephew, Inc. | Hip joint prosthesis |
US6997958B2 (en) * | 2002-05-22 | 2006-02-14 | Bioprofile | Conical coupling and prosthesis comprising such a coupling |
US20040030401A1 (en) * | 2002-05-22 | 2004-02-12 | Michel Hassler | Conical coupling and prosthesis comprising such a coupling |
US6997928B1 (en) | 2002-06-10 | 2006-02-14 | Wright Medical Technology, Inc. | Apparatus for and method of providing a hip replacement |
US8740907B2 (en) | 2002-06-10 | 2014-06-03 | Microport Orthopedics Holdings Inc. | Apparatus for and method of providing a hip replacement |
US10390846B2 (en) | 2002-06-10 | 2019-08-27 | Microport Orthopedics Holdings Inc. | Apparatus for and method of providing a hip replacement |
US7833229B2 (en) | 2002-06-10 | 2010-11-16 | Wright Medical Technology Inc. | Apparatus for and method of providing a hip replacement |
US8603182B2 (en) | 2002-09-13 | 2013-12-10 | Smith & Nephew, Inc. | Hip prostheses |
US20060217814A1 (en) * | 2002-09-13 | 2006-09-28 | Smith & Nephew, Inc. | Hip prostheses |
US20080015707A1 (en) * | 2002-09-13 | 2008-01-17 | Richard Lambert | Hip prostheses |
US8753404B2 (en) | 2002-09-13 | 2014-06-17 | Smith & Nephew, Inc. | Hip prostheses |
US7247158B2 (en) | 2003-02-04 | 2007-07-24 | Wright Medical Technology, Inc. | Acetabular impactor |
US20040153063A1 (en) * | 2003-02-04 | 2004-08-05 | Harris Brian R. | Acetabular impactor |
US20050081867A1 (en) * | 2003-10-21 | 2005-04-21 | Murphy Stephen B. | Tissue preserving and minimally invasive hip replacement surgical procedure |
US7037310B2 (en) | 2003-10-21 | 2006-05-02 | Wright Medical Technology Inc | Acetabular impactor |
US20050085823A1 (en) * | 2003-10-21 | 2005-04-21 | Murphy Stephen B. | Acetabular impactor |
US7105028B2 (en) | 2003-10-21 | 2006-09-12 | Wright Medical Technology, Inc. | Tissue preserving and minimally invasive hip replacement surgical procedure |
US9549826B2 (en) | 2004-12-01 | 2017-01-24 | Mayo Foundation For Medical Research And Education | Sigmoid notch implant |
US9655726B2 (en) | 2004-12-01 | 2017-05-23 | Mayo Foundation For Medical Research And Education | Radial-capitellar implant |
US20080281430A1 (en) * | 2005-02-22 | 2008-11-13 | Kelman David C | Long Sleeves for Use with Stems |
US20090192623A1 (en) * | 2006-11-13 | 2009-07-30 | Howmedica Osteonics Corp. | Modular humeral head |
US20090192624A1 (en) * | 2006-11-13 | 2009-07-30 | Howmedica Osteonics Corp. | Modular humeral head |
US20080114461A1 (en) * | 2006-11-13 | 2008-05-15 | Howmedica Osteonics Corp. | Modular humeral head |
US7785370B2 (en) | 2006-11-13 | 2010-08-31 | Howmedica Osteonics Corp. | Modular humeral head |
US7537618B2 (en) | 2006-11-13 | 2009-05-26 | Howmedica Osteonics Corp. | Modular humeral head |
US7785371B2 (en) | 2006-11-13 | 2010-08-31 | Howmedica Osteonics Corp. | Modular humeral head |
US9636228B2 (en) | 2007-02-10 | 2017-05-02 | Howmedica Osteonics Corp. | Radial head implant |
US20100137870A1 (en) * | 2007-02-28 | 2010-06-03 | Smith & Nephew, Inc. | Acetabular liner inserter guide |
US8998916B2 (en) | 2007-07-11 | 2015-04-07 | Smith & Nephew, Inc. | Methods for determining pin placement during hip surgery |
US8882780B2 (en) | 2007-07-11 | 2014-11-11 | Smith & Nephew, Inc. | Methods and apparatus for determining pin placement during hip surgery |
US20110208201A1 (en) * | 2007-07-11 | 2011-08-25 | Smith & Nephew, Inc. | Methods for determining pin placement during hip surgery |
US9439657B2 (en) | 2007-07-11 | 2016-09-13 | Smith & Nephew, Inc. | Methods and apparatus for determining pin placement during hip surgery |
US20090018546A1 (en) * | 2007-07-11 | 2009-01-15 | Daley Robert J | Methods and apparatus for determining pin placement during hip surgery |
US9901451B2 (en) | 2010-06-08 | 2018-02-27 | Smith & Nephew, Inc. | Implant components and methods |
US9439781B2 (en) | 2011-05-03 | 2016-09-13 | Smith & Nephew, Inc. | Patient-matched guides for orthopedic implants |
US9707097B2 (en) | 2011-12-07 | 2017-07-18 | Smith & Nephew, Inc. | Orthopedic implant augments |
US9814582B2 (en) | 2011-12-07 | 2017-11-14 | Smith & Nephew, Inc. | Orthopedic augments having recessed pockets |
US9345576B2 (en) | 2011-12-07 | 2016-05-24 | Smith & Nephew, Inc. | Orthopedic augments having recessed pockets |
US10383744B2 (en) | 2011-12-07 | 2019-08-20 | Smith & Nephew, Inc. | Orthopedic implant augments |
US11344432B2 (en) | 2011-12-07 | 2022-05-31 | Smith & Nephew, Inc. | Orthopedic implant augments |
US11135067B2 (en) | 2011-12-07 | 2021-10-05 | Smith & Nephew, Inc. | Orthopedic augments having recessed pockets |
US9039778B2 (en) | 2013-04-16 | 2015-05-26 | Brian G. Burnikel | Modular, adjustable, prosthetic, hip/shoulder spacer |
US11202668B2 (en) * | 2016-01-11 | 2021-12-21 | Kambiz Behzadi | Prosthesis installation |
US11883056B2 (en) | 2016-01-11 | 2024-01-30 | Kambiz Behzadi | Bone preparation apparatus and method |
US11241248B2 (en) | 2016-01-11 | 2022-02-08 | Kambiz Behzadi | Bone preparation apparatus and method |
US11331069B2 (en) | 2016-01-11 | 2022-05-17 | Kambiz Behzadi | Invasive sense measurement in prosthesis installation |
US11974877B2 (en) | 2016-01-11 | 2024-05-07 | Kambiz Behzadi | Quantitative assessment of implant bone preparation |
US11375975B2 (en) | 2016-01-11 | 2022-07-05 | Kambiz Behzadi | Quantitative assessment of implant installation |
US11399946B2 (en) | 2016-01-11 | 2022-08-02 | Kambiz Behzadi | Prosthesis installation and assembly |
US11717310B2 (en) | 2016-01-11 | 2023-08-08 | Kambiz Behzadi | Bone preparation apparatus and method |
US11751807B2 (en) | 2016-01-11 | 2023-09-12 | Kambiz Behzadi | Invasive sense measurement in prosthesis installation and bone preparation |
US11786207B2 (en) | 2016-01-11 | 2023-10-17 | Kambiz Behzadi | Invasive sense measurement in prosthesis installation |
US11234840B2 (en) | 2016-01-11 | 2022-02-01 | Kambiz Behzadi | Bone preparation apparatus and method |
US11890196B2 (en) | 2016-01-11 | 2024-02-06 | Kambiz Behzadi | Prosthesis installation and assembly |
US11896500B2 (en) | 2016-01-11 | 2024-02-13 | Kambiz Behzadi | Bone preparation apparatus and method |
US11974876B2 (en) | 2016-01-11 | 2024-05-07 | Kambiz Behzadi | Quantitative assessment of prosthesis press-fit fixation |
US10456262B2 (en) | 2016-08-02 | 2019-10-29 | Howmedica Osteonics Corp. | Patient-specific implant flanges with bone side porous ridges |
US11969336B2 (en) | 2018-10-08 | 2024-04-30 | Kambiz Behzadi | Connective tissue grafting |
Also Published As
Publication number | Publication date |
---|---|
FR2179166A1 (en) | 1973-11-16 |
DE2220304C3 (en) | 1975-10-30 |
CH552383A (en) | 1974-08-15 |
SE7304737L (en) | 1973-10-08 |
FR2179166B1 (en) | 1976-06-11 |
DE2220304B2 (en) | 1975-03-27 |
DE2220304A1 (en) | 1973-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3874003A (en) | Artificial hip joint | |
US5047033A (en) | Mill and guide apparatus for preparation of a hip prosthesis | |
US4738256A (en) | Surgical tool | |
US7670382B2 (en) | Extended articular surface resurfacing head | |
US2785673A (en) | Femoral prosthesis | |
US4670015A (en) | Hip implant | |
US5951606A (en) | Centering device for femoral implant and method and apparatus for implementation thereof | |
US5314489A (en) | Hip prosthesis | |
US3740769A (en) | Prosthesis for hip joints | |
US5489310A (en) | Universal glenoid shoulder prosthesis and method for implanting | |
US4528980A (en) | Acetabulum sizer and drill guide | |
US5192329A (en) | Oblong acetabular cup | |
USRE38058E1 (en) | Mill and guide apparatus for preparation of a hip prosthesis | |
US20080221697A1 (en) | Hemi-implant for first metatarsophalangeal joint | |
US4279042A (en) | Hip prosthesis | |
US20080154276A1 (en) | Method and instruments for inserting modular implant components | |
JPH067389A (en) | Modularized device for cluneal prosthesis | |
US8070822B1 (en) | Tool for controlling the mutual angle between the parts of an artificial hip joint | |
EP1198210B1 (en) | Directing and compression instrument | |
EP0057793B1 (en) | Joint prosthesis, particularly an elbow prosthesis |