US3871032A - Artificial hydraulic ankle joint - Google Patents
Artificial hydraulic ankle joint Download PDFInfo
- Publication number
- US3871032A US3871032A US458049A US45804974A US3871032A US 3871032 A US3871032 A US 3871032A US 458049 A US458049 A US 458049A US 45804974 A US45804974 A US 45804974A US 3871032 A US3871032 A US 3871032A
- Authority
- US
- United States
- Prior art keywords
- ankle joint
- pistons
- hollow
- rollers
- piston
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/60—Artificial legs or feet or parts thereof
- A61F2/66—Feet; Ankle joints
- A61F2/6607—Ankle joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/68—Operating or control means
- A61F2/74—Operating or control means fluid, i.e. hydraulic or pneumatic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2002/5003—Prostheses not implantable in the body having damping means, e.g. shock absorbers
Definitions
- Piston is hinged to the foot and the lower leg part, respectively.
- the pistons have hol- 521 U.S.Cl. 3/1.2, 3/30 10W chambers filled Wlth Storage 011 and Pressure- [51]
- CL A6 U00 A6lf H04 A6 H08 balancing channels lead to the upper end of the hol- [58] Field of Search 3/12, 30-35 10W Chambers- Between the pressure chambers of the hydraulic cylin- [56] References Cited der and the hollow chamber of the piston 21 snifting UNITED STATES PATENTS valve is provided which sucks hydraulic liquid from 2.470.480 5/1949 F H 3/l.2 the hollow iston chamber. 2.657.393 ll/l953 Hz ilir 3/l.2 p
- the present invention relates to an artificial ankle joint with an articulate connection between the foot part and the lower leg part of an artificial leg and provided with a damping device hinged, on the one hand, to the foot part and, on the other hand, to the lower leg part, which device comprises two or more hydraulic cylinders connected by connection conduits and each cylinder being provided with a piston.
- the invention aims at avoiding the above mentioned difficulties and disadvantages and sets the task of providing an artificial ankle joint, in which the hydraulic medium is automatically replenished; in which the connection between the lower leg part and the foot part is achieved in a technically simple and reliable manner and which is widely independent from temperature fluctuations.
- the aims of the invention in an artificial ankle joint of the above described type are achieved in that the pistons are hollow, the hollow chambers are filled with storage oil and pressure-balancing channels being in contact with the surrounding atmosphere lead to the upper end of the hollow chambers, wherein a springloaded snifting valve is provided between the pressure chamber of the hydraulic cylinder, respectively the hollow chamber of the piston, preferably in the bottom part of the latter.
- the lower leg part is provided with two rollers of equal diameter, arranged symmetrically in relation to the joint, which rollers are connected by a tension spring with the pistons of two equally dimensioned hydraulic cylinders arranged parallel, each piston being held in contact with the rollers by the tension springs.
- the pistons are supported by means of a tappet on the rollers, the tappets having roll-off surface acting against the roller surfaces.
- throttle valves with obstacles for ensuring a permanently turbulent flow are installed in the connection conduits of the hydraulic cylinders.
- FIG. I is a vertical section through the artificial ankle joint and FIG. 2 is a section along line "-11 of FIG. 1.
- the artificial ankle joint comprises, according to the invention, two cylinders 2 and 3 borne in a common housing and having parallel axes, in which cylinders pistons 4 and 5 are guided.
- the pressure chambers of the cylinders are connected with each other by connection conduits 6, 7 (FIG.,2) which conduits are bored into the control block 8. which is flanged to the upper side of the housing.
- connection conduits 6, 7 throttle means are provided.
- the housing 1 is connected, on the one hand, with the foot part 10 via the joint 11 and, on the other hand, with the lower leg part 12 via the screw 13.
- the two axially parallel hydraulic pistons 4, 5 of equal size are provided with tappets 14, 15, which are supported by rollers or rolls 16, 17 respectively of equal diameter arranged symmetrically in relation to the axis of the joint 11.
- Tension springs 18, 19 which partly surround the rol lers, are secured to the pistons, so that the pistons are always kept in their lowest position and the bottom surface of the tappet is pressed against the peripheral surface of the rollers.
- the bottom surfaces of the tappets roll off the peripheral surfaces of the rollers and a connecting-rod-type movement is imitated.
- the pistons 4, 5 are hollow, the hollow chambers serving as storage containers for hydraulic liquid. They are filled with hydraulic liquid almost as far as the upper end (which is however not illustrated for the sake of better clarity). From these storage chambers hydraulic liquid is supplied, which is partly consumed during use in any hydraulic device for lubrication.
- a pressure-balancing tube 20 is arranged in each piston, which tube is in contact with the surrounding atmosphere and reaches almost as far as the upper end of the chamber of the piston.
- a snifting valve 21 is installed, which reaches close to the bottom of the piston.
- a valve body 26 is guided, on which a weak pressure spring 25 acts, which valve body is downwardly sealed off by seals 27.
- a worm screw 28 is inserted, by means of which the prestress of the spring may be altered.
- throttle valves are provided according to the invention in a particular manner in the connection conduits so as to guarantee a permanently turbulent flow. This is illustrated in more detail in FIG. 2.
- Each connection conduit respectively each overflow channel 6, 7 in the control block 8, contains a reflux valve 29 and a throttle valve 30, the flow direction in the two conduits being different.
- the throttle valves consist of an axially displaceable, sealed off piston slider 31 and the screwed-in valve body 32, whose ring channel 33 in connection with the bore 34 facilitates the radial inflow of the oil.
- the reflux valves have the form of simple ball valves; they consist of the ball 36, the screwed-in valve body 37 and the adjustable, sealed off stroke limitation 38.
- the hydraulic medium is introduced through the bore 39.
- An artificial ankle joint comprising a foot part and a lower leg part, an articulate connection arranged therebetween and a damping device hinged, on the one hand to the foot part and, on the other hand to the lower leg part, which damping device comprises at least two hydraulic cylinders with pressure chambers connection conduits connecting the hydraulic cylinders hollow pistons having a bottom part and an upper end and hollow chambers filled with storage oil pressure-balancing channels in contact with the surrounding atmosphere and guided as far as the upper end of the hollow chambers a spring-loaded shifting valve arranged between the pressure chamber of each hydraulic cylinder and the hollow chamber of each piston.
Landscapes
- Health & Medical Sciences (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Prostheses (AREA)
Abstract
An artificial ankle joint with an articulate connection between the foot part and the lower leg part of an artificial leg. A damping device comprising at least two hydraulic cylinders connected by conduits and each provided with a piston is hinged to the foot part and the lower leg part, respectively. The pistons have hollow chambers filled with storage oil and pressure-balancing channels lead to the upper end of the hollow chambers. Between the pressure chambers of the hydraulic cylinder and the hollow chamber of the piston a snifting valve is provided which sucks hydraulic liquid from the hollow piston chamber.
Description
United States Patent [1 1 Karas 1 Mar. 18, 1975 ARTIFICIAL HYDRAULIC ANKLE JOINT Primary ExaminerRonald L. Frinks 75 I W If K V A t mentor 0 gang aras lenna' us nd Attorney, Agent, or Firm-Stemberg and Blake [73] Assignee: Forschungsinstitut fur Orthopadie-Technik, Vienna, Ausma 57 ABSTRACT [22] Filed: Apr. 4, 1974 An artificial ankle joint with an articulate connection [21] Appl 458049 between the foot part and the lower leg part of an artificial leg. A damping device comprising at least two [30] Foreign Application Priority Data hydraulic cylinders connected by conduits and each Mar. 8, 1974 Austria 1928/74 Provided with a Piston is hinged to the foot and the lower leg part, respectively. The pistons have hol- 521 U.S.Cl. 3/1.2, 3/30 10W chambers filled Wlth Storage 011 and Pressure- [51] CL A6 U00 A6lf H04 A6 H08 balancing channels lead to the upper end of the hol- [58] Field of Search 3/12, 30-35 10W Chambers- Between the pressure chambers of the hydraulic cylin- [56] References Cited der and the hollow chamber of the piston 21 snifting UNITED STATES PATENTS valve is provided which sucks hydraulic liquid from 2.470.480 5/1949 F H 3/l.2 the hollow iston chamber. 2.657.393 ll/l953 Hz ilir 3/l.2 p
FOREIGN PATENTS OR APPLlCATlONS 5 Claims, 2 Drawing Figures 818328 l0/l95l Germany 3/l.2
PATENTEU 3.8711132 sum 2 OF 2 FIG? . ARTIFICIAL HYDRAULIC ANKLE JOINT The present invention relates to an artificial ankle joint with an articulate connection between the foot part and the lower leg part of an artificial leg and provided with a damping device hinged, on the one hand, to the foot part and, on the other hand, to the lower leg part, which device comprises two or more hydraulic cylinders connected by connection conduits and each cylinder being provided with a piston.
Known artificial ankle joints of this kind have the disadvantage that on account of the high pressures occurring in the pressure chambers of the hydraulic cylinders, problems as to the tightness arise, which lead to the gradual loss of hydraulic liquid. Consequently after a short time there is a play between the moveable parts, which impairs the usability of the prosthesis. A further problem in known artificial ankle joints is the connection of the foot part with the lower leg part, which has hitherto been achieved by connecting-rod joints, which however take up much space, are heavy and technically complicated.
Other problems of known artificial ankle joints result from the temperature dependence of the hydraulic medium, as the viscosity properties vary strongly with the temperature.
The invention aims at avoiding the above mentioned difficulties and disadvantages and sets the task of providing an artificial ankle joint, in which the hydraulic medium is automatically replenished; in which the connection between the lower leg part and the foot part is achieved in a technically simple and reliable manner and which is widely independent from temperature fluctuations.
The aims of the invention in an artificial ankle joint of the above described type are achieved in that the pistons are hollow, the hollow chambers are filled with storage oil and pressure-balancing channels being in contact with the surrounding atmosphere lead to the upper end of the hollow chambers, wherein a springloaded snifting valve is provided between the pressure chamber of the hydraulic cylinder, respectively the hollow chamber of the piston, preferably in the bottom part of the latter.
Preferably the lower leg part is provided with two rollers of equal diameter, arranged symmetrically in relation to the joint, which rollers are connected by a tension spring with the pistons of two equally dimensioned hydraulic cylinders arranged parallel, each piston being held in contact with the rollers by the tension springs.
Suitably the pistons are supported by means of a tappet on the rollers, the tappets having roll-off surface acting against the roller surfaces.
According to a preferred embodiment of the invention throttle valves with obstacles for ensuring a permanently turbulent flow are installed in the connection conduits of the hydraulic cylinders.
The subject of the invention will now be described in more detail by way ofexample with reference to the accompanying drawings.
FIG. I is a vertical section through the artificial ankle joint and FIG. 2 is a section along line "-11 of FIG. 1.
According to FIG. I the artificial ankle joint, comprises, according to the invention, two cylinders 2 and 3 borne in a common housing and having parallel axes, in which cylinders pistons 4 and 5 are guided. The pressure chambers of the cylinders are connected with each other by connection conduits 6, 7 (FIG.,2) which conduits are bored into the control block 8. which is flanged to the upper side of the housing. In the connection conduits 6, 7 throttle means are provided. The housing 1 is connected, on the one hand, with the foot part 10 via the joint 11 and, on the other hand, with the lower leg part 12 via the screw 13. The two axially parallel hydraulic pistons 4, 5 of equal size are provided with tappets 14, 15, which are supported by rollers or rolls 16, 17 respectively of equal diameter arranged symmetrically in relation to the axis of the joint 11. Tension springs 18, 19 which partly surround the rol lers, are secured to the pistons, so that the pistons are always kept in their lowest position and the bottom surface of the tappet is pressed against the peripheral surface of the rollers. Thus the bottom surfaces of the tappets roll off the peripheral surfaces of the rollers and a connecting-rod-type movement is imitated.
The pistons 4, 5 are hollow, the hollow chambers serving as storage containers for hydraulic liquid. They are filled with hydraulic liquid almost as far as the upper end (which is however not illustrated for the sake of better clarity). From these storage chambers hydraulic liquid is supplied, which is partly consumed during use in any hydraulic device for lubrication. For the purpose of supplementing the hydraulic liquid a pressure-balancing tube 20 is arranged in each piston, which tube is in contact with the surrounding atmosphere and reaches almost as far as the upper end of the chamber of the piston. At the front-side of the piston a snifting valve 21 is installed, which reaches close to the bottom of the piston. In the tube a valve body 26 is guided, on which a weak pressure spring 25 acts, which valve body is downwardly sealed off by seals 27. Into the upper end of the tube a worm screw 28 is inserted, by means of which the prestress of the spring may be altered.
When by the occurence of a leakage or on account of the normal loss of hydraulic liquid caused by the use of the prosthesis there is a play between the tappet and a roller, underpressure is caused in the cylinder and the missing quantity of liquid is sucked from the hollow piston chamber via the snifting valve.
At the given conditions, i.e., at the existing piston velocities and at a low quantity of hydraulic liquid being in flow very small Reynolds figures occur in the connection conduits of the hydraulic cylinders. This may lead to difficulties, as the viscosity properties of the hydraulic medium vary on account of the dependence on the temperature. In order to avoid this disadvantage, throttle valves are provided according to the invention in a particular manner in the connection conduits so as to guarantee a permanently turbulent flow. This is illustrated in more detail in FIG. 2.
Each connection conduit, respectively each overflow channel 6, 7 in the control block 8, contains a reflux valve 29 and a throttle valve 30, the flow direction in the two conduits being different. The throttle valves consist of an axially displaceable, sealed off piston slider 31 and the screwed-in valve body 32, whose ring channel 33 in connection with the bore 34 facilitates the radial inflow of the oil.
Obstacles are denoted with 35, which cause the formation of a turbulent flow. The reflux valves have the form of simple ball valves; they consist of the ball 36, the screwed-in valve body 37 and the adjustable, sealed off stroke limitation 38. The hydraulic medium is introduced through the bore 39.
As on account of the resulting high local flow velocities the creation of the necessary resistance in the throttles might lead to underpressures, to a degassing of the oil, to foam development and consequently to noise generation, it is suitable to create part of the damping resistance by means of throttle orifices inserted into the bores 34 and 39.
What I claim is:
1. An artificial ankle joint comprising a foot part and a lower leg part, an articulate connection arranged therebetween and a damping device hinged, on the one hand to the foot part and, on the other hand to the lower leg part, which damping device comprises at least two hydraulic cylinders with pressure chambers connection conduits connecting the hydraulic cylinders hollow pistons having a bottom part and an upper end and hollow chambers filled with storage oil pressure-balancing channels in contact with the surrounding atmosphere and guided as far as the upper end of the hollow chambers a spring-loaded shifting valve arranged between the pressure chamber of each hydraulic cylinder and the hollow chamber of each piston.
2. The artificial ankle joint set forth in claim 1, wherein the spring-loaded snifting valve is arranged in the bottom part of the piston.
3. The artificial ankle joint set forth in claim 1, wherein the lower leg part is provided with two rollers of equal diameter arranged symmetrically in relation to the articulate connection, which rollers are connected by means of a tension spring with the pistons of two equally dimensioned hydraulic cylinders arranged parallel, the pistons being held in contact with the rollers by means of the tension springs.
4. The artificial ankle joint set forth in claim 3, wherein the pistons are supported by means ofa tappet on the rollers the tappets having roll-off surfaces acting against the roller surfaces.
5. The artificial ankle joint set forth in claim 1, wherein in the connection conduits of the cylinders throttle valves with obstacles for ensuring a permanently turbulent flow are installed. 1: l
Claims (5)
1. An artificial ankle joint comprising a foot part and a lower leg part, an articulate connection arranged therebetween and a damping device hinged, on the one hand to the foot part and, on the other hand to the lower leg part, which damping device comprises at least two hydraulic cylinders with pressure chambers connection conduits connecting the hydraulic cylinders hollow pistons having a bottom part and an upper end and hollow chambers filled with storage oil pressure-balancing channels in contact with the surrounding atmosphere and guided as far as the upper end of the hollow chambers a spring-loaded snifting valve arranged between the pressure chamber of each hydraulic cylinder and the hollow chamber of each piston.
2. The artificial ankle joint set forth in claim 1, wherein the spring-loaded snifting valve is arranged in the bottom part of the piston.
3. The artificial ankle joint set forth in claim 1, wherein the lower leg part is provided with two rollers of equal diameter arranged symmetrically in relation to the articulate connection, which rollers are connected by means of a tension spring with the pistons of two equally dimensioned hydraulic cylinders arranged parallel, the pistons being held in contact with the rollers by means of the tension springs.
4. The artificial ankle joint set forth in claim 3, wherein the pistons are supported by means of a tappet on the rollers the tappets having roll-off surfaces acting against the roller surfaces.
5. The artificial ankle joint set forth in claim 1, wherein in the connection conduits of the cylinders throttle valves with obstacles for ensuring a permanently turbulent flow are installed.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT192874A AT334521B (en) | 1974-03-08 | 1974-03-08 | ANKLE |
Publications (1)
Publication Number | Publication Date |
---|---|
US3871032A true US3871032A (en) | 1975-03-18 |
Family
ID=3524044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US458049A Expired - Lifetime US3871032A (en) | 1974-03-08 | 1974-04-04 | Artificial hydraulic ankle joint |
Country Status (3)
Country | Link |
---|---|
US (1) | US3871032A (en) |
AT (1) | AT334521B (en) |
DE (1) | DE2426791A1 (en) |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4685174A (en) * | 1982-04-09 | 1987-08-11 | Hager Clarence H | Shock absorbing caster wheel suspension with frictional vertical oscillation dampening |
US6187052B1 (en) * | 1999-07-14 | 2001-02-13 | Joseph L. Molino | Prosthetic ankle joint |
US6443993B1 (en) | 2001-03-23 | 2002-09-03 | Wayne Koniuk | Self-adjusting prosthetic ankle apparatus |
US6663673B2 (en) | 2000-06-30 | 2003-12-16 | Roland J. Christensen | Prosthetic foot with energy transfer medium including variable viscosity fluid |
US20040044417A1 (en) * | 2000-08-25 | 2004-03-04 | Finn Gramnas | Device in a leg prosthesis |
US20040068327A1 (en) * | 2002-10-08 | 2004-04-08 | Christensen Roland J. | Prosthetic foot with a resilient ankle |
US20040068326A1 (en) * | 2002-10-08 | 2004-04-08 | Christensen Roland J. | Prosthetic foot with oblique attachment |
US20040094305A1 (en) * | 2000-08-21 | 2004-05-20 | Skjaerseth Odd B | Intervention module for a well |
US6764521B2 (en) | 2001-08-24 | 2004-07-20 | Joseph L. Molino | Multi-axial ankle joint |
US6805717B2 (en) | 2002-10-08 | 2004-10-19 | Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Manager Of The Roland J. Christensen Family Limited Partnership | Energy-storing prosthetic foot with elongated forefoot |
US20050033450A1 (en) * | 2002-10-08 | 2005-02-10 | Christensen Roland J. | Prosthetic foot with a resilient ankle |
US6875241B2 (en) | 2000-06-30 | 2005-04-05 | Roland J. Christensen, As Operating Manager Of Rjc Development Lc, General Partner Of The Roland J. Christensen Family Limited Partnership | Variable resistance cell |
US20050085926A1 (en) * | 2003-10-21 | 2005-04-21 | General Partner Of The Roland J. Christensen Family Limited Partnership | Prosthetic foot with an adjustable ankle and method |
US20050171618A1 (en) * | 2000-06-30 | 2005-08-04 | Christensen Roland J. | Prosthetic foot with energy transfer including variable orifice |
US20050187640A1 (en) * | 2004-02-20 | 2005-08-25 | Roland J. Christensen | Prosthetic foot with cam |
US20050203640A1 (en) * | 2002-10-08 | 2005-09-15 | Christensen Roland J. | Prosthetic foot with a resilient ankle |
US20050216098A1 (en) * | 2000-06-30 | 2005-09-29 | Roland J. Christensen | Variable resistance cell |
US20060041321A1 (en) * | 2003-10-21 | 2006-02-23 | Christensen Roland J | Prosthetic foot with an adjustable ankle and method |
US20060184280A1 (en) * | 2005-02-16 | 2006-08-17 | Magnus Oddsson | System and method of synchronizing mechatronic devices |
US20060184252A1 (en) * | 2005-02-16 | 2006-08-17 | Magnus Oddsson | System and method for data communication with a mechatronic device |
US20060229736A1 (en) * | 2000-06-30 | 2006-10-12 | Christensen Roland J | Prosthetic foot with energy transfer |
US20060241783A1 (en) * | 2000-06-30 | 2006-10-26 | Christensen Roland J | Variable resistance cell |
US20070050047A1 (en) * | 2005-09-01 | 2007-03-01 | Ragnarsdottlr Heidrun G | System and method for determining terrain transitions |
US20080033578A1 (en) * | 2006-08-03 | 2008-02-07 | Christensen Roland J | Prosthetic foot with variable medial/lateral stiffness |
WO2008071975A1 (en) | 2006-12-14 | 2008-06-19 | Chas A. Blatchford & Sons Limited | A prosthetic ankle joint mechanism |
US20080167731A1 (en) * | 2006-12-06 | 2008-07-10 | Christensen Roland J | Prosthetic foot with longer upper forefoot and shorter lower forefoot |
US20080183301A1 (en) * | 2000-06-30 | 2008-07-31 | Christensen Roland J | Prosthetic foot with energy transfer |
US20080188951A1 (en) * | 2007-01-30 | 2008-08-07 | Christensen Roland J | Prosthetic foot with variable medial/lateral stiffness |
US20080300692A1 (en) * | 2006-12-14 | 2008-12-04 | Chas. A. Blatchford & Sons Limited | Prosthetic Ankle and Foot Combination |
US7462201B2 (en) | 2003-10-21 | 2008-12-09 | Freedom Innovations, Llc | Prosthetic foot with an adjustable ankle and method |
US20090082878A1 (en) * | 2007-09-18 | 2009-03-26 | Christensen Roland J | Multi-axial prosthetic ankle |
US20090265019A1 (en) * | 2008-04-18 | 2009-10-22 | Chritstensen Roland J | Prosthetic foot with two leaf-springs joined at heel and toe |
US20090299489A1 (en) * | 2005-04-19 | 2009-12-03 | Lisa Gramnaes | Combined Active and Passive Leg Prosthesis System and a Method for Performing a Movement With Such a System |
US20100241242A1 (en) * | 2005-03-31 | 2010-09-23 | Massachusetts Institute Of Technology | Artificial Joints Using Agonist-Antagonist Actuators |
US20100262260A1 (en) * | 2002-08-22 | 2010-10-14 | Victhom Human Bionics, Inc. | Actuated prosthesis for amputess |
US20100324456A1 (en) * | 2004-12-22 | 2010-12-23 | Ossur Hf | Systems and methods for processing limb motion |
US20110040216A1 (en) * | 2005-03-31 | 2011-02-17 | Massachusetts Institute Of Technology | Exoskeletons for running and walking |
US20110106274A1 (en) * | 2004-02-12 | 2011-05-05 | Ossur Hf | System and method for motion-controlled foot unit |
US20110137429A1 (en) * | 2002-08-22 | 2011-06-09 | Victhom Human Bionics, Inc. | Control device and system for controlling an actuated prosthesis |
US20110224804A1 (en) * | 2004-02-12 | 2011-09-15 | Ossur Hf | Systems and methods for actuating a prosthetic ankle |
WO2012104591A1 (en) | 2011-02-03 | 2012-08-09 | Blatchford Products Limited | A lower limb prosthesis |
US8323354B2 (en) | 2003-11-18 | 2012-12-04 | Victhom Human Bionics Inc. | Instrumented prosthetic foot |
US8500825B2 (en) | 2010-06-29 | 2013-08-06 | Freedom Innovations, Llc | Prosthetic foot with floating forefoot keel |
US8628585B2 (en) | 2007-12-14 | 2014-01-14 | Blatchford Products Limited | Lower limb prosthesis |
US8641780B2 (en) | 2005-11-14 | 2014-02-04 | Blatchford Products Limited | Adjustment device for a lower limb prosthesis |
EP2762109A1 (en) * | 2013-02-05 | 2014-08-06 | Freedom Innovations, LLC | Hydraulic prosthetic ankle |
US8864846B2 (en) | 2005-03-31 | 2014-10-21 | Massachusetts Institute Of Technology | Model-based neuromechanical controller for a robotic leg |
US9149370B2 (en) | 2005-03-31 | 2015-10-06 | Massachusetts Institute Of Technology | Powered artificial knee with agonist-antagonist actuation |
US9221177B2 (en) | 2012-04-18 | 2015-12-29 | Massachusetts Institute Of Technology | Neuromuscular model-based sensing and control paradigm for a robotic leg |
US9333097B2 (en) | 2005-03-31 | 2016-05-10 | Massachusetts Institute Of Technology | Artificial human limbs and joints employing actuators, springs, and variable-damper elements |
US9339397B2 (en) | 2005-03-31 | 2016-05-17 | Massachusetts Institute Of Technology | Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components |
US9526636B2 (en) | 2003-11-18 | 2016-12-27 | Victhom Laboratory Inc. | Instrumented prosthetic foot |
US9526635B2 (en) | 2007-01-05 | 2016-12-27 | Victhom Laboratory Inc. | Actuated leg orthotics or prosthetics for amputees |
US9561118B2 (en) | 2013-02-26 | 2017-02-07 | össur hf | Prosthetic foot with enhanced stability and elastic energy return |
US20170042703A1 (en) * | 2014-04-30 | 2017-02-16 | Otto Bock Healthcare Gmbh | Prosthesis |
US9707104B2 (en) | 2013-03-14 | 2017-07-18 | össur hf | Prosthetic ankle and method of controlling same based on adaptation to speed |
US9763809B2 (en) | 2013-08-27 | 2017-09-19 | Freedom Innovations, Llc | Microprocessor controlled prosthetic ankle system for footwear and terrain adaptation |
US9808357B2 (en) | 2007-01-19 | 2017-11-07 | Victhom Laboratory Inc. | Reactive layer control system for prosthetic and orthotic devices |
US9878751B1 (en) * | 2015-10-08 | 2018-01-30 | Boston Dynamics, Inc. | Three-piston ankle mechanism of a legged robot and associated control system |
US9895240B2 (en) | 2012-03-29 | 2018-02-20 | Ösur hf | Powered prosthetic hip joint |
US10137011B2 (en) | 2005-03-31 | 2018-11-27 | Massachusetts Institute Of Technology | Powered ankle-foot prosthesis |
EP3427701A1 (en) | 2007-02-22 | 2019-01-16 | Blatchford Products Limited | A prosthetic ankle and foot combination |
US10195057B2 (en) | 2004-02-12 | 2019-02-05 | össur hf. | Transfemoral prosthetic systems and methods for operating the same |
US10251762B2 (en) | 2011-05-03 | 2019-04-09 | Victhom Laboratory Inc. | Impedance simulating motion controller for orthotic and prosthetic applications |
US10307272B2 (en) | 2005-03-31 | 2019-06-04 | Massachusetts Institute Of Technology | Method for using a model-based controller for a robotic leg |
US10390974B2 (en) | 2014-04-11 | 2019-08-27 | össur hf. | Prosthetic foot with removable flexible members |
US10405999B2 (en) | 2014-02-18 | 2019-09-10 | Össur Iceland Ehf | Prosthetic joint with cam locking mechanism |
US10543109B2 (en) | 2011-11-11 | 2020-01-28 | Össur Iceland Ehf | Prosthetic device and method with compliant linking member and actuating linking member |
US10575970B2 (en) | 2011-11-11 | 2020-03-03 | Össur Iceland Ehf | Robotic device and method of using a parallel mechanism |
US10758378B2 (en) | 2013-03-14 | 2020-09-01 | Freedom Innovations, Llc | Prosthetic with voice coil valve |
US11278433B2 (en) | 2005-03-31 | 2022-03-22 | Massachusetts Institute Of Technology | Powered ankle-foot prosthesis |
US11478363B2 (en) * | 2019-07-30 | 2022-10-25 | College Park Industries, Inc. | Hydraulic prosthetic knee with resistance change mechanism at hyperextension |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2470480A (en) * | 1946-04-23 | 1949-05-17 | Stanley R Fogg | Artificial foot |
US2657393A (en) * | 1952-06-21 | 1953-11-03 | Haller John | Fluid-cushioned artificial leg |
-
1974
- 1974-03-08 AT AT192874A patent/AT334521B/en not_active IP Right Cessation
- 1974-04-04 US US458049A patent/US3871032A/en not_active Expired - Lifetime
- 1974-06-01 DE DE19742426791 patent/DE2426791A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2470480A (en) * | 1946-04-23 | 1949-05-17 | Stanley R Fogg | Artificial foot |
US2657393A (en) * | 1952-06-21 | 1953-11-03 | Haller John | Fluid-cushioned artificial leg |
Cited By (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4685174A (en) * | 1982-04-09 | 1987-08-11 | Hager Clarence H | Shock absorbing caster wheel suspension with frictional vertical oscillation dampening |
US6187052B1 (en) * | 1999-07-14 | 2001-02-13 | Joseph L. Molino | Prosthetic ankle joint |
US20060229736A1 (en) * | 2000-06-30 | 2006-10-12 | Christensen Roland J | Prosthetic foot with energy transfer |
US6663673B2 (en) | 2000-06-30 | 2003-12-16 | Roland J. Christensen | Prosthetic foot with energy transfer medium including variable viscosity fluid |
US20080183301A1 (en) * | 2000-06-30 | 2008-07-31 | Christensen Roland J | Prosthetic foot with energy transfer |
US20060241783A1 (en) * | 2000-06-30 | 2006-10-26 | Christensen Roland J | Variable resistance cell |
US6875241B2 (en) | 2000-06-30 | 2005-04-05 | Roland J. Christensen, As Operating Manager Of Rjc Development Lc, General Partner Of The Roland J. Christensen Family Limited Partnership | Variable resistance cell |
US7572299B2 (en) | 2000-06-30 | 2009-08-11 | Freedom Innovations, Llc | Prosthetic foot with energy transfer |
US20040133284A1 (en) * | 2000-06-30 | 2004-07-08 | Christensen Roland J. | Prosthetic foot with energy transfer medium including variable viscosity fluid |
US7341603B2 (en) | 2000-06-30 | 2008-03-11 | Applied Composite Technology, Inc. | Prosthetic foot with energy transfer including variable orifice |
US7686848B2 (en) | 2000-06-30 | 2010-03-30 | Freedom Innovations, Llc | Prosthetic foot with energy transfer |
US20050216098A1 (en) * | 2000-06-30 | 2005-09-29 | Roland J. Christensen | Variable resistance cell |
US20050171618A1 (en) * | 2000-06-30 | 2005-08-04 | Christensen Roland J. | Prosthetic foot with energy transfer including variable orifice |
US6875242B2 (en) | 2000-06-30 | 2005-04-05 | Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Partner Of The Roland J. Christensen Family Limited Partnership | Prosthetic foot with energy transfer medium including variable viscosity fluid |
US7036598B2 (en) * | 2000-08-21 | 2006-05-02 | Offshore & Marine As | Intervention module for a well |
US20040094305A1 (en) * | 2000-08-21 | 2004-05-20 | Skjaerseth Odd B | Intervention module for a well |
US6855170B2 (en) * | 2000-08-25 | 2005-02-15 | Gramtec Innovation Ab | Device in a leg prosthesis |
US20040044417A1 (en) * | 2000-08-25 | 2004-03-04 | Finn Gramnas | Device in a leg prosthesis |
US6443993B1 (en) | 2001-03-23 | 2002-09-03 | Wayne Koniuk | Self-adjusting prosthetic ankle apparatus |
US6764521B2 (en) | 2001-08-24 | 2004-07-20 | Joseph L. Molino | Multi-axial ankle joint |
US9649206B2 (en) | 2002-08-22 | 2017-05-16 | Victhom Laboratory Inc. | Control device and system for controlling an actuated prosthesis |
US20100262260A1 (en) * | 2002-08-22 | 2010-10-14 | Victhom Human Bionics, Inc. | Actuated prosthesis for amputess |
US20110137429A1 (en) * | 2002-08-22 | 2011-06-09 | Victhom Human Bionics, Inc. | Control device and system for controlling an actuated prosthesis |
US9358137B2 (en) | 2002-08-22 | 2016-06-07 | Victhom Laboratory Inc. | Actuated prosthesis for amputees |
US20050033450A1 (en) * | 2002-10-08 | 2005-02-10 | Christensen Roland J. | Prosthetic foot with a resilient ankle |
US6805717B2 (en) | 2002-10-08 | 2004-10-19 | Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Manager Of The Roland J. Christensen Family Limited Partnership | Energy-storing prosthetic foot with elongated forefoot |
US20050203640A1 (en) * | 2002-10-08 | 2005-09-15 | Christensen Roland J. | Prosthetic foot with a resilient ankle |
US20040068326A1 (en) * | 2002-10-08 | 2004-04-08 | Christensen Roland J. | Prosthetic foot with oblique attachment |
US20040068327A1 (en) * | 2002-10-08 | 2004-04-08 | Christensen Roland J. | Prosthetic foot with a resilient ankle |
US7419509B2 (en) | 2002-10-08 | 2008-09-02 | Freedom Innovations, Llc | Prosthetic foot with a resilient ankle |
US6929665B2 (en) | 2002-10-08 | 2005-08-16 | Roland J. Christensen | Prosthetic foot with a resilient ankle |
US6911052B2 (en) | 2002-10-08 | 2005-06-28 | Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Partner Of The Roland J. Christensen Family Limited Partnership | Prosthetic foot with oblique attachment |
US7462201B2 (en) | 2003-10-21 | 2008-12-09 | Freedom Innovations, Llc | Prosthetic foot with an adjustable ankle and method |
US7520904B2 (en) | 2003-10-21 | 2009-04-21 | Freedom Innovations, Llc | Prosthetic foot with an adjustable ankle and method |
US20050085926A1 (en) * | 2003-10-21 | 2005-04-21 | General Partner Of The Roland J. Christensen Family Limited Partnership | Prosthetic foot with an adjustable ankle and method |
US6966933B2 (en) | 2003-10-21 | 2005-11-22 | Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Partner Of The Roland J. Christensen Family Limited Partnership | Prosthetic foot with an adjustable ankle and method |
US20060041321A1 (en) * | 2003-10-21 | 2006-02-23 | Christensen Roland J | Prosthetic foot with an adjustable ankle and method |
US9526636B2 (en) | 2003-11-18 | 2016-12-27 | Victhom Laboratory Inc. | Instrumented prosthetic foot |
US8323354B2 (en) | 2003-11-18 | 2012-12-04 | Victhom Human Bionics Inc. | Instrumented prosthetic foot |
US8986397B2 (en) | 2003-11-18 | 2015-03-24 | Victhom Human Bionics, Inc. | Instrumented prosthetic foot |
US8657886B2 (en) | 2004-02-12 | 2014-02-25 | össur hf | Systems and methods for actuating a prosthetic ankle |
US20110224804A1 (en) * | 2004-02-12 | 2011-09-15 | Ossur Hf | Systems and methods for actuating a prosthetic ankle |
US9271851B2 (en) | 2004-02-12 | 2016-03-01 | össur hf. | Systems and methods for actuating a prosthetic ankle |
US10195057B2 (en) | 2004-02-12 | 2019-02-05 | össur hf. | Transfemoral prosthetic systems and methods for operating the same |
US20110106274A1 (en) * | 2004-02-12 | 2011-05-05 | Ossur Hf | System and method for motion-controlled foot unit |
US7172630B2 (en) | 2004-02-20 | 2007-02-06 | Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Partner Of The Roland J. Christensen Family Limited Partnership | Prosthetic foot with cam |
US20050187640A1 (en) * | 2004-02-20 | 2005-08-25 | Roland J. Christensen | Prosthetic foot with cam |
US20100324456A1 (en) * | 2004-12-22 | 2010-12-23 | Ossur Hf | Systems and methods for processing limb motion |
US9078774B2 (en) | 2004-12-22 | 2015-07-14 | össur hf | Systems and methods for processing limb motion |
US20060184252A1 (en) * | 2005-02-16 | 2006-08-17 | Magnus Oddsson | System and method for data communication with a mechatronic device |
US20060184280A1 (en) * | 2005-02-16 | 2006-08-17 | Magnus Oddsson | System and method of synchronizing mechatronic devices |
US8801802B2 (en) | 2005-02-16 | 2014-08-12 | össur hf | System and method for data communication with a mechatronic device |
US10588759B2 (en) | 2005-03-31 | 2020-03-17 | Massachusetts Institute Of Technology | Artificial human limbs and joints employing actuators, springs and variable-damper elements |
US8870967B2 (en) * | 2005-03-31 | 2014-10-28 | Massachusetts Institute Of Technology | Artificial joints using agonist-antagonist actuators |
US20110040216A1 (en) * | 2005-03-31 | 2011-02-17 | Massachusetts Institute Of Technology | Exoskeletons for running and walking |
US20100241242A1 (en) * | 2005-03-31 | 2010-09-23 | Massachusetts Institute Of Technology | Artificial Joints Using Agonist-Antagonist Actuators |
US10307272B2 (en) | 2005-03-31 | 2019-06-04 | Massachusetts Institute Of Technology | Method for using a model-based controller for a robotic leg |
US10137011B2 (en) | 2005-03-31 | 2018-11-27 | Massachusetts Institute Of Technology | Powered ankle-foot prosthesis |
US11491032B2 (en) | 2005-03-31 | 2022-11-08 | Massachusetts Institute Of Technology | Artificial joints using agonist-antagonist actuators |
US11278433B2 (en) | 2005-03-31 | 2022-03-22 | Massachusetts Institute Of Technology | Powered ankle-foot prosthesis |
US8864846B2 (en) | 2005-03-31 | 2014-10-21 | Massachusetts Institute Of Technology | Model-based neuromechanical controller for a robotic leg |
US9539117B2 (en) | 2005-03-31 | 2017-01-10 | Massachusetts Institute Of Technology | Method for controlling a robotic limb joint |
US10342681B2 (en) | 2005-03-31 | 2019-07-09 | Massachusetts Institute Of Technology | Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components |
US10485681B2 (en) | 2005-03-31 | 2019-11-26 | Massachusetts Institute Of Technology | Exoskeletons for running and walking |
US9149370B2 (en) | 2005-03-31 | 2015-10-06 | Massachusetts Institute Of Technology | Powered artificial knee with agonist-antagonist actuation |
US9339397B2 (en) | 2005-03-31 | 2016-05-17 | Massachusetts Institute Of Technology | Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components |
US9333097B2 (en) | 2005-03-31 | 2016-05-10 | Massachusetts Institute Of Technology | Artificial human limbs and joints employing actuators, springs, and variable-damper elements |
US11273060B2 (en) | 2005-03-31 | 2022-03-15 | Massachusetts Institute Of Technology | Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components |
US9717606B2 (en) | 2005-04-19 | 2017-08-01 | össur hf | Combined active and passive leg prosthesis system and a method for performing a movement with such a system |
US8814949B2 (en) * | 2005-04-19 | 2014-08-26 | össur hf | Combined active and passive leg prosthesis system and a method for performing a movement with such a system |
US20090299489A1 (en) * | 2005-04-19 | 2009-12-03 | Lisa Gramnaes | Combined Active and Passive Leg Prosthesis System and a Method for Performing a Movement With Such a System |
US9066819B2 (en) | 2005-04-19 | 2015-06-30 | össur hf | Combined active and passive leg prosthesis system and a method for performing a movement with such a system |
US8702811B2 (en) | 2005-09-01 | 2014-04-22 | össur hf | System and method for determining terrain transitions |
US8852292B2 (en) | 2005-09-01 | 2014-10-07 | Ossur Hf | System and method for determining terrain transitions |
US20070050047A1 (en) * | 2005-09-01 | 2007-03-01 | Ragnarsdottlr Heidrun G | System and method for determining terrain transitions |
US8641780B2 (en) | 2005-11-14 | 2014-02-04 | Blatchford Products Limited | Adjustment device for a lower limb prosthesis |
US7618464B2 (en) | 2006-08-03 | 2009-11-17 | Freedom Innovations, Llc | Prosthetic foot with variable medial/lateral stiffness |
US20080033578A1 (en) * | 2006-08-03 | 2008-02-07 | Christensen Roland J | Prosthetic foot with variable medial/lateral stiffness |
US20080167731A1 (en) * | 2006-12-06 | 2008-07-10 | Christensen Roland J | Prosthetic foot with longer upper forefoot and shorter lower forefoot |
US7824446B2 (en) | 2006-12-06 | 2010-11-02 | Freedom Innovations, Llc | Prosthetic foot with longer upper forefoot and shorter lower forefoot |
US8740991B2 (en) | 2006-12-14 | 2014-06-03 | Blatchford Products Limited | Prosthetic ankle joint mechanism |
US9999526B2 (en) | 2006-12-14 | 2018-06-19 | Blatchford Products Limited | Prosthetic ankle joint mechanism |
US11679008B2 (en) | 2006-12-14 | 2023-06-20 | Blatchford Products Limited | Prosthetic ankle joint mechanism |
US9132023B2 (en) | 2006-12-14 | 2015-09-15 | Blatchford Products Limited | Prosthetic ankle and foot combination |
US11529246B2 (en) | 2006-12-14 | 2022-12-20 | Blatchford Products Limited | Prosthetic ankle and foot combination |
US10130495B2 (en) | 2006-12-14 | 2018-11-20 | Blatchford Products Limited | Prosthetic ankle and foot combination |
US8574312B2 (en) | 2006-12-14 | 2013-11-05 | Blatchford Products Limited | Prosthetic ankle joint mechanism |
US9433513B2 (en) | 2006-12-14 | 2016-09-06 | Blatchford Products Limited | Prosthetic ankle joint mechanism |
WO2008071975A1 (en) | 2006-12-14 | 2008-06-19 | Chas A. Blatchford & Sons Limited | A prosthetic ankle joint mechanism |
US20110230975A1 (en) * | 2006-12-14 | 2011-09-22 | Chas. A. Blatchford & Sons Limited | prosthetic ankle and foot combination |
EP3342376A1 (en) | 2006-12-14 | 2018-07-04 | Blatchford Products Limited | A prosthetic ankle joint mechanism |
US20080262635A1 (en) * | 2006-12-14 | 2008-10-23 | Chas. A. Blatchford & Sons Limited | Prosthetic Ankle Joint Mechanism |
US20080300692A1 (en) * | 2006-12-14 | 2008-12-04 | Chas. A. Blatchford & Sons Limited | Prosthetic Ankle and Foot Combination |
US7985265B2 (en) | 2006-12-14 | 2011-07-26 | Chas. A. Blatchford & Sons Limited | Prosthetic ankle and foot combination |
US11007072B2 (en) | 2007-01-05 | 2021-05-18 | Victhom Laboratory Inc. | Leg orthotic device |
US9526635B2 (en) | 2007-01-05 | 2016-12-27 | Victhom Laboratory Inc. | Actuated leg orthotics or prosthetics for amputees |
US11607326B2 (en) | 2007-01-19 | 2023-03-21 | Victhom Laboratory Inc. | Reactive layer control system for prosthetic devices |
US9808357B2 (en) | 2007-01-19 | 2017-11-07 | Victhom Laboratory Inc. | Reactive layer control system for prosthetic and orthotic devices |
US10405996B2 (en) | 2007-01-19 | 2019-09-10 | Victhom Laboratory Inc. | Reactive layer control system for prosthetic and orthotic devices |
US7727285B2 (en) | 2007-01-30 | 2010-06-01 | Freedom Innovations, Llc | Prosthetic foot with variable medial/lateral stiffness |
US20080188951A1 (en) * | 2007-01-30 | 2008-08-07 | Christensen Roland J | Prosthetic foot with variable medial/lateral stiffness |
EP3427701A1 (en) | 2007-02-22 | 2019-01-16 | Blatchford Products Limited | A prosthetic ankle and foot combination |
EP3725272A1 (en) | 2007-02-22 | 2020-10-21 | Blatchford Products Limited | A prosthetic ankle and foot combination |
US20090082878A1 (en) * | 2007-09-18 | 2009-03-26 | Christensen Roland J | Multi-axial prosthetic ankle |
US7794506B2 (en) | 2007-09-18 | 2010-09-14 | Freedom Innovations, Llc | Multi-axial prosthetic ankle |
US8628585B2 (en) | 2007-12-14 | 2014-01-14 | Blatchford Products Limited | Lower limb prosthesis |
US10299943B2 (en) | 2008-03-24 | 2019-05-28 | össur hf | Transfemoral prosthetic systems and methods for operating the same |
US20090265019A1 (en) * | 2008-04-18 | 2009-10-22 | Chritstensen Roland J | Prosthetic foot with two leaf-springs joined at heel and toe |
US8034121B2 (en) | 2008-04-18 | 2011-10-11 | Freedom Innovations, Llc | Prosthetic foot with two leaf-springs joined at heel and toe |
US8500825B2 (en) | 2010-06-29 | 2013-08-06 | Freedom Innovations, Llc | Prosthetic foot with floating forefoot keel |
WO2012104591A1 (en) | 2011-02-03 | 2012-08-09 | Blatchford Products Limited | A lower limb prosthesis |
US10251762B2 (en) | 2011-05-03 | 2019-04-09 | Victhom Laboratory Inc. | Impedance simulating motion controller for orthotic and prosthetic applications |
US11185429B2 (en) | 2011-05-03 | 2021-11-30 | Victhom Laboratory Inc. | Impedance simulating motion controller for orthotic and prosthetic applications |
US10543109B2 (en) | 2011-11-11 | 2020-01-28 | Össur Iceland Ehf | Prosthetic device and method with compliant linking member and actuating linking member |
US10575970B2 (en) | 2011-11-11 | 2020-03-03 | Össur Iceland Ehf | Robotic device and method of using a parallel mechanism |
US9895240B2 (en) | 2012-03-29 | 2018-02-20 | Ösur hf | Powered prosthetic hip joint |
US10940027B2 (en) | 2012-03-29 | 2021-03-09 | Össur Iceland Ehf | Powered prosthetic hip joint |
US9221177B2 (en) | 2012-04-18 | 2015-12-29 | Massachusetts Institute Of Technology | Neuromuscular model-based sensing and control paradigm for a robotic leg |
US9975249B2 (en) | 2012-04-18 | 2018-05-22 | Massachusetts Institute Of Technology | Neuromuscular model-based sensing and control paradigm for a robotic leg |
EP2762109A1 (en) * | 2013-02-05 | 2014-08-06 | Freedom Innovations, LLC | Hydraulic prosthetic ankle |
US8986398B2 (en) | 2013-02-05 | 2015-03-24 | Freedom Innovations, Llc | Hydraulic prosthetic ankle |
EP3272316A1 (en) * | 2013-02-05 | 2018-01-24 | Freedom Innovations, LLC | Hydraulic prosthetic ankle |
US11285024B2 (en) | 2013-02-26 | 2022-03-29 | Össur Iceland Ehf | Prosthetic foot with enhanced stability and elastic energy return |
US10369019B2 (en) | 2013-02-26 | 2019-08-06 | Ossur Hf | Prosthetic foot with enhanced stability and elastic energy return |
US9561118B2 (en) | 2013-02-26 | 2017-02-07 | össur hf | Prosthetic foot with enhanced stability and elastic energy return |
US11576795B2 (en) | 2013-03-14 | 2023-02-14 | össur hf | Prosthetic ankle and method of controlling same based on decreased loads |
US9707104B2 (en) | 2013-03-14 | 2017-07-18 | össur hf | Prosthetic ankle and method of controlling same based on adaptation to speed |
US10695197B2 (en) | 2013-03-14 | 2020-06-30 | Össur Iceland Ehf | Prosthetic ankle and method of controlling same based on weight-shifting |
US10758378B2 (en) | 2013-03-14 | 2020-09-01 | Freedom Innovations, Llc | Prosthetic with voice coil valve |
US9849002B2 (en) | 2013-08-27 | 2017-12-26 | Freedom Innovations, Llc | Microprocessor controlled prosthetic ankle system for footwear and terrain adaptation |
US9763809B2 (en) | 2013-08-27 | 2017-09-19 | Freedom Innovations, Llc | Microprocessor controlled prosthetic ankle system for footwear and terrain adaptation |
US11826269B2 (en) | 2013-08-27 | 2023-11-28 | Proteor USA, LLC | Microprocessor controlled prosthetic ankle system for footwear and terrain adaptation |
US10687965B2 (en) | 2013-08-27 | 2020-06-23 | Freedom Innovations, Llc | Microprocessor controlled prosthetic ankle system for footwear and terrain adaptation |
US11413167B2 (en) | 2014-02-18 | 2022-08-16 | Össur Iceland Ehf | Prosthetic joint with cam locking mechanism |
US10405999B2 (en) | 2014-02-18 | 2019-09-10 | Össur Iceland Ehf | Prosthetic joint with cam locking mechanism |
US11446166B2 (en) | 2014-04-11 | 2022-09-20 | Össur Iceland Ehf | Prosthetic foot with removable flexible members |
US10390974B2 (en) | 2014-04-11 | 2019-08-27 | össur hf. | Prosthetic foot with removable flexible members |
US20170042703A1 (en) * | 2014-04-30 | 2017-02-16 | Otto Bock Healthcare Gmbh | Prosthesis |
US10441440B2 (en) * | 2014-04-30 | 2019-10-15 | Ottobock Se & Co. Kgaa | Prosthesis with a passive release device |
US9878751B1 (en) * | 2015-10-08 | 2018-01-30 | Boston Dynamics, Inc. | Three-piston ankle mechanism of a legged robot and associated control system |
US10988192B1 (en) | 2015-10-08 | 2021-04-27 | Boston Dynamics, Inc. | Three-piston ankle mechanism of a legged robot and associated control system |
US11932332B2 (en) | 2015-10-08 | 2024-03-19 | Boston Dynamics, Inc. | Three-piston ankle mechanism of a legged robot and associated control system |
US11478363B2 (en) * | 2019-07-30 | 2022-10-25 | College Park Industries, Inc. | Hydraulic prosthetic knee with resistance change mechanism at hyperextension |
Also Published As
Publication number | Publication date |
---|---|
AT334521B (en) | 1976-01-25 |
ATA192874A (en) | 1976-05-15 |
DE2426791A1 (en) | 1975-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3871032A (en) | Artificial hydraulic ankle joint | |
US4775037A (en) | Hydraulic device | |
US5092902A (en) | Hydraulic control unit for prosthetic leg | |
US2208149A (en) | Control means | |
US5405409A (en) | Hydraulic control unit for prosthetic leg | |
KR950007627B1 (en) | Piston for internal combustion engines and similar | |
US4381180A (en) | Double diaphragm pump with controlling slide valve and adjustable stroke | |
US4597322A (en) | Seal assemblies | |
CA1102835A (en) | Arrangement for the relief of the piston rod packing of a hydraulic telescopic shock absorber | |
US2433220A (en) | Pressure control for pumps | |
US1721737A (en) | Pressure-fluid packing | |
US2109816A (en) | Hydraulic valve tappet | |
US2038855A (en) | Drying cylinder machine | |
GB2002492A (en) | Preventing cavitation in hydropneumatic shock absorbers | |
JPS6318059B2 (en) | ||
US4941554A (en) | Hydraulic torque resistance device | |
US3165172A (en) | Seal for piston and cylinder devices | |
US1933905A (en) | Valve for lubricating systems | |
US2194732A (en) | Brake cylinder device | |
US2713312A (en) | Pressure compensator | |
US3112013A (en) | Injection lubricator | |
US5161645A (en) | Lubricator connected to a pressure fluid line | |
US3205832A (en) | Hydraulic pump | |
GB458809A (en) | Fluid shock absorber | |
US2116724A (en) | Gas pressure governor |