US3866610A - Cardiovascular clamps - Google Patents
Cardiovascular clamps Download PDFInfo
- Publication number
- US3866610A US3866610A US105610A US10561071A US3866610A US 3866610 A US3866610 A US 3866610A US 105610 A US105610 A US 105610A US 10561071 A US10561071 A US 10561071A US 3866610 A US3866610 A US 3866610A
- Authority
- US
- United States
- Prior art keywords
- members
- manipulating
- movement
- pivot
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/2812—Surgical forceps with a single pivotal connection
Definitions
- clamps are provided in accordance with the present invention in which the handles open in a plane opposite to that of the occluding jaws, thus resulting in three dimensional operation with respect to the planes of action of the clamp, as opposed to the two dimensional design with clamps presently known to the art.
- This invention relates broadly to clamps suitable for use in various surgical applications, and more specifically to clamps so constructed that they may be applied to the arteries or veins of a patient in such manner that little or no strain is placed upon the clamped tissue, and the handle portion of the clamp is positioned in such manner that it does not intrude upon the surgeon's working area.
- Surgical clamps presently available are subject to several deficiencies in design which adversely affect the utility of such clamps, particularly in delicate aortal surgery.
- the handles open in the same plane as the occluding jaws. This results in a serious problem, particularly when the blood vessel is located deep within a cavity (e.g., the aorta within the abdomen). In such a situation there is no good place to position the handles when the clamp is applied so as to exclude the side of the vessel.
- the handles therefore, must either (I) remain in the cavity, where they can seriously injure surrounding tissue, (2) protrude from the wound, which results in an undesirable torque being applied to the clamped vessel, sometimes causing rupture of the vessel or surrounding attached vessels, with consequent hemorrhage, or (3) a separate wound is necessitated through the flank of the patient to permit the handles and shaft to be placed so that they can rest comfortably without torque or tension. This last solution is avoided whenever possible for obvious reasons.
- the handles of available clamps are positioned so that they protrude from the wound, the design of those clamps require that they protrude in an end-on direction. Thus they are subject to inadvertant end-on trauma which is transmitted directly to the occluded vessel and may result in serious injury.
- the protruding handles provide a ready trap for the snarling of suture materials, etc., while working, and occupy an appreciable portion of the operative wound, thus compromising the surgical exposure, limiting both vision and working space.
- the principal object of the invention is the removal or minimization of the above-described deficiencies.
- an object of the invention is the provision of surgical clamps, the handles of which open in a plane opposite to that of the occluding jaws, and lie flat on the surface of the patient at a distance from the operative wound.
- FIG. 1 is an opened frontal view of a clamp of this invention illustrating the manner in which the handles, shaft and jaws operate in different planes.
- FIG. 2 is a view showing the operation of the clamp in isolating a portion of a blood vessel.
- FIG. 5 is a schematic showing the relationship of the planes of action of the clamp to the X-Y planes.
- FIGS. 6 and 7 are fragmented! views illustrating a form of ratchet locking device preferred for use in the clamps of the present invention. The device is shown in open and closed positions, respectively.
- the illustrated jaw sections 15 are each provided with a first portion 15a, adapted to extend substantially longitudinally or axially with a blood vessel or the like (for instance, as shown in FIG. 2).
- a second or forward portion 15b extends upwardly and forwardly with respect to the first portion 15a, and a third or rearward projection extends upwardly and rearwardly from each first portion 15a.
- the handles or other manipulating means may in practice be of various types, including springs, wedges, cam devices, screws or the like for the purpose of closing or adjusting the jaws.
- FIGS. 6 and 7 illustrate a preferred type of locking device which, in view of the three dimensional nature of the planes of action of clamps of the present invention, ensures added stability and lessens the chance of slippage in use.
- This device comprises inter-engaging toothed members 14a and 14b attached to handle members 12.
- a conical frustrum-shaped member 16 attached to toothed member 14b in a position to receive the opposite member 14a, is a conical frustrum-shaped member 16 adapted to guide the opposing members 14a and Nb into a position suitable for engagement.
- the angle at which the manipulating members 12 connect with shaft members would range between about 25 and 155 to encompass the clinically useful area of action, while the range of angles most usually employed would be between about 45 and 135.
- the most preferable angle, which might be employed in the largest variety of surgical procedures, would be about 100 when the manipulating members extend in the same direction (with reference to the plane of movement of the shaft members) to that of jaw members a, and about 80 when they each extend in the opposite side of the plane of movement the shaft members.
- the angle between shaft members 10 and pivotal connecting means 11 likewise may vary between a range of from about 30 to 150 preferably about 45 to 135, most preferably being about 70 to 100.
- the locking means when the manipulating means are at an angle other than 90 to the plane of action of the pivotal connecting means, the locking means will be angled or curved so as to remain in alignment during the operation of the clamp.
- the handles or other manipulating means open in a plane opposite to that of the occluding jaws.
- movement of the handle members 12 in the horizontal plane results in corresponding movement of shafts 10 in a plane substantially perpendicular to the horizontal plane and movement of the occluding jaws in a substantially vertical plane.
- the occluding jaws are'applied, for instance,.to the side of the blood vessel and the handles, by virtue of the described configuration, can easily and safely be delivered out of the operative wound to lie flat on the surface without applying any torque or tension to the occluded tissue.
- the handles are not subject to endon forces, and in addition, occupy a plane distant from the immediate wound where application of such inadvertant forces would be less likely to occur. Further, lying at such a distance the handles do not serve as a ready trap to entangle sutures, etc., and can in addition, since they are lying flat, be covered with towels and thus isolated, a procedure not possible with present conventional clamps.
- a surgical clamp comprising two lever arms, a pivot pin pivoting said lever arms relative to each other, each of said arms comprising a manipulating member, a shaft member, a pivot section and a jaw member, said pivot pin connecting said lever arms through said pivot sections, said shaft members being disposed at substantially right angles relative to said pivot sections and movable in a common plane with said pivot sections about said pivot pin, said manipulating members being angularly offset from said shaft members parallel to said pivot pin, and said jaw members being angularly offset from the plane of movement of said shaft members and said pivot sections for a clamping engagement with each other upon movement substantially orthogonal relative 'to the movement of said manipulating members.
- a surgical clamp as set forth in claim 1 further comprising cooperable locking means on said manipulating members for releasably retaining said jaw members in a clamped position.
- a surgical clamp comprising two lever arms, a pivot pin pivoting said lever arms relative to each other, each of said arms comprising a manipulating member, a shaft member, a pivot section and a jaw member, said pivot pin connecting said lever arms through said pivot sections, said shaft members being disposed at right angles relative to said pivot sections and movable in a common plane with said pivot sections about said pivot pin, said manipulating members being angularly offset from said shaft members parallel to said pivot pin, and said jaw members being angularly offset from the plane of movement of said shaft members and said pivot sections for clamping engagement with each other upon movement orthogonal relative to the movement of said manipulating members.
- a surgical clamp as set forth in claim 5 further comprising cooperable locking means on said manipulating members for releasably retaining said jaw members in a clamped position.
- a surgical clamp comprising two lever arms, a pivot pin pivoting said lever arms relative to each other, each of said arms comprising a manipulating member, a shaft member, a pivot section and a jaw member, said pivot pin connecting said lever arms through said pivot sections, said shaft members being angularly offset from said pivot sections in a common plane at an angle in the range of 30 to said manipulating members being angularly offset from said shaft members at an angle in the range of 25 to and said jaw members being angularly offset from the plane of movement of said shaft member and said pivot sections at an angle in the range of 15 to wherein the movement of said jaw members is orthogonal relative to the movement of said manipulating members when said manipulating members are parallel to said pivot pin.
- a surgical clamp as set forth in claim 9 further comprising cooperable locking means on said manipulating members for releasably retaining said jaw members in'a clamped position.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Ophthalmology & Optometry (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
This invention relates to cardiovascular clamps for use in various surgical applications so constructed that they may be applied to the arteries or veins of a patient in such manner that little or no strain is placed upon the clamped tissue, and when so applied, the handle portion of the clamp is positioned in such manner that it does not compromise the surgical exposure. In order to achieve these results, clamps are provided in accordance with the present invention in which the handles open in a plane opposite to that of the occluding jaws, thus resulting in three dimensional operation with respect to the planes of action of the clamp, as opposed to the two dimensional design with clamps presently known to the art.
Description
United States Patent [1 1 Kletschka CARDIOVASCULAR CLAMPS [76] Inventor: Harold D. Kletschka, 7336 Staffordshire, Houston, Tex. 77025 [22] Filed: Jan. 11, 1971 [2]] Appl. No.: 105,610
Related U.S. Application Data [63] Continuation of Ser. No. 664,894, Aug. 28, 1967.
abandoned.
[52] U.S. Cl. 128/322, 128/346 [51] Int. Cl A6lb 17/28 [58] Field of Search l28/32l-346 [56] References Cited UNITED STATES PATENTS 3,316,913 5/1967 Swenson 128/321 OTHER PUBLICATIONS V. Mueller & Co. Surgical Catalogue, Copyright 1956, (1) page 196, FIG. BE-730, (2) page 124, FIG. RH-2300, (3) page 547, FIG. SU7030, (4) page 177, FIG. MO-l460.
[111 3,866,610 [4 .1 Feb. 18, 1975 Primary Examiner-Richard A. Gaudet Assistant Examiner-J. Yasko Attorney, Agent, or Firm-Sughrue, Rothwell, Mion, Zinn & Macpeak [57] ABSTRACT This invention relates to cardiovascular clamps for use in various surgical applications so constructed that they may be applied to the arteries or veins of a patient in such manner that little or no strain is placed upon the clamped tissue, and when so applied, the handle portion of the clamp is positioned in such man ner that it does not compromise the surgical exposure.
In order to achieve these results, clamps are provided in accordance with the present invention in which the handles open in a plane opposite to that of the occluding jaws, thus resulting in three dimensional operation with respect to the planes of action of the clamp, as opposed to the two dimensional design with clamps presently known to the art.
13 Claims, 7 Drawing; Figures PATENTED FEB I 81975 3,866,610
sum 10F 2 INVEENTOR I50 HAROLD D. KLETSCHKA l5 BY 4 f'TORNEY PMENTEU FEB] 8 I975 SHEET 2 OF 2 FIG.3
INVENTOR A K m Y s E m w m MWT D A L 0 R Av Ha CARDIOVASCULAR CLAMPS This application is a continuation of application Ser. No. 664,894, now abandoned.
DETAILED DESCRIPTION This invention relates broadly to clamps suitable for use in various surgical applications, and more specifically to clamps so constructed that they may be applied to the arteries or veins of a patient in such manner that little or no strain is placed upon the clamped tissue, and the handle portion of the clamp is positioned in such manner that it does not intrude upon the surgeon's working area.
Surgical clamps presently available are subject to several deficiencies in design which adversely affect the utility of such clamps, particularly in delicate aortal surgery. For instance, in the clamps commonly employed, the handles open in the same plane as the occluding jaws. This results in a serious problem, particularly when the blood vessel is located deep within a cavity (e.g., the aorta within the abdomen). In such a situation there is no good place to position the handles when the clamp is applied so as to exclude the side of the vessel. The handles, therefore, must either (I) remain in the cavity, where they can seriously injure surrounding tissue, (2) protrude from the wound, which results in an undesirable torque being applied to the clamped vessel, sometimes causing rupture of the vessel or surrounding attached vessels, with consequent hemorrhage, or (3) a separate wound is necessitated through the flank of the patient to permit the handles and shaft to be placed so that they can rest comfortably without torque or tension. This last solution is avoided whenever possible for obvious reasons.
In addition, when the handles of available clamps are positioned so that they protrude from the wound, the design of those clamps require that they protrude in an end-on direction. Thus they are subject to inadvertant end-on trauma which is transmitted directly to the occluded vessel and may result in serious injury. In addition, the protruding handles provide a ready trap for the snarling of suture materials, etc., while working, and occupy an appreciable portion of the operative wound, thus compromising the surgical exposure, limiting both vision and working space.
The principal object of the invention, therefore, is the removal or minimization of the above-described deficiencies.
More specifically, an object of the invention is the provision of surgical clamps, the handles of which open in a plane opposite to that of the occluding jaws, and lie flat on the surface of the patient at a distance from the operative wound.
The manner in which the objects of the invention are realized and the principles and advantages thereof will be apparent to those skilled in the art from the description of preferred embodiments of this invention.
Referring to the drawings:
FIG. 1 is an opened frontal view of a clamp of this invention illustrating the manner in which the handles, shaft and jaws operate in different planes.
FIG. 2 is a view showing the operation of the clamp in isolating a portion of a blood vessel.
FIG. 3 is a side view of the clamp with the jaws in gripping position.
FIG. 4 is a sectional view taken along line 4-4 of FIG. 3.
FIG. 5 is a schematic showing the relationship of the planes of action of the clamp to the X-Y planes.
FIGS. 6 and 7 are fragmented! views illustrating a form of ratchet locking device preferred for use in the clamps of the present invention. The device is shown in open and closed positions, respectively.
Clamps provided in accordance: with the present invention may be of conventional construction insofar as the materials of construction, finish, types of occluding surfaces, size, degree of ruggedness, etc. Size, as in currently available cardiovascular clamps, will vary with contemplated use. Likewise, variations in the relative size of the several parts of the clamps, such as the length of occluding jaws, will vary as in the clamps presently in use. In the same manner, the type of occluding surfaces employed will depend upon the use to which the clamp will be put. Such. considerations form no part of this invention and will therefore not be considered in detail, the manner of varying such features being well recognized in the art.
FIGS. 1, 2 and 3 illustrate clamps comprising two lever arms which are pivoted on pivot 10 11 the lever arms R provided with handle members or manipulating members 12 ending in finger-receiving rings 13 shaft portions 10, pivot sections 10a and jaw members 15. I-Iandle members 12 are additionally provided with a locking device indicated at 14. It is contemplated that, preferably, shaft members 10 will be bent as closely as possible to pivotal connecting means 11, thus rendering pivot sections 10a as short as possible. However, considerations of use may dictate that: pivot sections 10a in some instances be longer. It will be understood, therefore, that the invention is applicable to such variance. The locking device illustrated comprises inter-engaging toother projections, but it will be understood that any locking device normally employed in such clamps will be suitable for use with the clamp of the present invention. Further, although the locking device is illustrated in the preferred position immediately adjacent the finger-receiving rings at the end of the handle members 12, it will be understood that such locking device may be positioned at any desired point along the length of the handle members or shaft members.
The illustrated jaw sections 15 are each provided with a first portion 15a, adapted to extend substantially longitudinally or axially with a blood vessel or the like (for instance, as shown in FIG. 2). A second or forward portion 15b extends upwardly and forwardly with respect to the first portion 15a, and a third or rearward projection extends upwardly and rearwardly from each first portion 15a.
It will be understood, however, that the specific design of the jaw sections per se do not form an essential part of this invention, and therefore that jaw section 15 may be of any conventional shape and occluding type normally employed for cardiovascular surgery. For example, the forward portions 1519 may be omitted in clamps to be employed simply for such purposes as crossclamping a blood vessel or other cardiovascular structure.
The handles or other manipulating means, illustrated for convenience in these Figures as terminating in finger-receiving rings, may in practice be of various types, including springs, wedges, cam devices, screws or the like for the purpose of closing or adjusting the jaws.
FIGS. 6 and 7 illustrate a preferred type of locking device which, in view of the three dimensional nature of the planes of action of clamps of the present invention, ensures added stability and lessens the chance of slippage in use. This device comprises inter-engaging toothed members 14a and 14b attached to handle members 12. In addition, attached to toothed member 14b in a position to receive the opposite member 14a, is a conical frustrum-shaped member 16 adapted to guide the opposing members 14a and Nb into a position suitable for engagement.
It will further be understood that, since it is contemplated that the clamps provided by this invention will be employed in a variety of cardiovascular applications, the various angles to be employed may be widely varied according to contemplated use and still retain the benefits of the novel concept of this invention.
Thus, the angle at which the manipulating members 12 connect with shaft members would range between about 25 and 155 to encompass the clinically useful area of action, while the range of angles most usually employed would be between about 45 and 135. The most preferable angle, which might be employed in the largest variety of surgical procedures, would be about 100 when the manipulating members extend in the same direction (with reference to the plane of movement of the shaft members) to that of jaw members a, and about 80 when they each extend in the opposite side of the plane of movement the shaft members.
The angle between shaft members 10 and pivotal connecting means 11 likewise may vary between a range of from about 30 to 150 preferably about 45 to 135, most preferably being about 70 to 100.
The angle at which jaw member 15a is preferably deflected from the plane of action of pivotal connecting means 11 may be varied over a range of from about 15 to 165, more preferably about 45 to 130, with the most preferred angle being about 75.
Although, as noted above, the manipulating means may, and preferably are, positioned in either side of the plane of action of the shaft members, positioning of the manipulating means within the plane of action of the pivotal connecting means is also contemplated, so long as the manipulating means are positioned such that they are in apposition one to the other, that is, such that movement of the manipulating means in opposite directions one from the other, results in corresponding opening and closingof the jaw members.
It will, of course, be understood that when the manipulating means are at an angle other than 90 to the plane of action of the pivotal connecting means, the locking means will be angled or curved so as to remain in alignment during the operation of the clamp.
From a'consideration of FIGS. 1 to 7, it can readily be seen that the novel clamps of the present invention completely overcome the aforesaid problems connected with the use of clamps presently available.
The handles or other manipulating means open in a plane opposite to that of the occluding jaws. For instance, it can be readily appreciated from an inspection of FIG. 1 that movement of the handle members 12 in the horizontal plane results in corresponding movement of shafts 10 in a plane substantially perpendicular to the horizontal plane and movement of the occluding jaws in a substantially vertical plane.
These three distinct planes of action comprise a novel and essential feature of the invention and result in the aforesaid advantages of the clamps provided by this invention over those presently available.
In the use of the novel clamps of this invention, the occluding jaws are'applied, for instance,.to the side of the blood vessel and the handles, by virtue of the described configuration, can easily and safely be delivered out of the operative wound to lie flat on the surface without applying any torque or tension to the occluded tissue. I
In such a position the handles are not subject to endon forces, and in addition, occupy a plane distant from the immediate wound where application of such inadvertant forces would be less likely to occur. Further, lying at such a distance the handles do not serve as a ready trap to entangle sutures, etc., and can in addition, since they are lying flat, be covered with towels and thus isolated, a procedure not possible with present conventional clamps.
The operative exposure, and hence, working space and vision, are increased significantly due to the fact that the handles are directed entirely out of the wound and placed at a distance out of the way.
Because of the three dimensional action of the clamps of this invention, it is contemplated that mirror images of the clamps be provided to realize the advantages of this invention regardless to which side of an operative structure the clamps are applied. In this way, the surgeon may choose the most advantageous direction for the handles and shaft to exit from the wound. This unique feature does not apply to currently employed clamps in view of the fact that the handles and jaws of such instruments operate in the same or parallel planes of action, thus affording the surgeon little or no choice in the direction of protrudance of the handles, which is determined solely by the position of the structure to be clamped and the amount of torque or tension which may be safely applied to the clamped tissue.
Throughout the specification and claims, the term angle has been employed in describing the relationship of the various parts of the clamp to each other. It should be understood, however, that the various threedimensional relationships of the clamps of this invention may be achieved by joining one or more members of the clamp together through an are instead of a definite angle at the point of juncture. Thus, clamps, for instance, wherein manipulating members 12 may gradually curve to circumscribe an arc to join shaft members 10 will be understood to be contemplated by this invention.
I claim:
1. A surgical clamp comprising two lever arms, a pivot pin pivoting said lever arms relative to each other, each of said arms comprising a manipulating member, a shaft member, a pivot section and a jaw member, said pivot pin connecting said lever arms through said pivot sections, said shaft members being disposed at substantially right angles relative to said pivot sections and movable in a common plane with said pivot sections about said pivot pin, said manipulating members being angularly offset from said shaft members parallel to said pivot pin, and said jaw members being angularly offset from the plane of movement of said shaft members and said pivot sections for a clamping engagement with each other upon movement substantially orthogonal relative 'to the movement of said manipulating members.
2. A surgical clamp as set forth in claim 1 wherein the manipulating members are offset on the same side of the plane of movement of the shaft members as the jaw members.
3. A surgical clamp as set forth in claim 1, wherein the manipulating members and the jaw members are offset from the plane of movement of the shaft members in opposite directions.
4. A surgical clamp as set forth in claim 1 further comprising cooperable locking means on said manipulating members for releasably retaining said jaw members in a clamped position.
5. A surgical clamp comprising two lever arms, a pivot pin pivoting said lever arms relative to each other, each of said arms comprising a manipulating member, a shaft member, a pivot section and a jaw member, said pivot pin connecting said lever arms through said pivot sections, said shaft members being disposed at right angles relative to said pivot sections and movable in a common plane with said pivot sections about said pivot pin, said manipulating members being angularly offset from said shaft members parallel to said pivot pin, and said jaw members being angularly offset from the plane of movement of said shaft members and said pivot sections for clamping engagement with each other upon movement orthogonal relative to the movement of said manipulating members.
6. A surgical clamp as set forth in claim 5 wherein said manipulating members are angularly offset on the same side of the plane of movement of the shaft members as the jaw members.
7. A surgical clamp as set forth in claim 5 wherein the manipulating members and the jaw members are angularly offset from the plane of movement of the shaft members in opposite directions.
8. A surgical clamp as set forth in claim 5 further comprising cooperable locking means on said manipulating members for releasably retaining said jaw members in a clamped position.
9. A surgical clamp comprising two lever arms, a pivot pin pivoting said lever arms relative to each other, each of said arms comprising a manipulating member, a shaft member, a pivot section and a jaw member, said pivot pin connecting said lever arms through said pivot sections, said shaft members being angularly offset from said pivot sections in a common plane at an angle in the range of 30 to said manipulating members being angularly offset from said shaft members at an angle in the range of 25 to and said jaw members being angularly offset from the plane of movement of said shaft member and said pivot sections at an angle in the range of 15 to wherein the movement of said jaw members is orthogonal relative to the movement of said manipulating members when said manipulating members are parallel to said pivot pin.
10. A surgical clamp as set forth in claim 9, wherein the range of angles between said manipulating members and said shaft members is from 45 to 135, the range of angles between said shaft members and said pivot sections is from 45 to 135 and the range of angles between said jaw members and said pivot sections is from 45 to 130.
11. A surgical clamp as set forth in claim 9 wherein the manipulating members are angularly offset on the same side of the plane of movement of said shaft members as the jaw members.
12. A surgical clamp as set forth in claim 9 wherein the manipulating members and said jaw members are angularly offset from the plane of movement of the shaft members in opposite directions.
13. A surgical clamp as set forth in claim 9 further comprising cooperable locking means on said manipulating members for releasably retaining said jaw members in'a clamped position.
Claims (13)
1. A surgical clamp comprising two lever arms, a pivot pin pivoting said lever arms relative to each other, each of said arms comprising a manipulating member, a shaft member, a pivot section and a jaw member, said pivot pin connecting said lever arms through said pivot sections, said shaft members being disposed at substantially right angles relative to said pivot sections and movable in a common plane with said pivot sections about said pivot pin, said manipulating members being angularly offset from said shaft members parallel to said pivot pin, and said jaw members being angularly offset from the plane of movement of said shaft members and said pivot sections for a clamping engagement with each other upon movement substantially orthogonal relative to the movement of said manipulating members.
2. A surgical clamp as set forth in claim 1 wherein the manipulating members are offset on the same side of the plane of movement of the shaft members as the jaw members.
3. A surgical clamp as set forth in claim 1, wherein the manipulating members and the jaw members are offset from the plane of movement of the shaft members in opposite directions.
4. A surgical clamp as set forth in claim 1 further comprising cooperable locking means on said manipulating members for releasably retaining said jaw members in a clamped position.
5. A surgical clamp comprising two lever arms, a pivot pin pivoting said lever arms relative to each other, each of said arms comprising a manipulating member, a shaft member, a pivot section and a jaw member, said pivot pin connecting said lever arms through said pivot sections, said shaft members being disposed at right angles relative to said pivot sections and movable in a common plane with said pivot sections about said pivot pin, said manipulating members being angularly offset from said shaft members parallel to said pivot pin, and said jaw members being angularly offset from the plane of movement of said shaft members and said pivot sections for clamping engagement with each other upon movement orthogonal relative to the movement of said manipulating members.
6. A surgical clamp as set forth in claim 5 wherein said manipulating members are angularly offset on the same side of the plane of movement of the shaft members as the jaw members.
7. A surgical clamp as set forth in claim 5 wherein the manipulating members and the jaw members are angularly offset from the plane of movement of the shaft members in opposite directions.
8. A surgical clamp as set forth in claim 5 further comprising cooperable locking means on said manipulating members for releasably retaining said jaw members in a clamped position.
9. A surgical clamp comprising two lever arms, a pivot pin pivoting said lever arms relative to each other, each of said arms comprising a manipulating member, a shaft member, a pivot section and a jaw member, said pivot pin connecting said lever arms through said pivot sections, said shaft members being angularly offset from said pivot sections in a common plane at an angle in the range of 30* to 150*, said manipulating members being angularly offset from said shaft members at an angle in the range of 25* to 155*, and said jaw members being angularly offset from the plane of movement of said shaft member and said pivot sections at an angle in the range of 15* to 165*, wherein the movement of said jaw members is orthogonal relative to the movement of said manipulating members when said manipulating members are parallel to said pivot pin.
10. A surgical clamp as set forth in claim 9, wherein the range of angles between said manipulating members and said shaft members is from 45* to 135*, the range of angles between said shaft members and said pivot sections is from 45* to 135* and the range of angles between said jaw members and said pivot sections is from 45* to 130*.
11. A surgical clamp as set forth in claim 9 wherein the manipulating members are angularly offset on the same side of the plane of movement of said shaft members as the jaw members.
12. A surgical clamp as set forth in claim 9 wherein the manipulating members and said jaw members are angularly offset from the plane of movement of the shaft members in opposite directions.
13. A surgical clamp as set forth in claim 9 further comprising cooperable locking means on said manipulating members for releasably retaining said jaw members in a clamped position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US105610A US3866610A (en) | 1967-08-28 | 1971-01-11 | Cardiovascular clamps |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66489467A | 1967-08-28 | 1967-08-28 | |
US105610A US3866610A (en) | 1967-08-28 | 1971-01-11 | Cardiovascular clamps |
Publications (1)
Publication Number | Publication Date |
---|---|
US3866610A true US3866610A (en) | 1975-02-18 |
Family
ID=26802751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US105610A Expired - Lifetime US3866610A (en) | 1967-08-28 | 1971-01-11 | Cardiovascular clamps |
Country Status (1)
Country | Link |
---|---|
US (1) | US3866610A (en) |
Cited By (170)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3968806A (en) * | 1975-02-12 | 1976-07-13 | Kenneth Altemare | Hair clip |
US4197647A (en) * | 1976-11-11 | 1980-04-15 | Goldenthal Edgar J | Dental pliers |
EP0085273A1 (en) * | 1982-02-03 | 1983-08-10 | Jürgen Schäfer | Suture removing scissors |
EP0119967A1 (en) * | 1983-03-11 | 1984-09-26 | Carlo Rebuffat | New purse-string instrument |
FR2588747A1 (en) * | 1985-10-23 | 1987-04-24 | Blagoveschensky G | ARTIFICIAL VALVE FIXER |
US4827929A (en) * | 1983-08-29 | 1989-05-09 | Joseph Hodge | Angulated surgical instrument |
US5133724A (en) * | 1991-04-04 | 1992-07-28 | Pilling Co. | Abdominal aortic clamp |
US5176701A (en) * | 1988-05-27 | 1993-01-05 | Jarmila Dusek | Medical forceps instrument for implanting intraocular lenses |
US5234460A (en) * | 1992-06-24 | 1993-08-10 | Stouder Jr Albert E | Laparoscopy instrument |
US5336232A (en) * | 1991-03-14 | 1994-08-09 | United States Surgical Corporation | Approximating apparatus for surgical jaw structure and method of using the same |
US5358506A (en) * | 1991-03-14 | 1994-10-25 | United States Surgical Corporation | Approximating apparatus for surgical jaw structure |
US5749893A (en) * | 1993-04-30 | 1998-05-12 | United States Surgical Corporation | Surgical instrument having an articulated jaw structure and a detachable knife |
US5797959A (en) * | 1995-09-21 | 1998-08-25 | United States Surgical Corporation | Surgical apparatus with articulating jaw structure |
US20020188294A1 (en) * | 2001-04-06 | 2002-12-12 | Couture Gary M. | Vessel sealer and divider |
US20030014053A1 (en) * | 1998-10-23 | 2003-01-16 | Nguyen Lap P. | Vessel sealing instrument |
US20030014052A1 (en) * | 1997-11-14 | 2003-01-16 | Buysse Steven P. | Laparoscopic bipolar electrosurgical instrument |
US20030018331A1 (en) * | 2001-04-06 | 2003-01-23 | Dycus Sean T. | Vessel sealer and divider |
US20030040745A1 (en) * | 1998-10-23 | 2003-02-27 | Frazier Randel Alven | Endoscopic bipolar electrosurgical forceps |
US20030181910A1 (en) * | 1998-10-23 | 2003-09-25 | Dycus Sean T. | Bipolar electrosurgical forceps with non-conductive stop members |
US20030208231A1 (en) * | 1999-05-11 | 2003-11-06 | Williamson Warren P. | Surgical clamp devices and methods especially useful in cardiac surgery |
US6716232B1 (en) | 1993-04-30 | 2004-04-06 | United States Surgical Corporation | Surgical instrument having an articulated jaw structure and a detachable knife |
US6726686B2 (en) | 1997-11-12 | 2004-04-27 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US20040087943A1 (en) * | 2001-04-06 | 2004-05-06 | Dycus Sean T. | Vessel sealer an divider |
US6743229B2 (en) | 1997-11-12 | 2004-06-01 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US20040115296A1 (en) * | 2002-04-05 | 2004-06-17 | Duffin Terry M. | Retractable overmolded insert retention apparatus |
US20040116924A1 (en) * | 2001-04-06 | 2004-06-17 | Dycus Sean T. | Vessel sealer and divider |
US6751870B2 (en) | 2002-02-22 | 2004-06-22 | Chris Tapia | Haircutting instrument and method of use |
US20040143263A1 (en) * | 2002-11-14 | 2004-07-22 | Schechter David A. | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US20040162557A1 (en) * | 1998-10-23 | 2004-08-19 | Tetzlaff Philip M. | Vessel sealing instrument |
USD499181S1 (en) | 2003-05-15 | 2004-11-30 | Sherwood Services Ag | Handle for a vessel sealer and divider |
US20040243125A1 (en) * | 2001-04-06 | 2004-12-02 | Sean Dycus | Vessel sealer and divider |
US20040249371A1 (en) * | 2001-04-06 | 2004-12-09 | Dycus Sean T. | Vessel sealer and divider |
US20050004570A1 (en) * | 2003-05-01 | 2005-01-06 | Chapman Troy J. | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
US20050004568A1 (en) * | 1997-11-12 | 2005-01-06 | Lawes Kate R. | Electrosurgical instrument reducing thermal spread |
US20050021026A1 (en) * | 2003-05-01 | 2005-01-27 | Ali Baily | Method of fusing biomaterials with radiofrequency energy |
US20050021027A1 (en) * | 2003-05-15 | 2005-01-27 | Chelsea Shields | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
US20050021025A1 (en) * | 1997-11-12 | 2005-01-27 | Buysse Steven P. | Electrosurgical instruments which reduces collateral damage to adjacent tissue |
US6877230B2 (en) | 2002-02-22 | 2005-04-12 | Chris Tapia | Method and apparatus for cutting hair |
US20050101952A1 (en) * | 1999-10-18 | 2005-05-12 | Lands Michael J. | Vessel sealing wave jaw |
US20050101965A1 (en) * | 1997-09-09 | 2005-05-12 | Sherwood Services Ag | Apparatus and method for sealing and cutting tissue |
US20050107785A1 (en) * | 2003-06-13 | 2005-05-19 | Dycus Sean T. | Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism |
US20050107784A1 (en) * | 2003-11-19 | 2005-05-19 | Moses Michael C. | Open vessel sealing instrument with cutting mechanism and distal lockout |
US20050113826A1 (en) * | 2002-10-04 | 2005-05-26 | Johnson Kristin D. | Vessel sealing instrument with electrical cutting mechanism |
US20050113828A1 (en) * | 2003-11-20 | 2005-05-26 | Chelsea Shields | Electrically conductive/insulative over-shoe for tissue fusion |
US20050113827A1 (en) * | 2003-11-17 | 2005-05-26 | Dumbauld Patrick L. | Bipolar forceps having monopolar extension |
US20050119655A1 (en) * | 2003-11-19 | 2005-06-02 | Moses Michael C. | Open vessel sealing instrument with cutting mechanism |
US20050186440A1 (en) * | 2004-02-19 | 2005-08-25 | Karlheinz Hausmann | Flame retardant surface coverings |
US6960210B2 (en) | 1997-11-14 | 2005-11-01 | Sherwood Services Ag | Laparoscopic bipolar electrosurgical instrument |
US20060030880A1 (en) * | 2004-08-04 | 2006-02-09 | James Tylke | Anesthesia intubating forceps |
US20060052779A1 (en) * | 2003-03-13 | 2006-03-09 | Hammill Curt D | Electrode assembly for tissue fusion |
US20060052777A1 (en) * | 2004-09-09 | 2006-03-09 | Dumbauld Patrick L | Forceps with spring loaded end effector assembly |
US20060064086A1 (en) * | 2003-03-13 | 2006-03-23 | Darren Odom | Bipolar forceps with multiple electrode array end effector assembly |
US20060074417A1 (en) * | 2003-11-19 | 2006-04-06 | Cunningham James S | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
US20060079931A1 (en) * | 2004-07-21 | 2006-04-13 | Brennan Paul J | Surgical deep needle driver |
US20060079890A1 (en) * | 2004-10-08 | 2006-04-13 | Paul Guerra | Bilateral foot jaws |
US20060084973A1 (en) * | 2004-10-14 | 2006-04-20 | Dylan Hushka | Momentary rocker switch for use with vessel sealing instruments |
US20060089670A1 (en) * | 2004-10-21 | 2006-04-27 | Dylan Hushka | Magnetic closure mechanism for hemostat |
US20060161150A1 (en) * | 2002-12-10 | 2006-07-20 | Keppel David S | Electrosurgical electrode having a non-conductive porous ceramic coating |
US20060167452A1 (en) * | 2005-01-14 | 2006-07-27 | Moses Michael C | Open vessel sealing instrument |
US20060217709A1 (en) * | 2003-05-01 | 2006-09-28 | Sherwood Services Ag | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
US20060224158A1 (en) * | 2005-03-31 | 2006-10-05 | Darren Odom | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
US7118570B2 (en) | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealing forceps with disposable electrodes |
US7135020B2 (en) | 1997-11-12 | 2006-11-14 | Sherwood Services Ag | Electrosurgical instrument reducing flashover |
US20060264922A1 (en) * | 2001-04-06 | 2006-11-23 | Sartor Joe D | Molded insulating hinge for bipolar instruments |
US7150097B2 (en) | 2003-06-13 | 2006-12-19 | Sherwood Services Ag | Method of manufacturing jaw assembly for vessel sealer and divider |
US7156846B2 (en) | 2003-06-13 | 2007-01-02 | Sherwood Services Ag | Vessel sealer and divider for use with small trocars and cannulas |
US20070016187A1 (en) * | 2005-07-13 | 2007-01-18 | Craig Weinberg | Switch mechanisms for safe activation of energy on an electrosurgical instrument |
US20070078456A1 (en) * | 2005-09-30 | 2007-04-05 | Dumbauld Patrick L | In-line vessel sealer and divider |
US20070078458A1 (en) * | 2005-09-30 | 2007-04-05 | Dumbauld Patrick L | Insulating boot for electrosurgical forceps |
US20070078459A1 (en) * | 2005-09-30 | 2007-04-05 | Sherwood Services Ag | Flexible endoscopic catheter with ligasure |
US20070106295A1 (en) * | 2005-09-30 | 2007-05-10 | Garrison David M | Insulating boot for electrosurgical forceps |
US20070142833A1 (en) * | 2003-06-13 | 2007-06-21 | Dycus Sean T | Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism |
US20070156139A1 (en) * | 2003-03-13 | 2007-07-05 | Schechter David A | Bipolar concentric electrode assembly for soft tissue fusion |
US20070173814A1 (en) * | 2006-01-24 | 2007-07-26 | David Hixson | Vessel sealer and divider for large tissue structures |
US7267677B2 (en) | 1998-10-23 | 2007-09-11 | Sherwood Services Ag | Vessel sealing instrument |
US7270664B2 (en) | 2002-10-04 | 2007-09-18 | Sherwood Services Ag | Vessel sealing instrument with electrical cutting mechanism |
US20070255279A1 (en) * | 1997-11-12 | 2007-11-01 | Buysse Steven P | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
US20070260235A1 (en) * | 2006-05-05 | 2007-11-08 | Sherwood Services Ag | Apparatus and method for electrode thermosurgery |
US20070260241A1 (en) * | 2006-05-04 | 2007-11-08 | Sherwood Services Ag | Open vessel sealing forceps disposable handswitch |
US20070282336A1 (en) * | 2006-05-30 | 2007-12-06 | Pentax Corporation | Bipolar high-frequency treatment tool for endoscope |
US20080009860A1 (en) * | 2006-07-07 | 2008-01-10 | Sherwood Services Ag | System and method for controlling electrode gap during tissue sealing |
US20080015575A1 (en) * | 2006-07-14 | 2008-01-17 | Sherwood Services Ag | Vessel sealing instrument with pre-heated electrodes |
US20080021450A1 (en) * | 2006-07-18 | 2008-01-24 | Sherwood Services Ag | Apparatus and method for transecting tissue on a bipolar vessel sealing instrument |
US20080058802A1 (en) * | 2006-08-29 | 2008-03-06 | Sherwood Services Ag | Vessel sealing instrument with multiple electrode configurations |
US20080091189A1 (en) * | 2006-10-17 | 2008-04-17 | Tyco Healthcare Group Lp | Ablative material for use with tissue treatment device |
US7367976B2 (en) | 2003-11-17 | 2008-05-06 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7384421B2 (en) | 2004-10-06 | 2008-06-10 | Sherwood Services Ag | Slide-activated cutting assembly |
US20080167651A1 (en) * | 1998-10-23 | 2008-07-10 | Tetzlaff Philip M | Vessel sealing instrument |
US20080312653A1 (en) * | 2004-10-08 | 2008-12-18 | Arts Gene H | Mechanism for Dividing Tissue in a Hemostat-Style Instrument |
US7473253B2 (en) | 2001-04-06 | 2009-01-06 | Covidien Ag | Vessel sealer and divider with non-conductive stop members |
US20090012520A1 (en) * | 2006-01-24 | 2009-01-08 | Tyco Healthcare Group Lp | Vessel Sealer and Divider for Large Tissue Structures |
US20090018535A1 (en) * | 2004-09-21 | 2009-01-15 | Schechter David A | Articulating bipolar electrosurgical instrument |
US20090088738A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Dual Durometer Insulating Boot for Electrosurgical Forceps |
US20090088746A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Mechanically-Interfaced Boot and Jaws for Electrosurgical Forceps |
US20090088740A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Boot with Mechanical Reinforcement for Electrosurgical Forceps |
US20090088748A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Mesh-like Boot for Electrosurgical Forceps |
US20090088745A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Tapered Insulating Boot for Electrosurgical Forceps |
US20090088744A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Boot for Electrosurgical Forceps With Thermoplastic Clevis |
US20090088747A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Sheath for Electrosurgical Forceps |
US20090088749A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Heathcare Group Lp | Insulating Boot for Electrosurgical Forceps with Exohinged Structure |
US20090088741A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Silicone Insulated Electrosurgical Forceps |
US20090187188A1 (en) * | 2006-05-05 | 2009-07-23 | Sherwood Services Ag | Combined energy level button |
US20090198233A1 (en) * | 2008-02-06 | 2009-08-06 | Tyco Healthcare Group Lp | End Effector Assembly for Electrosurgical Device and Method for Making the Same |
US20090204114A1 (en) * | 2005-03-31 | 2009-08-13 | Covidien Ag | Electrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue |
US20090209957A1 (en) * | 2008-02-15 | 2009-08-20 | Tyco Healthcare Group Lp | Method and System for Sterilizing an Electrosurgical Instrument |
US7594916B2 (en) | 2005-11-22 | 2009-09-29 | Covidien Ag | Electrosurgical forceps with energy based tissue division |
US7597693B2 (en) | 2003-06-13 | 2009-10-06 | Covidien Ag | Vessel sealer and divider for use with small trocars and cannulas |
US7628791B2 (en) | 2005-08-19 | 2009-12-08 | Covidien Ag | Single action tissue sealer |
US20100016857A1 (en) * | 2008-07-21 | 2010-01-21 | Mckenna Nicole | Variable Resistor Jaw |
US20100042143A1 (en) * | 2008-08-15 | 2010-02-18 | Cunningham James S | Method of Transferring Pressure in an Articulating Surgical Instrument |
US20100042142A1 (en) * | 2008-08-15 | 2010-02-18 | Cunningham James S | Method of Transferring Pressure in an Articulating Surgical Instrument |
US20100042140A1 (en) * | 2008-08-15 | 2010-02-18 | Cunningham James S | Method of Transferring Pressure in an Articulating Surgical Instrument |
US20100049187A1 (en) * | 2008-08-21 | 2010-02-25 | Carlton John D | Electrosurgical Instrument Including a Sensor |
US20100057084A1 (en) * | 2008-08-28 | 2010-03-04 | TYCO Healthcare Group L.P | Tissue Fusion Jaw Angle Improvement |
US20100057082A1 (en) * | 2008-08-28 | 2010-03-04 | Tyco Healthcare Group Lp | Tissue Fusion Jaw Angle Improvement |
US20100057081A1 (en) * | 2008-08-28 | 2010-03-04 | Tyco Healthcare Group Lp | Tissue Fusion Jaw Angle Improvement |
US20100057083A1 (en) * | 2008-08-28 | 2010-03-04 | Tyco Healthcare Group Lp | Tissue Fusion Jaw Angle Improvement |
US20100063500A1 (en) * | 2008-09-05 | 2010-03-11 | Tyco Healthcare Group Lp | Apparatus, System and Method for Performing an Electrosurgical Procedure |
US20100076431A1 (en) * | 2008-09-25 | 2010-03-25 | Tyco Healthcare Group Lp | Apparatus, System and Method for Performing an Electrosurgical Procedure |
US20100076427A1 (en) * | 2008-09-25 | 2010-03-25 | Tyco Healthcare Group Lp | Seal and Separate Algorithm |
US20100076430A1 (en) * | 2008-09-24 | 2010-03-25 | Tyco Healthcare Group Lp | Electrosurgical Instrument Having a Thumb Lever and Related System and Method of Use |
US20100076432A1 (en) * | 2008-09-25 | 2010-03-25 | Tyco Healthcare Group Lp | Apparatus, System and Method for Performing an Electrosurgical Procedure |
US7686804B2 (en) | 2005-01-14 | 2010-03-30 | Covidien Ag | Vessel sealer and divider with rotating sealer and cutter |
US20100087816A1 (en) * | 2008-10-07 | 2010-04-08 | Roy Jeffrey M | Apparatus, system, and method for performing an electrosurgical procedure |
US20100087818A1 (en) * | 2008-10-03 | 2010-04-08 | Tyco Healthcare Group Lp | Method of Transferring Rotational Motion in an Articulating Surgical Instrument |
US20100094287A1 (en) * | 2008-10-09 | 2010-04-15 | Tyco Heathcare Group Lp | Apparatus, System, and Method for Performing an Endoscopic Electrosurgical Procedure |
US20100094286A1 (en) * | 2008-10-09 | 2010-04-15 | Tyco Healthcare Group Lp | Apparatus, System, and Method for Performing an Electrosurgical Procedure |
US20100100122A1 (en) * | 2008-10-20 | 2010-04-22 | Tyco Healthcare Group Lp | Method of Sealing Tissue Using Radiofrequency Energy |
US20100145334A1 (en) * | 2008-12-10 | 2010-06-10 | Tyco Healthcare Group Lp | Vessel Sealer and Divider |
US20100204697A1 (en) * | 2005-09-30 | 2010-08-12 | Dumbauld Patrick L | In-Line Vessel Sealer and Divider |
US7811283B2 (en) | 2003-11-19 | 2010-10-12 | Covidien Ag | Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety |
US7877852B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing an end effector assembly for sealing tissue |
US7877853B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing end effector assembly for sealing tissue |
US7922953B2 (en) | 2005-09-30 | 2011-04-12 | Covidien Ag | Method for manufacturing an end effector assembly |
US7931649B2 (en) | 2002-10-04 | 2011-04-26 | Tyco Healthcare Group Lp | Vessel sealing instrument with electrical cutting mechanism |
USD649249S1 (en) | 2007-02-15 | 2011-11-22 | Tyco Healthcare Group Lp | End effectors of an elongated dissecting and dividing instrument |
US8070746B2 (en) | 2006-10-03 | 2011-12-06 | Tyco Healthcare Group Lp | Radiofrequency fusion of cardiac tissue |
US8241282B2 (en) | 2006-01-24 | 2012-08-14 | Tyco Healthcare Group Lp | Vessel sealing cutting assemblies |
US8267936B2 (en) | 2007-09-28 | 2012-09-18 | Tyco Healthcare Group Lp | Insulating mechanically-interfaced adhesive for electrosurgical forceps |
US8267935B2 (en) | 2007-04-04 | 2012-09-18 | Tyco Healthcare Group Lp | Electrosurgical instrument reducing current densities at an insulator conductor junction |
US8298232B2 (en) | 2006-01-24 | 2012-10-30 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider for large tissue structures |
US8303582B2 (en) | 2008-09-15 | 2012-11-06 | Tyco Healthcare Group Lp | Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique |
US8348948B2 (en) | 2004-03-02 | 2013-01-08 | Covidien Ag | Vessel sealing system using capacitive RF dielectric heating |
US8361071B2 (en) | 1999-10-22 | 2013-01-29 | Covidien Ag | Vessel sealing forceps with disposable electrodes |
USD680220S1 (en) | 2012-01-12 | 2013-04-16 | Coviden IP | Slider handle for laparoscopic device |
US8454602B2 (en) | 2009-05-07 | 2013-06-04 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US20130224682A1 (en) * | 2010-08-19 | 2013-08-29 | Daniel Mueller | Double-Arched Tweezers for Dental Operations |
US8523898B2 (en) | 2009-07-08 | 2013-09-03 | Covidien Lp | Endoscopic electrosurgical jaws with offset knife |
US8591506B2 (en) | 1998-10-23 | 2013-11-26 | Covidien Ag | Vessel sealing system |
US8679140B2 (en) | 2012-05-30 | 2014-03-25 | Covidien Lp | Surgical clamping device with ratcheting grip lock |
US8852228B2 (en) | 2009-01-13 | 2014-10-07 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8882766B2 (en) | 2006-01-24 | 2014-11-11 | Covidien Ag | Method and system for controlling delivery of energy to divide tissue |
US8898888B2 (en) | 2009-09-28 | 2014-12-02 | Covidien Lp | System for manufacturing electrosurgical seal plates |
US20150014910A1 (en) * | 2008-12-31 | 2015-01-15 | Richard WEISSENBORN | Ski or snowboard holding device |
US9028493B2 (en) | 2009-09-18 | 2015-05-12 | Covidien Lp | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
US9113940B2 (en) | 2011-01-14 | 2015-08-25 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
CN106618674A (en) * | 2016-10-09 | 2017-05-10 | 上海导向医疗系统有限公司 | Straight liver cancer portal vein cancer thrombus fetching tongs |
US9848938B2 (en) | 2003-11-13 | 2017-12-26 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US9987078B2 (en) | 2015-07-22 | 2018-06-05 | Covidien Lp | Surgical forceps |
US10213250B2 (en) | 2015-11-05 | 2019-02-26 | Covidien Lp | Deployment and safety mechanisms for surgical instruments |
US10231777B2 (en) | 2014-08-26 | 2019-03-19 | Covidien Lp | Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument |
US10631918B2 (en) | 2015-08-14 | 2020-04-28 | Covidien Lp | Energizable surgical attachment for a mechanical clamp |
US10646267B2 (en) | 2013-08-07 | 2020-05-12 | Covidien LLP | Surgical forceps |
US10835309B1 (en) | 2002-06-25 | 2020-11-17 | Covidien Ag | Vessel sealer and divider |
US10856933B2 (en) | 2016-08-02 | 2020-12-08 | Covidien Lp | Surgical instrument housing incorporating a channel and methods of manufacturing the same |
US10918407B2 (en) | 2016-11-08 | 2021-02-16 | Covidien Lp | Surgical instrument for grasping, treating, and/or dividing tissue |
US10987159B2 (en) | 2015-08-26 | 2021-04-27 | Covidien Lp | Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread |
US11090050B2 (en) | 2019-09-03 | 2021-08-17 | Covidien Lp | Trigger mechanisms for surgical instruments and surgical instruments including the same |
US11166759B2 (en) | 2017-05-16 | 2021-11-09 | Covidien Lp | Surgical forceps |
USD956973S1 (en) | 2003-06-13 | 2022-07-05 | Covidien Ag | Movable handle for endoscopic vessel sealer and divider |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3316913A (en) * | 1964-02-28 | 1967-05-02 | Rudolph E Swenson | Catheter guiding forceps |
-
1971
- 1971-01-11 US US105610A patent/US3866610A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3316913A (en) * | 1964-02-28 | 1967-05-02 | Rudolph E Swenson | Catheter guiding forceps |
Cited By (394)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3968806A (en) * | 1975-02-12 | 1976-07-13 | Kenneth Altemare | Hair clip |
US4197647A (en) * | 1976-11-11 | 1980-04-15 | Goldenthal Edgar J | Dental pliers |
EP0085273A1 (en) * | 1982-02-03 | 1983-08-10 | Jürgen Schäfer | Suture removing scissors |
EP0119967A1 (en) * | 1983-03-11 | 1984-09-26 | Carlo Rebuffat | New purse-string instrument |
US4827929A (en) * | 1983-08-29 | 1989-05-09 | Joseph Hodge | Angulated surgical instrument |
FR2588747A1 (en) * | 1985-10-23 | 1987-04-24 | Blagoveschensky G | ARTIFICIAL VALVE FIXER |
US5176701A (en) * | 1988-05-27 | 1993-01-05 | Jarmila Dusek | Medical forceps instrument for implanting intraocular lenses |
US5336232A (en) * | 1991-03-14 | 1994-08-09 | United States Surgical Corporation | Approximating apparatus for surgical jaw structure and method of using the same |
US5358506A (en) * | 1991-03-14 | 1994-10-25 | United States Surgical Corporation | Approximating apparatus for surgical jaw structure |
US5133724A (en) * | 1991-04-04 | 1992-07-28 | Pilling Co. | Abdominal aortic clamp |
US5234460A (en) * | 1992-06-24 | 1993-08-10 | Stouder Jr Albert E | Laparoscopy instrument |
US7658312B2 (en) | 1993-04-30 | 2010-02-09 | Vidal Claude A | Surgical instrument having an articulated jaw structure and a detachable knife |
US20040193197A1 (en) * | 1993-04-30 | 2004-09-30 | Vidal Claude A. | Surgical instrument having an articulated jaw structure and a detachable knife |
US8403197B2 (en) | 1993-04-30 | 2013-03-26 | Covidien Lp | Surgical instrument having an articulated jaw structure and a detachable knife |
US5749893A (en) * | 1993-04-30 | 1998-05-12 | United States Surgical Corporation | Surgical instrument having an articulated jaw structure and a detachable knife |
US8066168B2 (en) | 1993-04-30 | 2011-11-29 | Tyco Healthcare Group Lp | Surgical instrument having an articulated jaw structure and a detachable knife |
US20100114137A1 (en) * | 1993-04-30 | 2010-05-06 | Tyco Healthcare Group Lp | Surgical instrument having an articulated jaw structure and a detachable knife |
US6716232B1 (en) | 1993-04-30 | 2004-04-06 | United States Surgical Corporation | Surgical instrument having an articulated jaw structure and a detachable knife |
US5797959A (en) * | 1995-09-21 | 1998-08-25 | United States Surgical Corporation | Surgical apparatus with articulating jaw structure |
US6932810B2 (en) | 1997-09-09 | 2005-08-23 | Sherwood Services Ag | Apparatus and method for sealing and cutting tissue |
US20050101965A1 (en) * | 1997-09-09 | 2005-05-12 | Sherwood Services Ag | Apparatus and method for sealing and cutting tissue |
US7270660B2 (en) | 1997-09-09 | 2007-09-18 | Sherwood Services Ag | Apparatus and method for sealing and cutting tissue |
US20050004568A1 (en) * | 1997-11-12 | 2005-01-06 | Lawes Kate R. | Electrosurgical instrument reducing thermal spread |
US7160298B2 (en) | 1997-11-12 | 2007-01-09 | Sherwood Services Ag | Electrosurgical instrument which reduces effects to adjacent tissue structures |
US6743229B2 (en) | 1997-11-12 | 2004-06-01 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US7135020B2 (en) | 1997-11-12 | 2006-11-14 | Sherwood Services Ag | Electrosurgical instrument reducing flashover |
US7963965B2 (en) | 1997-11-12 | 2011-06-21 | Covidien Ag | Bipolar electrosurgical instrument for sealing vessels |
US7435249B2 (en) | 1997-11-12 | 2008-10-14 | Covidien Ag | Electrosurgical instruments which reduces collateral damage to adjacent tissue |
US20070255279A1 (en) * | 1997-11-12 | 2007-11-01 | Buysse Steven P | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
US20040147925A1 (en) * | 1997-11-12 | 2004-07-29 | Buysse Steven P | Bipolar electrosurgical instrument for sealing vessels |
US20050021025A1 (en) * | 1997-11-12 | 2005-01-27 | Buysse Steven P. | Electrosurgical instruments which reduces collateral damage to adjacent tissue |
US6726686B2 (en) | 1997-11-12 | 2004-04-27 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US20040225288A1 (en) * | 1997-11-12 | 2004-11-11 | Buysse Steven Paul | Bipolar electrosurgical instrument for sealing vessels |
US7241296B2 (en) | 1997-11-12 | 2007-07-10 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US20070213712A1 (en) * | 1997-11-12 | 2007-09-13 | Buysse Steven P | Bipolar electrosurgical instrument for sealing vessels |
US20090062794A1 (en) * | 1997-11-12 | 2009-03-05 | Buysse Steven P | Electrosurgical Instrument Which Reduces Collateral Damage to Adjacent Tissue |
US7179258B2 (en) | 1997-11-12 | 2007-02-20 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US8298228B2 (en) | 1997-11-12 | 2012-10-30 | Coviden Ag | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
US8211105B2 (en) | 1997-11-12 | 2012-07-03 | Covidien Ag | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
US7828798B2 (en) | 1997-11-14 | 2010-11-09 | Covidien Ag | Laparoscopic bipolar electrosurgical instrument |
US7377920B2 (en) | 1997-11-14 | 2008-05-27 | Sherwood Services Ag | Laparoscopic bipolar electrosurgical instrument |
US20030014052A1 (en) * | 1997-11-14 | 2003-01-16 | Buysse Steven P. | Laparoscopic bipolar electrosurgical instrument |
US7207990B2 (en) | 1997-11-14 | 2007-04-24 | Sherwood Services Ag | Laparoscopic bipolar electrosurgical instrument |
US6960210B2 (en) | 1997-11-14 | 2005-11-01 | Sherwood Services Ag | Laparoscopic bipolar electrosurgical instrument |
US20050240179A1 (en) * | 1997-11-14 | 2005-10-27 | Buysse Steven P | Laparoscopic bipolar electrosurgical instrument |
US20080215051A1 (en) * | 1997-11-14 | 2008-09-04 | Buysse Steven P | Laparoscopic Bipolar Electrosurgical Instrument |
US9463067B2 (en) | 1998-10-23 | 2016-10-11 | Covidien Ag | Vessel sealing system |
US6682528B2 (en) | 1998-10-23 | 2004-01-27 | Sherwood Services Ag | Endoscopic bipolar electrosurgical forceps |
US9375270B2 (en) | 1998-10-23 | 2016-06-28 | Covidien Ag | Vessel sealing system |
US7947041B2 (en) | 1998-10-23 | 2011-05-24 | Covidien Ag | Vessel sealing instrument |
US20030181910A1 (en) * | 1998-10-23 | 2003-09-25 | Dycus Sean T. | Bipolar electrosurgical forceps with non-conductive stop members |
US7896878B2 (en) | 1998-10-23 | 2011-03-01 | Coviden Ag | Vessel sealing instrument |
US7510556B2 (en) | 1998-10-23 | 2009-03-31 | Coviden Ag | Vessel sealing instrument |
US7329256B2 (en) | 1998-10-23 | 2008-02-12 | Sherwood Services Ag | Vessel sealing instrument |
US20030040745A1 (en) * | 1998-10-23 | 2003-02-27 | Frazier Randel Alven | Endoscopic bipolar electrosurgical forceps |
US20080114356A1 (en) * | 1998-10-23 | 2008-05-15 | Johnson Kristin D | Vessel Sealing Instrument |
US9375271B2 (en) | 1998-10-23 | 2016-06-28 | Covidien Ag | Vessel sealing system |
US20060259036A1 (en) * | 1998-10-23 | 2006-11-16 | Tetzlaff Philip M | Vessel sealing forceps with disposable electrodes |
US9107672B2 (en) | 1998-10-23 | 2015-08-18 | Covidien Ag | Vessel sealing forceps with disposable electrodes |
US7513898B2 (en) | 1998-10-23 | 2009-04-07 | Covidien Ag | Vessel sealing instrument |
US7267677B2 (en) | 1998-10-23 | 2007-09-11 | Sherwood Services Ag | Vessel sealing instrument |
US20040162557A1 (en) * | 1998-10-23 | 2004-08-19 | Tetzlaff Philip M. | Vessel sealing instrument |
US7553312B2 (en) | 1998-10-23 | 2009-06-30 | Covidien Ag | Vessel sealing instrument |
US20100042100A1 (en) * | 1998-10-23 | 2010-02-18 | Tetzlaff Philip M | Vessel Sealing Instrument |
US7887536B2 (en) | 1998-10-23 | 2011-02-15 | Covidien Ag | Vessel sealing instrument |
US20080167651A1 (en) * | 1998-10-23 | 2008-07-10 | Tetzlaff Philip M | Vessel sealing instrument |
US7582087B2 (en) | 1998-10-23 | 2009-09-01 | Covidien Ag | Vessel sealing instrument |
US20030014053A1 (en) * | 1998-10-23 | 2003-01-16 | Nguyen Lap P. | Vessel sealing instrument |
US20090306660A1 (en) * | 1998-10-23 | 2009-12-10 | Johnson Kristin D | Vessel Sealing Instrument |
US8591506B2 (en) | 1998-10-23 | 2013-11-26 | Covidien Ag | Vessel sealing system |
US20030208231A1 (en) * | 1999-05-11 | 2003-11-06 | Williamson Warren P. | Surgical clamp devices and methods especially useful in cardiac surgery |
US7887535B2 (en) | 1999-10-18 | 2011-02-15 | Covidien Ag | Vessel sealing wave jaw |
US20050101952A1 (en) * | 1999-10-18 | 2005-05-12 | Lands Michael J. | Vessel sealing wave jaw |
US8361071B2 (en) | 1999-10-22 | 2013-01-29 | Covidien Ag | Vessel sealing forceps with disposable electrodes |
US20110018164A1 (en) * | 2001-04-06 | 2011-01-27 | Sartor Joe D | Molded Insulating Hinge for Bipolar Instruments |
US7118570B2 (en) | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealing forceps with disposable electrodes |
US7255697B2 (en) | 2001-04-06 | 2007-08-14 | Sherwood Services Ag | Vessel sealer and divider |
US10265121B2 (en) | 2001-04-06 | 2019-04-23 | Covidien Ag | Vessel sealer and divider |
US7131971B2 (en) | 2001-04-06 | 2006-11-07 | Sherwood Services Ag | Vessel sealer and divider |
US8540711B2 (en) | 2001-04-06 | 2013-09-24 | Covidien Ag | Vessel sealer and divider |
US7101373B2 (en) | 2001-04-06 | 2006-09-05 | Sherwood Services Ag | Vessel sealer and divider |
US7101372B2 (en) | 2001-04-06 | 2006-09-05 | Sherwood Sevices Ag | Vessel sealer and divider |
US20060264922A1 (en) * | 2001-04-06 | 2006-11-23 | Sartor Joe D | Molded insulating hinge for bipolar instruments |
US20060189981A1 (en) * | 2001-04-06 | 2006-08-24 | Dycus Sean T | Vessel sealer and divider |
US20030018331A1 (en) * | 2001-04-06 | 2003-01-23 | Dycus Sean T. | Vessel sealer and divider |
US7090673B2 (en) | 2001-04-06 | 2006-08-15 | Sherwood Services Ag | Vessel sealer and divider |
US7083618B2 (en) | 2001-04-06 | 2006-08-01 | Sherwood Services Ag | Vessel sealer and divider |
US20040087943A1 (en) * | 2001-04-06 | 2004-05-06 | Dycus Sean T. | Vessel sealer an divider |
US7384420B2 (en) | 2001-04-06 | 2008-06-10 | Sherwood Services Ag | Vessel sealer and divider |
US10251696B2 (en) | 2001-04-06 | 2019-04-09 | Covidien Ag | Vessel sealer and divider with stop members |
US7118587B2 (en) | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealer and divider |
US20040249371A1 (en) * | 2001-04-06 | 2004-12-09 | Dycus Sean T. | Vessel sealer and divider |
US20020188294A1 (en) * | 2001-04-06 | 2002-12-12 | Couture Gary M. | Vessel sealer and divider |
US8241284B2 (en) | 2001-04-06 | 2012-08-14 | Covidien Ag | Vessel sealer and divider with non-conductive stop members |
US20040116924A1 (en) * | 2001-04-06 | 2004-06-17 | Dycus Sean T. | Vessel sealer and divider |
US10881453B1 (en) | 2001-04-06 | 2021-01-05 | Covidien Ag | Vessel sealer and divider |
US10849681B2 (en) | 2001-04-06 | 2020-12-01 | Covidien Ag | Vessel sealer and divider |
US20040243125A1 (en) * | 2001-04-06 | 2004-12-02 | Sean Dycus | Vessel sealer and divider |
US10568682B2 (en) | 2001-04-06 | 2020-02-25 | Covidien Ag | Vessel sealer and divider |
US10687887B2 (en) | 2001-04-06 | 2020-06-23 | Covidien Ag | Vessel sealer and divider |
US20070260242A1 (en) * | 2001-04-06 | 2007-11-08 | Dycus Sean T | Vessel sealer and divider |
US9737357B2 (en) | 2001-04-06 | 2017-08-22 | Covidien Ag | Vessel sealer and divider |
US7473253B2 (en) | 2001-04-06 | 2009-01-06 | Covidien Ag | Vessel sealer and divider with non-conductive stop members |
US7101371B2 (en) | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
US9861430B2 (en) | 2001-04-06 | 2018-01-09 | Covidien Ag | Vessel sealer and divider |
US6877230B2 (en) | 2002-02-22 | 2005-04-12 | Chris Tapia | Method and apparatus for cutting hair |
US6751870B2 (en) | 2002-02-22 | 2004-06-22 | Chris Tapia | Haircutting instrument and method of use |
US20040115296A1 (en) * | 2002-04-05 | 2004-06-17 | Duffin Terry M. | Retractable overmolded insert retention apparatus |
US10835309B1 (en) | 2002-06-25 | 2020-11-17 | Covidien Ag | Vessel sealer and divider |
US10918436B2 (en) | 2002-06-25 | 2021-02-16 | Covidien Ag | Vessel sealer and divider |
US9585716B2 (en) | 2002-10-04 | 2017-03-07 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US8333765B2 (en) | 2002-10-04 | 2012-12-18 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US20050113826A1 (en) * | 2002-10-04 | 2005-05-26 | Johnson Kristin D. | Vessel sealing instrument with electrical cutting mechanism |
US10987160B2 (en) | 2002-10-04 | 2021-04-27 | Covidien Ag | Vessel sealing instrument with cutting mechanism |
US8551091B2 (en) | 2002-10-04 | 2013-10-08 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US7270664B2 (en) | 2002-10-04 | 2007-09-18 | Sherwood Services Ag | Vessel sealing instrument with electrical cutting mechanism |
US7931649B2 (en) | 2002-10-04 | 2011-04-26 | Tyco Healthcare Group Lp | Vessel sealing instrument with electrical cutting mechanism |
US7276068B2 (en) | 2002-10-04 | 2007-10-02 | Sherwood Services Ag | Vessel sealing instrument with electrical cutting mechanism |
US8740901B2 (en) | 2002-10-04 | 2014-06-03 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US8192433B2 (en) | 2002-10-04 | 2012-06-05 | Covidien Ag | Vessel sealing instrument with electrical cutting mechanism |
US10537384B2 (en) | 2002-10-04 | 2020-01-21 | Covidien Lp | Vessel sealing instrument with electrical cutting mechanism |
US20100331839A1 (en) * | 2002-11-14 | 2010-12-30 | Schechter David A | Compressible Jaw Configuration with Bipolar RF Output Electrodes for Soft Tissue Fusion |
US7799026B2 (en) | 2002-11-14 | 2010-09-21 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US8945125B2 (en) | 2002-11-14 | 2015-02-03 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US20040143263A1 (en) * | 2002-11-14 | 2004-07-22 | Schechter David A. | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US7458972B2 (en) | 2002-12-10 | 2008-12-02 | Covidien Ag | Electrosurgical electrode having a non-conductive porous ceramic coating |
US7223265B2 (en) | 2002-12-10 | 2007-05-29 | Sherwood Services Ag | Electrosurgical electrode having a non-conductive porous ceramic coating |
US20060161150A1 (en) * | 2002-12-10 | 2006-07-20 | Keppel David S | Electrosurgical electrode having a non-conductive porous ceramic coating |
US20060052779A1 (en) * | 2003-03-13 | 2006-03-09 | Hammill Curt D | Electrode assembly for tissue fusion |
US20060064086A1 (en) * | 2003-03-13 | 2006-03-23 | Darren Odom | Bipolar forceps with multiple electrode array end effector assembly |
US7776036B2 (en) | 2003-03-13 | 2010-08-17 | Covidien Ag | Bipolar concentric electrode assembly for soft tissue fusion |
US20070156139A1 (en) * | 2003-03-13 | 2007-07-05 | Schechter David A | Bipolar concentric electrode assembly for soft tissue fusion |
US20060052778A1 (en) * | 2003-05-01 | 2006-03-09 | Chapman Troy J | Incorporating rapid cooling in tissue fusion heating processes |
US7147638B2 (en) | 2003-05-01 | 2006-12-12 | Sherwood Services Ag | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
US8679114B2 (en) | 2003-05-01 | 2014-03-25 | Covidien Ag | Incorporating rapid cooling in tissue fusion heating processes |
US7160299B2 (en) | 2003-05-01 | 2007-01-09 | Sherwood Services Ag | Method of fusing biomaterials with radiofrequency energy |
US9149323B2 (en) | 2003-05-01 | 2015-10-06 | Covidien Ag | Method of fusing biomaterials with radiofrequency energy |
US7655007B2 (en) | 2003-05-01 | 2010-02-02 | Covidien Ag | Method of fusing biomaterials with radiofrequency energy |
US20050004570A1 (en) * | 2003-05-01 | 2005-01-06 | Chapman Troy J. | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
US20050021026A1 (en) * | 2003-05-01 | 2005-01-27 | Ali Baily | Method of fusing biomaterials with radiofrequency energy |
US20060264931A1 (en) * | 2003-05-01 | 2006-11-23 | Chapman Troy J | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
US20070156140A1 (en) * | 2003-05-01 | 2007-07-05 | Ali Baily | Method of fusing biomaterials with radiofrequency energy |
US20060217709A1 (en) * | 2003-05-01 | 2006-09-28 | Sherwood Services Ag | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
US7753909B2 (en) | 2003-05-01 | 2010-07-13 | Covidien Ag | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
US20100130971A1 (en) * | 2003-05-01 | 2010-05-27 | Covidien Ag | Method of Fusing Biomaterials With Radiofrequency Energy |
US7708735B2 (en) | 2003-05-01 | 2010-05-04 | Covidien Ag | Incorporating rapid cooling in tissue fusion heating processes |
US8128624B2 (en) | 2003-05-01 | 2012-03-06 | Covidien Ag | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
US20050021027A1 (en) * | 2003-05-15 | 2005-01-27 | Chelsea Shields | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
US20090149853A1 (en) * | 2003-05-15 | 2009-06-11 | Chelsea Shields | Tissue Sealer with Non-Conductive Variable Stop Members and Method of Sealing Tissue |
US7491201B2 (en) | 2003-05-15 | 2009-02-17 | Covidien Ag | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
US8496656B2 (en) | 2003-05-15 | 2013-07-30 | Covidien Ag | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
USRE47375E1 (en) | 2003-05-15 | 2019-05-07 | Coviden Ag | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
USD499181S1 (en) | 2003-05-15 | 2004-11-30 | Sherwood Services Ag | Handle for a vessel sealer and divider |
US7150097B2 (en) | 2003-06-13 | 2006-12-19 | Sherwood Services Ag | Method of manufacturing jaw assembly for vessel sealer and divider |
US7150749B2 (en) | 2003-06-13 | 2006-12-19 | Sherwood Services Ag | Vessel sealer and divider having elongated knife stroke and safety cutting mechanism |
US9492225B2 (en) | 2003-06-13 | 2016-11-15 | Covidien Ag | Vessel sealer and divider for use with small trocars and cannulas |
US20050107785A1 (en) * | 2003-06-13 | 2005-05-19 | Dycus Sean T. | Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism |
US7857812B2 (en) | 2003-06-13 | 2010-12-28 | Covidien Ag | Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism |
US10842553B2 (en) | 2003-06-13 | 2020-11-24 | Covidien Ag | Vessel sealer and divider |
US7771425B2 (en) | 2003-06-13 | 2010-08-10 | Covidien Ag | Vessel sealer and divider having a variable jaw clamping mechanism |
US10278772B2 (en) | 2003-06-13 | 2019-05-07 | Covidien Ag | Vessel sealer and divider |
US10918435B2 (en) | 2003-06-13 | 2021-02-16 | Covidien Ag | Vessel sealer and divider |
USD956973S1 (en) | 2003-06-13 | 2022-07-05 | Covidien Ag | Movable handle for endoscopic vessel sealer and divider |
US20070142833A1 (en) * | 2003-06-13 | 2007-06-21 | Dycus Sean T | Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism |
US7597693B2 (en) | 2003-06-13 | 2009-10-06 | Covidien Ag | Vessel sealer and divider for use with small trocars and cannulas |
US20060129146A1 (en) * | 2003-06-13 | 2006-06-15 | Sherwood Services Ag | Vessel sealer and divider having a variable jaw clamping mechanism |
US7156846B2 (en) | 2003-06-13 | 2007-01-02 | Sherwood Services Ag | Vessel sealer and divider for use with small trocars and cannulas |
US8647341B2 (en) | 2003-06-13 | 2014-02-11 | Covidien Ag | Vessel sealer and divider for use with small trocars and cannulas |
US9848938B2 (en) | 2003-11-13 | 2017-12-26 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US7232440B2 (en) | 2003-11-17 | 2007-06-19 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US20070213706A1 (en) * | 2003-11-17 | 2007-09-13 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7367976B2 (en) | 2003-11-17 | 2008-05-06 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US20110004209A1 (en) * | 2003-11-17 | 2011-01-06 | Kate Lawes | Bipolar Forceps having Monopolar Extension |
US7442194B2 (en) | 2003-11-17 | 2008-10-28 | Covidien Ag | Bipolar forceps having monopolar extension |
US7445621B2 (en) | 2003-11-17 | 2008-11-04 | Covidien Ag | Bipolar forceps having monopolar extension |
US8597296B2 (en) | 2003-11-17 | 2013-12-03 | Covidien Ag | Bipolar forceps having monopolar extension |
US10441350B2 (en) | 2003-11-17 | 2019-10-15 | Covidien Ag | Bipolar forceps having monopolar extension |
US20050113827A1 (en) * | 2003-11-17 | 2005-05-26 | Dumbauld Patrick L. | Bipolar forceps having monopolar extension |
US20090112206A1 (en) * | 2003-11-17 | 2009-04-30 | Dumbauld Patrick L | Bipolar Forceps Having Monopolar Extension |
US20070213707A1 (en) * | 2003-11-17 | 2007-09-13 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7481810B2 (en) | 2003-11-17 | 2009-01-27 | Covidien Ag | Bipolar forceps having monopolar extension |
US8257352B2 (en) | 2003-11-17 | 2012-09-04 | Covidien Ag | Bipolar forceps having monopolar extension |
US20070213708A1 (en) * | 2003-11-17 | 2007-09-13 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US20050119655A1 (en) * | 2003-11-19 | 2005-06-02 | Moses Michael C. | Open vessel sealing instrument with cutting mechanism |
US8623017B2 (en) | 2003-11-19 | 2014-01-07 | Covidien Ag | Open vessel sealing instrument with hourglass cutting mechanism and overratchet safety |
US7252667B2 (en) | 2003-11-19 | 2007-08-07 | Sherwood Services Ag | Open vessel sealing instrument with cutting mechanism and distal lockout |
US8394096B2 (en) | 2003-11-19 | 2013-03-12 | Covidien Ag | Open vessel sealing instrument with cutting mechanism |
US20090149854A1 (en) * | 2003-11-19 | 2009-06-11 | Sherwood Services Ag | Spring Loaded Reciprocating Tissue Cutting Mechanism in a Forceps-Style Electrosurgical Instrument |
US7131970B2 (en) | 2003-11-19 | 2006-11-07 | Sherwood Services Ag | Open vessel sealing instrument with cutting mechanism |
US20110238067A1 (en) * | 2003-11-19 | 2011-09-29 | Moses Michael C | Open vessel sealing instrument with cutting mechanism |
US7922718B2 (en) | 2003-11-19 | 2011-04-12 | Covidien Ag | Open vessel sealing instrument with cutting mechanism |
US8303586B2 (en) | 2003-11-19 | 2012-11-06 | Covidien Ag | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
US20070088356A1 (en) * | 2003-11-19 | 2007-04-19 | Moses Michael C | Open vessel sealing instrument with cutting mechanism |
US7811283B2 (en) | 2003-11-19 | 2010-10-12 | Covidien Ag | Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety |
US20050107784A1 (en) * | 2003-11-19 | 2005-05-19 | Moses Michael C. | Open vessel sealing instrument with cutting mechanism and distal lockout |
US7500975B2 (en) | 2003-11-19 | 2009-03-10 | Covidien Ag | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
US20060074417A1 (en) * | 2003-11-19 | 2006-04-06 | Cunningham James S | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
US9095347B2 (en) | 2003-11-20 | 2015-08-04 | Covidien Ag | Electrically conductive/insulative over shoe for tissue fusion |
US20050113828A1 (en) * | 2003-11-20 | 2005-05-26 | Chelsea Shields | Electrically conductive/insulative over-shoe for tissue fusion |
US7442193B2 (en) | 2003-11-20 | 2008-10-28 | Covidien Ag | Electrically conductive/insulative over-shoe for tissue fusion |
US9980770B2 (en) | 2003-11-20 | 2018-05-29 | Covidien Ag | Electrically conductive/insulative over-shoe for tissue fusion |
US20050186440A1 (en) * | 2004-02-19 | 2005-08-25 | Karlheinz Hausmann | Flame retardant surface coverings |
US8348948B2 (en) | 2004-03-02 | 2013-01-08 | Covidien Ag | Vessel sealing system using capacitive RF dielectric heating |
US20060079931A1 (en) * | 2004-07-21 | 2006-04-13 | Brennan Paul J | Surgical deep needle driver |
US20060030880A1 (en) * | 2004-08-04 | 2006-02-09 | James Tylke | Anesthesia intubating forceps |
WO2006017430A2 (en) * | 2004-08-04 | 2006-02-16 | James Tylke | Anesthesia intubating forceps |
WO2006017430A3 (en) * | 2004-08-04 | 2007-02-08 | James Tylke | Anesthesia intubating forceps |
US7438717B2 (en) * | 2004-08-04 | 2008-10-21 | James Tylke | Anesthesia intubating forceps |
US7195631B2 (en) | 2004-09-09 | 2007-03-27 | Sherwood Services Ag | Forceps with spring loaded end effector assembly |
US7935052B2 (en) | 2004-09-09 | 2011-05-03 | Covidien Ag | Forceps with spring loaded end effector assembly |
US20060052777A1 (en) * | 2004-09-09 | 2006-03-09 | Dumbauld Patrick L | Forceps with spring loaded end effector assembly |
US20070142834A1 (en) * | 2004-09-09 | 2007-06-21 | Sherwood Services Ag | Forceps with spring loaded end effector assembly |
US7799028B2 (en) | 2004-09-21 | 2010-09-21 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US8366709B2 (en) | 2004-09-21 | 2013-02-05 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US7540872B2 (en) | 2004-09-21 | 2009-06-02 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US20090018535A1 (en) * | 2004-09-21 | 2009-01-15 | Schechter David A | Articulating bipolar electrosurgical instrument |
US7384421B2 (en) | 2004-10-06 | 2008-06-10 | Sherwood Services Ag | Slide-activated cutting assembly |
US20060079890A1 (en) * | 2004-10-08 | 2006-04-13 | Paul Guerra | Bilateral foot jaws |
US7628792B2 (en) | 2004-10-08 | 2009-12-08 | Covidien Ag | Bilateral foot jaws |
US20080312653A1 (en) * | 2004-10-08 | 2008-12-18 | Arts Gene H | Mechanism for Dividing Tissue in a Hemostat-Style Instrument |
US8123743B2 (en) | 2004-10-08 | 2012-02-28 | Covidien Ag | Mechanism for dividing tissue in a hemostat-style instrument |
US7955332B2 (en) | 2004-10-08 | 2011-06-07 | Covidien Ag | Mechanism for dividing tissue in a hemostat-style instrument |
US20060084973A1 (en) * | 2004-10-14 | 2006-04-20 | Dylan Hushka | Momentary rocker switch for use with vessel sealing instruments |
US7686827B2 (en) | 2004-10-21 | 2010-03-30 | Covidien Ag | Magnetic closure mechanism for hemostat |
US20060089670A1 (en) * | 2004-10-21 | 2006-04-27 | Dylan Hushka | Magnetic closure mechanism for hemostat |
US7686804B2 (en) | 2005-01-14 | 2010-03-30 | Covidien Ag | Vessel sealer and divider with rotating sealer and cutter |
US7909823B2 (en) | 2005-01-14 | 2011-03-22 | Covidien Ag | Open vessel sealing instrument |
US20110196368A1 (en) * | 2005-01-14 | 2011-08-11 | Covidien Ag | Open Vessel Sealing Instrument |
US20060167452A1 (en) * | 2005-01-14 | 2006-07-27 | Moses Michael C | Open vessel sealing instrument |
US7951150B2 (en) | 2005-01-14 | 2011-05-31 | Covidien Ag | Vessel sealer and divider with rotating sealer and cutter |
US8147489B2 (en) | 2005-01-14 | 2012-04-03 | Covidien Ag | Open vessel sealing instrument |
US7491202B2 (en) | 2005-03-31 | 2009-02-17 | Covidien Ag | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
US20090131934A1 (en) * | 2005-03-31 | 2009-05-21 | Covidion Ag | Electrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue |
US20060224158A1 (en) * | 2005-03-31 | 2006-10-05 | Darren Odom | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
US20090204114A1 (en) * | 2005-03-31 | 2009-08-13 | Covidien Ag | Electrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue |
US8382754B2 (en) | 2005-03-31 | 2013-02-26 | Covidien Ag | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
US20070016187A1 (en) * | 2005-07-13 | 2007-01-18 | Craig Weinberg | Switch mechanisms for safe activation of energy on an electrosurgical instrument |
US7837685B2 (en) | 2005-07-13 | 2010-11-23 | Covidien Ag | Switch mechanisms for safe activation of energy on an electrosurgical instrument |
US7628791B2 (en) | 2005-08-19 | 2009-12-08 | Covidien Ag | Single action tissue sealer |
US8945127B2 (en) | 2005-08-19 | 2015-02-03 | Covidien Ag | Single action tissue sealer |
US8939973B2 (en) | 2005-08-19 | 2015-01-27 | Covidien Ag | Single action tissue sealer |
US8277447B2 (en) | 2005-08-19 | 2012-10-02 | Covidien Ag | Single action tissue sealer |
US8945126B2 (en) | 2005-08-19 | 2015-02-03 | Covidien Ag | Single action tissue sealer |
US10188452B2 (en) | 2005-08-19 | 2019-01-29 | Covidien Ag | Single action tissue sealer |
US20100130977A1 (en) * | 2005-08-19 | 2010-05-27 | Covidien Ag | Single Action Tissue Sealer |
US9198717B2 (en) | 2005-08-19 | 2015-12-01 | Covidien Ag | Single action tissue sealer |
US9549775B2 (en) | 2005-09-30 | 2017-01-24 | Covidien Ag | In-line vessel sealer and divider |
US7922953B2 (en) | 2005-09-30 | 2011-04-12 | Covidien Ag | Method for manufacturing an end effector assembly |
US8361072B2 (en) | 2005-09-30 | 2013-01-29 | Covidien Ag | Insulating boot for electrosurgical forceps |
US8394095B2 (en) | 2005-09-30 | 2013-03-12 | Covidien Ag | Insulating boot for electrosurgical forceps |
US20070078456A1 (en) * | 2005-09-30 | 2007-04-05 | Dumbauld Patrick L | In-line vessel sealer and divider |
US20100204697A1 (en) * | 2005-09-30 | 2010-08-12 | Dumbauld Patrick L | In-Line Vessel Sealer and Divider |
US20070078458A1 (en) * | 2005-09-30 | 2007-04-05 | Dumbauld Patrick L | Insulating boot for electrosurgical forceps |
US20070078459A1 (en) * | 2005-09-30 | 2007-04-05 | Sherwood Services Ag | Flexible endoscopic catheter with ligasure |
US20070106295A1 (en) * | 2005-09-30 | 2007-05-10 | Garrison David M | Insulating boot for electrosurgical forceps |
US20110106079A1 (en) * | 2005-09-30 | 2011-05-05 | Covidien Ag | Insulating Boot for Electrosurgical Forceps |
US7846161B2 (en) | 2005-09-30 | 2010-12-07 | Covidien Ag | Insulating boot for electrosurgical forceps |
US7789878B2 (en) | 2005-09-30 | 2010-09-07 | Covidien Ag | In-line vessel sealer and divider |
US7819872B2 (en) | 2005-09-30 | 2010-10-26 | Covidien Ag | Flexible endoscopic catheter with ligasure |
US8197633B2 (en) | 2005-09-30 | 2012-06-12 | Covidien Ag | Method for manufacturing an end effector assembly |
US7879035B2 (en) | 2005-09-30 | 2011-02-01 | Covidien Ag | Insulating boot for electrosurgical forceps |
US8668689B2 (en) | 2005-09-30 | 2014-03-11 | Covidien Ag | In-line vessel sealer and divider |
US9579145B2 (en) | 2005-09-30 | 2017-02-28 | Covidien Ag | Flexible endoscopic catheter with ligasure |
US8641713B2 (en) | 2005-09-30 | 2014-02-04 | Covidien Ag | Flexible endoscopic catheter with ligasure |
USRE44834E1 (en) | 2005-09-30 | 2014-04-08 | Covidien Ag | Insulating boot for electrosurgical forceps |
US7594916B2 (en) | 2005-11-22 | 2009-09-29 | Covidien Ag | Electrosurgical forceps with energy based tissue division |
US9113903B2 (en) | 2006-01-24 | 2015-08-25 | Covidien Lp | Endoscopic vessel sealer and divider for large tissue structures |
US9539053B2 (en) | 2006-01-24 | 2017-01-10 | Covidien Lp | Vessel sealer and divider for large tissue structures |
US8241282B2 (en) | 2006-01-24 | 2012-08-14 | Tyco Healthcare Group Lp | Vessel sealing cutting assemblies |
US7766910B2 (en) | 2006-01-24 | 2010-08-03 | Tyco Healthcare Group Lp | Vessel sealer and divider for large tissue structures |
US8734443B2 (en) | 2006-01-24 | 2014-05-27 | Covidien Lp | Vessel sealer and divider for large tissue structures |
US8882766B2 (en) | 2006-01-24 | 2014-11-11 | Covidien Ag | Method and system for controlling delivery of energy to divide tissue |
US9918782B2 (en) | 2006-01-24 | 2018-03-20 | Covidien Lp | Endoscopic vessel sealer and divider for large tissue structures |
US20090012520A1 (en) * | 2006-01-24 | 2009-01-08 | Tyco Healthcare Group Lp | Vessel Sealer and Divider for Large Tissue Structures |
US8298232B2 (en) | 2006-01-24 | 2012-10-30 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider for large tissue structures |
US20070173814A1 (en) * | 2006-01-24 | 2007-07-26 | David Hixson | Vessel sealer and divider for large tissue structures |
US7641653B2 (en) | 2006-05-04 | 2010-01-05 | Covidien Ag | Open vessel sealing forceps disposable handswitch |
US20070260241A1 (en) * | 2006-05-04 | 2007-11-08 | Sherwood Services Ag | Open vessel sealing forceps disposable handswitch |
US20070260235A1 (en) * | 2006-05-05 | 2007-11-08 | Sherwood Services Ag | Apparatus and method for electrode thermosurgery |
US8034052B2 (en) | 2006-05-05 | 2011-10-11 | Covidien Ag | Apparatus and method for electrode thermosurgery |
US20090187188A1 (en) * | 2006-05-05 | 2009-07-23 | Sherwood Services Ag | Combined energy level button |
US7846158B2 (en) | 2006-05-05 | 2010-12-07 | Covidien Ag | Apparatus and method for electrode thermosurgery |
US20070282336A1 (en) * | 2006-05-30 | 2007-12-06 | Pentax Corporation | Bipolar high-frequency treatment tool for endoscope |
US20080009860A1 (en) * | 2006-07-07 | 2008-01-10 | Sherwood Services Ag | System and method for controlling electrode gap during tissue sealing |
US7776037B2 (en) | 2006-07-07 | 2010-08-17 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
US20080015575A1 (en) * | 2006-07-14 | 2008-01-17 | Sherwood Services Ag | Vessel sealing instrument with pre-heated electrodes |
US20080021450A1 (en) * | 2006-07-18 | 2008-01-24 | Sherwood Services Ag | Apparatus and method for transecting tissue on a bipolar vessel sealing instrument |
US7744615B2 (en) | 2006-07-18 | 2010-06-29 | Covidien Ag | Apparatus and method for transecting tissue on a bipolar vessel sealing instrument |
US20080058802A1 (en) * | 2006-08-29 | 2008-03-06 | Sherwood Services Ag | Vessel sealing instrument with multiple electrode configurations |
US8597297B2 (en) | 2006-08-29 | 2013-12-03 | Covidien Ag | Vessel sealing instrument with multiple electrode configurations |
US8070746B2 (en) | 2006-10-03 | 2011-12-06 | Tyco Healthcare Group Lp | Radiofrequency fusion of cardiac tissue |
US8425504B2 (en) | 2006-10-03 | 2013-04-23 | Covidien Lp | Radiofrequency fusion of cardiac tissue |
US7951149B2 (en) | 2006-10-17 | 2011-05-31 | Tyco Healthcare Group Lp | Ablative material for use with tissue treatment device |
US20080091189A1 (en) * | 2006-10-17 | 2008-04-17 | Tyco Healthcare Group Lp | Ablative material for use with tissue treatment device |
USD649249S1 (en) | 2007-02-15 | 2011-11-22 | Tyco Healthcare Group Lp | End effectors of an elongated dissecting and dividing instrument |
US8267935B2 (en) | 2007-04-04 | 2012-09-18 | Tyco Healthcare Group Lp | Electrosurgical instrument reducing current densities at an insulator conductor junction |
US7877852B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing an end effector assembly for sealing tissue |
US7877853B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing end effector assembly for sealing tissue |
US8235992B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Insulating boot with mechanical reinforcement for electrosurgical forceps |
US8696667B2 (en) | 2007-09-28 | 2014-04-15 | Covidien Lp | Dual durometer insulating boot for electrosurgical forceps |
US20090088748A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Mesh-like Boot for Electrosurgical Forceps |
US9023043B2 (en) | 2007-09-28 | 2015-05-05 | Covidien Lp | Insulating mechanically-interfaced boot and jaws for electrosurgical forceps |
US20090088746A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Mechanically-Interfaced Boot and Jaws for Electrosurgical Forceps |
US20090088738A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Dual Durometer Insulating Boot for Electrosurgical Forceps |
US8267936B2 (en) | 2007-09-28 | 2012-09-18 | Tyco Healthcare Group Lp | Insulating mechanically-interfaced adhesive for electrosurgical forceps |
US20090088741A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Silicone Insulated Electrosurgical Forceps |
US20090088745A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Tapered Insulating Boot for Electrosurgical Forceps |
US20090088740A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Boot with Mechanical Reinforcement for Electrosurgical Forceps |
US8221416B2 (en) | 2007-09-28 | 2012-07-17 | Tyco Healthcare Group Lp | Insulating boot for electrosurgical forceps with thermoplastic clevis |
US8251996B2 (en) | 2007-09-28 | 2012-08-28 | Tyco Healthcare Group Lp | Insulating sheath for electrosurgical forceps |
US20090088744A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Boot for Electrosurgical Forceps With Thermoplastic Clevis |
US8241283B2 (en) | 2007-09-28 | 2012-08-14 | Tyco Healthcare Group Lp | Dual durometer insulating boot for electrosurgical forceps |
US8235993B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Insulating boot for electrosurgical forceps with exohinged structure |
US20090088749A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Heathcare Group Lp | Insulating Boot for Electrosurgical Forceps with Exohinged Structure |
US8236025B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Silicone insulated electrosurgical forceps |
US9554841B2 (en) | 2007-09-28 | 2017-01-31 | Covidien Lp | Dual durometer insulating boot for electrosurgical forceps |
US20090088747A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Sheath for Electrosurgical Forceps |
US20090198233A1 (en) * | 2008-02-06 | 2009-08-06 | Tyco Healthcare Group Lp | End Effector Assembly for Electrosurgical Device and Method for Making the Same |
US8764748B2 (en) | 2008-02-06 | 2014-07-01 | Covidien Lp | End effector assembly for electrosurgical device and method for making the same |
US20090209957A1 (en) * | 2008-02-15 | 2009-08-20 | Tyco Healthcare Group Lp | Method and System for Sterilizing an Electrosurgical Instrument |
US8623276B2 (en) | 2008-02-15 | 2014-01-07 | Covidien Lp | Method and system for sterilizing an electrosurgical instrument |
US8469956B2 (en) | 2008-07-21 | 2013-06-25 | Covidien Lp | Variable resistor jaw |
US9113905B2 (en) | 2008-07-21 | 2015-08-25 | Covidien Lp | Variable resistor jaw |
US20100016857A1 (en) * | 2008-07-21 | 2010-01-21 | Mckenna Nicole | Variable Resistor Jaw |
US9247988B2 (en) | 2008-07-21 | 2016-02-02 | Covidien Lp | Variable resistor jaw |
US8162973B2 (en) | 2008-08-15 | 2012-04-24 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US20100042142A1 (en) * | 2008-08-15 | 2010-02-18 | Cunningham James S | Method of Transferring Pressure in an Articulating Surgical Instrument |
US20100042140A1 (en) * | 2008-08-15 | 2010-02-18 | Cunningham James S | Method of Transferring Pressure in an Articulating Surgical Instrument |
US8257387B2 (en) | 2008-08-15 | 2012-09-04 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US20100042143A1 (en) * | 2008-08-15 | 2010-02-18 | Cunningham James S | Method of Transferring Pressure in an Articulating Surgical Instrument |
US9603652B2 (en) | 2008-08-21 | 2017-03-28 | Covidien Lp | Electrosurgical instrument including a sensor |
US20100049187A1 (en) * | 2008-08-21 | 2010-02-25 | Carlton John D | Electrosurgical Instrument Including a Sensor |
US8784417B2 (en) | 2008-08-28 | 2014-07-22 | Covidien Lp | Tissue fusion jaw angle improvement |
US8317787B2 (en) | 2008-08-28 | 2012-11-27 | Covidien Lp | Tissue fusion jaw angle improvement |
US20100057081A1 (en) * | 2008-08-28 | 2010-03-04 | Tyco Healthcare Group Lp | Tissue Fusion Jaw Angle Improvement |
US20100057082A1 (en) * | 2008-08-28 | 2010-03-04 | Tyco Healthcare Group Lp | Tissue Fusion Jaw Angle Improvement |
US20100057084A1 (en) * | 2008-08-28 | 2010-03-04 | TYCO Healthcare Group L.P | Tissue Fusion Jaw Angle Improvement |
US20100057083A1 (en) * | 2008-08-28 | 2010-03-04 | Tyco Healthcare Group Lp | Tissue Fusion Jaw Angle Improvement |
US8795274B2 (en) | 2008-08-28 | 2014-08-05 | Covidien Lp | Tissue fusion jaw angle improvement |
US20100063500A1 (en) * | 2008-09-05 | 2010-03-11 | Tyco Healthcare Group Lp | Apparatus, System and Method for Performing an Electrosurgical Procedure |
US8303582B2 (en) | 2008-09-15 | 2012-11-06 | Tyco Healthcare Group Lp | Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique |
US20100076430A1 (en) * | 2008-09-24 | 2010-03-25 | Tyco Healthcare Group Lp | Electrosurgical Instrument Having a Thumb Lever and Related System and Method of Use |
US20100076427A1 (en) * | 2008-09-25 | 2010-03-25 | Tyco Healthcare Group Lp | Seal and Separate Algorithm |
US9375254B2 (en) | 2008-09-25 | 2016-06-28 | Covidien Lp | Seal and separate algorithm |
US20100076431A1 (en) * | 2008-09-25 | 2010-03-25 | Tyco Healthcare Group Lp | Apparatus, System and Method for Performing an Electrosurgical Procedure |
US8968314B2 (en) | 2008-09-25 | 2015-03-03 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US20100076432A1 (en) * | 2008-09-25 | 2010-03-25 | Tyco Healthcare Group Lp | Apparatus, System and Method for Performing an Electrosurgical Procedure |
US8535312B2 (en) | 2008-09-25 | 2013-09-17 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8142473B2 (en) | 2008-10-03 | 2012-03-27 | Tyco Healthcare Group Lp | Method of transferring rotational motion in an articulating surgical instrument |
US8568444B2 (en) | 2008-10-03 | 2013-10-29 | Covidien Lp | Method of transferring rotational motion in an articulating surgical instrument |
US20100087818A1 (en) * | 2008-10-03 | 2010-04-08 | Tyco Healthcare Group Lp | Method of Transferring Rotational Motion in an Articulating Surgical Instrument |
US20100087816A1 (en) * | 2008-10-07 | 2010-04-08 | Roy Jeffrey M | Apparatus, system, and method for performing an electrosurgical procedure |
US8469957B2 (en) | 2008-10-07 | 2013-06-25 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US20100094287A1 (en) * | 2008-10-09 | 2010-04-15 | Tyco Heathcare Group Lp | Apparatus, System, and Method for Performing an Endoscopic Electrosurgical Procedure |
US8636761B2 (en) | 2008-10-09 | 2014-01-28 | Covidien Lp | Apparatus, system, and method for performing an endoscopic electrosurgical procedure |
US20100094286A1 (en) * | 2008-10-09 | 2010-04-15 | Tyco Healthcare Group Lp | Apparatus, System, and Method for Performing an Electrosurgical Procedure |
US9113898B2 (en) | 2008-10-09 | 2015-08-25 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8016827B2 (en) | 2008-10-09 | 2011-09-13 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8486107B2 (en) | 2008-10-20 | 2013-07-16 | Covidien Lp | Method of sealing tissue using radiofrequency energy |
US20100100122A1 (en) * | 2008-10-20 | 2010-04-22 | Tyco Healthcare Group Lp | Method of Sealing Tissue Using Radiofrequency Energy |
US8197479B2 (en) | 2008-12-10 | 2012-06-12 | Tyco Healthcare Group Lp | Vessel sealer and divider |
US20100145334A1 (en) * | 2008-12-10 | 2010-06-10 | Tyco Healthcare Group Lp | Vessel Sealer and Divider |
US10040172B2 (en) * | 2008-12-31 | 2018-08-07 | Richard WEISSENBORN | Ski or snowboard holding device |
US20150014910A1 (en) * | 2008-12-31 | 2015-01-15 | Richard WEISSENBORN | Ski or snowboard holding device |
US9655674B2 (en) | 2009-01-13 | 2017-05-23 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8852228B2 (en) | 2009-01-13 | 2014-10-07 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8858554B2 (en) | 2009-05-07 | 2014-10-14 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US9345535B2 (en) | 2009-05-07 | 2016-05-24 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US10085794B2 (en) | 2009-05-07 | 2018-10-02 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8454602B2 (en) | 2009-05-07 | 2013-06-04 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8523898B2 (en) | 2009-07-08 | 2013-09-03 | Covidien Lp | Endoscopic electrosurgical jaws with offset knife |
US9931131B2 (en) | 2009-09-18 | 2018-04-03 | Covidien Lp | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
US9028493B2 (en) | 2009-09-18 | 2015-05-12 | Covidien Lp | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
US8898888B2 (en) | 2009-09-28 | 2014-12-02 | Covidien Lp | System for manufacturing electrosurgical seal plates |
US20130224682A1 (en) * | 2010-08-19 | 2013-08-29 | Daniel Mueller | Double-Arched Tweezers for Dental Operations |
US8979531B2 (en) * | 2010-08-19 | 2015-03-17 | Dental Care Innovation Gmbh | Double-arched tweezers for dental operations |
US10383649B2 (en) | 2011-01-14 | 2019-08-20 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
US9113940B2 (en) | 2011-01-14 | 2015-08-25 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
US11660108B2 (en) | 2011-01-14 | 2023-05-30 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
USD680220S1 (en) | 2012-01-12 | 2013-04-16 | Coviden IP | Slider handle for laparoscopic device |
US8679140B2 (en) | 2012-05-30 | 2014-03-25 | Covidien Lp | Surgical clamping device with ratcheting grip lock |
US10646267B2 (en) | 2013-08-07 | 2020-05-12 | Covidien LLP | Surgical forceps |
US10231777B2 (en) | 2014-08-26 | 2019-03-19 | Covidien Lp | Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument |
US9987078B2 (en) | 2015-07-22 | 2018-06-05 | Covidien Lp | Surgical forceps |
US11382686B2 (en) | 2015-07-22 | 2022-07-12 | Covidien Lp | Surgical forceps |
US10631918B2 (en) | 2015-08-14 | 2020-04-28 | Covidien Lp | Energizable surgical attachment for a mechanical clamp |
US10987159B2 (en) | 2015-08-26 | 2021-04-27 | Covidien Lp | Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread |
US10213250B2 (en) | 2015-11-05 | 2019-02-26 | Covidien Lp | Deployment and safety mechanisms for surgical instruments |
US10856933B2 (en) | 2016-08-02 | 2020-12-08 | Covidien Lp | Surgical instrument housing incorporating a channel and methods of manufacturing the same |
CN106618674A (en) * | 2016-10-09 | 2017-05-10 | 上海导向医疗系统有限公司 | Straight liver cancer portal vein cancer thrombus fetching tongs |
US10918407B2 (en) | 2016-11-08 | 2021-02-16 | Covidien Lp | Surgical instrument for grasping, treating, and/or dividing tissue |
US11166759B2 (en) | 2017-05-16 | 2021-11-09 | Covidien Lp | Surgical forceps |
US11090050B2 (en) | 2019-09-03 | 2021-08-17 | Covidien Lp | Trigger mechanisms for surgical instruments and surgical instruments including the same |
US11793520B2 (en) | 2019-09-03 | 2023-10-24 | Covidien Lp | Trigger mechanisms for surgical instruments and surgical instruments including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3866610A (en) | Cardiovascular clamps | |
US3746002A (en) | Atraumatic surgical clamp | |
US4491135A (en) | Surgical needle holder | |
JP3860067B2 (en) | Positioning device for positioning a closing device | |
US4726372A (en) | Hemostatic clip | |
US5263967A (en) | Medical instrument with dual action drive | |
US4596249A (en) | Implement for setting sutures | |
US5261917A (en) | Suture tying forceps with a plurality of suture holders and method of tying a suture | |
JP3124027B2 (en) | Deformable plastic surgical clip application system | |
US5019092A (en) | Liver transplant clamp | |
US4245638A (en) | Surgical anastomosis clamping apparatus | |
JPS6114822B2 (en) | ||
BR112014001291B1 (en) | MEDICAL DEVICE FOR FABRIC HITCH WITH DETACHABLE ROTATING CLAWS | |
CA2970919A1 (en) | Uterine clamp for treating postpartum hemorrhage and facilitating uterine repairs | |
CN209004102U (en) | Ligature forceps and ligation external member | |
US3035582A (en) | Multiple forceps tissue holding instrument | |
US4226241A (en) | Surgical forceps | |
US5618305A (en) | Forceps with v-shaped grasping tips | |
CN209826824U (en) | Laparoscope tissue clamp | |
US4205681A (en) | Instrument for closed compression rupture of contracted fibrous capsule surrounding breast implant | |
CN113679478B (en) | Tong sleeve assembly for intestinal forceps | |
CN211862885U (en) | Renal artery blocking forceps for laparoscope | |
CN203841745U (en) | Endoscopic two-way knot pusher | |
US2717592A (en) | Pivoted surgical retractor | |
RU2776555C1 (en) | Medical clamp |