US3717174A - Perfusion safety valve - Google Patents
Perfusion safety valve Download PDFInfo
- Publication number
- US3717174A US3717174A US3717174DA US3717174A US 3717174 A US3717174 A US 3717174A US 3717174D A US3717174D A US 3717174DA US 3717174 A US3717174 A US 3717174A
- Authority
- US
- United States
- Prior art keywords
- blood
- tube
- closed space
- membrane wall
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/36—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests with means for eliminating or preventing injection or infusion of air into body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/22—Valves or arrangement of valves
- A61M39/227—Valves actuated by a secondary fluid, e.g. hydraulically or pneumatically actuated valves
- A61M39/228—Valves actuated by a secondary fluid, e.g. hydraulically or pneumatically actuated valves with a tubular diaphragm constrictable by radial fluid force
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7879—Resilient material valve
- Y10T137/788—Having expansible port
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/85978—With pump
- Y10T137/85986—Pumped fluid control
- Y10T137/86002—Fluid pressure responsive
- Y10T137/86019—Direct response valve
Definitions
- Patent 1 Dewall [54] PERFUSION SAFETY VALVE [76] Inventor: Richard A. Dewall, 247 Northview Rd., Dayton, Ohio 45419 [22] Filed: Aug. 3, 1971 [211 Appl. No.: 168,642
- ABSTRACT A perfusion safety valve for use in blood oxygenating systems.
- the valve includes an elongated, rigid, perforated tube and interiorly disposed therein is a collapsible membrane-like wall which may collapse to cut off the flow of blood through the tube.
- Exteriorly of the tube is a second membrane-like wall and the space between the two membrane walls is filled with a liquid.
- the liquid will pass through the perforations of the tube into the interior of the tube to cause collapse of the interior wall to shut off the flow through the valve to preclude the pumping of air into the arterial system of a patient using the oxygenating system.
- the exemplary embodiment of the invention achieves the foregoing objects by means of a construction employing an elongated, perforated, rigid tube. About the entire inner periphery of the tube there is provided a flexible, blood compatible membrane, while exteriorly of the tube, a generally similar membrane is provided. The two membranes are arranged with respect to each other and to the tube such that the closed space between the two membranes having a volume at least slightly greater than the volume of the interior of the tube results. The close space is filled with a biologically harmless liquid such as a saline solution.
- the typical positive displacement pump for the blood line is located downstream of the valve, and the valve is located downstream of an oxygenator or the like.
- the head of the blood in the oxygenator will be sufficient to maintain the inner membrane in substantial abutment with the interior wall of the tube so that blood may flow therethrough.
- the slight vacuum pulled by the pump will result in atmospheric pressure being applied to the outer membrane forcing the liquid in the closed space through the perforations into the tube to the interface between the interior of the tube and the inner membrane thereby causing the latter to collapse upon itself to terminate the flow of fluid through the line.
- the construction requires no operating components other than the positive displacement pump used in the oxygenating system itself and should the same fail, it will be obvious that there would be no chance of air embolism by reason of the ceasing of the pumping action.
- exterior equipment might be employed to control the valve position which equipment could fail while the pump continued in operation, in which case, the valve would be ineffective.
- barbed tubular extensions are secured to opposite ends of the tube for connection into typical plastic blood conduit tubing employed in such systems.
- FIG. 1 is a flow diagram illustrating a typical oxygenating system with which the inventive valve is designed to be employed;
- FIG. 2 is a sectional view of a valve made according to the invention showing the component parts when the valve is open;
- FIG. 3 is a sectional view of the valve in a closed condition
- FIG. 4 is a cross section of the valve in an open condition
- FIG. 5 is a cross section of the valve in a closed condition.
- FIG. 1 One typical system in which a valve made according to the invention is intended to be used is illustrated in schematic form in FIG. 1 and is seen to include a conventional blood oxygenator 10 adapted to receive venous blood from a patient 12. Downstream of the oxygenator 10, and physically below the oxygenator is a perfusion safety valve, generally designated 14, so that a head of blood is applied thereto. Downstream of the valve 14 is a positive displacement pump 16 which, in turn, provides oxygenated blood to the arterial system of the patient. As will be seen, the physical location of the valve 14 with respect to the oxygenator 10 is of some significance insofar as the valve in part responds to the lack of establishment of a predetermined head of blood applied thereto. This factor, coupled with the slight vacuum pulled by the positive displacement pump 16, will cause the valve 14 to close if the blood in the oxygenator reservoir 10 becomes exhausted.
- the valve 14 comprises an elongated, rigid tube 18 which may be formed of polycarbonate, methacrylate or similar plastic.
- the tube 18 is perforated as at 20 (additional perforations 20 may be located along virtually the entire length of the tube 18, if desired) and includes internal steps 22 at its ends.
- a circumferential membrane film 24 defining a blood impermeable wall.
- the membrane 24 is sufficiently flexible so that the same may collapse upon itself within the interior of the tube to cut off the flow of fluid therethrough and is formed of any suitable blood compatible material such as silicone rubber or a polyvinyl plastic.
- a second peripheral membrane film 26 Exteriorly of the tube 18 is a second peripheral membrane film 26, also formed of any suitable flexible material.
- the membranes 24 and 26 define a closed space 28 having a volume at least slightly greater than the volume of the interior of the tube 18 between the ends of the membranes 24 and 26 (and in the embodiment illustrated in FIGS. 2 and 3, the ends of the tube 18) and which is adapted to receive biologically harmless liquid such as a saline solution.
- the outer film 26 may be provided with a suitable sealable port (not shown) for the purpose of introducing a liquid into the closed space 28.
- the ends of the membrane 26 are sealingly secured to the ends of the tube 18 in any suitable fashion to partially define the closed space 28 while the ends of the membrane 24 may be received in the steps 22 of the tube 18.
- any suitable means such as an adhesive may be employed or, in the alternative, for the two-fold purpose of establishing sealing engagement between the membrane 24 and the tube 18 and to facilitate connec tion of the latter into blood conduit tubing
- tubular extensions 30 having complementary steps 32 may be received in the steps 22 and secured thereto to sealingly hold the ends of the membrane 24 thereagainst.
- the extensions 30 include barbed ends 34 for receipt into conventional plastic tubing employed in the blood line.
- a suitable conduit from the oxygenator will be secured to one of the barbed extensions 30 while the conduit to the pump 16 will be secured to the other barbed extension 30.
- the pressure of the same will maintain the membrane 24 in the position illustrated in FIGS. 2 and 4 so that blood may pass through the valve 14 to the pump 16 and then to the patient 12.
- the slight vacuum pulled by the pump will result in the atmospheric pressure applied to the outer membrane 26 collapsing the same driving the saline solution within the closed space 28 through the perforations to force the inner membrane 24 to seal upon itself as illustrated in FIGS. 3 and 5 to halt the flow of fluid through the line while at least a minimal quantity of blood remains therein to preclude any possibility of air embolism.
- the internal diameter of the tube 18 is about three-eighths of an inch while the length of the surface of the inner membrane 24 that may collapse upon itself will be at least ten times that length so that the capability of sealing upon collapse is enhanced. For a typical construction, this would require a length on the order of 4 to 6 inches.
- a valve made according to the invention does not require operating equipment other than that found in the oxygenating system itself so that system failure cannot be occasioned by failure of peripheral equipment.
- the simplicity of construction coupled with positive action results in an inexpensive construction that is completely reliable and one which may be disposed of after a single use.
- a blood oxygenating system including a perfusion safety valve comprising an elongated, relatively rigid, perforated tube; means at each end of said tube for connecting the same into a conduit in which blood is flowing; a peripheral inner membrane wall formed of a flexible material compatible with blood within said tube; an outer membrane wall outside of said tube; said inner and outer membrane walls defining a closed space; and a liquid within said closed space; whereby when blood is flowing through said tube, said inner membrane wall will be in substantial abutment with the internal surface of said tube while when blood ceases to flow to said tube, a slight vacuum in the blood line will cause the liquid in said closed space to flow through the perforations in said tube to cause said inner membrane wall to collapse upon itself to seal off the blood line, a blood oxygenator adapted to receive blood from a patient for oxygenating the same; means establishing a blood flow path from said oxygenator to one of said connecting means; a blood pump; means establishing a blood flow path from the other of said connecting means to said blood pump, said blood pump being
- said inner membrane wall has a length equal to about at least ten times the cross sectional dimension of "said tube; said closed space has a volume at least slightly greater than the volume of the interior of said tube along the length of the inner membrane wall; and the liquid in said closed space is a biologically harmless liquid.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Emergency Medicine (AREA)
- Pulmonology (AREA)
- External Artificial Organs (AREA)
Abstract
A perfusion safety valve for use in blood oxygenating systems. The valve includes an elongated, rigid, perforated tube and interiorly disposed therein is a collapsible membrane-like wall which may collapse to cut off the flow of blood through the tube. Exteriorly of the tube is a second membrane-like wall and the space between the two membrane walls is filled with a liquid. When a slight vacuum is pulled against the inner membrane wall, the liquid will pass through the perforations of the tube into the interior of the tube to cause collapse of the interior wall to shut off the flow through the valve to preclude the pumping of air into the arterial system of a patient using the oxygenating system.
Description
Emit/ed States Patent 1 Dewall [54] PERFUSION SAFETY VALVE [76] Inventor: Richard A. Dewall, 247 Northview Rd., Dayton, Ohio 45419 [22] Filed: Aug. 3, 1971 [211 Appl. No.: 168,642
[52] U.S. Cl ..137/565, 23/2585, 128/214 R, 137/525, 251/5 [51] Int. Cl. ..A61m 5/16 [58] Field of Search...23/258.5; 251/4, 5; 128/214 R, 128/214 E, 214 F, 274; 137/494, 511, 525, 525.1, 565; 3/DIG. 3
[56] References Cited UNITED STATES PATENTS 3,513,845 5/1970 Chesnut et al. ..l28/2l4 R 2,756,959 7/1956 Hill ..251/5 2,572,658 10/1951 Perkins v ..l37/494 X 3,183,908 5/1965 Collins et al.. ..23/258 5 3,204,631 9/1965 Fields 23/258 5 2,964,285 12/1960 Bardet ..25l/5 1 Feb. 20, 1973 2,982,511 5/1961 Connor ..251/5 Primary ExaminerAlan Cohan Assistant Examiner-Gerald A. Michalsky Attorney-Axel A. Hofgren et al.
[57] ABSTRACT A perfusion safety valve for use in blood oxygenating systems. The valve includes an elongated, rigid, perforated tube and interiorly disposed therein is a collapsible membrane-like wall which may collapse to cut off the flow of blood through the tube. Exteriorly of the tube is a second membrane-like wall and the space between the two membrane walls is filled with a liquid. When a slight vacuum is pulled against the inner membrane wall, the liquid will pass through the perforations of the tube into the interior of the tube to cause collapse of the interior wall to shut off the flow through the valve to preclude the pumping of air into the arterial system of a patient using the oxygenating system.
3 Claims, 5 Drawing Figures e 0 XYGEN/l To PA TIE/VT vm v5 K14 PERFUSION SAFETY VALVE BACKGROUND OF THE INVENTION This invention relates to perfusion safety valves par ticularly suited for use in blood oxygenating systems.
The continuing progress of medical science has resulted in highly complicated surgical procedures becoming relatively commonplace. One class of such procedures involves the use of heart lung machines or the like wherein blood is removed from the venous system of a patient, oxygenated and returned to the arterial system of the patient. Typically, structures known as oxygenators are employed in such procedures and require monitoring by trained personnel to insure that blood in the oxygenating system will not be exhausted with the result that air might be pumped into the patient to cause air embolism, a condition frequently resulting in death. As a safeguardagainst inattentive.- ness of an attendant monitoring the blood level in the oxygenating system, it is desirable to provide means for automatically cutting off the flow of blood should blood reach a predetermined degree of exhaustion to preclude the pumping of air into the patient, such as a valve.
SUMMARY OF THE INVENTION It is a principal object of the invention to provide a new and improved perfusion safety valve for receipt in a blood oxygenating system that is responsive to exhaustion of blood in an oxygenator or the like to automatically stop the flow of fluid through a line leading to the patient to preclude the pumping of air into the patients arterial system and the attendant catastrophic results. More particularly, it is an object of the invention to provide such a valve that is inexpensive to manufacture, is positive in its action without requiring the use of equipment peripheral-to that employed in the oxygenating system to perform its function, and which may be disposed of after a single use if desired.
The exemplary embodiment of the invention achieves the foregoing objects by means of a construction employing an elongated, perforated, rigid tube. About the entire inner periphery of the tube there is provided a flexible, blood compatible membrane, while exteriorly of the tube, a generally similar membrane is provided. The two membranes are arranged with respect to each other and to the tube such that the closed space between the two membranes having a volume at least slightly greater than the volume of the interior of the tube results. The close space is filled with a biologically harmless liquid such as a saline solution.
When employed in an oxygenating system, the typical positive displacement pump for the blood line is located downstream of the valve, and the valve is located downstream of an oxygenator or the like. Normally, the head of the blood in the oxygenator will be sufficient to maintain the inner membrane in substantial abutment with the interior wall of the tube so that blood may flow therethrough. When the head decreases to a certain value, the slight vacuum pulled by the pump will result in atmospheric pressure being applied to the outer membrane forcing the liquid in the closed space through the perforations into the tube to the interface between the interior of the tube and the inner membrane thereby causing the latter to collapse upon itself to terminate the flow of fluid through the line.
Thus, the construction requires no operating components other than the positive displacement pump used in the oxygenating system itself and should the same fail, it will be obvious that there would be no chance of air embolism by reason of the ceasing of the pumping action. This is in contrast to an arrangement wherein exterior equipment: might be employed to control the valve position which equipment could fail while the pump continued in operation, in which case, the valve would be ineffective.
For ease of use, barbed tubular extensions are secured to opposite ends of the tube for connection into typical plastic blood conduit tubing employed in such systems.
Other objects and advantages will become apparent from the following specification taken in conjunction with the accompanying drawings.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow diagram illustrating a typical oxygenating system with which the inventive valve is designed to be employed;
FIG. 2 is a sectional view of a valve made according to the invention showing the component parts when the valve is open;
FIG. 3 is a sectional view of the valve in a closed condition;
FIG. 4 is a cross section of the valve in an open condition; and
FIG. 5 is a cross section of the valve in a closed condition.
DESCRIPTION OF THE PREFERRED EMBODIMENT One typical system in which a valve made according to the invention is intended to be used is illustrated in schematic form in FIG. 1 and is seen to include a conventional blood oxygenator 10 adapted to receive venous blood from a patient 12. Downstream of the oxygenator 10, and physically below the oxygenator is a perfusion safety valve, generally designated 14, so that a head of blood is applied thereto. Downstream of the valve 14 is a positive displacement pump 16 which, in turn, provides oxygenated blood to the arterial system of the patient. As will be seen, the physical location of the valve 14 with respect to the oxygenator 10 is of some significance insofar as the valve in part responds to the lack of establishment of a predetermined head of blood applied thereto. This factor, coupled with the slight vacuum pulled by the positive displacement pump 16, will cause the valve 14 to close if the blood in the oxygenator reservoir 10 becomes exhausted.
Turning now to FIG. 2, an exemplary embodiment of the valve 14 is illustrated in cross section. The valve 14 comprises an elongated, rigid tube 18 which may be formed of polycarbonate, methacrylate or similar plastic. The tube 18 is perforated as at 20 (additional perforations 20 may be located along virtually the entire length of the tube 18, if desired) and includes internal steps 22 at its ends.
Within the tube 18 is a circumferential membrane film 24 defining a blood impermeable wall. The membrane 24 is sufficiently flexible so that the same may collapse upon itself within the interior of the tube to cut off the flow of fluid therethrough and is formed of any suitable blood compatible material such as silicone rubber or a polyvinyl plastic.
Exteriorly of the tube 18 is a second peripheral membrane film 26, also formed of any suitable flexible material. The membranes 24 and 26 define a closed space 28 having a volume at least slightly greater than the volume of the interior of the tube 18 between the ends of the membranes 24 and 26 (and in the embodiment illustrated in FIGS. 2 and 3, the ends of the tube 18) and which is adapted to receive biologically harmless liquid such as a saline solution. If desired, the outer film 26 may be provided with a suitable sealable port (not shown) for the purpose of introducing a liquid into the closed space 28.
The ends of the membrane 26 are sealingly secured to the ends of the tube 18 in any suitable fashion to partially define the closed space 28 while the ends of the membrane 24 may be received in the steps 22 of the tube 18. To maintain the same in sealed engagement therewith, any suitable means such as an adhesive may be employed or, in the alternative, for the two-fold purpose of establishing sealing engagement between the membrane 24 and the tube 18 and to facilitate connec tion of the latter into blood conduit tubing, tubular extensions 30 having complementary steps 32 may be received in the steps 22 and secured thereto to sealingly hold the ends of the membrane 24 thereagainst. The extensions 30 include barbed ends 34 for receipt into conventional plastic tubing employed in the blood line.
In operation, a suitable conduit from the oxygenator will be secured to one of the barbed extensions 30 while the conduit to the pump 16 will be secured to the other barbed extension 30. As long as the head of blood within the oxygenator reservoir exceeds a predetermined level, the pressure of the same will maintain the membrane 24 in the position illustrated in FIGS. 2 and 4 so that blood may pass through the valve 14 to the pump 16 and then to the patient 12. However, should the head of blood in the reservoir fall below the desired level, the slight vacuum pulled by the pump will result in the atmospheric pressure applied to the outer membrane 26 collapsing the same driving the saline solution within the closed space 28 through the perforations to force the inner membrane 24 to seal upon itself as illustrated in FIGS. 3 and 5 to halt the flow of fluid through the line while at least a minimal quantity of blood remains therein to preclude any possibility of air embolism.
According to one embodiment of the invention, the internal diameter of the tube 18 is about three-eighths of an inch while the length of the surface of the inner membrane 24 that may collapse upon itself will be at least ten times that length so that the capability of sealing upon collapse is enhanced. For a typical construction, this would require a length on the order of 4 to 6 inches.
From the foregoing, it will be appreciated that a valve made according to the invention does not require operating equipment other than that found in the oxygenating system itself so that system failure cannot be occasioned by failure of peripheral equipment. Moreover, the simplicity of construction coupled with positive action results in an inexpensive construction that is completely reliable and one which may be disposed of after a single use.
I claim: 1. A blood oxygenating system including a perfusion safety valve comprising an elongated, relatively rigid, perforated tube; means at each end of said tube for connecting the same into a conduit in which blood is flowing; a peripheral inner membrane wall formed of a flexible material compatible with blood within said tube; an outer membrane wall outside of said tube; said inner and outer membrane walls defining a closed space; and a liquid within said closed space; whereby when blood is flowing through said tube, said inner membrane wall will be in substantial abutment with the internal surface of said tube while when blood ceases to flow to said tube, a slight vacuum in the blood line will cause the liquid in said closed space to flow through the perforations in said tube to cause said inner membrane wall to collapse upon itself to seal off the blood line, a blood oxygenator adapted to receive blood from a patient for oxygenating the same; means establishing a blood flow path from said oxygenator to one of said connecting means; a blood pump; means establishing a blood flow path from the other of said connecting means to said blood pump, said blood pump being adapted to conduct oxygenated blood to the patient and further being a positive displacement pump whereby a slight vacuum may be pulled upstream of the same so that the absence of blood flowing from said oxygenator to said valve will result in said valve closing to preclude the pumping of air into the arterial system of the patient.
2. The blood oxygenating system of claim 1 wherein said inner membrane wall has a length equal to about at least ten times the cross sectional dimension of "said tube; said closed space has a volume at least slightly greater than the volume of the interior of said tube along the length of the inner membrane wall; and the liquid in said closed space is a biologically harmless liquid.
3. A blood oxygenating system according to claim 2 wherein said connecting means comprise barbed, tubular extensions on both ends of said tube.
Claims (3)
1. A blood oxygenating system including a perfusion safety valve comprising an elongated, relatively rigid, perforated tube; means at each end of said tube for connecting the same into a conduit in which blood is flowing; a peripheral inner membrane wall formed of a flexible material compatible with blood within said tube; an outer membrane wall outside of said tube; said inner and outer membrane walls defining a closed space; and a liquid within said closed space; whereby when blood is flowing through said tube, said inner membrane wall will be in substantial abutment with the internal surface of said tube while when blood ceases to flow to said tube, a slight vacuum in the blood line will cause the liquid in said closed space to flow through the perforations in said tube to cause said inner membrane wall to collapse upon itself to seal off the blood line, a blood oxygenator adapted to receive blood from a patient for oxygenating the same; means Establishing a blood flow path from said oxygenator to one of said connecting means; a blood pump; means establishing a blood flow path from the other of said connecting means to said blood pump, said blood pump being adapted to conduct oxygenated blood to the patient and further being a positive displacement pump whereby a slight vacuum may be pulled upstream of the same so that the absence of blood flowing from said oxygenator to said valve will result in said valve closing to preclude the pumping of air into the arterial system of the patient.
1. A blood oxygenating system including a perfusion safety valve comprising an elongated, relatively rigid, perforated tube; means at each end of said tube for connecting the same into a conduit in which blood is flowing; a peripheral inner membrane wall formed of a flexible material compatible with blood within said tube; an outer membrane wall outside of said tube; said inner and outer membrane walls defining a closed space; and a liquid within said closed space; whereby when blood is flowing through said tube, said inner membrane wall will be in substantial abutment with the internal surface of said tube while when blood ceases to flow to said tube, a slight vacuum in the blood line will cause the liquid in said closed space to flow through the perforations in said tube to cause said inner membrane wall to collapse upon itself to seal off the blood line, a blood oxygenator adapted to receive blood from a patient for oxygenating the same; means Establishing a blood flow path from said oxygenator to one of said connecting means; a blood pump; means establishing a blood flow path from the other of said connecting means to said blood pump, said blood pump being adapted to conduct oxygenated blood to the patient and further being a positive displacement pump whereby a slight vacuum may be pulled upstream of the same so that the absence of blood flowing from said oxygenator to said valve will result in said valve closing to preclude the pumping of air into the arterial system of the patient.
2. The blood oxygenating system of claim 1 wherein said inner membrane wall has a length equal to about at least ten times the cross sectional dimension of said tube; said closed space has a volume at least slightly greater than the volume of the interior of said tube along the length of the inner membrane wall; and the liquid in said closed space is a biologically harmless liquid.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16864271A | 1971-08-03 | 1971-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3717174A true US3717174A (en) | 1973-02-20 |
Family
ID=22612348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US3717174D Expired - Lifetime US3717174A (en) | 1971-08-03 | 1971-08-03 | Perfusion safety valve |
Country Status (6)
Country | Link |
---|---|
US (1) | US3717174A (en) |
CA (1) | CA999499A (en) |
DE (1) | DE2237858A1 (en) |
FR (1) | FR2148219B1 (en) |
GB (1) | GB1399501A (en) |
IT (1) | IT961755B (en) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3833013A (en) * | 1972-04-06 | 1974-09-03 | Baxter Laboratories Inc | Self-valving fluid reservoir and bubble trap |
US3849071A (en) * | 1972-12-21 | 1974-11-19 | K Kayser | Blood-gas separating system for perfusate circulation |
US3889648A (en) * | 1972-04-04 | 1975-06-17 | Cav Ltd | Fuel systems for engines |
US3907504A (en) * | 1973-04-06 | 1975-09-23 | Gen Electric | Blood oxygenation system including automatic means for stabilizing the flow rate of blood therethrough |
US3927980A (en) * | 1973-08-22 | 1975-12-23 | Baxter Laboratories Inc | Oxygen overpressure protection system for membrane-type blood oxygenators |
US3991768A (en) * | 1973-03-16 | 1976-11-16 | Portnoy Harold D | Shunt system resistant to overdrainage and siphoning and valve therefor |
US4131431A (en) * | 1976-12-27 | 1978-12-26 | Siposs George G | Blood shut-off valve |
US4140635A (en) * | 1977-04-13 | 1979-02-20 | Esmond William G | Purification device |
EP0045668A1 (en) * | 1980-08-06 | 1982-02-10 | Peter Steer Developments Limited | Device for controlling the flow of liquid |
US4515589A (en) * | 1981-03-23 | 1985-05-07 | Austin Jon W | Peristaltic pumping method and apparatus |
US4527588A (en) * | 1983-12-14 | 1985-07-09 | Warner-Lambert Company | Safety valve |
DE3420861A1 (en) * | 1984-06-05 | 1985-12-05 | Biotest Pharma GmbH, 6000 Frankfurt | Peristaltic pump for medical purposes |
WO1987004079A1 (en) * | 1986-01-13 | 1987-07-16 | Sawyer Philip Nicholas | Methods for preventing the introduction of air or fluid reflux into the body of a patient |
US4684364A (en) * | 1983-04-12 | 1987-08-04 | Interface Biomedical Laboratories Corporation | Safety arrangement for preventing air embolism during intravenous procedures |
US4722725A (en) * | 1983-04-12 | 1988-02-02 | Interface Biomedical Laboratories, Inc. | Methods for preventing the introduction of air or fluid into the body of a patient |
US4877025A (en) * | 1988-10-06 | 1989-10-31 | Hanson Donald W | Tracheostomy tube valve apparatus |
US4883461A (en) * | 1987-05-15 | 1989-11-28 | Interface Biomedical Laboratories Corp. | Safety needle sheath in anti-reflux catheter having novel valve means |
US5152964A (en) * | 1988-12-14 | 1992-10-06 | Minnesota Mining And Manufacturing Company | Membrane blood oxygenator |
US5161773A (en) * | 1990-08-01 | 1992-11-10 | Numed, Inc. | Method and apparatus for controlling fluid flow |
US5186431A (en) * | 1989-09-22 | 1993-02-16 | Yehuda Tamari | Pressure sensitive valves for extracorporeal circuits |
US5378299A (en) * | 1991-05-20 | 1995-01-03 | M & D Balloons, Inc. | Method of making a balloon with flat film valve |
US5382407A (en) * | 1988-12-14 | 1995-01-17 | Minnesota Mining And Manufacturing Company | Membrane blood oxygenator |
US5482492A (en) * | 1994-01-10 | 1996-01-09 | M & D Balloons, Inc. | Balloons and balloon valves |
EP0701834A1 (en) * | 1994-09-16 | 1996-03-20 | Georges Boussignac | Respiratory assistance device |
US20040054348A1 (en) * | 2002-09-12 | 2004-03-18 | Michael Hogendijk | Catheter having a compliant member configured to regulate aspiration rates |
US20040073174A1 (en) * | 1991-12-18 | 2004-04-15 | Lopez George A. | Medical valve and method of use |
US20060200086A1 (en) * | 1995-12-15 | 2006-09-07 | Lopez George A | Medical valve with fluid escape space |
US20080029173A1 (en) * | 2006-08-07 | 2008-02-07 | Diperna Paul Mario | Variable flow reshapable flow restrictor apparatus and related methods |
US20080196762A1 (en) * | 2002-07-19 | 2008-08-21 | Scott Mallett | Systems and methods for the accurate delivery of flow materials |
US20090217982A1 (en) * | 2008-02-28 | 2009-09-03 | Phluid Inc. | Adjustable flow controllers for real-time modulation of flow rate |
US20100032041A1 (en) * | 2008-08-08 | 2010-02-11 | Tandem Diabetes Care, Inc. | System of stepped flow rate regulation using compressible members |
US20100065578A1 (en) * | 2008-09-16 | 2010-03-18 | Diperna Paul M | Flow regulating stopcocks and related methods |
USD644731S1 (en) | 2010-03-23 | 2011-09-06 | Icu Medical, Inc. | Medical connector |
US8034065B2 (en) * | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8105314B2 (en) | 2006-10-25 | 2012-01-31 | Icu Medical, Inc. | Medical connector |
US8287495B2 (en) | 2009-07-30 | 2012-10-16 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US8444628B2 (en) | 2000-07-11 | 2013-05-21 | Icu Medical, Inc. | Needleless medical connector |
US8454579B2 (en) | 2009-03-25 | 2013-06-04 | Icu Medical, Inc. | Medical connector with automatic valves and volume regulator |
US20130296783A1 (en) * | 2010-06-14 | 2013-11-07 | University Of Manitoba | Method and apparatus for retroperfusion |
US8650937B2 (en) | 2008-09-19 | 2014-02-18 | Tandem Diabetes Care, Inc. | Solute concentration measurement device and related methods |
US8758306B2 (en) | 2010-05-17 | 2014-06-24 | Icu Medical, Inc. | Medical connectors and methods of use |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
US9186494B2 (en) | 2004-11-05 | 2015-11-17 | Icu Medical, Inc. | Medical connector |
USD786427S1 (en) | 2014-12-03 | 2017-05-09 | Icu Medical, Inc. | Fluid manifold |
USD793551S1 (en) | 2014-12-03 | 2017-08-01 | Icu Medical, Inc. | Fluid manifold |
US9962486B2 (en) | 2013-03-14 | 2018-05-08 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US10258736B2 (en) | 2012-05-17 | 2019-04-16 | Tandem Diabetes Care, Inc. | Systems including vial adapter for fluid transfer |
US10369349B2 (en) | 2013-12-11 | 2019-08-06 | Icu Medical, Inc. | Medical fluid manifold |
US20210369998A1 (en) * | 2020-05-28 | 2021-12-02 | Xuanwu Hospital Capital Medical University | Cannula plugging device for rehabilitation after tracheotomy |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU576806B2 (en) * | 1983-12-28 | 1988-09-08 | Sweepy International S.A. | Diaphragm valve assembly for pool cleaner |
CN111043348A (en) * | 2019-12-18 | 2020-04-21 | 武汉圣禹排水系统有限公司 | Rubber sleeve with mounting structure and pipeline provided with same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2572658A (en) * | 1948-02-16 | 1951-10-23 | Albert G Perkins | Automatic teat cup release device for milking machines |
US2756959A (en) * | 1951-07-25 | 1956-07-31 | Globe Company | Fluid-pressure responsive sphincter valve |
US2964285A (en) * | 1958-09-09 | 1960-12-13 | Soc D Ciments De Marseille Et | Direct-passage valve |
US2982511A (en) * | 1959-02-27 | 1961-05-02 | Douglas M Connor | Pressure-operated control valve |
US3183908A (en) * | 1961-09-18 | 1965-05-18 | Samuel C Collins | Pump oxygenator system |
US3204631A (en) * | 1961-05-01 | 1965-09-07 | Louis G Fields | Blood oxygenator and pump apparatus |
US3513845A (en) * | 1966-09-15 | 1970-05-26 | United Aircraft Corp | Bypass heart pump and oxygenator system |
-
1971
- 1971-08-03 US US3717174D patent/US3717174A/en not_active Expired - Lifetime
-
1972
- 1972-07-17 CA CA147,286A patent/CA999499A/en not_active Expired
- 1972-07-27 GB GB3521372A patent/GB1399501A/en not_active Expired
- 1972-07-28 IT IT5184872A patent/IT961755B/en active
- 1972-08-01 DE DE2237858A patent/DE2237858A1/en active Pending
- 1972-08-02 FR FR7227932A patent/FR2148219B1/fr not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2572658A (en) * | 1948-02-16 | 1951-10-23 | Albert G Perkins | Automatic teat cup release device for milking machines |
US2756959A (en) * | 1951-07-25 | 1956-07-31 | Globe Company | Fluid-pressure responsive sphincter valve |
US2964285A (en) * | 1958-09-09 | 1960-12-13 | Soc D Ciments De Marseille Et | Direct-passage valve |
US2982511A (en) * | 1959-02-27 | 1961-05-02 | Douglas M Connor | Pressure-operated control valve |
US3204631A (en) * | 1961-05-01 | 1965-09-07 | Louis G Fields | Blood oxygenator and pump apparatus |
US3183908A (en) * | 1961-09-18 | 1965-05-18 | Samuel C Collins | Pump oxygenator system |
US3513845A (en) * | 1966-09-15 | 1970-05-26 | United Aircraft Corp | Bypass heart pump and oxygenator system |
Cited By (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3889648A (en) * | 1972-04-04 | 1975-06-17 | Cav Ltd | Fuel systems for engines |
US3833013A (en) * | 1972-04-06 | 1974-09-03 | Baxter Laboratories Inc | Self-valving fluid reservoir and bubble trap |
US3849071A (en) * | 1972-12-21 | 1974-11-19 | K Kayser | Blood-gas separating system for perfusate circulation |
US3991768A (en) * | 1973-03-16 | 1976-11-16 | Portnoy Harold D | Shunt system resistant to overdrainage and siphoning and valve therefor |
US3907504A (en) * | 1973-04-06 | 1975-09-23 | Gen Electric | Blood oxygenation system including automatic means for stabilizing the flow rate of blood therethrough |
US3927980A (en) * | 1973-08-22 | 1975-12-23 | Baxter Laboratories Inc | Oxygen overpressure protection system for membrane-type blood oxygenators |
US4131431A (en) * | 1976-12-27 | 1978-12-26 | Siposs George G | Blood shut-off valve |
US4140635A (en) * | 1977-04-13 | 1979-02-20 | Esmond William G | Purification device |
EP0045668A1 (en) * | 1980-08-06 | 1982-02-10 | Peter Steer Developments Limited | Device for controlling the flow of liquid |
US4515589A (en) * | 1981-03-23 | 1985-05-07 | Austin Jon W | Peristaltic pumping method and apparatus |
US4684364A (en) * | 1983-04-12 | 1987-08-04 | Interface Biomedical Laboratories Corporation | Safety arrangement for preventing air embolism during intravenous procedures |
US4722725A (en) * | 1983-04-12 | 1988-02-02 | Interface Biomedical Laboratories, Inc. | Methods for preventing the introduction of air or fluid into the body of a patient |
US4527588A (en) * | 1983-12-14 | 1985-07-09 | Warner-Lambert Company | Safety valve |
DE3420861A1 (en) * | 1984-06-05 | 1985-12-05 | Biotest Pharma GmbH, 6000 Frankfurt | Peristaltic pump for medical purposes |
WO1987004079A1 (en) * | 1986-01-13 | 1987-07-16 | Sawyer Philip Nicholas | Methods for preventing the introduction of air or fluid reflux into the body of a patient |
US4883461A (en) * | 1987-05-15 | 1989-11-28 | Interface Biomedical Laboratories Corp. | Safety needle sheath in anti-reflux catheter having novel valve means |
US4877025A (en) * | 1988-10-06 | 1989-10-31 | Hanson Donald W | Tracheostomy tube valve apparatus |
US5152964A (en) * | 1988-12-14 | 1992-10-06 | Minnesota Mining And Manufacturing Company | Membrane blood oxygenator |
US5382407A (en) * | 1988-12-14 | 1995-01-17 | Minnesota Mining And Manufacturing Company | Membrane blood oxygenator |
US5186431A (en) * | 1989-09-22 | 1993-02-16 | Yehuda Tamari | Pressure sensitive valves for extracorporeal circuits |
US5305982A (en) * | 1989-09-22 | 1994-04-26 | Yehuda Tamari | Adjustable static pressure regulator |
US5161773A (en) * | 1990-08-01 | 1992-11-10 | Numed, Inc. | Method and apparatus for controlling fluid flow |
US5378299A (en) * | 1991-05-20 | 1995-01-03 | M & D Balloons, Inc. | Method of making a balloon with flat film valve |
US7717884B2 (en) | 1991-12-18 | 2010-05-18 | Icu Medical, Inc. | Medical valve and method of use |
US20040073174A1 (en) * | 1991-12-18 | 2004-04-15 | Lopez George A. | Medical valve and method of use |
US7713249B2 (en) | 1991-12-18 | 2010-05-11 | Icu Medical, Inc. | Medical valve and method of use |
US7713247B2 (en) | 1991-12-18 | 2010-05-11 | Icu Medical, Inc. | Medical valve and method of use |
US7717885B2 (en) | 1991-12-18 | 2010-05-18 | Icu Medical, Inc. | Medical valve and method of use |
US7717886B2 (en) | 1991-12-18 | 2010-05-18 | Icu Medical, Inc. | Medical valve and method of use |
US7713248B2 (en) | 1991-12-18 | 2010-05-11 | Icu Medical, Inc. | Medical valve and method of use |
US7717887B2 (en) | 1991-12-18 | 2010-05-18 | Icu Medical, Inc. | Medical valve and method of use |
US7722576B2 (en) | 1991-12-18 | 2010-05-25 | Icu Medical, Inc. | Medical valve and method of use |
US20040243070A1 (en) * | 1991-12-18 | 2004-12-02 | Lopez George A. | Medical valve and method of use |
US7722575B2 (en) | 1991-12-18 | 2010-05-25 | Icu Medical, Inc. | Medical valve and method of use |
US7717883B2 (en) | 1991-12-18 | 2010-05-18 | Icu Medical, Inc. | Medical valve and method of use |
US20060206058A1 (en) * | 1991-12-18 | 2006-09-14 | Lopez George A | Medical valve and method of use |
US20060264892A1 (en) * | 1991-12-18 | 2006-11-23 | Icu Medical, Inc. | Medical valve and method of use |
US20060264845A1 (en) * | 1991-12-18 | 2006-11-23 | Icu Medical, Inc. | Medical valve and method of use |
WO1993018324A1 (en) * | 1992-03-13 | 1993-09-16 | Yehuda Tamari | Pressure sensitive devices for extracorporeal pumping |
US5482492A (en) * | 1994-01-10 | 1996-01-09 | M & D Balloons, Inc. | Balloons and balloon valves |
US5595521A (en) * | 1994-01-10 | 1997-01-21 | M & D Balloons, Inc. | Balloons and balloon valves |
US5538002A (en) * | 1994-09-14 | 1996-07-23 | Boussignac; Georges | Device for respiratory assistance |
FR2724564A1 (en) * | 1994-09-16 | 1996-03-22 | Boussignac Georges | RESPIRATORY ASSISTANCE DEVICE |
EP0701834A1 (en) * | 1994-09-16 | 1996-03-20 | Georges Boussignac | Respiratory assistance device |
US20060200086A1 (en) * | 1995-12-15 | 2006-09-07 | Lopez George A | Medical valve with fluid escape space |
US8002765B2 (en) | 1995-12-15 | 2011-08-23 | Icu Medical, Inc. | Medical valve with fluid escape space |
US8870850B2 (en) | 2000-07-11 | 2014-10-28 | Icu Medical, Inc. | Medical connector |
US8444628B2 (en) | 2000-07-11 | 2013-05-21 | Icu Medical, Inc. | Needleless medical connector |
US9238129B2 (en) | 2000-07-11 | 2016-01-19 | Icu Medical, Inc. | Medical connector |
US20080196762A1 (en) * | 2002-07-19 | 2008-08-21 | Scott Mallett | Systems and methods for the accurate delivery of flow materials |
US20040054348A1 (en) * | 2002-09-12 | 2004-03-18 | Michael Hogendijk | Catheter having a compliant member configured to regulate aspiration rates |
US6887220B2 (en) * | 2002-09-12 | 2005-05-03 | Gore Enterprise Holdings, Inc. | Catheter having a compliant member configured to regulate aspiration rates |
WO2004024210A3 (en) * | 2002-09-12 | 2004-06-24 | Arteria Medical Science Inc | Compliant member for catheter to regulate aspiration rates |
US9415200B2 (en) | 2004-11-05 | 2016-08-16 | Icu Medical, Inc. | Medical connector |
US9884176B2 (en) | 2004-11-05 | 2018-02-06 | Icu Medical, Inc. | Medical connector |
US9186494B2 (en) | 2004-11-05 | 2015-11-17 | Icu Medical, Inc. | Medical connector |
US11883623B2 (en) | 2004-11-05 | 2024-01-30 | Icu Medical, Inc. | Medical connector |
US10722698B2 (en) | 2004-11-05 | 2020-07-28 | Icu Medical, Inc. | Medical connector |
US20080029173A1 (en) * | 2006-08-07 | 2008-02-07 | Diperna Paul Mario | Variable flow reshapable flow restrictor apparatus and related methods |
US9533137B2 (en) | 2006-10-25 | 2017-01-03 | Icu Medical, Inc. | Medical connector |
US8105314B2 (en) | 2006-10-25 | 2012-01-31 | Icu Medical, Inc. | Medical connector |
US8628515B2 (en) | 2006-10-25 | 2014-01-14 | Icu Medical, Inc. | Medical connector |
US8398607B2 (en) | 2006-10-25 | 2013-03-19 | Icu Medical, Inc. | Medical connector |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
US8034065B2 (en) * | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US20090217982A1 (en) * | 2008-02-28 | 2009-09-03 | Phluid Inc. | Adjustable flow controllers for real-time modulation of flow rate |
US8056582B2 (en) | 2008-08-08 | 2011-11-15 | Tandem Diabetes Care, Inc. | System of stepped flow rate regulation using compressible members |
US20100032041A1 (en) * | 2008-08-08 | 2010-02-11 | Tandem Diabetes Care, Inc. | System of stepped flow rate regulation using compressible members |
US8408421B2 (en) | 2008-09-16 | 2013-04-02 | Tandem Diabetes Care, Inc. | Flow regulating stopcocks and related methods |
US8448824B2 (en) | 2008-09-16 | 2013-05-28 | Tandem Diabetes Care, Inc. | Slideable flow metering devices and related methods |
US20100065578A1 (en) * | 2008-09-16 | 2010-03-18 | Diperna Paul M | Flow regulating stopcocks and related methods |
US8650937B2 (en) | 2008-09-19 | 2014-02-18 | Tandem Diabetes Care, Inc. | Solute concentration measurement device and related methods |
US11931539B2 (en) | 2009-03-25 | 2024-03-19 | Icu Medical, Inc. | Medical connectors and methods of use |
US11986618B1 (en) | 2009-03-25 | 2024-05-21 | Icu Medical, Inc. | Medical connector having elongated portion within seal collar |
US11896795B2 (en) | 2009-03-25 | 2024-02-13 | Icu Medical, Inc | Medical connector having elongated portion within closely conforming seal collar |
US12059545B2 (en) | 2009-03-25 | 2024-08-13 | Icu Medical, Inc. | Medical connector with elongated portion within seal collar |
US11376411B2 (en) | 2009-03-25 | 2022-07-05 | Icu Medical, Inc. | Medical connectors and methods of use |
US10799692B2 (en) | 2009-03-25 | 2020-10-13 | Icu Medical, Inc. | Medical connectors and methods of use |
US9278206B2 (en) | 2009-03-25 | 2016-03-08 | Icu Medical, Inc. | Medical connectors and methods of use |
US12102786B2 (en) | 2009-03-25 | 2024-10-01 | Icu Medical, Inc. | Medical connector with elongated portion within seal collar |
US8454579B2 (en) | 2009-03-25 | 2013-06-04 | Icu Medical, Inc. | Medical connector with automatic valves and volume regulator |
US9440060B2 (en) | 2009-03-25 | 2016-09-13 | Icu Medical, Inc. | Medical connectors and methods of use |
US10391293B2 (en) | 2009-03-25 | 2019-08-27 | Icu Medical, Inc. | Medical connectors and methods of use |
US10086188B2 (en) | 2009-03-25 | 2018-10-02 | Icu Medical, Inc. | Medical connectors and methods of use |
US8287495B2 (en) | 2009-07-30 | 2012-10-16 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US11135362B2 (en) | 2009-07-30 | 2021-10-05 | Tandem Diabetes Care, Inc. | Infusion pump systems and methods |
US8758323B2 (en) | 2009-07-30 | 2014-06-24 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US12042627B2 (en) | 2009-07-30 | 2024-07-23 | Tandem Diabetes Care, Inc. | Infusion pump systems and methods |
US8926561B2 (en) | 2009-07-30 | 2015-01-06 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US8298184B2 (en) | 2009-07-30 | 2012-10-30 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US9211377B2 (en) | 2009-07-30 | 2015-12-15 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US11285263B2 (en) | 2009-07-30 | 2022-03-29 | Tandem Diabetes Care, Inc. | Infusion pump systems and methods |
USD1029246S1 (en) | 2010-03-23 | 2024-05-28 | Icu Medical, Inc. | Medical connector seal |
USD1003434S1 (en) | 2010-03-23 | 2023-10-31 | Icu Medical, Inc. | Medical connector seal |
USD644731S1 (en) | 2010-03-23 | 2011-09-06 | Icu Medical, Inc. | Medical connector |
US9192753B2 (en) | 2010-05-17 | 2015-11-24 | Icu Medical, Inc. | Medical connectors and methods of use |
US10195413B2 (en) | 2010-05-17 | 2019-02-05 | Icu Medical, Inc. | Medical connectors and methods of use |
US11071852B2 (en) | 2010-05-17 | 2021-07-27 | Icu Medical, Inc. | Medical connectors and methods of use |
US8758306B2 (en) | 2010-05-17 | 2014-06-24 | Icu Medical, Inc. | Medical connectors and methods of use |
US9205243B2 (en) | 2010-05-17 | 2015-12-08 | Icu Medical, Inc. | Medical connectors and methods of use |
US9750926B2 (en) | 2010-05-17 | 2017-09-05 | Icu Medical, Inc. | Medical connectors and methods of use |
US20130296783A1 (en) * | 2010-06-14 | 2013-11-07 | University Of Manitoba | Method and apparatus for retroperfusion |
US9314590B2 (en) * | 2010-06-14 | 2016-04-19 | University Of Manitoba | Method and apparatus for retroperfusion |
US10258736B2 (en) | 2012-05-17 | 2019-04-16 | Tandem Diabetes Care, Inc. | Systems including vial adapter for fluid transfer |
US9962486B2 (en) | 2013-03-14 | 2018-05-08 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US10369349B2 (en) | 2013-12-11 | 2019-08-06 | Icu Medical, Inc. | Medical fluid manifold |
US11364372B2 (en) | 2013-12-11 | 2022-06-21 | Icu Medical, Inc. | Check valve |
USD786427S1 (en) | 2014-12-03 | 2017-05-09 | Icu Medical, Inc. | Fluid manifold |
USD849939S1 (en) | 2014-12-03 | 2019-05-28 | Icu Medical, Inc. | Fluid manifold |
USD826400S1 (en) | 2014-12-03 | 2018-08-21 | Icu Medical, Inc. | Fluid manifold |
USD890335S1 (en) | 2014-12-03 | 2020-07-14 | Icu Medical, Inc. | Fluid manifold |
USD793551S1 (en) | 2014-12-03 | 2017-08-01 | Icu Medical, Inc. | Fluid manifold |
US20210369998A1 (en) * | 2020-05-28 | 2021-12-02 | Xuanwu Hospital Capital Medical University | Cannula plugging device for rehabilitation after tracheotomy |
Also Published As
Publication number | Publication date |
---|---|
DE2237858A1 (en) | 1973-02-15 |
CA999499A (en) | 1976-11-09 |
FR2148219A1 (en) | 1973-03-16 |
FR2148219B1 (en) | 1975-03-07 |
GB1399501A (en) | 1975-07-02 |
IT961755B (en) | 1973-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3717174A (en) | Perfusion safety valve | |
US3759289A (en) | Perfusion safety valve | |
US4722725A (en) | Methods for preventing the introduction of air or fluid into the body of a patient | |
US4515589A (en) | Peristaltic pumping method and apparatus | |
US4650471A (en) | Flow regulating device for peristalitic pumps | |
US4758224A (en) | Suction control valve for left ventricle venting | |
US5356375A (en) | Positive pressure fluid delivery and waste removal system | |
JP3073995B2 (en) | Myocardial protective fluid management device | |
US3811800A (en) | Blood pump | |
US4767289A (en) | Peristaltic pump header | |
US4250872A (en) | Blood pulsating and/or pumping device | |
US5279550A (en) | Orthopedic autotransfusion system | |
US4568333A (en) | Valve arrangement especially suitable for preventing introduction of air into vascular systems | |
US3833013A (en) | Self-valving fluid reservoir and bubble trap | |
US5931648A (en) | Vacuum actuated tubular blood pumping device with active values and application of the same | |
US4701160A (en) | Catheter and method for infusing fluid into a patient | |
US5927951A (en) | Safety devices for peristaltic pumps | |
US4725266A (en) | Left ventricle vacuum control and pressure relief valve | |
JPS6056498B2 (en) | Device for passage and control of blood in extracorporeal blood treatment systems | |
JPS625355A (en) | Fluid flow chamber cassette assembly | |
US5486099A (en) | Peristaltic pump with occlusive inlet | |
US3809085A (en) | Surgical drainage system | |
GB1295934A (en) | ||
US5158539A (en) | Device and method for preventing aspiration of air in cardiopulmonary bypass patients | |
EP0952870B1 (en) | Cardiac recovery |