US3683154A - Temperature control device - Google Patents
Temperature control device Download PDFInfo
- Publication number
- US3683154A US3683154A US89800A US3683154DA US3683154A US 3683154 A US3683154 A US 3683154A US 89800 A US89800 A US 89800A US 3683154D A US3683154D A US 3683154DA US 3683154 A US3683154 A US 3683154A
- Authority
- US
- United States
- Prior art keywords
- panels
- coating
- oven
- heating
- curing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 25
- 230000005855 radiation Effects 0.000 claims abstract description 24
- 239000011248 coating agent Substances 0.000 claims abstract description 19
- 238000000576 coating method Methods 0.000 claims abstract description 19
- 238000004804 winding Methods 0.000 claims abstract description 11
- 239000011347 resin Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 238000009529 body temperature measurement Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 230000006872 improvement Effects 0.000 claims description 2
- 239000012260 resinous material Substances 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 9
- 230000008439 repair process Effects 0.000 description 4
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Ferrous fumarate Chemical compound [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/12—Impregnating, moulding insulation, heating or drying of windings, stators, rotors or machines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/28—Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
- F26B3/30—Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0044—Furnaces, ovens, kilns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/04—Casings
- G01J5/041—Mountings in enclosures or in a particular environment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/04—Casings
- G01J5/047—Mobile mounting; Scanning arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0846—Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1919—Control of temperature characterised by the use of electric means characterised by the type of controller
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/27—Control of temperature characterised by the use of electric means with sensing element responsive to radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
- H01B13/065—Insulating conductors with lacquers or enamels
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/0033—Heating devices using lamps
- H05B3/0038—Heating devices using lamps for industrial applications
Definitions
- ABSTRACT A temperature control system for an oven for heating and curing a powdered coating of a heat hardenable resinous material that has been applied to coil windings of a magnetic core, including a heating panel on each of two opposite sides of a core, the panels being movably mounted on an oven frame for placement of the panels at suitable distances from the core, the panels having a plurality of infrared radiation lamps adapted to be turned on and off for predetermined portions of the preheating and curing periods, an infrared radiation thermometer mounted on each panel for detecting the temperature of a selected portion of the coating and for controlling the on and off status of the lamps, and the thermometers being pivotally mounted in the corresponding panel for enabling direction of the thermometer to the selected portion of the coating.
- This invention relates to a radiation thermometer and more particularly it pertains to a radiation thermometcr adapted for measuring temperatures of selected positions of a resinous coating being cured in an oven.
- Rotating electrical apparatus such as motors and generators, employ insulated coils comprising central core portions and end turn portions.
- the preparation of coils, windings or conductors for insertion into slots of magnetizable cores by prior methods has involved the time consuming and costly process of applying insulation tape, wrappers, and slot cell liners to the coil portions, such as disclosed in US. Pat. No. 3,054,770. The process was particularly involved where it was employed in the repair for coils for motors and generators.
- Repair shops handle apparatus of various sizes and are therefore necessarily faced with a wide variety of non-standardized coils of different shapes and sizes and needing different varnishes requiring different applying and curing procedures. For example, repair shops must be prepared to handle components of rotatable apparatus varying in diameter from four inches to 6 feet or more. In such circumstances the methods employed must be adapted to a maximum output at a minimum cost.
- an oven for heating and curing a coating of heat hardenable resinous materials in place on coil windings in a slot'of a magnetic core which oven comprises support means for mounting the magnetic core in place, a heating panel oh at least one side of the support means, the panel having a source of infrared radiation energy for heating the resinous coating on the coil windings, and means for measuring the temperature of the resinous coating and for controlling the output of the source of infrared energy, and the means including an infrared radiation thermometer that is pivotally mounted in the panel for aiming the thermometer at a selected area for temperature measurement, whereby the powdered particles of resinous material are fused together and cured as a continuous insulating coating on the coil windings.
- FIG. 1 is a vertical sectional view of the oven taken on the line I-I of FIG. 2;
- FIG. 2 is an end elevational view of the oven
- FIG. 3 is an enlarged vertical sectional view taken on the line III-III of FIG. 1;
- FIG. 4 is an enlarged view taken on the line lVlV of FIG. 1;
- FIG. 5 is a vertical sectional VV of FIG. 4.
- an oven is generally indicated at 10. It includes a frame 12, a pair of heating panels 14 and 16, temperature control means or radiation thermometers l8 and 20 and a pair of sliding doors 22 and 24 on opposite sides of the oven.
- the frame 12 includes four similar legs 26 (two of which are shown in FIG. 1), a pair of horizontal beams 28 (one of which is shown in FIG. 1), and a pair of inner connecting cross members 30 extending between opposite corresponding ends of the beam 28.
- wheels 32 are mounted and at the lower end of another pair of the legs 26.
- a grooved wheel 34 is mounted and disposed in engagement with a track 36.
- the wheels 32 and 34 enable movement of the oven 10 to facilitate placement of a rotor 38 on a pedestal 40 such as, by an overhead crane after which the oven 10 may be rolled into place over and around the rotor 38 in order to cure layers 42 of heat curable resin on the end coils 44 of the rotor.
- the heating panel 14 includes a plurality of horizontally disposed radiation heat lamps 46.
- the lamps 46 in the panel 14 extend between a similar pair of vertically disposed arms 48.
- the heat lamps 46 in the panel 16 are supported between a pair of spaced vertical arms 50.
- the upper ends of the arms 48 are at tached to slide bars 52 in the upper ends of the arms 50 are attached to similar slide bars 54.
- the upper edge portion of the slide bar 52 extends into an inverted C- shaped channel track 56 which is attached to the underside and is coextensive with the beam 28. Pairs of rollers 58 are attached to the upper edge portions of each plate 52 for rolling engagement with the interior of the channel track 56 as shown in FIG. 3.
- each end of the panel 14 is suspended from similar slide bars 52 which are in rolling engagement with similar channel tracks 56 that are attached to both horizontal beams 28.
- the panel 16 is similarly suspended from the pair of slide bars 54 the upper edges of which are also provided with 60 that engage the same track 56 as the rollers 58 on the panel 14.
- the panels 14 and 16 are movable along the tracks 56 toward and away from the workpiece or rotor 38 in order to obtain the proper spacing from the heat lamps 46 during the curing.
- both pairs of doors 22 and 24 are suspended from spaced pairs of rollers 62 which are rollingly mounted in a channel track 64 adjacent to the track 56 and attached to the undersurface of the beam 28, whereby both pairs of doors 22 and 24 may be'opened for setting up the operation prior to turning on the heat lamps 46.
- the heat lamps 46 are preferably infrared lamps having a pair of quartz tubular heating elements 70 for each lamp. Each lamp 46 also includes a three-sided reflector 72 which reflects the heat generated by the heating element 70 from the elements and toward the workpiece or stator 38. Thus, each lamp 46 provides radiant energy heating the source of which heat for each lamp is a coiled tungsten filament (not shown) which extends from one end to the other of each quartz tube heating element 70. The filament operating temperature is approximately 4,000 F. During the heating and curing period all or a portion of the lamps 46 may be used, depending upon the size of the rotor 38.
- the lamps 46 are controlled to turn them on and off during a selected percentage of their total operation time in order to gradually heat the layer 42 of resin to the desired fusion and curing temperature such as about 380 F. After the layer 42 of resin is brought to that temperature, or any other temperature depending upon the type of resin used, the temperature of the resin is closely controlled in order to obtain optimum curing in a minimum of time without burning the resin. For that resin, the lamps 46 may be on during greater or lesser percentages of their complete operation time as dictated by the characteristics and curing time for the particular resin used. r
- Control means includingthe radiation thermometers 18 and 20 are provided for measuring the temperature of the layers 42 of resin during the preliminary heating as well as the final curing phases.
- One type of radiation thermometer that is useful for that purpose is the IRCON 700 series radiation thermometer provided by IRCON Inc. of Chicago, Illinois for measuring temperatures from 100 to 4,000 F without contact.
- the radiation thermometers l8 and 20 are dependent upon the intensity of radiation of the temperature of the layer 42 of resin. Inasmuch as all heated bodies emit infrared radiation, the thermometers l8 and 20, being provided with an optical system for collecting the radiation and focusing it on a built in infrared detector which converts the radiant energy into an electrical signal which is amplified and used to control the current supply to the heating lamps 46.
- thermometers 18 and 20 are dependent upon an accurate focus upon the object being heated the thermometers are provided with mounting means including a support rod 74 and a clamp 76 in which the rod is slidingly mounted to adjust the height of the thermometer 18 or 20.
- the clamp 76 is attached to a bar clamp 78 which is mounted on a horizontal support bar 80.
- the opposite ends of which are secured to end rod 82 which extend outwardly from a mounting plate 84.
- the plate 84 in turn is attached at opposite ends to the corresponding pairs of arms 48 and 50.
- the upper end of the support rod 74 is pivoted at 86 to the underside of the thermometer 18 or 20 to enable movement of the thermometer to any angle such as indicated by the broken line positions 180 and 20a.
- each thermometer l8 and 20 and its corresponding panels 48 and 50, respectively is maintained by a tube 88 and 90, respectively, one end of which is rigidly fixed to the optic system of the thermometer.
- the other end of each tube 88 and 90 is provided with'a ball 92 and 94, respectively, which ball has a bore aligned with the interior opening of the tube for transmitting the infrared radiation reflected from the heated layer 42 of resin.
- the ball 94 is secured between a vertical plate 96 on the front side of the panel 16 and a mounting bracket 98 which is secured in place behind a pair of lamps 46.
- the combination of the ball 94 and the tube 90 maintains the required focus distance between the thermometers 18 and 20 and the inner surfaces of the corresponding panels 14 and 16.
- the remainder of the focus distance from the thermometers 18 and 20 to the layer 42 of resin is a measured distance 100 between the ball 94 and the particular area on the layer 42 selected for temperature measurement during the curing period.
- an oven for curing a coating of a powdered heat hardenable resin material on a coil winding of a magnetic core located within the oven which oven includes a heating panel of infrared radiant energy on two opposite sides of the magnetic core, and the panels being movably mounted on a supporting frame to varying positions from a magnetic core
- the improvement comprising means for measuring the temperature of the resinous coating and for controlling the on and off time intervals of the heating panels during the preheat and ble at the selected area of the coating, and the ball of the ball and socket joint is attached to the other end of the tube, and the ball having an opening therethrough aligned with the tube interior.
- the oven of claim 1 wherein the source of radiant heat energy is provided on at least two sides of the support means and are mounted on panels that are movable to and from support means, and the radiation thermometers are infrared radiation thermometers mounted in the panels and adapted for controlling the current to the source of radiant heat energy.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Coating Apparatus (AREA)
Abstract
A temperature control system for an oven for heating and curing a powdered coating of a heat hardenable resinous material that has been applied to coil windings of a magnetic core, including a heating panel on each of two opposite sides of a core, the panels being movably mounted on an oven frame for placement of the panels at suitable distances from the core, the panels having a plurality of infrared radiation lamps adapted to be turned on and off for predetermined portions of the preheating and curing periods, an infrared radiation thermometer mounted on each panel for detecting the temperature of a selected portion of the coating and for controlling the on and off status of the lamps, and the thermometers being pivotally mounted in the corresponding panel for enabling direction of the thermometer to the selected portion of the coating.
Description
United States Patent Kipple et al. a
[s4] TEMPERATURE CONTROL mzvrcr:
[22] Filed: Nov. 16, 1970 [2 1] Appl. No.: 89,800
[52] US. Cl. ..219/412, 73/15, 219/348,
219/349, 219/352, 219/405, 219/411 [51]- Int. Cl ..F27d 11/02 [58] Field of Search ..2l9/412413, 405,
[56] References Cited UNITED STATES PATENTS 2,559,249 7/1951 Hudson ..219/411 2,610,280 9/1952 Wilson ..219/348 2,688,685 9/1954 Goodell ..2l9/405 X 2,708,707 5/1955 Merrill et a1. ..219/352 X 1 1 Aug. 8, 1972 2,841,684 7/1958 Miskella ..219/349 X 3,003,409 10/1961 Mills ..99/331 3,023,296 2/1962 Barber ..219/349 3,292,418 12/1966 Oehme et a1. ..73/15 Primary Examiner-Velodymyr Y. Mayewsky Attorney-F. Shapoe et a1.
[57] ABSTRACT A temperature control system for an oven for heating and curing a powdered coating of a heat hardenable resinous material that has been applied to coil windings of a magnetic core, including a heating panel on each of two opposite sides of a core, the panels being movably mounted on an oven frame for placement of the panels at suitable distances from the core, the panels having a plurality of infrared radiation lamps adapted to be turned on and off for predetermined portions of the preheating and curing periods, an infrared radiation thermometer mounted on each panel for detecting the temperature of a selected portion of the coating and for controlling the on and off status of the lamps, and the thermometers being pivotally mounted in the corresponding panel for enabling direction of the thermometer to the selected portion of the coating.
5 Claims, 5 Drawing Figures PATENTEDAUG 8 I972 SHEET 1 OF 3 mwvm ll PATENTEDws 8 I972 sum 2 or 3 EXHAUST 68 FIGB PATENTEDAus 8 I972 SHEET 3 BF 3 FIG.4
CROSS-REFERENCE TO RELATED APPLICATION This application is related to pending application Ser. No 89,797 filed Nov. 16, 1970.
BACKGROUND OF THE INVENTION l. Field of the Invention:
This invention relates to a radiation thermometer and more particularly it pertains to a radiation thermometcr adapted for measuring temperatures of selected positions of a resinous coating being cured in an oven.
2. Description of the Prior Art:
Rotating electrical apparatus such as motors and generators, employ insulated coils comprising central core portions and end turn portions. The preparation of coils, windings or conductors for insertion into slots of magnetizable cores by prior methods has involved the time consuming and costly process of applying insulation tape, wrappers, and slot cell liners to the coil portions, such as disclosed in US. Pat. No. 3,054,770. The process was particularly involved where it was employed in the repair for coils for motors and generators.
' A method that would eliminate or reduce the amount of taping and wrapping required for all types of rewound rotating apparatus would be desirable. In addition to reducing the labor required in the rewinding of the coil windings, a reduction of subsequent treatment cycles has been sought. More particularly, in the area of form-wound coils for stators, rotors, and armatures with, for example, direct current fields and rotating fields, the methods have remained the same; i.e., mostly the hand taping of the assembled conductors, varnish treatment and approximately 12 hours baking cycles. The foregoing problems are of greater moment where repair shops for processing such apparatus are involved. Repair shops handle apparatus of various sizes and are therefore necessarily faced with a wide variety of non-standardized coils of different shapes and sizes and needing different varnishes requiring different applying and curing procedures. For example, repair shops must be prepared to handle components of rotatable apparatus varying in diameter from four inches to 6 feet or more. In such circumstances the methods employed must be adapted to a maximum output at a minimum cost.
The use of heat hardenable resinous materials as insulation for coil windings both within the magnetic core slot as well as the coil end turns has been considered as a method of obviating the prior method of taping and wrapping as disclosed in said patent. A deterrant factor to the use of resinous materials, however, has been the lack of a suitable apparatus for rapidly heating and fully curing the materials after they have been applied to the windings. That is particularly true where the insulation material is applicable as particles of powdered resinous material.
curing time of the particular resinous material involved.
2 SUMMARY OF THE INVENTION In accordance with this invention it has been found that the foregoing problems may be overcome by providing an oven for heating and curing a coating of heat hardenable resinous materials in place on coil windings in a slot'of a magnetic core which oven comprises support means for mounting the magnetic core in place, a heating panel oh at least one side of the support means, the panel having a source of infrared radiation energy for heating the resinous coating on the coil windings, and means for measuring the temperature of the resinous coating and for controlling the output of the source of infrared energy, and the means including an infrared radiation thermometer that is pivotally mounted in the panel for aiming the thermometer at a selected area for temperature measurement, whereby the powdered particles of resinous material are fused together and cured as a continuous insulating coating on the coil windings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view of the oven taken on the line I-I of FIG. 2;
FIG. 2 is an end elevational view of the oven;
FIG. 3 is an enlarged vertical sectional view taken on the line III-III of FIG. 1;
FIG. 4 is an enlarged view taken on the line lVlV of FIG. 1; and
FIG. 5 is a vertical sectional VV of FIG. 4.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, an oven is generally indicated at 10. It includes a frame 12, a pair of heating panels 14 and 16, temperature control means or radiation thermometers l8 and 20 and a pair of sliding doors 22 and 24 on opposite sides of the oven.
The frame 12 includes four similar legs 26 (two of which are shown in FIG. 1), a pair of horizontal beams 28 (one of which is shown in FIG. 1), and a pair of inner connecting cross members 30 extending between opposite corresponding ends of the beam 28. At the lower end of two of the legs 26 wheels 32 are mounted and at the lower end of another pair of the legs 26. A grooved wheel 34 is mounted and disposed in engagement with a track 36. The wheels 32 and 34 enable movement of the oven 10 to facilitate placement of a rotor 38 on a pedestal 40 such as, by an overhead crane after which the oven 10 may be rolled into place over and around the rotor 38 in order to cure layers 42 of heat curable resin on the end coils 44 of the rotor.
As shown in FIG. 1, all other portions of the oven 10 including the heating panels 14, the thermometers l8 and the sliding doors 22 and 24 are suspended from the top of the frame 12 and particularly the beams 28. The heating panel 14 includes a plurality of horizontally disposed radiation heat lamps 46. The lamps 46 in the panel 14 extend between a similar pair of vertically disposed arms 48. Likewise, the heat lamps 46 in the panel 16 are supported between a pair of spaced vertical arms 50. The upper ends of the arms 48 are at tached to slide bars 52 in the upper ends of the arms 50 are attached to similar slide bars 54.
view taken on the line As shown more particularly in FIG. 3, the upper edge portion of the slide bar 52 extends into an inverted C- shaped channel track 56 which is attached to the underside and is coextensive with the beam 28. Pairs of rollers 58 are attached to the upper edge portions of each plate 52 for rolling engagement with the interior of the channel track 56 as shown in FIG. 3. As was indicated above, each end of the panel 14 is suspended from similar slide bars 52 which are in rolling engagement with similar channel tracks 56 that are attached to both horizontal beams 28. The panel 16 is similarly suspended from the pair of slide bars 54 the upper edges of which are also provided with 60 that engage the same track 56 as the rollers 58 on the panel 14. Thus, the panels 14 and 16 are movable along the tracks 56 toward and away from the workpiece or rotor 38 in order to obtain the proper spacing from the heat lamps 46 during the curing.
As shown in FIG. 1 and more particularly in FIG. 3, both pairs of doors 22 and 24 are suspended from spaced pairs of rollers 62 which are rollingly mounted in a channel track 64 adjacent to the track 56 and attached to the undersurface of the beam 28, whereby both pairs of doors 22 and 24 may be'opened for setting up the operation prior to turning on the heat lamps 46.
When the lamps 46 are on for curing, the layer 42 of resin on the end coils 44 the doors 22 and 24 are closed as shown in the solid line position thereof in FIG. 1. During the curing operation, the chamber surrounding the stator38 becomes heated and a pair of heat barrier walls 66 are provided between opposite pairs of slide bars 52 and 54. In addition, a sealing 68 is provided between the top side of the spaced beams 28 which sealing extends throughout the distance of complete spacing of the walls 68 when the beams 14 and 16 are opened to their widest distance as indicated by the broken line positions 14a and 16a.
The heat lamps 46 are preferably infrared lamps having a pair of quartz tubular heating elements 70 for each lamp. Each lamp 46 also includes a three-sided reflector 72 which reflects the heat generated by the heating element 70 from the elements and toward the workpiece or stator 38. Thus, each lamp 46 provides radiant energy heating the source of which heat for each lamp is a coiled tungsten filament (not shown) which extends from one end to the other of each quartz tube heating element 70. The filament operating temperature is approximately 4,000 F. During the heating and curing period all or a portion of the lamps 46 may be used, depending upon the size of the rotor 38.
Ordinarily, during their operation, the lamps 46 are controlled to turn them on and off during a selected percentage of their total operation time in order to gradually heat the layer 42 of resin to the desired fusion and curing temperature such as about 380 F. After the layer 42 of resin is brought to that temperature, or any other temperature depending upon the type of resin used, the temperature of the resin is closely controlled in order to obtain optimum curing in a minimum of time without burning the resin. For that resin, the lamps 46 may be on during greater or lesser percentages of their complete operation time as dictated by the characteristics and curing time for the particular resin used. r
Control means includingthe radiation thermometers 18 and 20 are provided for measuring the temperature of the layers 42 of resin during the preliminary heating as well as the final curing phases. One type of radiation thermometer that is useful for that purpose is the IRCON 700 series radiation thermometer provided by IRCON Inc. of Chicago, Illinois for measuring temperatures from 100 to 4,000 F without contact. The radiation thermometers l8 and 20 are dependent upon the intensity of radiation of the temperature of the layer 42 of resin. Inasmuch as all heated bodies emit infrared radiation, the thermometers l8 and 20, being provided with an optical system for collecting the radiation and focusing it on a built in infrared detector which converts the radiant energy into an electrical signal which is amplified and used to control the current supply to the heating lamps 46. Inasmuch as the radiation thermometers 18 and 20 are dependent upon an accurate focus upon the object being heated the thermometers are provided with mounting means including a support rod 74 and a clamp 76 in which the rod is slidingly mounted to adjust the height of the thermometer 18 or 20. The clamp 76 is attached to a bar clamp 78 which is mounted on a horizontal support bar 80. The opposite ends of which are secured to end rod 82 which extend outwardly from a mounting plate 84. The plate 84 in turn is attached at opposite ends to the corresponding pairs of arms 48 and 50. As shown in FIG. 1 the upper end of the support rod 74 is pivoted at 86 to the underside of the thermometer 18 or 20 to enable movement of the thermometer to any angle such as indicated by the broken line positions 180 and 20a.
The distance between each thermometer l8 and 20 and its corresponding panels 48 and 50, respectively, is maintained by a tube 88 and 90, respectively, one end of which is rigidly fixed to the optic system of the thermometer. The other end of each tube 88 and 90 is provided with'a ball 92 and 94, respectively, which ball has a bore aligned with the interior opening of the tube for transmitting the infrared radiation reflected from the heated layer 42 of resin.
As shown more particularly in FIG. 5, the ball 94 is secured between a vertical plate 96 on the front side of the panel 16 and a mounting bracket 98 which is secured in place behind a pair of lamps 46. Thus, the combination of the ball 94 and the tube 90 maintains the required focus distance between the thermometers 18 and 20 and the inner surfaces of the corresponding panels 14 and 16. The remainder of the focus distance from the thermometers 18 and 20 to the layer 42 of resin is a measured distance 100 between the ball 94 and the particular area on the layer 42 selected for temperature measurement during the curing period.
What is claimed is:
1. In an oven for curing a coating of a powdered heat hardenable resin material on a coil winding of a magnetic core located within the oven, which oven includes a heating panel of infrared radiant energy on two opposite sides of the magnetic core, and the panels being movably mounted on a supporting frame to varying positions from a magnetic core, the improvement comprising means for measuring the temperature of the resinous coating and for controlling the on and off time intervals of the heating panels during the preheat and ble at the selected area of the coating, and the ball of the ball and socket joint is attached to the other end of the tube, and the ball having an opening therethrough aligned with the tube interior.
5. The oven of claim 1 wherein the source of radiant heat energy is provided on at least two sides of the support means and are mounted on panels that are movable to and from support means, and the radiation thermometers are infrared radiation thermometers mounted in the panels and adapted for controlling the current to the source of radiant heat energy.
Claims (5)
1. In an oven for curing a coating of a powdered heat hardenable resin material on a coil winding of a magnetic core located within the oven, which oven includes a heating panel of infrared radiant energy on two opposite sides of the magnetic core, and the panels being movably mounted on a supporting frame to varying positions from a magnetic core, the improvement comprising means for measuring the temperature of the resinous coating and for controlling the on and off time intervals of the heating panels during the preheat and curing periods of the coating, and the measuring means being adjustably mounted in the heating panels so that it may be directed at a selected area of the coating for temperature measurement thereof.
2. The apparatus of claim 1 wherein the measuring means includes an adjustable ball and socket joint in the heating panels, for mounting the means in place.
3. The apparatus of claim 2 wherein the measuring means includes infrared radiation thermometers at each heating panel.
4. The apparatus of claim 3 wherein each infrared thermometer is mounted at one end of the tube directable at the selected area of the coating, and the ball of the ball and socket joint is attached to the other end of the tube, and the ball having an opening therethrough aligned with the tube interior.
5. The oven of claim 1 wherein the source of radiant heat energy is provided on at least two sides of the support means and are mounted on panels that are movable to and from support means, and the radiation thermometers are infrared radiation thermometers mounted in the panels and adapted for controlling the current to the source of radiant heat energy.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8980070A | 1970-11-16 | 1970-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3683154A true US3683154A (en) | 1972-08-08 |
Family
ID=22219644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US89800A Expired - Lifetime US3683154A (en) | 1970-11-16 | 1970-11-16 | Temperature control device |
Country Status (2)
Country | Link |
---|---|
US (1) | US3683154A (en) |
CA (1) | CA942816A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2538181A1 (en) * | 1982-12-20 | 1984-06-22 | Mitsubishi Electric Corp | Coil insulating method for rotating electrical machine. |
US4501072A (en) * | 1983-07-11 | 1985-02-26 | Amjo, Inc. | Dryer and printed material and the like |
US4556783A (en) * | 1983-11-14 | 1985-12-03 | Trinity Industrial Corporation | Heat welding apparatus |
US4856700A (en) * | 1985-11-29 | 1989-08-15 | Kawasaki Jukogyo Kabushiki Kaisha | Apparatus for assembling a structural panel in order to prevent the sag thereof |
US4980538A (en) * | 1988-06-10 | 1990-12-25 | Instrumentation Laboratory S. P. A. | Heating and temperature-control device for biological sample containers |
WO1994007101A1 (en) * | 1992-09-11 | 1994-03-31 | Queen Mary & Westfield College | Radiant heating furnace |
US5590238A (en) * | 1990-03-05 | 1996-12-31 | Birger Ericson Fasad Ab | Horizontally and vertically movable radiant heater for removing paint from a surface |
US6127653A (en) * | 1998-06-02 | 2000-10-03 | Samuels; Gladestone | Method and apparatus for maintaining driveways and walkways free of ice and snow |
EP1167138A1 (en) * | 2000-02-04 | 2002-01-02 | Uegaki, Tateo | Repairing device for vehicles |
CN101819068A (en) * | 2010-05-11 | 2010-09-01 | 无锡风电设计研究院有限公司 | Temperature detecting device and method of composite material in infusion and curing process |
CN101989798B (en) * | 2009-07-30 | 2012-11-07 | 上海新沪电机厂有限公司 | Far infrared heating device |
RU2529778C1 (en) * | 2012-02-28 | 2014-09-27 | Сикора Аг | Method and device for measurement of temperature of multi-strand material |
US20150170796A1 (en) * | 2012-09-10 | 2015-06-18 | Yazaki Corporation | Wire harness |
CN111446047A (en) * | 2020-04-07 | 2020-07-24 | 安徽恒明工程技术有限公司 | Electromagnetic wire baking process |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2559249A (en) * | 1948-02-18 | 1951-07-03 | William H Hudson | Infrared oven structure |
US2610280A (en) * | 1947-02-26 | 1952-09-09 | Wilson Wesley | Infrared oven construction |
US2688685A (en) * | 1951-10-29 | 1954-09-07 | Paul H Goodell | Sheath-resistance heater and panel supporting structures therefor which are built into heating devices |
US2708707A (en) * | 1952-06-13 | 1955-05-17 | Frank C Merrill | Portable paint baking apparatus |
US2841684A (en) * | 1956-06-12 | 1958-07-01 | William J Miskella | Apparatus for baking paint on automotive vehicles |
US3003409A (en) * | 1959-05-01 | 1961-10-10 | Reflectotherm Inc | Ultra-long wavelength infrared radiant heating oven |
US3023296A (en) * | 1960-02-23 | 1962-02-27 | Fostoria Corp | Radiant heating device |
US3292418A (en) * | 1964-06-04 | 1966-12-20 | Cons Papers Inc | Method and apparatus for testing printing paper for blistering |
-
1970
- 1970-11-16 US US89800A patent/US3683154A/en not_active Expired - Lifetime
-
1971
- 1971-10-19 CA CA125,473A patent/CA942816A/en not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2610280A (en) * | 1947-02-26 | 1952-09-09 | Wilson Wesley | Infrared oven construction |
US2559249A (en) * | 1948-02-18 | 1951-07-03 | William H Hudson | Infrared oven structure |
US2688685A (en) * | 1951-10-29 | 1954-09-07 | Paul H Goodell | Sheath-resistance heater and panel supporting structures therefor which are built into heating devices |
US2708707A (en) * | 1952-06-13 | 1955-05-17 | Frank C Merrill | Portable paint baking apparatus |
US2841684A (en) * | 1956-06-12 | 1958-07-01 | William J Miskella | Apparatus for baking paint on automotive vehicles |
US3003409A (en) * | 1959-05-01 | 1961-10-10 | Reflectotherm Inc | Ultra-long wavelength infrared radiant heating oven |
US3023296A (en) * | 1960-02-23 | 1962-02-27 | Fostoria Corp | Radiant heating device |
US3292418A (en) * | 1964-06-04 | 1966-12-20 | Cons Papers Inc | Method and apparatus for testing printing paper for blistering |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2538181A1 (en) * | 1982-12-20 | 1984-06-22 | Mitsubishi Electric Corp | Coil insulating method for rotating electrical machine. |
US4501072A (en) * | 1983-07-11 | 1985-02-26 | Amjo, Inc. | Dryer and printed material and the like |
US4556783A (en) * | 1983-11-14 | 1985-12-03 | Trinity Industrial Corporation | Heat welding apparatus |
US4856700A (en) * | 1985-11-29 | 1989-08-15 | Kawasaki Jukogyo Kabushiki Kaisha | Apparatus for assembling a structural panel in order to prevent the sag thereof |
US4988032A (en) * | 1985-11-29 | 1991-01-29 | Kawasaki Jukogyo Kabushiki Kaisha | Method for assembling a structural panel in order to prevent the sag thereof |
US4980538A (en) * | 1988-06-10 | 1990-12-25 | Instrumentation Laboratory S. P. A. | Heating and temperature-control device for biological sample containers |
US5590238A (en) * | 1990-03-05 | 1996-12-31 | Birger Ericson Fasad Ab | Horizontally and vertically movable radiant heater for removing paint from a surface |
AU672041B2 (en) * | 1992-09-11 | 1996-09-19 | Queen Mary & Westfield College | Radiant heating furnace |
WO1994007101A1 (en) * | 1992-09-11 | 1994-03-31 | Queen Mary & Westfield College | Radiant heating furnace |
US6127653A (en) * | 1998-06-02 | 2000-10-03 | Samuels; Gladestone | Method and apparatus for maintaining driveways and walkways free of ice and snow |
EP1167138A1 (en) * | 2000-02-04 | 2002-01-02 | Uegaki, Tateo | Repairing device for vehicles |
EP1167138A4 (en) * | 2000-02-04 | 2005-02-09 | Uegaki Tateo | Repairing device for vehicles |
CN101989798B (en) * | 2009-07-30 | 2012-11-07 | 上海新沪电机厂有限公司 | Far infrared heating device |
CN101819068A (en) * | 2010-05-11 | 2010-09-01 | 无锡风电设计研究院有限公司 | Temperature detecting device and method of composite material in infusion and curing process |
RU2529778C1 (en) * | 2012-02-28 | 2014-09-27 | Сикора Аг | Method and device for measurement of temperature of multi-strand material |
US20150170796A1 (en) * | 2012-09-10 | 2015-06-18 | Yazaki Corporation | Wire harness |
US9947439B2 (en) * | 2012-09-10 | 2018-04-17 | Yazaki Corporation | Dark exterior wire harness with heat-reflection and identification portion |
CN111446047A (en) * | 2020-04-07 | 2020-07-24 | 安徽恒明工程技术有限公司 | Electromagnetic wire baking process |
Also Published As
Publication number | Publication date |
---|---|
CA942816A (en) | 1974-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3683154A (en) | Temperature control device | |
EP0385571B1 (en) | Electromagnetic induction heating apparatus | |
KR101044166B1 (en) | Method and device for heating stator | |
EP0364191B1 (en) | A method of joining structural elements by heating of a binder | |
US3732066A (en) | Oven for controlling heating and curing of resinous insulating material | |
US2417678A (en) | Work handling apparatus | |
JPH0124846B2 (en) | ||
RU2728895C1 (en) | Inducing heat by rotating magnet | |
CN106319168B (en) | A kind of metal blank induction heating apparatus of achievable temperature scaling factor | |
US2858405A (en) | 60-cycle induction furnace | |
SE7607040L (en) | INSTALLATION FOR CONTINUOUS VULCANIZATION OF LONG-TERM VULCANIZABLE PRODUCTS | |
US4443679A (en) | Induction furnace for heat shrinking thermoplastic sheet onto mandrels in a forming process | |
US3824366A (en) | Process and apparatus for annealing the weld bead of a welded metallic tube | |
CN111430146B (en) | Induction coil assembly for induction heating and machining device and method thereof | |
EP0228517A2 (en) | Apparatus for drawing and forming single crystals | |
JP2765180B2 (en) | Induction heating device and induction heating method | |
CN113894166B (en) | Device for induction heating of strip steel | |
CN107567127B (en) | Brake disc induction heating coil and induction heating device | |
CA1052845A (en) | Heating apparatus for preheating, reducing moisture content and firing heatint of dental products | |
JPS61136618A (en) | Induction heating method | |
CN218108854U (en) | Online heating device of cold rolling experiment machine steel band | |
US20230299652A1 (en) | Multiple Temperature-Control Process for Workpieces by Means of a Triplex Furnace | |
US2557745A (en) | Method and apparatus for brazing cylindrical stock | |
SU791663A1 (en) | Device for mollifying glass articles | |
CN219526728U (en) | Energy-saving high-frequency furnace with high heat treatment efficiency |