Nothing Special   »   [go: up one dir, main page]

US3681772A - Modulated arm width spiral antenna - Google Patents

Modulated arm width spiral antenna Download PDF

Info

Publication number
US3681772A
US3681772A US103116A US3681772DA US3681772A US 3681772 A US3681772 A US 3681772A US 103116 A US103116 A US 103116A US 3681772D A US3681772D A US 3681772DA US 3681772 A US3681772 A US 3681772A
Authority
US
United States
Prior art keywords
antenna
arms
spiral
arm
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US103116A
Inventor
Paul G Ingerson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Space and Mission Systems Corp
Original Assignee
TRW Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRW Inc filed Critical TRW Inc
Application granted granted Critical
Publication of US3681772A publication Critical patent/US3681772A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • H01Q11/083Tapered helical aerials, e.g. conical spiral aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • ABSTRACT A multi-arm spiral antenna which allows unlimited broadband operation with dual senses of circular polarization.
  • The'antenna comprises spiral arms having width variations which are log-periodically scaled to produce local reflection/stopband) regions along the arms.
  • the position of the stop-band regions is a function of the period and amplitude of width variations.
  • Arm currents are produced by excitation of the antenna. These currents are reflected by the stopband regions.
  • the relative phase of the reflected currents is a function of the relative scaling of the arms.
  • CP circular polarization
  • RHCP right-handed circular polarization
  • LHCP left-handed circular polarization
  • Spiral antennas are said to have a sense of wrap.
  • the spiral sense of wrap is, in accordance with general practice, determined by the hand used when pointing the fingers in the direction of the arm current and the thumb in thedirection of propagation of the radiated fields. Broadband operation of a spiral antenna yields the sense of polarization of the radiated field determined by the sense of wrap of the spiral.
  • both senses of circular polarization can be obtained from a single spiral.
  • This dual sense of polarization operation is bandwidth limited. If the ratio of the upper to lower frequencies of operation is used as a measure of bandwidth, this ratio will be less than to l for the method of obtaining dual senses of CP from a single spiral antenna, where the antenna is fed from both the outside and center.
  • the present invention provides a new design of spiral antenna requiring only a center feed and which is capable of simultaneous dual circular polarization operation over any chosen bandwidth limited only by practical construction considerations in the feed region.
  • This invention relates to a multi-arm spiral antenna which is fed at the center of the spiral.
  • Each of the spiral arms of the antenna have a cascade of cells, with each cell having a wide and narrow section along the lengths of the arms. The lengths of the sections increase for increasing distance from the center.
  • FIG. 1a shows an elevation view of a conventional 2 arm equiangular spiral
  • FIG. lb shows an enlarged plan view of the top portion of the conventional 2 arm equiangular spiral
  • FIG. 2 shows an elevation view of a 2 arm equiangular modulated arm-width spiral embodying the invention
  • FIG. 3 is an enlarged plan view of the top portion of the 2 arm spiral widthself-complementary modulated arm width as shown in FIG. 2;
  • FIG. 4 is a plan view of a 4 arm equiangular modulated arm width spiral
  • FIG. 5 illustrates the coordinate system
  • FIG. 6a and 6b show typical radiation patterns of the electric field for two modes (M and M of feeding a four arm spiral using conventional antennas;
  • FIGS. 7a and 7b show the radiation patterns in the same modes of feeding (M and M as represented in FIG. 6 using the antenna of this invention.
  • FIGS; la and lb show a conventional two arm conical spiral antenna 19. comprising two spiralarms 20 and 21 which are wound on the surface of an electrically nonconductive cone 22.
  • a balanced feed line 23 is located at the cone axis of symmetry.
  • the balanced feed line 23 comprises two coaxial transmission lines, 24 and 25.
  • the outer shields of the coaxial lines 24 and 25 are electrically connected together in FIG. lb, along their lengths.
  • the center conductors 26 and 27 of the lines 24 and 25 are electrically connected to the feed terminals 28 and 29, respectively, as shown inFlG. lb.
  • the parameters which define the equiangular conical spiral are also shown on FIG. 1a. These are: l 0/ 2, the half-angle of the cone (2) a, the angle of spiral wrap, which is the angle between a tangent to the edge of an arm and a line joining the tangent point and apex of the cone, and (3) 6, the angular width of the spiral arms, found by the angular rotation needed to rotate the spiral defined by one edge a of the arm into congruence with the opposite edge b.
  • the customary method of feeding a broadband twoarm spiral at the center terminals yields two'modes of operation whose sense of polarization depends on the sense of wrap of the spiral.
  • the polarization sense of the spiral antenna is determined from the hand used when pointing the fingers in the direction of the spiral arms current and the thumb in the direction of propagation of the radiated fields.
  • RHCP right-hand'circular polarization
  • LI-ICP left-hand circular polarization
  • the push-pull mode referred to herein as Mode l
  • Mode l is obtained when the two spiral arms are fed l80 out of phase.
  • the radiation patterns of Mode l are single beam patterns, which in the case of conical spirals are undirectional and directed along the axis in the direction of the apex of the cone.
  • the push-push mode is obtained when the arms are fed in phase, with a center post formed by the outer shields of the two feed lines, fed 180 out of phase.
  • the radiation pattern of Mode 2 is a toroid about the axis of the cone.
  • the characteristic of this mode is a null in the radiation pattern along the axis of the spiral.
  • the antenna is divided into three re gions, the transmission region, the active region and the unexcited region.
  • the transmission region the arm currents travel'along each arm with essentially free-space phase velocity and negligible radiation.
  • the active region corresponds approximately to the region where the phase difference in the currents in the arm allows substantial radiation. If the active region is sufficiently wide to allow substantially total radiation of energy carried by the arm currents, the portion of the arms following the active region are essentially unexcited and hence constitute the unexcited region in a properly operating frequency independent antenna.
  • Mode I the active region is approximately located at a diameter of the cone (D) of 'y/rr (where 'y is the wavelength at the given frequency) so that the currents in the arms are phased approximately an extra 180 each half turn and, hence, are in phase.
  • Mode 2 (M the active region does not occur until D 2'y/1r. Hence, when the spirals diameter is smaller than 2'y/1r, the incident energy into Mode 2 is not efficiently radiated.
  • FIG. 2 shows an embodiment of the invention which is a multi-arm conical spiral antenna having two arms.
  • the arms 30 and 31 are wound on an electrically nonconductive cone 32.
  • the arms have periodic variations in the conductor arm width, called modulation.
  • the arms of the antenna with such periodic variations can be thought of as being constructed from a cascade of cells, with a cell, for example 33, having a wide section, 34, and narrow section 35.
  • Amplitude is defined as the ratio of the width of the wide section 34 to the width of the narrow section 35.
  • the period is defined as the ratio of the lengths of adjacent cells.
  • the lengths of the sections increase for increasing distance from the feed terminals 40 and 41 at the apex of the cone shown in FIG. 3.
  • the antenna is fed by two coaxial lines 36 and 37, located on the axis of symmetry, whose outer shields are electrically shorted together along their lengths, as shown in FIG. 3.
  • the center conductors 38 and 39 of the two lines 36 and 37 are connected at the top of the cone to the arms 30 and 31 at the terminals 40 and 41, respectively.
  • the Mode 1 method of feeding yields single beam patterns, which are essentially unidirectional and directed along the axis in the direction of the apex of the cone, as with the conventional unmodulated arm width spiral, as illustrated in FIG. 1.
  • Mode 2 the arms are fed in phase with the center post 42 formed by the outer shields of the coaxial lines 36 and 37 fed 180 out of phase.
  • Mode 2 The energy in Mode 2 (M generally will not radiate efficiently until the circumference of the spiral is approximately 2 wavelengths.
  • the maximum reflection along the arms is found to occur in that region where the length of the cells becomes approximately /y. Further, the reflection from cells which are shorter than re-y is small. Hence, the reflection of the incident energy along the arms is confined to a region of the arms where the cells are approximately /y long. This region is called a stopband region. By choosing the proper parameters of amplitude of the variations and the period of the variations, the stopband region can be placed at any desired diameter.
  • the stopband In the two-arm spiral case the stopband would be placed between the active regions of the M and M modes. Hence, the normal M mode would be unaffected if the M active region is efficient.
  • the placing of the stopband ahead of the active region for the M mode assures that the structure when fed from the center in the M mode will not radiate efficiently, since the energy is reflected before reaching the required active region for substantial radiation.
  • the modulation of the arms is complementary, in the sense that the regions of modulation are opposite in the two arms at corresponding points, then the reflected energy will be 180 out of phase between the two arms. This is then the condition for substantial radiation of the reflected energy in the opposite sense of polarization to Mode l as discussed.
  • the spiral is an equiangular (logarithmic spiral), then log-periodically scaling the lengths of the cells, allows this region to move along the structure retaining its relative position between the active regions of the M and M modes.
  • the self complementary geometry makes the relative phase of the reflected arm currents 180 out of phase
  • the antenna will now have broadband operation with both senses of circular polarization in a simple single beam, the M mode giving one sense of CP and the M mode the opposite.
  • M N is in general not used since the arms would be fed against the feed post for this mode.
  • the principles may be applied to a multi-arm spiral having 4 spiral arms as follows. Assume the four arm spiral is initially a LH wound spiral as shown in FIG. 4.
  • M 1 Mode M the four arm spiral gives a typical pattern shown in FIG. 6A.
  • M l mode M of the four arm spiral, the active region still occurs at a diameter (D) of about 1 wavelength.
  • the M 3 Mode M has the excitation:
  • the active region for this mode will occur approximately at a diameter of 3 wavelengths.
  • the antenna is large enough (D 3y) to support substantial radiation from this mode, the antenna gives a typical pattern shown in FIG. 6B.
  • N the wide or narrow segments will lie in pie shaped wedges, shown as 70 77 in FIG. 4, allowing the most interaction of the wide portions of each arm, since they are then closest to each adjacent arm s wide segments over the longest distance.
  • the narrow portions have the least interaction over the longest distance. This then should allow the smallest modulation for a given size stopband region since the size of the stopband region in the periodically modulated transmission line structure appears to be maximized when the change between the two impedance levels is a step function.
  • the number of cells in circumference must be odd. This guarantees that the two arms will be physically complementary to each other.
  • the arms will all be the same and, hence, an even number of cells will be used.
  • the location of the maximum reflection region occurs when the cell length is approximately /z'y and the size of the stopband region is controlled by the amplitude of the modulation, it is apparent that the location and size of the stopband region can be selected by parameter choice.
  • N is to be chosen so that the reflection region occurs between the active region of the selected modes on unmodulated armwidth spirals.
  • N 3 seems appropriate while in the four arm case N 4 for the M l and 3 modes.
  • This physical arrangement was used in FIGS. 2, 3 and 4 it is believed to be the optimum.
  • the ratio of the angular width of the wide section of a cell to a narrow section is defined as the modulation ratio. It has been found that ratios of four are sufficient to form the necessarY stopband regions when the other parameters of the spiral, i.e. 0 and a, are selected to give good perfonnance of the regular unmodulated spiral.
  • a multi-arm spiral antenna capable of radiating circularly polarized electromagnetic energy with opposite senses of polarization, said antenna comprising:
  • each arm consisting of a plurality of interconnected cells, each cell consisting of a wide and a narrow section along the length of its arm, the transition between adjacent wide and narrow sections being relatively abrupt, whereby to reflect electromagnetic energy, the sections of each cell increasing in length as the distance from the center increases, and
  • the ratio of the widths of the wide section of adjacent arm-cells is constant.
  • the ratios of the widths of the wide sections of adjacent cells and the cell lengths of adjacent cells are equal.
  • the ratio of the width of the narrow section of adjacent arm cells is constant.
  • the ratios of the narrow sections of each cell are equal to the ratios of the cell lengths.
  • the said spiral is an equiangular spiral.
  • the number of said arms is four.
  • the arms are identical in size and shape.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A multi-arm spiral antenna which allows unlimited broadband operation with dual senses of circular polarization. The antenna comprises spiral arms having width variations which are logperiodically scaled to produce local reflection (stopband) regions along the arms. The position of the stop-band regions is a function of the period and amplitude of width variations. Arm currents are produced by excitation of the antenna. These currents are reflected by the stopband regions. The relative phase of the reflected currents is a function of the relative scaling of the arms.

Description

United States Patent Ingerson [451 Aug. 1,1972
[54] MODULATED ARM WIDTH SPIRAL 3,562,756 2/1971 Kuo et a1. ..343/895 Primary Examiner-Eli Lieberman Attorney-Daniel T. Anderson, Alfons Valukonis and Harry L. Jacobs 57] ABSTRACT A multi-arm spiral antenna which allows unlimited broadband operation with dual senses of circular polarization. The'antenna comprises spiral arms having width variations which are log-periodically scaled to produce local reflection/stopband) regions along the arms. The position of the stop-band regions is a function of the period and amplitude of width variations. Arm currents are produced by excitation of the antenna. These currents are reflected by the stopband regions. The relative phase of the reflected currents is a function of the relative scaling of the arms.
11 Claims, 10 Drawing Figures PATENTEnws' 1 1912 3,681- 772 sum 1 or 3 Fig. la
I Fiqlb PRIOR ART I Paul G. lngerson VVIENTOR,
AGENT mm 1 m2 3.681.772
' sum 2 or 5 Paul G. Ingerson INVENTOR.
AGENT PATENTEmus r1912 3.681.772
Paul G. Ingerson INVEJNTOR.
Fig.70 FiqTb tgwfmz AGENT 1 MODULATED ARM WIDTH SPIRAL ANTENNA BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to spiral antennas and specifically to multi-arm spiral antenna having both left-hand and right-hand circular polarization simultaneously produced over wide bandwidths. 2. Description of the Prior Art The customary method of feeding broadband spiral antennas at the center terminals yields a radiation field which is elliptically polarized. If the parameters of the antenna are chosen properly, the radiation polarization can be made almost circular. t
The sense of circular polarization (CP) is said to be right-handed circular polarization (RHCP) if the electric field vector rotates in the direction of the fingers of the right hand when the thumb points in the direction of propagation. correspondingly, left-handed circular polarization (LHCP) is defined by an electric field vector rotating in the direction of the fingers of the left hand when the thumb points in the direction of propagation.
Spiral antennas are said to have a sense of wrap. The spiral sense of wrap is, in accordance with general practice, determined by the hand used when pointing the fingers in the direction of the arm current and the thumb in thedirection of propagation of the radiated fields. Broadband operation of a spiral antenna yields the sense of polarization of the radiated field determined by the sense of wrap of the spiral.
Many applications of extremely broadband antennas require the ability to receive both RI-ICP and LHCP signals simultaneously over the entire bandwidth in a single antenna. One example where such a single antenna would be required is for the feed of a parabolic reflector. If the system is to be capable of receiving or transmitting both RHCP and LI-ICP, as well as any linear polarized signal without a loss in gain due to polarization, then the single feed of the parabolic reflector must be capable of RI-ICP and LHCP operation. Presently, such receiving or transmitting capability, has not been possible with the whole class of frequency independent spiral antennas. Some narrow band techniques are used whereby spiral antennas can be fed from the outside of the spiral in addition to feeding from the center. Since the direction of the current relative to the direction of propagation when fed from the outside is opposite to the direction of current, for the same direction of propagation when fed from the center, both senses of circular polarization can be obtained from a single spiral. This dual sense of polarization operation is bandwidth limited. If the ratio of the upper to lower frequencies of operation is used as a measure of bandwidth, this ratio will be less than to l for the method of obtaining dual senses of CP from a single spiral antenna, where the antenna is fed from both the outside and center.
The present invention provides a new design of spiral antenna requiring only a center feed and which is capable of simultaneous dual circular polarization operation over any chosen bandwidth limited only by practical construction considerations in the feed region.
. BRIEF SUMMARY OF INVENTION This invention relates to a multi-arm spiral antenna which is fed at the center of the spiral. Each of the spiral arms of the antenna have a cascade of cells, with each cell having a wide and narrow section along the lengths of the arms. The lengths of the sections increase for increasing distance from the center.
BRIEF DESCRIPTION OF DRAWINGS 1 FIG. 1a shows an elevation view of a conventional 2 arm equiangular spiral;
FIG. lb shows an enlarged plan view of the top portion of the conventional 2 arm equiangular spiral;
FIG. 2 shows an elevation view of a 2 arm equiangular modulated arm-width spiral embodying the invention;
FIG. 3 is an enlarged plan view of the top portion of the 2 arm spiral widthself-complementary modulated arm width as shown in FIG. 2;
FIG. 4 is a plan view of a 4 arm equiangular modulated arm width spiral;
FIG. 5 illustrates the coordinate system;
FIG. 6a and 6b show typical radiation patterns of the electric field for two modes (M and M of feeding a four arm spiral using conventional antennas;
FIGS. 7a and 7b show the radiation patterns in the same modes of feeding (M and M as represented in FIG. 6 using the antenna of this invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS; la and lb show a conventional two arm conical spiral antenna 19. comprising two spiralarms 20 and 21 which are wound on the surface of an electrically nonconductive cone 22. A balanced feed line 23 is located at the cone axis of symmetry. The balanced feed line 23 comprises two coaxial transmission lines, 24 and 25. The outer shields of the coaxial lines 24 and 25 are electrically connected together in FIG. lb, along their lengths. The center conductors 26 and 27 of the lines 24 and 25 are electrically connected to the feed terminals 28 and 29, respectively, as shown inFlG. lb.
The parameters which define the equiangular conical spiral are also shown on FIG. 1a. These are: l 0/ 2, the half-angle of the cone (2) a, the angle of spiral wrap, which is the angle between a tangent to the edge of an arm and a line joining the tangent point and apex of the cone, and (3) 6, the angular width of the spiral arms, found by the angular rotation needed to rotate the spiral defined by one edge a of the arm into congruence with the opposite edge b.
The customary method of feeding a broadband twoarm spiral at the center terminals yields two'modes of operation whose sense of polarization depends on the sense of wrap of the spiral. In accordance with general practice, the polarization sense of the spiral antenna is determined from the hand used when pointing the fingers in the direction of the spiral arms current and the thumb in the direction of propagation of the radiated fields. Since the currents are assumed to travel away from the input temiinal, right-hand'circular polarization (RHCP) corresponds to progressive phase delay of the arm currents in the increasing qb direction; left-hand circular polarization (LI-ICP) to progressive phase advance of the arm currents in the decreasing dz direction; where d; is the conventional polar coordinate and increases in the counter clockwise direction as shown in FIG. 5.
The push-pull mode, referred to herein as Mode l, is obtained when the two spiral arms are fed l80 out of phase. The radiation patterns of Mode l are single beam patterns, which in the case of conical spirals are undirectional and directed along the axis in the direction of the apex of the cone.
The push-push mode, referred to herein as Mode 2, is obtained when the arms are fed in phase, with a center post formed by the outer shields of the two feed lines, fed 180 out of phase.
The radiation pattern of Mode 2 is a toroid about the axis of the cone. The characteristic of this mode is a null in the radiation pattern along the axis of the spiral.
For analysis, the antenna is divided into three re gions, the transmission region, the active region and the unexcited region. In the transmission region the arm currents travel'along each arm with essentially free-space phase velocity and negligible radiation. The active region corresponds approximately to the region where the phase difference in the currents in the arm allows substantial radiation. If the active region is sufficiently wide to allow substantially total radiation of energy carried by the arm currents, the portion of the arms following the active region are essentially unexcited and hence constitute the unexcited region in a properly operating frequency independent antenna.
In Mode I (M the active region is approximately located at a diameter of the cone (D) of 'y/rr (where 'y is the wavelength at the given frequency) so that the currents in the arms are phased approximately an extra 180 each half turn and, hence, are in phase.
In Mode 2 (M the active region does not occur until D 2'y/1r. Hence, when the spirals diameter is smaller than 2'y/1r, the incident energy into Mode 2 is not efficiently radiated.
FIG. 2 shows an embodiment of the invention which is a multi-arm conical spiral antenna having two arms. The arms 30 and 31 are wound on an electrically nonconductive cone 32. The arms, however, have periodic variations in the conductor arm width, called modulation. The arms of the antenna with such periodic variations can be thought of as being constructed from a cascade of cells, with a cell, for example 33, having a wide section, 34, and narrow section 35. Amplitude is defined as the ratio of the width of the wide section 34 to the width of the narrow section 35. The period is defined as the ratio of the lengths of adjacent cells. The lengths of the sections increase for increasing distance from the feed terminals 40 and 41 at the apex of the cone shown in FIG. 3. The antenna is fed by two coaxial lines 36 and 37, located on the axis of symmetry, whose outer shields are electrically shorted together along their lengths, as shown in FIG. 3. The center conductors 38 and 39 of the two lines 36 and 37, are connected at the top of the cone to the arms 30 and 31 at the terminals 40 and 41, respectively. When the arms 30 and 31 are fed 180 out of phase (Mode l), the currents along the center post cancel each other. The Mode 1 method of feeding yields single beam patterns, which are essentially unidirectional and directed along the axis in the direction of the apex of the cone, as with the conventional unmodulated arm width spiral, as illustrated in FIG. 1. In Mode 2 the arms are fed in phase with the center post 42 formed by the outer shields of the coaxial lines 36 and 37 fed 180 out of phase.
The energy in Mode 2 (M generally will not radiate efficiently until the circumference of the spiral is approximately 2 wavelengths. By making the variations in the arm width sufficiently large, it is possible to form reflection regions along the arms such that essentially all the incident energy along the arms is reflected by the arm impedance mismatch caused by these variations.
The maximum reflection along the arms is found to occur in that region where the length of the cells becomes approximately /y. Further, the reflection from cells which are shorter than re-y is small. Hence, the reflection of the incident energy along the arms is confined to a region of the arms where the cells are approximately /y long. This region is called a stopband region. By choosing the proper parameters of amplitude of the variations and the period of the variations, the stopband region can be placed at any desired diameter.
In the two-arm spiral case the stopband would be placed between the active regions of the M and M modes. Hence, the normal M mode would be unaffected if the M active region is efficient. The placing of the stopband ahead of the active region for the M mode assures that the structure when fed from the center in the M mode will not radiate efficiently, since the energy is reflected before reaching the required active region for substantial radiation.
If, further, the modulation of the arms is complementary, in the sense that the regions of modulation are opposite in the two arms at corresponding points, then the reflected energy will be 180 out of phase between the two arms. This is then the condition for substantial radiation of the reflected energy in the opposite sense of polarization to Mode l as discussed. If the spiral is an equiangular (logarithmic spiral), then log-periodically scaling the lengths of the cells, allows this region to move along the structure retaining its relative position between the active regions of the M and M modes. The self complementary geometry makes the relative phase of the reflected arm currents 180 out of phase,
independent of frequencies. Hence, the antenna will now have broadband operation with both senses of circular polarization in a simple single beam, the M mode giving one sense of CP and the M mode the opposite.
In the general case of an N arm antenna, the phase change between successive arms would be whereM=1...N.
In. general, only those choices which suppress radiation from the center feed post are used. Hence, M N is in general not used since the arms would be fed against the feed post for this mode.
For a multi-arm spiral we can identify the modes by the excitation of the arms, and hence for M l, 2, 3 we will refer to these as M M and M modes of excitation, respectively.
The principles may be applied to a multi-arm spiral having 4 spiral arms as follows. Assume the four arm spiral is initially a LH wound spiral as shown in FIG. 4. The normal feed for LHCP sum pattern (Mode l) is A =(O, 90, l80,+ 90) where A 32 (I I I I is the current vector notation for the phase of the excitation at the four input terminals 51, 52,53, 54.
For the M 1 Mode (M the four arm spiral gives a typical pattern shown in FIG. 6A. For the M l mode (M of the four arm spiral, the active region still occurs at a diameter (D) of about 1 wavelength. The M 3 Mode (M has the excitation:
The active region for this mode will occur approximately at a diameter of 3 wavelengths. When the antenna is large enough (D 3y) to support substantial radiation from this mode, the antenna gives a typical pattern shown in FIG. 6B.
If, however, the structure is not large enough to suP- port substantial radiation of the M mode, simple reflection of the current at the ends of the structure 55, 56, 57, 58 produce a return excitation which efiiciently radiates like the M mode, i.e. a smooth lobe pattern, but with the opposite sense of polarization.
Hence, introducing a modulation in the arms to effect a stopband region with the proper relative phasing between the arms after the M 1 active region (i.e. at a diameter larger than 1y), but before the normal M 3 active region, is sufficient to give the required dualpolarization operation. With the relative phase of the reflected arm currents the same (all the reflection coefficients the same) it is possible to obtain the opposite polarization for the M mode; since, however, the excitation vector, A =(0, 0, 0,0) or 180, 180, 180, 180) is not useful if the modulation is scaled the same in each arm so that the arms are identical, a six arm spiral must be used to obtain multi-mode operation with dual polarization.
While the theory of log periodically modulating the arm width of spiral antennas to effect stopband regions does not depend upon the proximity of the modulated sections between each arm, the actual construction for planar and conical spirals appears to be optimized by using a self-complementary arrangement i.e., a structure in which the metal area is identical in size and shape to the open area. This leads to dividing each turn of the spiral into 2N equiangular segments. In the alternate sections the arm widths are made wide or narrow. A cell is, as defined before, composed of two sections of line-one section of wider width and one narrower. Since the maximum reflection along each arm occurs when the total length of a cell is approximately 'y long, the number of cells in circumference of the spiral in the region of maximum reflection will be N 1,2,3, etc. By selecting N to be an integer, all the wide or narrow segments will lie in pie shaped wedges, shown as 70 77 in FIG. 4, allowing the most interaction of the wide portions of each arm, since they are then closest to each adjacent arm s wide segments over the longest distance. Correspondingly, the narrow portions have the least interaction over the longest distance. This then should allow the smallest modulation for a given size stopband region since the size of the stopband region in the periodically modulated transmission line structure appears to be maximized when the change between the two impedance levels is a step function.
Thus, for the two arm spiral where the modulation of the arms themselves is to be opposite to give the reflected energy a relative phase shift, the number of cells in circumference must be odd. This guarantees that the two arms will be physically complementary to each other. For a four arm spiral, using the M l and M 3 modes to obtain dual polarization, the arms will all be the same and, hence, an even number of cells will be used.
Since the location of the maximum reflection region occurs when the cell length is approximately /z'y and the size of the stopband region is controlled by the amplitude of the modulation, it is apparent that the location and size of the stopband region can be selected by parameter choice.
The value of N is to be chosen so that the reflection region occurs between the active region of the selected modes on unmodulated armwidth spirals. Hence, in the two arm case, N 3 seems appropriate while in the four arm case N 4 for the M l and 3 modes. This physical arrangement was used in FIGS. 2, 3 and 4 it is believed to be the optimum. The ratio of the angular width of the wide section of a cell to a narrow section is defined as the modulation ratio. It has been found that ratios of four are sufficient to form the necessarY stopband regions when the other parameters of the spiral, i.e. 0 and a, are selected to give good perfonnance of the regular unmodulated spiral.
We claim:
1. A multi-arm spiral antenna capable of radiating circularly polarized electromagnetic energy with opposite senses of polarization, said antenna comprising:
a. at least two spiral arms, each arm consisting of a plurality of interconnected cells, each cell consisting of a wide and a narrow section along the length of its arm, the transition between adjacent wide and narrow sections being relatively abrupt, whereby to reflect electromagnetic energy, the sections of each cell increasing in length as the distance from the center increases, and
b. means for feeding said arms at the center of the spiral with electromagnetic energy.
2. The antenna of claim 1 wherein:
the ratio of the lengths of adjacent arm-cells is constant.
3. The antenna of claim 2 wherein:
the ratio of the widths of the wide section of adjacent arm-cells is constant.
4. The antenna of claim 3 wherein:
the ratios of the widths of the wide sections of adjacent cells and the cell lengths of adjacent cells are equal.
5. The antenna of claim 3 wherein:
the ratio of the width of the narrow section of adjacent arm cells is constant.
6. The antenna of claim 4 wherein:
the ratios of the narrow sections of each cell are equal to the ratios of the cell lengths.
7. The antenna of claim 1 wherein:
the said spiral is an equiangular spiral.
8. The antenna of claim 7 wherein:
the number of said arms is four.
9. The antenna of claim 8 wherein:
the arms are identical in size and shape.
10. An antenna as defined in claim 1 wherein the spacing between adjacent ones of said arms is nonuniform, thereby to provide a change of impedance in a direction along said arms.
11. An antenna as defined in claim 1 wherein said 5 arms are disposed on the surface of a cone.

Claims (11)

1. A multi-arm spiral antenna capable of radiating circularly polarized electromagnetic energy with opposite senses of polarization, said antenna comprising: a. at least two spiral arms, each arm consisting of a plurality of interconnected cells, each cell consisting of a wide and a narrow section along the length of its arm, the transition between adjacent wide and narrow sections being relatively abrupt, whereby to reflect electromagnetic energy, the sections of each cell increasing in length as the distance from the center increases, and b. means for feeding said arms at the center of the spiral with electromagnetic energy.
2. The antenna of claim 1 wherein: the ratio of the lengths of adjacent arm-cells is constant.
3. The antenna of claim 2 wherein: the ratio of the widths of the wide section of adjacent arm-cells is constant.
4. The antenna of claim 3 wherein: the ratios of the widths of the wide sections of adjacent cells and the cell lengths of adjacent cells are equal.
5. The antenna of claim 3 wherein: the ratio of the width of the narrow section of adjacent arm cells is constant.
6. The antenna of claim 4 wherein: the ratios of the narrow sections of each cell are equal to the ratios of the cell lengths.
7. The antenna of claim 1 wherein: the said spiral is an equiangular spiral.
8. The antenna of claim 7 wherein: the number of said arms is four.
9. The antenna of claim 8 wherein: the arms are identical in size and shape.
10. An antenna as defined in claim 1 wherein the spacing between adjacent ones of said arms is nonuniform, thereby to provide a change of impedance in a direction along said arms.
11. An antenna as defined in claim 1 wherein said arms are disposed on the surface of a cone.
US103116A 1970-12-31 1970-12-31 Modulated arm width spiral antenna Expired - Lifetime US3681772A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10311670A 1970-12-31 1970-12-31

Publications (1)

Publication Number Publication Date
US3681772A true US3681772A (en) 1972-08-01

Family

ID=22293489

Family Applications (1)

Application Number Title Priority Date Filing Date
US103116A Expired - Lifetime US3681772A (en) 1970-12-31 1970-12-31 Modulated arm width spiral antenna

Country Status (1)

Country Link
US (1) US3681772A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757342A (en) * 1972-06-28 1973-09-04 Cutler Hammer Inc Sheet array antenna structure
US3900849A (en) * 1973-10-17 1975-08-19 Us Air Force Conical unbalanced spiral radar modulator
FR2304191A1 (en) * 1975-03-12 1976-10-08 Harris Corp DIRECTOR ANTENNA INSENSITIVE TO THE POLARIZATION OF THE ENERGY RECEIVED
DE2629430A1 (en) * 1976-06-30 1978-01-05 Siemens Ag Double omnidirectional antenna with two sections - has omnidirectional radiator facing feed side in form of unipole for vertical radiation
DE2629502A1 (en) 1976-06-30 1978-01-05 Siemens Ag MULTI-ROUND ANTENNA
US4243993A (en) * 1979-11-13 1981-01-06 The Boeing Company Broadband center-fed spiral antenna
DE2660313C2 (en) * 1976-06-30 1982-05-27 Siemens AG, 1000 Berlin und 8000 München Double omnidirectional antenna
US4559539A (en) * 1983-07-18 1985-12-17 American Electronic Laboratories, Inc. Spiral antenna deformed to receive another antenna
US4605934A (en) * 1984-08-02 1986-08-12 The Boeing Company Broad band spiral antenna with tapered arm width modulation
US4608572A (en) * 1982-12-10 1986-08-26 The Boeing Company Broad-band antenna structure having frequency-independent, low-loss ground plane
EP0198578A1 (en) * 1985-02-19 1986-10-22 Raymond Horace Du Hamel Dual polarised sinuous antennas
US4675690A (en) * 1984-05-25 1987-06-23 Revlon, Inc. Conical spiral antenna
US4725848A (en) * 1985-04-01 1988-02-16 Argo Systems, Inc. Constant beamwidth spiral antenna
US4945363A (en) * 1984-05-25 1990-07-31 Revlon, Inc. Conical spiral antenna
US5451973A (en) * 1993-11-02 1995-09-19 Trw Inc. Multi-mode dual circularly polarized spiral antenna
US5457469A (en) * 1991-01-24 1995-10-10 Rdi Electronics, Incorporated System including spiral antenna and dipole or monopole antenna
US5479180A (en) * 1994-03-23 1995-12-26 The United States Of America As Represented By The Secretary Of The Army High power ultra broadband antenna
US6130652A (en) * 1999-06-15 2000-10-10 Trw Inc. Wideband, dual RHCP, LHCP single aperture direction finding antenna system
US20020030168A1 (en) * 2000-06-27 2002-03-14 Gabriel Martinez Martin Energy regenerating device
JP2003521848A (en) * 1999-06-29 2003-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Spiral antenna
US20040257298A1 (en) * 2003-06-18 2004-12-23 Steve Larouche Helical antenna
US10177451B1 (en) 2014-08-26 2019-01-08 Ball Aerospace & Technologies Corp. Wideband adaptive beamforming methods and systems
US11977194B2 (en) 2018-10-25 2024-05-07 National Research Council Of Canada Printed film electrostatic concentration for radon detection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454951A (en) * 1967-05-05 1969-07-08 North American Rockwell Spiral antenna with zigzag arms to reduce size
US3562756A (en) * 1968-06-03 1971-02-09 Texas Instruments Inc Multiple polarization spiral antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454951A (en) * 1967-05-05 1969-07-08 North American Rockwell Spiral antenna with zigzag arms to reduce size
US3562756A (en) * 1968-06-03 1971-02-09 Texas Instruments Inc Multiple polarization spiral antenna

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757342A (en) * 1972-06-28 1973-09-04 Cutler Hammer Inc Sheet array antenna structure
US3900849A (en) * 1973-10-17 1975-08-19 Us Air Force Conical unbalanced spiral radar modulator
FR2304191A1 (en) * 1975-03-12 1976-10-08 Harris Corp DIRECTOR ANTENNA INSENSITIVE TO THE POLARIZATION OF THE ENERGY RECEIVED
DE2660313C2 (en) * 1976-06-30 1982-05-27 Siemens AG, 1000 Berlin und 8000 München Double omnidirectional antenna
DE2629502A1 (en) 1976-06-30 1978-01-05 Siemens Ag MULTI-ROUND ANTENNA
DE2629430A1 (en) * 1976-06-30 1978-01-05 Siemens Ag Double omnidirectional antenna with two sections - has omnidirectional radiator facing feed side in form of unipole for vertical radiation
US4243993A (en) * 1979-11-13 1981-01-06 The Boeing Company Broadband center-fed spiral antenna
US4608572A (en) * 1982-12-10 1986-08-26 The Boeing Company Broad-band antenna structure having frequency-independent, low-loss ground plane
US4559539A (en) * 1983-07-18 1985-12-17 American Electronic Laboratories, Inc. Spiral antenna deformed to receive another antenna
US4945363A (en) * 1984-05-25 1990-07-31 Revlon, Inc. Conical spiral antenna
US4675690A (en) * 1984-05-25 1987-06-23 Revlon, Inc. Conical spiral antenna
AU583271B2 (en) * 1984-05-25 1989-04-27 Revlon Inc. A conical helical antenna
US4605934A (en) * 1984-08-02 1986-08-12 The Boeing Company Broad band spiral antenna with tapered arm width modulation
EP0198578A1 (en) * 1985-02-19 1986-10-22 Raymond Horace Du Hamel Dual polarised sinuous antennas
US4725848A (en) * 1985-04-01 1988-02-16 Argo Systems, Inc. Constant beamwidth spiral antenna
US5457469A (en) * 1991-01-24 1995-10-10 Rdi Electronics, Incorporated System including spiral antenna and dipole or monopole antenna
US5451973A (en) * 1993-11-02 1995-09-19 Trw Inc. Multi-mode dual circularly polarized spiral antenna
US5479180A (en) * 1994-03-23 1995-12-26 The United States Of America As Represented By The Secretary Of The Army High power ultra broadband antenna
US6130652A (en) * 1999-06-15 2000-10-10 Trw Inc. Wideband, dual RHCP, LHCP single aperture direction finding antenna system
JP2003521848A (en) * 1999-06-29 2003-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Spiral antenna
US20020030168A1 (en) * 2000-06-27 2002-03-14 Gabriel Martinez Martin Energy regenerating device
US20040257298A1 (en) * 2003-06-18 2004-12-23 Steve Larouche Helical antenna
US7038636B2 (en) * 2003-06-18 2006-05-02 Ems Technologies Cawada, Ltd. Helical antenna
US10177451B1 (en) 2014-08-26 2019-01-08 Ball Aerospace & Technologies Corp. Wideband adaptive beamforming methods and systems
US11977194B2 (en) 2018-10-25 2024-05-07 National Research Council Of Canada Printed film electrostatic concentration for radon detection

Similar Documents

Publication Publication Date Title
US3681772A (en) Modulated arm width spiral antenna
US4243993A (en) Broadband center-fed spiral antenna
US5220340A (en) Directional switched beam antenna
US2754513A (en) Antenna
US4658262A (en) Dual polarized sinuous antennas
AU613645B2 (en) Broadband notch antenna
US5451973A (en) Multi-mode dual circularly polarized spiral antenna
CA2721438C (en) Circularly polarized loop reflector antenna and associated methods
US3713167A (en) Omni-steerable cardioid antenna
JP5745582B2 (en) Antenna and sector antenna
US20080055175A1 (en) Multi-beam antenna
EP0456034B1 (en) Bicone antenna with hemispherical beam
US4398199A (en) Circularly polarized microstrip line antenna
US3987454A (en) Log-periodic longitudinal slot antenna array excited by a waveguide with a conductive ridge
US5952982A (en) Broadband circularly polarized antenna
US4605934A (en) Broad band spiral antenna with tapered arm width modulation
JPH0313105A (en) Radial line slot antenna
US6067058A (en) End-fed spiral antenna, and arrays thereof
KR101927708B1 (en) Microstrip Balun-fed four-arm Sinuous Antenna
AU691022B2 (en) Nonsquinting end-fed helical antenna
Morgan Spiral antennas for ESM
WO1996007216A9 (en) Nonsquinting end-fed quadrifilar helical antenna
US2759183A (en) Antenna arrays
US5142290A (en) Wideband shaped beam antenna
US3147479A (en) Plural juxtaposed parabolic reflectors with frequency independent feeds