US3643430A - Smoke reduction combustion chamber - Google Patents
Smoke reduction combustion chamber Download PDFInfo
- Publication number
- US3643430A US3643430A US16527A US3643430DA US3643430A US 3643430 A US3643430 A US 3643430A US 16527 A US16527 A US 16527A US 3643430D A US3643430D A US 3643430DA US 3643430 A US3643430 A US 3643430A
- Authority
- US
- United States
- Prior art keywords
- air
- wall means
- combustion chamber
- fuel
- fuel nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 80
- 239000000779 smoke Substances 0.000 title abstract description 18
- 239000000446 fuel Substances 0.000 claims abstract description 54
- 239000000203 mixture Substances 0.000 claims description 6
- 230000004323 axial length Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000003570 air Substances 0.000 description 108
- 239000007789 gas Substances 0.000 description 11
- 238000011144 upstream manufacturing Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 241000274177 Juniperus sabina Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000001520 savin Nutrition 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/045—Air inlet arrangements using pipes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- a combustion chamber either an annular or can-annular type, which substantially eliminates the production of smoke while maintaining all other performance parameters of the com bustion chamber.
- the combustion chamber is provided with a front end configuration which substantially eliminates local fuel rich regions and which provides a means for mixing the incoming fuel and air.
- the present invention relates to combustion chambers and more particularly to any type combustion chamber for a gas turbineengine, the construction of the combustion chamber being such that the fuel-air mixture is combusted in such a manner that the formation of carbon, and hence visible smoke emission is markedly reduced. This smoke reduction is accomplished while maintaining all other combustion chamber performance parameters, such as combustion efficiency, combustion stability, altitude ignition, and durability.
- a combustion chamber for use in a gas turbine must possess certain characteristics in order to satisfactorily perform its function, and this is particularly true of a gas turbine engine employed in a jet aircraft.
- the combustion chamber must be capable of easy startup at ground level through a range of ambient air temperatures representing cold and hot weather conditions, that is, low fuel flows and short ignition delay time so as not to result in an explosive or hot start.
- a can-annular type burner which will bethe type burner primarily discussed herein, after ignition of the fuel-air mixture in the burners that are equipped with spark igniters or some other ignition source, the flame must propagate to adjacent burners for a full lightoff and then accelerate to idle speed.
- the combustor must also have the capability of good stability limits, that is, operate satisfactorily at fuel-air ratios below and above the normal idle and rated thrust fuel-air ratios in order to insure that during transient conditions, such as acceleration and deceleration operational modes which can result in off-design fuel-air ratio levels, the burners will not flame out.
- An additional characteristic that the combustion chamber must have is that it must be capable of altitude ignition over a wide flight speed and altitude range without causing compressor stall or other penalties which would prevent the engine from being brought up to idle speed. Additionally, the combustion chamber, after reaching idle speed, must have the capability of being accelerated to higher power settings, and this must be accomplished in a relatively short time, normally within seconds.
- the combustion chamber must also have the capability of producing a satisfactory discharge temperature pattern or be capable of alteration to result in such a pattern without detrimental effect of the previously mentioned performance parameters, in order to achieve long life of parts receiving the hot discharge gases from the burner. Finally, the combustion chamber must provide an atmosphere of combustion wherein the fuel-air mixture when combusted does not result in the emission of visible smoke from the engine.
- a combustion chamber for a jet en gine used in aircraft propulsion must possess acceptable stability and altitude ignition characteristics. Normally, in prior art combustion chambers, this is accomplished by setting up a zone of recirculation in the front end of the burner in which all of the fuel is mixed with only a portion of the total airflow. This zone is one of low axial velocity, and the large stable recirculation eddies formed in this region result in excellent burner performance in the aforementioned parameters, except that it is prone to producing excessive carbon and hence results in a highly visible exhaust. It is equally well known that carbon is formed in rich fuel mixtures; hence, the problem is one of lack of oxygen and intimate mixing of fuel and air in the front end and other local regions.
- the present invention determines and provides a construction to reduce smoke while at the same time maintaining the necessary performance parameters which are acceptable for use in a gas turbine engine.
- the present invention accomplishes the foregoing by a unique combustion chamber configuration.
- a plurality of air tubes are provided at the closed end of the combustion liner.
- the size, number and location of these air tubes are optimized so as to provide a critical airflow into the combustion zone or zones of the combustion liner.
- the amount of air injected through these air tubes in the front of the combustion chamber is critical, it being necessary that the air tubes be sized so that they permit the passage of air therethrouglh to be a predetermined percentage of the total primary airflow which will lie in a range where the air tube sizing starts to get too large and permit flame blowout" to where the air tube sizing starts to get too small and permit excessive smoking.
- the amount of air to be injected through these air tubes was computed and figured to be from 6-8 percent of the total primary airflow. This range will vary for other combustion chambers of different configurations.
- air tubes are positioned at the inner and outer walls of the dome shaped closure member.
- the tubes on the inner wall are axially offset from the tubes on the outer wall, the tubes on the outer wall being positioned further downstream than the tubes on the inner wall.
- these tubes are directed internally from the walls so that the air discharging therefrom penetrates any air entering through the liner front end and it further acts to counteract this air from dispersing or deflecting the incoming air.
- FIG. 1 is a cross-sectional view of the liner within a combustion section envelope showing the device of the invention.
- FIG. 2 is a cross-sectional view taken substantially along line 2-2 ofFIG. ll.
- the invention is shown in a diffuser case 110 which is intended to be located between the compressor and the turbine of a gas turbine powerplant.
- a powerplant to which this type of combustion chamber is applicable is disclosed, for example, in the Savin patent, US. Pat. No. 2,747,367.
- combustion chamber 4 is of a can-annular type, only one being illustrated. It is to be understood that any type combustion chamber may be employed, whether it be a can-annular type or an annular type.
- combustion chamber 4 consists of outer liner wall 12, inner liner wall 62, and annular dome-shaped member 20 with fuel nozzles 16. Liner walls 12 and 62 along with annular dome-shaped member 20 are the closure parts of combustion chamber 4.
- the combustion chamber 4 includes an upstream end where the primary combustion zone occurs, this combustion zone being designated by the numeral 24 and an open end 26 wherein the exhaust gases are discharged to a turbine not shown herein.
- high-pressure compressor discharge air 30 enters the diffuser case and flows toward the head end or the upstream end of the combustion chamber 4.
- combustion chamber 4 is supported from the combustion case 32 by any conventional means.
- the compressor discharge air divides itself around combustion chamber 4, entering through holes or openings 36 of the fuel nozzle shrouds 38, burner can swirlers 40, central opening 42 and a series of openings 44, 46 and 48 which are distributed along the axial length of the liner.
- the fuel rich regions are caused by the inability to mix the fuel and available air uniformly and the inability to provide sufficient air to the primary zone, especially at the burner-can center near the fuel ejector. Attempts to provide the necessary mixing, by increasing the pressure drop and/or opening the air access holes, do not produce satisfactory results. For a large increase in air admission through the air access holes and/or large increases in the burner pressure drop, a low smoke level may be achieved, but at the expense of other performance parameters which make the combustion chamber unacceptable for engine use. If more moderate amounts of air and/or increase in pressure loss are used in order to retain the required level in all other performance parameters, it is found that smoke reduction achieved is marginal and not satisfactory. it has, therefore, been determined that the location, size and design of the front end air admission ports is a critical factor in a combustion chamber where it is desired to reduce the smoke level and maintain satisfactory performance parameters for use in a gas turbine engine.
- the upstream end of the combustion chamber 4 includes dome-shaped member 20, include outer wall member 60 and inner wall member 62.
- the inner wall designation will designate the wall closest to the burner centerline 64. Therefore, inner wall 62 of dome-shaped member supports air tubes 66 while outer wall 60 supports air tubes 68, these air tubes assisting in eliminating local fuel rich regions.
- air tubes 66 and 68 are mounted on the inner and outer wall adjacent or slightly downstream of the fuel nozzles and are generally positioned circumferentially on liner 22 inner wall member 62 and outer wall member 60.
- air tubes 66 and 68 extending from the dome member inner and outer walls 62 and 60 respectively, do so radially so as to provide a positive direction to the airflow issuing from the air tubes.
- the positive direction is radially inward, the extension or depth of the air tubes assisting in causing the air to penetrate further in towards the swirler centerlines 63.
- Air tubes 66 and 68 provide the means for counteracting the effects of the air entering through swirler 40 which would tend to deflect any air entering through openings in wall members 60 and 62.
- Air tubes 66 and 68 by directing the flow radially inward because of their shape, protect the air jet issuing therefrom from being dispersed by the air entering through swirler 40.
- This air entering air tubes 66 and 68 is able to penetrate past the swirler and cooling air hence permitting this air from air tubes to move toward the center end of the burner liner and combine with the swirler air to form an individual recirculation zone 74, as shown, one being associated with each fuel nozzle in the combustion chamber.
- the axial position of the air tubes on the dome inner wall 62 and the dome outer wall 60 are critical. More specifically, air tubes 68 on the dome outer wall 60 are further downstream or axially offset from the upstream end of the burner liner than the axial position of air tubes 66 on the dome inner wall 62.
- recirculation zone 74 which is formed primarily by the combination of the radially inward flowing air from the air tubes and the swirler air.
- recirculation zone 74 is formed primarily by the combination of the radially inward flowing air from the air tubes and the swirler air.
- the amount of air entering through these air tubes is critical. It was further stated that the amount of air entering through these tubes for the configuration shown must be within the range of 6 to 8 percent, a preferred amount being approximately 7 percent of the total primary combustion airflow. Additionally, while not only is the amount of air flowing through the air tubes critical but also the amount of air flowing through the air tubes as positioned on the dome inner and outer walls is critical. Referring to FIG. 2, it can be seen that there is one air tube 66 attached to the dome inner wall for each individual fuel nozzle and hence recirculation zone 74. It is critical that there be at least one tube positioned on the dome inner wall for each nozzle. Alternatively, several tubes with an equivalent flow area, hereinafter described, may be utilized on the inner wall 62.
- the number of air tubes 68 in the dome outer wall are also critical; however, it has been determined that there be at least three but not more than four air tubes 68 to provide the required airflow into the individual combustion zones. Again, as with the inner wall air tubes, several more may he used so long as the critical flow requirements are satisfied.
- air tube 66 on dome inner wall 62 should have an inside diameter or opening through which the air flows in the range of from 0.175 inch to 0.400 inch, and should be inserted into the burner liner a depth of 0.05 to 0.150 inch.
- the air tubes on the dome outer wall 60 should have an inside diameter or opening through which the air flows in the range of 0.200 to 0.425 inch and should be inserted radially to a depth of about 0.050 to 0.150 inch.
- a combustion chamber comprising a housing, a liner supported by the housing and spaced radially therefrom, the liner having a substantially closed end and an open end spaced axially therefrom with a first wall means therebetween, the first wall means having a plurality of openings along its axial length, the liner providing a zone for combustion of a fuel-air mixture, the combustion products being discharged through the open end, and fuel nozzle means positioned at the closed end of the liner for supplying fuel to the combustion zone wherein the improvement comprises:
- said fuel nozzle means including a plurality of fuel nozzles
- said fuel nozzles being located in said closed end spaced around said inner wall means
- said air tube means including first air tubes and second air tubes
- said first air tubes being positioned in the inner wall means to direct air from the central opening towards said first wall means
- said second air tubes being positioned in said first wall means for directing air from around the liner towards inner wall means
- said flow of air from said first and second air tubes being directed into swirling airflow from the swirl vanes su rrounding each fuel nozzle.
- the openings of the air tubes downstream of each fuel nozzle are radially opposed and axially offset with respect to the combustion zone, the openings of the second air tubes on the first wall means being further downstream than the opening of the first air tube on the inner wall means
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
A combustion chamber either an annular or can-annular type, which substantially eliminates the production of smoke while maintaining all other performance parameters of the combustion chamber. The combustion chamber is provided with a front end configuration which substantially eliminates local fuel rich regions and which provides a means for mixing the incoming fuel and air.
Description
lUit tame Emory, ,lr, et all 1 Feb. 22, 11972 [72] lnventors: .llolin 11/11. G. Emory, 1112, Vernon; ,lloaeph ,1].
1E. lFaitani, Hartford, both of Conn.
[73] Assignee: United Air-emit Corporation, East Hartford, Conn.
[22] Filed: Mar. 1, 11970 [21] Appl.No.: 116,527
[52] US. Cl ..61l/39.65, 60/ 39.74 [51] lint. Cl. ..ll 02c 7/00 [58] Field of Search ..60/39.65, 39.74
[56] References Cited UNITED STATES PATENTS 3,498,055 3/1970 Faitani et a1 ..60l39.65 3,394,543 7/1968 Slattery ..50/39.65 X
2,609,663 9/1952 Newcomb ..60/39.65 X 3,099,134 7/1963 Calder et a1. ..60/39.65 3,134,229 5/1964 Johnson ..60/39.65
FOREIGN PATENTS OR APPLICATIONS 836,117 6/1960 Great Britain ..60/39.65
Primary Examiner-Benjamin W. Wyche Attorney.lack N. McCarthy [57} ABSTRACT A combustion chamber either an annular or can-annular type, which substantially eliminates the production of smoke while maintaining all other performance parameters of the com bustion chamber. The combustion chamber is provided with a front end configuration which substantially eliminates local fuel rich regions and which provides a means for mixing the incoming fuel and air.
6 Claims, 2 Drawing Figures SMOKE REDUCTION COMBUSTION CHAER The invention herein described was made in the course of or under a contract with the Department of the Navy.
BACKGROUND OF THE INVENTION The present invention relates to combustion chambers and more particularly to any type combustion chamber for a gas turbineengine, the construction of the combustion chamber being such that the fuel-air mixture is combusted in such a manner that the formation of carbon, and hence visible smoke emission is markedly reduced. This smoke reduction is accomplished while maintaining all other combustion chamber performance parameters, such as combustion efficiency, combustion stability, altitude ignition, and durability.
As background, it is well known that a combustion chamber for use in a gas turbine must possess certain characteristics in order to satisfactorily perform its function, and this is particularly true of a gas turbine engine employed in a jet aircraft. The combustion chamber must be capable of easy startup at ground level through a range of ambient air temperatures representing cold and hot weather conditions, that is, low fuel flows and short ignition delay time so as not to result in an explosive or hot start. In the case of a can-annular type burner which will bethe type burner primarily discussed herein, after ignition of the fuel-air mixture in the burners that are equipped with spark igniters or some other ignition source, the flame must propagate to adjacent burners for a full lightoff and then accelerate to idle speed. The combustor must also have the capability of good stability limits, that is, operate satisfactorily at fuel-air ratios below and above the normal idle and rated thrust fuel-air ratios in order to insure that during transient conditions, such as acceleration and deceleration operational modes which can result in off-design fuel-air ratio levels, the burners will not flame out. An additional characteristic that the combustion chamber must have is that it must be capable of altitude ignition over a wide flight speed and altitude range without causing compressor stall or other penalties which would prevent the engine from being brought up to idle speed. Additionally, the combustion chamber, after reaching idle speed, must have the capability of being accelerated to higher power settings, and this must be accomplished in a relatively short time, normally within seconds. The combustion chamber must also have the capability of producing a satisfactory discharge temperature pattern or be capable of alteration to result in such a pattern without detrimental effect of the previously mentioned performance parameters, in order to achieve long life of parts receiving the hot discharge gases from the burner. Finally, the combustion chamber must provide an atmosphere of combustion wherein the fuel-air mixture when combusted does not result in the emission of visible smoke from the engine.
While many of the elements employed in the present invention are described in the prior art, for example, the Johnson patent, U.S. Pat. No. 3,134,229, the Schiefer patent, U.S. Pat. No. 2,974,485, the Panko patent, U.S. Pat. No. 3,352,106 and the Bachle patent, U.S. Pat. No. 3,018,625, it is pointed out that none of these particular references or the prior art in general solves the particular problem as the present invention does. As hereinbefore noted, in order to provide an acceptable combustion chamber for use in a gas turbine engine, it is necessary to maintain the performance parameters hereinbefore mentioned. Smoke emission has been a problem which the prior art combustion chamber constructions have accepted so as not to penalize or adversely affect these performance parameters. The present invention does not accept smoke emission and substantially eliminates smoke emission without any penalty to the performance parameters hereinbefore mentioned.
SUMMARY OF THE INVENTION It is a primary object of the present invention to provide a combustion chamber which substantially eliminates smoke emission therefrom and which provides a combustion chamber which maintains the overall performance parameters which are acceptable for use in a gas turbine engine.
In general, the present day prior art gas turbine combustion chambers operate at lean overall fuel-air ratios, which are below the flammability limits of most normally used fuels. Therefore, in order to burn the incoming fuel and air, a region in the burner must be provided in which the fuel is mixed with the correct portion of air in order to initiate and sustain combustion over a wide range of operating conditions. This is normally done by controlling the airflow distribution into the burner as a function of burner length. Incoming air is therefore divided into primary air and secondary air, and the manner of injection, location and amount of primary air used, in large part, controls the smoke formation characteristics of a combustion chamber and is the main object of this invention. It is a main objective of this invention to control this effect.
As hereinbefore stated, a combustion chamber for a jet en gine used in aircraft propulsion must possess acceptable stability and altitude ignition characteristics. Normally, in prior art combustion chambers, this is accomplished by setting up a zone of recirculation in the front end of the burner in which all of the fuel is mixed with only a portion of the total airflow. This zone is one of low axial velocity, and the large stable recirculation eddies formed in this region result in excellent burner performance in the aforementioned parameters, except that it is prone to producing excessive carbon and hence results in a highly visible exhaust. It is equally well known that carbon is formed in rich fuel mixtures; hence, the problem is one of lack of oxygen and intimate mixing of fuel and air in the front end and other local regions. It has been determined that to obtain a satisfactory reduction in smoke, increasing the airflow proportion in the front end is effective but that the amount required invariably severely compromises the stability and altitude relight capability. The present invention determines and provides a construction to reduce smoke while at the same time maintaining the necessary performance parameters which are acceptable for use in a gas turbine engine.
The present invention accomplishes the foregoing by a unique combustion chamber configuration. In the combustion chamber of the present invention a plurality of air tubes are provided at the closed end of the combustion liner. The size, number and location of these air tubes are optimized so as to provide a critical airflow into the combustion zone or zones of the combustion liner. The amount of air injected through these air tubes in the front of the combustion chamber is critical, it being necessary that the air tubes be sized so that they permit the passage of air therethrouglh to be a predetermined percentage of the total primary airflow which will lie in a range where the air tube sizing starts to get too large and permit flame blowout" to where the air tube sizing starts to get too small and permit excessive smoking. In a combustion chamber configuration tested, the amount of air to be injected through these air tubes was computed and figured to be from 6-8 percent of the total primary airflow. This range will vary for other combustion chambers of different configurations.
As has been hereinbefore noted, the location of the air tubes is critical. To this end, in the embodiment illustrated, air tubes are positioned at the inner and outer walls of the dome shaped closure member. The tubes on the inner wall are axially offset from the tubes on the outer wall, the tubes on the outer wall being positioned further downstream than the tubes on the inner wall. Additionally, these tubes are directed internally from the walls so that the air discharging therefrom penetrates any air entering through the liner front end and it further acts to counteract this air from dispersing or deflecting the incoming air.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of the liner within a combustion section envelope showing the device of the invention.
FIG. 2 is a cross-sectional view taken substantially along line 2-2 ofFIG. ll.
DESCRIPTION OF THE PREFERRED EMBODIMENT The invention is shown in a diffuser case 110 which is intended to be located between the compressor and the turbine of a gas turbine powerplant. A powerplant to which this type of combustion chamber is applicable is disclosed, for example, in the Savin patent, US. Pat. No. 2,747,367.
As is shown in FIGS. 1 and 2, the combustion chamber is of a can-annular type, only one being illustrated. It is to be understood that any type combustion chamber may be employed, whether it be a can-annular type or an annular type. Again referring to FIGS. 1 and 2, combustion chamber 4 consists of outer liner wall 12, inner liner wall 62, and annular dome-shaped member 20 with fuel nozzles 16. Liner walls 12 and 62 along with annular dome-shaped member 20 are the closure parts of combustion chamber 4. The combustion chamber 4 includes an upstream end where the primary combustion zone occurs, this combustion zone being designated by the numeral 24 and an open end 26 wherein the exhaust gases are discharged to a turbine not shown herein.
As shown, high-pressure compressor discharge air 30 enters the diffuser case and flows toward the head end or the upstream end of the combustion chamber 4. As illustrated, combustion chamber 4 is supported from the combustion case 32 by any conventional means. The compressor discharge air divides itself around combustion chamber 4, entering through holes or openings 36 of the fuel nozzle shrouds 38, burner can swirlers 40, central opening 42 and a series of openings 44, 46 and 48 which are distributed along the axial length of the liner. These liner reference characters and their functions will be described hereinafter in greater detail. As hereinbefore discussed, the apparent cause of smoke in a combustion chamber is primarily due to rich fuel regions in the front end of the combustion chamber. The fuel rich regions are caused by the inability to mix the fuel and available air uniformly and the inability to provide sufficient air to the primary zone, especially at the burner-can center near the fuel ejector. Attempts to provide the necessary mixing, by increasing the pressure drop and/or opening the air access holes, do not produce satisfactory results. For a large increase in air admission through the air access holes and/or large increases in the burner pressure drop, a low smoke level may be achieved, but at the expense of other performance parameters which make the combustion chamber unacceptable for engine use. If more moderate amounts of air and/or increase in pressure loss are used in order to retain the required level in all other performance parameters, it is found that smoke reduction achieved is marginal and not satisfactory. it has, therefore, been determined that the location, size and design of the front end air admission ports is a critical factor in a combustion chamber where it is desired to reduce the smoke level and maintain satisfactory performance parameters for use in a gas turbine engine.
In the embodiment shown in FIGS. 1 and 2, air to improve mixing and thereby eliminate the local fuel rich regions thus reducing carbon formation is added through a plurality of air tubes further upstream, that is, slightly downstream of or immediately adjacentthe fuel nozzle. These air tubes with their appropriate reference characters will hereinafter be described. As illustrated in FIG. 1, the upstream end of the combustion chamber 4 includes dome-shaped member 20, include outer wall member 60 and inner wall member 62. For the sake of convenience, the inner wall designation will designate the wall closest to the burner centerline 64. Therefore, inner wall 62 of dome-shaped member supports air tubes 66 while outer wall 60 supports air tubes 68, these air tubes assisting in eliminating local fuel rich regions. As illustrated, air tubes 66 and 68 are mounted on the inner and outer wall adjacent or slightly downstream of the fuel nozzles and are generally positioned circumferentially on liner 22 inner wall member 62 and outer wall member 60.
In the embodiment herein illustrated air tubes 66 and 68 extending from the dome member inner and outer walls 62 and 60 respectively, do so radially so as to provide a positive direction to the airflow issuing from the air tubes. As can be seen, the positive direction is radially inward, the extension or depth of the air tubes assisting in causing the air to penetrate further in towards the swirler centerlines 63. Air tubes 66 and 68 provide the means for counteracting the effects of the air entering through swirler 40 which would tend to deflect any air entering through openings in wall members 60 and 62. Air tubes 66 and 68 by directing the flow radially inward because of their shape, protect the air jet issuing therefrom from being dispersed by the air entering through swirler 40. This air entering air tubes 66 and 68 is able to penetrate past the swirler and cooling air hence permitting this air from air tubes to move toward the center end of the burner liner and combine with the swirler air to form an individual recirculation zone 74, as shown, one being associated with each fuel nozzle in the combustion chamber. To assist in forming recirculation zone 74, the axial position of the air tubes on the dome inner wall 62 and the dome outer wall 60 are critical. More specifically, air tubes 68 on the dome outer wall 60 are further downstream or axially offset from the upstream end of the burner liner than the axial position of air tubes 66 on the dome inner wall 62. The axial offset assists in establishing recirculation zone 74, which is formed primarily by the combination of the radially inward flowing air from the air tubes and the swirler air. As a result of the axial offset and the radial extension or depth of air tubes 66 and 68, the individual recirculation zones are located at a point much closer to the head or closed end of the combustion chamber than is normally possible. The result of locating this recirculation zone at a further upstream position is to permit the air to be available to mix with the incoming flow from fuel nozzles 16 sooner than is the case with other prior art constructions.
As hereinbefore stated, the amount of air entering through these air tubes is critical. It was further stated that the amount of air entering through these tubes for the configuration shown must be within the range of 6 to 8 percent, a preferred amount being approximately 7 percent of the total primary combustion airflow. Additionally, while not only is the amount of air flowing through the air tubes critical but also the amount of air flowing through the air tubes as positioned on the dome inner and outer walls is critical. Referring to FIG. 2, it can be seen that there is one air tube 66 attached to the dome inner wall for each individual fuel nozzle and hence recirculation zone 74. It is critical that there be at least one tube positioned on the dome inner wall for each nozzle. Alternatively, several tubes with an equivalent flow area, hereinafter described, may be utilized on the inner wall 62. The number of air tubes 68 in the dome outer wall are also critical; however, it has been determined that there be at least three but not more than four air tubes 68 to provide the required airflow into the individual combustion zones. Again, as with the inner wall air tubes, several more may he used so long as the critical flow requirements are satisfied.
To provide the required airflow through the air tubes for the configuration shown it has been found that air tube 66 on dome inner wall 62 should have an inside diameter or opening through which the air flows in the range of from 0.175 inch to 0.400 inch, and should be inserted into the burner liner a depth of 0.05 to 0.150 inch. The air tubes on the dome outer wall 60 should have an inside diameter or opening through which the air flows in the range of 0.200 to 0.425 inch and should be inserted radially to a depth of about 0.050 to 0.150 inch.
We claim:
1. A combustion chamber comprising a housing, a liner supported by the housing and spaced radially therefrom, the liner having a substantially closed end and an open end spaced axially therefrom with a first wall means therebetween, the first wall means having a plurality of openings along its axial length, the liner providing a zone for combustion of a fuel-air mixture, the combustion products being discharged through the open end, and fuel nozzle means positioned at the closed end of the liner for supplying fuel to the combustion zone wherein the improvement comprises:
said fuel nozzle means including a plurality of fuel nozzles,
swirl vanes surrounding each fuel nozzle,
the closed end of the liner having a central opening therein,
inner wall means extending from the edge of said opening into said liner,
said fuel nozzles being located in said closed end spaced around said inner wall means,
air tube means positioned in said inner wall means and said first wall means downstream of each fuel nozzle and being substantially in axial alignment with the cooperating swirl vanes of the nozzle to direct air into the swirling air from the swirl vanes and the fuel from the fuel nozzle, and
said air tube means and said swirl vanes forming a recircula tion zone therebetween.
2. A combustion chamber as set forth in claim 11 wherein:
said air tube means including first air tubes and second air tubes,
said first air tubes being positioned in the inner wall means to direct air from the central opening towards said first wall means,
said second air tubes being positioned in said first wall means for directing air from around the liner towards inner wall means, and
said flow of air from said first and second air tubes being directed into swirling airflow from the swirl vanes su rrounding each fuel nozzle.
3. A combustion chamber as set forth in claim 2 wherein:
there are at least three but not more than four air tubes in said first wall means downstream of each fuel nozzle.
4. A combustion chamber as set forth in claim 2 wherein:
there is one air tube in the inner wall means downstream of each fuel noule.
5. A combustion chamber as set forth in claim 2 wherein:
there are at least three but not more than four air tubes in said first wall means downstream of each fuel nozzle, and
there is one air tube in the inner wall means downstream of each fuel nozzle.
6. A combustion chamber as set forth in claim 2 wherein:
the openings of the air tubes downstream of each fuel nozzle are radially opposed and axially offset with respect to the combustion zone, the openings of the second air tubes on the first wall means being further downstream than the opening of the first air tube on the inner wall means
Claims (6)
1. A combustion chamber comprising a housing, a liner supported by the housing and spaced radially therefrom, the liner having a substantially closed end and an open end spaced axially therefrom with a first wall means therebetween, the first wall means having a plurality of openings along its axial length, the liner providing a zone for combustion of a fuel-air mixture, the combustion products being discharged through the open end, and fuel nozzle means positioned at the closed end of the liner for supplying fuel to the combustion zone wherein the improvement comprises: said fuel nozzle means including a plurality of fuel nozzles, swirl vanes surrounding each fuel nozzle, the closed end of the liner having a central opening therein, inner wall means extending from the edge of said opening into said liner, said fuel nozzles being located in said closed end spaced around said inner wall means, air tube means positioned in said inner wall means and said first wall means downstream of each fuel nozzle and being substantially in axial alignment with the cooperating swirl vanes of the nozzle to direct air into the swirling air from the swirl vanes and the fuel from the fuel nozzle, and said air tube means and said swirl vanes forming a recirculation zone therebetween.
2. A combustion chamber as set forth in claim 1 wherein: said air tube means including first air tubes and second air tubes, said first air tubes being positioned in the inner wall means to direct air from the central opening towards said first wall means, said second air tubes being positioned in said first wall means for directing air from around the liner towards inner wall means, and said flow of air from said first and second air tubes being directed into swirling airflow from the swirl vanes surrounding each fuel nozzle.
3. A combustion chamber as set forth in claim 2 wherein: there are at least three but not more than four air tubes in said first wall means downstream of each fuel nozzle.
4. A combustion chamber as set forth in claim 2 wherein: there is one air tube in the inner wall means downstream of each fuel nozzle.
5. A combustion chamber as set forth in claim 2 wherein: there are at least three but not more than four air tubes in said first wall means downstream of each fuel nozzle, and there is one air tube in the inner wall mEans downstream of each fuel nozzle.
6. A combustion chamber as set forth in claim 2 wherein: the openings of the air tubes downstream of each fuel nozzle are radially opposed and axially offset with respect to the combustion zone, the openings of the second air tubes on the first wall means being further downstream than the opening of the first air tube on the inner wall means.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1652770A | 1970-03-04 | 1970-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3643430A true US3643430A (en) | 1972-02-22 |
Family
ID=21777585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16527A Expired - Lifetime US3643430A (en) | 1970-03-04 | 1970-03-04 | Smoke reduction combustion chamber |
Country Status (1)
Country | Link |
---|---|
US (1) | US3643430A (en) |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3872664A (en) * | 1973-10-15 | 1975-03-25 | United Aircraft Corp | Swirl combustor with vortex burning and mixing |
DE2538134A1 (en) * | 1974-08-27 | 1976-03-11 | Mitsubishi Heavy Ind Ltd | OIL BURNER |
US3995422A (en) * | 1975-05-21 | 1976-12-07 | General Electric Company | Combustor liner structure |
US4052844A (en) * | 1975-06-02 | 1977-10-11 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation | Gas turbine combustion chambers |
DE2810475A1 (en) * | 1977-03-15 | 1978-09-21 | United Technologies Corp | DEVICE FOR REDUCING THE SMOKE DENSITY OF A BURNER |
US4173118A (en) * | 1974-08-27 | 1979-11-06 | Mitsubishi Jukogyo Kabushiki Kaisha | Fuel combustion apparatus employing staged combustion |
FR2451998A1 (en) * | 1979-03-22 | 1980-10-17 | Rolls Royce | COMBUSTION CHAMBER FOR A SPECIALLY REFRIGERATED GAS TURBINE ENGINE |
EP0019022A1 (en) * | 1979-05-18 | 1980-11-26 | Robert Storey Babington | Liquid fuel burners |
US4854127A (en) * | 1988-01-14 | 1989-08-08 | General Electric Company | Bimodal swirler injector for a gas turbine combustor |
US4916906A (en) * | 1988-03-25 | 1990-04-17 | General Electric Company | Breach-cooled structure |
US5083422A (en) * | 1988-03-25 | 1992-01-28 | General Electric Company | Method of breach cooling |
US5138841A (en) * | 1990-01-23 | 1992-08-18 | The Commonwealth Of Australia | Gas turbine engines |
US5197278A (en) * | 1990-12-17 | 1993-03-30 | General Electric Company | Double dome combustor and method of operation |
US5488829A (en) * | 1994-05-25 | 1996-02-06 | Westinghouse Electric Corporation | Method and apparatus for reducing noise generated by combustion |
US5590530A (en) * | 1994-04-08 | 1997-01-07 | Rolls-Royce Plc | Fuel and air mixing parts for a turbine combustion chamber |
US5640841A (en) * | 1995-05-08 | 1997-06-24 | Crosby; Rulon | Plasma torch ignition for low NOx combustion turbine combustor with monitoring means and plasma generation control means |
US5771696A (en) * | 1996-10-21 | 1998-06-30 | General Electric Company | Internal manifold fuel injection assembly for gas turbine |
US6038861A (en) * | 1998-06-10 | 2000-03-21 | Siemens Westinghouse Power Corporation | Main stage fuel mixer with premixing transition for dry low Nox (DLN) combustors |
US6193502B1 (en) * | 1997-02-08 | 2001-02-27 | Ruhrgas Aktiengesellschaft | Fuel combustion device and method |
EP1359375A3 (en) * | 2002-03-21 | 2004-10-20 | United Technologies Corporation | Counter swirl annular combustor |
US20110000671A1 (en) * | 2008-03-28 | 2011-01-06 | Frank Hershkowitz | Low Emission Power Generation and Hydrocarbon Recovery Systems and Methods |
WO2013147633A1 (en) * | 2012-03-29 | 2013-10-03 | General Electric Company | Turbomachine combustor assembly |
US8984857B2 (en) | 2008-03-28 | 2015-03-24 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
US9027321B2 (en) | 2008-03-28 | 2015-05-12 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
US9222671B2 (en) | 2008-10-14 | 2015-12-29 | Exxonmobil Upstream Research Company | Methods and systems for controlling the products of combustion |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US9463417B2 (en) | 2011-03-22 | 2016-10-11 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods incorporating carbon dioxide separation |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US9599021B2 (en) | 2011-03-22 | 2017-03-21 | Exxonmobil Upstream Research Company | Systems and methods for controlling stoichiometric combustion in low emission turbine systems |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US9670841B2 (en) | 2011-03-22 | 2017-06-06 | Exxonmobil Upstream Research Company | Methods of varying low emission turbine gas recycle circuits and systems and apparatus related thereto |
US9689309B2 (en) | 2011-03-22 | 2017-06-27 | Exxonmobil Upstream Research Company | Systems and methods for carbon dioxide capture in low emission combined turbine systems |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US9732675B2 (en) | 2010-07-02 | 2017-08-15 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods |
US9732673B2 (en) | 2010-07-02 | 2017-08-15 | Exxonmobil Upstream Research Company | Stoichiometric combustion with exhaust gas recirculation and direct contact cooler |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
US9784140B2 (en) | 2013-03-08 | 2017-10-10 | Exxonmobil Upstream Research Company | Processing exhaust for use in enhanced oil recovery |
US9784182B2 (en) | 2013-03-08 | 2017-10-10 | Exxonmobil Upstream Research Company | Power generation and methane recovery from methane hydrates |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US9810050B2 (en) | 2011-12-20 | 2017-11-07 | Exxonmobil Upstream Research Company | Enhanced coal-bed methane production |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US9903271B2 (en) | 2010-07-02 | 2018-02-27 | Exxonmobil Upstream Research Company | Low emission triple-cycle power generation and CO2 separation systems and methods |
US9903316B2 (en) | 2010-07-02 | 2018-02-27 | Exxonmobil Upstream Research Company | Stoichiometric combustion of enriched air with exhaust gas recirculation |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US9932874B2 (en) | 2013-02-21 | 2018-04-03 | Exxonmobil Upstream Research Company | Reducing oxygen in a gas turbine exhaust |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
US10012151B2 (en) | 2013-06-28 | 2018-07-03 | General Electric Company | Systems and methods for controlling exhaust gas flow in exhaust gas recirculation gas turbine systems |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10100741B2 (en) | 2012-11-02 | 2018-10-16 | General Electric Company | System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US10221762B2 (en) | 2013-02-28 | 2019-03-05 | General Electric Company | System and method for a turbine combustor |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US10315150B2 (en) | 2013-03-08 | 2019-06-11 | Exxonmobil Upstream Research Company | Carbon dioxide recovery |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
USD911402S1 (en) * | 2019-07-18 | 2021-02-23 | Illinois Tool Works Inc. | Chamber |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2609663A (en) * | 1951-07-21 | 1952-09-09 | United Aircraft Corp | Rotatable combustion apparatus for aligning individual flame tubes with access partsor manholes |
GB836117A (en) * | 1956-02-02 | 1960-06-01 | Rolls Royce | Improvements in or relating to combustion equipment for gas-turbine engines |
US3099134A (en) * | 1959-12-24 | 1963-07-30 | Havilland Engine Co Ltd | Combustion chambers |
US3134229A (en) * | 1961-10-02 | 1964-05-26 | Gen Electric | Combustion chamber |
US3394543A (en) * | 1966-04-29 | 1968-07-30 | Rolls Royce | Gas turbine engine with means to accumulate compressed air for auxiliary use |
US3498055A (en) * | 1968-10-16 | 1970-03-03 | United Aircraft Corp | Smoke reduction combustion chamber |
-
1970
- 1970-03-04 US US16527A patent/US3643430A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2609663A (en) * | 1951-07-21 | 1952-09-09 | United Aircraft Corp | Rotatable combustion apparatus for aligning individual flame tubes with access partsor manholes |
GB836117A (en) * | 1956-02-02 | 1960-06-01 | Rolls Royce | Improvements in or relating to combustion equipment for gas-turbine engines |
US3099134A (en) * | 1959-12-24 | 1963-07-30 | Havilland Engine Co Ltd | Combustion chambers |
US3134229A (en) * | 1961-10-02 | 1964-05-26 | Gen Electric | Combustion chamber |
US3394543A (en) * | 1966-04-29 | 1968-07-30 | Rolls Royce | Gas turbine engine with means to accumulate compressed air for auxiliary use |
US3498055A (en) * | 1968-10-16 | 1970-03-03 | United Aircraft Corp | Smoke reduction combustion chamber |
Cited By (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3872664A (en) * | 1973-10-15 | 1975-03-25 | United Aircraft Corp | Swirl combustor with vortex burning and mixing |
DE2538134A1 (en) * | 1974-08-27 | 1976-03-11 | Mitsubishi Heavy Ind Ltd | OIL BURNER |
US4173118A (en) * | 1974-08-27 | 1979-11-06 | Mitsubishi Jukogyo Kabushiki Kaisha | Fuel combustion apparatus employing staged combustion |
US3995422A (en) * | 1975-05-21 | 1976-12-07 | General Electric Company | Combustor liner structure |
US4052844A (en) * | 1975-06-02 | 1977-10-11 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation | Gas turbine combustion chambers |
US4151713A (en) * | 1977-03-15 | 1979-05-01 | United Technologies Corporation | Burner for gas turbine engine |
FR2384112A1 (en) * | 1977-03-15 | 1978-10-13 | United Technologies Corp | GAS TURBINE COMBUSTION CHAMBER |
DE2810475A1 (en) * | 1977-03-15 | 1978-09-21 | United Technologies Corp | DEVICE FOR REDUCING THE SMOKE DENSITY OF A BURNER |
FR2451998A1 (en) * | 1979-03-22 | 1980-10-17 | Rolls Royce | COMBUSTION CHAMBER FOR A SPECIALLY REFRIGERATED GAS TURBINE ENGINE |
EP0019022A1 (en) * | 1979-05-18 | 1980-11-26 | Robert Storey Babington | Liquid fuel burners |
US4854127A (en) * | 1988-01-14 | 1989-08-08 | General Electric Company | Bimodal swirler injector for a gas turbine combustor |
US4916906A (en) * | 1988-03-25 | 1990-04-17 | General Electric Company | Breach-cooled structure |
US5083422A (en) * | 1988-03-25 | 1992-01-28 | General Electric Company | Method of breach cooling |
US5138841A (en) * | 1990-01-23 | 1992-08-18 | The Commonwealth Of Australia | Gas turbine engines |
US5197278A (en) * | 1990-12-17 | 1993-03-30 | General Electric Company | Double dome combustor and method of operation |
US5590530A (en) * | 1994-04-08 | 1997-01-07 | Rolls-Royce Plc | Fuel and air mixing parts for a turbine combustion chamber |
US5488829A (en) * | 1994-05-25 | 1996-02-06 | Westinghouse Electric Corporation | Method and apparatus for reducing noise generated by combustion |
US5640841A (en) * | 1995-05-08 | 1997-06-24 | Crosby; Rulon | Plasma torch ignition for low NOx combustion turbine combustor with monitoring means and plasma generation control means |
US5771696A (en) * | 1996-10-21 | 1998-06-30 | General Electric Company | Internal manifold fuel injection assembly for gas turbine |
US6193502B1 (en) * | 1997-02-08 | 2001-02-27 | Ruhrgas Aktiengesellschaft | Fuel combustion device and method |
US6038861A (en) * | 1998-06-10 | 2000-03-21 | Siemens Westinghouse Power Corporation | Main stage fuel mixer with premixing transition for dry low Nox (DLN) combustors |
EP1359375A3 (en) * | 2002-03-21 | 2004-10-20 | United Technologies Corporation | Counter swirl annular combustor |
US20110000671A1 (en) * | 2008-03-28 | 2011-01-06 | Frank Hershkowitz | Low Emission Power Generation and Hydrocarbon Recovery Systems and Methods |
US8734545B2 (en) | 2008-03-28 | 2014-05-27 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
US8984857B2 (en) | 2008-03-28 | 2015-03-24 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
US9027321B2 (en) | 2008-03-28 | 2015-05-12 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
US10495306B2 (en) | 2008-10-14 | 2019-12-03 | Exxonmobil Upstream Research Company | Methods and systems for controlling the products of combustion |
US9222671B2 (en) | 2008-10-14 | 2015-12-29 | Exxonmobil Upstream Research Company | Methods and systems for controlling the products of combustion |
US9719682B2 (en) | 2008-10-14 | 2017-08-01 | Exxonmobil Upstream Research Company | Methods and systems for controlling the products of combustion |
US9732675B2 (en) | 2010-07-02 | 2017-08-15 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods |
US9903316B2 (en) | 2010-07-02 | 2018-02-27 | Exxonmobil Upstream Research Company | Stoichiometric combustion of enriched air with exhaust gas recirculation |
US9903271B2 (en) | 2010-07-02 | 2018-02-27 | Exxonmobil Upstream Research Company | Low emission triple-cycle power generation and CO2 separation systems and methods |
US9732673B2 (en) | 2010-07-02 | 2017-08-15 | Exxonmobil Upstream Research Company | Stoichiometric combustion with exhaust gas recirculation and direct contact cooler |
US9670841B2 (en) | 2011-03-22 | 2017-06-06 | Exxonmobil Upstream Research Company | Methods of varying low emission turbine gas recycle circuits and systems and apparatus related thereto |
US9599021B2 (en) | 2011-03-22 | 2017-03-21 | Exxonmobil Upstream Research Company | Systems and methods for controlling stoichiometric combustion in low emission turbine systems |
US9689309B2 (en) | 2011-03-22 | 2017-06-27 | Exxonmobil Upstream Research Company | Systems and methods for carbon dioxide capture in low emission combined turbine systems |
US9463417B2 (en) | 2011-03-22 | 2016-10-11 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods incorporating carbon dioxide separation |
US9810050B2 (en) | 2011-12-20 | 2017-11-07 | Exxonmobil Upstream Research Company | Enhanced coal-bed methane production |
TWI607188B (en) * | 2012-03-29 | 2017-12-01 | 艾克頌美孚上游研究公司 | Turbomachine combustor assembly |
WO2013147633A1 (en) * | 2012-03-29 | 2013-10-03 | General Electric Company | Turbomachine combustor assembly |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US10683801B2 (en) | 2012-11-02 | 2020-06-16 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US10100741B2 (en) | 2012-11-02 | 2018-10-16 | General Electric Company | System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system |
US10138815B2 (en) | 2012-11-02 | 2018-11-27 | General Electric Company | System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US10161312B2 (en) | 2012-11-02 | 2018-12-25 | General Electric Company | System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
US9932874B2 (en) | 2013-02-21 | 2018-04-03 | Exxonmobil Upstream Research Company | Reducing oxygen in a gas turbine exhaust |
US10082063B2 (en) | 2013-02-21 | 2018-09-25 | Exxonmobil Upstream Research Company | Reducing oxygen in a gas turbine exhaust |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
US10221762B2 (en) | 2013-02-28 | 2019-03-05 | General Electric Company | System and method for a turbine combustor |
US9784140B2 (en) | 2013-03-08 | 2017-10-10 | Exxonmobil Upstream Research Company | Processing exhaust for use in enhanced oil recovery |
US10315150B2 (en) | 2013-03-08 | 2019-06-11 | Exxonmobil Upstream Research Company | Carbon dioxide recovery |
US9784182B2 (en) | 2013-03-08 | 2017-10-10 | Exxonmobil Upstream Research Company | Power generation and methane recovery from methane hydrates |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
US10012151B2 (en) | 2013-06-28 | 2018-07-03 | General Electric Company | Systems and methods for controlling exhaust gas flow in exhaust gas recirculation gas turbine systems |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
US10731512B2 (en) | 2013-12-04 | 2020-08-04 | Exxonmobil Upstream Research Company | System and method for a gas turbine engine |
US10900420B2 (en) | 2013-12-04 | 2021-01-26 | Exxonmobil Upstream Research Company | Gas turbine combustor diagnostic system and method |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US10727768B2 (en) | 2014-01-27 | 2020-07-28 | Exxonmobil Upstream Research Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US10738711B2 (en) | 2014-06-30 | 2020-08-11 | Exxonmobil Upstream Research Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10968781B2 (en) | 2015-03-04 | 2021-04-06 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
USD911402S1 (en) * | 2019-07-18 | 2021-02-23 | Illinois Tool Works Inc. | Chamber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3643430A (en) | Smoke reduction combustion chamber | |
US3498055A (en) | Smoke reduction combustion chamber | |
US4271674A (en) | Premix combustor assembly | |
US3931707A (en) | Augmentor flameholding apparatus | |
EP1193448B1 (en) | Multiple annular combustion chamber swirler having atomizing pilot | |
US3958416A (en) | Combustion apparatus | |
US3872664A (en) | Swirl combustor with vortex burning and mixing | |
US5207064A (en) | Staged, mixed combustor assembly having low emissions | |
US6415594B1 (en) | Methods and apparatus for reducing gas turbine engine emissions | |
US3938324A (en) | Premix combustor with flow constricting baffle between combustion and dilution zones | |
US5619855A (en) | High inlet mach combustor for gas turbine engine | |
US8011188B2 (en) | Augmentor with trapped vortex cavity pilot | |
US6363726B1 (en) | Mixer having multiple swirlers | |
CA1138658A (en) | Dual stage-dual mode low nox combuster | |
US3934409A (en) | Gas turbine combustion chambers | |
US7942003B2 (en) | Dual-injector fuel injector system | |
US5099644A (en) | Lean staged combustion assembly | |
US4052844A (en) | Gas turbine combustion chambers | |
CA2961771C (en) | Closed trapped vortex cavity pilot for a gas turbine engine augmentor | |
US6609377B2 (en) | Multiple injector combustor | |
AU2018282440A1 (en) | Jet swirl air blast fuel injector for gas turbine engine | |
EP2400221B1 (en) | Ejector purge of cavity adjacent exhaust flowpath | |
US3999378A (en) | Bypass augmentation burner arrangement for a gas turbine engine | |
US4203285A (en) | Partial swirl augmentor for a turbofan engine | |
USRE30160E (en) | Smoke reduction combustion chamber |