Nothing Special   »   [go: up one dir, main page]

US3127885A - Gas cartridge mounting - Google Patents

Gas cartridge mounting Download PDF

Info

Publication number
US3127885A
US3127885A US124124A US12412461A US3127885A US 3127885 A US3127885 A US 3127885A US 124124 A US124124 A US 124124A US 12412461 A US12412461 A US 12412461A US 3127885 A US3127885 A US 3127885A
Authority
US
United States
Prior art keywords
link
pin
slider
hammer
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US124124A
Inventor
Richard M Kline
Kenneth R Pitcher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US124124A priority Critical patent/US3127885A/en
Application granted granted Critical
Publication of US3127885A publication Critical patent/US3127885A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/60Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas
    • F41B11/62Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas with pressure supplied by a gas cartridge

Definitions

  • This invention relates to small arms, and particularly to pistols and rifles in which a valve is momentarily opened by an impact hammer for passing a predetermined quantity of pressurized gas from a cartridge to the barrel.
  • One of the objects of this invention is to provide a device of this character in which the operating parts of the mechanism are conveniently and compactly arranged, and in which the number of operating parts is quite small. Accordingly, an air pistol or rifle as compact and as attractive as a comparably sized firearm is provided.
  • Another object of this invention is to provide a novel and simple arrangement of parts that, without locking any parts, immobilizes the hammer when the charge of compressed fluid is exhausted or when a simple safety device is operable. This is made possible by a cocking and tripping link for the hammer, the hammer and link having normally engageable parts that are moved out of operative alignment either when the supply of compressed fluid is exhausted or when a safety lug moves the link away from its biased operative position.
  • Another object of this invention is to provide novel automatic mechanism for feeding missiles from the magazine to the barrel and for holding the missile in place when .the hammer is tripped.
  • Still another object of this invention is to provide simple mechanism for ensuring against damaging any of the parts of the device if, for any reason, the missiles are not properly fed to the barrel.
  • Still another object of this invention is to ensure accurate positioning of the missile in the barrel at the time the hammer is tripped, all without requiring precise manufacturing tolerances.
  • Still another object of this invention is to provide a mechanism of this character in which the missiles are held in place without requiring any gaskets or other parts subject to wear or deterioration.
  • a novel slider structure that incorporates magnetic means for holding the missile in place until dislodged, either by the force of the compressed fluid or by a sharp tap.
  • a novel resilient structure ensures that the missile is properly in place when the hammer is tripped without requiring precise manufacturing tolerances.
  • the resilient structure also stores energy that would otherwise damage the parts in the event that missiles are not properly fed.
  • Still another object of this invention is to provide a device of this character in which the force of propulsion of the missile can be easily and accurately adjusted by discrete steps, whereby uniformly predictable operation can be achieved for any of the adjusted positions.
  • FIGURE 1 is a plan view of one of the complementary halves of a piston body, some of the parts being shown in section;
  • FIG. 2 is an enlarged fragmentary sectional view, taken along the plane indicated by the line 2-2 of FIG. 1;
  • FIGS. 3 and 4 are diagrammatic enlarged fragmentary views, some of the parts being shown in section, showing the operation of the actuating mechanism in successive positions, FIG. 3 illustrating the hammer being cocked, the phantom-line position illustrating the critical position; FIG. 4 illustrates the tripped position of the hammer;
  • FIG. 5 is an enlarged fragmentary view showing the position of the actuating mechanism and hammer when the supply f0 compressed gases is exhausted;
  • FIG. 6 is a view similar to FIG. 5, showing the position of the actuating mechanism and hammer when a safety lug is in operative position;
  • FIG. 7 is an enlarged fragmentary view of that portion of the other complementary half of the gun body mounting the safety lug.
  • FIG. 8 is a sectional view, taken along the plane indicated by the line 88 of FIG. 7.
  • the small arm illustrated in the drawings, in this instance, is a pistol.
  • the pistol body comprises a main body part 18a, providing cavities for the elements of the apparatus, and a cover plate 1% (FIG. 2), cooperating with the main body part to enclose the elements.
  • the body 10a has a barrel 11 accommodating a barrel insert or liner 12.
  • the passage 16a slops downwardly at its opening into the recess 13 when the barrel is nearly horizontal. The opening of the passage 16a is located beneath the barrel bore.
  • a slider 17 In order to lift the pellets 15 one by one from the end of the passage 16a into registry with the barrel bore, a slider 17 is provided.
  • the slider 17 generally conforms to the configuration of the cavity or recess 13, and is slidable longitudinally therein.
  • the slider 17 has a through circular opening 17a that registers with the end of the magazine passage 16a when the slider is in this lower limited position. That pellet at the end of the magazine passage 16a falls by gravity into the slider aperture 17a.
  • the Wall of the body cavity 13 opposite the magazine passage 16a .stops movement of the pellet.
  • Assisting in drawing the pellet into the slider aperture 17a is a small permanent magnet 18 extending inwardly from the upper end of the slider 17.
  • the magnet 18 has a polar area located adjacent the center of the slider aperture 17a.
  • the upper limited position of the slider 17 corresponding to registry of the slider aperture 17a with the barrel liner is determined by a lateral lug 17b (FIG. 2) of the slider, engaging a shoulder 13b provided on the cover plate 101), as well as by the upper end of the slider 17 engaging the upper end 13c of the recess 13.
  • a passage or port 19 (FIG. 4) provided in the body a for conducting compressed gases to the firing chamber formed at the upper end of the recess 13.
  • the valve body 21 has an enlarged flange 21a telescopically received in the upper end of the cylinder 28 for closing this end of the cylinder.
  • An O-ring 23 establishes a sealing relationship between the valve body 21 and the cylinder 23.
  • Opposite ends of the cylinder are accommodated in spaced circular recesses 51 and 52, each formed by the complementary body parts.
  • the reduced upper portion of the valve body 21 projects through the reduced upper end of the circular recess 51 into a rear body cavity 53 beneath the magazine 16.
  • the valve body 21 (FIG. 1) has a through passage 21b in which inlet and outlet ends are formed, respectively, at the lower and upper ends thereof by a raised, downwardly directed valve seat 210.
  • a lateral port 21d of the body connects the outlet end of the valve with the conducting passage 19, the conducting passage 19 opening into the reduced end of the recess 51 in which the valve body 21 is accommodated.
  • valve closure assembly 24 For controlling the flow through the valve passage, a valve closure assembly 24 that momentarily opens the valve is provided.
  • a cup 24b mounted on one end of the valve stem 24a, carries a resilient closure 24c cooperable with the seat 210.
  • the stem 24a projects through the outlet end of the body passage 21b and into the rear body cavity 53.
  • the end of the valve body passage 21b guides the closure assembly for axial movement, whereby the closure 240 may be moved toward or away from the seat 21c.
  • the valve stem 24a has suitable clearance at that portion of the valve body 21 at which connecting port 21d opens.
  • a light coil spring urges the valve 24 upwardly and toward closing position.
  • a ported nut 25 threadedly accommodated in the lower end of the valve body opening, seats the other end of the spring 25.
  • the container cylinder 20 for the compressed or liquefled fluid is supplied with a charge by a carbon dioxide cartridge 27, or the like, that is removably accommodated in the cylinder 20.
  • the cartridge 27 is inserted and removed through the lower end of the cylinder 28 and the apertured butt end of the handle 22. This opening is closed by a removable plug 28 that has a reduced extension 28a telescopically received in the lower end of the cylinder 20.
  • the outer end of the plug 28 threadedly engages the apertured butt end of the body.
  • An O-ring 29, carried in a recess or extension 28a establishes a sealing relationship between the plug 28 and the cylinder 29.
  • the lower end of the plug 82 pivotally mounts a lever 30, to be described more fully hereinafter, that facilitates turning of the plug 82.
  • One end of the lever 30 is located midway of a transverse slot in the end of the plug 28, and has an aperture through which a pin 31 extends. The other end of the lever is accessible for manipulation when it extends beyond either end of the end slot of the plug 28.
  • carbon dioxide having both a liquid and a gaseous phase
  • carbon dioxide having both a liquid and a gaseous phase
  • a recess 28b on the inner side of the plug 28 loosely receives the neck end of the cartridge 27. Spacers or ribs in the recess 28b ensure communication between the sleeve proper and the cartridge opening at the end of the cartridge neck. A series of generally radially extending grooves 21s on the inner end of the valve body ensures communication between the cylinder 20 proper and the valve inlet 21b.
  • the plug 28 is removed by manipulation of the lever 30 and a new cartridge 27 is inserted. The plug 28 is then tightened down.
  • a piercing pin 32 is provided for opening the cartridge 27, a piercing pin 32 is provided.
  • This pin is slidably mounted in a through opening of the plug 28.
  • the inner end of the pin has a piercing projection 32a extending upwardly into the plug recess 28b for cooperation with the soft closure of the cartridge 27 at its neck.
  • the other end of the piercing pin extends into the cross slot of the plug toward the lever mounting pin 31.
  • the piercing pin 32 is advanced by angular movement of the lever 30 toward an axial position relative to the pin and the plug 28. Advancement of the pin 32 is caused by a cam surface 30a provided on the end of the lever 34) adjacent the pin 31, successive portions of which engage the end of the pin 32 as the lever 30 is rotated.
  • An O-ring 33 located between an annular flange 32b of the piercing pin 32 and a shoulder 280 located intermediate the end of the plug opening, establishes a seal between the piercing pin 32 and the plug 28 for all positions of the piercing pin.
  • the valve 24 is momentarily opened by a hammer 34 located in the rear body cavity 53.
  • the hammer 34 is provided with a projection 34a engageable with the projecting end of the valve stem 24a.
  • a pin 35 carried by the body 10b mounts the hammer 34 for pivotal movement so that the valve stem 24a is in the path of movement of the projection 34a.
  • a coil spring 36 located within the hollow portion of the grip 22, exerts a spring force on the hammer 34, tending to move it in a counter-clockwise or engaging direction about its pivotal mounting.
  • the spring 36 also stores energy when the hammer 34 is retracted, which energy, when suddenly released, is used to create a substantial impact necessary to unseat the valve against the seating force of the compressed fluid.
  • a link 37 connects one end of the coil spring 36 to a projection 38 on the hammer 34. This link 37 extends between the outer wall of the cylinder 20 and the rear Wall of the body 10b at the grip portion thereof.
  • the opposite end of the spring 36 is connected to a post 39, the position of which may be adjusted to vary the amount of energy stored in the spring before the energy is released, and hence the extent of opening of the valves.
  • the lower enlarged end 39a of the post 39 is slidably receivable in a through opening 40 at the butt end of the grip portion 22 of the body.
  • a pin 41 carried by the body 10b extends radially inwardly of the recess 40 to form a stop engageable with the enlarged headed end 39a of the post 39.
  • That surface of the post head 39a engageable with the pin 41 is formed as a continuous cam surface provided with discontinuities forming distinct angularly spaced seats 3%, any one of which may be positioned for cooperation with the pin 41 by rotation of the post 39.
  • the seats 3% are located at different axial positions along the length of the post 39, and accordingly determine discrete adjusted positions of tension of the spring 36. Rotation of the post 39 for the purpose of positioning any one of the seats is facilitated by a slotted outer end of the post 39.
  • the pin 41 and head 3% form cam and cam follower structures urged to engage each other by the spring 36.
  • the cam arrangement ensures rapid adjustment that accurately controls the spring tension. Operation of the device is accurately predictable since the adjusted positions of the post are definite and since the pressure in the space is substantially uniform irrespective of the amount of fluid remaining.
  • the hammer is moved away from the valve stem 24a to store energy in the spring 36 by a longitudinally reciprocable link 42.
  • One end of the link 42 extends into the rear body cavity 53, and the other end of the link extends into a forward body cavity 54 beneath the rear end of the barrel.
  • the link 42 extends across the open side of the slider recess 13. The link 42 also clears the narrowed lower end 170 of the slider 17, as shown in FIG. 2.
  • the hammer 34 has an eccentric projection or cocking pin 43 in the path of movement of the end surface 42a of the link 42.
  • a pivoted trigger 44 is provided in the forward body cavity 54.
  • the trigger 44 is pivot ally mounted about an axis transverse to the body 111a by a pin 46 passing through an aperture in the upper portion of the trigger 44.
  • the left-hand or forward end of the link 42 is pivotally connected eccentrically of the trigger 44.
  • an aperture 42b of the link 42 engages a pin 45 projecting from the trigger 44.
  • a coiled tension spring 47 is provided for normally retracting the link 42 and for moving the fingerpiece 49 forwardly.
  • One end of the spring is fastened to a pin 48 of the body 1117b, and its other end is secured to the left-hand or forward terminal portion of the link 42.
  • the pin 48 mounting the fixed end of the link-biasing spring 47, is located so that a clockwise torque is exerted on the link 42 about the trigger pin 46. This causes an intermediate portion of the lower edge 42c of the link to move into engagement with an abutment 59 formed on the body 11th. In this position, the end surface 42a of the link 42 is so located that it will engage the cocking pin 43 upon retraction of the link 42.
  • an overriding connection between the trigger 44 and the slider 17 is provided.
  • the trigger 44 has a rearwardly extending lug 69 entering an elongate slot or opening 17d of the slider 17 (see FIGS. 1, 2 and 3).
  • the trigger-biasing spring 47 causes the end of the lug 61 ⁇ to engage the bottom surface of the slider recess 17d, ensuring retraction of the slider 17 upon retraction of the link 42 and trigger 44.
  • a bow spring 61 maintains the lower end of the slider slot 17d in engagement with the lug 60.
  • the right-hand end 61a of the bow spring 61 extends into a small recess 17 e immediately beneath the recess 17d into which the lug 60 projects.
  • the opposite end 611; of the bow spring 61 projects beneath an overhanging wall of a recess in the upper portion of the trigger 44.
  • An upwardly extending surface 44d near the axis of the trigger engages the lower side of the bow spring 6 1 and imparts a suitable upwardly bowed configuration to the spring 6 1 so that the end 61a thereof exerts an upward thrust on the slider 17.
  • the slider 17 When the trigger 44 reaches :the intermediate position shown in FIG. 3, the slider 17 has moved to its upper limited position. The hammer, however, has not yet been tripped. Further retraction of the trigger 44 causes the lug 60 to move away from the lower surface of the recess 17d. The slider 17 is, however, held in its upper limited position by the bow spring 61, the end 61a of the bow spring exerting an upward thrust thereon.
  • the slot or recess 17d, lug 6t) and the bow spring 61 provide the overriding connection between the trigger 44 and the slider 17. On release of the trigger 44, these elements form a lost motion connection.
  • the lug 60 moves downwardly until it engages the lower end of the recess. 17d. Thereafter, the slider is retracted thnough positive engagement between the lug 60 and the slider 17.
  • the resilient connection ensure against damage of the parts in the event that the pellets 15 are not properly fed. If the feeding mechanism tends to jam, the lug 60 immediately will move away from the end surface of the slider f l l 7 slot as the trigger is retracted. Noticeably high resistance will be encountered by virtue of immediate increased flexure of the bow spring 61. The increased resistance will warnth-at the apparatus is jammed, and appropriate remedial measures can be taken before damage to any of the parts occurs.
  • the hammer loading spring 36 will overpower the very slight seating force exerted by the retainer spring 23, and will move the valve 24 to open position, as shown in FIG. 5.
  • the cocking pin 43 is rotated forwardly toward the link 42 to an extent in excess of the usual spacing between the link and the pin.
  • the Link 12 will be prevented from dropping over theend of the cocking pin 43 as the trigger is released. Should the fingerpiece 49 thereafter be manipulated, the end of the link 42 will pass over the upper surface of the cocking pin 43. Operation of the hammer 34, when the charge in the cylinder 20 is exhausted, is accordingly prevented, avoiding unnecessary wear on the parts.
  • a safety lug 62 is provided.
  • the lug 62 projects inwardly through an elongate slot 65 the cover plate 1% beneath the link 42.
  • a bow spring 63 on the inside of the plate b engages a surface intermediate the length of the lug 62 to urge it inwardly and hold it in place.
  • a fingerpiece 64 fastened to the outer end. of the lug inward movement.
  • the link 42 By moving the fingerpiece 64 downwardly in the slot 65, the link 42 is permitted to rotate b ack to operative position in which the link engages the abutment 50.
  • the safety device ensures against operation of the apparatus without physically restraining any of the parts.
  • a body having a hollow handle portion, the end of the handle portion having a threaded opening; a cylinder accommodated in the hollow handle portion and having one end registering with the said threaded opening; said cylinder being adapted to receive, with peripheral clearance, a gas cartridge having a penetrable end closure; a plug threadcdly received in said body opening and having a reduced extension projecting in sealing relationship into said end of said cylinder; a piercing pin carried by the plug for axial movement selectively to engage, at its inner end, the penetrable closure of said gas cartridge; said piercing pin having its outer end accessible extcriorly of the plug; sealing means between the pin and the plug; manually operable cam means accessibly mounted by the plug for limited movement, said cam means being engageable with the outer end of said piercing pin for axially moving said pin to puncture said cartridge; and a valve assembly including a body provided with a part sealingly engaging the other end of said cylinder, and a movable

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

April 1964 R. M. KLINE ETAL 3,127,835
GAS CARTRIDGE MOUNTING Original Filed Oct. 6, 1955 5 Sheets-Sheet 1 J34 W74 I j 7 C nvmvroas. Jew/$4450.41. 1222/4 42 K V/V7'// .P/ rc/mze April 7, 1964 R. M. KLlNE ETAL GAS CARTRIDGE MOUNTING 3 Sheets-Sheet 2 Original Filed 001;. 6, 1955 INVENTORJ. Je/c/wzea/ l fi'zm/z: MAM 52w .15.. 1 /70/06 irraewzs/r.
April 7, 1964 R. M. KLlNE ETAL 3,127,835
GAS CARTRIDGE MOUNTING 'Original Oct. 6; 3 s t s -t 3 mmvromz fl/awi/eafl Kan/.5 King (rile, f/nwae United States Patent 3,127,885 GAS CARTRIDGE MOUNTING Richard M. Kline, 9413 Sawyer St, Los Angeles 35, Calif.,
and Kenneth R. Pitcher, 5801 Odessa, Encino, Calif. Application June 27, 1958, Ser. No. 744,968, now Patent No. 3,048,159, dated Aug. 7, 1962, which is a continuation of abandoned application Ser. No. 538,858, Oct. 6,
1955. Divided and this application .Tuiy 14, 1961, Ser.
1 (Zlaim. (Cl. 124-11) This invention relates to small arms, and particularly to pistols and rifles in which a valve is momentarily opened by an impact hammer for passing a predetermined quantity of pressurized gas from a cartridge to the barrel.
One of the objects of this invention is to provide a device of this character in which the operating parts of the mechanism are conveniently and compactly arranged, and in which the number of operating parts is quite small. Accordingly, an air pistol or rifle as compact and as attractive as a comparably sized firearm is provided.
Another object of this invention is to provide a novel and simple arrangement of parts that, without locking any parts, immobilizes the hammer when the charge of compressed fluid is exhausted or when a simple safety device is operable. This is made possible by a cocking and tripping link for the hammer, the hammer and link having normally engageable parts that are moved out of operative alignment either when the supply of compressed fluid is exhausted or when a safety lug moves the link away from its biased operative position.
Another object of this invention is to provide novel automatic mechanism for feeding missiles from the magazine to the barrel and for holding the missile in place when .the hammer is tripped.
Still another object of this invention is to provide simple mechanism for ensuring against damaging any of the parts of the device if, for any reason, the missiles are not properly fed to the barrel.
Still another object of this invention is to ensure accurate positioning of the missile in the barrel at the time the hammer is tripped, all without requiring precise manufacturing tolerances.
Still another object of this invention is to provide a mechanism of this character in which the missiles are held in place without requiring any gaskets or other parts subject to wear or deterioration.
These objects-are made possible by a novel slider structure that incorporates magnetic means for holding the missile in place until dislodged, either by the force of the compressed fluid or by a sharp tap. A novel resilient structure ensures that the missile is properly in place when the hammer is tripped without requiring precise manufacturing tolerances. The resilient structure also stores energy that would otherwise damage the parts in the event that missiles are not properly fed.
Still another object of this invention is to provide a device of this character in which the force of propulsion of the missile can be easily and accurately adjusted by discrete steps, whereby uniformly predictable operation can be achieved for any of the adjusted positions.
This application is a division of our prior application Serial No. 744,968, now Patent No. 3,048,159, filed June 27, 1958, and entitled Compressed Fluid-Operated Small Arms Weapon, which was a continuation of our abandoned prior application Serial No. 538,858, filed October 6, 1955, and entitled Compressed Fluid-Operated Small Arms Weapon.
This invention possesses many other advantages, and
3,127,885 Patented Apr. 7, 1964 "ice has other objects which may be made more clearly apparent from a consideration of one embodimnet of the invention. For this purpose, there is shown a form in the drawings accompanying and forming part of the present specification. This form will now be described in detail, illustrating the general principles of the invention; but it is to be understood that this detailed description is not to be taken in a limiting sense, since the scope of this invention is best defined by the appended claim.
Referring to the drawings:
FIGURE 1 is a plan view of one of the complementary halves of a piston body, some of the parts being shown in section;
FIG. 2 is an enlarged fragmentary sectional view, taken along the plane indicated by the line 2-2 of FIG. 1;
FIGS. 3 and 4 are diagrammatic enlarged fragmentary views, some of the parts being shown in section, showing the operation of the actuating mechanism in successive positions, FIG. 3 illustrating the hammer being cocked, the phantom-line position illustrating the critical position; FIG. 4 illustrates the tripped position of the hammer;
FIG. 5 is an enlarged fragmentary view showing the position of the actuating mechanism and hammer when the supply f0 compressed gases is exhausted;
FIG. 6 is a view similar to FIG. 5, showing the position of the actuating mechanism and hammer when a safety lug is in operative position;
FIG. 7 is an enlarged fragmentary view of that portion of the other complementary half of the gun body mounting the safety lug; and
FIG. 8 is a sectional view, taken along the plane indicated by the line 88 of FIG. 7.
The small arm illustrated in the drawings, in this instance, is a pistol. The pistol body comprises a main body part 18a, providing cavities for the elements of the apparatus, and a cover plate 1% (FIG. 2), cooperating with the main body part to enclose the elements.
The body 10a has a barrel 11 accommodating a barrel insert or liner 12.
Missiles in the form of round pellets or shots 15, normally contained in a magazine 16 at the lower end of the body 18, are passed to the rear end of the barrel bore through the upper portion of an elongate body cavity or recess 13. A small passage 16a, of such size and shape as to permit passage of the pellets 15 one by one, extends from the left-hand end of the magazine 16, as viewed in FIG. 1, into the body cavity 13. The passage 16a slops downwardly at its opening into the recess 13 when the barrel is nearly horizontal. The opening of the passage 16a is located beneath the barrel bore.
In order to lift the pellets 15 one by one from the end of the passage 16a into registry with the barrel bore, a slider 17 is provided. The slider 17 generally conforms to the configuration of the cavity or recess 13, and is slidable longitudinally therein. The lower end 13a of the recess 13, which is located adjacent the base of the trigger guard 14, forms a stop, determining the downward limited position of the slider 17 The slider 17 has a through circular opening 17a that registers with the end of the magazine passage 16a when the slider is in this lower limited position. That pellet at the end of the magazine passage 16a falls by gravity into the slider aperture 17a. The Wall of the body cavity 13 opposite the magazine passage 16a .stops movement of the pellet. Assisting in drawing the pellet into the slider aperture 17a is a small permanent magnet 18 extending inwardly from the upper end of the slider 17. The magnet 18 has a polar area located adjacent the center of the slider aperture 17a.
When the slider is moved upwardly, the pellet 15 is carried therewith into registry with the barrel liner 12. The magnet 18 holds the pellet in place. During up- 3 ward movement of the slider 17, the next pellet at the end of the magazine passage 16a remains in place, the width of the slider 17 and the recess 13 both being substantially equal to the diameter of the pellet 15.
The upper limited position of the slider 17 corresponding to registry of the slider aperture 17a with the barrel liner is determined by a lateral lug 17b (FIG. 2) of the slider, engaging a shoulder 13b provided on the cover plate 101), as well as by the upper end of the slider 17 engaging the upper end 13c of the recess 13.
Opening behind the slider 17 and in alignment with the barrel bore is a passage or port 19 (FIG. 4) provided in the body a for conducting compressed gases to the firing chamber formed at the upper end of the recess 13.
A space formed by a cylinder 23 (FIG. 1), located in the grip or handle portion 22 of the device, contains compressed fluid that is passed to the body passage through a valve body 21. The valve body 21 has an enlarged flange 21a telescopically received in the upper end of the cylinder 28 for closing this end of the cylinder. An O-ring 23 establishes a sealing relationship between the valve body 21 and the cylinder 23.
Opposite ends of the cylinder are accommodated in spaced circular recesses 51 and 52, each formed by the complementary body parts. The reduced upper portion of the valve body 21 projects through the reduced upper end of the circular recess 51 into a rear body cavity 53 beneath the magazine 16.
The valve body 21 (FIG. 1) has a through passage 21b in which inlet and outlet ends are formed, respectively, at the lower and upper ends thereof by a raised, downwardly directed valve seat 210. A lateral port 21d of the body connects the outlet end of the valve with the conducting passage 19, the conducting passage 19 opening into the reduced end of the recess 51 in which the valve body 21 is accommodated.
For controlling the flow through the valve passage, a valve closure assembly 24 that momentarily opens the valve is provided.
A cup 24b, mounted on one end of the valve stem 24a, carries a resilient closure 24c cooperable with the seat 210. The stem 24a projects through the outlet end of the body passage 21b and into the rear body cavity 53. The end of the valve body passage 21b guides the closure assembly for axial movement, whereby the closure 240 may be moved toward or away from the seat 21c.
The valve stem 24a has suitable clearance at that portion of the valve body 21 at which connecting port 21d opens.
One end of a light coil spring urges the valve 24 upwardly and toward closing position. A ported nut 25, threadedly accommodated in the lower end of the valve body opening, seats the other end of the spring 25.
The container cylinder 20 for the compressed or liquefled fluid is supplied with a charge by a carbon dioxide cartridge 27, or the like, that is removably accommodated in the cylinder 20. The cartridge 27 is inserted and removed through the lower end of the cylinder 28 and the apertured butt end of the handle 22. This opening is closed by a removable plug 28 that has a reduced extension 28a telescopically received in the lower end of the cylinder 20. The outer end of the plug 28 threadedly engages the apertured butt end of the body. An O-ring 29, carried in a recess or extension 28a, establishes a sealing relationship between the plug 28 and the cylinder 29.
The lower end of the plug 82 pivotally mounts a lever 30, to be described more fully hereinafter, that facilitates turning of the plug 82. One end of the lever 30 is located midway of a transverse slot in the end of the plug 28, and has an aperture through which a pin 31 extends. The other end of the lever is accessible for manipulation when it extends beyond either end of the end slot of the plug 28.
In FIG. 1, the cartridge 27 has been pierced, and
carbon dioxide, having both a liquid and a gaseous phase, is contained in the cylinder 28. In a manner to be described more fully hereinafter, only a small quantity of the fluid originally in the container space is permitted to pass through the valve at one time. The pressure in the space is substantially constant until the contents are exhausted. This follows since an equilibrium condition between gaseous and liquid phases exists in the space.
A recess 28b on the inner side of the plug 28 loosely receives the neck end of the cartridge 27. Spacers or ribs in the recess 28b ensure communication between the sleeve proper and the cartridge opening at the end of the cartridge neck. A series of generally radially extending grooves 21s on the inner end of the valve body ensures communication between the cylinder 20 proper and the valve inlet 21b.
When the charge in the cylinder 20 is exhausted, the plug 28 is removed by manipulation of the lever 30 and a new cartridge 27 is inserted. The plug 28 is then tightened down.
For opening the cartridge 27, a piercing pin 32 is provided. This pin is slidably mounted in a through opening of the plug 28. The inner end of the pin has a piercing projection 32a extending upwardly into the plug recess 28b for cooperation with the soft closure of the cartridge 27 at its neck. The other end of the piercing pin extends into the cross slot of the plug toward the lever mounting pin 31. The piercing pin 32 is advanced by angular movement of the lever 30 toward an axial position relative to the pin and the plug 28. Advancement of the pin 32 is caused by a cam surface 30a provided on the end of the lever 34) adjacent the pin 31, successive portions of which engage the end of the pin 32 as the lever 30 is rotated.
After the soft cartridge closure is pierced, the lever 30 is returned to the transverse orientation illustrated.
An O-ring 33, located between an annular flange 32b of the piercing pin 32 and a shoulder 280 located intermediate the end of the plug opening, establishes a seal between the piercing pin 32 and the plug 28 for all positions of the piercing pin.
In order to release a quantity of compressed fluid, the valve 24 is momentarily opened by a hammer 34 located in the rear body cavity 53. The hammer 34 is provided with a projection 34a engageable with the projecting end of the valve stem 24a. A pin 35 carried by the body 10b mounts the hammer 34 for pivotal movement so that the valve stem 24a is in the path of movement of the projection 34a. A coil spring 36, located within the hollow portion of the grip 22, exerts a spring force on the hammer 34, tending to move it in a counter-clockwise or engaging direction about its pivotal mounting. The spring 36 also stores energy when the hammer 34 is retracted, which energy, when suddenly released, is used to create a substantial impact necessary to unseat the valve against the seating force of the compressed fluid.
A link 37 connects one end of the coil spring 36 to a projection 38 on the hammer 34. This link 37 extends between the outer wall of the cylinder 20 and the rear Wall of the body 10b at the grip portion thereof.
The opposite end of the spring 36 is connected to a post 39, the position of which may be adjusted to vary the amount of energy stored in the spring before the energy is released, and hence the extent of opening of the valves.
For this purpose, the lower enlarged end 39a of the post 39 is slidably receivable in a through opening 40 at the butt end of the grip portion 22 of the body. A pin 41 carried by the body 10b extends radially inwardly of the recess 40 to form a stop engageable with the enlarged headed end 39a of the post 39. When the hammer 34 is moved away from the valve stem 24a, the coil spring 36 expands, the pin 41 preventing inward movement of the post 39.
In order to provide definite adjusted positions of the post, that surface of the post head 39a engageable with the pin 41 is formed as a continuous cam surface provided with discontinuities forming distinct angularly spaced seats 3%, any one of which may be positioned for cooperation with the pin 41 by rotation of the post 39. The seats 3% are located at different axial positions along the length of the post 39, and accordingly determine discrete adjusted positions of tension of the spring 36. Rotation of the post 39 for the purpose of positioning any one of the seats is facilitated by a slotted outer end of the post 39. The pin 41 and head 3% form cam and cam follower structures urged to engage each other by the spring 36.
The cam arrangement ensures rapid adjustment that accurately controls the spring tension. Operation of the device is accurately predictable since the adjusted positions of the post are definite and since the pressure in the space is substantially uniform irrespective of the amount of fluid remaining.
The hammer is moved away from the valve stem 24a to store energy in the spring 36 by a longitudinally reciprocable link 42. One end of the link 42 extends into the rear body cavity 53, and the other end of the link extends into a forward body cavity 54 beneath the rear end of the barrel. The link 42 extends across the open side of the slider recess 13. The link 42 also clears the narrowed lower end 170 of the slider 17, as shown in FIG. 2.
The hammer 34 has an eccentric projection or cocking pin 43 in the path of movement of the end surface 42a of the link 42. By movement of the link 42 rearwardly or toward the right, as viewed in FIGS. 1 and 3, the hammer 34 is rotated and its valve-engaging projection 34a is retracted.
For moving the link 42, a pivoted trigger 44 is provided in the forward body cavity 54. The trigger 44 is pivot ally mounted about an axis transverse to the body 111a by a pin 46 passing through an aperture in the upper portion of the trigger 44.
For mounting the link for operation by the trigger 44, the left-hand or forward end of the link 42 is pivotally connected eccentrically of the trigger 44. For this purpose, an aperture 42b of the link 42 engages a pin 45 projecting from the trigger 44.
By counterclockwise movement of the trigger 44, as by manipulation of a depending fingerpiece 49, the link is moved and the hammer cocking pin 34a is rotated.
For normally retracting the link 42 and for moving the fingerpiece 49 forwardly, a coiled tension spring 47 is provided. One end of the spring is fastened to a pin 48 of the body 1117b, and its other end is secured to the left-hand or forward terminal portion of the link 42.
The pin 48, mounting the fixed end of the link-biasing spring 47, is located so that a clockwise torque is exerted on the link 42 about the trigger pin 46. This causes an intermediate portion of the lower edge 42c of the link to move into engagement with an abutment 59 formed on the body 11th. In this position, the end surface 42a of the link 42 is so located that it will engage the cocking pin 43 upon retraction of the link 42.
In the position shown in full lines in FIG. 3, the link 42 is partially retracted and the hammer 34 is lifted from the valve stem 24a. In this position, the direction of movement of the cocking pin 43 corresponds to the direc tion of movement of the operating link 42. Upon further movement, the cocking pin 43 moves downwardly in a path diverging from that of the link 42; the reaction between the cocking pin 43 and the end surface 42a of the link 42 is then so directed as to cause the link to rotate upwardly away from the abutment 50 against the force of the spring 47.
In the phantom-line position shown in FIG. 3, the cocking pin 43 is located at the end edge of the link surface 42a. Further movement of the link 42 will cause the link to clear the cooking pin 43. The hammer 34 is then tripped (FIG. 4) and the energy stored 'in the spring 36 is suddenly released. The impact is suflicient momentarily to open the valve closure assembly 24 against the high force of the compressed fluid in the space. A definite quantity of compressed gas, depending upon the adjustment of the spring 36, is passed through the conducting passage 19 of the body to the barrel. When the energy of the spring 36 is spent, the pressure of the liquid in the cylinder 20 returns the closure and the hammer 34 to the position shown in FIG. 1.
After the hammer has been tripped, the cooking pin 43 slides along the lower edge 420 of the link 42. By releasing the fingerpiece 49, the link 42, under the action of the spring 47, will move forwardly until the end of the link 42 clears the cocking pin 43, and the mechanism is again in condition for operation by manipulation of the trigger.
In order to ensure that the slider 17 positions a pellet 15 in the barrel before the link 42 is moved to the critical tripping position, an overriding connection between the trigger 44 and the slider 17 is provided.
The trigger 44 has a rearwardly extending lug 69 entering an elongate slot or opening 17d of the slider 17 (see FIGS. 1, 2 and 3). The trigger-biasing spring 47 causes the end of the lug 61} to engage the bottom surface of the slider recess 17d, ensuring retraction of the slider 17 upon retraction of the link 42 and trigger 44.
When the slider 17 reaches its lower limit of travel in the recess 13, forward move-ment of the trigger 44 and the link 42 is correspondingly limited by virtue of the interengageme-nt of the lug 60 and the slider 17. In this position, there is definite spacing between the end surface 42a of the link 42 and the cocking pin 43.
A bow spring 61 (FIG. 1) maintains the lower end of the slider slot 17d in engagement with the lug 60. The right-hand end 61a of the bow spring 61 extends into a small recess 17 e immediately beneath the recess 17d into which the lug 60 projects. The opposite end 611; of the bow spring 61 projects beneath an overhanging wall of a recess in the upper portion of the trigger 44. An upwardly extending surface 44d near the axis of the trigger engages the lower side of the bow spring 6 1 and imparts a suitable upwardly bowed configuration to the spring 6 1 so that the end 61a thereof exerts an upward thrust on the slider 17.
When the trigger 44 reaches :the intermediate position shown in FIG. 3, the slider 17 has moved to its upper limited position. The hammer, however, has not yet been tripped. Further retraction of the trigger 44 causes the lug 60 to move away from the lower surface of the recess 17d. The slider 17 is, however, held in its upper limited position by the bow spring 61, the end 61a of the bow spring exerting an upward thrust thereon.
Refraction of the fingerpiece 49' past the position shown in FIG. 3 to the tripping position shown in FIG. 4 causes increased flexure of the bow spring 61. This follows since the overhanging wall anchoring the opposite end 61b of the spring 6-1 is moved downwardly about the relatively stationary fulcrum surface 44d. An increasing force is thereby applied to the slider 17 to maintain it in its upper limited position for firing.
By fixing one end of the bow spring on the trigger, a positive holding thrust is applied to the slider 17.
The slot or recess 17d, lug 6t) and the bow spring 61 provide the overriding connection between the trigger 44 and the slider 17. On release of the trigger 44, these elements form a lost motion connection.
When the trigger is released, the lug 60 moves downwardly until it engages the lower end of the recess. 17d. Thereafter, the slider is retracted thnough positive engagement between the lug 60 and the slider 17.
The resilient connection ensure against damage of the parts in the event that the pellets 15 are not properly fed. If the feeding mechanism tends to jam, the lug 60 immediately will move away from the end surface of the slider f l l 7 slot as the trigger is retracted. Noticeably high resistance will be encountered by virtue of immediate increased flexure of the bow spring 61. The increased resistance will warnth-at the apparatus is jammed, and appropriate remedial measures can be taken before damage to any of the parts occurs.
As the available pressurized fluid is exhausted, the hammer loading spring 36 will overpower the very slight seating force exerted by the retainer spring 23, and will move the valve 24 to open position, as shown in FIG. 5. In this position, the cocking pin 43 is rotated forwardly toward the link 42 to an extent in excess of the usual spacing between the link and the pin. The Link 12 will be prevented from dropping over theend of the cocking pin 43 as the trigger is released. Should the fingerpiece 49 thereafter be manipulated, the end of the link 42 will pass over the upper surface of the cocking pin 43. Operation of the hammer 34, when the charge in the cylinder 20 is exhausted, is accordingly prevented, avoiding unnecessary wear on the parts.
When a new cartridge 27 is inserted and opened, the pressure will urge the closure 2 to seat, and the stem 24a will l ifit the hammer 34, thereby permitting the link 42 to return to the initial operating position illustrated FIG. 1 under the influence of the biasing spring 47.
In order to provide a safety position for the apparatus, the link 42 is lifted so that it clears the cocking pin. F or this purpose, a safety lug 62 is provided. The lug 62 projects inwardly through an elongate slot 65 the cover plate 1% beneath the link 42. A bow spring 63 on the inside of the plate b engages a surface intermediate the length of the lug 62 to urge it inwardly and hold it in place. A fingerpiece 64 fastened to the outer end. of the lug inward movement.
By moving the fingerpiece 6t upwardly in the slot 65 from the position shown in FIG. 8, the log 62 rotates the link 42 to the position shown in FIG. 6. In this position, the end surface 42a and the lug will clear the cooking pin 43 of the hammer 34 whenever the trigger is retracted.
By moving the fingerpiece 64 downwardly in the slot 65, the link 42 is permitted to rotate b ack to operative position in which the link engages the abutment 50. The safety device ensures against operation of the apparatus without physically restraining any of the parts.
The inventors claim:
In a small arms weapon: a body having a hollow handle portion, the end of the handle portion having a threaded opening; a cylinder accommodated in the hollow handle portion and having one end registering with the said threaded opening; said cylinder being adapted to receive, with peripheral clearance, a gas cartridge having a penetrable end closure; a plug threadcdly received in said body opening and having a reduced extension projecting in sealing relationship into said end of said cylinder; a piercing pin carried by the plug for axial movement selectively to engage, at its inner end, the penetrable closure of said gas cartridge; said piercing pin having its outer end accessible extcriorly of the plug; sealing means between the pin and the plug; manually operable cam means accessibly mounted by the plug for limited movement, said cam means being engageable with the outer end of said piercing pin for axially moving said pin to puncture said cartridge; and a valve assembly including a body provided with a part sealingly engaging the other end of said cylinder, and a movable valve member mounted on the body and operable to release a quantity of fluid from said cylinder; said valve body forming a seat for that end of the gas cartridge remote from said plug against which said cartridge reacts upon inward movement of said piercing pin.
References (Iited in the file of this patent UNITED STATES PATENTS 2,036,695 Heigis Apr. 7, 1936 2,202,225 Murray et al. May 28, 1940 2,688,321 Martin Sept. 7, 1954 2,818,056 Martin Dec. 31, 1957
US124124A 1961-07-14 1961-07-14 Gas cartridge mounting Expired - Lifetime US3127885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US124124A US3127885A (en) 1961-07-14 1961-07-14 Gas cartridge mounting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US124124A US3127885A (en) 1961-07-14 1961-07-14 Gas cartridge mounting

Publications (1)

Publication Number Publication Date
US3127885A true US3127885A (en) 1964-04-07

Family

ID=22412908

Family Applications (1)

Application Number Title Priority Date Filing Date
US124124A Expired - Lifetime US3127885A (en) 1961-07-14 1961-07-14 Gas cartridge mounting

Country Status (1)

Country Link
US (1) US3127885A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901209A (en) * 1974-01-30 1975-08-26 L & R Ind Inc Wrist braced slingshot
US4002156A (en) * 1975-05-14 1977-01-11 Victor Comptometer Corporation Air gun
US4843750A (en) * 1988-06-10 1989-07-04 Blase Richard A Firearm cleaning device and method
US4998368A (en) * 1989-07-10 1991-03-12 Blase Richard A Firearm cleaning device and method
US6869285B1 (en) 2003-06-11 2005-03-22 Jones, Ii Charles R Training firearm
US20080141991A1 (en) * 2006-12-15 2008-06-19 Chin-Chi Liu Cartridge retaining device for hand gun
US20110131882A1 (en) * 2009-12-03 2011-06-09 Ho-Sheng Wei Structure for opening grip cover of toy gun
US11041690B1 (en) * 2020-04-13 2021-06-22 Ho-Sheng Wei Toy gun capable of piercing two air bottles
US20210381797A1 (en) * 2018-10-24 2021-12-09 Byrna Technologies, Inc. A pneumatic arrangement of a less-lethal device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2036695A (en) * 1933-06-28 1936-04-07 Kidde & Co Walter Release device for inflatable flotation devices
US2202225A (en) * 1938-09-15 1940-05-28 Hugh E Murray Life preserver inflation means
US2688321A (en) * 1950-09-14 1954-09-07 Robert S Martin Automatic repeating gas pistol
US2818056A (en) * 1955-02-28 1957-12-31 Robert S Martin Compressed gas-operated propelling mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2036695A (en) * 1933-06-28 1936-04-07 Kidde & Co Walter Release device for inflatable flotation devices
US2202225A (en) * 1938-09-15 1940-05-28 Hugh E Murray Life preserver inflation means
US2688321A (en) * 1950-09-14 1954-09-07 Robert S Martin Automatic repeating gas pistol
US2818056A (en) * 1955-02-28 1957-12-31 Robert S Martin Compressed gas-operated propelling mechanism

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901209A (en) * 1974-01-30 1975-08-26 L & R Ind Inc Wrist braced slingshot
US4002156A (en) * 1975-05-14 1977-01-11 Victor Comptometer Corporation Air gun
US4843750A (en) * 1988-06-10 1989-07-04 Blase Richard A Firearm cleaning device and method
US4998368A (en) * 1989-07-10 1991-03-12 Blase Richard A Firearm cleaning device and method
US6869285B1 (en) 2003-06-11 2005-03-22 Jones, Ii Charles R Training firearm
US20080141991A1 (en) * 2006-12-15 2008-06-19 Chin-Chi Liu Cartridge retaining device for hand gun
US7730882B2 (en) * 2006-12-15 2010-06-08 Chin-Chi Liu Cartridge retaining device for hand gun
US20110131882A1 (en) * 2009-12-03 2011-06-09 Ho-Sheng Wei Structure for opening grip cover of toy gun
US8146580B2 (en) * 2009-12-03 2012-04-03 Ho-Sheng Wei Structure for opening grip cover of toy gun
US20210381797A1 (en) * 2018-10-24 2021-12-09 Byrna Technologies, Inc. A pneumatic arrangement of a less-lethal device
US11680770B2 (en) * 2018-10-24 2023-06-20 Byrna Technologies, Inc. Pneumatic arrangement of a less-lethal device
US11041690B1 (en) * 2020-04-13 2021-06-22 Ho-Sheng Wei Toy gun capable of piercing two air bottles

Similar Documents

Publication Publication Date Title
US3207143A (en) Trigger safety mechanism
US5160795A (en) Gun with pivoting barrel, rotary ammunition cylinder, and double action firing mechanism
US3212489A (en) Gas-powered revolver
US2554116A (en) Gas operated gun
US3788298A (en) Compressed gas gun with trigger operated hammer release latching structure
US3612026A (en) Gas-operated revolver with rotatable magazine
US3494344A (en) Gas-operated gun
US3527194A (en) Gas-powered pistol
US3127885A (en) Gas cartridge mounting
US3084833A (en) Valve operator tension mechanism
US7757682B2 (en) Magazine assembly for presenting a pressure cartridge to a compressed gas powered device
US9739564B2 (en) Efficient high-velocity compressed gas-powered gun
US20160273871A1 (en) Paintball marker with interchangeable firing modes
CA2396031A1 (en) Pneumatic gun
US3048159A (en) Compressed fluid-operated small arms weapons
US2625927A (en) Toy gun with means for propelling toy bullets
US20150300771A1 (en) Firing mechanism of airsoft gun
US2940438A (en) Magazine gun
US3077875A (en) Valve opening structure
US3227148A (en) Gas operated gun
US3000371A (en) Automatic fluid powered gun
US7849845B2 (en) Degassing tool for high pressure pre-charged pneumatic airgun
US3103212A (en) Semi-automatic gas powered gun
US2652821A (en) Fluid pressure operated gun
US3547095A (en) Gas-operated revolver