Nothing Special   »   [go: up one dir, main page]

US3105537A - Bending pipe - Google Patents

Bending pipe Download PDF

Info

Publication number
US3105537A
US3105537A US74668A US7466860A US3105537A US 3105537 A US3105537 A US 3105537A US 74668 A US74668 A US 74668A US 7466860 A US7466860 A US 7466860A US 3105537 A US3105537 A US 3105537A
Authority
US
United States
Prior art keywords
pipe
wall
bending
stress
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US74668A
Inventor
Robert D Foster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRUTCHER ROLFS CUMMINGS Inc
Original Assignee
CRUTCHER ROLFS CUMMINGS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRUTCHER ROLFS CUMMINGS Inc filed Critical CRUTCHER ROLFS CUMMINGS Inc
Priority to US74668A priority Critical patent/US3105537A/en
Application granted granted Critical
Publication of US3105537A publication Critical patent/US3105537A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/045Closing or sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D9/00Bending tubes using mandrels or the like
    • B21D9/05Bending tubes using mandrels or the like co-operating with forming members

Definitions

  • Oil and gas transmission lines comprise separate joints or sections of pipe up to about forty feet in length in end to end welded together succession and often containing either or both horizontal and vertical bends to follow right of way direction and earth contour.
  • Oil and gas transmission lines comprise separate joints or sections of pipe up to about forty feet in length in end to end welded together succession and often containing either or both horizontal and vertical bends to follow right of way direction and earth contour.
  • the common practice is to bend the pipe sections before welding and usually on site or in yards close to the place of installation and by portable bending machines such as illustrated in Ballard Patent 2,708,471.
  • desired longitudinal curvature is effected by operating separately on successive length increments of pipe and in each bending step the pipe Wall on the inside of the curve bears on a longitudinally curved and stationarily supported die while a movable stiff back of greater length than the die engages a diametrically opposite wall portion at the outside of the curve and forcibly pushes laterally on the pipe for a gradually formed bend with the outermost wall portion undergoing stretching elongation while the wall metal on the innermost side is crowded or upset.
  • Dependent on Wall thickness and steel hardness there is a critical point in the extent of permissible upsetting and wall thickness increase which can take place before wrinkles or hills and valleys appear on the compressed wall.
  • inside wall upsetting can be controlled from zero to any amount nearly equal to the outside tensile stretch and predetermined by the degree of pretension placed on the pipe wall. If the difference in outer wall stress during a bending operation and the original yield is less than double the longitudinal tensile stress in the metal at the start of the bending operation,
  • Afurther object is to provide for detachably mounting force transmitting and sealing headers to opposite ends of a pipe for confining pressure liquid, introduced through header carried valved connections, to fill the pipe and act on the opposite end headers for imposing longitudinal tension stress on the pipe wall and for maintaining the pipe wall in pretensioned condition while it is operated upon in a bending machine and forcibly formed to desired length curvature.
  • FIG. 1 is a longitudinal sectional view of a pipe section with its opposite ends secured and sealed to header assemblies and FIG. 2 shows a partially bent pipe fitted to the operating components of a bending machine.
  • each header comprises a plug 2 having an outwardly tapered peripheral surface and a forwardly projecting handling lug 3.
  • a circular succession of expansible slip segments are sleeved on the plug 2 and are wedged radially outwardly against the interior pipe wall surface upon relative outward plug travel for detachably anchoring the header in the pipe end and for transferring internal fluid pressure force into the pipe wall between its ends.
  • An annular band 5 closely fitted exteriorlyon the pipe end in radial alignment with the slips 4, may be employed to buck and protect the pipe wall against excessive expansion force incident to slip wedging action.
  • An inward flat face on the tapered plug 2 is overlaid by and desirably has secured by bonding or otherwise to it a packer cup 6 of rubber or the like, whose annular flexible lip makes expansive sealing contact with the interior pipe surface.
  • an air vent pipe 7 extends from the pipe interior through both the packing cup 6 and the plug 2 and contains a readily accessible hand valve 8 for opening and closing the passage through the pipe 7.
  • the opposite header assembly has extended through it a pipe 9 providing an inlet to the sealed pipe interior and having a control valve 14 for detachably coupling to the outlet side of a motor driven pump 11 to supply water or other liquid under pressure.
  • FIG. 2 With entrapped liquid pressure maintaining the pipe wall under longitudinal tension, the pipe is operated upon in the regular fashion by a conventional bending machine, Whose principal operating elements are shown in FIG. 2 as including a curved upper die 22, a movable stiff back 23 and a hinged holding shoe 24.
  • a pipe length increment will he progressively engaged with and bent on the die 22 by lateral force applied through powered movement of the shiftable stilt back 23.
  • the pipe wall portion bearing on the die 22 will be on the inner side of the formed bend, which is to say that the arc of curvature is of shorter radius at the inside wall than at the outermost Wall portion engaged by the stiif back 23.
  • the tendency for the inside wall portion to be crowded will first result in a decrease in tension stress in the inner Wall and an initial stage of bending can occur before pretcnsioning is completely relieved.
  • Bending can proceed safely beyond the range permissible on nonpretensioned pipe and by comparison a bending which would place sixty thousand pounds per square inch tension on the outside Wall and a prohibitive sixty thousand pou ds per square inch compression on the inside of a non-pretensioned pipe, would in the case of a pretensioned pipe place a tension stress of sixty thousand pounds per square inch plus fifteen thousand pounds per square inch, or a total tension stress of seventy-five thousand pounds per square inch, on the outside Wall and a compression stress of sixty thousand pounds per square inch less the pretensioned stress of fifteen thousand pounds per square inch, for a total compression of forty-five thousand pounds per square inch, on the inside Wall which is well below the yield stress of fifty-two thousand pounds per square inch.
  • the metal is not upset to the extent at which wrinkles are formed on the inside of a pipe.
  • the total of compressive force on the inner wall of a pretensioned pipe will be lessened by the amount of pretensioning stress as against what it would be in the absence of pretensioning.
  • the degree of curvature can be carried much further in the cold bending of pipe without running into objectionable interior surface irregularities.
  • the method of bending relatively large diameter steel pipe by stretching the wall outermost from the pipe axis and upsetting the wall innermost from said axis, comprising sealing both ends of the pipe, pumping liquid under pressure into the pipe to fill the same and impose tensile stress on the order of several thousand pounds in the pipe wall longitudinally thereof between the sealed ends and then clamping the outermost wall and the innermost wall between powered bending dies and increasing power application to effect further die closing movement and the imposition of lateral bending force on the liquid filled and longitudinally tensioned pipe which responds to the bending'fo-rce with a gradual relief in tensile stress on the innermost Wall through Zero followed by an upsetting of the metal in the innermost wall under a comressive stress :below that which would cause wrinkling by an amount approximately equal to the tensile stress initially imposed on the wall and finally opening the bending dies and removing the liquid and the end seals upon completion of the bending operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Description

R. D. FOSTER Oct. 1, 1963 BENDING PIPE Filed Dec. 8, 1960 F. 17. FoJzer INV EN TOR.
BY 5c.) mm
ATTORNEY United States Patent 3,105,537 BENDlNG FEE Robert D. Foster, Harris (Iounty, Tex, assignor to Crutcher-Rolfs-Cummings, ln-:., Houston, Tex., a corporation of Texas Filed Dec. 8, 196%, Ser. No. 74,668 1 Claim. (Cl. 153-39) This invention relates to cold bending of tubular goods such as large diameter thin walled steel conduits used in cross-country pipe lines.
Oil and gas transmission lines comprise separate joints or sections of pipe up to about forty feet in length in end to end welded together succession and often containing either or both horizontal and vertical bends to follow right of way direction and earth contour. In hilly country, as many as eighty percent of the pipe sections may need to be bent and the common practice is to bend the pipe sections before welding and usually on site or in yards close to the place of installation and by portable bending machines such as illustrated in Ballard Patent 2,708,471.
In using such machines, desired longitudinal curvature is effected by operating separately on successive length increments of pipe and in each bending step the pipe Wall on the inside of the curve bears on a longitudinally curved and stationarily supported die while a movable stiff back of greater length than the die engages a diametrically opposite wall portion at the outside of the curve and forcibly pushes laterally on the pipe for a gradually formed bend with the outermost wall portion undergoing stretching elongation while the wall metal on the innermost side is crowded or upset. Dependent on Wall thickness and steel hardness, there is a critical point in the extent of permissible upsetting and wall thickness increase which can take place before wrinkles or hills and valleys appear on the compressed wall. Interior wrinkles in a flow line increase frictional resistance to fluid travel and absorb transmission force and also interfere with free passage of pigs. More and more pipe line specifications require smooth interiors to decrease flow force loss and enable fewer and more Widely spaced apart pumping stations for lesser construction and operating expense. Additionally, the restrictions on wrinkling formation limit shortness of curve radius to which a pipe joint may be bent.
Limitations on bending curvature and surface irregularities are becoming more serious because larger diameter pipe lines for greater flow capacity at higher pressures are being laid and in the interest of low material and handling costs, weight is kept down with adequate strength by using relatively thinner walls of stronger steel. Such pipe greatly aggravates wrinkle formation and restricts the degree of curvature which can be formed without irregular displacement of the metal as it is upset. I have discovered that the problem of bending such pipe to sharper curvature without inside wrinkling can be met by performance of the bending operation while the pipe is held under pretensioned stress. In the bending on a pipe wall surface under longitudinal pretension stress, wrinkles from upsetting of the inner wall cannot occur until after pretension has gone through zero and the compressive yield point is exceeded. Whether upsetting occurs at all depends on the extent of initial tension and in a given bending operation, inside wall upsetting can be controlled from zero to any amount nearly equal to the outside tensile stretch and predetermined by the degree of pretension placed on the pipe wall. If the difference in outer wall stress during a bending operation and the original yield is less than double the longitudinal tensile stress in the metal at the start of the bending operation,
"ice
then there will be no objectional inside upsetting. It follows that a decrease in longitudinal pretension stress will allow an earlier upsetting of the inside wall of a bend and that an increase in longitudinal pretension stress will delay inside wall upsetting. The degree of bending with permissible upsetting is limited only by the amount of stretching the outer wall will stand without metallurgical damage.
To accomplish useful and satisfactory cold bending, it is an object of the present invention to provide for easily and quickly imposing a longitudinal force on a pipe between its opposite ends to place it under tension stress throughout its length and for maintaining the pipe in longitudinal pretension while performing the bending operation until the re-forrned metal has a permanent set.
Afurther object is to provide for detachably mounting force transmitting and sealing headers to opposite ends of a pipe for confining pressure liquid, introduced through header carried valved connections, to fill the pipe and act on the opposite end headers for imposing longitudinal tension stress on the pipe wall and for maintaining the pipe wall in pretensioned condition while it is operated upon in a bending machine and forcibly formed to desired length curvature.
Other objects and advantages of the invention will become apparent in the course of the following specification having reference to the accompanying drawing wherein FIG. 1 is a longitudinal sectional view of a pipe section with its opposite ends secured and sealed to header assemblies and FIG. 2 shows a partially bent pipe fitted to the operating components of a bending machine.
Referring to FIG. 1, there is shown a length of pipe 1 having both ends closed by suitable caps which preferably are easily applied header assemblies fitted within the pipe. Each header comprises a plug 2 having an outwardly tapered peripheral surface and a forwardly projecting handling lug 3. A circular succession of expansible slip segments are sleeved on the plug 2 and are wedged radially outwardly against the interior pipe wall surface upon relative outward plug travel for detachably anchoring the header in the pipe end and for transferring internal fluid pressure force into the pipe wall between its ends. An annular band 5 closely fitted exteriorlyon the pipe end in radial alignment with the slips 4, may be employed to buck and protect the pipe wall against excessive expansion force incident to slip wedging action. An inward flat face on the tapered plug 2 is overlaid by and desirably has secured by bonding or otherwise to it a packer cup 6 of rubber or the like, whose annular flexible lip makes expansive sealing contact with the interior pipe surface.
At the end header toward the right of the drawing, an air vent pipe 7 extends from the pipe interior through both the packing cup 6 and the plug 2 and contains a readily accessible hand valve 8 for opening and closing the passage through the pipe 7. Similarly, the opposite header assembly has extended through it a pipe 9 providing an inlet to the sealed pipe interior and having a control valve 14 for detachably coupling to the outlet side of a motor driven pump 11 to supply water or other liquid under pressure.
After the header assemblies are fitted within and anchored to the opposite pipe ends, liquid under pressure from the pump 11 is delivered through the open valve 16 to the interior of the end sealed pipe. With the vent valve 8 open, all previously enclosed air will be displaced from the pipe interior, whereupon the vent valve 10 is closed. Continued delivery of pressure fluid from the pump 11 will raise the pipe internal pressure to a magnitude that pressure action on the opposed headers will place tension stress in the pipe wall between the spaced apart headers. Upon attainment of a predetermined longitudinal tension in the pipe wall, closure of the inlet valve will entrap and hold the pressure liquid between the headers and such tensioned condition of the pipe wall will be maintained by the pressure force transmitted through the pipe coupled headers.
With entrapped liquid pressure maintaining the pipe wall under longitudinal tension, the pipe is operated upon in the regular fashion by a conventional bending machine, Whose principal operating elements are shown in FIG. 2 as including a curved upper die 22, a movable stiff back 23 and a hinged holding shoe 24. In the customary practice, a pipe length increment will he progressively engaged with and bent on the die 22 by lateral force applied through powered movement of the shiftable stilt back 23.
The pipe wall portion bearing on the die 22 will be on the inner side of the formed bend, which is to say that the arc of curvature is of shorter radius at the inside wall than at the outermost Wall portion engaged by the stiif back 23. With the pipe Wall pretensioned at the start of bending, the tendency for the inside wall portion to be crowded will first result in a decrease in tension stress in the inner Wall and an initial stage of bending can occur before pretcnsioning is completely relieved. This delays the start of upsetting and the action of the entrapped pressure liquid continues in opposition as a tension force to the build-up of opposing compression force, so that crowding of the metal is scaled down and permits a greater amount of curvature to be effected without wrinkling than if pretensioning stress were absent. Inasmuch as liquid pressure acts in all directions, the confined liquid body to some extent may act similarly to an internal bucking fixture in radially opposing internal surface roughness as upsetting progresses. Following completion of the successive bending operations as required to finalize pipe curvature, internal pressure is relieved 'by opening one or both valves 10' and 12 and the headers are removed for re-use.
For. a fuller explanation of the foregoing and for exemplary purposes, a bending operation on a length of forty feet of thirty-six inch diameter steel pipe of threeeighths inch wall thickness will be discussed. As previously indicated, during each bending performance the pipe wall radially outwardly of a neutral axis which may be assumed to coincide with the pipe lonigtudinal center line, is stretched or elongated and the inside wall is placed under longitudinal compression,.which upsets the metal and shortens arcuate length. The wall in the transverse plane of the neutral axis undergoes no change. For this pipe the yield point will he in the neighborhood of fiftytwo thousand pounds per square inch. Compression force somewhat greater than the plate yield point can be reached before wrinkling occurs, but usually the yield point is the limit specified. To keep safely below that limit and avoid crowding the wall to formation of wrinkles, the practice heretofore has been to restrict bending curvature Within one-half of one degree per twelve inches of pipe length. This means that the outside wall will be elongated to approximately twelve and one-eighth inches and the inside Wall will shorten to approximately eleven and seven-eighths inches. Inasmuch as no bending is performed on either end portion of the pipe, the maximum permissible over-all curvature in a joint thirty feet long heretofore has been between ten and twelve degrees as a limit for retaining a smooth interior surface.
That previous limit of permissible curvature can now be doubled or tripled by the herein disclosed improved practice of holding the pipe under tension while it is being bent so that compressive stress is decreased by the amount of pretensioning stress. As an example of the utilization of the new proposal, the spaced apart ends of a header closed pipe are pulled farther apart hydraulically by a force of eight hundred thousand pounds to place the wall metal under stretch stress of fifteen thousand pounds per square inch. Internally sealed Water pressure then maintains the pipe Wall under longitudinal stress and in the bending operation, additional tension will be placed on the pipe wall outermost of the curve and a compressive action will occur in the innermost wall, first relieving pretension stress and then stressing the metal in compression, with the compressive force being diminished :by the amount of pretensioning stress. Bending can proceed safely beyond the range permissible on nonpretensioned pipe and by comparison a bending which would place sixty thousand pounds per square inch tension on the outside Wall and a prohibitive sixty thousand pou ds per square inch compression on the inside of a non-pretensioned pipe, would in the case of a pretensioned pipe place a tension stress of sixty thousand pounds per square inch plus fifteen thousand pounds per square inch, or a total tension stress of seventy-five thousand pounds per square inch, on the outside Wall and a compression stress of sixty thousand pounds per square inch less the pretensioned stress of fifteen thousand pounds per square inch, for a total compression of forty-five thousand pounds per square inch, on the inside Wall which is well below the yield stress of fifty-two thousand pounds per square inch. Accordingly, the metal is not upset to the extent at which wrinkles are formed on the inside of a pipe. In all stages of bending operation, the total of compressive force on the inner wall of a pretensioned pipe will be lessened by the amount of pretensioning stress as against what it would be in the absence of pretensioning. As a result, the degree of curvature can be carried much further in the cold bending of pipe without running into objectionable interior surface irregularities.
What is claimed is:
The method of bending relatively large diameter steel pipe by stretching the wall outermost from the pipe axis and upsetting the wall innermost from said axis, comprising sealing both ends of the pipe, pumping liquid under pressure into the pipe to fill the same and impose tensile stress on the order of several thousand pounds in the pipe wall longitudinally thereof between the sealed ends and then clamping the outermost wall and the innermost wall between powered bending dies and increasing power application to effect further die closing movement and the imposition of lateral bending force on the liquid filled and longitudinally tensioned pipe which responds to the bending'fo-rce with a gradual relief in tensile stress on the innermost Wall through Zero followed by an upsetting of the metal in the innermost wall under a comressive stress :below that which would cause wrinkling by an amount approximately equal to the tensile stress initially imposed on the wall and finally opening the bending dies and removing the liquid and the end seals upon completion of the bending operation.
References Cited in the file of this patent UNITED STATES PATENTS 203,842 Leland May 21, 1878 2,347,593 Cummings Apr. 25, 1944 2,837,810 Ekhoh-n June 10, 1958 2,861,530 Macha Nov. 25, 1958 2,907,102 Armstrong et :al. Oct. 6, 1959 2,963,778 Dolby Dec. 13, 1960 2,970,633 Ballard Feb. 7, 1961 3,014,518 Cummings Dec. 26. 1961
US74668A 1960-12-08 1960-12-08 Bending pipe Expired - Lifetime US3105537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US74668A US3105537A (en) 1960-12-08 1960-12-08 Bending pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74668A US3105537A (en) 1960-12-08 1960-12-08 Bending pipe

Publications (1)

Publication Number Publication Date
US3105537A true US3105537A (en) 1963-10-01

Family

ID=22120923

Family Applications (1)

Application Number Title Priority Date Filing Date
US74668A Expired - Lifetime US3105537A (en) 1960-12-08 1960-12-08 Bending pipe

Country Status (1)

Country Link
US (1) US3105537A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247581A (en) * 1962-02-05 1966-04-26 Calumet & Hecla Method of forming a conduit bend
US3685327A (en) * 1969-11-12 1972-08-22 Masanobu Nakamura Bulging apparatus
FR2187442A1 (en) * 1972-06-06 1974-01-18 Crc Crose Int Inc
US4132104A (en) * 1976-10-26 1979-01-02 Midcon Pipeline Equipment Co. Method and apparatus for bending coated pipe including heating the pipe coating by resistance heating
FR2421689A1 (en) * 1978-04-04 1979-11-02 Gruere Charles Expandable mandrel for pipe bending operations - where mandrel is fitted on trolley driven through pipe, esp. for bending large dia. oil pipelines
US4195390A (en) * 1977-01-03 1980-04-01 Scientific Technologies, Inc. Apparatus and method for manipulation and sleeving of tubular members
EP0199246A2 (en) * 1985-04-22 1986-10-29 Aluminum Company Of America Method for plastically deforming elongated hollow members
US4803878A (en) * 1987-01-20 1989-02-14 The Cyril Bath Company Method and apparatus for forming elongate tubular members into a predetermined shape while extrusion is gas pressurized and product
US5239852A (en) * 1989-08-24 1993-08-31 Armco Steel Company, L.P. Apparatus and method for forming a tubular frame member
US5396786A (en) * 1993-03-15 1995-03-14 Mueller Industries, Inc. Machine and method for manufacturing crossover fittings
US5481892A (en) * 1989-08-24 1996-01-09 Roper; Ralph E. Apparatus and method for forming a tubular member
US5630334A (en) * 1995-10-31 1997-05-20 Greenville Tool & Die Company Liquid impact tool forming mold
US5813266A (en) * 1995-10-31 1998-09-29 Greenville Tool & Die Company Method of forming and piercing a tube
US5865054A (en) * 1989-08-24 1999-02-02 Aquaform Inc. Apparatus and method for forming a tubular frame member
US5890387A (en) * 1989-08-24 1999-04-06 Aquaform Inc. Apparatus and method for forming and hydropiercing a tubular frame member
US6006567A (en) * 1997-05-15 1999-12-28 Aquaform Inc Apparatus and method for hydroforming
US6502822B1 (en) 1997-05-15 2003-01-07 Aquaform, Inc. Apparatus and method for creating a seal on an inner wall of a tube for hydroforming
US20060059972A1 (en) * 2003-03-24 2006-03-23 Mamoru Rachi Device and method for forming piping components
US20080121007A1 (en) * 2005-02-08 2008-05-29 Lars Ingvarsson Hydroforming Unit
US8240354B2 (en) 2010-04-12 2012-08-14 Won-Door Corporation Movable partition systems and components thereof including chain guide structures, and methods of forming and installing same
US20120260709A1 (en) * 2011-04-14 2012-10-18 GM Global Technology Operations LLC Internal mandrel and method
ES2489442A1 (en) * 2014-03-25 2014-09-01 Talleres Lujambio, S.L. Anti-sway system for machining hollow shafts (Machine-translation by Google Translate, not legally binding)
US10201842B2 (en) 2013-03-12 2019-02-12 Acergy France SAS Pipe bending for reel-lay operations
WO2020107089A1 (en) 2018-11-30 2020-06-04 Subsea 7 Do Brasil Servicos Ltda Pipe spooling for reel-lay operations
US11167335B2 (en) * 2016-07-12 2021-11-09 Mitsubishi Heavy Industries, Ltd. Method for producing pipe material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US203842A (en) * 1878-05-21 Improvement in the methods of bending plumbers traps
US2347593A (en) * 1943-09-03 1944-04-25 Crutcher Rolfs Cummings Compan Portable machine for bending large diameter pipe
US2837810A (en) * 1955-06-17 1958-06-10 Flexonics Corp Method of producing fittings
US2861530A (en) * 1954-03-03 1958-11-25 Westinghouse Electric Corp Method and apparatus for making metal articles
US2907102A (en) * 1955-05-16 1959-10-06 Horace T Potts Company Cold tube bending
US2963778A (en) * 1955-04-21 1960-12-13 John W Dolby Method of and apparatus for forming bends in tubing
US2970633A (en) * 1956-02-21 1961-02-07 Sam L Ballard Pipe bending machine
US3014518A (en) * 1958-12-29 1961-12-26 Crutcher Rolfs Cummings Inc Pipe bending machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US203842A (en) * 1878-05-21 Improvement in the methods of bending plumbers traps
US2347593A (en) * 1943-09-03 1944-04-25 Crutcher Rolfs Cummings Compan Portable machine for bending large diameter pipe
US2861530A (en) * 1954-03-03 1958-11-25 Westinghouse Electric Corp Method and apparatus for making metal articles
US2963778A (en) * 1955-04-21 1960-12-13 John W Dolby Method of and apparatus for forming bends in tubing
US2907102A (en) * 1955-05-16 1959-10-06 Horace T Potts Company Cold tube bending
US2837810A (en) * 1955-06-17 1958-06-10 Flexonics Corp Method of producing fittings
US2970633A (en) * 1956-02-21 1961-02-07 Sam L Ballard Pipe bending machine
US3014518A (en) * 1958-12-29 1961-12-26 Crutcher Rolfs Cummings Inc Pipe bending machine

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247581A (en) * 1962-02-05 1966-04-26 Calumet & Hecla Method of forming a conduit bend
US3685327A (en) * 1969-11-12 1972-08-22 Masanobu Nakamura Bulging apparatus
FR2187442A1 (en) * 1972-06-06 1974-01-18 Crc Crose Int Inc
US4132104A (en) * 1976-10-26 1979-01-02 Midcon Pipeline Equipment Co. Method and apparatus for bending coated pipe including heating the pipe coating by resistance heating
US4195390A (en) * 1977-01-03 1980-04-01 Scientific Technologies, Inc. Apparatus and method for manipulation and sleeving of tubular members
FR2421689A1 (en) * 1978-04-04 1979-11-02 Gruere Charles Expandable mandrel for pipe bending operations - where mandrel is fitted on trolley driven through pipe, esp. for bending large dia. oil pipelines
EP0199246A2 (en) * 1985-04-22 1986-10-29 Aluminum Company Of America Method for plastically deforming elongated hollow members
EP0199246A3 (en) * 1985-04-22 1987-08-19 Aluminum Company Of America Method for plastically deforming elongated hollow members
US4704886A (en) * 1985-04-22 1987-11-10 Aluminum Company Of America Stretch-forming process
US4803878A (en) * 1987-01-20 1989-02-14 The Cyril Bath Company Method and apparatus for forming elongate tubular members into a predetermined shape while extrusion is gas pressurized and product
US5890387A (en) * 1989-08-24 1999-04-06 Aquaform Inc. Apparatus and method for forming and hydropiercing a tubular frame member
US5481892A (en) * 1989-08-24 1996-01-09 Roper; Ralph E. Apparatus and method for forming a tubular member
US5865054A (en) * 1989-08-24 1999-02-02 Aquaform Inc. Apparatus and method for forming a tubular frame member
US5239852A (en) * 1989-08-24 1993-08-31 Armco Steel Company, L.P. Apparatus and method for forming a tubular frame member
US5396786A (en) * 1993-03-15 1995-03-14 Mueller Industries, Inc. Machine and method for manufacturing crossover fittings
US5630334A (en) * 1995-10-31 1997-05-20 Greenville Tool & Die Company Liquid impact tool forming mold
US5813266A (en) * 1995-10-31 1998-09-29 Greenville Tool & Die Company Method of forming and piercing a tube
US5974846A (en) * 1995-10-31 1999-11-02 Greenville Tool & Die Company Method of forming and piercing a tube
US6006567A (en) * 1997-05-15 1999-12-28 Aquaform Inc Apparatus and method for hydroforming
US6502822B1 (en) 1997-05-15 2003-01-07 Aquaform, Inc. Apparatus and method for creating a seal on an inner wall of a tube for hydroforming
US7155952B2 (en) * 2003-03-24 2007-01-02 Yamaha Hatsudoki Kabushiki Kaisha Device and method for forming piping components
US20060059972A1 (en) * 2003-03-24 2006-03-23 Mamoru Rachi Device and method for forming piping components
US20080121007A1 (en) * 2005-02-08 2008-05-29 Lars Ingvarsson Hydroforming Unit
US8240354B2 (en) 2010-04-12 2012-08-14 Won-Door Corporation Movable partition systems and components thereof including chain guide structures, and methods of forming and installing same
US8356654B2 (en) 2010-04-12 2013-01-22 Won-Door Corporation Methods of forming and installing overhead support systems for movable partition systems
US20120260709A1 (en) * 2011-04-14 2012-10-18 GM Global Technology Operations LLC Internal mandrel and method
US8631671B2 (en) * 2011-04-14 2014-01-21 GM Global Technology Operations LLC Internal mandrel and method
US11376644B2 (en) 2013-03-12 2022-07-05 Acergy France SAS Pipe bending for reel-lay operations
US10201842B2 (en) 2013-03-12 2019-02-12 Acergy France SAS Pipe bending for reel-lay operations
EP3617573A1 (en) 2013-03-12 2020-03-04 Acergy France SAS Pipe bending apparatus for reel-lay operations
ES2489442A1 (en) * 2014-03-25 2014-09-01 Talleres Lujambio, S.L. Anti-sway system for machining hollow shafts (Machine-translation by Google Translate, not legally binding)
US11167335B2 (en) * 2016-07-12 2021-11-09 Mitsubishi Heavy Industries, Ltd. Method for producing pipe material
WO2020107089A1 (en) 2018-11-30 2020-06-04 Subsea 7 Do Brasil Servicos Ltda Pipe spooling for reel-lay operations
US11828389B2 (en) 2018-11-30 2023-11-28 Subsea 7 Do Brasil Servicos Ltda Pipe spooling for reel-lay operations

Similar Documents

Publication Publication Date Title
US3105537A (en) Bending pipe
EP0122099B1 (en) Connection of and sealing of tubular members
US4346922A (en) Device for preventing leakage at pipe joints
US4465104A (en) Pressure energized pipeline plug
CA1309239C (en) Method of forming box-like frame members
US4422317A (en) Apparatus and process for selectively expanding a tube
US3747394A (en) Pipe mandrel for use during bending
CN101720378A (en) Be used to make the apparatus and method of tube element expansion
US3570297A (en) Die and method for drawing metal tubes
CA2548877A1 (en) Method and apparatus for relieving tensile residual stress in welded pipe joints
US3335588A (en) Pipe bending machine
JP2509463B2 (en) Installation pipe lining method
US942184A (en) Method of lining pipes.
US2211243A (en) Apparatus for and method of breaking coal
US1733455A (en) Method of making piping
US3872880A (en) Plugging apparatus
US5737953A (en) Process for stretch forming hollow metal bodies
US6296021B1 (en) Leak repair device for rigid pipes
JPH0252570B2 (en)
CN213079661U (en) Clamping assembly in pipeline of hydraulic oil pipe bending machine
US2841865A (en) Method of forming bodies
US3225787A (en) Batching pig and separation of interfaces in pipe line flow
US2763924A (en) Process and apparatus for manufacturing tubes, tanks and hollow bodies generally from metal in sheet or band form
JPH0717011B2 (en) Resin pipe introduction method and resin pipe introduction device
JPH112364A (en) Connecting method of flange coupling to pipe line in sealed condition