Nothing Special   »   [go: up one dir, main page]

US3196184A - Sulfoxonium compounds - Google Patents

Sulfoxonium compounds Download PDF

Info

Publication number
US3196184A
US3196184A US184549A US18454962A US3196184A US 3196184 A US3196184 A US 3196184A US 184549 A US184549 A US 184549A US 18454962 A US18454962 A US 18454962A US 3196184 A US3196184 A US 3196184A
Authority
US
United States
Prior art keywords
sulfoxonium
compounds
methosulfate
benzyl
dodecyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US184549A
Inventor
Jim S Berry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE630489D priority Critical patent/BE630489A/xx
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US184549A priority patent/US3196184A/en
Priority to US411639A priority patent/US3352786A/en
Application granted granted Critical
Publication of US3196184A publication Critical patent/US3196184A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/60Sulfonium or phosphonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/005Antimicrobial preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00

Definitions

  • This invention relates to a new class of sulfur-containing cationic antibacterial surfactant compounds. More particularly, this invention relates to sulfoxonium compounds corresponding to the following structural formula:
  • R is an aliphatic radical containing from about 10 to about carbon atoms which can be saturated or unsaturated, branched or straight chain.
  • R an R" are each selected from the group consisting of lower alkyl, benzyl, halogenated benzyl and alkylbenzyl, wherein the alkyl substituent contains from 1 to about 4 carbon atoms, and wherein X is an anion which permits adequate solubility of the sulfoxonium salt.
  • Suitable examples of such anions ar halide, sulfate, methosulfate, p-toluene sulfonate, and nitrate radicals.
  • the compounds of the present invention are characterized by a unique combination of properties including adequate solubility in water, high bacteriostatic effectiveness, substantially ordorless, having low volatility, high stability, and as mentioned, exceptional mildness.
  • Most prior art compounds which are structurally related to the sulfoxonium compounds of this invention do not present these combined properties.
  • the crude sulfonium salts often contain small amounts of odorous thioethers which are objectionable.
  • the sulfoxonium salts described herein which are prepared by alkylation of ordorless sulfoxides do not present such problems.
  • novel cationic compounds described herein are compatible with other detergent surfactant compounds such as anionic, cationic and nonionic surfactant compounds. This is contrary to numerous references in the prior art which uniformly warn against mixing anionics with cationics.
  • An object, therefore, of this invention is to provide a new and useful class of cationic surfactant compounds.
  • a further object is to provide a new class of sulfur containing cationic surfactants whose members characteristically combine high bacteriostatic effectiveness and exceptional :mildness on the skin and which are also compatible with other types of surfactants.
  • An additional object is to provide a new class of high molecular weight sulfoxonium antibacterial surfactants which are produced as the S-alkylation products of dialkyl sulfoxides.
  • Yet a further object is to produce a new and improved bacteriostatic composition comprising an organic water soluble deter-gent surfactant and a cationic sulfoxonium compound produced according to this invention.
  • Another object is to provide detergent compositions containing sulfoxonium compounds of the present invention.
  • the compounds of this invention have the following general formula: [RRR"S(0)]+X where R is a high molecular weight, saturated or unsaturated, branched or straight chain aliphatic radical having from about 10 to about 20 carbon atoms.
  • R is a high molecular weight, saturated or unsaturated, branched or straight chain aliphatic radical having from about 10 to about 20 carbon atoms.
  • suitable long chain saturated alkyl radicals used alone or in admixture there can be mentioned, as examples, decyl, dodecyl, tetradecyl, hexadecyl, and eicosenyl.
  • alkenyl radicals also used alone or in admixture are decenyl, dodeccnyl, tetradecenyl, hexadccenyl, octadecenyl and eicosenyl.
  • R and R can each be lower alkyl such as, for example, methyl, ethyl, propyl, butyl, amyl, and hexyl benzyl, halogenated benzyl, and aikylbenzyl in which the alkyl substituent contains from 1 to about 4 carbon atoms.
  • alkyl substituent contains from 1 to about 4 carbon atoms.
  • novel compounds described herein are prepare for example, by condensing an R,R dialkyl sulfoxide, with a suitably active R"X alkyiating agent.
  • R dialkyl sulfoxide
  • R"X alkyiating agent a suitably active R"X alkyiating agent.
  • the en result of the reaction ' is that the alkyl radical of the alkylating agent attaches to the sulfur atom of the su-lfoxide and the anionic group X of the alkylating agent becomes the anionic constituent in the sulfoxonium product.
  • These new sulfoxonium compounds bear a general similarity to quaternary ammonium compounds. As will be pointed out, however, the properties of the quaternary ammonium compounds differ materially from the compounds of this invention.
  • the sulfoxide starting material can be obtained by oxidizing a dialkyl sulfide or thioether according to the following equation:
  • RSR R-S-R This is a relatively well known oxidizing process requiring generally mild reaction conditions.
  • various agents can be employed such as hydrogen peroxide, nitric acid and nitrogen oxides such as nitrogen tetroxide.
  • the worthnate link between the sulfur and the oxygen is a semipolar double bond, unlike that of carbonyl, 0, grouping. Accordingly, an arrow is used to identify this feature in place of a double bond.
  • R and R are each as described earlier in this specification.
  • the foregoing is not intended as a limitation imposed upon the method of preparing the new sulfoxonium compounds.
  • a sulfoxide such as R'R" S(O) is alkylated by -RX, with R being a long chain saturated or unsaturated straight or branched chain aliphatic radical containing from about to carbon atoms, provided, of course, that RX possesses suflicient activity as an alkylating agent.
  • the preferred embodiments of the present invention include compounds of the foregoing general formula in which R is a high molecular weight, long chain aliphatic radical, saturated or unsaturated, branched or straight chain containing from 10 to 20 carbon atoms.
  • R is a high molecular weight, long chain aliphatic radical, saturated or unsaturated, branched or straight chain containing from 10 to 20 carbon atoms.
  • R contains from 12 to 18 carbon atoms in the alkyl chain corresponding to chain length occurring, for example, in natural fatty materials.
  • chain lengths containing below 10 carbon atoms are obtained, it has been discovered that the surface active properties of the compound tend to diminish, and when the chain length exceds about 20 carbon atoms, a solubility problem is presented due to the increasing insolubility of the compounds.
  • R and R" can be either lower alkyl radicals, e.g. those containing from 1 to 6 carbon atoms, benzyl, halogenated benzyl and alkyl benzyl radicals containing from 1 to about 4 carbon atoms in the alkyl substituent. Preferred compounds are obtained when R and R" are each selected from methyl, ethyl, propyl, butyl, benzyl, chlorinated benzyl and methylbenzyl radicals.
  • anionic portion is thought to be immaterial so far as the bacteriostatic properties of the new compounds are concerned. Accordingly, virtually any organic or inorganic anion which permits adequate solubility of the sulfoxonium salt may be found suitable, determined fairly well by availability and cost factors. Interconversion of one anion for another by well-known methods may be advantageous and is permissible.
  • anionic groupings which have shown value in the new compounds are halides (e.g. chloride, bromide, iodide, fluoride), sulfates, methosulfate, p-toluene sulfonates and nitrates.
  • dialkyl sulfoxides are relatively difiicult to alkylate. Accordingly, use of a reactive alkylating agent exemplified by dimethyl sulfate is preferred. Less reactive alkylating agents such as alkyl halides, and particularly chlorides and bromides, frequently give poorer results. Furthermore, with some alkylating agents formation of the kinetically favored but less stable O-alkyl adduct occurs and long equilibration to convert these to the S-alkyl compound is required. (See S. G. Smith and S.
  • reagents such as alkyl nitrates and p-toluene sulfonates, while operative, are less generally useful than reagents such as dimethyl sulfate.
  • Decyl dimethyl sulfoxonium iodide Dodecyl dimethyl sulfoxonium iodide Tetradecyl dimethyl sulfoxonium iodide Hexadecy dimethyl sulfoxonium iodide Octadecyl dimethyl sulfoxonium iodide Dodecenyl dimethyl sulfoxonium iodide Decyl methyl benzyl sulfoxonium chloride Dodecyl methyl benzyl sulfoxonium bromide Dodecyl methyl benzyl sulfoxonium methosulfate- Dodecyl methyl o-chlorobenzyl sulfoxonium methosulfate Dodecyl methyl p-methylbenzyl sulfoxonium methosulfate Dodecyl methyl p-butyl benzyl sulfoxonium methosulfate Te
  • the corresponding octadecyl compound can be prepared in essentially the sale manner using equivalent quantities of reactants and the resulting octadecyl dimethyl sulfoxonium methosulfate possesses surface activi ty and bacteriostatic properties.
  • Related compounds having similar propertie and containing ten carbon atoms or a carton chain length intermediate the (E -C range can also be prepared by following this example.
  • this material was used in the form of an aqueous suspension which could be assayed by direct titration with standard alkylbenzene sulfonate solution.
  • a dry sample of the product indicated 94% purity on titration, and has surface active and bacteriostatic properties.
  • Dodecyl methyl benzyl szu'foxom'um methosulfate Dodecyl methyl benzyl sulfoxonium methosulfate was prepared by bringing together 17.9 grams (0.058 mole) of dodecyl benzyl su-liox-ide (MP. 798l C.) and 14.6 grams (0.116 mole) of dimethyl sulfate and following the procedure outlined previously in Example I. Isolation of the dodecyl methyl benzyl sulfoxonium methosulfate yielded a product assaying 100% pure by titration. The product had surface active and bacteriostatic properties.
  • EXAMPLE VII Tetmdecyl dimethyl sulfoxonium methosulfate Reaction of 10 grams (0.038 mole) of tetradecyl methyl sulfoxide and 5.3 grams (0.042 mole) of dimethyl sulfate, provided, in a manner analogous to that of Example I, tetradecyl dimethyl sul-foxonium methosultate, of M.P. 124 C. and 95.4% purity.
  • the alkyla-tion reaction generally is conducted on an equimolar basis. To insure completion, an excess of the alkylating agent can be used, especially if it is one of relatively lower reactively.
  • the temperature during the allcylation usually is between and 120 C. and at atmospheric pressure. With the less reactive allcyl halides use of pressure vessels and of temperatures between -15 0 are preferred.
  • the sulfoxonium compounds described herein have been discovered to be valuable bacteriostatic agents.
  • the antibacterial activity of these compounds was determined by conducting Standard Tube Dilution Tests.” Such tests are conducted in vitro and consist essentially of preparing test tubes of a standardized broth medium containing serial dilutions (diminishing concentrations) of a compound being tested, inoculating each tube with a preselected microorganism and after an incubation period, determining the growth of bacteria in each tube.
  • the broth medium employed in these assay tests was an FDA phenol coefiicient test nutrient broth. Stock solutions of the test product were then prepared in sterile distilled water. Serial dilutions were prepared of the test stock solution and then placed into the contact tubes con taining the nutrient broth.
  • the contact tubes were then inoculated with bacterial organisms prepared in the following manner.
  • a washed 24 hour broth culture of gram-positive Staphylococcus aureus ATCC 6538 was standardized to a predetermined optical density, by dilution with sterile FDA nutrient broth, to contain about 500,000,000 organisms per milliliter.
  • One-tenth milliliter quantities of the standardized inoculum were added per each previously prepared contact tube.
  • Gram-negative Eschericrzz'a coli ATCC 26 cultures were prepared as inoculum in a similar manner.
  • the inoculated tubes were shaken thoroughly, allowed to stand 10 minutes for air bubbles to disperse, then read for a zero-hour turbidity value using a Coleman Junior Model 6A spectrophotometer set at a wave length of 610 millimicrons.
  • the tubes were again -shaken, allowed to stand for ten minutes, and then read to obtain 24 hour turbidity values. Difierences in turbidity values are used as a measure of growth of the bacteria in the contact tubes. In this manner, there was determined the minimum efiective concentration of the antibacterial which prevented growth of the organism during incubation. This concentration (parts per million ofbacteriostatic agent) is called the-bacteriostatic breakpoint.
  • alkyl benzene sulfonate sodium dodecylbenzene sulfonate
  • ABS organic anionic surfactant compound
  • the alkyl benzene sulfonate employed was the sodium salt of the sulfonic acid derived from the condensation product of benzene and propylenes having from 9 to about 15 carbon atoms and averaging 12 carbon atoms.
  • Alkyl benzene sulfonate is probably one of the most widely used synthetic detergent surfactants and one which is regarded as having relatively good bacteriostatic effectiveness. Compounds which evidence substantially greater antibacterial effectiveness than alkyl benzene sulfonate are considered in the art to be good bacteriostats and as such are always in great demand for manifold useful purposes.
  • breakpoint values are averages of the three contact tubes prepared at each serial dilution.
  • the members of the new class of compounds possess marked bacteriostatic effectiveness as each was found to be superior to alkyl benzene sulfonate.
  • the compounds of this invention are especially potent against gram-positive type of organisms such as Staphylococcus aureus ATCC 6538. This bacteria is one most commonly found on human skin and, in the art, it is regarded as being representative of the entire field of gram-positive types of microorganisms.
  • the new compounds described herein are seen to be less effective than against the grampositive microorganism, but in any event, they are substantially superior to alkyl benzene sulfonate.
  • the compounds of this invention In view of the general structural similarity between the compounds of this invention and quaternary ammonium cationic surfactants, they might be expected to share com mon physical properties. Therefore, since the quaternary ammonium cationics have a rather harsh and irritating effect upon human skin, it should be anticipated that the instant sulfoxonium compounds would behave similarly. Unexpectedly, however, the compounds prepared according to this invention have been discovered to be extremely mild on human skin. This exceptional behavior is an extremely desirable and useful property since it affords compounds offering a unique blend of properties, i.e. bacteriostatic effectiveness and excellent mildness characteristics.
  • Each pig after exposure to the bath is assigned a relative skin grade value based on a range of 1 to 10. Within this range increasing mildness is represented by higher numerical values. Accordingly, a value of 1 indicates bleeding and skin fissures while a value of represents the ultimate in mildness.
  • Guinea pigs immersed in aqueous solution-s of equal concentration of quaternary ammonium cationics usually receive grade values in the range of 4 to 6 which indicates that substantial scaling and redness has resulted.
  • the new sulfoxonium compounds offer a still further unexpected property; namely, that the members of this new series of sulfoxonium compounds that retain their antibacterial properties when combined with cleaning compositions such as fatty acid soaps and organic synthetic surfactant detergent formulations. Very frequently antibacterials lose their effectiveness in the presence of such materials with which they are combined.
  • the method consists of direct inoculation of the treated fabric with suitable test organisms and the subsequent enumeration of growing colonies which develop when the fabric is implanted and incubated in a nutrient medium.
  • Onesquare-inch fabric swatches are treated with a bacteriostatic compound in any desired manner.
  • the fabrics may be treated by a conventional textile finishing padding process.
  • the fabric was treated with the antimicrobial agent via a laundering cycle using a detergent formulation containing the bacteriostatic compound being tested.
  • the dried swatches are next planted with the inoculated surface up onto a solidified sterile agar medium in previously prepared Petri dishes.
  • An overlay of nutrient is then made by pouring 0.2 ml. to 0.3 ml. of cooled (4245 C.) molten agar medium over the fabric. This embeds the cloth under a thin film of agar nutrient. It is of paramount importance that a thin film be used and that it be applied very carefully to avoid flushing off those organisms loosely fixed to the fabric.
  • the plates are incubated at 37 C. for about 48 hours. Colony counts are then made by means of a low-power (23x) dissecting microscope, using a wire grid with spacings of 3 mm. to facilitate counting of the colonies. The entire cloth swatch is counted when less than several hundred colonies develop. Howover, when the colony density is heavy, five 9-mm. areas are counted, a factor of 71 is applied to the average value to obtain the colony count per square inch of cloth. in most experiments, six replicate swatches are inoculated with each organism.
  • Staphylococcus aureus ATCC 6538 was used as a representative of the gram-positive class of organisms and Escherichia coli ATCC 26 was used as a representative of the class of gram-negative organisms. Both of these are commonly found among the microorganisms on human skin.
  • EXAlviPLE 8 The foregoing procedure was followed in which the detergent composition used during the laudering cycle or" the fabric swatches 'as a standardized detergent washing formulation in which the active organic anionic detergent surfactant compound was sodium tallow alkyl glyceryl ether sulfonate.
  • the tallow allryl glyceryl ether sulfonate was prepared according to the method described in Whyte Patent 2,989,547, issued June 20, 1961.
  • the composition of the detergent composition was about 17.5% tallow alkyl glyceryl ether sulfonate, 50.0% sodium tripolyphosphate, 6% sodium silicate 14.2% sodium sulfate, the balance being water. All percentages are by weight.
  • Fabric swatches were first washed in 20 milliliters of a 25% washing solution of the above composition. They were then dried, placed into the prescribed drying chamber, and inoculated with 0.1 ml. solution of a diluted Staphylococcus our-cos ATCC 6538. After drying, the swatches were implanted on a solidified sterile agar medium in a previously prepared Petri plate in the following manner. The dried swatches were placed on the solid agar medium and an overlay of nutrient having a thick ness of approximately 0.1 mm. was made by pouring 0.2 to 0.3 ml. of cooled (42-45 C.) molten sterile-agar medium over the fabric.
  • the cloth thus became embedded between a thin film of nutrient base agar and the solidified sterile agar medium in the Petri plate.
  • the plates were incubated at 37 C. for 48 hours after which the colony counts were made by means of a low (23X) dissecting microscope, using a wire grid with spacings of 3 (stainless steel Wire 0.008 in. in diameter) to facilitate counting the colonies.
  • Six replicate swatches were inoculated with each organism and an average colony growth determined. To obtain a control figure in the present test, the above described standardized washing preparation was used, and a colony count of 3500 was obtained.
  • the experiment was repeated a third time with a lesser concentration of the sultoxonium compound than occurred in the previous test run. In this test only 1% of the sultoxonium compound was added based on the weight of the detergent composition employed.
  • the colony count for the detergent preparation alone was about 3800.
  • the count factor dropped to about 1900, an improvement in growth control of the gram-negative organism of about 50%.
  • comparable results were obtained. It is generally agreed in the art that the gram-negative bacteria are more difficult to control than the gram-positive organisms.
  • the gram-negative organisms were indeed more resistant than the gram-positive, yet compatibility is still present between the anionic active and the novel cationic bactcriostatic sulfoxonium compound, dodecyl methyl benzyl sulfoxonium methosultate.
  • Example 9 The procedure of Example 8 was repeated using as in the first instance the same gram-positive organism, Staphylococcus aureus ATCC 6540. Again, three separate growth control determinations were made; once with a standardized detergent composition, again with the same composition used in Example 8 (except as noted below) in combination with 2% of a compound of this invention, and a third time with the same preparation in combination with 1% of the same new compound.
  • the active anionic detergent surfactant in the detergent composition of this example was 17.5% sodium tallow alkyl sulfate in place of the 17.5% sodium tallow alkyl glyceryl sulfonate used in the standardized detergent composition of Example 8. Otherwise the laundering preparation was exactly as in Example 8.
  • the colony count was about 3500.
  • the colony count was reduced to about 1380, and at 1% concentrations the colony count was only about 1610.
  • the excellent cleaning levels of the standardized cleaning composition were not adversely alfected.
  • EXAMPLE 11 Dimethyl dodecyl amine oxide was employed at 17.5% concentration as a nonionic active in the standardized detergent formulation used in Example 8. The representative compound of this invention remained as dodecyl methyl benzyl sulfoxonium methosulfate.
  • the standardized detergent composition resulted in a colony growth of 3500 against gram-positive Staphylococcus aureus, ATCC 6538.
  • Addition of 2% dodecyl methyl .benzyl sulfoxonium methosulfate reduced the colony growth to 750 and addition of 1% provided a colony count of 770.
  • EXAMPLE 12 A detergent composition was prepared in which the active was Armeen16l) at 17.5% of the standardized composition in Example 8.
  • Armeen 16D is a cationic surface active agent which is a primary aliphatic amine having as its formula RNH where R is a normal aliphatic radical derived from naturally occurring fatty acids. Due to a-natural raw material source, Armeen 16D contains a mixture of long-chain components. Specifically, the primary amine content of Armeen 16D breaks down to be tetradecyl 13%, hexadecyl 76%, and octadecyl 11.5%.
  • the sulfoxonium compound in this example was dodecyl methyl benzyl sulfoxonium met-hosulfate and behavior against gram-positive and gram-negative microorganisms was again evaluated.
  • the detergent composition alone resulted in a colony count of 2520 using Staphylococcus aureus ATCC 6538, as compared with a count of 155 obtained when the detergent composition was combined with 2% by weight of dodecyl methyl benzyl sulfoxonium methosulfate.
  • a count of 1320 was obtained with the deter-gent formulation combined with 1% of dodecyl methyl benzyl sulfoxonium methosulfate.
  • the washing composition was 17.5% active, 45% sodium dodecyl (tetrapolypropylene) benzene sulfon-ate and 55% sodium tallow alkyl sulfate, 50% sodium tripolyphosphate, 6% sodium silicate, 13.4% sodium sulfate, 10% water and the remainder miscellaneous ingredients such as perfumes, etc.
  • EXAMPLE 15 An excellent cleaning composition was obtained by taking another commercial laundering formulation and using it in conjuction with a compound of this invention.
  • The'formulation comprised essentially 17.5 sodium dodecyl (tetrapolypropylene) benzene sulfonate, 50% sodium tripolyphosphate, 6% sodium silicate, 13.4% sodium sulfate, 10% water and the balance miscellaneous ingredients.
  • Gram-Positive Gram-Negative Microorganism 2 Tallow AGS (sodium salt) Tallow Alkyl Sulfate (sodium salt ⁇ Coconut Alkyl Sulfate (sodium salt) Dodecyl dimethylamine oxide- Armeen 16D 4 3 (Dodeeyl ammonium) propane-l-sulfonat Washing preparation of Example 14---- Washing preparation of Example 15- Washing preparation of Example l6 Bar soap of Example 17 s, 500 1, 437 2, 03s a, 836 1, 904 1, 24s
  • EXAMPLE 1a A product comprising 14% sodium dodecyl (tetrapolypropylene) benzene sulfonate, 47.7% sodium tripolyphosphate, 19.1% sodium sulfate, 9.7% sodium silicate, 1.6% sodium toluene sulfonate, and the remainder miscellaneous ingredients was used in these experiments. Fabric swatches washed in this formula showed a Staphylococcus azereus ATCC 6540 growth of about 3500. A 2% addition of dodccyl methyl benzyl sulfoxonium methosulfate to the formula resulted in only 840 colonies growing after the incubation period. A 1% addition had the effect of limiting colony growth to 1230. In all instances the cleaning power of the product remained at its designed level.
  • EXAMPLE 17 The tests were also extended to bar soap formulations to determine the usefulness in such cases. The results were excellent. No problems were encountered in using bar soap formulations along with the compounds of this invention. The exceptional mildness of these compounds is another advantage which they lend to such a formulation.
  • a milled toilet soap comprising 83.5% of an 80% tallow: 20% coconut sodium soap, 13.0% volatiles, 2.0% unsaponifiables, and the remaining minor amounts of miscellaneous ingredients, was used as a bar soap formula.
  • Examples 8 through 17 were repeated in almost identical fashion. The only variation was that a different member of the new series of sulfoxonium compounds was selected, namely, hexadecyl methyl benzyl sulfoxonium methosulfate. The Quinn procedure discussed immediately preceding Examples 8 through 17 was followed explicitly.
  • the compounds of this invention including those prepared by Examples I through VII, can be employed in all types of detergent compositions, as for example, liquid, bar or granular compositions.
  • Such detergents may contain varying amounts of these new compounds but generally there can be present from 1% to about 20% of the new compounds per total weight of the detergent composition.
  • compositions of course, various colors, antioxidents, perfume, water softeners, and other materials can be used without affecting the desirable properties of the new class of sulfoxonium surfactant materials.
  • RS O X- nlll R is selected from the group consisting of alkyl and alkenyl radicals containing from 10 to 20 carbon atoms,
  • R and R" each are selected from the group consisting of lower alkyl, benzyl, chlorinated benzyl, and alkylbenzyl wherein the alkyl substituent contains from 1 to about 4 carbon atoms,
  • R RIS O X- R is an alkyl radical containing from 12 to 18 carbon atoms
  • R and R" each are selected from the group consisting of lower alkyl, benzyl, chlorinated benzyl, and alkyl wherein benzyl wherein the alkyl substituent contains from 1 to about 4 carbon atoms,

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

United States Patent 3,1%,184 SULFQXONEUM COMFUUNDS Jim 5. Berry, Cincinnati, Ohio, assigns: to The Procter s gamble Company, Cincinnati, Ohio, a corporation of his No Drawing. Filed Apr. 2, H62, Sea. No. 184,549 7 Ciaims. (Ci. 269-697) This invention relates to a new class of sulfur-containing cationic antibacterial surfactant compounds. More particularly, this invention relates to sulfoxonium compounds corresponding to the following structural formula:
I R- s o X- I l/I wherein R is an aliphatic radical containing from about 10 to about carbon atoms which can be saturated or unsaturated, branched or straight chain.
R an R" are each selected from the group consisting of lower alkyl, benzyl, halogenated benzyl and alkylbenzyl, wherein the alkyl substituent contains from 1 to about 4 carbon atoms, and wherein X is an anion which permits adequate solubility of the sulfoxonium salt. Suitable examples of such anions ar halide, sulfate, methosulfate, p-toluene sulfonate, and nitrate radicals.
A vast variety of chemical compounds has been studied from the standpoint of surface activity (note for example, A. M. Schwartz, J. W. Perry and lulian Birch, Surface Active Agents and Detergents, published by Interscience Publishers, Inc, New York, 1958). There appears, however, to have been no recognition before this invention of the sulfur-containing surface-active compounds corresponding to the above described structural formula; nor have the detergency properties of these compounds been known. Moreover, it was quite unexpected to discover 'that this class of cationic surfactants would combine the features of eiiiciency in bacteriostasis with excellent mildness on the skin and compatibility with other types of surfactant detergents.
Thus, the compounds of the present invention are characterized by a unique combination of properties including adequate solubility in water, high bacteriostatic effectiveness, substantially ordorless, having low volatility, high stability, and as mentioned, exceptional mildness. Most prior art compounds which are structurally related to the sulfoxonium compounds of this invention do not present these combined properties. For instance, reference may be made to sulfonium salts which are prepared by the alkylation of dialkyl thioethers. The crude sulfonium salts often contain small amounts of odorous thioethers which are objectionable. The sulfoxonium salts described herein which are prepared by alkylation of ordorless sulfoxides do not present such problems. Of especial significance is the discovery that the novel cationic compounds described herein are compatible with other detergent surfactant compounds such as anionic, cationic and nonionic surfactant compounds. This is contrary to numerous references in the prior art which uniformly warn against mixing anionics with cationics.
3,196,184 Patented July 20, 1%55 Representative of such references is a discussion contained in Kirk and Othmer, Encyclopedia of Chemical Technology, volume 13, p. 528, which notes that one disadvantage of cationic surface-active agents, either when used as such or as bactericides, is that they are incompatible with soaps or other anionic surface-active compounds. In contrast to this widely held statement, it has been found that the sulfoxonium salts of this invention do not lose their bacteriostatic activity with anionic surfactants.
An object, therefore, of this invention is to provide a new and useful class of cationic surfactant compounds. A further object is to provide a new class of sulfur containing cationic surfactants whose members characteristically combine high bacteriostatic effectiveness and exceptional :mildness on the skin and which are also compatible with other types of surfactants. An additional object is to provide a new class of high molecular weight sulfoxonium antibacterial surfactants which are produced as the S-alkylation products of dialkyl sulfoxides. Yet a further object is to produce a new and improved bacteriostatic composition comprising an organic water soluble deter-gent surfactant and a cationic sulfoxonium compound produced according to this invention. Another object is to provide detergent compositions containing sulfoxonium compounds of the present invention. Other objects will become apparent as the invention is hereinafter described in detail.
The compounds of this invention have the following general formula: [RRR"S(0)]+X where R is a high molecular weight, saturated or unsaturated, branched or straight chain aliphatic radical having from about 10 to about 20 carbon atoms. As suitable long chain saturated alkyl radicals used alone or in admixture there can be mentioned, as examples, decyl, dodecyl, tetradecyl, hexadecyl, and eicosenyl. Examples of alkenyl radicals also used alone or in admixture are decenyl, dodeccnyl, tetradecenyl, hexadccenyl, octadecenyl and eicosenyl.
R and R can each be lower alkyl such as, for example, methyl, ethyl, propyl, butyl, amyl, and hexyl benzyl, halogenated benzyl, and aikylbenzyl in which the alkyl substituent contains from 1 to about 4 carbon atoms. The nature of the anionic substiutent, X, is discussed later on in this specification.
The novel compounds described herein are prepare for example, by condensing an R,R dialkyl sulfoxide, with a suitably active R"X alkyiating agent. The en result of the reaction 'is that the alkyl radical of the alkylating agent attaches to the sulfur atom of the su-lfoxide and the anionic group X of the alkylating agent becomes the anionic constituent in the sulfoxonium product. These new sulfoxonium compounds bear a general similarity to quaternary ammonium compounds. As will be pointed out, however, the properties of the quaternary ammonium compounds differ materially from the compounds of this invention.
The sulfoxide starting material can be obtained by oxidizing a dialkyl sulfide or thioether according to the following equation:
RSR R-S-R This is a relatively well known oxidizing process requiring generally mild reaction conditions. As the oxidizing agent, various agents can be employed such as hydrogen peroxide, nitric acid and nitrogen oxides such as nitrogen tetroxide.
On oxidation, one oxygen equivalent of reagent converts a starting dialkyl sulfide into the corresponding dialkyl sulfoxide. Care must be taken to prevent the formation of sulfones in this preparation as a second equivalent of an oxidizing reagent produces the sulfones. The use of nitric acid permits quite selective oxidation to the sulfoxide.
In the resulting dialkyl sulfoxide structure, the worthnate link between the sulfur and the oxygen is a semipolar double bond, unlike that of carbonyl, 0, grouping. Accordingly, an arrow is used to identify this feature in place of a double bond.
The preparation of the new compounds of this invention is illustrated by the following reaction equations.
wherein the R and R are each as described earlier in this specification. The foregoing is not intended as a limitation imposed upon the method of preparing the new sulfoxonium compounds. For instance, in a contemplated variation a sulfoxide such as R'R" S(O) is alkylated by -RX, with R being a long chain saturated or unsaturated straight or branched chain aliphatic radical containing from about to carbon atoms, provided, of course, that RX possesses suflicient activity as an alkylating agent.
The preferred embodiments of the present invention include compounds of the foregoing general formula in which R is a high molecular weight, long chain aliphatic radical, saturated or unsaturated, branched or straight chain containing from 10 to 20 carbon atoms. The more especially preferred compounds are obtained when R contains from 12 to 18 carbon atoms in the alkyl chain corresponding to chain length occurring, for example, in natural fatty materials. When chain lengths containing below 10 carbon atoms are obtained, it has been discovered that the surface active properties of the compound tend to diminish, and when the chain length exceds about 20 carbon atoms, a solubility problem is presented due to the increasing insolubility of the compounds.
R and R" can be either lower alkyl radicals, e.g. those containing from 1 to 6 carbon atoms, benzyl, halogenated benzyl and alkyl benzyl radicals containing from 1 to about 4 carbon atoms in the alkyl substituent. Preferred compounds are obtained when R and R" are each selected from methyl, ethyl, propyl, butyl, benzyl, chlorinated benzyl and methylbenzyl radicals.
The exact nature of the anionic portion is thought to be immaterial so far as the bacteriostatic properties of the new compounds are concerned. Accordingly, virtually any organic or inorganic anion which permits adequate solubility of the sulfoxonium salt may be found suitable, determined fairly well by availability and cost factors. Interconversion of one anion for another by well-known methods may be advantageous and is permissible. Examples of anionic groupings which have shown value in the new compounds are halides (e.g. chloride, bromide, iodide, fluoride), sulfates, methosulfate, p-toluene sulfonates and nitrates.
Brief reference has been made to the requisite reactivity of the alkylating agent. The reason for this may be apparent, but for purposes of complete understanding it should be understood that dialkyl sulfoxides are relatively difiicult to alkylate. Accordingly, use of a reactive alkylating agent exemplified by dimethyl sulfate is preferred. Less reactive alkylating agents such as alkyl halides, and particularly chlorides and bromides, frequently give poorer results. Furthermore, with some alkylating agents formation of the kinetically favored but less stable O-alkyl adduct occurs and long equilibration to convert these to the S-alkyl compound is required. (See S. G. Smith and S. Winstein, Tetrahedron, 3, 319 (1958).) For this reason, reagents such a alkyl nitrates and p-toluene sulfonates, while operative, are less generally useful than reagents such as dimethyl sulfate.
The following suulfoxonium compounds, none of WhlCll are known to be described in the prior art are exemplary of those which can be prepared substantially as described herein:
Decyl dimethyl sulfoxonium iodide Dodecyl dimethyl sulfoxonium iodide Tetradecyl dimethyl sulfoxonium iodide Hexadecy dimethyl sulfoxonium iodide Octadecyl dimethyl sulfoxonium iodide Dodecenyl dimethyl sulfoxonium iodide Decyl methyl benzyl sulfoxonium chloride Dodecyl methyl benzyl sulfoxonium bromide Dodecyl methyl benzyl sulfoxonium methosulfate- Dodecyl methyl o-chlorobenzyl sulfoxonium methosulfate Dodecyl methyl p-methylbenzyl sulfoxonium methosulfate Dodecyl methyl p-butyl benzyl sulfoxonium methosulfate Tetradecyl dimethyl sulfoxonium methosulfate Tetradecyl methyl benzyl sulfoxonium p-toluene sulfonate Tetradecyl methyl benzyl sulfoxonium nitrate Tetradecyl methyl benzyl sulfoxonium sulfate Tetradecenyl dimethyl sulfoxonium chloride Dodecyl butyl benzyl sulfoxonium methosulfate Hexadecyl dimethyl sulfoxonium methosulfate Hexadecyl methyl benzyl sulfoxonium methosulfate Hexadecyl butyl o-chlorobenzyl sulfoxonium methosulfate Hexadecyl methyl pmethyl benzyl sulfoxonium iodide Hexadecyl methyl p-ethyl benzyl sulfoxonium nitrate Hexadecenyl methyl p-methyl benzyl sulfoxonium methosulfate Octadecyl dimethyl sulfoxonium iodide Octadecyl dimethyl sulfoxonium methosulfate Octadecyl methyl benzyl sulfoxonium p-toluene sulfonate Octadecyl methyl o-chlorobenzyl sulfoxonium chloride Octadecyl butyl p-methylbenzyl sulfoxonium sulfate Octadecenyl dimethyl sulfoxonium iodide Octadecyl propyl benzyl sulfoxonium nitrate Dodecyl dimethyl sulfoxonium methosulfate Eicosyl dimethyl sulfoxonium methosulfate The foregoing list is not intended to be exclusive and is only exemplary of the broad scope of the invention. Accordingly, it is intended that the full breadth of this invention encompasses all compounds which can be synthesized in conformity with the above described general formula.
The following specific examples are also merely illustrative and are not to be construed in any way as limiting the scope of the invention.
EXAMPLE I Dodecyl dimethyl sulfoxonium methosulfate 11.2 grams of dodecyl methyl sulfoxide (0.031 mole) and 4.3 grams of dimethyl sulfate (0.034 mole) were combined and heated to C. on a steam bath for 18 hours. The flask was swept with nitrogen gas during the initial heating and then protected with a calcium chloride filled drying tube. About 50 ml. acetone was added to the cooled reaction mixture, the resulting dark colored solution chilled in a Dry Ice-acetone bath, and the product harvested by filtration. The product was redissolved in 50 ml. acetone containing a few milliliters of, methanol to enhance solubility, and decolorized by refluxing with Nuchar: charcoal. Following filtration, the filtrate was chilled in a Dry Ice-acetone bath and the resulting white crystals of dodecyl dimethyl sulfoxonium methosulfate harvested by filtration. The product melted at 117-l20 C., and analysis by titration with standard alkylbenzene sulfonate solution established its purity at 95.3%. The products had surface active properties and bacteriostatic activity coupled with mildness to the skin as determined by tests described in the discussion following the examples.
The corresponding octadecyl compound can be prepared in essentially the sale manner using equivalent quantities of reactants and the resulting octadecyl dimethyl sulfoxonium methosulfate possesses surface activi ty and bacteriostatic properties. Related compounds having similar propertie and containing ten carbon atoms or a carton chain length intermediate the (E -C range can also be prepared by following this example.
EXAMPLE l1 Hexadecyl aimetlzy! sulfoxoizizmr methosulfute grams (0.034 mole) of hexadecyl methyl su-lfoxide was added to 4.67 grams (0.037 mole) of dimethyl sulfate. The mixture was heated to 90 C. in a steam bath for about 48 hours. The product was dissolved in 75 ml. acetone containing a few milliliters of methanol to form a solution which was cooled in an ice bath. A crystalline product so obtained was redissolved in a methanol-acetone mixture. Nuchar treated to remove coloring, and recrystallized. The product, recovered as hexadecyl dimethyl sulfoxonium methosulfate, MP. 125 C. and 98% pure by titration, 'as surface active and had bacteriostatic activity.
EXAMPLE Hi Dodecyl methyl o-chlorobenzyl sulfoxonizmz methosulfate Dodecyl methyl o-chlorobenzyl sulfoxonium methosulfate was obtained by allowing grams (0.058 mole) of dodecyl o-chlorobenzyl sulfoxide of MP. 4446.5 C. to react with 14.7 grams (0.117 mole) of dimethyl sulfate at a temperature of 99 C. The same pattern of the previous examples was followed. This product, in common with some other benzyl substituted sulfoxonium salts, was poorly crystalline. Instead of isolation in crystalline form, this material was used in the form of an aqueous suspension which could be assayed by direct titration with standard alkylbenzene sulfonate solution. A dry sample of the product indicated 94% purity on titration, and has surface active and bacteriostatic properties.
EXAMPLE IV Dodecyl methyl benzyl szu'foxom'um methosulfate Dodecyl methyl benzyl sulfoxonium methosulfate was prepared by bringing together 17.9 grams (0.058 mole) of dodecyl benzyl su-liox-ide (MP. 798l C.) and 14.6 grams (0.116 mole) of dimethyl sulfate and following the procedure outlined previously in Example I. Isolation of the dodecyl methyl benzyl sulfoxonium methosulfate yielded a product assaying 100% pure by titration. The product had surface active and bacteriostatic properties.
EXAMFLE V Dodccyi methyl p-metlzyl benzyl sulfoxonium met/2 osulfzz te Methylation of dodecyl p-methylbenzyl sulfoxide (MP. 7477 C.) with dimethyl sulfate using a method analogous to that of Example 1, resulted in the formation of dodecyl methyl p-methylbenzyl sulfoxonium methosulfate. Purity established by titration was 91.7%. The compound exhibited surface active and antimicrobial effectiveness.
EXAMPLE V I Hexadecyl methyl benzyl szilfoxcnium methosulfate Reaction of 20 grams (0.055 mole) of hexadecyl benzyl sulfoxide of MP. 90-91 C. with 13.9 grams (0.11 mole) of dunethyl sulfate in a manner analogous to that of Example resulted in hexadecyl methyl benzyl sulfoxonium methosulfate. Purity by titration was 99.5%. The compound when tested presents surface activity and bacteriostatic value.
EXAMPLE VII Tetmdecyl dimethyl sulfoxonium methosulfate Reaction of 10 grams (0.038 mole) of tetradecyl methyl sulfoxide and 5.3 grams (0.042 mole) of dimethyl sulfate, provided, in a manner analogous to that of Example I, tetradecyl dimethyl sul-foxonium methosultate, of M.P. 124 C. and 95.4% purity.
The alkyla-tion reaction generally is conducted on an equimolar basis. To insure completion, an excess of the alkylating agent can be used, especially if it is one of relatively lower reactively. The temperature during the allcylation usually is between and 120 C. and at atmospheric pressure. With the less reactive allcyl halides use of pressure vessels and of temperatures between -15 0 are preferred.
As indicated previously, the sulfoxonium compounds described herein have been discovered to be valuable bacteriostatic agents. The antibacterial activity of these compounds was determined by conducting Standard Tube Dilution Tests." Such tests are conducted in vitro and consist essentially of preparing test tubes of a standardized broth medium containing serial dilutions (diminishing concentrations) of a compound being tested, inoculating each tube with a preselected microorganism and after an incubation period, determining the growth of bacteria in each tube.
The broth medium employed in these assay tests was an FDA phenol coefiicient test nutrient broth. Stock solutions of the test product were then prepared in sterile distilled water. Serial dilutions were prepared of the test stock solution and then placed into the contact tubes con taining the nutrient broth.
The contact tubes were then inoculated with bacterial organisms prepared in the following manner. A washed 24 hour broth culture of gram-positive Staphylococcus aureus ATCC 6538 was standardized to a predetermined optical density, by dilution with sterile FDA nutrient broth, to contain about 500,000,000 organisms per milliliter. One-tenth milliliter quantities of the standardized inoculum were added per each previously prepared contact tube. Gram-negative Eschericrzz'a coli ATCC 26 cultures were prepared as inoculum in a similar manner.
Of the four contact tubes thus prepared at each serial dilution tested, three were inoculated and one was retained as an uninoculated control.
The inoculated tubes were shaken thoroughly, allowed to stand 10 minutes for air bubbles to disperse, then read for a zero-hour turbidity value using a Coleman Junior Model 6A spectrophotometer set at a wave length of 610 millimicrons.
After 24 hours of incubation at 37 C. the tubes were again -shaken, allowed to stand for ten minutes, and then read to obtain 24 hour turbidity values. Difierences in turbidity values are used as a measure of growth of the bacteria in the contact tubes. In this manner, there was determined the minimum efiective concentration of the antibacterial which prevented growth of the organism during incubation. This concentration (parts per million ofbacteriostatic agent) is called the-bacteriostatic breakpoint.
In order to allow for a comparison of the relative bacteriostatic efiectiveness of the novel sulfoxonium compounds, similar in vitro tests were run with a well known and widely used organic anionic surfactant compound, sodium dodecylbenzene sulfonate, commonly referred to as alkyl benzene sulfonate or ABS. The alkyl benzene sulfonate employed was the sodium salt of the sulfonic acid derived from the condensation product of benzene and propylenes having from 9 to about 15 carbon atoms and averaging 12 carbon atoms. Alkyl benzene sulfonate is probably one of the most widely used synthetic detergent surfactants and one which is regarded as having relatively good bacteriostatic effectiveness. Compounds which evidence substantially greater antibacterial effectiveness than alkyl benzene sulfonate are considered in the art to be good bacteriostats and as such are always in great demand for manifold useful purposes.
The results of the in vitro tests described above are tabulated in Table I.
TABLE I Brcakpoints 1 (at p.p.m. for control) Test Material Staphylo- Escherichia coccus aureus coli ATCC ATCC 6538 26 Dodeeyl (limethyl sultoxonium methosul te 9.4 50.0 'Ietradecyl dimethyl sulfoxonium methosuliate 1. 86 28. 1 Hexadecyl dimethyl sulfoxonium methosulfate 2. 89 25. Dodecyl methyl benzyl sulfoxonium methosuliate-. 2. 4 19. Q Dodecyl methyl o-chlorohenzyl sulioxonium methosulfate 9. 0 37. 5 Dodeeyl methyl p-methy enzyl sulfoxouiurn methosulfate 2. 4 19. 0 Hexadecyl methyl benzyl sulioxornum methosulfa. l. 6 25. 0 Dodeeyl benzene sodium sulfonate 37. 5 100. 0
1 The breakpoint values are averages of the three contact tubes prepared at each serial dilution.
As evidenced by the data in Table I, the members of the new class of compounds possess marked bacteriostatic effectiveness as each was found to be superior to alkyl benzene sulfonate. As the findings indicate, the compounds of this invention are especially potent against gram-positive type of organisms such as Staphylococcus aureus ATCC 6538. This bacteria is one most commonly found on human skin and, in the art, it is regarded as being representative of the entire field of gram-positive types of microorganisms.
Against a selected representative of the gramegative class of microorganisms, the new compounds described herein are seen to be less effective than against the grampositive microorganism, but in any event, they are substantially superior to alkyl benzene sulfonate.
In view of the general structural similarity between the compounds of this invention and quaternary ammonium cationic surfactants, they might be expected to share com mon physical properties. Therefore, since the quaternary ammonium cationics have a rather harsh and irritating effect upon human skin, it should be anticipated that the instant sulfoxonium compounds would behave similarly. Unexpectedly, however, the compounds prepared according to this invention have been discovered to be extremely mild on human skin. This exceptional behavior is an extremely desirable and useful property since it affords compounds offering a unique blend of properties, i.e. bacteriostatic effectiveness and excellent mildness characteristics.
The effect which these new compounds have upon hu man skin was determined by conducting a fairly standardized guinea pig immersion test. In these tests, groups of three guinea pigs which had their abdomens shaved were immersed up to the thorax in a .2% aqueous solu tion of the test material. The bath was maintained at a constant temperature of about 37 C., and the immersion periods were for 4 /2 hours at the same period of time on each of three consecutive days. The readings were made about 72 hours after the conclusion of the third exposure.
Each pig after exposure to the bath is assigned a relative skin grade value based on a range of 1 to 10. Within this range increasing mildness is represented by higher numerical values. Accordingly, a value of 1 indicates bleeding and skin fissures while a value of represents the ultimate in mildness.
TABLE II [Mildness tests] Skin Grades Test Material Guinea Guinea lg No. 1
Dodecyl dimethyl sulfoxonium methosulfate 9 9 9 Hpxadecyl dimethyl sulioxonium methosul- 10 ate 10 Guinea pigs immersed in aqueous solution-s of equal concentration of quaternary ammonium cationics usually receive grade values in the range of 4 to 6 which indicates that substantial scaling and redness has resulted.
The new sulfoxonium compounds, in addition to having the unique combination of properties discussed above, offer a still further unexpected property; namely, that the members of this new series of sulfoxonium compounds that retain their antibacterial properties when combined with cleaning compositions such as fatty acid soaps and organic synthetic surfactant detergent formulations. Very frequently antibacterials lose their effectiveness in the presence of such materials with which they are combined.
Several experiments were conducted to illustrate the compatibility that exists between the new compounds described herein and representative soaps and organic detergent surfactant compounds. While illustrating the compatibility feature, the experimental data presented below in a series of examples also exemplifies the usefulness of the new compounds.
The experiments which were conducted to discover the compatibility of the sulfoxonium compounds with various classes of surfactants followed a procedure only relatively recently developed. It has been fully presented in an article published in Applied Microbiology, volume 10, No. 1, January 1962, entitled A Method for the Determination of the Antimicrobial Properties of Treated Fabrics, by Herbert Quinn, and is referred to hereinafter as the Quinn process.
This procedure was actually designed for evaluating the effectiveness of bacteriostatic agents in retarding growth of contaminating organisms on fabrics. The method consists of direct inoculation of the treated fabric with suitable test organisms and the subsequent enumeration of growing colonies which develop when the fabric is implanted and incubated in a nutrient medium.
While the aforementioned article should be consulted for complete details of the prescribed procedure, a rather thorough description at this point will be helpful. Onesquare-inch fabric swatches are treated with a bacteriostatic compound in any desired manner. For instance, the fabrics may be treated by a conventional textile finishing padding process. For purposes of this invention, however, the fabric was treated with the antimicrobial agent via a laundering cycle using a detergent formulation containing the bacteriostatic compound being tested.
Care is taken within practical limits to insure that the fabric swatches remain in a sterile condition after treatment with the antimicrobial agent until the moment of inoculation with the test microorganism. After being laundered, the treated swatches are placed into a drying chamber where they are impregnated with 0.1 ml. of a previously prepared diluted inoculum by means of a pipette. The quantity of inoeulum is regarded as being fairly critical, the idea being that the swatches should be thoroughly saturated and yet not be dripping wet. The drying chamber is then immediately closed and the fabrics are dried in sterile warm flowing air. The dried swatches are next planted with the inoculated surface up onto a solidified sterile agar medium in previously prepared Petri dishes. An overlay of nutrient is then made by pouring 0.2 ml. to 0.3 ml. of cooled (4245 C.) molten agar medium over the fabric. This embeds the cloth under a thin film of agar nutrient. It is of paramount importance that a thin film be used and that it be applied very carefully to avoid flushing off those organisms loosely fixed to the fabric.
When the overlay has solidified, the plates are incubated at 37 C. for about 48 hours. Colony counts are then made by means of a low-power (23x) dissecting microscope, using a wire grid with spacings of 3 mm. to facilitate counting of the colonies. The entire cloth swatch is counted when less than several hundred colonies develop. Howover, when the colony density is heavy, five 9-mm. areas are counted, a factor of 71 is applied to the average value to obtain the colony count per square inch of cloth. in most experiments, six replicate swatches are inoculated with each organism.
A wide variety of inoculating organisms can be employed in the test but for the purposes of this invention, Staphylococcus aureus ATCC 6538, was used as a representative of the gram-positive class of organisms and Escherichia coli ATCC 26 was used as a representative of the class of gram-negative organisms. Both of these are commonly found among the microorganisms on human skin.
EXAlviPLE 8 The foregoing procedure was followed in which the detergent composition used during the laudering cycle or" the fabric swatches 'as a standardized detergent washing formulation in which the active organic anionic detergent surfactant compound was sodium tallow alkyl glyceryl ether sulfonate. The tallow allryl glyceryl ether sulfonate was prepared according to the method described in Whyte Patent 2,989,547, issued June 20, 1961. The composition of the detergent composition was about 17.5% tallow alkyl glyceryl ether sulfonate, 50.0% sodium tripolyphosphate, 6% sodium silicate 14.2% sodium sulfate, the balance being water. All percentages are by weight.
Fabric swatches were first washed in 20 milliliters of a 25% washing solution of the above composition. They were then dried, placed into the prescribed drying chamber, and inoculated with 0.1 ml. solution of a diluted Staphylococcus our-cos ATCC 6538. After drying, the swatches were implanted on a solidified sterile agar medium in a previously prepared Petri plate in the following manner. The dried swatches were placed on the solid agar medium and an overlay of nutrient having a thick ness of approximately 0.1 mm. was made by pouring 0.2 to 0.3 ml. of cooled (42-45 C.) molten sterile-agar medium over the fabric. As the overlay solidified the cloth thus became embedded between a thin film of nutrient base agar and the solidified sterile agar medium in the Petri plate. Next the plates were incubated at 37 C. for 48 hours after which the colony counts were made by means of a low (23X) dissecting microscope, using a wire grid with spacings of 3 (stainless steel Wire 0.008 in. in diameter) to facilitate counting the colonies. Six replicate swatches were inoculated with each organism and an average colony growth determined. To obtain a control figure in the present test, the above described standardized washing preparation was used, and a colony count of 3500 was obtained.
The same procedure was repeated but this time a bacteriostatic compound of this invent on was employed in conjunction with the detergent preparation. In this run, 1 milligram of dodecyl methyl benzyl sulfoxonium methosulfate was used as the bacteriostatic compound to be tested. This amounted to 2% by weight of the detergent composition. After inoculation and incubation, a colony count of about 1300 was determined, down from about the 3500 figure obtained when no bacteriostatic agent was employed. This represents an improved control of bacterial growth of almost 63%, evidencing a marked degree of compatibility between the organic anionic detergent surfactant in the detergent composition; i.e., sodium tallow alkyl glyceryl ether sulfonate and the novel cationic surfactant, dodecyl benzyl methyl sulfoxonium methosulfate. Moreover, the superior washing performance of the standardized detergent formulation was not adversely atfected by the addition of the bacteriostatic compound. Thus, a superior washing product is obtained.
The experiment was repeated a third time with a lesser concentration of the sultoxonium compound than occurred in the previous test run. In this test only 1% of the sultoxonium compound was added based on the weight of the detergent composition employed.
In this third run a colony count of about 1800 was obtained. This represents a colony count of only 50% of that obtained without any of the novel sulfoxonium bacteriostatic compound being present. Again the washing levels of the standardized detergent composition remained excellent.
Three calculations were similarly obtained against a gram-negative organism, Escherichia coli ATCC 26. In an initial run, a colony count was obtained using just the detergent formulation without a sulfoxonium antimicrobial compound of this invention being present. A second test run was performed in the presence of 2% concentration by weight of a sulfoxonium compound of this invention, i.e., dodccyl methyl benzyl sultoxonium methosulfate.
The colony count for the detergent preparation alone was about 3800. At 2% concentrattion of the sultoxonium compound the count factor dropped to about 1900, an improvement in growth control of the gram-negative organism of about 50%. At 1% concentration, comparable results were obtained. It is generally agreed in the art that the gram-negative bacteria are more difficult to control than the gram-positive organisms. Thus, as shown in this example, the gram-negative organisms were indeed more resistant than the gram-positive, yet compatibility is still present between the anionic active and the novel cationic bactcriostatic sulfoxonium compound, dodecyl methyl benzyl sulfoxonium methosultate.
XAMPLE 9 The procedure of Example 8 was repeated using as in the first instance the same gram-positive organism, Staphylococcus aureus ATCC 6540. Again, three separate growth control determinations were made; once with a standardized detergent composition, again with the same composition used in Example 8 (except as noted below) in combination with 2% of a compound of this invention, and a third time with the same preparation in combination with 1% of the same new compound.
The active anionic detergent surfactant in the detergent composition of this example, was 17.5% sodium tallow alkyl sulfate in place of the 17.5% sodium tallow alkyl glyceryl sulfonate used in the standardized detergent composition of Example 8. Otherwise the laundering preparation was exactly as in Example 8. For the detergent composition, per so, without the new sulfoxoniurn cat ionics, the colony count was about 3500. Using 2% of dodecyl benzyl methyl sultoxonium methosulfate, the colony count was reduced to about 1380, and at 1% concentrations the colony count was only about 1610.
Thus, compatibility was exhibited between the anionic active of the detergent composition and the cationic sulfoxoniu-m compound with no apparent loss of cleaning power.
Comparable results were obtained against Escherichia coli ATCC 26. The standardized washing preparation reduced a colony count of 3840, while with 2% by weight of dodecyl methyl benzyl sulfoxonium methosulfate the colony count fell to 1480. An addition of 1% sodium coconut a kyl sulfate.
by weight of the antimicrobial agent produced a colony count of 1960.
EXAMPLE The organic anionic detergent active in the standardized detergent composition in this experiment was 17.5% Against gram-positive Staphylococcus aareas ATCC 6538, the detergent composition produced a colony count of 3500. The addition of 2% dodecyl methyl benzyl sulfoxonium methosulfate reduced the count almost in half, to 1890. Surprisingly, somewhat greater improvement was obtained with only 1% of the agent since the colony count was 1720.
Comparable results were obtained against Escherichia coli ATCC 26. The figures dropped from an initial count of 3840 to 1790 with 2% additive agent and to 1710 using only 1% additive agent.
The excellent cleaning levels of the standardized cleaning composition were not adversely alfected.
EXAMPLE 11 Dimethyl dodecyl amine oxide was employed at 17.5% concentration as a nonionic active in the standardized detergent formulation used in Example 8. The representative compound of this invention remained as dodecyl methyl benzyl sulfoxonium methosulfate. By following the procedure outlined heretofore, the standardized detergent composition resulted in a colony growth of 3500 against gram-positive Staphylococcus aureus, ATCC 6538. Addition of 2% dodecyl methyl .benzyl sulfoxonium methosulfate reduced the colony growth to 750 and addition of 1% provided a colony count of 770. Both of these figures are markedly low indicating that there was no tendency for the nonionic surfactant in the washing formulation to mask over the bacteriostatic properties of the novel cationic surfactants of this invention. Thus, compatibility exists between the novel cationic sulfoxo nium compounds and nonionic surfactants.
Comparable results were obtained against Escherichia coli ATCC 26. From an initial colony count of 3560 attained by the model washing formulation, a substantial reduction occurred by the addition of 2% dodecyl methyl benzyl sulfoxonium methosulfa-te, to a figure of 1710 and by a 1% addition to a figure of 2600.
Several experiments were conducted to determine the behavior of the cationic surfactant sulfoxonium compounds of this invention when combined with other cationic surfactants. The results were positive indicating that such combinations could be made. These experimental results .are presented in Example 12 and 13.
EXAMPLE 12 A detergent composition was prepared in which the active was Armeen16l) at 17.5% of the standardized composition in Example 8. Armeen 16D is a cationic surface active agent which is a primary aliphatic amine having as its formula RNH where R is a normal aliphatic radical derived from naturally occurring fatty acids. Due to a-natural raw material source, Armeen 16D contains a mixture of long-chain components. Specifically, the primary amine content of Armeen 16D breaks down to be tetradecyl 13%, hexadecyl 76%, and octadecyl 11.5%.
The sulfoxonium compound in this example was dodecyl methyl benzyl sulfoxonium met-hosulfate and behavior against gram-positive and gram-negative microorganisms was again evaluated.
The detergent composition alone resulted in a colony count of 2520 using Staphylococcus aureus ATCC 6538, as compared with a count of 155 obtained when the detergent composition was combined with 2% by weight of dodecyl methyl benzyl sulfoxonium methosulfate. A count of 1320 was obtained with the deter-gent formulation combined with 1% of dodecyl methyl benzyl sulfoxonium methosulfate.
Against a gram-negative inoculum of Escherichia coli 12 ATCC 26, the basic figure'was 3470. With 2% dodecyl methyl benzyl sulfoxo-nium me-thosulfate present it was 1960, and with 1% it was also 1960.
EXAMPLE 13 benzyl sulfoxonium methosulfate was added to the washing formulation, the colony count dropped to only 170.
At 1% concentration of dodecyl methyl benzyl sulfoxonium methosulfate, the colony count rose. to about 1800, which is still substantially below the figure achieved with the initial standardized formulation in this example.
Comparable results were obtained when the inoculum was gram-negative, Escherichia coli ATCC 26. From an initial reading of 2880, the colony counts fell to 1620 and 2040 respectively when 2% and 1% of dodecyl methyl benzyl sulfoxonium methosulfate were included in the washing preparation.
EXAMPLE 14 In this set of experiments an actual commercially available washing formulation was tested, alone and in combination with 2% and 1 %of a representative compound of this invention. The result was a product which was perfectly satisfactory in every way.
The washing composition was 17.5% active, 45% sodium dodecyl (tetrapolypropylene) benzene sulfon-ate and 55% sodium tallow alkyl sulfate, 50% sodium tripolyphosphate, 6% sodium silicate, 13.4% sodium sulfate, 10% water and the remainder miscellaneous ingredients such as perfumes, etc.
Used alone against Staphylococcus aareus ATCC 6538, it resulted in a colony count of about 3500. When 2% of dodecyl methyl benzyl sulfoxonium methosulfate was added to the washing formulation, the growth of the microorganism was decreased to 1790, only one-half the figure obtained with just the washing formulation.
When a lesser amount, 1% of dodecyl methyl benzyl sulfoxonium methosulfate was employed, the results were still very good, the colony count being about 1840.
The commercial formula used in combination with the representative compounds of this invention retained its superior cleaning level.
Against Escherichia coli ATCC 26, the figures obtained were as follows: commercial formulacolony count of 3500; commercial formula +2% dodecyl methyl benzyl sulfoxonium methosulfate-colony count of 1792; and, commercial formula +1% dodecyl methyl benzyl sulfoxonium methosulfate-colony count also of 1790.
Thus, a product is obtained which has the expected high washing level of the commercial formulation coupled with an increased bacteriostatic etfectiveness on the laundered fabrics.
EXAMPLE 15 An excellent cleaning composition was obtained by taking another commercial laundering formulation and using it in conjuction with a compound of this invention. The'formulation comprised essentially 17.5 sodium dodecyl (tetrapolypropylene) benzene sulfonate, 50% sodium tripolyphosphate, 6% sodium silicate, 13.4% sodium sulfate, 10% water and the balance miscellaneous ingredients.
Alone against Staphylococcus aurcus ATCC 6538, the composition just described yielded a colony count of i l periments are presented below in Table III. Columns I through 111 present data obtained against Staphylococcus aureus ATCC 6533 during tests in which the hexadecyl 7 methyl benzyl sulfoxonium methosulfate was used in amounts of 2% and 1% based on the weight of the standardized detergent composition. Columns IV through VI relate to data obtained from tests against Escherichia coli ATCC 26.
TAB LE III Examples Surfactant 17.5% in Standardized De tergent Composition 1 I, 0% II, 2% III, 1%. IV, 0% V, 2% VI, 1%
Gram-Positive Gram-Negative Microorganism 2 Tallow AGS (sodium salt) Tallow Alkyl Sulfate (sodium salt} Coconut Alkyl Sulfate (sodium salt) Dodecyl dimethylamine oxide- Armeen 16D 4 3 (Dodeeyl ammonium) propane-l-sulfonat Washing preparation of Example 14---- Washing preparation of Example 15- Washing preparation of Example l6 Bar soap of Example 17 s, 500 1, 437 2, 03s a, 836 1, 904 1, 24s
s, 500 2, 39s 1, 792 s, 020 2, 072 2, 100
Z Staphylococcus aureus ATG 3 Escherichia coli ATCC 26.
! See Example 12 for identification.
EXAMPLE 1a A product comprising 14% sodium dodecyl (tetrapolypropylene) benzene sulfonate, 47.7% sodium tripolyphosphate, 19.1% sodium sulfate, 9.7% sodium silicate, 1.6% sodium toluene sulfonate, and the remainder miscellaneous ingredients was used in these experiments. Fabric swatches washed in this formula showed a Staphylococcus azereus ATCC 6540 growth of about 3500. A 2% addition of dodccyl methyl benzyl sulfoxonium methosulfate to the formula resulted in only 840 colonies growing after the incubation period. A 1% addition had the effect of limiting colony growth to 1230. In all instances the cleaning power of the product remained at its designed level.
EXAMPLE 17 The tests were also extended to bar soap formulations to determine the usefulness in such cases. The results were excellent. No problems were encountered in using bar soap formulations along with the compounds of this invention. The exceptional mildness of these compounds is another advantage which they lend to such a formulation.
In this instance, a milled toilet soap comprising 83.5% of an 80% tallow: 20% coconut sodium soap, 13.0% volatiles, 2.0% unsaponifiables, and the remaining minor amounts of miscellaneous ingredients, was used as a bar soap formula.
The same procedure as used in each of the other examples was followed. That is a .25 concentration of this bar formula was prepared and the test swatches were laundered therein, inoculated with Staphylococcus, incubated and a colony count made. This gave a colony count of about 3500.
After the bar washing formulation was modified to include 2% dodecyl methyl benzyl sulfoxonium methos fate, the colony count was down to 1920.
A third was using only 1% of dodecyl methyl benzyl sulfoxonium methosulfate was run. The count was 1860, essentially the same as in the instance when 2% was employed.
Examples 8 through 17 were repeated in almost identical fashion. The only variation was that a different member of the new series of sulfoxonium compounds was selected, namely, hexadecyl methyl benzyl sulfoxonium methosulfate. The Quinn procedure discussed immediately preceding Examples 8 through 17 was followed explicitly.
The data that were obtained from these additional ex- This table shows that the combination of hexadecyl methyl benzyl sulfoxonium methosulfate with other organic synthetic detergent surfactants presented no problems of incompatibility. In no instance was the bacteriostatic effectiveness of the representative sulfoxonium compound of this invention masked over or destroyed. An improvement was obtained in each instance due to the ability of the hexadecyl methyl benzyl sulfoxonium methosulfate to control the growth of both gram-positive and gram-negative organisms even in the presence of the various types of organic surfactants.
The compounds of this invention including those prepared by Examples I through VII, can be employed in all types of detergent compositions, as for example, liquid, bar or granular compositions. Such detergents may contain varying amounts of these new compounds but generally there can be present from 1% to about 20% of the new compounds per total weight of the detergent composition. Preferably, there should be present from 2 to 10% of a compound of this invention in order to receive the maximum effect of the unique blend of properties.
There is thus provided by this invention improved cleansing and Washing compositions for laundry and personal use comprising active detergent compounds and an effective amount of at least one of the compounds of this invention.
The unusual and unexpected combination of properties possessed by these compounds suggests many other ramified uses. For example, the following can be mentioned: the inclusion of these new surfactant compounds in cosmetic compositions such as organic cleansing detergent preparations, shaving creams, shaving soaps, shampoos, ointments, facial creams and the like. As a consequence, these materials would be of improved quality, being rendered more highly antiseptic due to the bacteriostatic effectiveness of the novel sulfoxonium compounds.
In such compositions, of course, various colors, antioxidents, perfume, water softeners, and other materials can be used without affecting the desirable properties of the new class of sulfoxonium surfactant materials.
The foregoing description of the invention has been presented describing certain operable and preferred embodiments. It is not intended that the invention should be so limited since variations and modifications thereof will be obvious to those skilled in the art, all of which are within the spirit and scope of this invention.
What is claimed is:
1. High molecular weight sulfur-containing cationic surface active compounds corresponding to the following structural formula:
| RS O X- nlll R is selected from the group consisting of alkyl and alkenyl radicals containing from 10 to 20 carbon atoms,
R and R" each are selected from the group consisting of lower alkyl, benzyl, chlorinated benzyl, and alkylbenzyl wherein the alkyl substituent contains from 1 to about 4 carbon atoms,
wherein and wherein X represents an anionic substituent. 2. Sulfoxonium compounds having a structural formula corresponding to:
R RIS O X- R is an alkyl radical containing from 12 to 18 carbon atoms, R and R" each are selected from the group consisting of lower alkyl, benzyl, chlorinated benzyl, and alkyl wherein benzyl wherein the alkyl substituent contains from 1 to about 4 carbon atoms,
and wherein Reterences Cited by the Examiner UNITED STATES PATENTS 2,931,777 4/60 Shelanski 252-106 2,965,575 12/60 Beaver et al. 252-106 3,038,944 6/62 Louthan 260607 3,047,631 7/62 Rocklin 260-607 OTHER REFERENCES Kharasch: Organic Sulfur Compounds, vol. I, 1961, page 175.
CHARLES B. PARKER, Primary Examiner.
JULIUS GREENWALD, Examiners.

Claims (1)

1. HIGH MOLECULAR WEIGHT SULFUR-CONTAINING CATIONIC SURFACE ACTIVE COMPOUNDS CORRESPONDING TO THE FOLLOWING STRUCTURAL FORMULA:
US184549A 1962-04-02 1962-04-02 Sulfoxonium compounds Expired - Lifetime US3196184A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BE630489D BE630489A (en) 1962-04-02
US184549A US3196184A (en) 1962-04-02 1962-04-02 Sulfoxonium compounds
US411639A US3352786A (en) 1962-04-02 1964-11-16 Sulfoxonium compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US184549A US3196184A (en) 1962-04-02 1962-04-02 Sulfoxonium compounds

Publications (1)

Publication Number Publication Date
US3196184A true US3196184A (en) 1965-07-20

Family

ID=22677363

Family Applications (1)

Application Number Title Priority Date Filing Date
US184549A Expired - Lifetime US3196184A (en) 1962-04-02 1962-04-02 Sulfoxonium compounds

Country Status (1)

Country Link
US (1) US3196184A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1258865B (en) * 1966-10-01 1968-01-18 Basf Ag Process for the preparation of sulfoxonium salts
US3466377A (en) * 1966-08-01 1969-09-09 Merck & Co Inc Aralkyl aliphatic sulfoxide oral,parenteral and rectal dosage units for pain,fever and inflammation
US3507796A (en) * 1967-05-11 1970-04-21 Procter & Gamble Antibacterial compositions
US3534105A (en) * 1967-09-26 1970-10-13 Basf Ag Production of sulfoxonium salts by the oxidation of sulfonium salts
US4339567A (en) * 1980-03-07 1982-07-13 Ciba-Geigy Corporation Photopolymerization by means of sulphoxonium salts
US4383025A (en) * 1980-07-10 1983-05-10 Ciba-Geigy Corporation Photopolymerization by means of sulfoxonium salts
US4398014A (en) * 1980-11-04 1983-08-09 Ciba-Geigy Corporation Sulfoxonium salts and their use as polymerization catalysts
JP2008044881A (en) * 2006-08-15 2008-02-28 Fujifilm Corp New antimicrobial agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2931777A (en) * 1956-08-16 1960-04-05 Gen Aniline & Film Corp Germicidal detergent compositions
US2965575A (en) * 1957-05-27 1960-12-20 Monsanto Chemicals Antiseptic detergent compositions
US3038944A (en) * 1959-11-02 1962-06-12 Phillips Petroleum Co 3-chloropropyl-, and 3-chloro-2-methylpropyl octyl sulfides and corresponding sulfoxides and as new compounds 3-chloropropyl-, and 3-chloro-2-methylpropyl octyl sulfoxides
US3047631A (en) * 1960-12-08 1962-07-31 Shell Oil Co Dialkylhydroxybenzyl sulfonium salts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2931777A (en) * 1956-08-16 1960-04-05 Gen Aniline & Film Corp Germicidal detergent compositions
US2965575A (en) * 1957-05-27 1960-12-20 Monsanto Chemicals Antiseptic detergent compositions
US3038944A (en) * 1959-11-02 1962-06-12 Phillips Petroleum Co 3-chloropropyl-, and 3-chloro-2-methylpropyl octyl sulfides and corresponding sulfoxides and as new compounds 3-chloropropyl-, and 3-chloro-2-methylpropyl octyl sulfoxides
US3047631A (en) * 1960-12-08 1962-07-31 Shell Oil Co Dialkylhydroxybenzyl sulfonium salts

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3466377A (en) * 1966-08-01 1969-09-09 Merck & Co Inc Aralkyl aliphatic sulfoxide oral,parenteral and rectal dosage units for pain,fever and inflammation
DE1258865B (en) * 1966-10-01 1968-01-18 Basf Ag Process for the preparation of sulfoxonium salts
US3507796A (en) * 1967-05-11 1970-04-21 Procter & Gamble Antibacterial compositions
US3534105A (en) * 1967-09-26 1970-10-13 Basf Ag Production of sulfoxonium salts by the oxidation of sulfonium salts
US4339567A (en) * 1980-03-07 1982-07-13 Ciba-Geigy Corporation Photopolymerization by means of sulphoxonium salts
US4383025A (en) * 1980-07-10 1983-05-10 Ciba-Geigy Corporation Photopolymerization by means of sulfoxonium salts
US4398014A (en) * 1980-11-04 1983-08-09 Ciba-Geigy Corporation Sulfoxonium salts and their use as polymerization catalysts
JP2008044881A (en) * 2006-08-15 2008-02-28 Fujifilm Corp New antimicrobial agent

Similar Documents

Publication Publication Date Title
US2757125A (en) N-higher alkyl-4-carboxy-2-pyrrolidones and compositions therewith
US5780658A (en) Process for the synthesis of cationic surfactants comprising esterification with basic character amino acids
US4272395A (en) Germicidal compositions
US4302364A (en) Liquid detergent compositions comprising anionic, nonionic and cationic surfactants
US2577773A (en) Ternary detergent compositions
US3134711A (en) Halogenated salicylanilide-halogenated trifluoromethyldiphenyl urea synergistic composition
KR910009652B1 (en) Fabric softening composition
US3196184A (en) Sulfoxonium compounds
US4092272A (en) Liquid detergent composition
AU595851B2 (en) Liquid softergent having improved detergency containing alkyl glycoside
US3445398A (en) Synergistic antibacterial compositions
US3755448A (en) N-(pentachlorobiphenyl)-diethylene triamine
US2965575A (en) Antiseptic detergent compositions
US3352786A (en) Sulfoxonium compounds
US2692862A (en) Cleansing compositions having antibacterial properties
US4323466A (en) Germicide
US3328464A (en) Phenoxy- and phenylthio-propanol-quaternary ammonium compounds
US3772443A (en) 5-bromo-5-nitro-1,3-dioxane,process and antimicrobial compositions
US3084097A (en) Antibacterial compositions
US3763238A (en) N-(pentachlorobiphenyl) ethylene diamine
US3103467A (en) Method of controlling bacterial
US4034046A (en) Hydroxyaryldialkyl sulfonium halides
US5185101A (en) Compositions containing salts of acyloxyalkanesulfonates
US3485919A (en) Antibacterial composition
US3471560A (en) Symmetrical halo-substituted aromatic diquaternary ammonium compounds