US2943442A - Rocket thrust chamber construction - Google Patents
Rocket thrust chamber construction Download PDFInfo
- Publication number
- US2943442A US2943442A US785990A US78599059A US2943442A US 2943442 A US2943442 A US 2943442A US 785990 A US785990 A US 785990A US 78599059 A US78599059 A US 78599059A US 2943442 A US2943442 A US 2943442A
- Authority
- US
- United States
- Prior art keywords
- chamber
- coolant
- channels
- ribs
- construction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K9/00—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
- F02K9/42—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
- F02K9/60—Constructional parts; Details not otherwise provided for
- F02K9/62—Combustion or thrust chambers
- F02K9/64—Combustion or thrust chambers having cooling arrangements
Definitions
- This invention relates to combustion chambers requiring high heat flux of the general type commonly used in rockets, gas generators and are jet chambers.
- the most successful existing light-weight construction employs the tube bundle type construction.
- the wall of the combustion chamber is composed of tubes contiguously arranged. These tubes serve as the coolant passages as well as serving to function as the structural elements of the chamber wall.
- the present invention provides a lighter-weight 2 unit during the fabrication of which the coolant passages can be tailored to the exact cooling requirements of the unit.
- this weight advantage can be gained without sacrifice of the ability of the chamber walls to withstand the pressure loading by the coolant. 7
- Fig. 1 is an exploded view in isometric of a rocket thrust chamber of channel construction showing the path taken by the coolant and the order of assembly of parts;
- Fig. 2 is an isometric view of the chamber showing the assembly at that fabrication stage preparatory to forming the outer closure of the coolant;
- Figs. 3, 4, 5, and 6 are sections taken on lines 3-3, 4-4, 5-5-, and 6-6 of Fig. 2 showing variations in the height of the channel ribs along the length of the chamber.
- a rocket thrust chamber 11 fabricated from a plurality of channels 12 formed from a material capable of withstanding the operating temperatures as well as the corrosive action of the propellants.
- these channels 12. have ribs 13 of varying length at the longitudinal stations indicated. These channels are joined together by 'braze material 14 during the" fabrication process to be described below.
- high strength wire 16 is wrapped about the assembled channels 12 to form a non-porous outer skin and is brazed to ribs 13 at the points of contact therewith.
- the chainnels-12 are readily converted into rectangular conduits, the coolant passages 17-.
- glass fiber may be used as a wrapping instead of the high strength wire.
- the glass fiber is resin bonded to ribs 13 forming thereby the outer skin of coolant passages 17 and also serving as binding means for the channels 12.
- the rocket thrust chamber 11. formed by the wirewrapped channels 12 is provided with annular supply manifold unit 18 through which the propellant coolant (such as liquid hydrogen) is admitted (shown by arrows in Fig. 1) to the coolant passages 17 through pipe 19', conduit 21, holes 22 and plenum chamber 2-3.
- This supply of coolant enters coolant passages 17 at the exhaust end of chamber 11 and passes through coolant passages 17 counter to the flow of combustibles within the combustion chamber 24.
- the propellant coolant enters the combustion chamber 24 from coolant passages 17 through openings 26.
- the propellant oxidant (such as liquid fluorine) enters through pipe 27, manifold 28 and injector 29 to combine with the propellant coolant to initiate combustion.
- the fabrication process currently employed consists of the following steps: forming the channels 12 each consisting of one piece running the length of the chamber, bundling of the proper number of properly formed channels around a brazing mandrel, spot-welding the channels together, brazing the channels together into an assembly 31, grinding the channel ribs 13 to yield the proper uniformly varying coolant passage heights, wire-wrapping channel assembly 31, brazing the wrapped wire to ribs 13 and to the adjacent turns, installing manifold 18 and flange 32.
- the incidental steps of installing the injector 29 and manifold 28 (with pipe 27) and holding these components in place by the use of collar 33 bolted to flange 32 with bolts 34 passing through holes 36 and 37 are deemed obvious and form no part of this invention.
- the channels 12 can be formed and then sized in an operation resulting in ribs of the proper height as desired for the finished product. These properly sized channels can then be bundled around a brazing mandrel, followed by the wire wrapping step, brazing of the assembly and installing of manifold 18 and flange 32.
- the type of wire used in wrapping can be either round or square in cross-section.
- round wire a helical groove is ground in the ribs to provide good contact between the wire and the ribs.
- the lead of this groove is chosen to provide braze clearance between adjacent wires. If square wire is used, the ribs are ground smooth, but the wire is fed through a set of rollers prior to wrapping on assembly 31 whereby a fin is raised on the side of the wire to provide the proper braze clearance.
- a regeneratively cooled combustion chamber able to withstand high flux rates, said chamber comprising a plurality of channels secured together to form a hollow elongated enclosure with the ribs of said channels extending radially outwardly, rod-like binding means encircling the exterior of said enclosure and secured to said ribs to form :a skin defining thereby with said channels a series of coolant passages surrounding said enclosure and extending longitudinally thereof, means for admitting propellant coolant to one end of said coolant passages; means at the opposite end of said coolant passages for conducting said propellant coolant from said coolant passages into the interior of said chamber and means at said opposite end for injecting propellant oxidant into said chamber to react therein with propellant coolant from said coolant passages.
- Wall construction for combustion chambers comprising a plurality of elongated channels contiguously arranged and secured together to form a hollow elongated chamber with the ribs of said channels extending radially outwardly, rod-like binding means encircling the exterior of said chamber with adjoining loops of said binding means being secured to each other and to said ribs forming thereby an effective skin structure with passages being defined within, said passages being defined by said channels and said binding means.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
July 5, 1960 E. F. BAEHR ROCKET THRUST CHAMBER CONSTRUCTION 2 Sheets-Sheet 1 Filed Jan. 9, 1959 INVENTOR EDWARD E 345717? ATTORNEY July 5,1960 E. F. BAEHR ROCKET THRUST CHAMBER CONSTRUCTION 2 Sheets-Sheet 2 Filed Jan. 9, 1959 INVENTOR EDWARD F BAEHR ATTORNEY We s P s m s Patented July 5, 1960 R'ocK'nT TI-IRUST CHAMBER cousrducnbs Edward F. Each, 494 Fa'ii- St.,- Bares, Oliio Filed Ian. 9, 1959, Ser. No. 7ss,9'90
s Claiin's. cl. 60:35.6
(Granted under Title 35, [1.5. Code 1952), see. 266) The invention described herein may be manufactured and used byor for the Government of theUhited States of America for governmental purposes without the payment of any royalties thereon or therefor.
This invention relates to combustion chambers requiring high heat flux of the general type commonly used in rockets, gas generators and are jet chambers.
v It is essential that the] wall of such a wmbustion chamber be made thin in order to saye weight, but at the same time pro-vision must be made to enable this wallto withstand very high combustion temperatures. Among the means already employed in the artto solvethis problem is that ofprcviding a jacket around the combustion chamber spaced a fixed distance therefrom and passing fluid coolant through the resulting annular passage. In this manner the temperature of thin combustion chamber walls can be kept low enough to permit continuous operation over extended periods of time.
Attempts to utilize a separate coolant, that is one havirig the sole function of cooling, halite indicated that the weight added to the rocket motor by the coolant itself, the" means provided for its storage and the necessary valves, pumps and conduits provides a distinct disadvantage. Further, in such an arrangement the heat absorbed by the coolant is entirely wasted.
Currently, the practice is to utilize regenerative cooling of such combustion chambers wherein fluid propellant is employed as the cooling medium in addition to its primary function as a propellant.
The most successful existing light-weight construction employs the tube bundle type construction. In this type of construction the wall of the combustion chamber is composed of tubes contiguously arranged. These tubes serve as the coolant passages as well as serving to function as the structural elements of the chamber wall.
This type of construction has the distinct disadvantage, however, that should any variation in the cross-sectional area of the coolant passage be desired such variation must be achieved by the use of very complicated forming operations.
It is, therefore, one object of this invention to provide a regeneratively cooled combustion chamber of channel construction as a means of making extremely light gage inner walls capable of withstanding very high heat flux rates and yet able to withstand high coolant pressures.
It is another object of this invention to provide a type of combustion chamber construction which furnishes variations in the velocity of the cooling agent at various longitudinal stations along the chamber whereby greater or less cooling is produced at different longitudinal portions of the chamber wall.
It is still another object of the present invention to provide a simple method of fabrication of a light-weight regeneratively cooled combustion chamber of channel construction furnishing differential cooling of the chamber wall.
Thus, in contrast to the prior art tube bundle construction the present invention provides a lighter-weight 2 unit during the fabrication of which the coolant passages can be tailored to the exact cooling requirements of the unit. By employing light-gage channel construction this weight advantage can be gained without sacrifice of the ability of the chamber walls to withstand the pressure loading by the coolant. 7
Other objects and many of the attendant advantages of this invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Fig. 1 is an exploded view in isometric of a rocket thrust chamber of channel construction showing the path taken by the coolant and the order of assembly of parts;
Fig. 2 is an isometric view of the chamber showing the assembly at that fabrication stage preparatory to forming the outer closure of the coolant; and
Figs. 3, 4, 5, and 6 are sections taken on lines 3-3, 4-4, 5-5-, and 6-6 of Fig. 2 showing variations in the height of the channel ribs along the length of the chamber.
Referring now to the drawings, wherein like reference characters designate like or corresponding parts throughout the several views, there is shown in Fig. 1 (which illustrates a preferred embodiment) a rocket thrust chamber 11 fabricated from a plurality of channels 12 formed from a material capable of withstanding the operating temperatures as well as the corrosive action of the propellants. As seen in Fig. 2 these channels 12. have ribs 13 of varying length at the longitudinal stations indicated. These channels are joined together by 'braze material 14 during the" fabrication process to be described below. In high temperature installations, high strength wire 16 is wrapped about the assembled channels 12 to form a non-porous outer skin and is brazed to ribs 13 at the points of contact therewith. By this expedient the chainnels-12 are readily converted into rectangular conduits, the coolant passages 17-.
These passages 17 vaiy in cross-section since the height of the channel ribs 13 is varied as shown in Fig. 2. In this manner the propellant coolant is provided with the proper design velocity to accomplish the required cooling rates.
For moderate temperature conditions, glass fiber may be used as a wrapping instead of the high strength wire. In such case the glass fiber is resin bonded to ribs 13 forming thereby the outer skin of coolant passages 17 and also serving as binding means for the channels 12.
The rocket thrust chamber 11. formed by the wirewrapped channels 12 is provided with annular supply manifold unit 18 through which the propellant coolant (such as liquid hydrogen) is admitted (shown by arrows in Fig. 1) to the coolant passages 17 through pipe 19', conduit 21, holes 22 and plenum chamber 2-3. This supply of coolant enters coolant passages 17 at the exhaust end of chamber 11 and passes through coolant passages 17 counter to the flow of combustibles within the combustion chamber 24. At the far end of the coolant passages the propellant coolant enters the combustion chamber 24 from coolant passages 17 through openings 26. Also at this far end of chamber 11 the propellant oxidant (such as liquid fluorine) enters through pipe 27, manifold 28 and injector 29 to combine with the propellant coolant to initiate combustion.
The fabrication process currently employed consists of the following steps: forming the channels 12 each consisting of one piece running the length of the chamber, bundling of the proper number of properly formed channels around a brazing mandrel, spot-welding the channels together, brazing the channels together into an assembly 31, grinding the channel ribs 13 to yield the proper uniformly varying coolant passage heights, wire-wrapping channel assembly 31, brazing the wrapped wire to ribs 13 and to the adjacent turns, installing manifold 18 and flange 32. The incidental steps of installing the injector 29 and manifold 28 (with pipe 27) and holding these components in place by the use of collar 33 bolted to flange 32 with bolts 34 passing through holes 36 and 37 are deemed obvious and form no part of this invention.
As an alternative, the channels 12 can be formed and then sized in an operation resulting in ribs of the proper height as desired for the finished product. These properly sized channels can then be bundled around a brazing mandrel, followed by the wire wrapping step, brazing of the assembly and installing of manifold 18 and flange 32.
' The type of wire used in wrapping can be either round or square in cross-section. When round wire is used, a helical groove is ground in the ribs to provide good contact between the wire and the ribs. The lead of this groove is chosen to provide braze clearance between adjacent wires. If square wire is used, the ribs are ground smooth, but the wire is fed through a set of rollers prior to wrapping on assembly 31 whereby a fin is raised on the side of the wire to provide the proper braze clearance.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
What is claimed is:
l. A regeneratively cooled combustion chamber able to withstand high flux rates, said chamber comprising a plurality of channels secured together to form a hollow elongated enclosure with the ribs of said channels extending radially outwardly, rod-like binding means encircling the exterior of said enclosure and secured to said ribs to form :a skin defining thereby with said channels a series of coolant passages surrounding said enclosure and extending longitudinally thereof, means for admitting propellant coolant to one end of said coolant passages; means at the opposite end of said coolant passages for conducting said propellant coolant from said coolant passages into the interior of said chamber and means at said opposite end for injecting propellant oxidant into said chamber to react therein with propellant coolant from said coolant passages.
2. The regeneratively cooled combustion chamber set forth in claim 1 in which the ribs of the channels collectively vary uniformly in height at successive longitudinal stations along the length of the chamber whereby coolant passages of varying cross-section are defined by the channels and the binding means.
3. The rcgeneratively cooled combustion chamber set forth in claim 2 in which high strength wire is employed as the binding means and is brazed to the channel ribs.
4. Wall construction for combustion chambers comprising a plurality of elongated channels contiguously arranged and secured together to form a hollow elongated chamber with the ribs of said channels extending radially outwardly, rod-like binding means encircling the exterior of said chamber with adjoining loops of said binding means being secured to each other and to said ribs forming thereby an effective skin structure with passages being defined within, said passages being defined by said channels and said binding means.
5. The wall construction for combustion chambers set forth in claim 4 in which the ribs of the channels collectively vary uniformly in height at successive longitudinal stations along the length of the chamber whereby coolant passages of varying cross-section are defined by the channels and the binding means.
6. The wall construction for combustion chambers set forth in claim 5 in which high strength wire is employed as the binding means and is brazed to the channel ribs.
References Cited in the file of this patent UNITED STATES PATENTS 1,524,401 Lungaard Jan. 27, 1925 2,500,501 Trumpler Mar. 14, 1950 2,669,835 Rossheim et al Feb. 23, 1954 2,880,577 Halford et al. Apr. 7, 1959
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US785990A US2943442A (en) | 1959-01-09 | 1959-01-09 | Rocket thrust chamber construction |
US843032A US3035333A (en) | 1959-01-09 | 1959-09-15 | Method of making a regeneratively cooled combustion chamber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US785990A US2943442A (en) | 1959-01-09 | 1959-01-09 | Rocket thrust chamber construction |
Publications (1)
Publication Number | Publication Date |
---|---|
US2943442A true US2943442A (en) | 1960-07-05 |
Family
ID=25137257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US785990A Expired - Lifetime US2943442A (en) | 1959-01-09 | 1959-01-09 | Rocket thrust chamber construction |
Country Status (1)
Country | Link |
---|---|
US (1) | US2943442A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3016695A (en) * | 1960-05-31 | 1962-01-16 | Thiokol Chemical Corp | Reaction motor thrust chamber |
US3082601A (en) * | 1958-05-08 | 1963-03-26 | Daimler Benz Ag | Rocket combustion chamber |
US3105522A (en) * | 1956-12-10 | 1963-10-01 | Robert C Veit | Tube of uniform depth and variable width |
US3120101A (en) * | 1962-03-05 | 1964-02-04 | Edward F Baehr | Channel-type shell construction for rocket engines and the like |
US3131535A (en) * | 1960-04-07 | 1964-05-05 | Pneumo Dynamics Corp | Rocket nozzle |
US3153446A (en) * | 1960-08-12 | 1964-10-20 | United Aircraft Corp | Heat exchanger |
US3154914A (en) * | 1959-12-12 | 1964-11-03 | Bolkow Entwicklungen Kg | Rocket engine construction |
US3162012A (en) * | 1961-05-04 | 1964-12-22 | Casey J Blaze | Formed metal ribbon wrap |
US3174279A (en) * | 1962-02-13 | 1965-03-23 | Edward F Baehr | Rocket thrust chamber |
US3182448A (en) * | 1960-06-22 | 1965-05-11 | Thiokol Chemical Corp | Rocket motor construction |
US3188801A (en) * | 1961-09-29 | 1965-06-15 | Gen Motors Corp | Cooled nozzle construction |
US3254395A (en) * | 1963-01-04 | 1966-06-07 | Edward F Baehr | Method of making a rocket motor casing |
US3254487A (en) * | 1963-01-04 | 1966-06-07 | Edward F Baehr | Rocket motor casing |
DE1264162B (en) * | 1966-09-10 | 1968-03-21 | Boelkow Gmbh | Process for producing the outer wall of combustion chambers and nozzles for rocket engines and devices for carrying out the process |
US20060230745A1 (en) * | 2005-04-18 | 2006-10-19 | Japan Aerospace Exploration Agency | Pintle injector |
CN109357577A (en) * | 2018-10-15 | 2019-02-19 | 北京蓝箭空间科技有限公司 | The preparation method and cooling jacket of cooling jacket |
US10527003B1 (en) | 2015-04-12 | 2020-01-07 | Rocket Lab Usa, Inc. | Rocket engine thrust chamber, injector, and turbopump |
US20230125860A1 (en) * | 2021-10-27 | 2023-04-27 | Interstellar Technologies Inc. | Combustor for rocket engine and method for manufacturing it |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1524401A (en) * | 1923-11-22 | 1925-01-27 | Automatic Refrigerating Compan | Method of and machine for making heat exchangers |
US2500501A (en) * | 1946-09-12 | 1950-03-14 | Kellogg M W Co | Method of making heat exchangers |
US2669835A (en) * | 1949-03-04 | 1954-02-23 | Kellogg M W Co | Wall structure for regeneratively cooled rocket motors |
US2880577A (en) * | 1954-08-30 | 1959-04-07 | Havilland Engine Co Ltd | Multi-tubular wall for heat exchangers |
-
1959
- 1959-01-09 US US785990A patent/US2943442A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1524401A (en) * | 1923-11-22 | 1925-01-27 | Automatic Refrigerating Compan | Method of and machine for making heat exchangers |
US2500501A (en) * | 1946-09-12 | 1950-03-14 | Kellogg M W Co | Method of making heat exchangers |
US2669835A (en) * | 1949-03-04 | 1954-02-23 | Kellogg M W Co | Wall structure for regeneratively cooled rocket motors |
US2880577A (en) * | 1954-08-30 | 1959-04-07 | Havilland Engine Co Ltd | Multi-tubular wall for heat exchangers |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3105522A (en) * | 1956-12-10 | 1963-10-01 | Robert C Veit | Tube of uniform depth and variable width |
US3082601A (en) * | 1958-05-08 | 1963-03-26 | Daimler Benz Ag | Rocket combustion chamber |
US3154914A (en) * | 1959-12-12 | 1964-11-03 | Bolkow Entwicklungen Kg | Rocket engine construction |
US3131535A (en) * | 1960-04-07 | 1964-05-05 | Pneumo Dynamics Corp | Rocket nozzle |
US3016695A (en) * | 1960-05-31 | 1962-01-16 | Thiokol Chemical Corp | Reaction motor thrust chamber |
US3182448A (en) * | 1960-06-22 | 1965-05-11 | Thiokol Chemical Corp | Rocket motor construction |
US3153446A (en) * | 1960-08-12 | 1964-10-20 | United Aircraft Corp | Heat exchanger |
US3162012A (en) * | 1961-05-04 | 1964-12-22 | Casey J Blaze | Formed metal ribbon wrap |
US3188801A (en) * | 1961-09-29 | 1965-06-15 | Gen Motors Corp | Cooled nozzle construction |
US3174279A (en) * | 1962-02-13 | 1965-03-23 | Edward F Baehr | Rocket thrust chamber |
US3120101A (en) * | 1962-03-05 | 1964-02-04 | Edward F Baehr | Channel-type shell construction for rocket engines and the like |
US3254395A (en) * | 1963-01-04 | 1966-06-07 | Edward F Baehr | Method of making a rocket motor casing |
US3254487A (en) * | 1963-01-04 | 1966-06-07 | Edward F Baehr | Rocket motor casing |
DE1264162B (en) * | 1966-09-10 | 1968-03-21 | Boelkow Gmbh | Process for producing the outer wall of combustion chambers and nozzles for rocket engines and devices for carrying out the process |
US7703274B2 (en) * | 2005-04-18 | 2010-04-27 | Japan Aerospace Exploration Agency | Pintle injector |
US20060230745A1 (en) * | 2005-04-18 | 2006-10-19 | Japan Aerospace Exploration Agency | Pintle injector |
US10527003B1 (en) | 2015-04-12 | 2020-01-07 | Rocket Lab Usa, Inc. | Rocket engine thrust chamber, injector, and turbopump |
US11408375B1 (en) | 2015-04-12 | 2022-08-09 | Rocket Labs USA, Inc. | Rocket engine turbopump with coolant passage in impeller central hub |
US11415082B1 (en) | 2015-04-12 | 2022-08-16 | Rocket Labs USA, Inc. | Turbopump, thrust chamber, and injector with distribution system and a circular array of support columns to flow liquid from the distribution system into a combustion chamber |
CN109357577A (en) * | 2018-10-15 | 2019-02-19 | 北京蓝箭空间科技有限公司 | The preparation method and cooling jacket of cooling jacket |
US20230125860A1 (en) * | 2021-10-27 | 2023-04-27 | Interstellar Technologies Inc. | Combustor for rocket engine and method for manufacturing it |
US12098691B2 (en) * | 2021-10-27 | 2024-09-24 | Interstellar Technologies Inc. | Combustor for rocket engine and method for manufacturing it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2943442A (en) | Rocket thrust chamber construction | |
US2958183A (en) | Rocket combustion chamber | |
US3190070A (en) | Reaction motor construction | |
US3035333A (en) | Method of making a regeneratively cooled combustion chamber | |
US3719046A (en) | Rocket engine cooling system | |
US3631672A (en) | Eductor cooled gas turbine casing | |
US5832719A (en) | Rocket thrust chamber | |
US3267664A (en) | Method of and device for cooling | |
US3224678A (en) | Modular thrust chamber | |
US3091520A (en) | Radial outflow catalytic pack | |
US5371945A (en) | Method of making a tubular combustion chamber construction | |
US2802332A (en) | High energy gas producer | |
US3303645A (en) | Ultra-high temperature burners | |
US2977754A (en) | Rocket chamber with multi-pass axial flow coolant passageways | |
US3134224A (en) | Gas bleed from rocket chamber | |
US3398527A (en) | Corrugated wall radiation cooled combustion chamber | |
US6134782A (en) | Method of forming a rocket thrust chamber | |
EP0720876B1 (en) | Fabrication of rocket chambers | |
US3162012A (en) | Formed metal ribbon wrap | |
US3044257A (en) | Combustion chamber outer jacket | |
US2962221A (en) | Rocket nozzle construction with cooling means | |
US3354652A (en) | Rocket thrust chamber | |
US2951336A (en) | Chamber wall casting process and assembly | |
US3933000A (en) | Tubular regenerator for a cryogenic refrigerator | |
Baehr | Method of making a regeneratively cooled combustion chamber Patent |