US2719126A - Corrosion inhibitors and compositions containing same - Google Patents
Corrosion inhibitors and compositions containing same Download PDFInfo
- Publication number
- US2719126A US2719126A US328823A US32882352A US2719126A US 2719126 A US2719126 A US 2719126A US 328823 A US328823 A US 328823A US 32882352 A US32882352 A US 32882352A US 2719126 A US2719126 A US 2719126A
- Authority
- US
- United States
- Prior art keywords
- sulfur
- product
- hydrocarbon
- thiadiazole
- silver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims description 41
- 238000005260 corrosion Methods 0.000 title description 20
- 230000007797 corrosion Effects 0.000 title description 20
- 239000003112 inhibitor Substances 0.000 title description 5
- 239000005077 polysulfide Substances 0.000 claims description 15
- 229920001021 polysulfide Polymers 0.000 claims description 15
- 150000008117 polysulfides Polymers 0.000 claims description 15
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical compound C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 claims description 8
- 239000010687 lubricating oil Substances 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 description 40
- 229910052717 sulfur Inorganic materials 0.000 description 37
- 239000011593 sulfur Substances 0.000 description 36
- 239000004215 Carbon black (E152) Substances 0.000 description 34
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 32
- 239000007795 chemical reaction product Substances 0.000 description 32
- 150000002430 hydrocarbons Chemical class 0.000 description 29
- 239000000047 product Substances 0.000 description 29
- 239000003921 oil Substances 0.000 description 25
- 235000019198 oils Nutrition 0.000 description 25
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 24
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 20
- 229910052709 silver Inorganic materials 0.000 description 20
- 239000004332 silver Substances 0.000 description 20
- 125000004432 carbon atom Chemical group C* 0.000 description 16
- -1 sulfurized terpenes Chemical class 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- VKCLPVFDVVKEKU-UHFFFAOYSA-N S=[P] Chemical compound S=[P] VKCLPVFDVVKEKU-UHFFFAOYSA-N 0.000 description 14
- 239000000314 lubricant Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 14
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 239000000654 additive Substances 0.000 description 11
- 229910052698 phosphorus Inorganic materials 0.000 description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical class [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 10
- 239000011574 phosphorus Substances 0.000 description 10
- BIGYLAKFCGVRAN-UHFFFAOYSA-N 1,3,4-thiadiazolidine-2,5-dithione Chemical class S=C1NNC(=S)S1 BIGYLAKFCGVRAN-UHFFFAOYSA-N 0.000 description 9
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000002401 inhibitory effect Effects 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920000098 polyolefin Polymers 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- FWMUJAIKEJWSSY-UHFFFAOYSA-N sulfur dichloride Chemical compound ClSCl FWMUJAIKEJWSSY-UHFFFAOYSA-N 0.000 description 6
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical group SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 5
- 150000001336 alkenes Chemical class 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000009972 noncorrosive effect Effects 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- WIKSRXFQIZQFEH-UHFFFAOYSA-N [Cu].[Pb] Chemical compound [Cu].[Pb] WIKSRXFQIZQFEH-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical group CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 3
- 229910015900 BF3 Inorganic materials 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 3
- 239000002199 base oil Substances 0.000 description 3
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 229910000464 lead oxide Inorganic materials 0.000 description 3
- 150000005673 monoalkenes Chemical class 0.000 description 3
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 229920001083 polybutene Polymers 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 3
- 210000002268 wool Anatomy 0.000 description 3
- FRQQKWGDKVGLFI-UHFFFAOYSA-N 2-methylundecane-2-thiol Chemical compound CCCCCCCCCC(C)(C)S FRQQKWGDKVGLFI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000010775 animal oil Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 235000019271 petrolatum Nutrition 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010689 synthetic lubricating oil Substances 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 1
- YKYPQJUNVRIATP-UHFFFAOYSA-N 2-methyl-5-(2-phenylethenyl)-1,3,4-thiadiazole Chemical compound S1C(C)=NN=C1C=CC1=CC=CC=C1 YKYPQJUNVRIATP-UHFFFAOYSA-N 0.000 description 1
- 208000035657 Abasia Diseases 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- ZBWWAPSEOZTOFM-UHFFFAOYSA-N S=[S+]Cl Chemical compound S=[S+]Cl ZBWWAPSEOZTOFM-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 241000779819 Syncarpia glomulifera Species 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 235000013844 butane Nutrition 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- JYYOBHFYCIDXHH-UHFFFAOYSA-N carbonic acid;hydrate Chemical compound O.OC(O)=O JYYOBHFYCIDXHH-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- PXJJSXABGXMUSU-UHFFFAOYSA-N disulfur dichloride Chemical compound ClSSCl PXJJSXABGXMUSU-UHFFFAOYSA-N 0.000 description 1
- RPLSIKQMFNIIDD-UHFFFAOYSA-N dodecyl thiohypochlorite Chemical compound CCCCCCCCCCCCSCl RPLSIKQMFNIIDD-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- ZOOODBUHSVUZEM-UHFFFAOYSA-N ethoxymethanedithioic acid Chemical class CCOC(S)=S ZOOODBUHSVUZEM-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229910000286 fullers earth Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910001502 inorganic halide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical class CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 150000008116 organic polysulfides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- 239000001739 pinus spp. Substances 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- RHSBIGNQEIPSCT-UHFFFAOYSA-N stearonitrile Chemical compound CCCCCCCCCCCCCCCCCC#N RHSBIGNQEIPSCT-UHFFFAOYSA-N 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- 229940036248 turpentine Drugs 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/01—Five-membered rings
- C07D285/02—Thiadiazoles; Hydrogenated thiadiazoles
- C07D285/04—Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
- C07D285/12—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles
- C07D285/125—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/32—Heterocyclic sulfur, selenium or tellurium compounds
- C10M135/36—Heterocyclic sulfur, selenium or tellurium compounds the ring containing sulfur and carbon with nitrogen or oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/404—Fatty vegetable or animal oils obtained from genetically modified species
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/102—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
- C10M2219/106—Thiadiazoles
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/12—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/12—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
- C10M2223/121—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy of alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2225/04—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2225/04—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
- C10M2225/041—Hydrocarbon polymers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/06—Groups 3 or 13
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/08—Groups 4 or 14
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/14—Group 7
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/16—Groups 8, 9, or 10
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/14—Electric or magnetic purposes
- C10N2040/16—Dielectric; Insulating oil or insulators
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/14—Electric or magnetic purposes
- C10N2040/17—Electric or magnetic purposes for electric contacts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/10—Semi-solids; greasy
Definitions
- This invention relates to improved compositions which are efiective corrosion inhibitors and which are noncorrosive to silver, silver alloys and similar metals. More particularly, the invention pertains to lubricant compositions which are non-corrosive to such metals and inhibit their corrosion by sulfur and/or corrosive sulfur-containing organic compounds.
- lubricant additives have been developed to obtain certain desired characteristics.
- sulfur-containing organic compounds such as sulfurized terpenes, sulfurized hydrocarbon oils, vegetable oils or animal oils, xanthate esters, organic polysulfides, particularly polyalkyl polysulfides, metal salts of organo-substituted thioacids of phosphorus, metal salts of the reaction product of a phosphorus sulfide with a hydrocarbon, such as for example, polybutenes and other polyolefins, and combinations of the foregoing.
- sulfur-containing organic compounds such as sulfurized terpenes, sulfurized hydrocarbon oils, vegetable oils or animal oils, xanthate esters, organic polysulfides, particularly polyalkyl polysulfides, metal salts of organo-substituted thioacids of phosphorus, metal salts of the reaction product of a phosphorus sulfide with a hydrocarbon, such as for example, polybuten
- the foregoing objects can be attained by employing in oleaginous materials corrosion inhibiting amounts, viz. from about 0.02% to about 10%, and preferably from about 0.25% to about 5.0%, of an oil-soluble or oil dispersible polysulfide derivative of 2,5 dimercapto 1,3,4 thiadiazole ice wherein R and R are the same or different hydrocarbon radicals, x and y are numbers 0 to about 8, and the sum of x and y is at least 1, and preferably 2 to about 16.
- the radicals R and R can be aliphatic or aromatic, including acyclic, alicyclic, aralkyl, aryl and alkaryl radicals or mixtures of such radicals.
- the hydrocarbon radicals can contain from 1 to about 30 carbon atoms, and preferably from about 4 to about 16 carbon atoms.
- suitable hydrocarbon radicals are ethyl, propyl, butyl, hexyl, octyl, nonyl, decyl, dodecyl, tridecyl, hexadecyl, octadecyl, cyclo-hexyl, phenyl, tolyl, benzyl, naphthyl, styryl, etc.
- the polysulfide derivatives "of 2,5-dimercapto-1,3,4- thiadiazole can be prepared by several methods. For example, they can be prepared by reacting 2,5-dimercapto- 1,3,4-thiadiazole with a suitable sulfenyl chloride, or by reacting the dimercaptan with chlorine and reacting the resultant disulfenyl chloride,
- Bis-trisulfide or tetrasulfide derivatives are obtained by reacting the dimercaptan with a mercaptan and a sulfur chloride in a molar ratio of from1:2:2 to 1:224 at a temperature of from about 50-100 C.
- Higher polysulfides can be prepared by reacting the thiadiazole dior trisulfides with sulfur at temperatures of about ZOO-400 C.
- Another method of preparing the polysulfides of the present invention involves reacting 2,5-dimercapto-l,3,4-thiadiazole with a mercaptan and sulfur in the molar ratio of from 1:1:1 to 1:4:16 at temperatures of from about C. to about C.
- H II C1zHz5S-SC CSSH25C12 was recovered by washing with water and sodium bicarbonate, and stripping in vacuum to remove the carbon tetrachloride.
- Example III The method of Example II was followed, using tertiary octyl mercaptan. The product was a clear green, viscous, oil-soluble material.
- EXAMPLE VIII A mixture of 90 grams (0.6 mole) 2,5-dimercapto- 1,3,4-thiadiazole, 300 cc. Cellosolve, 87.6 grams (0.6 mole) tertiary octyl mercaptan and 20 grams (0.62 mole) of sulfur was heated at 110 C. for four hours. The Cellosolve and unreacted mercaptan were then stripped in vacuo from the reaction mixture and the product was filtered hot through Celite. A light yellow solid was recovered having a sulfur content of 43% and a nitrogen content of 12.7%.
- reaction products can be used in amounts of from about 0.02% to about 10%, and preferably from about 0.25% to about 5% in combination with lubricant base oils, such as hydrocarbon oils, synthetic hydrocarbon oils, such as those obtained by the polymerization of hydrocarbons, such as olefin polymers, synthetic lubricating oils of the alkylene-oxide type, for example, the Ucon Oils, marketed by Carbide and Carbon Corporation, as well as other synthetic oils, such as the polycarboxylic acid ester-type oils, such as the esters of adipic acid, sebacic acid, maleic acid, azelaic acid, etc.
- lubricant base oils such as hydrocarbon oils, synthetic hydrocarbon oils, such as those obtained by the polymerization of hydrocarbons, such as olefin polymers, synthetic lubricating oils of the alkylene-oxide type, for example, the Ucon Oils, marketed by Carbide and Carbon Corporation, as well as other synthetic oils, such as the polycarboxylic
- reaction products can be suitably employed alone in combination with a base oil, they are usually used in combination with other lubricant addition agents, which impart various desired characteristics to the base oil.
- these reaction products are used in conjunction with detergent-type additives, particularly those which contain sulfur or phosphorus and sulfur.
- Addition agents of this type are usually used in amounts of from about 0.002% to about 10%, and preferably from about 0.01% to about 5%.
- phosphorus and sulfur-containing addition agents are the neutralized reaction products of a phosphorus sulfide and a hydrocarbon, an alcohol, a ketone, an amine or an ester.
- the neutralized reaction products of a phosphorus sulfide such as a phosphorus pentasulfide
- the preferred hydrocarbon constituent of the reaction is a mono-olefinic hydrocarbon polymer resulting from the polymerization of low molecular weight mono-olefin hydrocarbons, such as propylene, butenes, amylenes or copolymers thereof.
- Such polymers may be obtained by the polymerization of mono-olefins of less than 6 carbon atoms in the presence of a catalyst, such as sulfuric acid, phosphoric acid, boron fluoride, aluminum chloride, or other similar halide catalysts of the Friedel-Crafts type.
- a catalyst such as sulfuric acid, phosphoric acid, boron fluoride, aluminum chloride, or other similar halide catalysts of the Friedel-Crafts type.
- the polymers employed are preferably mono-olefin polymers or mixtures of mono-olefin polymers and isomono-olefin polymers having molecular weights ranging from about to about 50,000 or more, and preferably from about 500 to about 10,000.
- Such polymers can be obtained, for example, by the polymerization in the liquid num chloride, and the like.
- a hydrocarbon mixture containing iso-butylene, butylenes and butanes recovered from petroleum gases, especially those gases produced in the cracking of petroleum oils in the manufacture of gasoline, can be used.
- Another suitable polymer is that obtained by polymerizing in the liquid phase a hydrocarbon mixture comprising substantially C3 hydrocarbons in the presence of an aluminum chloride-complex catalyst.
- the catalyst is preferably prepared by heating aluminum chloride with iso-octane.
- the hydrocarbon mixture is introduced into the bottom of the reactor and passed upward through the catalyst layer, while a temperature of from about 50 F. to about 110 F. is maintained in the reactor.
- the propane and other saturated gases pass through the catalyst while the propylene is polymerized under these conditions.
- the propylene polymer can be fractionated to any desired molecular weight, preferably from about 500 to about 1000, or higher.
- Suitable polymers are those obtained by polymerizing a hydrocarbon mixture containing about to about 25% isobutylene at a temperature of from about 0 F. to about 100 F., and preferably 0 F. to about 32 F., in the presence of boron fluoride. After the polymerization of the isobutylene together with a relatively minor amount of the normal olefins present, the reaction mass is neutralized, washed free of acidic substances and the unreacted hydrocarbons subsequently separated from the polymers by distillation.
- the polymer mixture so obtained depending upon the temperature of reaction, varies in consistency from a light liquid to a viscous oily material and contains polymers having molecular weights ranging from about 100 to about 2000, or higher.
- the polymers so obtained may be used as such, or the polymer may be fractionated under reduced pressure into fractions of increasing molecular weight and suitable fractions reacted with the phosphorus sulfide to obtain the desired reaction products.
- the bottoms resulting from the fractionation of the polymer which may have Saybolt Universal viscosities at 210 F., ranging from about 50 seconds to about 10,000 seconds, are well suited'for this purpose.
- Essentially parafiinic hydrocarbons such as bright stock residuums, lubricating oil distillates, petrolatums, or paraffin waxes, may be used.
- condensation products of any of the foregoing hydrocarbons usually through first halogena'ting the hydrocarbons and reacting with aromatic hydrocarbons in the presence of anhydrous inorganic halides, such as aluminum chloride, zinc chloride, boron fluoride, and the like.
- Examples of other high molecular weight olefinic hydrocarbons which can be employed are cetene (C16), cerotene (C26), melene (C30), and mixed high molecular weight alkenes obtained by cracking petroleum oils.
- olefins suitable for the preparation of the phosphorus sulfide reaction products are olefins having at least 20 carbons atoms in the molecule of which from about 13 carbon atoms to about 18 carbon atoms, and preferably at least carbon atoms, are in a long chain.
- Such olefins can be obtained by the dehydrogenation of alkyl halides, preferably long chain alkyl halides, particularly halogenated paraifin waxes.
- the polymer or synthetic lubricating oil obtained by polymerizing unsaturated hydrocarbons resulting from the vapor phase cracking of paraflin waxes in the presence of aluminum chloride which is fully described in United States Patents Nos. 1,955,260, 1,970,402 and 2,091,398.
- Still another type of olefin polymer which may be employed is the polymer resulting from the treatment of vapor phase cracked gasoline and/or gasoline fractions with sulfuric acid or solid adsorbents, such as fullers earth, whereby unsaturated polymerized hydrocarbons are removed.
- the reaction product of the phosphorus sulfide and the polymers resulting from the voltolization of hydrocarbons as described for example in United States Patents Nos. 2,197,768 and 2,191,787 are also suitable.
- hydrocarbons that can be reacted with a phosphorus sulfide are aromatic hydrocarbons, such as for example, benzene, naphthalene, toluene, xylene, diphenyl, and the like, or an alkylated aromatic hydrocarbon, such as for example, benzene having an alkyl substituent having at least four carbon atoms, and preferably at least eight carbon atoms, such as a long chain paratlin wax.
- the phosphorus sulfide hydrocarbon reaction product can be readily obtained by reacting a phosphorus sulfide,
- the reaction product can be further treated with steam at an elevated temperature of from about F. to about 600 F.
- the phosphorus sulfide-hydrocarbon. reaction product normally shows a titratable acidity which is neutralized by treatment with a basic reagent.
- the phosphorus sulfide-hydrocarbon reaction product when neutralized with a basic reagent, containing a metal constituent, is characterized by the presence or retention of the metal constituent of the basic reagent.
- the neutralized phosphorus sulfide-hydrocarbon reaction product can be obtained by treating the acidic reaction product with a suitable basic compound, such as hydroxide, carbonate, oxide or sulfide of an alkaline earth metal or an alkali metal, such as for example, potassium hydroxide, sodium hydroxide, sodium sulfide, calcium oxide, lime, barium hydroxide, barium oxide, etc.
- a suitable basic compound such as hydroxide, carbonate, oxide or sulfide of an alkaline earth metal or an alkali metal
- potassium hydroxide sodium hydroxide, sodium sulfide, calcium oxide, lime, barium hydroxide, barium oxide, etc.
- Other basic reagents can be used, such as for example, ammonia or an alkyl or aryl-substituted ammonia, such as amines.
- the neutralization of the phosphorus sulfide-hydrocarbon reaction product is carried out preferably in a non-oxidizing atmosphere by contacting the acidic reaction product either as such or dissolved in a suitable solvent, such as naphtha with a solution of the basic agent.
- a suitable solvent such as naphtha
- the reaction product can be treated With solid alkaline compounds, such as KOH, NaOH, NazCOz, KzCOs, CaO, BaO, Ba(OH)2, NazS, and the like, at an elevated temperature of from about 100 F. to about 600 F.
- Neutralized reaction products containing a heavy metal constituent such as for example, tin, titanium, aluminum, chromium, cobalt, zinc, iron, and the like, can be obtained by reacting a salt of the desired heavy metal with the phosphorus sulfide-hydrocarbon reaction product whichhas been treated with abasic reagent, such as above described.
- phosphorus sulfide reaction products which can be used are the reaction products of a phosphorus sul' fide and a fatty acid ester of the type described in U. S. 2,399,243; the phosphorus sulfide-degras reaction products of U. S. 2,413,332; the reaction product of an alkylated phenol with the condensation product of P285 and turpentine of U. S. 2,409,877 and U. S. 2,409,878;
- 300 cc. of the oil to be tested is placed in a 500 cc. lipless glass beaker and the oil is heated to a temperature of 300 F. (:2 F.).
- the silver test strip is suspended in the oil so that the strip is completely immersed therein.
- the oil in the beaker is stirred by means of a glass stirrer operating at 300 R. P. M.
- the silver strip is removed and while still hot rinsed thoroughly with carbon tetrachloride and air-dried.
- the appearance of the strip is visually noted and given ratings according to the following scale:
- Sample A Control (Solvent-extracted SAE- oil +33% barium-containing neutralized reaction product of P235 and a polybutene of about 1000 molecular weight).
- a copper-lead test specimen is lightly abraded with steel wool, washed with naphtha, dried and weighed to the nearest milligram.
- the cleaned copper-lead test specimen is suspended in a steel beaker, cleaned with a hot tri-sodium phosphate solution, rinsed with water then acetone, and dried.
- the oil to be tested 250 grams, together with 0.625 gram lead oxide and 50 grams of a 30-35 mesh sand is charged to the beaker.
- the beaker is then placed in a bath or heating block and heated to a temperature of 300 F. 2 F.) while the contents are stirred by means of a stirrer rotating at 750 R. P. M.
- the contents of the beaker are maintained at this temperature for twenty-four hours, after which the copperlead test specimen is removed, rinsed with naphtha, dried and weighed.
- the test specimen is then replaced in the beaker and an additional 0.375 gram of lead oxide is added to the test oil.
- the test specimen is again removed, rinsed and dried as before, and weighed.
- test specimen is again placed in the beaker together with an additional 0.250 gram of lead oxide and the test continued for another twenty-four hours (seventy-two hours total). At the conclusion of this time the test specimen is removed from the beaker, rinsed in naphtha, dried and weighed.
- the loss in Weight of the test specimen is recorded after each weighing.
- compositions containing the herein-described 1,3,4-thiadiazole polysulfide can contain other additives, such as anti-oxidants, pourpoint depressors, extreme pressure agents, anti-wear agents, V. I. improvers, etc.
- R and R are hydrocarbon radicals having from 1 to about 30 carbon atoms, x and y are numbers 0 to 8, and the sum of x and y is at least 1.
- R and R are hydrocarbon radicals, at least one of which i-s an aliphatic radical of from 1 to about 30 carbon atoms.
- R and R are aliphatic hydrocarbon radicals of from 1 to about 30 carbon atoms, and x and y are numbers 0 to 8, and the sum of x and y is at least 1.
- a composition comprising a major proportion of a lubricating oil, and from about 0.02% to about 10% of a 1,3,4-thiadiazole polysulfide having the general formula:
- R and R are hydrocarbon radicals having from about 1 to about 30 carbon atoms, and x and y are numbers 0 to 8, and the sum of x and y is at least 1.
- R and R are hydrocarbon radicals, at least one of which is an aliphatic radical of from about 1 to about 30 carbon atoms.
- R and R are hydrocarbon radicals at least one of which is an aromatic hydrocarbon radical.
- R and R are aliphatic hydrocarbon radicals of from 1 to about 30 carbon atoms and x and y are 0 to about 8, and the sum of x and y is at least 1.
- R and R are aliphatic hydrocarbon radicals of about 8 carbon atoms.
- R and R are aliphatic hydrocarbon radicals of about 12 carbon atoms.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
Description
United States Eatent O CORROSION INHIBITORS AND COMPOSITIONS CONTAINING SAME Ellis K. Fields, Chicago, 111., and Clyde S. Scanley, Gary, and Jack Linsk, Hammond, Ind., assignors to Standard Oil Company, Chicago, 111., a corporation of Indiana No Drawing. Application December 30, 1952, Serial No. 328,823
Claims. (21. 2s2 47 This invention relates to improved compositions which are efiective corrosion inhibitors and which are noncorrosive to silver, silver alloys and similar metals. More particularly, the invention pertains to lubricant compositions which are non-corrosive to such metals and inhibit their corrosion by sulfur and/or corrosive sulfur-containing organic compounds.
Advances in the design and construction of internal combustion engines aimed at increased eificiency and economy have led to lubrication problems. To meet the increased severe demands upon engines, many types of lubricant additives have been developed to obtain certain desired characteristics. Among the more effective agents which have been developed for compounding with lubricants are many sulfur-containing organic compounds, such as sulfurized terpenes, sulfurized hydrocarbon oils, vegetable oils or animal oils, xanthate esters, organic polysulfides, particularly polyalkyl polysulfides, metal salts of organo-substituted thioacids of phosphorus, metal salts of the reaction product of a phosphorus sulfide with a hydrocarbon, such as for example, polybutenes and other polyolefins, and combinations of the foregoing.
Recent increased use of silver and similar metals in the construction of improved internal combustion engines has created new problems in the use of sulfur-containing additives in lubricants for such engines; the primary problem created being the corrosion of such silver engine parts of the engine by the sulfur-containing additives. While such corrosion can be eliminated by avoiding the use of sulfur-containing additives in lubricants for such engines, this solution of the problem is accompanied by the loss of the highly desired beneficial elfects of additives of this type.
It is an object of the present invention to provide a non-corrosive composition. Another object of the invention is to provide a composition non-corrosive to silver and similar metals. A further object of the invention is to provide a composition which will inhibit the corrosion of silver and similar metals by organo sulfur-containing compounds. A still further object of the invention is to provide a lubricant composition which is non-corrosive. Still another object of the invention is to provide a lubricant composition containing an addition agent which will inhibit the corrosion of silver and similar metals by organo sulfur-containing compounds. A further object of the invention is to provide a method of inhibiting the corrosion of silver and similar metals. Still another object of the invention is to provide a method of lubricating internal combustion engines containing silver and similar metal parts, and inhibiting the corrosion of such metals by lubricants which contain organo sulfur-containing compounds.
In accordance with the present invention the foregoing objects can be attained by employing in oleaginous materials corrosion inhibiting amounts, viz. from about 0.02% to about 10%, and preferably from about 0.25% to about 5.0%, of an oil-soluble or oil dispersible polysulfide derivative of 2,5 dimercapto 1,3,4 thiadiazole ice wherein R and R are the same or different hydrocarbon radicals, x and y are numbers 0 to about 8, and the sum of x and y is at least 1, and preferably 2 to about 16. The radicals R and R can be aliphatic or aromatic, including acyclic, alicyclic, aralkyl, aryl and alkaryl radicals or mixtures of such radicals. The hydrocarbon radicals can contain from 1 to about 30 carbon atoms, and preferably from about 4 to about 16 carbon atoms. Examples of suitable hydrocarbon radicals are ethyl, propyl, butyl, hexyl, octyl, nonyl, decyl, dodecyl, tridecyl, hexadecyl, octadecyl, cyclo-hexyl, phenyl, tolyl, benzyl, naphthyl, styryl, etc.
The polysulfide derivatives "of 2,5-dimercapto-1,3,4- thiadiazole can be prepared by several methods. For example, they can be prepared by reacting 2,5-dimercapto- 1,3,4-thiadiazole with a suitable sulfenyl chloride, or by reacting the dimercaptan with chlorine and reacting the resultant disulfenyl chloride,
with a primary or tertiary mercaptan. Bis-trisulfide or tetrasulfide derivatives are obtained by reacting the dimercaptan with a mercaptan and a sulfur chloride in a molar ratio of from1:2:2 to 1:224 at a temperature of from about 50-100 C. Higher polysulfides can be prepared by reacting the thiadiazole dior trisulfides with sulfur at temperatures of about ZOO-400 C. Another method of preparing the polysulfides of the present invention involves reacting 2,5-dimercapto-l,3,4-thiadiazole with a mercaptan and sulfur in the molar ratio of from 1:1:1 to 1:4:16 at temperatures of from about C. to about C.
The preparation of the polysulfide derivatives of 2,5- dirnercapto-1,3,4-thiadiazole is illustrated by the following examples.
EXAMPLE I A solution of 284 grams (1.4 moles) of n-dodecyl mercaptan in 600 cc. of carbon tetrachloride was chlorinated at -5 C. to 0 C. over a two hour period with 1.47 moles of chlorine. The sulfenyl chloride so formed was stripped with nitrogen to remove HCl, and was then added to a carbon tetrachloride slurry of 86 grams of 2,5-dimercapto-l,3,4-thiadiazole. The mixture was heated to 30 C. for one and one-half hours. The resultant disulfide,
H II C1zHz5S-SC CSSH25C12 was recovered by washing with water and sodium bicarbonate, and stripping in vacuum to remove the carbon tetrachloride.
EXAMPLE II A solution of 75 parts of 2,5-dimercapto-1,3,4-thiadiazole in 2000 parts of ethyl acetate was stirred at room temperature (about 75 F.) while passing 72 parts of chlorine into the solution; about 2 hours were required for the addition of the chlorine. To the chlorinated dimercaptan was added 204 parts of a tertiary dodecyl mercaptan, and the mixture was stirred at room temperature (about 75 F.) for twelve hours. Ethyl acetate and unreacted mercaptan were removed in vacuo, and the stripped product was filtered through Celite. product,
NN C12H25'SS( g-S-SHz5Cn was an oil-soluble clear yellow viscous material.
The
3 EXAMPLE III The method of Example II was followed, using tertiary octyl mercaptan. The product was a clear green, viscous, oil-soluble material.
EXAMPLE IV 2,5-bis-lauryldisulfide-l,3,4-thiadiazole was sulfurized at 270 F. for one and one-half hours with 2, 4, 6, 8, 10, 12 and 14 equivalents of sulfur to obtain the corresponding 2,5-bis-lauryl polysulfide derivatives.
EXAMPLE V To a mixture of 7.5 grams (0.05 mole) of 2,5-dimercapto-1,3,4-thiadiazole and 20.2 grams (0.1 mole) of n-dodecyl mercaptan in 100 cc. of benzene, a solution of 10.3 grams (0.1 mole) of sulfur dichloride in 20 cc. of benzene was added dropwise at 2030 C. After addition of the sulfur dichloride, the mixture was heated to 70 to 80 C., and then washed with dilute sodium hydroxide. The washed product was steamed at 150 C. for one hour and then extracted with naphtha. The naphtha extract was dried over calcium chloride and concentrated in vacuo. An amber viscous oil was recovered having a sulfur content of 35.6%; calculated for 1,3,4- thiadiazole-Z,5-bis-n-dodecyl trisulfide, sulfur 36.5%.
EXAMPLE VI A solution of 10.6 grams of sulfur dichloride in dioxane was added dropwise to a solution of 7.5 grams of 2,5- dimercapto-l,3,4-thiadiazole and 14.6 grams of tertiary octyl mercaptan in 100 cc. of dioxane at 25 C. and the reaction mixture was heated for three hours at 50 C. The product was poured into water and the oil taken up in hexane. The hexane solution was washed with dilute sodium hydroxide, then water, and filtered through silica gel. Upon removal of the hexane from the filtrate, a reddish oily product was recovered having a sulfur content of 41.1%. Calculated for C1sH34N2S7-sulfur: 44.5%.
EXAMPLE VII Equimolar amounts of Z-mercapto alpha-methylstyrene sulfide-1,3,4-thiadiazole and n-dodecyl mercaptan were dissolved in benzene and the solution was reacted with an equivalent amount of sulfur dichloride at 50 C. for three hours. The reaction product,
recovered as in Example VI.
EXAMPLE VIII A mixture of 90 grams (0.6 mole) 2,5-dimercapto- 1,3,4-thiadiazole, 300 cc. Cellosolve, 87.6 grams (0.6 mole) tertiary octyl mercaptan and 20 grams (0.62 mole) of sulfur was heated at 110 C. for four hours. The Cellosolve and unreacted mercaptan were then stripped in vacuo from the reaction mixture and the product was filtered hot through Celite. A light yellow solid was recovered having a sulfur content of 43% and a nitrogen content of 12.7%.
EXAMPLE IX A mixture of 30 grams (0.2 mole) of 2,5-dimercapto- 1,3,4-thiadiazole, 75 cc. Cellosolve, 58.4 grams (0.4 mole) of tertiary octyl mercaptan and 25.6 grams (0.8 mole) of sulfur was heated at 130 to 140 C. for six hours, the reaction mixture was then poured into water and the organic layer was taken up in benzene. The benzene solution was dried, filtered through Celite, and the benzene evaporated in vacuo. A light yellow viscous oily product was recovered having a sulfur content of 45.1% and a nitrogen content of 4.5%
4 EXAMPLE X A solution of 30 grams (0.2 mole) 2,5-dimercapto- 1,3,4-thiadiazole and 80.8 grams (0.4 mole) tertiary dodecyl mercaptan in cc. dioxane was treated with 25.6 grams (0.8 mole) sulfur at 75 C. and the mixture was then heated at to C. for four hours. The reaction mixture was then stripped in vacuo and filtered, and a light yellow viscous oily product was recovered having a sulfur content of 38% and a nitrogen content of 4.4%.
EXAMPLE XI 2 lauryldithia 5 thiaalpha methylstyryl 1,3,4- thiadiazole was prepared as follows:
A solution of 68.2 grams (0.259 mole) of Z-mercapto- S-alpha methyl styryl sulfide-1,3,4-thiadiazole in carbon tetrachloride was treated at 0 C. with 0.282 mole of lauryl sulfenyl chloride prepared according to Example I. The reaction mixture was warmed to 30 C. and stirred for three hours. It was washed with dilute sodium hydroxide and with water and then stripped with nitrogen at 110 C. to remove carbon tetrachloride. The recovered product contained 22.0% S and 7.11% N. Calculated for The above-described reaction products can be used in amounts of from about 0.02% to about 10%, and preferably from about 0.25% to about 5% in combination with lubricant base oils, such as hydrocarbon oils, synthetic hydrocarbon oils, such as those obtained by the polymerization of hydrocarbons, such as olefin polymers, synthetic lubricating oils of the alkylene-oxide type, for example, the Ucon Oils, marketed by Carbide and Carbon Corporation, as well as other synthetic oils, such as the polycarboxylic acid ester-type oils, such as the esters of adipic acid, sebacic acid, maleic acid, azelaic acid, etc.
While the above-described reaction products can be suitably employed alone in combination with a base oil, they are usually used in combination with other lubricant addition agents, which impart various desired characteristics to the base oil. Usually, these reaction products are used in conjunction with detergent-type additives, particularly those which contain sulfur or phosphorus and sulfur. Addition agents of this type are usually used in amounts of from about 0.002% to about 10%, and preferably from about 0.01% to about 5%. Among the phosphorus and sulfur-containing addition agents are the neutralized reaction products of a phosphorus sulfide and a hydrocarbon, an alcohol, a ketone, an amine or an ester. Of the phosphorus sulfide reaction product additives, we prefer to employ the neutralized reaction products of a phosphorus sulfide, such as a phosphorus pentasulfide, and a hydrocarbon of the type described in U. S. 2,316,082 issued to C. M. Loane et al. April 6, 1943. As taught in this patent, the preferred hydrocarbon constituent of the reaction is a mono-olefinic hydrocarbon polymer resulting from the polymerization of low molecular weight mono-olefin hydrocarbons, such as propylene, butenes, amylenes or copolymers thereof. Such polymers may be obtained by the polymerization of mono-olefins of less than 6 carbon atoms in the presence of a catalyst, such as sulfuric acid, phosphoric acid, boron fluoride, aluminum chloride, or other similar halide catalysts of the Friedel-Crafts type.
The polymers employed are preferably mono-olefin polymers or mixtures of mono-olefin polymers and isomono-olefin polymers having molecular weights ranging from about to about 50,000 or more, and preferably from about 500 to about 10,000. Such polymers can be obtained, for example, by the polymerization in the liquid num chloride, and the like. In the preparation of thesepolymers, a hydrocarbon mixture containing iso-butylene, butylenes and butanes recovered from petroleum gases, especially those gases produced in the cracking of petroleum oils in the manufacture of gasoline, can be used.
Another suitable polymer is that obtained by polymerizing in the liquid phase a hydrocarbon mixture comprising substantially C3 hydrocarbons in the presence of an aluminum chloride-complex catalyst. The catalyst is preferably prepared by heating aluminum chloride with iso-octane. The hydrocarbon mixture is introduced into the bottom of the reactor and passed upward through the catalyst layer, while a temperature of from about 50 F. to about 110 F. is maintained in the reactor. The propane and other saturated gases pass through the catalyst while the propylene is polymerized under these conditions. The propylene polymer can be fractionated to any desired molecular weight, preferably from about 500 to about 1000, or higher.
Other suitable polymers are those obtained by polymerizing a hydrocarbon mixture containing about to about 25% isobutylene at a temperature of from about 0 F. to about 100 F., and preferably 0 F. to about 32 F., in the presence of boron fluoride. After the polymerization of the isobutylene together with a relatively minor amount of the normal olefins present, the reaction mass is neutralized, washed free of acidic substances and the unreacted hydrocarbons subsequently separated from the polymers by distillation. The polymer mixture so obtained, depending upon the temperature of reaction, varies in consistency from a light liquid to a viscous oily material and contains polymers having molecular weights ranging from about 100 to about 2000, or higher. The polymers so obtained may be used as such, or the polymer may be fractionated under reduced pressure into fractions of increasing molecular weight and suitable fractions reacted with the phosphorus sulfide to obtain the desired reaction products. The bottoms resulting from the fractionation of the polymer which may have Saybolt Universal viscosities at 210 F., ranging from about 50 seconds to about 10,000 seconds, are well suited'for this purpose.
Essentially parafiinic hydrocarbons, such as bright stock residuums, lubricating oil distillates, petrolatums, or paraffin waxes, may be used. There can also be employed the condensation products of any of the foregoing hydrocarbons, usually through first halogena'ting the hydrocarbons and reacting with aromatic hydrocarbons in the presence of anhydrous inorganic halides, such as aluminum chloride, zinc chloride, boron fluoride, and the like.
Examples of other high molecular weight olefinic hydrocarbons which can be employed are cetene (C16), cerotene (C26), melene (C30), and mixed high molecular weight alkenes obtained by cracking petroleum oils.
Other preferred olefins suitable for the preparation of the phosphorus sulfide reaction products are olefins having at least 20 carbons atoms in the molecule of which from about 13 carbon atoms to about 18 carbon atoms, and preferably at least carbon atoms, are in a long chain. Such olefins can be obtained by the dehydrogenation of alkyl halides, preferably long chain alkyl halides, particularly halogenated paraifin waxes.
At a starting material there can be used the polymer or synthetic lubricating oil obtained by polymerizing unsaturated hydrocarbons resulting from the vapor phase cracking of paraflin waxes in the presence of aluminum chloride, which is fully described in United States Patents Nos. 1,955,260, 1,970,402 and 2,091,398. Still another type of olefin polymer which may be employed is the polymer resulting from the treatment of vapor phase cracked gasoline and/or gasoline fractions with sulfuric acid or solid adsorbents, such as fullers earth, whereby unsaturated polymerized hydrocarbons are removed. The reaction product of the phosphorus sulfide and the polymers resulting from the voltolization of hydrocarbons as described for example in United States Patents Nos. 2,197,768 and 2,191,787 are also suitable.
Other hydrocarbons that can be reacted with a phosphorus sulfide are aromatic hydrocarbons, such as for example, benzene, naphthalene, toluene, xylene, diphenyl, and the like, or an alkylated aromatic hydrocarbon, such as for example, benzene having an alkyl substituent having at least four carbon atoms, and preferably at least eight carbon atoms, such as a long chain paratlin wax.
The phosphorus sulfide hydrocarbon reaction product can be readily obtained by reacting a phosphorus sulfide,
for example P285, with the hydrocarbon at a temperature of from about 200 F. to about 500 F. and preferably from about 200 F. to about 400 F., using from about 1% to about 50%, and preferably from about 5% to about 25% of the phosphorus sulfide in the reaction. It is advantageous to maintain a non-oxidizing atmosphere, such as for example, an atmosphere of nitrogen above the reaction mixture. Usually, it is preferable to use an amount of the phosphorus sulfide that will completely react with the hydrocarbon so that no further purification becomes necessary; however, an excess amount of phosphorus sulfide can be used and separated from the product by filtration or by dilution with a hydrocarbon solvent, such as hexane, filtering and subsequently removing the solvent by suitable means, such as by distillation. If desired, the reaction product can be further treated with steam at an elevated temperature of from about F. to about 600 F.
The phosphorus sulfide-hydrocarbon. reaction product normally shows a titratable acidity which is neutralized by treatment with a basic reagent. The phosphorus sulfide-hydrocarbon reaction product, when neutralized with a basic reagent, containing a metal constituent, is characterized by the presence or retention of the metal constituent of the basic reagent.
The neutralized phosphorus sulfide-hydrocarbon reaction product can be obtained by treating the acidic reaction product with a suitable basic compound, such as hydroxide, carbonate, oxide or sulfide of an alkaline earth metal or an alkali metal, such as for example, potassium hydroxide, sodium hydroxide, sodium sulfide, calcium oxide, lime, barium hydroxide, barium oxide, etc. Other basic reagents can be used, such as for example, ammonia or an alkyl or aryl-substituted ammonia, such as amines. The neutralization of the phosphorus sulfide-hydrocarbon reaction product is carried out preferably in a non-oxidizing atmosphere by contacting the acidic reaction product either as such or dissolved in a suitable solvent, such as naphtha with a solution of the basic agent. As an alternative method, the reaction product can be treated With solid alkaline compounds, such as KOH, NaOH, NazCOz, KzCOs, CaO, BaO, Ba(OH)2, NazS, and the like, at an elevated temperature of from about 100 F. to about 600 F. Neutralized reaction products containing a heavy metal constituent, such as for example, tin, titanium, aluminum, chromium, cobalt, zinc, iron, and the like, can be obtained by reacting a salt of the desired heavy metal with the phosphorus sulfide-hydrocarbon reaction product whichhas been treated with abasic reagent, such as above described.
Other phosphorus sulfide reaction products which can be used are the reaction products of a phosphorus sul' fide and a fatty acid ester of the type described in U. S. 2,399,243; the phosphorus sulfide-degras reaction products of U. S. 2,413,332; the reaction product of an alkylated phenol with the condensation product of P285 and turpentine of U. S. 2,409,877 and U. S. 2,409,878;
7 the reaction product of a phosphorus sulfide and stearonitrile of U. S. 2,416,807, etc.
The silver corrosion inhibiting property of the abovedescribed thiadiazole reaction products is demonstrated by the data in Table I, which were obtained by subjecting mixtures of hydrocarbon oil, a neutralized reaction product of P285 and a polybutene, and various 2,5-dimercapto-1,3,4-thiadiazole reaction products to the following test, hereinafter referred to as the modified EMD test:
A silver strip 2 cm. x 5.5 cm. with a small hole at one end for suspension, is lightly abraded with No. steel wool, wiped free of any adhering steel wool, washed with carbon tetrachloride, air-dried and then weighed to 0.1 milligram. 300 cc. of the oil to be tested is placed in a 500 cc. lipless glass beaker and the oil is heated to a temperature of 300 F. (:2 F.). The silver test strip is suspended in the oil so that the strip is completely immersed therein. The oil in the beaker is stirred by means of a glass stirrer operating at 300 R. P. M. At the end of twenty-four hours, the silver strip is removed and while still hot rinsed thoroughly with carbon tetrachloride and air-dried. The appearance of the strip is visually noted and given ratings according to the following scale:
1Bright 2--Stained 3-Grey-black 4Black, smooth 5Black, flaky After the visual inspection the silver strip is immersed in a potassium cyanide solution at room temperature until the silver surface assumes its original bright or silver appearance. The silver strip is then washed successively with distilled water and acetone, air-dried and Weighed.
The following lubricant compositions were subjected to the above test and the results obtained are tabulated in Table I:
Sample A.Control (Solvent-extracted SAE- oil +33% barium-containing neutralized reaction product of P235 and a polybutene of about 1000 molecular weight).
Sample B.-A+0.75%
Sample C.-A+0.75%
Sample D.-A-|-1.0%
equivalents of sulfur.
Sample E.A+0.6% product of Example IV using 2 equivalents of sulfur.
Sample F.A+l.0% product of Example IV using 4 equivalents of sulfur.
Sample G.-A+0.6%
equivalents of sulfur.
Sample H.A+0.6%
equivalents of sulfur.
Sample I.-A+0.6% product of Example IV using 8 equivalents of sulfur.
Sample J.-A+0.6% product of Example IV using 10 equivalents of sulfur.
Sample K.A+0.5% product of Example IV using 12 equivalents of sulfur.
Sample L.A+0.75% product of Example V.
Sample M.A+0.75% product of Example VI.
Sample N.-A+0.75 product of Example VII.
Sample 0.-A+0.75% product of Example VIII.
Sample P.-A+0.75% product of Example IX.
Sample Q.-A+0.75% product of Example X.
Sample R.--A+0.75% product of Example XI.
Table I product of Example 1.
product of Example II. product of Example IV using 2 product of Example IV using 4 product of Example IV using 6 Silver Corrosion 8 F 0/1 6; 0/1 H 0/1 I 0/1 I 0/1 K 0/1 L 0/1 M on N 0/1 0 0/1 P 0/1 Q 0/1 R 0/1 Mg. loss appearance.
Since the weight loss of 20 milligrams is allowable, the ability of the 1,3,4-thiadiazole polysulfide derivatives of this invention to inhibit silver corrosion is demonstrated by the above data.
The effectiveness of the herein-described thiadiazole reaction products in inhibiting corrosion toward copper and/or lead-containing metals, such as for example, copper-lead bearings, is demonstrated by the data in Table II, obtained by subjecting lubricants containing the additive to the following test:
A copper-lead test specimen is lightly abraded with steel wool, washed with naphtha, dried and weighed to the nearest milligram. The cleaned copper-lead test specimen is suspended in a steel beaker, cleaned with a hot tri-sodium phosphate solution, rinsed with water then acetone, and dried. The oil to be tested 250 grams, together with 0.625 gram lead oxide and 50 grams of a 30-35 mesh sand is charged to the beaker. The beaker is then placed in a bath or heating block and heated to a temperature of 300 F. 2 F.) while the contents are stirred by means of a stirrer rotating at 750 R. P. M. The contents of the beaker are maintained at this temperature for twenty-four hours, after which the copperlead test specimen is removed, rinsed with naphtha, dried and weighed. The test specimen is then replaced in the beaker and an additional 0.375 gram of lead oxide is added to the test oil. At the end of the additional twentyfour hours of test operation the test specimen is again removed, rinsed and dried as before, and weighed. The
F test specimen is again placed in the beaker together with an additional 0.250 gram of lead oxide and the test continued for another twenty-four hours (seventy-two hours total). At the conclusion of this time the test specimen is removed from the beaker, rinsed in naphtha, dried and weighed.
The loss in Weight of the test specimen is recorded after each weighing.
This test known as the Sand Stirring Corrosion Test, is referred to hereinafter as S. S. C. T.
The data obtained when the above Samples A to N, P and Q, inclusive, were subjected to the foregoing test, are tabulated in Table II:
Table II S. S. (7-. (Mg. .Velgbt Loss) Sample 72 Hrs.
38 Fill 145 Since weight losses of 200 milligrams in 48 hours and 500 milligrams in 72 hours are allowable, the copper-lead corrosive inhibiting property of the herein-described 1,3,4-thiadiazole polysulfide derivatives is clearly demonstrated by the above data.
Although the invention has been described in connection with the use of the herein-described 1,3 ,4-thiadiazole polysulfides in combination with the one or more secondary additives in lubricant compositions, the invention is not restricted to such use since these derivatives find utility when used alone in various lubricant compositions or hydrocarbon oil compositions to impart improved and desired characteristics thereto. Thus, for example, these derivatives may be used alone in hydrocarbon oils of high sulfur crudes to inhibit the corrosion of such oils to silver or copper and/or lead-containing metals and are also eifective in inhibiting the oxidation of hydrocarbon oils. In addition to the aforementioned detergent-type additives and corrosion inhibitors, compositions containing the herein-described 1,3,4-thiadiazole polysulfide can contain other additives, such as anti-oxidants, pourpoint depressors, extreme pressure agents, anti-wear agents, V. I. improvers, etc.
While the invention has been described in connection with the use of the herein-described additives and lubricant compositions, their use is not limited thereto but the same can be used in products other than lubricating oils, such as for example, fuel oils, insulating oils, greases, non-drying animal and vegetable oils, waxes, asphalts, and any fuels for internal combustion engines, particularly where sulfur corrosion must be combatted.
Percentages given herein and in the appended claims are weight percentages unless otherwise stated.
The use of the herein-described 1,3,4-thiadiazole polysulfides as corrosion inhibitors in compositions containing compounds having active sulfur, and which are normally corrosive to silver, is claimed in co-pending application Serial No. 328,790 filed by E. N. Roberts, December 30, 1952.
Although the present invention has been dscribed with reference to specific preferred embodiments thereof, the invention is not to be considered as limited thereto but includes within its scope such modifications and variations as come Within the spirit of the appended claims.
We claim:
1. As a new composition of matter, a 1,3,4-thiadiazole polysulfide having the general formula:
in which R and R are hydrocarbon radicals having from 1 to about 30 carbon atoms, x and y are numbers 0 to 8, and the sum of x and y is at least 1.
2. A composition as described in claim 1 in which R and R are hydrocarbon radicals, at least one of which i-s an aliphatic radical of from 1 to about 30 carbon atoms.
3. A composition as described in claim 1 in which at least one of the hydrocarbon radicals is an aromatic radical.
4. A composition as described in claim 1 in which R and R are aliphatic hydrocarbon radicals of from 1 to about 30 carbon atoms, and x and y are numbers 0 to 8, and the sum of x and y is at least 1.
5. A composition comprising a major proportion of a lubricating oil, and from about 0.02% to about 10% of a 1,3,4-thiadiazole polysulfide having the general formula:
in which R and R are hydrocarbon radicals having from about 1 to about 30 carbon atoms, and x and y are numbers 0 to 8, and the sum of x and y is at least 1.
6. A composition as described in claim 5 in which R and R are hydrocarbon radicals, at least one of which is an aliphatic radical of from about 1 to about 30 carbon atoms.
7. A composition as described in claim 5 in which R and R are hydrocarbon radicals at least one of which is an aromatic hydrocarbon radical.
8. A composition as described in claim 5 in which R and R are aliphatic hydrocarbon radicals of from 1 to about 30 carbon atoms and x and y are 0 to about 8, and the sum of x and y is at least 1.
9. A composition as described in claim 5 in which R and R are aliphatic hydrocarbon radicals of about 8 carbon atoms.
10. A composition as described in claim 5 in which R and R are aliphatic hydrocarbon radicals of about 12 carbon atoms.
References Cited inthe file of this patent Busch et al.; J. prakt. Chem. (2) vol. 60, pp. 40-42 (1899).
Busch: Ber. Deut. Chem., vol. 27, pp. 2518-20 (1894). Bambas: Heterocyclic Compounds, p. 189 (1952). Chemical Abstract, vol. 42, page 1525 citing Jr. Soc. Chem. Ind. (London) 66, pp. 353-5 (1947).
Claims (1)
- 5. A COMPOSITION COMPRISING A MAJOR PROPORTION OF A LUBRICATING OIL, AND FROM ABOUT 0.02% TO ABOUT 10% OF A 1,3,4-THIADIAZOLE POLYSULFIDE HAVING THE GENERAL FORMULA:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US328823A US2719126A (en) | 1952-12-30 | 1952-12-30 | Corrosion inhibitors and compositions containing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US328823A US2719126A (en) | 1952-12-30 | 1952-12-30 | Corrosion inhibitors and compositions containing same |
Publications (1)
Publication Number | Publication Date |
---|---|
US2719126A true US2719126A (en) | 1955-09-27 |
Family
ID=23282593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US328823A Expired - Lifetime US2719126A (en) | 1952-12-30 | 1952-12-30 | Corrosion inhibitors and compositions containing same |
Country Status (1)
Country | Link |
---|---|
US (1) | US2719126A (en) |
Cited By (117)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2963432A (en) * | 1957-12-02 | 1960-12-06 | Standard Oil Co | Non-corrosive lubricant composition |
US2983716A (en) * | 1958-03-26 | 1961-05-09 | Standard Oil Co | Rubber vulcanization acceleration |
US3087932A (en) * | 1959-07-09 | 1963-04-30 | Standard Oil Co | Process for preparing 2, 5-bis(hydrocarbondithio)-1, 3, 4-thiadiazole |
US3212892A (en) * | 1960-07-27 | 1965-10-19 | Agfa Ag | Preventing darkening and formation of precipitates in solutions of photographic developers |
US3417071A (en) * | 1966-12-30 | 1968-12-17 | Arizona Chem | Bleaching and stabilizing rosin compounds with 1,3,4-thiadiazole polysulfides |
US3533943A (en) * | 1966-11-10 | 1970-10-13 | Mobil Oil Corp | Lubricant compositions |
DE2350622A1 (en) * | 1972-10-13 | 1974-04-25 | Standard Oil Co | PROCEDURES TO REDUCE THE ODOR AND IMPROVE STORAGE STABILITY OF PHOSPHORUS SULFORATED HYDROCARBONS |
US3865739A (en) * | 1974-02-25 | 1975-02-11 | Texaco Inc | Thiadiazole derivative, mixture and compositions thereof |
US3869395A (en) * | 1974-02-25 | 1975-03-04 | Texaco Inc | 2-amino-5-hydrocarbyldithio-1,3,4-thiadiazole and compositions thereof |
US3909420A (en) * | 1971-07-09 | 1975-09-30 | Atlantic Richfield Co | Lubricant composition containing thiadiazoles and napthylamines as antioxidants and method of lubrication using said composition |
US3977986A (en) * | 1975-06-02 | 1976-08-31 | The United States Of America As Represented By The Secretary Of The Navy | Silicone-base fire resistant hydraulic fluid |
US4097387A (en) * | 1976-09-03 | 1978-06-27 | Standard Oil Company (Indiana) | Olefin-dimercapto-thiadiazole compositions and process |
US4178253A (en) * | 1977-04-05 | 1979-12-11 | Ciba-Geigy Corporation | Corrosion inhibited lubricant compositions |
US4609480A (en) * | 1983-09-19 | 1986-09-02 | Idemitsu Kosan Company Limited | Lubricant composition for improving fatigue life |
US4617136A (en) * | 1985-08-16 | 1986-10-14 | R. T. Vanderbilt Company, Inc. | Dicocoamine derivatives of 2,5-dimercapto-1,3,4-thiadiazole |
US4661273A (en) * | 1985-12-30 | 1987-04-28 | Mobil Oil Company | Mercapto-thiadiazole reaction products as multifunctional lubricant additives and compositions thereof |
US4772638A (en) * | 1986-12-23 | 1988-09-20 | Courtaulds Plc | Compositions having reduced smoke emission |
EP0294060A2 (en) * | 1987-06-02 | 1988-12-07 | Bp Chemicals (Additives) Limited | Lubricating composition containing anti-wear/extreme pressure additives |
US4826615A (en) * | 1985-06-07 | 1989-05-02 | Exxon Chemical Patents Inc. | Lubricating oil composition containing dual additive combination for low temperature viscosity improvement (PTF-004) |
US4891145A (en) * | 1985-01-31 | 1990-01-02 | Exxon Chemical Patents Inc. | Lubricating oil composition |
EP0351964A1 (en) | 1988-06-24 | 1990-01-24 | Exxon Chemical Patents Inc. | Synergistic combination of additives useful in power transmitting compositions |
US4904403A (en) * | 1989-06-12 | 1990-02-27 | R. T. Vanderbilt Company, Inc. | Polyalkylated 1,3,4-thiadiazoles and lubricating compositions containing same |
US4957650A (en) * | 1985-06-07 | 1990-09-18 | Exxon Chemical Patents Inc. | Lubricating oil composition containing dual additive combination for low temperature viscosity improvement |
US5062863A (en) * | 1990-05-17 | 1991-11-05 | R. T. Vanderbilt Company, Inc. | Fuel compositions containing polyalkylated 1,3,4-thiadiazoles |
US5275630A (en) * | 1986-11-06 | 1994-01-04 | The Lubrizol Corporation | Metal salt fuel additive stabilized with a thiadiazole |
US5318712A (en) * | 1992-10-13 | 1994-06-07 | The Lubrizol Corporation | Lubricants, greases, aqueous fluids and concentrates containing additives derived from dimercaptothiadiazoles |
EP0611818A1 (en) | 1990-07-31 | 1994-08-24 | Exxon Chemical Patents Inc. | Low pressure derived mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions and process for preparing the same |
US5368758A (en) * | 1992-10-13 | 1994-11-29 | The Lubrizol Corporation | Lubricants, greases and aqueous fluids containing additives derived from dimercaptothiadiazoles |
US5391621A (en) * | 1993-10-15 | 1995-02-21 | R. T. Vanderbilt Company, Inc. | 1,3,4-thiadiazole curing systems for chlorine containing polymers |
EP0643101A1 (en) * | 1993-09-10 | 1995-03-15 | R.T. VANDERBILT COMPANY, Inc. | Curing systems for halogenated elastomers |
US5558802A (en) * | 1995-09-14 | 1996-09-24 | Exxon Chemical Patents Inc | Multigrade crankcase lubricants with low temperature pumpability and low volatility |
US5652202A (en) * | 1995-08-15 | 1997-07-29 | Exxon Chemical Patents Inc. | Lubricating oil compositions |
US6034039A (en) * | 1997-11-28 | 2000-03-07 | Exxon Chemical Patents, Inc. | Lubricating oil compositions |
US6423670B2 (en) | 2000-03-20 | 2002-07-23 | Infineum International Ltd. | Lubricating oil compositions |
US20020193650A1 (en) * | 2001-05-17 | 2002-12-19 | Goze Maria Caridad B. | Low noack volatility poly alpha-olefins |
US6573223B1 (en) | 2002-03-04 | 2003-06-03 | The Lubrizol Corporation | Lubricating compositions with good thermal stability and demulsibility properties |
US20040033908A1 (en) * | 2002-08-16 | 2004-02-19 | Deckman Douglas E. | Functional fluid lubricant using low Noack volatility base stock fluids |
US20050124508A1 (en) * | 2003-12-04 | 2005-06-09 | Iyer Ramnath N. | Compositions for improved friction durability in power transmission fluids |
EP1724329A1 (en) | 2005-05-20 | 2006-11-22 | Infineum International Limited | Metal detergent combination in lubricating oil compositions |
EP1728848A1 (en) | 2005-06-01 | 2006-12-06 | Infineum International Limited | Use of unsaturated olefin polymers to improve the compatibility between nitrile rubber seals and lubricating oil compositions |
WO2007005423A2 (en) | 2005-06-29 | 2007-01-11 | The Lubrizol Corporation | Zinc-free farm tractor fluid |
US20070111906A1 (en) * | 2005-11-12 | 2007-05-17 | Milner Jeffrey L | Relatively low viscosity transmission fluids |
US20070270317A1 (en) * | 2006-05-19 | 2007-11-22 | Milner Jeffrey L | Power Transmission Fluids |
WO2008013698A1 (en) | 2006-07-21 | 2008-01-31 | Exxonmobil Research And Engineering Company | Method for lubricating heavy duty geared apparatus |
US20080086935A1 (en) * | 2006-10-16 | 2008-04-17 | Lawrence J Cunningham | Method and compositions for reducing corrosion in engines combusting ethanol-containing fuels |
US20080139429A1 (en) * | 2006-12-06 | 2008-06-12 | Guinther Gregory H | Titanium-containing lubricating oil composition |
DE102007056248A1 (en) | 2006-12-08 | 2008-07-10 | Afton Chemical Corp. | Additive and lubricant formulations for improved antiwear properties |
US20080168708A1 (en) * | 2007-01-11 | 2008-07-17 | Cunningham Lawrence J | Method and compositions for reducing deposits in engines combusting ethanol-containing fuels and a corrosion inhibitor |
DE102008005874A1 (en) | 2007-03-15 | 2008-09-18 | Afton Chemical Corp. | Additive and lubricant formulations for improved antiwear properties |
US20080271967A1 (en) * | 2004-06-23 | 2008-11-06 | Nsk Ltd. | One-Way Clutch-Containing Rotation Transmission Apparatus |
EP1990400A2 (en) | 2007-05-01 | 2008-11-12 | Afton Chemical Corporation | Lubricating oil composition for marine applications |
EP2048218A1 (en) | 2007-10-09 | 2009-04-15 | Infineum International Limited | A lubricating oil composition |
EP2077316A2 (en) | 2007-12-17 | 2009-07-08 | Infineum International Limited | Lubricant compositions with low HTHS for a given SAE viscosity grade |
WO2009119831A1 (en) | 2008-03-28 | 2009-10-01 | 富士フイルム株式会社 | Composition and method for forming coating film |
US7615519B2 (en) | 2004-07-19 | 2009-11-10 | Afton Chemical Corporation | Additives and lubricant formulations for improved antiwear properties |
US7615520B2 (en) | 2005-03-14 | 2009-11-10 | Afton Chemical Corporation | Additives and lubricant formulations for improved antioxidant properties |
US7682526B2 (en) | 2005-12-22 | 2010-03-23 | Afton Chemical Corporation | Stable imidazoline solutions |
US7709423B2 (en) | 2005-11-16 | 2010-05-04 | Afton Chemical Corporation | Additives and lubricant formulations for providing friction modification |
US7767632B2 (en) | 2005-12-22 | 2010-08-03 | Afton Chemical Corporation | Additives and lubricant formulations having improved antiwear properties |
US7776800B2 (en) | 2005-12-09 | 2010-08-17 | Afton Chemical Corporation | Titanium-containing lubricating oil composition |
WO2011026990A1 (en) | 2009-09-07 | 2011-03-10 | Shell Internationale Research Maatschappij B.V. | Lubricating compositions |
WO2012166999A1 (en) | 2011-06-01 | 2012-12-06 | Exxonmbil Research And Engineering Company | High efficiency lubricating composition |
WO2013003394A1 (en) | 2011-06-30 | 2013-01-03 | Exxonmobil Research And Engineering Company | Lubricating compositions containing polyetheramines |
WO2013003392A1 (en) | 2011-06-30 | 2013-01-03 | Exxonmobil Research And Engineering Company | Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers |
US20130005624A1 (en) * | 2010-03-12 | 2013-01-03 | Idemitsu Kosan Co., Ltd. | Lubricant composition |
WO2013003405A1 (en) | 2011-06-30 | 2013-01-03 | Exxonmobil Research And Engineering Company | Lubricating compositions containing polyalkylene glycol mono ethers |
US8410032B1 (en) | 2012-07-09 | 2013-04-02 | Afton Chemical Corporation | Multi-vehicle automatic transmission fluid |
WO2013055481A1 (en) | 2011-10-10 | 2013-04-18 | Exxonmobil Research And Engineering Company | High efficiency engine oil compositions |
US20130252863A1 (en) * | 2012-03-22 | 2013-09-26 | Exxonmobil Research And Engineering Company | Novel antioxidant combination and synthetic base oils containing the same |
EP2650350A1 (en) | 2012-04-12 | 2013-10-16 | Infineum International Limited | Lubricating oil compositions |
EP2650349A1 (en) | 2012-04-12 | 2013-10-16 | Infineum International Limited | Lubricating oil compositions containing molybdenum compound and friction modifier |
US8586520B2 (en) | 2011-06-30 | 2013-11-19 | Exxonmobil Research And Engineering Company | Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers |
EP2690165A1 (en) | 2012-07-25 | 2014-01-29 | Infineum International Limited | Lubricating oil compositions |
WO2014066444A1 (en) | 2012-10-24 | 2014-05-01 | Exxonmobil Research And Engineering Comapny | Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives |
WO2014158533A1 (en) | 2013-03-14 | 2014-10-02 | Exxonmobil Research And Engineering Company | Lubricating composition providing high wear resistance |
US20140309150A1 (en) * | 2013-04-11 | 2014-10-16 | Afton Chemical Corporation | Lubricant composition |
CN104178246A (en) * | 2014-06-12 | 2014-12-03 | 太平洋联合(北京)石油化工有限公司 | Thiadiazole ramification mixture as well as preparation method and application thereof |
WO2015095336A1 (en) | 2013-12-18 | 2015-06-25 | Chevron Phillips Chemical Company Lp | Method for making polyolefins using aluminum halide catalyzed oligomerization of olefins |
WO2015099907A1 (en) | 2013-12-23 | 2015-07-02 | Exxonmobil Research And Engineering Company | Low viscosity ester lubricant and method for using |
EP2952562A1 (en) | 2014-06-02 | 2015-12-09 | Infineum International Limited | Lubricating oil compositions |
EP2952564A1 (en) | 2014-06-02 | 2015-12-09 | Infineum International Limited | Lubricating oil compositions |
EP2977436A1 (en) | 2014-07-17 | 2016-01-27 | Infineum International Limited | Lubricating oil compositions |
DE102015118989A1 (en) | 2014-11-05 | 2016-05-12 | Infineum International Ltd. | Power transmission fluids with improved material compatibility |
WO2016164345A1 (en) | 2015-04-09 | 2016-10-13 | The Lubrizol Corporation | Lubricants containing quaternary ammonium compounds |
EP3118285A1 (en) | 2015-07-16 | 2017-01-18 | Infineum International Limited | Method of improving vehicle transmission operation through use of specific lubricant compositions |
EP3135750A1 (en) | 2015-08-26 | 2017-03-01 | Infineum International Limited | Lubricating oil compositions |
US9732300B2 (en) | 2015-07-23 | 2017-08-15 | Chevron Phillipa Chemical Company LP | Liquid propylene oligomers and methods of making same |
EP3222697A1 (en) | 2016-03-22 | 2017-09-27 | Afton Chemical Corporation | Color-stable transmission fluid compositions |
EP3263676A2 (en) | 2016-06-30 | 2018-01-03 | Infineum International Limited | Lubricating oil compositions |
WO2018013249A1 (en) | 2016-07-12 | 2018-01-18 | Chevron Phillips Chemical Company Lp | Decene oligomers |
EP3366754A1 (en) | 2017-02-22 | 2018-08-29 | Infineum International Limited | Lubricating containing pre-ceramic polymers |
EP3372658A1 (en) | 2017-03-07 | 2018-09-12 | Infineum International Limited | Method for lubricating surfaces |
WO2018170110A1 (en) | 2017-03-16 | 2018-09-20 | Chevron Phillips Chemical Company Lp | Lubricant compositions containing hexene-based oligomers |
EP3434755A1 (en) | 2017-07-24 | 2019-01-30 | Infineum International Limited | Motorcycle lubricant |
EP3473694A1 (en) | 2017-10-12 | 2019-04-24 | Infineum International Limited | Lubricating oil compositions |
US10316712B2 (en) | 2015-12-18 | 2019-06-11 | Exxonmobil Research And Engineering Company | Lubricant compositions for surface finishing of materials |
EP3495461A1 (en) | 2017-12-11 | 2019-06-12 | Infineum International Limited | Automotive transmission fluid compositions for improved energy efficiency |
US10435491B2 (en) | 2015-08-19 | 2019-10-08 | Chevron Phillips Chemical Company Lp | Method for making polyalphaolefins using ionic liquid catalyzed oligomerization of olefins |
EP3674385A1 (en) | 2018-12-27 | 2020-07-01 | Infineum International Limited | Dispersants for lubricating oil compositions |
EP3736318A1 (en) | 2019-05-09 | 2020-11-11 | Infineum International Limited | Transmission fluid composition for improved wear protection |
EP3778841A1 (en) | 2019-08-15 | 2021-02-17 | Infineum International Limited | Method for reducing piston deposits in a marine diesel engine |
CN112521999A (en) * | 2020-12-14 | 2021-03-19 | 滨州市坤厚工贸有限责任公司 | Lubricating oil metal deactivator mixture and preparation method thereof |
EP3839019A1 (en) | 2019-12-16 | 2021-06-23 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
EP3839018A1 (en) | 2019-12-16 | 2021-06-23 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
EP3839017A1 (en) | 2019-12-16 | 2021-06-23 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
WO2022072559A1 (en) | 2020-10-02 | 2022-04-07 | Infineum International Limited | Rejuvenation and/or extension of the lifetime of frictional performance in transmission fluids |
EP3995561A2 (en) | 2020-10-16 | 2022-05-11 | Infineum International Limited | Transmission fluid compositions for hybrid and electric vehicle applications |
WO2022136384A1 (en) | 2020-12-24 | 2022-06-30 | Infineum International Limited | Thermally responsive brush polymers having a copolymer backbone and copolymer arms |
EP4194531A1 (en) | 2021-12-09 | 2023-06-14 | Infineum International Limited | Borated detergents and their lubricating applications |
EP4353805A1 (en) | 2022-10-11 | 2024-04-17 | Infineum International Limited | Lubricant composition containing metal alkanoate |
EP4353804A1 (en) | 2022-10-11 | 2024-04-17 | Infineum International Limited | Functionalized c4 to c5 olefin polymers and lubricant compositions containing such |
EP4357443A1 (en) | 2022-10-18 | 2024-04-24 | Infineum International Limited | Lubricating oil compositions |
EP4397738A1 (en) | 2023-01-03 | 2024-07-10 | Infineum International Limited | Method for reduction of abnormal combustion events |
EP4417675A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4417674A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4417672A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4417673A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
-
1952
- 1952-12-30 US US328823A patent/US2719126A/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (152)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2963432A (en) * | 1957-12-02 | 1960-12-06 | Standard Oil Co | Non-corrosive lubricant composition |
US2983716A (en) * | 1958-03-26 | 1961-05-09 | Standard Oil Co | Rubber vulcanization acceleration |
US3087932A (en) * | 1959-07-09 | 1963-04-30 | Standard Oil Co | Process for preparing 2, 5-bis(hydrocarbondithio)-1, 3, 4-thiadiazole |
US3212892A (en) * | 1960-07-27 | 1965-10-19 | Agfa Ag | Preventing darkening and formation of precipitates in solutions of photographic developers |
US3533943A (en) * | 1966-11-10 | 1970-10-13 | Mobil Oil Corp | Lubricant compositions |
US3417071A (en) * | 1966-12-30 | 1968-12-17 | Arizona Chem | Bleaching and stabilizing rosin compounds with 1,3,4-thiadiazole polysulfides |
US3909420A (en) * | 1971-07-09 | 1975-09-30 | Atlantic Richfield Co | Lubricant composition containing thiadiazoles and napthylamines as antioxidants and method of lubrication using said composition |
DE2350622A1 (en) * | 1972-10-13 | 1974-04-25 | Standard Oil Co | PROCEDURES TO REDUCE THE ODOR AND IMPROVE STORAGE STABILITY OF PHOSPHORUS SULFORATED HYDROCARBONS |
FR2202905A1 (en) * | 1972-10-13 | 1974-05-10 | Standard Oil Co | |
US3869395A (en) * | 1974-02-25 | 1975-03-04 | Texaco Inc | 2-amino-5-hydrocarbyldithio-1,3,4-thiadiazole and compositions thereof |
US3865739A (en) * | 1974-02-25 | 1975-02-11 | Texaco Inc | Thiadiazole derivative, mixture and compositions thereof |
US3977986A (en) * | 1975-06-02 | 1976-08-31 | The United States Of America As Represented By The Secretary Of The Navy | Silicone-base fire resistant hydraulic fluid |
US4097387A (en) * | 1976-09-03 | 1978-06-27 | Standard Oil Company (Indiana) | Olefin-dimercapto-thiadiazole compositions and process |
US4178253A (en) * | 1977-04-05 | 1979-12-11 | Ciba-Geigy Corporation | Corrosion inhibited lubricant compositions |
US4609480A (en) * | 1983-09-19 | 1986-09-02 | Idemitsu Kosan Company Limited | Lubricant composition for improving fatigue life |
US4891145A (en) * | 1985-01-31 | 1990-01-02 | Exxon Chemical Patents Inc. | Lubricating oil composition |
US4826615A (en) * | 1985-06-07 | 1989-05-02 | Exxon Chemical Patents Inc. | Lubricating oil composition containing dual additive combination for low temperature viscosity improvement (PTF-004) |
US4957650A (en) * | 1985-06-07 | 1990-09-18 | Exxon Chemical Patents Inc. | Lubricating oil composition containing dual additive combination for low temperature viscosity improvement |
US4617136A (en) * | 1985-08-16 | 1986-10-14 | R. T. Vanderbilt Company, Inc. | Dicocoamine derivatives of 2,5-dimercapto-1,3,4-thiadiazole |
US4661273A (en) * | 1985-12-30 | 1987-04-28 | Mobil Oil Company | Mercapto-thiadiazole reaction products as multifunctional lubricant additives and compositions thereof |
US5275630A (en) * | 1986-11-06 | 1994-01-04 | The Lubrizol Corporation | Metal salt fuel additive stabilized with a thiadiazole |
US4772638A (en) * | 1986-12-23 | 1988-09-20 | Courtaulds Plc | Compositions having reduced smoke emission |
EP0275692B1 (en) * | 1986-12-23 | 1992-03-11 | Courtaulds Plc | Compositions having reduced smoke emission |
EP0294060A2 (en) * | 1987-06-02 | 1988-12-07 | Bp Chemicals (Additives) Limited | Lubricating composition containing anti-wear/extreme pressure additives |
EP0294060A3 (en) * | 1987-06-02 | 1990-07-18 | Bp Chemicals (Additives) Limited | Lubricating composition containing anti-wear/extreme pressure additives |
EP0351964A1 (en) | 1988-06-24 | 1990-01-24 | Exxon Chemical Patents Inc. | Synergistic combination of additives useful in power transmitting compositions |
US4904403A (en) * | 1989-06-12 | 1990-02-27 | R. T. Vanderbilt Company, Inc. | Polyalkylated 1,3,4-thiadiazoles and lubricating compositions containing same |
US5062863A (en) * | 1990-05-17 | 1991-11-05 | R. T. Vanderbilt Company, Inc. | Fuel compositions containing polyalkylated 1,3,4-thiadiazoles |
EP0611818A1 (en) | 1990-07-31 | 1994-08-24 | Exxon Chemical Patents Inc. | Low pressure derived mixed phosphorous- and sulfur-containing reaction products useful in power transmitting compositions and process for preparing the same |
US5318712A (en) * | 1992-10-13 | 1994-06-07 | The Lubrizol Corporation | Lubricants, greases, aqueous fluids and concentrates containing additives derived from dimercaptothiadiazoles |
US5368758A (en) * | 1992-10-13 | 1994-11-29 | The Lubrizol Corporation | Lubricants, greases and aqueous fluids containing additives derived from dimercaptothiadiazoles |
EP0643101A1 (en) * | 1993-09-10 | 1995-03-15 | R.T. VANDERBILT COMPANY, Inc. | Curing systems for halogenated elastomers |
US5391621A (en) * | 1993-10-15 | 1995-02-21 | R. T. Vanderbilt Company, Inc. | 1,3,4-thiadiazole curing systems for chlorine containing polymers |
US5652202A (en) * | 1995-08-15 | 1997-07-29 | Exxon Chemical Patents Inc. | Lubricating oil compositions |
US5558802A (en) * | 1995-09-14 | 1996-09-24 | Exxon Chemical Patents Inc | Multigrade crankcase lubricants with low temperature pumpability and low volatility |
US6034039A (en) * | 1997-11-28 | 2000-03-07 | Exxon Chemical Patents, Inc. | Lubricating oil compositions |
US6423670B2 (en) | 2000-03-20 | 2002-07-23 | Infineum International Ltd. | Lubricating oil compositions |
US20020193650A1 (en) * | 2001-05-17 | 2002-12-19 | Goze Maria Caridad B. | Low noack volatility poly alpha-olefins |
US20050045527A1 (en) * | 2001-05-17 | 2005-03-03 | Goze Maria Caridad B. | Low noack volatility poly alpha-olefins |
US6949688B2 (en) | 2001-05-17 | 2005-09-27 | Exxonmobil Chemical Patents Inc. | Low Noack volatility poly α-olefins |
US6824671B2 (en) | 2001-05-17 | 2004-11-30 | Exxonmobil Chemical Patents Inc. | Low noack volatility poly α-olefins |
US6573223B1 (en) | 2002-03-04 | 2003-06-03 | The Lubrizol Corporation | Lubricating compositions with good thermal stability and demulsibility properties |
US20040033908A1 (en) * | 2002-08-16 | 2004-02-19 | Deckman Douglas E. | Functional fluid lubricant using low Noack volatility base stock fluids |
US6869917B2 (en) | 2002-08-16 | 2005-03-22 | Exxonmobil Chemical Patents Inc. | Functional fluid lubricant using low Noack volatility base stock fluids |
US20050124508A1 (en) * | 2003-12-04 | 2005-06-09 | Iyer Ramnath N. | Compositions for improved friction durability in power transmission fluids |
US20080271967A1 (en) * | 2004-06-23 | 2008-11-06 | Nsk Ltd. | One-Way Clutch-Containing Rotation Transmission Apparatus |
US7615519B2 (en) | 2004-07-19 | 2009-11-10 | Afton Chemical Corporation | Additives and lubricant formulations for improved antiwear properties |
US7615520B2 (en) | 2005-03-14 | 2009-11-10 | Afton Chemical Corporation | Additives and lubricant formulations for improved antioxidant properties |
EP1724329A1 (en) | 2005-05-20 | 2006-11-22 | Infineum International Limited | Metal detergent combination in lubricating oil compositions |
EP1728848A1 (en) | 2005-06-01 | 2006-12-06 | Infineum International Limited | Use of unsaturated olefin polymers to improve the compatibility between nitrile rubber seals and lubricating oil compositions |
WO2007005423A2 (en) | 2005-06-29 | 2007-01-11 | The Lubrizol Corporation | Zinc-free farm tractor fluid |
US20070111906A1 (en) * | 2005-11-12 | 2007-05-17 | Milner Jeffrey L | Relatively low viscosity transmission fluids |
US7709423B2 (en) | 2005-11-16 | 2010-05-04 | Afton Chemical Corporation | Additives and lubricant formulations for providing friction modification |
US7776800B2 (en) | 2005-12-09 | 2010-08-17 | Afton Chemical Corporation | Titanium-containing lubricating oil composition |
US7767632B2 (en) | 2005-12-22 | 2010-08-03 | Afton Chemical Corporation | Additives and lubricant formulations having improved antiwear properties |
US7682526B2 (en) | 2005-12-22 | 2010-03-23 | Afton Chemical Corporation | Stable imidazoline solutions |
US20070270317A1 (en) * | 2006-05-19 | 2007-11-22 | Milner Jeffrey L | Power Transmission Fluids |
WO2008013698A1 (en) | 2006-07-21 | 2008-01-31 | Exxonmobil Research And Engineering Company | Method for lubricating heavy duty geared apparatus |
US20080086935A1 (en) * | 2006-10-16 | 2008-04-17 | Lawrence J Cunningham | Method and compositions for reducing corrosion in engines combusting ethanol-containing fuels |
EP1914292A1 (en) | 2006-10-16 | 2008-04-23 | Afton Chemical Corporation | Method and compositions for reducing corrosion in engines combusting ethanol-containing fuels |
US7772167B2 (en) | 2006-12-06 | 2010-08-10 | Afton Chemical Corporation | Titanium-containing lubricating oil composition |
US20080139429A1 (en) * | 2006-12-06 | 2008-06-12 | Guinther Gregory H | Titanium-containing lubricating oil composition |
DE102007056248A1 (en) | 2006-12-08 | 2008-07-10 | Afton Chemical Corp. | Additive and lubricant formulations for improved antiwear properties |
US20080168708A1 (en) * | 2007-01-11 | 2008-07-17 | Cunningham Lawrence J | Method and compositions for reducing deposits in engines combusting ethanol-containing fuels and a corrosion inhibitor |
US7897548B2 (en) | 2007-03-15 | 2011-03-01 | Afton Chemical Corporation | Additives and lubricant formulations for improved antiwear properties |
DE102008005874A1 (en) | 2007-03-15 | 2008-09-18 | Afton Chemical Corp. | Additive and lubricant formulations for improved antiwear properties |
US20080280791A1 (en) * | 2007-05-01 | 2008-11-13 | Chip Hewette | Lubricating Oil Composition for Marine Applications |
EP1990400A2 (en) | 2007-05-01 | 2008-11-12 | Afton Chemical Corporation | Lubricating oil composition for marine applications |
EP2048218A1 (en) | 2007-10-09 | 2009-04-15 | Infineum International Limited | A lubricating oil composition |
EP2077316A2 (en) | 2007-12-17 | 2009-07-08 | Infineum International Limited | Lubricant compositions with low HTHS for a given SAE viscosity grade |
WO2009119831A1 (en) | 2008-03-28 | 2009-10-01 | 富士フイルム株式会社 | Composition and method for forming coating film |
WO2011026990A1 (en) | 2009-09-07 | 2011-03-10 | Shell Internationale Research Maatschappij B.V. | Lubricating compositions |
US9309481B2 (en) * | 2010-03-12 | 2016-04-12 | Idemitsu Kosan Co., Ltd. | Lubricant composition |
US20130005624A1 (en) * | 2010-03-12 | 2013-01-03 | Idemitsu Kosan Co., Ltd. | Lubricant composition |
WO2012166999A1 (en) | 2011-06-01 | 2012-12-06 | Exxonmbil Research And Engineering Company | High efficiency lubricating composition |
US9127231B2 (en) | 2011-06-01 | 2015-09-08 | Exxonmobil Research And Engineering Company | High efficiency lubricating composition |
WO2013003405A1 (en) | 2011-06-30 | 2013-01-03 | Exxonmobil Research And Engineering Company | Lubricating compositions containing polyalkylene glycol mono ethers |
WO2013003394A1 (en) | 2011-06-30 | 2013-01-03 | Exxonmobil Research And Engineering Company | Lubricating compositions containing polyetheramines |
WO2013003392A1 (en) | 2011-06-30 | 2013-01-03 | Exxonmobil Research And Engineering Company | Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers |
US8586520B2 (en) | 2011-06-30 | 2013-11-19 | Exxonmobil Research And Engineering Company | Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers |
WO2013055481A1 (en) | 2011-10-10 | 2013-04-18 | Exxonmobil Research And Engineering Company | High efficiency engine oil compositions |
WO2013055482A1 (en) | 2011-10-10 | 2013-04-18 | Exxonmobil Research And Engineering Company | Lubricating compositions |
WO2013055480A1 (en) | 2011-10-10 | 2013-04-18 | Exxonmobil Research And Engineering Company | Low viscosity engine oil compositions |
US20130252863A1 (en) * | 2012-03-22 | 2013-09-26 | Exxonmobil Research And Engineering Company | Novel antioxidant combination and synthetic base oils containing the same |
US9150812B2 (en) * | 2012-03-22 | 2015-10-06 | Exxonmobil Research And Engineering Company | Antioxidant combination and synthetic base oils containing the same |
EP2650349A1 (en) | 2012-04-12 | 2013-10-16 | Infineum International Limited | Lubricating oil compositions containing molybdenum compound and friction modifier |
EP2650350A1 (en) | 2012-04-12 | 2013-10-16 | Infineum International Limited | Lubricating oil compositions |
US8410032B1 (en) | 2012-07-09 | 2013-04-02 | Afton Chemical Corporation | Multi-vehicle automatic transmission fluid |
EP2690165A1 (en) | 2012-07-25 | 2014-01-29 | Infineum International Limited | Lubricating oil compositions |
WO2014066444A1 (en) | 2012-10-24 | 2014-05-01 | Exxonmobil Research And Engineering Comapny | Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives |
US9487729B2 (en) | 2012-10-24 | 2016-11-08 | Exxonmobil Chemical Patents Inc. | Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives |
WO2014158533A1 (en) | 2013-03-14 | 2014-10-02 | Exxonmobil Research And Engineering Company | Lubricating composition providing high wear resistance |
US20140309150A1 (en) * | 2013-04-11 | 2014-10-16 | Afton Chemical Corporation | Lubricant composition |
US10023824B2 (en) * | 2013-04-11 | 2018-07-17 | Afton Chemical Corporation | Lubricant composition |
WO2015095336A1 (en) | 2013-12-18 | 2015-06-25 | Chevron Phillips Chemical Company Lp | Method for making polyolefins using aluminum halide catalyzed oligomerization of olefins |
US9708549B2 (en) | 2013-12-18 | 2017-07-18 | Chevron Phillips Chemical Company Lp | Method for making polyalphaolefins using aluminum halide catalyzed oligomerization of olefins |
WO2015099907A1 (en) | 2013-12-23 | 2015-07-02 | Exxonmobil Research And Engineering Company | Low viscosity ester lubricant and method for using |
US10208269B2 (en) | 2013-12-23 | 2019-02-19 | Exxonmobil Research And Engineering Company | Low viscosity ester lubricant and method for using |
EP2952562A1 (en) | 2014-06-02 | 2015-12-09 | Infineum International Limited | Lubricating oil compositions |
EP2952564A1 (en) | 2014-06-02 | 2015-12-09 | Infineum International Limited | Lubricating oil compositions |
CN104178246B (en) * | 2014-06-12 | 2017-05-24 | 太平洋联合(北京)石油化工有限公司 | Thiadiazole ramification mixture as well as preparation method and application thereof |
CN104178246A (en) * | 2014-06-12 | 2014-12-03 | 太平洋联合(北京)石油化工有限公司 | Thiadiazole ramification mixture as well as preparation method and application thereof |
EP2977436A1 (en) | 2014-07-17 | 2016-01-27 | Infineum International Limited | Lubricating oil compositions |
DE102015118989A1 (en) | 2014-11-05 | 2016-05-12 | Infineum International Ltd. | Power transmission fluids with improved material compatibility |
US9732301B2 (en) | 2014-11-05 | 2017-08-15 | Infineum International Limited | Power transmitting fluids with improved materials compatibility |
US9957463B2 (en) | 2014-11-05 | 2018-05-01 | Infineum International Limited | Power transmitting fluids with improved materials compatibility |
WO2016164345A1 (en) | 2015-04-09 | 2016-10-13 | The Lubrizol Corporation | Lubricants containing quaternary ammonium compounds |
EP3118285A1 (en) | 2015-07-16 | 2017-01-18 | Infineum International Limited | Method of improving vehicle transmission operation through use of specific lubricant compositions |
US9732300B2 (en) | 2015-07-23 | 2017-08-15 | Chevron Phillipa Chemical Company LP | Liquid propylene oligomers and methods of making same |
US10435491B2 (en) | 2015-08-19 | 2019-10-08 | Chevron Phillips Chemical Company Lp | Method for making polyalphaolefins using ionic liquid catalyzed oligomerization of olefins |
EP3135750A1 (en) | 2015-08-26 | 2017-03-01 | Infineum International Limited | Lubricating oil compositions |
US10316712B2 (en) | 2015-12-18 | 2019-06-11 | Exxonmobil Research And Engineering Company | Lubricant compositions for surface finishing of materials |
EP3222697A1 (en) | 2016-03-22 | 2017-09-27 | Afton Chemical Corporation | Color-stable transmission fluid compositions |
US9816044B2 (en) | 2016-03-22 | 2017-11-14 | Afton Chemical Corporation | Color-stable transmission fluid compositions |
EP3263676A2 (en) | 2016-06-30 | 2018-01-03 | Infineum International Limited | Lubricating oil compositions |
WO2018013249A1 (en) | 2016-07-12 | 2018-01-18 | Chevron Phillips Chemical Company Lp | Decene oligomers |
US10647626B2 (en) | 2016-07-12 | 2020-05-12 | Chevron Phillips Chemical Company Lp | Decene oligomers |
EP3366754A1 (en) | 2017-02-22 | 2018-08-29 | Infineum International Limited | Lubricating containing pre-ceramic polymers |
EP3521403A1 (en) | 2017-02-22 | 2019-08-07 | Infineum International Limited | Lubricating oil compositions containing pre-ceramic polymers |
EP3372658A1 (en) | 2017-03-07 | 2018-09-12 | Infineum International Limited | Method for lubricating surfaces |
US10240102B2 (en) | 2017-03-16 | 2019-03-26 | Chevron Phillips Chemical Company, Lp | Lubricant compositions containing hexene-based oligomers |
WO2018170110A1 (en) | 2017-03-16 | 2018-09-20 | Chevron Phillips Chemical Company Lp | Lubricant compositions containing hexene-based oligomers |
EP3434755A1 (en) | 2017-07-24 | 2019-01-30 | Infineum International Limited | Motorcycle lubricant |
EP3473694A1 (en) | 2017-10-12 | 2019-04-24 | Infineum International Limited | Lubricating oil compositions |
US10711219B2 (en) | 2017-12-11 | 2020-07-14 | Infineum International Limited | Automotive transmission fluid compositions for improved energy efficiency |
EP3495461A1 (en) | 2017-12-11 | 2019-06-12 | Infineum International Limited | Automotive transmission fluid compositions for improved energy efficiency |
EP3674385A1 (en) | 2018-12-27 | 2020-07-01 | Infineum International Limited | Dispersants for lubricating oil compositions |
US10781393B2 (en) | 2018-12-27 | 2020-09-22 | Infineum International Limited | Dispersants for lubricating oil compositions |
EP3736318A1 (en) | 2019-05-09 | 2020-11-11 | Infineum International Limited | Transmission fluid composition for improved wear protection |
US11312918B2 (en) | 2019-05-09 | 2022-04-26 | Infineum International Limited | Transmission fluid composition for improved wear protection |
EP3778841A1 (en) | 2019-08-15 | 2021-02-17 | Infineum International Limited | Method for reducing piston deposits in a marine diesel engine |
US11365273B2 (en) | 2019-12-16 | 2022-06-21 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
US11685874B2 (en) | 2019-12-16 | 2023-06-27 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
EP3839019A1 (en) | 2019-12-16 | 2021-06-23 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
EP3839018A1 (en) | 2019-12-16 | 2021-06-23 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
EP3839017A1 (en) | 2019-12-16 | 2021-06-23 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
US11384311B2 (en) | 2019-12-16 | 2022-07-12 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
WO2022072559A1 (en) | 2020-10-02 | 2022-04-07 | Infineum International Limited | Rejuvenation and/or extension of the lifetime of frictional performance in transmission fluids |
EP3995561A2 (en) | 2020-10-16 | 2022-05-11 | Infineum International Limited | Transmission fluid compositions for hybrid and electric vehicle applications |
US11905488B2 (en) | 2020-10-16 | 2024-02-20 | Infineum International Limited | Transmission fluid compositions for hybrid and electric vehicle applications |
CN112521999A (en) * | 2020-12-14 | 2021-03-19 | 滨州市坤厚工贸有限责任公司 | Lubricating oil metal deactivator mixture and preparation method thereof |
WO2022136384A1 (en) | 2020-12-24 | 2022-06-30 | Infineum International Limited | Thermally responsive brush polymers having a copolymer backbone and copolymer arms |
EP4194531A1 (en) | 2021-12-09 | 2023-06-14 | Infineum International Limited | Borated detergents and their lubricating applications |
US11939550B2 (en) | 2021-12-09 | 2024-03-26 | Infineum International Limited | Borated detergents and their lubricating applications |
EP4353805A1 (en) | 2022-10-11 | 2024-04-17 | Infineum International Limited | Lubricant composition containing metal alkanoate |
EP4353804A1 (en) | 2022-10-11 | 2024-04-17 | Infineum International Limited | Functionalized c4 to c5 olefin polymers and lubricant compositions containing such |
EP4357443A1 (en) | 2022-10-18 | 2024-04-24 | Infineum International Limited | Lubricating oil compositions |
EP4397738A1 (en) | 2023-01-03 | 2024-07-10 | Infineum International Limited | Method for reduction of abnormal combustion events |
EP4417675A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4417674A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4417672A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
EP4417673A1 (en) | 2023-02-17 | 2024-08-21 | Infineum International Limited | Multipurpose oxypyridinones and their functional use |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2719126A (en) | Corrosion inhibitors and compositions containing same | |
US2765289A (en) | Corrosion inhibitors and compositions containing the same | |
US2760933A (en) | Lubricants | |
US2719125A (en) | Oleaginous compositions non-corrosive to silver | |
US2703784A (en) | Corrosion inhibitors and compositions containing the same | |
US2910439A (en) | Corrosion inhibited compositions | |
US2749311A (en) | Corrosion inhibitors and compositions containing the same | |
US2316087A (en) | Lubricant | |
US2764547A (en) | Corrosion resistant lubricant composition | |
USRE22910E (en) | E-oxcxs-m | |
US2451345A (en) | Compounded lubricating oil | |
US2493217A (en) | Mineral oil composition | |
US2799651A (en) | Corrosion inhibitors and compositions containing the same | |
US2543735A (en) | Lubricating composition | |
US2743235A (en) | Mineral oil composition | |
US2799652A (en) | Corrosion resistant composition | |
US2530339A (en) | Compounded petroleum hydrocarbon products | |
US2689258A (en) | Reaction of terpenes with thiophosphorous acid esters and products thereof | |
US2921901A (en) | Lubricating oil composition | |
US2766207A (en) | Hydrocarbon oil products | |
US2362291A (en) | Lubricant | |
US2948680A (en) | Lubricant compositions | |
US2480664A (en) | Lubricating oil composition | |
US2614914A (en) | Diesel fuel containing di-tertiary alkyl sulfides as ignition promoters | |
US3002925A (en) | Lubricant additive and composition containing same |