US2706701A - Process for the preparation of iodinepolyvinylpyrrolidone by dry mixing - Google Patents
Process for the preparation of iodinepolyvinylpyrrolidone by dry mixing Download PDFInfo
- Publication number
- US2706701A US2706701A US282458A US28245852A US2706701A US 2706701 A US2706701 A US 2706701A US 282458 A US282458 A US 282458A US 28245852 A US28245852 A US 28245852A US 2706701 A US2706701 A US 2706701A
- Authority
- US
- United States
- Prior art keywords
- iodine
- polyvinylpyrrolidone
- available
- per cent
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/18—Iodine; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/58—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/18—Introducing halogen atoms or halogen-containing groups
- C08F8/20—Halogenation
- C08F8/22—Halogenation by reaction with free halogens
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/16—Halogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
Definitions
- This invention relates to an improved process for preparing a dry powdered adduct of iodine and polymeric l-vinyl-2-pyrrolidone (hereinafter called polyvinylpyrrolidone) whereby a stable composition is formed which is readily soluble in water and which provides iodine in readily available and germicidally and bactericidally active form which is essentialy non-toxic to warmblooded animals.
- polyvinylpyrrolidone polymeric l-vinyl-2-pyrrolidone
- this novel i0dine-polyvinylpyrrolidone composition may be prepared by adding a solution of iodine, such as Lugols solution or tincture of iodine to an aqueous solution of polyvinylpyrrolidone.
- compositions of iodine and polyvinylpyrrolidone can be prepared by thoroughly mixing dry elemental iodine with dry powdered polyvinylpyrrolidone.
- the iodine and powdered polymer may be mixed until a homogenous powder is obtained, the mixing being carried out in materials which are not attacked by iodine so as to avoid the introduction of metal ions into the finished composition.
- This mixing may be effected by grinding the iodine and polyvinylpyrrolidone in a mortar and pestle or more advantageously in a suitable mechanical mixer such as a ball mill.
- the time of mixing varies only with the efiiciency thereof, as the combination of the polyvinylpyrrolidone with iodine on its surface is rapid, in fact, such combination will occur to some extent on dropping iodine crystals on the dry powdered polymer.
- the amount of iodine present as iodide ion is determined by reducing the iodine compound in solution with l-N sodium acid sulfite in a NaHSOs, adding enough to make the solution colorless, then adding 0.1-N silver nitrate and enough nitric acid to make the solution acidic and back-titrating with ammonium thiocyanate (NH4SCN).
- the iodide ion is the difference between this figure and the available iodine as determined above.
- the total iodine may be determined by combustion methods such as that formulated by Hallett in Scotts Standard Methods of Chemical Analysis, bound iodine then being determined by substracting the sum of available iodine and iodide ion from the total iodine as determined above.
- the product obtained on mixing polyvinylpyrrolidone and iodine contains a total amount of iodine equal to the amount employed in making the composition and, as stated, this iodine is present as available iodine, iodide ion and bound iodine. It has been found that with any given sample of polyvinylpyrrolidone the amount of bound iodine is constant but that the iodine present as available iodine and iodide ion may vary somewhat. On
- the amount of available iodine slightly decreases which the amount of iodide ion increases. It has been found, however, that a stable product in which the ratio of available iodine to iodide ion is substantially 2:1 is readily and rapidly obtained by heating the dry blended material to a temperature of the order of 100 C. Higher temperatures are preferably avoided in order to avoid degradation of the polymer. Some slight stirring is advantageous during this heating in order to assure a uniform product. It has been found that the heating should be continued until the ratio of available iodine to iodide ion is substantially 2:1. It has been found that before heating one sample, it had a vapor pressure of 0.06 mm. at 55 C. After heating, the product had substantially no vapor pressure at 55 C. Thus, the heating completed the process of formation of a complex in which the iodine is chemically available but not free.
- K value in these examples is meant Fikentscher K value (1000 k) as defined by H. Fikentsober-Cellulosechemie 13, 58-64, 71-4 (1932) and was determined with aqueous solutions of the polymer using an Ubbelohde viscosimeter at 25 C., the concentration being 1 gram of polymer (anhydrous basis) per 100 ml. of solution.
- EXAMPLE I Twelve grams of dry polyvinylpyrrolidone having a K value of 90 (water content about 2 to 3 per cent) was added to 6 grams of solid iodine crystals in a glass bottle containing a few pebbles and beads. This was rolled for three days on a roller mill with occasional manual stirring to loosen the material caked on the sides of the bottle. Analysis showed that the thus obtained product contained 35.4 per cent total iodine and 31.91 per cent available iodine; The material was heat-treated at C. for 64 hours in a closed glass bottle with occasional stirring. On completion of this treatment, analysis showed that the material contained 35.3 per cent total iodine, 25.7 per cent available iodine.
- EXAMPLE II An earthenware crock, having a capacity of one gallon, was charged with 832 grams of dry polyvinylpyrrolidone having a K value of 33 and 168 grams of crystalline iodine broken up in the form of small granules. Enough pebbles, approximately 30, were added to assure eificient mixing. The lid was clamped on tightly and the crock rotated on a roller mill for twenty-four hours. After this period, the mixture was homogenous and no iodine crystals were visible. The material was placed in an oven for eighteen hours at 200 F. (93 C.) with occasional mixing to assure homogeneity.
- the amount of iodine which must be allowed for mixing with any given polymer in order to provide for the bound iodine can readily be determined by simple preliminary tests, i. e., by addition of 0.0l-N iodine solution to an aqueous solution of the polymer and backtitrating with 0.1-N sodium thiosulfate solution using starch as an indicator.
- the iodine which was crude iodine in the form of soft lumps, A" to 1" size, was charged in a 94-gallon ball mill along with 17 pounds of %l" pebbles.
- the iodine was ground for one hour at room temperature, at which time it was found that the iodine was approximately 40-80 mesh size. By visual observation no difference could be noticed in the size of the particles in one hour iodine and the 3-4 hour ground samples.
- the required amount of polyvinylpyrrolidone was then added to the ball mill and blending was continued for six hours at room temperature therein. The ball mill was opened after two hours of mixing and any crystals of iodine found around the gasket were scraped back into the mill.
- the speed of the ball mill for grinding was 16 R. P. M.
- the thus obtained blended polyvinylpyrrolidone iodine composition was placed in dryer trays, one-half full, and heated for a total time of twenty-two hours at a temperature of 95 C. (200 F.) in a closed tray dryer. After six, twelve, and eighteen hours on temperature, the dryer was opened and the trays were stirred with a glass rod. This was done so as to assure uniform product. The total actual heating time was eighteen hours, a total of four hours being consumed in stirring the polyvinylpyrrolidone iodine composition. With each stirring the dryer door was opened slowly to permit more rapid cooling and allowed to cool for twenty minutes. The dryer was then closed, the steam turned on.
- EXAMPLE V 832 parts of polyvinylpyrrolidone having a K value of 36 was charged to a ball mill along with 168 parts of iodine crystals and the mixture blended for six hours, the ball mill being opened after two hours of mixing, at which time any crystals of iodine found around the gasket were scraped back in the mill.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Preparation (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
United States Patent PROCESS FOR THE PREPARATION OF IODINE- POLYVINYLPYRROLIDONE BY DRY MIXING Hans Beller, Cranford, N. J., and William Austin Hosmer, Pittsfield, Mass., assignors to General Aniline & Film Corporation, New York, N. Y., a corporation of Delaware No Drawing. Application April 15, 1952, Serial No. 282,458
2 Claims. (Cl. 167--70) This invention relates to an improved process for preparing a dry powdered adduct of iodine and polymeric l-vinyl-2-pyrrolidone (hereinafter called polyvinylpyrrolidone) whereby a stable composition is formed which is readily soluble in water and which provides iodine in readily available and germicidally and bactericidally active form which is essentialy non-toxic to warmblooded animals.
In the copending application of Herman A. Shelanski, Serial No. 135,519, filed December 28, 1949, there is disclosed a novel composition of polyvinylpyrrolidone and iodine which has been found to be of substantial value for many applications in which advantage is taken of the bactericidal activity of the iodine but in which the irritating, sensitizing, and toxic properties of the iodine are substantially overcome. As disclosed in this application, this novel i0dine-polyvinylpyrrolidone composition may be prepared by adding a solution of iodine, such as Lugols solution or tincture of iodine to an aqueous solution of polyvinylpyrrolidone.
It has now been found that valuable compositions of iodine and polyvinylpyrrolidone can be prepared by thoroughly mixing dry elemental iodine with dry powdered polyvinylpyrrolidone. The iodine and powdered polymer may be mixed until a homogenous powder is obtained, the mixing being carried out in materials which are not attacked by iodine so as to avoid the introduction of metal ions into the finished composition. This mixing may be effected by grinding the iodine and polyvinylpyrrolidone in a mortar and pestle or more advantageously in a suitable mechanical mixer such as a ball mill. The time of mixing varies only with the efiiciency thereof, as the combination of the polyvinylpyrrolidone with iodine on its surface is rapid, in fact, such combination will occur to some extent on dropping iodine crystals on the dry powdered polymer.
On completion of the mixing there is obtained a compound in a physical state similar to the polymer alone but which contains varying proportions of iodineavailable iodine (as distinguished from free iodine), iodide ion, and bound iodine. A distinction between these forms may be made on an analytical basis, available iodine being determined directly by dissolving a sample of the product in water and titrating with 0.1-N sodium thiosulfate (NazSzOa), solution using starch as an indicator. The amount of iodine present as iodide ion is determined by reducing the iodine compound in solution with l-N sodium acid sulfite in a NaHSOs, adding enough to make the solution colorless, then adding 0.1-N silver nitrate and enough nitric acid to make the solution acidic and back-titrating with ammonium thiocyanate (NH4SCN). The iodide ion is the difference between this figure and the available iodine as determined above. The total iodine may be determined by combustion methods such as that formulated by Hallett in Scotts Standard Methods of Chemical Analysis, bound iodine then being determined by substracting the sum of available iodine and iodide ion from the total iodine as determined above.
The product obtained on mixing polyvinylpyrrolidone and iodine contains a total amount of iodine equal to the amount employed in making the composition and, as stated, this iodine is present as available iodine, iodide ion and bound iodine. It has been found that with any given sample of polyvinylpyrrolidone the amount of bound iodine is constant but that the iodine present as available iodine and iodide ion may vary somewhat. On
"ice
standing, the amount of available iodine slightly decreases which the amount of iodide ion increases. It has been found, however, that a stable product in which the ratio of available iodine to iodide ion is substantially 2:1 is readily and rapidly obtained by heating the dry blended material to a temperature of the order of 100 C. Higher temperatures are preferably avoided in order to avoid degradation of the polymer. Some slight stirring is advantageous during this heating in order to assure a uniform product. It has been found that the heating should be continued until the ratio of available iodine to iodide ion is substantially 2:1. It has been found that before heating one sample, it had a vapor pressure of 0.06 mm. at 55 C. After heating, the product had substantially no vapor pressure at 55 C. Thus, the heating completed the process of formation of a complex in which the iodine is chemically available but not free.
The details of the present invention will be apparent from the following specific examples in which the parts are by weight: By K value in these examples is meant Fikentscher K value (1000 k) as defined by H. Fikentsober-Cellulosechemie 13, 58-64, 71-4 (1932) and was determined with aqueous solutions of the polymer using an Ubbelohde viscosimeter at 25 C., the concentration being 1 gram of polymer (anhydrous basis) per 100 ml. of solution.
EXAMPLE I Twelve grams of dry polyvinylpyrrolidone having a K value of 90 (water content about 2 to 3 per cent) was added to 6 grams of solid iodine crystals in a glass bottle containing a few pebbles and beads. This was rolled for three days on a roller mill with occasional manual stirring to loosen the material caked on the sides of the bottle. Analysis showed that the thus obtained product contained 35.4 per cent total iodine and 31.91 per cent available iodine; The material was heat-treated at C. for 64 hours in a closed glass bottle with occasional stirring. On completion of this treatment, analysis showed that the material contained 35.3 per cent total iodine, 25.7 per cent available iodine.
EXAMPLE II EXAMPLE III An earthenware crock, having a capacity of one gallon, was charged with 832 grams of dry polyvinylpyrrolidone having a K value of 33 and 168 grams of crystalline iodine broken up in the form of small granules. Enough pebbles, approximately 30, were added to assure eificient mixing. The lid was clamped on tightly and the crock rotated on a roller mill for twenty-four hours. After this period, the mixture was homogenous and no iodine crystals were visible. The material was placed in an oven for eighteen hours at 200 F. (93 C.) with occasional mixing to assure homogeneity. After this treatment, analysis showed 10.2 per cent available iodine, 5.3 iodide ion. About 1.3 per cent thus was in the form of bound iodine, probably mainly combined with unsaturated links of the polymer (terminal unsaturation) and a small amount of residual monomer which may have been present therein. This product was stable and series of samples thereof which were maintained at F. and room temperature and tested at weekly intervals for available iodine and iodide ion over a period of six weeks showed no variation in available iodine and iodide ion.
In preparing the novel polyvinylpyrrolidone iodine compositions of the present invention, it has been found that from l-35 per cent total iodine can readily be combined with polyvinylpyrrolidone. It has further been found that the amount of iodine which should be mixed with polyvinylpyrrolidone in order to produce a product having any desired percentage of available iodine can readily be determined since it has been found that in order to obtain a product which is stable on storage, it is desirable that in the final product the ratio of available iodine to iodine ion be substantially 2:1. Thus, to produce a prodnot having any given desired percentage of available iodine, it is necessary to add to the polyvinylpyrrolidone, sufiicient iodine so that the available iodine is 65 per cent of the available iodine plus the iodide ion. In addition, enough iodine must be added to take care of the bound iodine. This bound iodine has been found to be uniform for any particular polymer regardless of how much total iodine is added; however, the bound iodine varies somewhat with individual batches of polymer. It has been found that the amount of iodine which must be allowed for mixing with any given polymer in order to provide for the bound iodine can readily be determined by simple preliminary tests, i. e., by addition of 0.0l-N iodine solution to an aqueous solution of the polymer and backtitrating with 0.1-N sodium thiosulfate solution using starch as an indicator.
EXAMPLE IV Three one-hundred-pound batches of polyvinylpyrrolidone iodine composition containing 10 per cent available iodine, per cent available iodine and 2 /2 per cent available iodine, respectively, were prepared. The ratio of iodine to polyvinylpyrrolidone in the charge was determined by adding a total amount of iodine, such that the available iodine would be 65 per cent of the available plus iodide ion and in addition enough iodine was added to take care of bound iodine. In the particular polymer employed, preliminary test showed that 1.3 per cent iodine was necessary and a corresponding allowance was therefore made.
The following is a table of the calculated amounts of iodine added to polyvinylpyrrolidone to prepare the above compositions, a sufficient amount of polyvinylpyrrolidone being used so that the total iodine required plus the amount of polyvinylpyrrolidone equal 100 pounds:
Monomer analysis of 0.65 per cent.
The iodine, which was crude iodine in the form of soft lumps, A" to 1" size, was charged in a 94-gallon ball mill along with 17 pounds of %l" pebbles. The iodine was ground for one hour at room temperature, at which time it was found that the iodine was approximately 40-80 mesh size. By visual observation no difference could be noticed in the size of the particles in one hour iodine and the 3-4 hour ground samples. The required amount of polyvinylpyrrolidone was then added to the ball mill and blending was continued for six hours at room temperature therein. The ball mill was opened after two hours of mixing and any crystals of iodine found around the gasket were scraped back into the mill. The speed of the ball mill for grinding was 16 R. P. M. The thus obtained blended polyvinylpyrrolidone iodine composition was placed in dryer trays, one-half full, and heated for a total time of twenty-two hours at a temperature of 95 C. (200 F.) in a closed tray dryer. After six, twelve, and eighteen hours on temperature, the dryer was opened and the trays were stirred with a glass rod. This was done so as to assure uniform product. The total actual heating time was eighteen hours, a total of four hours being consumed in stirring the polyvinylpyrrolidone iodine composition. With each stirring the dryer door was opened slowly to permit more rapid cooling and allowed to cool for twenty minutes. The dryer was then closed, the steam turned on. Approximately one-half hour was required to get the dryer back on temperature. The stabilized material, when discharged from the dryer, was placed in the ball mill with ten pounds of pebbles and mixed for ten hours. Samples of the blended product of the batches containing 5% and 2 /2 calculated available iodine were taken before heating and placed in a sealed glass jar. These jars were then heated for eighteen hours at 93 C. The analyses of the thus obtained products are given in the following table:
Table 11 Percent Percent Percent Av. Iodine+ Method 01 Heating vs. Iodide Total Av. Iodine+ Iodine Ion Iodine Iodide Ion Open Tray 9. 99 4. 77 14. 77 0. 677 Do 5. 08 2. 58 8.12 0. 663 Closed Jar 5. 16 2. 52 8. l4 0. 673 Open Tray.. 2. 86 1. 91 5. 50 0.600 Closed Jar 2. 96 2. 04 5. 33 0. 593
examples:
EXAMPLE V 832 parts of polyvinylpyrrolidone having a K value of 36 was charged to a ball mill along with 168 parts of iodine crystals and the mixture blended for six hours, the ball mill being opened after two hours of mixing, at which time any crystals of iodine found around the gasket were scraped back in the mill.
On completion of this mixing, 636 parts of the thus obtained ten per cent available iodine unstabilized polyvinylpyrrolidone iodine composition was diluted with 566 parts of polyvinylpyrrolidone and the mixture blended for six hours in the ball mill. The ratio of the ten per cent mixture of polyvinylpyrrolidone iodine composition to polyvinylpyrrolidone is 1:1.13 on a dry basis. This ratio of polyvinylpyrrolidone, before dilution, was used in order to obtain the normal nine per cent total iodine necessary in the preparation of a polyvinylpyrrolidone iodine compo sition having a final five per cent available iodine after stabilization.
430 parts of the unstabilized five per cent available iodine-polyvinylpyrrolidone composition, obtained as described immediately above, was subsequently diluted to produce a two and one-half per cent available iodinepolyvinylpyrrolidone composition. The same method was used as in diluting ten per cent available iodinepolyvinylpyrrolidone composition to prepare the five per cent available iodine-polyvinylpyrrolidone composition. By calculation, it was found that in order to obtain two and one-half per cent available iodine in the composition after stabilization, 5.1 per cent iodine should be present. Therefore, 320 parts of polyvinylpyrrolidone was charged along with the 330 parts of five per cent available iodinepolyvinylpyrrolidone composition and the materials were blended for six hours in the ball mill. The ratio of five per cent unstabilized mixture to polyvinylpyrrolidone, on the dry basis, is 111.39.
Samples of all three batches were heated at 93 C. for twenty hours in glass jars. On completion of this heating, each of the products was a brown powder which was readily soluble in water. On analysis for available iodine, iodide ion and total iodine the following analytical results were obtained.
Table III a Percent Percent Percent Ava. Iodine-.- Desred 53g AW Ava. Iodide Total Ava. Iodine-1- Iodine Ion Iodine Iodide Ion EXAMPLE VI Six pounds of dry polyvinyl pyrrolidone having a K value of 36 and three pounds of solid iodine crystals were placed in a ceramic ball mill containing three pounds of pebbles. The mill was closed and rolled for a total of 30 hours in an oven maintained at 200 F. The mill was removed from the oven three times during the course of the mixing and, after cooling to room temperature, the contents manually stirred to loosen material caked on the sides and top thereof. On completion of this treatment, analysis showed that the material contained 32.5 per cent total iodine, 20 per cent available iodine and 11 per cent iodide ion. The product was a homogeneous brown powder, soluble in water.
We claim:
1. The method of producing a stable polyvinylpyrrolidone-iodine composition which comprises thoroughly mixing elemental iodine and powdered polymeric 1 vinyl 2 pyirolidone and heating said mixture until the ratio of available iodine to iodide ion in said composition is 15 No. 8, pp.
substantially 2: 1.
UNITED STATES PATENTS 2,077,298 Zelger Apr. 13, 1937 2,121,029 Goedrich June 21, 1938 2,329,445 Turner Sept. 14, 1943 2,495,918 Bolton Jan. 31, 1950 OTHER REFERENCES Murat: Produits Pharmaceutiques, August 1949, vol. 4,
Claims (1)
1. THE METHOD OF PRODUCING A STABLE POLYVINYLPRROLIDONE-IODINE COMPOSITION WHICH COMPRISES THOROUGHLY MIXING ELEMENTAL IODINE AND POWDERED POLYMERIC 1 VINYL 2 PYRROLIDONE AND HEATING SAID MIXTURE UNTIL THE RATIO OF AVAILABLE IODINE TO IODIDE ION IN SAID COMPOSITION IS SUBSTANTIALLY 2:1.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE615889D BE615889A (en) | 1952-04-15 | ||
US276449A US2739922A (en) | 1952-03-13 | 1952-03-13 | Mixtures of polymeric n-vinyl pyrrolidone and halogens |
US282458A US2706701A (en) | 1952-04-15 | 1952-04-15 | Process for the preparation of iodinepolyvinylpyrrolidone by dry mixing |
US457777A US2826532A (en) | 1952-04-15 | 1954-09-22 | Process of stabilizing polyvinyl pyrrolidone-iodine compositions |
US603185A US2900305A (en) | 1952-04-15 | 1956-08-09 | Preparation of iodine polyvinylpyrrolidone adducts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US282458A US2706701A (en) | 1952-04-15 | 1952-04-15 | Process for the preparation of iodinepolyvinylpyrrolidone by dry mixing |
Publications (1)
Publication Number | Publication Date |
---|---|
US2706701A true US2706701A (en) | 1955-04-19 |
Family
ID=23081613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US282458A Expired - Lifetime US2706701A (en) | 1952-03-13 | 1952-04-15 | Process for the preparation of iodinepolyvinylpyrrolidone by dry mixing |
Country Status (2)
Country | Link |
---|---|
US (1) | US2706701A (en) |
BE (1) | BE615889A (en) |
Cited By (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2754245A (en) * | 1954-09-23 | 1956-07-10 | Gen Aniline & Film Corp | Interhalogen adducts of polyvinyl pyrrolidone |
US2826532A (en) * | 1952-04-15 | 1958-03-11 | Gen Aniline & Film Corp | Process of stabilizing polyvinyl pyrrolidone-iodine compositions |
US2853416A (en) * | 1955-09-19 | 1958-09-23 | Gen Aniline & Film Corp | Method of protecting plants by applying a pesticidal amount of a polyvinylpyrrolidone-iodine adduct |
US2853417A (en) * | 1955-09-19 | 1958-09-23 | Gen Aniline & Film Corp | Method of controlling plant pests with an iodine adduct of a copolymer of nu-vinyl pyrrolidone and a polymerizable vinyl compound containing one aliphatic double bond |
US2900305A (en) * | 1952-04-15 | 1959-08-18 | Gen Aniline & Film Corp | Preparation of iodine polyvinylpyrrolidone adducts |
US2964447A (en) * | 1956-04-10 | 1960-12-13 | Gen Aniline & Film Corp | Polymer-metal process |
US2987505A (en) * | 1958-03-04 | 1961-06-06 | Gen Aniline & Film Corp | Compositions of polymeric nu-vinyl-2-oxazolidone and halogens |
US3028300A (en) * | 1960-09-13 | 1962-04-03 | West Laboratories Inc | Germicidal compositions and methods for preparing the same |
US3087853A (en) * | 1956-07-02 | 1963-04-30 | Gen Aniline & Film Corp | Water soluble compositions consisting essentially of iodine and a water soluble oxygen containing polymer |
US3133904A (en) * | 1959-05-22 | 1964-05-19 | Dow Chemical Co | Molecular complexes of halogen and cyclic carbamate |
US3136755A (en) * | 1960-12-01 | 1964-06-09 | Gen Aniline & Film Corp | Insoluble polymeric-iodine complexes |
US3437647A (en) * | 1966-02-07 | 1969-04-08 | Gaf Corp | Halogen adducts of alkylated polymers of heterocyclic n-vinyl monomers |
DE2443530A1 (en) * | 1973-09-14 | 1975-03-27 | Ciba Geigy Ag | DISINFECTION AND DISINFECTION OF MUSSELS, CRUSTACEA AND FISH |
US3898326A (en) * | 1973-05-14 | 1975-08-05 | West Laboratories Inc | Polyvinylpyrrolidone-iodide compositions and polyvinylpyrrolidone-iodide-iodine complexes prepared therefrom |
US4009326A (en) * | 1975-07-31 | 1977-02-22 | Gaf Corporation | Photoconductive polymer and method of manufacture |
US4017407A (en) * | 1973-05-14 | 1977-04-12 | West Laboratories, Inc. | Methods for preparing solid iodine carrier mixtures and solid formulations of iodine with iodine carriers |
US4088597A (en) * | 1977-06-13 | 1978-05-09 | Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler | Iodophor solution |
US4094967A (en) * | 1976-10-22 | 1978-06-13 | Allor Foundation | Iodine-polyvinylpyrrolidone solid product and method of preparation |
US4125602A (en) * | 1974-12-02 | 1978-11-14 | Ciba-Geigy Corporation | Process for the production of iodophors |
US4200710A (en) * | 1978-04-28 | 1980-04-29 | Basf Aktiengesellschaft | Preparation of polyvinylpyrrolidone-iodine |
US4214059A (en) * | 1978-06-12 | 1980-07-22 | The Purdue Frederick Company | Method for the production of iodophor powders |
US4235884A (en) * | 1978-03-17 | 1980-11-25 | Nicolas Salkin | Method for the preparation of stable aqueous solutions of complexes of polyvinylpyrrolidone and of halogens and the solutions obtained thereby |
US4345049A (en) * | 1979-10-12 | 1982-08-17 | Basf Aktiengesellschaft | Preparation of polyvinylpyrrolidone-iodine |
US4402937A (en) * | 1979-10-18 | 1983-09-06 | Basf Aktiengesellschaft | Preparation of PVP-iodine |
US4521403A (en) * | 1983-01-20 | 1985-06-04 | Simon Gilbert I | Chemotherapeutic method for treating periodontal disease |
US4526751A (en) * | 1983-12-09 | 1985-07-02 | Gartner William J | Germicidal solutions effective for solid surface disinfection |
US4567036A (en) * | 1983-12-30 | 1986-01-28 | Simon Gilbert I | Chemotherapeutic method for treating periodontal disease, and composition therefore |
US4594392A (en) * | 1984-02-13 | 1986-06-10 | Ametek, Inc. - Plymouth Products Division | Synergistically stabilized mixed form halogenated and/or interhalogenated resins for disinfecting water |
US4769013A (en) * | 1982-09-13 | 1988-09-06 | Hydromer, Inc. | Bio-effecting medical material and device |
US4849215A (en) * | 1983-03-02 | 1989-07-18 | Euroceltique, S.A. | Pharmaceutical iodophor preparations with controlled iodine:iodide ratio and method of producing the same |
DE4013118A1 (en) * | 1989-04-28 | 1990-10-31 | Harbor Ucla Med Ct Res Educat | POVIDONE IODINE FOR OPHTHALMIC ANTIMICROBIAL PROPHYLAXIS IN NEWBORNS |
US5152987A (en) * | 1991-10-08 | 1992-10-06 | Isp Investments Inc. | Process for preparing water-insoluble PVP-iodine product |
WO1993006837A1 (en) * | 1991-10-08 | 1993-04-15 | Isp Investments Inc. | Process for preparing pvp-iodine product |
US5616348A (en) * | 1992-09-18 | 1997-04-01 | West Agro, Inc. | Germicidal detergent-iodine compositions including polyvinyl pyrrolidone and compatible nonionic surfactant complexors |
US5753699A (en) * | 1997-01-10 | 1998-05-19 | Medlogic Global Corporation | Methods for treating non-suturable, superficial wounds by use of cyanoacrylate ester compositions comprising an antimicrobial agent |
US5863556A (en) * | 1993-08-20 | 1999-01-26 | Euro-Celtique, S.A. | Preparations for the external application of antiseptic agents and/or agents promoting the healing of wounds |
US6090397A (en) * | 1997-11-03 | 2000-07-18 | Medlogic Global Corporation | Kits containing cyanoacrylate compositions comprising an antimicrobial agent |
US6475502B1 (en) | 1997-11-03 | 2002-11-05 | Flowers Park Ltd. | Kits containing cyanoacrylate compositions comprising an antimicrobial agent |
US6811771B1 (en) | 1999-04-27 | 2004-11-02 | Ebara Corporation | Bactericidal organic polymeric material |
US20040230309A1 (en) * | 2003-02-14 | 2004-11-18 | Depuy Spine, Inc. | In-situ formed intervertebral fusion device and method |
US6852233B1 (en) | 1999-04-27 | 2005-02-08 | Ebara Corporation | Metal-collecting apparatus and method for elution and recovery of metal from metal-collecting material |
US7297344B1 (en) | 1999-05-27 | 2007-11-20 | Euro-Celtique, S.A. | Preparations for the promotion of wound healing in the upper respiratory tract and/or ear |
US7300667B1 (en) | 1999-05-27 | 2007-11-27 | Euro-Celtique, S.A. | Preparations for the application of anti-inflammatory, especially antiseptic agents and/or agents promoting the healing of wounds, to the lower respiratory tract |
US20080038330A1 (en) * | 1998-05-27 | 2008-02-14 | Euro-Celtique S.A. | Preparations for the application of anti-inflammatory, especially antiseptic agents and/or agents promoting the healing of wounds of the lower respiratory tract |
US20080172032A1 (en) * | 2007-01-11 | 2008-07-17 | James Pitzer Gills | Method for preventing tissue damage associated with irrigation of tissue with an antimicrobial solution |
US7468194B1 (en) | 1999-05-27 | 2008-12-23 | Euro-Celtique, S.A. | Preparations for the application of anti-inflammatory agents |
WO2012003326A1 (en) | 2010-07-02 | 2012-01-05 | Wright Medical Technology, Inc. | Composition comprising calcium phosphate and sulfate powders and tri - calcium phosphate particles used in the treatment of degenerative bone conditions |
WO2012162557A1 (en) | 2011-05-24 | 2012-11-29 | Agienic, Inc. | Compositions and methods for antimicrobial metal nanoparticles |
US20130280203A1 (en) * | 2011-01-07 | 2013-10-24 | Yu Wang | High stable non-ionic n-vinyl butyrolactam iodine and preparation method thereof |
US20140205559A1 (en) * | 2011-05-11 | 2014-07-24 | Alc Therapeutics, Llc | Antifungal compositions for the treatment of skin and nails |
WO2015089373A1 (en) | 2013-12-13 | 2015-06-18 | Wright Medical Technology, Inc. | Multiphasic bone graft substitute material |
US9155709B1 (en) | 2014-11-13 | 2015-10-13 | Hugh A. House, Sr. | Buffered hydroalcoholic povidone iodine composition and method |
US9320614B2 (en) | 2006-07-31 | 2016-04-26 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US9801725B2 (en) | 2009-12-09 | 2017-10-31 | DePuy Synthes Products, Inc. | Aspirating implants and method of bony regeneration |
WO2019046844A1 (en) | 2017-09-02 | 2019-03-07 | Iview Therapeutics, Inc. | In situ gel-forming pharmaceutical compositions and uses thereof for sinus diseases |
US10238500B2 (en) | 2002-06-27 | 2019-03-26 | DePuy Synthes Products, Inc. | Intervertebral disc |
WO2020122717A1 (en) | 2018-12-11 | 2020-06-18 | X-Infex B.V. | Biocidal polyamide-compositions, methods for preparing the same and uses thereof |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
US10966840B2 (en) | 2010-06-24 | 2021-04-06 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US10973652B2 (en) | 2007-06-26 | 2021-04-13 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
WO2021155165A1 (en) | 2020-01-31 | 2021-08-05 | Wright Medical Technology, Inc. | Improved bone graft substitute formulation |
WO2021225443A1 (en) | 2020-05-08 | 2021-11-11 | X-Infex B.V. | Biocidal polyurethane systems, methods for their preparation and uses thereof |
US11273050B2 (en) | 2006-12-07 | 2022-03-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US20220233981A1 (en) * | 2021-01-27 | 2022-07-28 | John Ruszkowski | Air Filter Inactivation of Viruses and Micro-organisms |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
US11446155B2 (en) | 2017-05-08 | 2022-09-20 | Medos International Sarl | Expandable cage |
US11452607B2 (en) | 2010-10-11 | 2022-09-27 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US11497619B2 (en) | 2013-03-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
US11596523B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable articulating intervertebral cages |
US11602438B2 (en) | 2008-04-05 | 2023-03-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11607321B2 (en) | 2009-12-10 | 2023-03-21 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US11612491B2 (en) | 2009-03-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US11612493B2 (en) | 2003-06-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Intervertebral implant with conformable endplate |
US11654033B2 (en) | 2010-06-29 | 2023-05-23 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
US11737881B2 (en) | 2008-01-17 | 2023-08-29 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11911287B2 (en) | 2010-06-24 | 2024-02-27 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
USRE49973E1 (en) | 2013-02-28 | 2024-05-21 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2077298A (en) * | 1934-03-31 | 1937-04-13 | Eastman Kodak Co | Process for the extraction of halogen from fluids |
US2121029A (en) * | 1934-12-15 | 1938-06-21 | William R Warner & Co Inc | Germicides and processes for making the same |
US2329445A (en) * | 1940-03-28 | 1943-09-14 | American Dairles Inc | Thyroprotein and method of making the same |
US2495918A (en) * | 1948-08-28 | 1950-01-31 | Du Pont | Poly-n-vinyl lactam photographic silver halide emulsions |
-
0
- BE BE615889D patent/BE615889A/xx unknown
-
1952
- 1952-04-15 US US282458A patent/US2706701A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2077298A (en) * | 1934-03-31 | 1937-04-13 | Eastman Kodak Co | Process for the extraction of halogen from fluids |
US2121029A (en) * | 1934-12-15 | 1938-06-21 | William R Warner & Co Inc | Germicides and processes for making the same |
US2329445A (en) * | 1940-03-28 | 1943-09-14 | American Dairles Inc | Thyroprotein and method of making the same |
US2495918A (en) * | 1948-08-28 | 1950-01-31 | Du Pont | Poly-n-vinyl lactam photographic silver halide emulsions |
Cited By (144)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2826532A (en) * | 1952-04-15 | 1958-03-11 | Gen Aniline & Film Corp | Process of stabilizing polyvinyl pyrrolidone-iodine compositions |
US2900305A (en) * | 1952-04-15 | 1959-08-18 | Gen Aniline & Film Corp | Preparation of iodine polyvinylpyrrolidone adducts |
US2754245A (en) * | 1954-09-23 | 1956-07-10 | Gen Aniline & Film Corp | Interhalogen adducts of polyvinyl pyrrolidone |
US2853416A (en) * | 1955-09-19 | 1958-09-23 | Gen Aniline & Film Corp | Method of protecting plants by applying a pesticidal amount of a polyvinylpyrrolidone-iodine adduct |
US2853417A (en) * | 1955-09-19 | 1958-09-23 | Gen Aniline & Film Corp | Method of controlling plant pests with an iodine adduct of a copolymer of nu-vinyl pyrrolidone and a polymerizable vinyl compound containing one aliphatic double bond |
DE1061075B (en) * | 1955-09-19 | 1959-07-09 | Gen Aniline & Film Corp | Process for the production of soluble addition products from iodine and polymers |
US2964447A (en) * | 1956-04-10 | 1960-12-13 | Gen Aniline & Film Corp | Polymer-metal process |
US3087853A (en) * | 1956-07-02 | 1963-04-30 | Gen Aniline & Film Corp | Water soluble compositions consisting essentially of iodine and a water soluble oxygen containing polymer |
US2987505A (en) * | 1958-03-04 | 1961-06-06 | Gen Aniline & Film Corp | Compositions of polymeric nu-vinyl-2-oxazolidone and halogens |
US3133904A (en) * | 1959-05-22 | 1964-05-19 | Dow Chemical Co | Molecular complexes of halogen and cyclic carbamate |
US3028300A (en) * | 1960-09-13 | 1962-04-03 | West Laboratories Inc | Germicidal compositions and methods for preparing the same |
US3136755A (en) * | 1960-12-01 | 1964-06-09 | Gen Aniline & Film Corp | Insoluble polymeric-iodine complexes |
US3437647A (en) * | 1966-02-07 | 1969-04-08 | Gaf Corp | Halogen adducts of alkylated polymers of heterocyclic n-vinyl monomers |
US3898326A (en) * | 1973-05-14 | 1975-08-05 | West Laboratories Inc | Polyvinylpyrrolidone-iodide compositions and polyvinylpyrrolidone-iodide-iodine complexes prepared therefrom |
US4017407A (en) * | 1973-05-14 | 1977-04-12 | West Laboratories, Inc. | Methods for preparing solid iodine carrier mixtures and solid formulations of iodine with iodine carriers |
DE2443530A1 (en) * | 1973-09-14 | 1975-03-27 | Ciba Geigy Ag | DISINFECTION AND DISINFECTION OF MUSSELS, CRUSTACEA AND FISH |
US3958026A (en) * | 1973-09-14 | 1976-05-18 | Ciba-Geigy Corporation | Disinfection and sterilisation of mussels, crustacea and fish |
US4125602A (en) * | 1974-12-02 | 1978-11-14 | Ciba-Geigy Corporation | Process for the production of iodophors |
US4009326A (en) * | 1975-07-31 | 1977-02-22 | Gaf Corporation | Photoconductive polymer and method of manufacture |
US4094967A (en) * | 1976-10-22 | 1978-06-13 | Allor Foundation | Iodine-polyvinylpyrrolidone solid product and method of preparation |
US4088597A (en) * | 1977-06-13 | 1978-05-09 | Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler | Iodophor solution |
US4235884A (en) * | 1978-03-17 | 1980-11-25 | Nicolas Salkin | Method for the preparation of stable aqueous solutions of complexes of polyvinylpyrrolidone and of halogens and the solutions obtained thereby |
US4200710A (en) * | 1978-04-28 | 1980-04-29 | Basf Aktiengesellschaft | Preparation of polyvinylpyrrolidone-iodine |
US4214059A (en) * | 1978-06-12 | 1980-07-22 | The Purdue Frederick Company | Method for the production of iodophor powders |
US4345049A (en) * | 1979-10-12 | 1982-08-17 | Basf Aktiengesellschaft | Preparation of polyvinylpyrrolidone-iodine |
US4402937A (en) * | 1979-10-18 | 1983-09-06 | Basf Aktiengesellschaft | Preparation of PVP-iodine |
US4769013A (en) * | 1982-09-13 | 1988-09-06 | Hydromer, Inc. | Bio-effecting medical material and device |
US4521403A (en) * | 1983-01-20 | 1985-06-04 | Simon Gilbert I | Chemotherapeutic method for treating periodontal disease |
US4849215A (en) * | 1983-03-02 | 1989-07-18 | Euroceltique, S.A. | Pharmaceutical iodophor preparations with controlled iodine:iodide ratio and method of producing the same |
US4526751A (en) * | 1983-12-09 | 1985-07-02 | Gartner William J | Germicidal solutions effective for solid surface disinfection |
US4567036A (en) * | 1983-12-30 | 1986-01-28 | Simon Gilbert I | Chemotherapeutic method for treating periodontal disease, and composition therefore |
US4594392A (en) * | 1984-02-13 | 1986-06-10 | Ametek, Inc. - Plymouth Products Division | Synergistically stabilized mixed form halogenated and/or interhalogenated resins for disinfecting water |
DE4013118C2 (en) * | 1989-04-28 | 1998-04-09 | Res & Education Inst Inc | Use of povidone iodine for ophthalmic antimicrobial prophylaxis in newborns |
DE4013118A1 (en) * | 1989-04-28 | 1990-10-31 | Harbor Ucla Med Ct Res Educat | POVIDONE IODINE FOR OPHTHALMIC ANTIMICROBIAL PROPHYLAXIS IN NEWBORNS |
US5152987A (en) * | 1991-10-08 | 1992-10-06 | Isp Investments Inc. | Process for preparing water-insoluble PVP-iodine product |
WO1993006837A1 (en) * | 1991-10-08 | 1993-04-15 | Isp Investments Inc. | Process for preparing pvp-iodine product |
US5616348A (en) * | 1992-09-18 | 1997-04-01 | West Agro, Inc. | Germicidal detergent-iodine compositions including polyvinyl pyrrolidone and compatible nonionic surfactant complexors |
US5863556A (en) * | 1993-08-20 | 1999-01-26 | Euro-Celtique, S.A. | Preparations for the external application of antiseptic agents and/or agents promoting the healing of wounds |
US5753699A (en) * | 1997-01-10 | 1998-05-19 | Medlogic Global Corporation | Methods for treating non-suturable, superficial wounds by use of cyanoacrylate ester compositions comprising an antimicrobial agent |
US6090397A (en) * | 1997-11-03 | 2000-07-18 | Medlogic Global Corporation | Kits containing cyanoacrylate compositions comprising an antimicrobial agent |
US6475502B1 (en) | 1997-11-03 | 2002-11-05 | Flowers Park Ltd. | Kits containing cyanoacrylate compositions comprising an antimicrobial agent |
US20080038330A1 (en) * | 1998-05-27 | 2008-02-14 | Euro-Celtique S.A. | Preparations for the application of anti-inflammatory, especially antiseptic agents and/or agents promoting the healing of wounds of the lower respiratory tract |
US6811771B1 (en) | 1999-04-27 | 2004-11-02 | Ebara Corporation | Bactericidal organic polymeric material |
US6852233B1 (en) | 1999-04-27 | 2005-02-08 | Ebara Corporation | Metal-collecting apparatus and method for elution and recovery of metal from metal-collecting material |
US7297344B1 (en) | 1999-05-27 | 2007-11-20 | Euro-Celtique, S.A. | Preparations for the promotion of wound healing in the upper respiratory tract and/or ear |
US7300667B1 (en) | 1999-05-27 | 2007-11-27 | Euro-Celtique, S.A. | Preparations for the application of anti-inflammatory, especially antiseptic agents and/or agents promoting the healing of wounds, to the lower respiratory tract |
US7468194B1 (en) | 1999-05-27 | 2008-12-23 | Euro-Celtique, S.A. | Preparations for the application of anti-inflammatory agents |
US10238500B2 (en) | 2002-06-27 | 2019-03-26 | DePuy Synthes Products, Inc. | Intervertebral disc |
US9925060B2 (en) | 2003-02-14 | 2018-03-27 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US11096794B2 (en) | 2003-02-14 | 2021-08-24 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10639164B2 (en) | 2003-02-14 | 2020-05-05 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10583013B2 (en) | 2003-02-14 | 2020-03-10 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10575959B2 (en) | 2003-02-14 | 2020-03-03 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10555817B2 (en) | 2003-02-14 | 2020-02-11 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10492918B2 (en) | 2003-02-14 | 2019-12-03 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10433971B2 (en) | 2003-02-14 | 2019-10-08 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10420651B2 (en) | 2003-02-14 | 2019-09-24 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9333091B2 (en) | 2003-02-14 | 2016-05-10 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10405986B2 (en) | 2003-02-14 | 2019-09-10 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10376372B2 (en) | 2003-02-14 | 2019-08-13 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9439777B2 (en) | 2003-02-14 | 2016-09-13 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9439776B2 (en) | 2003-02-14 | 2016-09-13 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10786361B2 (en) | 2003-02-14 | 2020-09-29 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9724207B2 (en) | 2003-02-14 | 2017-08-08 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9730803B2 (en) | 2003-02-14 | 2017-08-15 | DePuy Synthes Products, Inc. | Method of in-situ formation of an intervertebral fusion device |
US20040230309A1 (en) * | 2003-02-14 | 2004-11-18 | Depuy Spine, Inc. | In-situ formed intervertebral fusion device and method |
US9788963B2 (en) | 2003-02-14 | 2017-10-17 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US11207187B2 (en) | 2003-02-14 | 2021-12-28 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9801729B2 (en) | 2003-02-14 | 2017-10-31 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9808351B2 (en) | 2003-02-14 | 2017-11-07 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9814589B2 (en) | 2003-02-14 | 2017-11-14 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9814590B2 (en) | 2003-02-14 | 2017-11-14 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US11432938B2 (en) | 2003-02-14 | 2022-09-06 | DePuy Synthes Products, Inc. | In-situ intervertebral fusion device and method |
US10085843B2 (en) | 2003-02-14 | 2018-10-02 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US11612493B2 (en) | 2003-06-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Intervertebral implant with conformable endplate |
US9320614B2 (en) | 2006-07-31 | 2016-04-26 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US9387091B2 (en) | 2006-07-31 | 2016-07-12 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US10695191B2 (en) | 2006-07-31 | 2020-06-30 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US9737413B2 (en) | 2006-07-31 | 2017-08-22 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US10010428B2 (en) | 2006-07-31 | 2018-07-03 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US9713538B2 (en) | 2006-07-31 | 2017-07-25 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US11642229B2 (en) | 2006-12-07 | 2023-05-09 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11273050B2 (en) | 2006-12-07 | 2022-03-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11497618B2 (en) | 2006-12-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11660206B2 (en) | 2006-12-07 | 2023-05-30 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11712345B2 (en) | 2006-12-07 | 2023-08-01 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11432942B2 (en) | 2006-12-07 | 2022-09-06 | DePuy Synthes Products, Inc. | Intervertebral implant |
US20080172032A1 (en) * | 2007-01-11 | 2008-07-17 | James Pitzer Gills | Method for preventing tissue damage associated with irrigation of tissue with an antimicrobial solution |
US11622868B2 (en) | 2007-06-26 | 2023-04-11 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US10973652B2 (en) | 2007-06-26 | 2021-04-13 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US11737881B2 (en) | 2008-01-17 | 2023-08-29 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US11617655B2 (en) | 2008-04-05 | 2023-04-04 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11712342B2 (en) | 2008-04-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US12023255B2 (en) | 2008-04-05 | 2024-07-02 | DePuy Synthes Products, Inc. | Expandable inter vertebral implant |
US12011361B2 (en) | 2008-04-05 | 2024-06-18 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11602438B2 (en) | 2008-04-05 | 2023-03-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11701234B2 (en) | 2008-04-05 | 2023-07-18 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11707359B2 (en) | 2008-04-05 | 2023-07-25 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11712341B2 (en) | 2008-04-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US12097124B2 (en) | 2009-03-30 | 2024-09-24 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US11612491B2 (en) | 2009-03-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US10342662B2 (en) | 2009-12-09 | 2019-07-09 | DePuy Synthes Products, Inc. | Aspirating implants and method of bony regeneration |
US9801725B2 (en) | 2009-12-09 | 2017-10-31 | DePuy Synthes Products, Inc. | Aspirating implants and method of bony regeneration |
US11607321B2 (en) | 2009-12-10 | 2023-03-21 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US11911287B2 (en) | 2010-06-24 | 2024-02-27 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
US11872139B2 (en) | 2010-06-24 | 2024-01-16 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US10966840B2 (en) | 2010-06-24 | 2021-04-06 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US11654033B2 (en) | 2010-06-29 | 2023-05-23 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
WO2012003326A1 (en) | 2010-07-02 | 2012-01-05 | Wright Medical Technology, Inc. | Composition comprising calcium phosphate and sulfate powders and tri - calcium phosphate particles used in the treatment of degenerative bone conditions |
EP2987507A1 (en) | 2010-07-02 | 2016-02-24 | Agnovos Healthcare, LLC | Methods of treating degenerative bone conditions |
EP4186534A1 (en) | 2010-07-02 | 2023-05-31 | Agnovos Healthcare, LLC | Methods of treating degenerative bone conditions |
US11452607B2 (en) | 2010-10-11 | 2022-09-27 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US20130280203A1 (en) * | 2011-01-07 | 2013-10-24 | Yu Wang | High stable non-ionic n-vinyl butyrolactam iodine and preparation method thereof |
US20180368402A1 (en) * | 2011-01-07 | 2018-12-27 | Shanghai Yuking Water Soluble Material Tech Co., Ltd. | High stability non-ionic n-vinyl butyrolactam iodine and preparation method therefor |
US9408867B2 (en) * | 2011-05-11 | 2016-08-09 | Veloce Biopharma, Llc | Antifungal compositions for the treatment of skin and nails |
US20140205559A1 (en) * | 2011-05-11 | 2014-07-24 | Alc Therapeutics, Llc | Antifungal compositions for the treatment of skin and nails |
WO2012162557A1 (en) | 2011-05-24 | 2012-11-29 | Agienic, Inc. | Compositions and methods for antimicrobial metal nanoparticles |
USRE49973E1 (en) | 2013-02-28 | 2024-05-21 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US11497619B2 (en) | 2013-03-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11850164B2 (en) | 2013-03-07 | 2023-12-26 | DePuy Synthes Products, Inc. | Intervertebral implant |
EP3269399A1 (en) | 2013-12-13 | 2018-01-17 | Agnovos Healthcare, LLC | Multiphasic bone graft substitute material |
WO2015089373A1 (en) | 2013-12-13 | 2015-06-18 | Wright Medical Technology, Inc. | Multiphasic bone graft substitute material |
US9155709B1 (en) | 2014-11-13 | 2015-10-13 | Hugh A. House, Sr. | Buffered hydroalcoholic povidone iodine composition and method |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US11596522B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable intervertebral cages with articulating joint |
US11596523B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable articulating intervertebral cages |
US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
US11446155B2 (en) | 2017-05-08 | 2022-09-20 | Medos International Sarl | Expandable cage |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
WO2019046844A1 (en) | 2017-09-02 | 2019-03-07 | Iview Therapeutics, Inc. | In situ gel-forming pharmaceutical compositions and uses thereof for sinus diseases |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
WO2020122717A1 (en) | 2018-12-11 | 2020-06-18 | X-Infex B.V. | Biocidal polyamide-compositions, methods for preparing the same and uses thereof |
WO2021155165A1 (en) | 2020-01-31 | 2021-08-05 | Wright Medical Technology, Inc. | Improved bone graft substitute formulation |
US11806245B2 (en) | 2020-03-06 | 2023-11-07 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
WO2021225443A1 (en) | 2020-05-08 | 2021-11-11 | X-Infex B.V. | Biocidal polyurethane systems, methods for their preparation and uses thereof |
US20220233981A1 (en) * | 2021-01-27 | 2022-07-28 | John Ruszkowski | Air Filter Inactivation of Viruses and Micro-organisms |
US12076675B2 (en) * | 2021-01-27 | 2024-09-03 | John Ruszkowski | Air filter inactivation of viruses and micro-organisms |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US12023258B2 (en) | 2021-04-06 | 2024-07-02 | Medos International Sarl | Expandable intervertebral fusion cage |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
Also Published As
Publication number | Publication date |
---|---|
BE615889A (en) | 1900-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2706701A (en) | Process for the preparation of iodinepolyvinylpyrrolidone by dry mixing | |
US2826532A (en) | Process of stabilizing polyvinyl pyrrolidone-iodine compositions | |
US2900305A (en) | Preparation of iodine polyvinylpyrrolidone adducts | |
US2183173A (en) | Method of treating salt and resulting product | |
US2000807A (en) | Readily water soluble dry alginate | |
US2647064A (en) | Method of improving the cold-water solubility of a fibrous cellulose ether | |
US2720464A (en) | Method of preparing cold-water-soluble powdered cellulose ethers | |
US3879567A (en) | Method of preparing a dried honey tablet | |
US3096291A (en) | Process of preparing dry granular compositions | |
US2498174A (en) | Aluminum hexacarbamide periodide as water disinfectant | |
KR860001541A (en) | Gelatin Dessert Mix Soluble in Cold Water and Manufacturing Method | |
US1411204A (en) | Method of preparing starch conversion products | |
US2962416A (en) | Stabilizing agents for bordeaux mixture | |
US3210321A (en) | Polyethylene stabilized with nitrates | |
CN108275692A (en) | It is a kind of that Ti is synthesized using Pb fluxing agents3B2The method of N | |
US2964447A (en) | Polymer-metal process | |
US2029264A (en) | Manufacture of calcium arsenate insecticides | |
US3272593A (en) | Process of reducing the cake-forming tendency of potassium chloride and composition containing same | |
US1422337A (en) | Oxysalt composition | |
US1646157A (en) | Dry-powdered jelly base containing pectin and sugar and process of making same | |
US3897248A (en) | Production of photoconductive zinc oxide | |
US2583558A (en) | Octaglycine dihydroheptiodide and methods of making the same | |
US169925A (en) | Improvement in compositions for the destruction of vermin | |
US1312783A (en) | Process and product for utilizing niter cake and similar substances | |
US639805A (en) | Fertilizing compound |