US2740522A - Flotation of ores using addition polymers as depressants - Google Patents
Flotation of ores using addition polymers as depressants Download PDFInfo
- Publication number
- US2740522A US2740522A US347414A US34741453A US2740522A US 2740522 A US2740522 A US 2740522A US 347414 A US347414 A US 347414A US 34741453 A US34741453 A US 34741453A US 2740522 A US2740522 A US 2740522A
- Authority
- US
- United States
- Prior art keywords
- concentrate
- flotation
- per ton
- ore
- gangue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000642 polymer Polymers 0.000 title claims description 51
- 238000005188 flotation Methods 0.000 title description 31
- 238000000034 method Methods 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 6
- 230000000994 depressogenic effect Effects 0.000 claims description 6
- 238000009291 froth flotation Methods 0.000 claims description 5
- 239000012141 concentrate Substances 0.000 description 48
- 239000011133 lead Substances 0.000 description 23
- 229910052725 zinc Inorganic materials 0.000 description 23
- 239000011701 zinc Substances 0.000 description 23
- 238000012360 testing method Methods 0.000 description 20
- 229910052802 copper Inorganic materials 0.000 description 18
- 239000010949 copper Substances 0.000 description 18
- 238000011084 recovery Methods 0.000 description 18
- 229920002239 polyacrylonitrile Polymers 0.000 description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 16
- 229910052500 inorganic mineral Inorganic materials 0.000 description 15
- 239000011707 mineral Substances 0.000 description 15
- 235000010755 mineral Nutrition 0.000 description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 14
- 159000000000 sodium salts Chemical class 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 12
- 239000010937 tungsten Substances 0.000 description 12
- 229910052721 tungsten Inorganic materials 0.000 description 12
- 229920001577 copolymer Polymers 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- 230000001143 conditioned effect Effects 0.000 description 9
- 229910052745 lead Inorganic materials 0.000 description 9
- 239000007787 solid Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000004115 Sodium Silicate Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 7
- 229910052911 sodium silicate Inorganic materials 0.000 description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 5
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 5
- 239000010428 baryte Substances 0.000 description 5
- 229910052601 baryte Inorganic materials 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000000881 depressing effect Effects 0.000 description 5
- 239000010436 fluorite Substances 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- -1 unsaturated aliphatic monocarboxylic acids Chemical class 0.000 description 5
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000004584 polyacrylic acid Substances 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- 229910021532 Calcite Inorganic materials 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 235000017343 Quebracho blanco Nutrition 0.000 description 3
- 241000065615 Schinopsis balansae Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- 159000000007 calcium salts Chemical class 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000194 fatty acid Chemical class 0.000 description 3
- 229930195729 fatty acid Chemical class 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 235000019731 tricalcium phosphate Nutrition 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 2
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 210000002683 foot Anatomy 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- JQJCSZOEVBFDKO-UHFFFAOYSA-N lead zinc Chemical compound [Zn].[Pb] JQJCSZOEVBFDKO-UHFFFAOYSA-N 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000002367 phosphate rock Substances 0.000 description 2
- 239000010665 pine oil Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 2
- 229910052683 pyrite Inorganic materials 0.000 description 2
- 239000011028 pyrite Substances 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- RIJDNATVAMLZRB-UHFFFAOYSA-M sodium;oxido-propan-2-yloxy-propan-2-ylsulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound [Na+].CC(C)OP([O-])(=S)SC(C)C RIJDNATVAMLZRB-UHFFFAOYSA-M 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 239000003784 tall oil Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000012991 xanthate Substances 0.000 description 2
- KFCDDRTYJQZGKK-UHFFFAOYSA-N 2-methylprop-2-enoic acid;prop-2-enenitrile Chemical compound C=CC#N.CC(=C)C(O)=O KFCDDRTYJQZGKK-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 208000025370 Middle East respiratory syndrome Diseases 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 229910020169 SiOa Inorganic materials 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- FRJPMACLLPQSPI-UHFFFAOYSA-N azanium;(4-methylphenoxy)-(4-methylphenyl)sulfanyl-oxido-sulfanylidene-$l^{5}-phosphane Chemical compound [NH4+].C1=CC(C)=CC=C1OP([O-])(=S)SC1=CC=C(C)C=C1 FRJPMACLLPQSPI-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical class OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- YWKRHBQKXDIZSH-UHFFFAOYSA-N ethenyl acetate;2-methylprop-2-enenitrile;prop-2-enenitrile Chemical compound C=CC#N.CC(=C)C#N.CC(=O)OC=C YWKRHBQKXDIZSH-UHFFFAOYSA-N 0.000 description 1
- ZOOODBUHSVUZEM-UHFFFAOYSA-N ethoxymethanedithioic acid Chemical compound CCOC(S)=S ZOOODBUHSVUZEM-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910001608 iron mineral Inorganic materials 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 125000005608 naphthenic acid group Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229920005989 resin Chemical class 0.000 description 1
- 239000011347 resin Chemical class 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- PHLSTZGDRQZNJF-UHFFFAOYSA-M sodium;butan-2-yloxy-butan-2-ylsulfanyl-oxido-sulfanylidene-$l^{5}-phosphane Chemical compound [Na+].CCC(C)OP([O-])(=S)SC(C)CC PHLSTZGDRQZNJF-UHFFFAOYSA-M 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/004—Organic compounds
- B03D1/016—Macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2201/00—Specified effects produced by the flotation agents
- B03D2201/02—Collectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2201/00—Specified effects produced by the flotation agents
- B03D2201/06—Depressants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2203/00—Specified materials treated by the flotation agents; Specified applications
- B03D2203/02—Ores
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S209/00—Classifying, separating, and assorting solids
- Y10S209/901—Froth flotation; copper
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S210/00—Liquid purification or separation
- Y10S210/902—Materials removed
- Y10S210/906—Phosphorus containing
- Y10S210/907—Phosphate slimes
Definitions
- This invention relates to froth flotation and more particularly to the flotation of ores having ganguc slimes.
- gangue constituents present as slimes which interfere with flotation of the desired mineral values.
- the presence of gangue or slimy materials creates difiiculties in flotation by reason of contamination of the concentrate by the gangue or by the action of the gangue on the mineral values which prevents their flotation and hence reduces recoveries.
- the slimes are present as ordinary gangue minerals of a siliceous nature, while in other ores a carbonaceous gangue is present.
- colloids In the past, dextrin, sodium silicate, glue and other organic protective colloids have commonly been used for the depression of gaugue during flotation. These colloids are frequently deflocculating agents and function to keep the slimy gangues in a highly dispersed state so as not to interfere with the flotation of the mineral values. Such colloids, while in widespread use, are not completely satisfactory, however, because they frequently cause the depression of certain of the desirable constituents of the ore as Well as the gangue and hence decrease recoveries of the valuable mineral values.
- froth flotation of ores is greatly improved when it is carried out in the presence as a gangue depressant of water-soluble anionic, linear, addition polymers of a monoethylenically unsaturated compound, and Water soluble salts thereof, having an average molecular weight of at least 10,000.
- the linear, addition polymers and salts act as selective depressants for the gangue slimes without depressing to any appreciable extent, and thus preventing the recovery of, the desired mineral values.
- slight losses in recovery are taken occasionally but in such cases the economic advantages of the high concentrate grade far outweigh the losses of recovery. Losses incurred by the use of the polymers of the present invention are considerably less than with ganguc depressants in use atthe present time.
- gangue slimes of the most varied types of ores such as siliceous gangue present in metallic or sulfide ores, for example, lead, zinc, copper, pyrite, lead-zinc ores, precious metal ores, etc. It is also applicable to the various gangues present in non-metallic ores such as, for example, those of tungsten, manganese, barite, fluorspar, limestone and phosphate rock. Talcs, micas, clays, sericites, limonites, fine carbon and on occasion fine calcite are examples of gangues which interfere with flotation especially when these are present as slimes, and other minerals when in the form of slimes frequently are harmful.
- the linear, addition polymers or salts may be added at any convenient point in the ore treatment operation.
- they may be introduced prior to and/or during the flotation operation.
- the point at which they are introduced may frequently depend on the particular ore being floated. Good results have been obtained when the polymers have been added to the grinding operation or to the conditioning step prior to flotation.
- the polymers have been introduced into flotation circuits at the start and/or during flotation operations. Stage feeding during flotation has been very effective.
- the polymers are generally fed as solutions but may be added in dry form or as concentrated gels, if so desired.
- water-soluble, anionic, linear, addition polymers of a monoethylenically unsaturated compound are polymers of unsaturated aliphatic monocarboxylic acids, such as acrylic acid, methacrylic acid, vinyl acetic acid, etc., and water-soluble salts thereof. These polymers may be obtained by polymerizing the acid itself or by polymerizing derivatives having groups which are hydrolyzable to acids, such as, for example, acrylonitrile, acrylamide, esters of acrylic and methacrylic acid, etc.
- the unsaturated monocarboxylic acids may be polymerized by themselves to form homopolymers or they may be copolymerized with compounds such as vinyl pyridine, vinyl acetate, styrene, vinyl ethers, vinyl halides, or even unsaturated hydrocarbons such as isobutylene. Polymers of polybasic unsaturated acids are also included, although here it is diflicult to obtain a homopolymer. For example, maleic anhydride itself will not polymerize, but it copolymerizes readily with such materials as styrene, vinyl acetate, acrylates and the like.
- polymers and water-soluble salts thereof useful in the practice of the present invention are hydrolyzed polyacrylonitrile, polyacrylamide, polyacrylic acid, /2 calcium salt of hydrolyzed 1:1 copolymer of -vinyl acetate-maleic anhydride, hydrolyzed styrene-maleic mer, isobutylene-rnaleic anhydride copolymer, styrenemaleic anhydride copolymer, ethyl acrylate-maleic anhydride copolymer, vinyl chloride-maleic anhydride copolymer, hydrolyzed acrylonitrile-vinyl acetate copolymer, hydrolyzed acrylonitriie-methacrylonitrile copolymer, hydrolyzed acrylonitrile-methacrylonitrile-vinyl acetate terpolymer, hydrolyzed acrylonitrile-methacrylic acid'co'polyrner, vinyl pyridine-
- addition polymers are those which are obtained by hydrolyzing'polymeric material containing polyacrylonitrile. These compoundsare'cheap and give ex'cellentresttlts.
- the polymer ' may be a 'hornopolymer or the acrylonitrile may be copolymerized with small amounts of othermaterials; suchas vinyl pyridine, acrylic esters and'the like; It'should be n'oted'that the products obtained by hydrolyzing' polymers such-as polyacrylonitriles are not completely identicalwith the corresponding polymers obtained by poly rnerizing acrylic acid. Both types are, however, useful in the present invention.
- the homopolymer of acrylonitrile is somewhat cheaper to make than the copolymers
- the water-soluble polymers and water-soluble salts thereof as described hereinabove may be added to the ores being floated in amounts ranging from 0.001 lb. ton to 1.0 lb. ton but it has been found that with most ores optimum results are obtained by the'usc of 0.01 lb./ton to 0.2 lb./ tOn'.
- the molecular weightof the linear, addition polymer is of some importance in selectively depressing the gangue constituents of the ores. Itappears that the molecular weight should be at least about 10,000 in order to secure the desired results.
- the upper molecular weight limit does not appear to be at all critical and is set only by the practical difiiculty of making extremely highly polymerized polymers. Polymers having molecular weights ranging upward to about 500,000 appear to be quite satisfactory in the practice of the present invention. Those polymers having molecular weights much in excess of 500,000 are difficult to get into solution or to form dispersions thereof in water. Thus, theinsoluble ornon-dispersible polymers are not included herein. water-dispersible it is operable in carrying outthe present invention.
- a suitable mineral collector must be used in the frothfiotation process.
- suitable anionic prornotets such as the xanthates, dithiophosphates, naphthenic acids, fatty acids, resin acids and mixtures thereof, the alkali s'oaps' of such acids and their mixtures may be suitably'e'mployed.
- Cationic reagents such as longchain amines and amine derivatives may suitably be employed when the ore being treated is of the type that responds to such agents.
- Hydrocarbon oils and frothers such as pine o'il, cresylic acids, higher alcohols and other frothing' agents may also be used.
- Example 1 A sulfide lead-zinc ore containing 3.7% Pb and 6.0% Zn in a siliceous gangue was ground to 20% plus 200 mesh in the presence of 0.25 lb. per ton of sodium cyanide and 1.5 lb. per ton zinc sulfate. The resulting pulp was diluted to about 22% solids and conditioned.with.-0.l0.lb.per ton ammonium dicresyl dithiophosphate and 0i05"lb; p'er ton of a higher alcohol frother.
- the lead sulfides were then floated off to produce a concentrate which-assayed 24.75% Pb and 4.59% Zn and contained 98.2% :of the total lead and 10.5% of the total zinc.
- Thetailingfrom the lead flotation was conditioned with. 2.5. lb. per ton lime, 1.0 lb. per ton copper sulfate'and 0.1 lb. per ton technical sodium diisopropyl dithiophosphate and 0.05 lb. per ton of a higher alcohol frother.
- The-tailing was then iioated to remove zinc, producing a concentrate assaying 0.36% Pb and 39.8% Znand containing 1.2% ofrthe total lead and 79.7% of the total zinc.
- The-final flotation tailing assayed 0.03% Pb andv 0.86% Zn.
- Example 2 Flotation tests were conducted on a gold bearing pyrite ore containing 0.5 02. Au per ton. This ore which contained a feldspar-granite gangue was ground to 2.4% meshand floated with 0.1 pound per ton sodium secondary butyI xanthate and 0.1 pound per ton of a 1:1 mixture. of pine oil and a higher alcohol as frother.
- the metal lurgical results are given in the following table. In the first test, no polymer was used. In the next 3 tests, the sodium salt of hydrolyzed polyacrylonitrile was used in amounts ranging from 0.01 to 0.10 lb. per ton.
- Example 3 5 lead was recovered in a concentrate assaying 57.8% Pb.
- the flotation tailing in this test contained 0.35% Pb.
- Example 4 A sulfide zinc ore from the southeastern part of the United States was ground at 60% solids, diluted to about 20% solids and conditioned with 0.5 lb. per ton of copper sulfate, 0.025 lb. per ton technical sodium diisopropyl dithiophosphate and 0.12 lb. per ton pine oil. The zinc was then floated off as a concentrate assaying 41.7% Zn and containing 96.1% of the total zinc contained in the ore.
- Example 5 A sample of porphyry copper ore (0.8% Cu) was ground to minus 65 mesh in the presence of 0.1 lb. per ton of the sodium salt of hydrolyzed polyacrylonitrile, 1.5 lb. per ton lime, 0.04 lb. per ton technical sodium disecondary butyl dithiophosphate and 0.075 lb. per ton of higher alcohol frother. The ore was floated to produce a copper concentrate which assayed 22.1% Cu and contained 80.0% of the total copper. In a control test in which the polymer was omitted from the grind, a copper concentrate was produced which assayed 14.2% copper and contained 80.3% of the total copper in the ore. The main diluent in the copper concentrate in this test was fine gangue minerals.
- Example 6 A second copper ore similar to that used in Example 5 was also treated with 0.1 lb./ton of various polymers and water-soluble salts and the above-mentioned lime-frother dithiophosphate combination in a series of separate tests and floated to produce a copper concentrate.
- the polymers used together with the recovery of copper and concentrate grade in each test are listed 1n the following table:
- Example 7 A tungsten ore in which various tungsten minerals were associated with a siliceous gangue was ground to pass mesh. This ore contained 0.9% W03. The pulp, after grinding, was conditioned with 5.0 lb. per ton sodium silicate, 8.0 lb. per ton sodium carbonate, 0.15 lb. per ton quebracho, 1.5 lb. per ton sodium resinate, and 1.2 1b.
- Example 8 A tungsten ore (0.4% W03) containing various tungsten materials and a gangue composed of garnet, limonite, calcite, and silicate minerals was ground to minus 65 mesh and conditioned with 0.04 lb. per ton of the sodium salt of hydrolyzed polyacrylonitrile, 4.25 lb. sodium silicate, 12.5 lb. per ton of soda ash, 0.2 lb. per ton quebracho, 1.0 lb. per ton sodium resinate and 0.5 lb. per ton oleic acid. The pulp was floated to remove a tungsten concentrate which was subjected to cleaning by reiiotation. A final concentrate was produced which contained 83.1% of the total tungsten.
- the tungsten content of this concentrate was 37.6% W03.
- a control tcst'on this ore was also conducted, in which the polymer was omitted.
- a low grade tungsten concentrate resulted, which assayed only 5.5% W03.
- Example 9 The tungstenore described in Example 7 was employed in a series of comparative tests with various polymers. The reagents and testing methods were similar to those outlined in Example 7. The polymers used together with the tungsten recoveries and concentrate grades are given in the following table:
- Example 10 A Michigan iron ore containing hematite in a quartz gangue was ground to minus 65 mesh, diluted to about 25% solids and deslimed incompletely in the presence of 0.5 lb. per ton sodium silicate. The deslimed pulp was conditioned with 0.02 lb. per ton of the sodium salt of hydrolyzed polyacrylonitrile and 0.75 lb. per ton low rosin tall oil fatty acids, and then floated to produce an iron concentrate. This concentrate was then subjected to two cleanings by reflotation. The final concentrate contained 80.3% of the iron and assayed 64.9% Fe and 5.6% SiOa.
- Example 11 A barite ore containing barite associated with quartz and iron oxides was ground to about 50% minus 200 meslr and-conditioned with 0.02 lb; per-touofthe'sodium salt'of hydrolyzedpolyacrylonitrile, 3.9 lb. per ton sodium silicate, 2.8 lb: per-"ton of'oil-soluble petroleum sulfonate and 0.06 lb. per ton of a seven carbon atom alcohol frother.
- a barite concentrate was then removed by flotation. 95.3% of the barite was removed. in this concentrate which contained'98.9% B21304.
- Example 12 A Montana manganese ore containing about 17% Mn as rhodochrosite in a silicate gangue was ground and floated in the presence of 0.5 lb. per toncautic soda, 1.5 lb. per ton. sodium silicate, 1.2 lb. per ton oil-soluble petroleum sulfonate, 0.9 lb. per ton saponified cottonseed foots, and 0.005 lb. per ton of the sodium saltof hydrolyzed polyacrylonitrile. A manganese concentrate was removed containing 38.1% Mn. The recovery of manganese in' this concentrate was 94.6%.
- Example 13 Flotation tests were also conducted on Canadian fluorite ore, which contained fluorite, calcite, feldspar, and small amounts of sulfide and oxide iron minerals. This ore contained about 27% CaFz.
- the ore was ground to about 45% minus 200 mesh, conditioned with 0.015 lb. per'ton of the sodium salt of hydrolyzed polyacrylonitrile, 0.25 lb; per ton quebracho, 3.0 lb. per ton sodium silicate and 1.0 lb. per ton oleic acid and floated to remove a fluorite concentrate. 82.1% of the fluorite was recovered in a concentrate assaying 98.1% CaFz.
- Example 14 A Pennsylvania cement rock containing calcium carbonate in a gangue composed of quartz, sericite and carbon was ground to about 95% minus 200 mesh, diluted to 22% solids and floated-in thepresence of 1.0 lb. per ton crude calcium lignin sult'onate, 0.02 lb. per ton of the sodium saltof hydrolyzed polyacrylonitrile, 0.12 lb. per ton of higher alcohol frother and-0.7 6 lb. per ton vegetable fatty acid foots.
- the oleic acid promoter and frother were added in stages over an eight minute float; From a feed assaying 70.5% CaCOs, a concentrate was produced which assayed 78.1% CaCOs and contained 97.8% of the total calcium carbonate.
- Example 15 A sample of Florida phosphate rock typical of material treated by flotation was deslimed and conditioned at 60% solids with 0.6 lb. per ton tall oil, 3.0 lb. per ton fuel oil, 0.4 lb. per ton caustic soda and 0.015 lb. per
- BPL bone phosphate of lime
- This concentrate represented a phosphate recovery of 79.6%.
- Example 16 The various polymer products herein-described are also useful as modifying agents when used with cationic collectors.
- Thesilica content of the original flotation. concentrate was reduced to 3.1% and, a weight recovery of phosphate of 90.89% was obtained.
- the phosphate content of the phosphate concentrate. was 73.5%.
- the method ofconcentrating orescontaining gangue slimes which comprises subjecting an aqueous. pulp, of saidoreto froth flotation in the presence of a collector and in the presence as a gangue depressant of water.
- a gangue depressant of water comprising subjecting an aqueous. pulp, of saidoreto froth flotation in the presence of a collector and in the presence as a gangue depressant of water.
- - soluble, anionic, linear, addition polymers of a polymerizable monoethylenically unsaturated compound having an average molecular weight of at least 10,000 and being present inan amount sufficient to depress substantially said gangue slimes.
- the method of concentrating orescontaining gangue slimes which comprises subjecting an aqueous pulpof said oreto froth. flotation in the presence of a. collector and inthe presence as a gangue depressant of a watersoluble salt of anionic, linear, addition polymers of a polymerizable monoethylenically unsaturated compound having an average molecular weight of at least 10,000 and being present in an amount sufficient to depress substantially' said. gangue slimes.
- polymeric material is a calcium salt of a hydrolyzedcopolymer of vinyl acetate and maleic anhydride.
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
States FLOTATION F ORES USlNG ADDITION POLY- MERS AS DEPRESSANTS No Drawing. Application April 7, 1953, Serial No. 347,414
14 Claims. (Cl. 209-166) This invention relates to froth flotation and more particularly to the flotation of ores having ganguc slimes.
Many ores have finely-divided gangue constituents present as slimes which interfere with flotation of the desired mineral values. The presence of gangue or slimy materials creates difiiculties in flotation by reason of contamination of the concentrate by the gangue or by the action of the gangue on the mineral values which prevents their flotation and hence reduces recoveries. In some ores the slimes are present as ordinary gangue minerals of a siliceous nature, while in other ores a carbonaceous gangue is present. While it is often possible to deslime ores prior to froth flotation, this is not always possible because in many cases certain components of the gangue carrywith them recoverable values and in other cases it is often necessary to grind the feed to such a very fine size that practically all of the feed may be considered as a slime.
In the past, dextrin, sodium silicate, glue and other organic protective colloids have commonly been used for the depression of gaugue during flotation. These colloids are frequently deflocculating agents and function to keep the slimy gangues in a highly dispersed state so as not to interfere with the flotation of the mineral values. Such colloids, while in widespread use, are not completely satisfactory, however, because they frequently cause the depression of certain of the desirable constituents of the ore as Well as the gangue and hence decrease recoveries of the valuable mineral values.
In accordance with the present invention, it has been found that froth flotation of ores is greatly improved when it is carried out in the presence as a gangue depressant of water-soluble anionic, linear, addition polymers of a monoethylenically unsaturated compound, and Water soluble salts thereof, having an average molecular weight of at least 10,000.
It is a surprising feature of the present invention that the linear, addition polymers and salts act as selective depressants for the gangue slimes without depressing to any appreciable extent, and thus preventing the recovery of, the desired mineral values. In making a choice between optimum grade and maximum recovery, slight losses in recovery are taken occasionally but in such cases the economic advantages of the high concentrate grade far outweigh the losses of recovery. Losses incurred by the use of the polymers of the present invention are considerably less than with ganguc depressants in use atthe present time.
It is a further surprising feature of the present inven- -tion that the linear, addition polymers work so effectively 'in depressing gangue during flotation because the mineral dressing art has heretofore considered that the slimes must generally be in a highly dispersed condition or otherwise the desired separation could not take place. In the practice of the present invention, however, these polymers which when used in the soil conditioning art are known to be strong flocculants for surface soils, have been found to produce remarkable results in depressing gangue during atent Q "ice flotation by a mechanism which is not clearly understood but the net result of which appears to be directly contrary to that which was heretofore considered to be necessary in the mineral dressing field, namely, a dispersed condition of the slimes. It is an observable fact, however, that by the use of the polymers or salts of the present invention, greatly improved metallurgical results are obtained on many ores with resultant improvement in concentrate grades and in many cases with added mineral recovery apparently by reason of the fact that the interfering gangue slimes which hinder flotation of the desired mineral values are effectively depressed.
It is an advantage of the present invention that it is applicable to gangue slimes of the most varied types of ores such as siliceous gangue present in metallic or sulfide ores, for example, lead, zinc, copper, pyrite, lead-zinc ores, precious metal ores, etc. It is also applicable to the various gangues present in non-metallic ores such as, for example, those of tungsten, manganese, barite, fluorspar, limestone and phosphate rock. Talcs, micas, clays, sericites, limonites, fine carbon and on occasion fine calcite are examples of gangues which interfere with flotation especially when these are present as slimes, and other minerals when in the form of slimes frequently are harmful.
It is a further advantage of the present invention that the linear, addition polymers or salts may be added at any convenient point in the ore treatment operation. Thus, for example, they may be introduced prior to and/or during the flotation operation. The point at which they are introduced may frequently depend on the particular ore being floated. Good results have been obtained when the polymers have been added to the grinding operation or to the conditioning step prior to flotation. In other cases, the polymers have been introduced into flotation circuits at the start and/or during flotation operations. Stage feeding during flotation has been very effective.
.The polymers are generally fed as solutions but may be added in dry form or as concentrated gels, if so desired.
Examples of water-soluble, anionic, linear, addition polymers of a monoethylenically unsaturated compound are polymers of unsaturated aliphatic monocarboxylic acids, such as acrylic acid, methacrylic acid, vinyl acetic acid, etc., and water-soluble salts thereof. These polymers may be obtained by polymerizing the acid itself or by polymerizing derivatives having groups which are hydrolyzable to acids, such as, for example, acrylonitrile, acrylamide, esters of acrylic and methacrylic acid, etc. The unsaturated monocarboxylic acids may be polymerized by themselves to form homopolymers or they may be copolymerized with compounds such as vinyl pyridine, vinyl acetate, styrene, vinyl ethers, vinyl halides, or even unsaturated hydrocarbons such as isobutylene. Polymers of polybasic unsaturated acids are also included, although here it is diflicult to obtain a homopolymer. For example, maleic anhydride itself will not polymerize, but it copolymerizes readily with such materials as styrene, vinyl acetate, acrylates and the like.
Among the various polymers and water-soluble salts thereof useful in the practice of the present invention are hydrolyzed polyacrylonitrile, polyacrylamide, polyacrylic acid, /2 calcium salt of hydrolyzed 1:1 copolymer of -vinyl acetate-maleic anhydride, hydrolyzed styrene-maleic mer, isobutylene-rnaleic anhydride copolymer, styrenemaleic anhydride copolymer, ethyl acrylate-maleic anhydride copolymer, vinyl chloride-maleic anhydride copolymer, hydrolyzed acrylonitrile-vinyl acetate copolymer, hydrolyzed acrylonitriie-methacrylonitrile copolymer, hydrolyzed acrylonitrile-methacrylonitrile-vinyl acetate terpolymer, hydrolyzed acrylonitrile-methacrylic acid'co'polyrner, vinyl pyridine-acrylonitrile copolymer, etc.
Among the best linear, addition polymers are those which are obtained by hydrolyzing'polymeric material containing polyacrylonitrile. These compoundsare'cheap and give ex'cellentresttlts. Here again, the polymer 'may be a 'hornopolymer or the acrylonitrile may be copolymerized with small amounts of othermaterials; suchas vinyl pyridine, acrylic esters and'the like; It'should be n'oted'that the products obtained by hydrolyzing' polymers such-as polyacrylonitriles are not completely identicalwith the corresponding polymers obtained by poly rnerizing acrylic acid. Both types are, however, useful in the present invention.
It'is'an'advantage of the present inventionthat the preferred type of linear, addition polymers; namely, hydrolyzed polyacrylonitriles, maybe of very low grade. It is thuspossible to use polyacrylonitriles which have insufiicientpurity for other uses, such as fibers, to prepare the polyacrylic acid of the present invention. The possibility of using these normally discarded, oft-grade'products makes a source of very cheap material availablefor use in the-present invention. Where the amount of byproducnofi gr'ade material is not sufiicient to supply the demand and the linear polymers must be made directly,
it is usually found that the homopolymer of acrylonitrile is somewhat cheaper to make than the copolymers The water-soluble polymers and water-soluble salts thereof as described hereinabove may be added to the ores being floated in amounts ranging from 0.001 lb. ton to 1.0 lb. ton but it has been found that with most ores optimum results are obtained by the'usc of 0.01 lb./ton to 0.2 lb./ tOn'.
Fo'r'o'ptimum beneficial effect, the molecular weightof the linear, addition polymer is of some importance in selectively depressing the gangue constituents of the ores. Itappears that the molecular weight should be at least about 10,000 in order to secure the desired results. The upper molecular weight limit does not appear to be at all critical and is set only by the practical difiiculty of making extremely highly polymerized polymers. Polymers having molecular weights ranging upward to about 500,000 appear to be quite satisfactory in the practice of the present invention. Those polymers having molecular weights much in excess of 500,000 are difficult to get into solution or to form dispersions thereof in water. Thus, theinsoluble ornon-dispersible polymers are not included herein. water-dispersible it is operable in carrying outthe present invention.
It is to be understood that since the herein-described polymers and salts serve solely as depressing agents for the interfering" slimes, a suitable mineral collector must be used in the frothfiotation process. The choice of pro moteifisnbt critical and is dictated solely by the mineral which is desired to be floated. Thus, suitable anionic prornotets such as the xanthates, dithiophosphates, naphthenic acids, fatty acids, resin acids and mixtures thereof, the alkali s'oaps' of such acids and their mixtures may be suitably'e'mployed. Cationic reagents such as longchain amines and amine derivatives may suitably be employed when the ore being treated is of the type that responds to such agents. Hydrocarbon oils and frothers such as pine o'il, cresylic acids, higher alcohols and other frothing' agents may also be used.
The invention will be described in greater detail in conjunction with the following specific examplesin which the parts are by weight unless otherwise specified.
However, so long as the polymer is wateror 1.2. Example 1 A sulfide lead-zinc ore containing 3.7% Pb and 6.0% Zn in a siliceous gangue was ground to 20% plus 200 mesh in the presence of 0.25 lb. per ton of sodium cyanide and 1.5 lb. per ton zinc sulfate. The resulting pulp was diluted to about 22% solids and conditioned.with.-0.l0.lb.per ton ammonium dicresyl dithiophosphate and 0i05"lb; p'er ton of a higher alcohol frother. The lead sulfides were then floated off to produce a concentrate which-assayed 24.75% Pb and 4.59% Zn and contained 98.2% :of the total lead and 10.5% of the total zinc. Thetailingfrom the lead flotation was conditioned with. 2.5. lb. per ton lime, 1.0 lb. per ton copper sulfate'and 0.1 lb. per ton technical sodium diisopropyl dithiophosphate and 0.05 lb. per ton of a higher alcohol frother. The-tailing was then iioated to remove zinc, producing a concentrate assaying 0.36% Pb and 39.8% Znand containing 1.2% ofrthe total lead and 79.7% of the total zinc. The-final flotation tailing assayed 0.03% Pb andv 0.86% Zn.
Asimilar test was. conducted. on thisorc using. 0.1111). per ton. ofthe sodium salt of hydrolyzed polyacrylonitrile, which was. added to the grinding operation. In the lead float, the concentrate assayed 31.41% Pb and.3.94% Zn andcontained 98.5% of the total lead and. 7.8% ofthe total zinc. The zinc concentrate contained 0.25% Pb and 39.79% Zn and contained 1.1% of the total lead. and 90.4% of. the total zinc. The flotation tailings contained 0.02% Pb and 0.14% Zn.
Theresults of these tests indicate that the useofthe polymer effected'a considerable improvement in the-grade ofthe lead concentrate without loss of recovery oflead, a decrease in the zinc losses into the lead concentrate and a marked improvement in. the zinc recovery.
Example 2 Flotation tests were conducted on a gold bearing pyrite ore containing 0.5 02. Au per ton. This ore which contained a feldspar-granite gangue was ground to 2.4% meshand floated with 0.1 pound per ton sodium secondary butyI xanthate and 0.1 pound per ton of a 1:1 mixture. of pine oil and a higher alcohol as frother. The metal lurgical results are given in the following table. In the first test, no polymer was used. In the next 3 tests, the sodium salt of hydrolyzed polyacrylonitrile was used in amounts ranging from 0.01 to 0.10 lb. per ton.
Percent Distributton Au Assay, Oz. Au/ton Test 1:
Concentrate Telling Test, 2:
Concentrate T iliu a g Test 3:
}1 none Hm Wm :19 ar 4 Concentrate Telling Hm P res The use of the polymer gave improved concentrate grade without causing gold losses.
Example 3 5 lead was recovered in a concentrate assaying 57.8% Pb. The flotation tailing in this test contained 0.35% Pb.
The use of the polymer in this test resulted in a higher recovery of lead in the flotation concentrate. This flotation feed contained a portion of its lead values as slimed lead sulfides and it will be noted that such values were not depressed by the use of the polymer, a factor which illustrates the selective action of these materials as gangue modifiers.
Example 4 A sulfide zinc ore from the southeastern part of the United States was ground at 60% solids, diluted to about 20% solids and conditioned with 0.5 lb. per ton of copper sulfate, 0.025 lb. per ton technical sodium diisopropyl dithiophosphate and 0.12 lb. per ton pine oil. The zinc was then floated off as a concentrate assaying 41.7% Zn and containing 96.1% of the total zinc contained in the ore.
In a second test on this ore, 0.1 lb. per ton of the sodium salt of hydrolyzed polyacrylonitrile was added after conditioning with the promoter-frother combination described above. Flotation of the zinc resulted in a concentrate assaying 42.1% Zn and containing 98.2% of the total 21116.
As in the foregoing examples improved metallurgy was also obtained in the treatment of this zinc ore.
Example 5 A sample of porphyry copper ore (0.8% Cu) was ground to minus 65 mesh in the presence of 0.1 lb. per ton of the sodium salt of hydrolyzed polyacrylonitrile, 1.5 lb. per ton lime, 0.04 lb. per ton technical sodium disecondary butyl dithiophosphate and 0.075 lb. per ton of higher alcohol frother. The ore was floated to produce a copper concentrate which assayed 22.1% Cu and contained 80.0% of the total copper. In a control test in which the polymer was omitted from the grind, a copper concentrate was produced which assayed 14.2% copper and contained 80.3% of the total copper in the ore. The main diluent in the copper concentrate in this test was fine gangue minerals.
It will be noted that a marked increase in concentrate grade was effected by the use of the polymer and that this was attained with essentially no loss in copper recovery. In certain other copper ores it is possible to use relatively large amounts of polymer, e. g. in the range of 0.75-1.0 lb./ton, without causing depression of copper values.
Example 6 A second copper ore similar to that used in Example 5 Was also treated with 0.1 lb./ton of various polymers and water-soluble salts and the above-mentioned lime-frother dithiophosphate combination in a series of separate tests and floated to produce a copper concentrate. The polymers used together with the recovery of copper and concentrate grade in each test are listed 1n the following table:
Concentrate, Percent Cu Polymer Used Assay Recovery None l5. 2 83. 4 Guanidine salt of hydrolyzed polyacrylonitrile 20. 7 83. 9 Diethanol amine salt of hydrolyzed poly- 24. 6 82.
aorylonitrile. l Sodium salt of 1:1 copolymer of vinyl oce- 22.4 82.0
tatemaleic anhydride. Polyacrylic acid 22.1 83.0 14 Calcium salt of vinyl acetaterneleic 23.1 82.6
anhydride copolymer. Polyacrylamide 23. 2 82. 2 Am?101l1illm salt of hydrolyzed polyacrylo- 23. 9 82.1
m r1 e. Hydrolyzed styrene-maleic anhydride co- 20.3 83. 0
polymer. Sulfonated polystyrene 18. 3 82. 8 Sodium salt of copolymer of vinyl methyl 21. 5 83. 5
ethermaleic acid. Ethyl aorylate-ammonium maleate 21. 8 82. 4 Styreneammonium maleate 19. 8 83. 1
6 The marked improvement in the grades of the copper concentrates obtained in the treatment of this ore outweighs the indicated slight losses in recovery.
Example 7 A tungsten ore in which various tungsten minerals were associated with a siliceous gangue was ground to pass mesh. This ore contained 0.9% W03. The pulp, after grinding, was conditioned with 5.0 lb. per ton sodium silicate, 8.0 lb. per ton sodium carbonate, 0.15 lb. per ton quebracho, 1.5 lb. per ton sodium resinate, and 1.2 1b.
Example 8 A tungsten ore (0.4% W03) containing various tungsten materials and a gangue composed of garnet, limonite, calcite, and silicate minerals Was ground to minus 65 mesh and conditioned with 0.04 lb. per ton of the sodium salt of hydrolyzed polyacrylonitrile, 4.25 lb. sodium silicate, 12.5 lb. per ton of soda ash, 0.2 lb. per ton quebracho, 1.0 lb. per ton sodium resinate and 0.5 lb. per ton oleic acid. The pulp was floated to remove a tungsten concentrate which was subjected to cleaning by reiiotation. A final concentrate was produced which contained 83.1% of the total tungsten. The tungsten content of this concentrate was 37.6% W03. A control tcst'on this ore was also conducted, in which the polymer was omitted. In this test a low grade tungsten concentrate resulted, which assayed only 5.5% W03. These test results illustrate the marked effect of the polymer on improving the grade of the tungsten concentrate.
Example 9 The tungstenore described in Example 7 was employed in a series of comparative tests with various polymers. The reagents and testing methods were similar to those outlined in Example 7. The polymers used together with the tungsten recoveries and concentrate grades are given in the following table:
A marked increase in concentrate grade was efiected by the use of the polymers.
Example 10 A Michigan iron ore containing hematite in a quartz gangue was ground to minus 65 mesh, diluted to about 25% solids and deslimed incompletely in the presence of 0.5 lb. per ton sodium silicate. The deslimed pulp was conditioned with 0.02 lb. per ton of the sodium salt of hydrolyzed polyacrylonitrile and 0.75 lb. per ton low rosin tall oil fatty acids, and then floated to produce an iron concentrate. This concentrate was then subjected to two cleanings by reflotation. The final concentrate contained 80.3% of the iron and assayed 64.9% Fe and 5.6% SiOa.
Example 11 A barite ore containing barite associated with quartz and iron oxides was ground to about 50% minus 200 meslr and-conditioned with 0.02 lb; per-touofthe'sodium salt'of hydrolyzedpolyacrylonitrile, 3.9 lb. per ton sodium silicate, 2.8 lb: per-"ton of'oil-soluble petroleum sulfonate and 0.06 lb. per ton of a seven carbon atom alcohol frother. A barite concentrate was then removed by flotation. 95.3% of the barite was removed. in this concentrate which contained'98.9% B21304.
Example 12 A Montana manganese ore containing about 17% Mn as rhodochrosite in a silicate gangue was ground and floated in the presence of 0.5 lb. per toncautic soda, 1.5 lb. per ton. sodium silicate, 1.2 lb. per ton oil-soluble petroleum sulfonate, 0.9 lb. per ton saponified cottonseed foots, and 0.005 lb. per ton of the sodium saltof hydrolyzed polyacrylonitrile. A manganese concentrate was removed containing 38.1% Mn. The recovery of manganese in' this concentrate was 94.6%.
Example 13 Flotation tests were also conducted on Canadian fluorite ore, which contained fluorite, calcite, feldspar, and small amounts of sulfide and oxide iron minerals. This ore contained about 27% CaFz. The ore was ground to about 45% minus 200 mesh, conditioned with 0.015 lb. per'ton of the sodium salt of hydrolyzed polyacrylonitrile, 0.25 lb; per ton quebracho, 3.0 lb. per ton sodium silicate and 1.0 lb. per ton oleic acid and floated to remove a fluorite concentrate. 82.1% of the fluorite was recovered in a concentrate assaying 98.1% CaFz.
Example 14 A Pennsylvania cement rock containing calcium carbonate in a gangue composed of quartz, sericite and carbon was ground to about 95% minus 200 mesh, diluted to 22% solids and floated-in thepresence of 1.0 lb. per ton crude calcium lignin sult'onate, 0.02 lb. per ton of the sodium saltof hydrolyzed polyacrylonitrile, 0.12 lb. per ton of higher alcohol frother and-0.7 6 lb. per ton vegetable fatty acid foots. The oleic acid promoter and frother were added in stages over an eight minute float; From a feed assaying 70.5% CaCOs, a concentrate was produced which assayed 78.1% CaCOs and contained 97.8% of the total calcium carbonate.
Example 15 A sample of Florida phosphate rock typical of material treated by flotation was deslimed and conditioned at 60% solids with 0.6 lb. per ton tall oil, 3.0 lb. per ton fuel oil, 0.4 lb. per ton caustic soda and 0.015 lb. per
tonof the sodium salt of hydrolyzed polyacrylonitrile,
diluted to about 20% solids and floated to produce a phosphate concentrate. From a flotation feed assaying about 32.9% bone phosphate of lime (BPL), a concentrate was produced which was cleaned twice. The final concentrate contained 72.3% BPL and 7.8% insoluble.
This concentrate represented a phosphate recovery of 79.6%.
Example 16 Example 17 The various polymer products herein-described are also useful as modifying agents when used with cationic collectors. The-furtherbeneficiation by flotation-etaphos- 20% solids and conditioned with 0.02 lb. per tonof the sodium salt of hydrolyzed polyacrylonitrile, 0.20 lb. per ton of tallow amine acetate, 0.12 lb. per ton of higher alcohol frother and 0.25 lb. per ton of kerosene and float ed to remove silica. Thesilica content of the original flotation. concentrate was reduced to 3.1% and, a weight recovery of phosphate of 90.89% was obtained. The phosphate content of the phosphate concentrate. was 73.5%.
We claim:
1. The method ofconcentrating orescontaining gangue slimes which comprises subjecting an aqueous. pulp, of saidoreto froth flotation in the presence of a collector and in the presence as a gangue depressant of water.- soluble, anionic, linear, addition polymers of a polymerizable monoethylenically unsaturated compound having an average molecular weight of at least 10,000 and being present inan amount sufficient to depress substantially said gangue slimes.
2. The method according to claim 1 wherein the polymeric materialv is present to the extent of from about 0.001 lb;/ton-to about 1.0 lbJtonby weight.
3. The methodaccording to claim 2 wherein the polymericmaterial is a polyacrylic acid. 1
4. The methodaccorcling to claim 2 wherein the polymeric material'is a polyacrylamide.
5. The method of concentrating orescontaining gangue slimes which comprises subjecting an aqueous pulpof said oreto froth. flotation in the presence of a. collector and inthe presence as a gangue depressant of a watersoluble salt of anionic, linear, addition polymers of a polymerizable monoethylenically unsaturated compound having an average molecular weight of at least 10,000 and being present in an amount sufficient to depress substantially' said. gangue slimes.
6. The method according to claimS wherein the polymeric material is present to the extent of from about 0.001 lb./ton to about 1.0 lb./ton by weight.
7'. The method according to claim 6 wherein the polymeric material is a sodium Salt of a hydrolized polymer of acrylonitrile.
8. The method. according to claim 6 wherein the polymeric material is a calcium salt of a hydrolyzedcopolymer of vinyl acetate and maleic anhydride.
9. The method according to claim 2 wherein the ore floated is a metallic ore.
10. The method according to claim 9 wherein the metallic ore is a sulfide ore.
11. The method according to claim 9 wherein the metallic ore is a copper ore.
12. The method according to. claim 9' wherein the metallic ore is a zinc ore.
13. The method according to claim 2 wherein the ore floated is a non-metallic ore.
14. The method according, to claim 13 wherein the non-metallieore is a tungsten ore.
References Cited inthefile of. this patent UNITED STATES PATENTS 1,976,679 Fikentscher et al. Oct. 9, 1934 2,211,686 Booth Aug. 13, 1940 2,229,272 Booth Ian. 21-, 19.41 2,341,046 Kirby Feb. 8',- 1944 2,497,863 Clemmer et a1 Feb. 21, 1950
Claims (1)
1. THE METHOD OF CONCENTRATING ORES CONTAINING GANGUE SLIMES WHICH COMPRISES SUBJECTING AN AQUEOUS PULP OF SAID ORE TO FROTH FLOTATION IN THE PRESENCE OF A COLLECTOR AND IN THE PRESENCE AS A GANGUE DEPRESSANT OF WATERSOLUBLE, ANIONIC, LINEAR, ADDITION POLYMERS OF A POLYMERIZABLE MONOETHYLENICALLY UNSATURATED COMPOUND HAVING AN AVERAGE MOLECULAR WEIGHT OF AT LEAST 10,000 AND BEING PRESENT IN AN AMOUNT SUFFICIENT TO DEPRESS SUBSTANTIALLY SAID GANGUE SLIMES.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US347414A US2740522A (en) | 1953-04-07 | 1953-04-07 | Flotation of ores using addition polymers as depressants |
GB7452/54A GB749213A (en) | 1953-04-07 | 1954-03-15 | Flotation of ores |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US347414A US2740522A (en) | 1953-04-07 | 1953-04-07 | Flotation of ores using addition polymers as depressants |
Publications (1)
Publication Number | Publication Date |
---|---|
US2740522A true US2740522A (en) | 1956-04-03 |
Family
ID=23363602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US347414A Expired - Lifetime US2740522A (en) | 1953-04-07 | 1953-04-07 | Flotation of ores using addition polymers as depressants |
Country Status (2)
Country | Link |
---|---|
US (1) | US2740522A (en) |
GB (1) | GB749213A (en) |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2857051A (en) * | 1956-04-26 | 1958-10-21 | Harvey L Noblitt | Method of recovering white mica |
US2894603A (en) * | 1956-01-16 | 1959-07-14 | Chemical Construction Corp | Removal of soot from acetylene gases |
US2919026A (en) * | 1955-08-19 | 1959-12-29 | American Metal Climax Inc | Concentration of potash ores containing sylvite |
US2919802A (en) * | 1956-07-18 | 1960-01-05 | Sherritt Gordon Mines Ltd | Method of concentrating ores |
US2923408A (en) * | 1954-12-27 | 1960-02-02 | Dow Chemical Co | Flotation process |
US2955932A (en) * | 1957-04-22 | 1960-10-11 | Kerr Mc Gee Oil Ind Inc | Hydrometallurgical process |
US2980610A (en) * | 1956-07-13 | 1961-04-18 | Monsanto Chemicals | Process for treating water |
US3017028A (en) * | 1959-01-12 | 1962-01-16 | Saskatchewan Potash | Clay depressant |
US3020231A (en) * | 1957-11-18 | 1962-02-06 | Union Carbide Corp | Coagulation |
US3023162A (en) * | 1956-04-10 | 1962-02-27 | Rohm & Haas | Dewatering aqueous suspensions with quaternized dialkylaminoalkyl acrylates or methacrylates |
US3087890A (en) * | 1961-03-07 | 1963-04-30 | Dow Chemical Co | Method of applying acrylamide polymer flocculants |
US3126249A (en) * | 1964-03-24 | Sydney atkin | ||
US3130167A (en) * | 1956-02-17 | 1964-04-21 | Nalco Chemical Co | Coagulating composition |
US3138550A (en) * | 1960-11-28 | 1964-06-23 | Union Carbide Corp | Froth flotation process employing polymeric flocculants |
US3146193A (en) * | 1960-04-04 | 1964-08-25 | Dow Chemical Co | Aqueous suspension clarification method |
US3194757A (en) * | 1965-07-13 | Process for clarifying red muds | ||
US3292780A (en) * | 1964-05-04 | 1966-12-20 | Donald W Frommer | Process for improved flotation treatment of iron ores by selective flocculation |
US3321649A (en) * | 1964-12-28 | 1967-05-23 | Shell Oil Co | Separation of suspended solids by cationic polymeric flocculants |
US3425802A (en) * | 1962-09-26 | 1969-02-04 | American Cyanamid Co | Flocculation of impurities in alum solutions |
US3452867A (en) * | 1967-03-30 | 1969-07-01 | Hercules Inc | Treatment of sylvinite ores |
US3516932A (en) * | 1962-06-04 | 1970-06-23 | Monsanto Co | Clarification of water |
US3524811A (en) * | 1968-04-08 | 1970-08-18 | Grace W R & Co | Flocculating process |
US3572504A (en) * | 1966-05-11 | 1971-03-30 | Auby Prod Chim | Method for the flotation of oxidic ores with calcareous and dolomitic gangue |
US3637491A (en) * | 1969-11-03 | 1972-01-25 | Monsanto Co | Clarification of water |
US3805951A (en) * | 1972-04-07 | 1974-04-23 | American Cyanamid Co | Selective flocculation and flotation of slimes from sylvinite ores |
US3836200A (en) * | 1970-07-27 | 1974-09-17 | American Cyanamid Co | Conveying polyelectrolyte fluidized aqueous suspensions of powdered solids |
US3852403A (en) * | 1957-11-25 | 1974-12-03 | American Cyanamid Co | Leaching uranium ores fluidized with a polyelectrolyte |
US3860513A (en) * | 1972-01-20 | 1975-01-14 | Porter Hart | Method of recovering mineral values from ore |
US3862028A (en) * | 1971-06-03 | 1975-01-21 | Us Agriculture | Flotation-beneficiation of phosphate ores |
US3929629A (en) * | 1973-03-01 | 1975-12-30 | Allied Colloids Ltd | Materials and processes for flotation of mineral substances |
US4043902A (en) * | 1975-06-06 | 1977-08-23 | American Cyanamid Company | Tri-carboxylated and tetra-carboxylated fatty acid aspartates as flotation collectors |
US4078993A (en) * | 1975-03-06 | 1978-03-14 | Allied Colloids Limited | Processes for flotation of mineral substances |
US4136830A (en) * | 1976-05-19 | 1979-01-30 | The Dow Chemical Company | Ore grinding process containing copolymer grinding aids |
US4157296A (en) * | 1976-07-16 | 1979-06-05 | Chem-Y Fabriek Van Chemische Produkten B.V. | Flotation process for fluoride minerals |
US4268379A (en) * | 1977-12-23 | 1981-05-19 | American Cyanamid Company | Selective flocculation for increased coal recovery by froth flotation |
US4274599A (en) * | 1977-11-21 | 1981-06-23 | The Dow Chemical Company | Ore grinding process including a grinding aid of an anionic polyelectrolyte |
US4289613A (en) * | 1979-11-19 | 1981-09-15 | American Cyanamid Company | Low molecular weight hydrolyzed polymers or copolymers as depressants in mineral ore flotation |
US4309282A (en) * | 1980-04-14 | 1982-01-05 | American Cyanamid Company | Process of phosphate ore beneficiation in the presence of residual organic polymeric flocculants |
US4348287A (en) * | 1981-05-26 | 1982-09-07 | Petrolite Corporation | Zirconium compounds as flotation aid |
FR2502028A1 (en) * | 1981-03-23 | 1982-09-24 | American Cyanamid Co | METHOD FOR DECREASING THE FLOATABILITY OF SYLVINITE MINERALS IN A FLOTATION SYSTEM USING AS DEPRESSING A LOW MOLECULAR MASS COPOLYMER |
US4368117A (en) * | 1978-06-22 | 1983-01-11 | Outokumpu Oy | Process for the selective froth-flotation of sulfidic, oxidic and salt-type minerals |
FR2512692A1 (en) * | 1981-09-14 | 1983-03-18 | American Cyanamid Co | METHOD FOR FLOTATION OF ORES USING AS DEPRESSING COPOLYMER OR TERPOLYMER OF LOW MOLECULAR MASS |
US4377472A (en) * | 1976-08-03 | 1983-03-22 | W. R. Grace & Co. | Phosphate flotation |
FR2525494A1 (en) * | 1982-04-26 | 1983-10-28 | American Cyanamid Co | SYLVITY CONCENTRATION PROCESS IN A SYLVINITE ORE FLOTATION SYSTEM |
US4474619A (en) * | 1979-01-25 | 1984-10-02 | The Dow Chemical Company | Conditioner for flotation of coal |
US4492628A (en) * | 1982-08-25 | 1985-01-08 | Freeport Kaolin Company | Method of treating clay to improve its whiteness |
US4583990A (en) * | 1981-01-29 | 1986-04-22 | The Standard Oil Company | Method for the beneficiation of low rank coal |
US4756823A (en) * | 1985-03-08 | 1988-07-12 | Carbo Fleet Chemical Co., Ltd. | Particle separation |
US4830740A (en) * | 1988-04-19 | 1989-05-16 | The Dow Chemical Company | Pyrite depressants useful in the separation of pyrite from coal |
EP0339856A2 (en) * | 1988-04-28 | 1989-11-02 | The Dow Chemical Company | Pyrite depressants useful in the separation of pyrite from coal |
US4956077A (en) * | 1987-11-17 | 1990-09-11 | Fospur Limited | Froth flotation of mineral fines |
AU646329B2 (en) * | 1991-03-28 | 1994-02-17 | Fospur Limited | Froth flotation of fine coal or mineral particles |
US5307938A (en) * | 1992-03-16 | 1994-05-03 | Glenn Lillmars | Treatment of iron ore to increase recovery through the use of low molecular weight polyacrylate dispersants |
US5507395A (en) * | 1995-06-07 | 1996-04-16 | Cytec Technology Corp. | Method of depressing non-sulfide silicate gangue minerals |
US5525212A (en) * | 1995-06-07 | 1996-06-11 | Cytec Technology Corp. | Method of depressing non-sulfide silicate gangue minerals |
US5531330A (en) * | 1995-06-07 | 1996-07-02 | Cytec Technology Corp. | Method of depressing non-sulfide silicate gangue minerals |
US5533626A (en) * | 1995-06-07 | 1996-07-09 | Cytec Technology Corp. | Method of depressing non-sulfide silicate gangue minerals |
WO1996040438A1 (en) * | 1995-06-07 | 1996-12-19 | Cytec Technology Corp. | Method of depressing non-sulfide silicate gangue minerals |
WO1996040439A1 (en) * | 1995-06-07 | 1996-12-19 | Cytec Technology Corp. | Method of depressing non-sulfide silicate gangue minerals |
US5858214A (en) * | 1996-10-17 | 1999-01-12 | Arr-Maz Products, L.P. | Phosphate beneficiation process using polymers as slime flocculants |
US20070138065A1 (en) * | 2005-12-16 | 2007-06-21 | Santos Daniele Cristina Almeid | Method to improve the cleaner froth flotation process |
US20090008301A1 (en) * | 2000-05-16 | 2009-01-08 | Roe-Hoan Yoon | Methods of Increasing Flotation Rate |
US20100021370A1 (en) * | 2008-07-25 | 2010-01-28 | Devarayasamudram Ramachandran Nagaraj | Flotation Reagents and Flotation Processes Utilizing Same |
RU2528186C2 (en) * | 2008-12-18 | 2014-09-10 | С.П.С.М. Са | Improvement of oil recovery method using polymer without additional equipment or product |
US10786819B2 (en) | 2016-01-21 | 2020-09-29 | Regents Of The University Of Minnesota | Cationic flotation of silica and apatite from oxidized iron ores at natural pH |
US10927248B2 (en) | 2016-08-26 | 2021-02-23 | Ecolab Usa Inc. | Sulfonated modifiers for froth flotation |
US11932554B2 (en) | 2022-04-11 | 2024-03-19 | American Hyperform, Inc. | Method of recovering high nickel content cathode material from recycled lithium ion and nickel metal hydride batteries |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4744893A (en) * | 1985-08-28 | 1988-05-17 | American Cyanamid Company | Polymeric sulfide mineral depressants |
US4719009A (en) * | 1986-07-07 | 1988-01-12 | Cominco Ltd. | Silica depressant in froth flotation of sulfide ores |
CN115780099B (en) * | 2022-12-21 | 2024-09-17 | 昆明理工大学 | Ore mud regulator in zinc oxide ore sulfide amine floatation process and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1976679A (en) * | 1930-05-26 | 1934-10-09 | Ig Farbenindustrie Ag | Production of dispersions |
US2211686A (en) * | 1938-06-28 | 1940-08-13 | American Cyanamid Co | Depression of gangue during flotation |
US2229272A (en) * | 1939-03-07 | 1941-01-21 | American Cyanamid Co | Depression of noncarbonaceous material during flotation |
US2341046A (en) * | 1940-10-07 | 1944-02-08 | Du Pont | Flotation |
US2497863A (en) * | 1946-03-21 | 1950-02-21 | Clemmer Julius Bruce | Method of concentrating fluorspar ores |
-
1953
- 1953-04-07 US US347414A patent/US2740522A/en not_active Expired - Lifetime
-
1954
- 1954-03-15 GB GB7452/54A patent/GB749213A/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1976679A (en) * | 1930-05-26 | 1934-10-09 | Ig Farbenindustrie Ag | Production of dispersions |
US2211686A (en) * | 1938-06-28 | 1940-08-13 | American Cyanamid Co | Depression of gangue during flotation |
US2229272A (en) * | 1939-03-07 | 1941-01-21 | American Cyanamid Co | Depression of noncarbonaceous material during flotation |
US2341046A (en) * | 1940-10-07 | 1944-02-08 | Du Pont | Flotation |
US2497863A (en) * | 1946-03-21 | 1950-02-21 | Clemmer Julius Bruce | Method of concentrating fluorspar ores |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3126249A (en) * | 1964-03-24 | Sydney atkin | ||
US3194757A (en) * | 1965-07-13 | Process for clarifying red muds | ||
US2923408A (en) * | 1954-12-27 | 1960-02-02 | Dow Chemical Co | Flotation process |
US2919026A (en) * | 1955-08-19 | 1959-12-29 | American Metal Climax Inc | Concentration of potash ores containing sylvite |
US2894603A (en) * | 1956-01-16 | 1959-07-14 | Chemical Construction Corp | Removal of soot from acetylene gases |
US3130167A (en) * | 1956-02-17 | 1964-04-21 | Nalco Chemical Co | Coagulating composition |
US3023162A (en) * | 1956-04-10 | 1962-02-27 | Rohm & Haas | Dewatering aqueous suspensions with quaternized dialkylaminoalkyl acrylates or methacrylates |
US2857051A (en) * | 1956-04-26 | 1958-10-21 | Harvey L Noblitt | Method of recovering white mica |
US2980610A (en) * | 1956-07-13 | 1961-04-18 | Monsanto Chemicals | Process for treating water |
US2919802A (en) * | 1956-07-18 | 1960-01-05 | Sherritt Gordon Mines Ltd | Method of concentrating ores |
US2955932A (en) * | 1957-04-22 | 1960-10-11 | Kerr Mc Gee Oil Ind Inc | Hydrometallurgical process |
US3020231A (en) * | 1957-11-18 | 1962-02-06 | Union Carbide Corp | Coagulation |
US3852403A (en) * | 1957-11-25 | 1974-12-03 | American Cyanamid Co | Leaching uranium ores fluidized with a polyelectrolyte |
US3017028A (en) * | 1959-01-12 | 1962-01-16 | Saskatchewan Potash | Clay depressant |
US3146193A (en) * | 1960-04-04 | 1964-08-25 | Dow Chemical Co | Aqueous suspension clarification method |
US3138550A (en) * | 1960-11-28 | 1964-06-23 | Union Carbide Corp | Froth flotation process employing polymeric flocculants |
US3087890A (en) * | 1961-03-07 | 1963-04-30 | Dow Chemical Co | Method of applying acrylamide polymer flocculants |
US3516932A (en) * | 1962-06-04 | 1970-06-23 | Monsanto Co | Clarification of water |
US3425802A (en) * | 1962-09-26 | 1969-02-04 | American Cyanamid Co | Flocculation of impurities in alum solutions |
US3292780A (en) * | 1964-05-04 | 1966-12-20 | Donald W Frommer | Process for improved flotation treatment of iron ores by selective flocculation |
US3321649A (en) * | 1964-12-28 | 1967-05-23 | Shell Oil Co | Separation of suspended solids by cationic polymeric flocculants |
US3572504A (en) * | 1966-05-11 | 1971-03-30 | Auby Prod Chim | Method for the flotation of oxidic ores with calcareous and dolomitic gangue |
US3452867A (en) * | 1967-03-30 | 1969-07-01 | Hercules Inc | Treatment of sylvinite ores |
US3524811A (en) * | 1968-04-08 | 1970-08-18 | Grace W R & Co | Flocculating process |
US3637491A (en) * | 1969-11-03 | 1972-01-25 | Monsanto Co | Clarification of water |
US3836200A (en) * | 1970-07-27 | 1974-09-17 | American Cyanamid Co | Conveying polyelectrolyte fluidized aqueous suspensions of powdered solids |
US3862028A (en) * | 1971-06-03 | 1975-01-21 | Us Agriculture | Flotation-beneficiation of phosphate ores |
US3860513A (en) * | 1972-01-20 | 1975-01-14 | Porter Hart | Method of recovering mineral values from ore |
US3805951A (en) * | 1972-04-07 | 1974-04-23 | American Cyanamid Co | Selective flocculation and flotation of slimes from sylvinite ores |
US3929629A (en) * | 1973-03-01 | 1975-12-30 | Allied Colloids Ltd | Materials and processes for flotation of mineral substances |
US4078993A (en) * | 1975-03-06 | 1978-03-14 | Allied Colloids Limited | Processes for flotation of mineral substances |
US4043902A (en) * | 1975-06-06 | 1977-08-23 | American Cyanamid Company | Tri-carboxylated and tetra-carboxylated fatty acid aspartates as flotation collectors |
US4136830A (en) * | 1976-05-19 | 1979-01-30 | The Dow Chemical Company | Ore grinding process containing copolymer grinding aids |
US4157296A (en) * | 1976-07-16 | 1979-06-05 | Chem-Y Fabriek Van Chemische Produkten B.V. | Flotation process for fluoride minerals |
US4377472A (en) * | 1976-08-03 | 1983-03-22 | W. R. Grace & Co. | Phosphate flotation |
US4274599A (en) * | 1977-11-21 | 1981-06-23 | The Dow Chemical Company | Ore grinding process including a grinding aid of an anionic polyelectrolyte |
US4268379A (en) * | 1977-12-23 | 1981-05-19 | American Cyanamid Company | Selective flocculation for increased coal recovery by froth flotation |
US4368117A (en) * | 1978-06-22 | 1983-01-11 | Outokumpu Oy | Process for the selective froth-flotation of sulfidic, oxidic and salt-type minerals |
US4474619A (en) * | 1979-01-25 | 1984-10-02 | The Dow Chemical Company | Conditioner for flotation of coal |
US4289613A (en) * | 1979-11-19 | 1981-09-15 | American Cyanamid Company | Low molecular weight hydrolyzed polymers or copolymers as depressants in mineral ore flotation |
US4309282A (en) * | 1980-04-14 | 1982-01-05 | American Cyanamid Company | Process of phosphate ore beneficiation in the presence of residual organic polymeric flocculants |
US4583990A (en) * | 1981-01-29 | 1986-04-22 | The Standard Oil Company | Method for the beneficiation of low rank coal |
FR2502028A1 (en) * | 1981-03-23 | 1982-09-24 | American Cyanamid Co | METHOD FOR DECREASING THE FLOATABILITY OF SYLVINITE MINERALS IN A FLOTATION SYSTEM USING AS DEPRESSING A LOW MOLECULAR MASS COPOLYMER |
US4348287A (en) * | 1981-05-26 | 1982-09-07 | Petrolite Corporation | Zirconium compounds as flotation aid |
FR2512692A1 (en) * | 1981-09-14 | 1983-03-18 | American Cyanamid Co | METHOD FOR FLOTATION OF ORES USING AS DEPRESSING COPOLYMER OR TERPOLYMER OF LOW MOLECULAR MASS |
FR2525494A1 (en) * | 1982-04-26 | 1983-10-28 | American Cyanamid Co | SYLVITY CONCENTRATION PROCESS IN A SYLVINITE ORE FLOTATION SYSTEM |
US4492628A (en) * | 1982-08-25 | 1985-01-08 | Freeport Kaolin Company | Method of treating clay to improve its whiteness |
US4756823A (en) * | 1985-03-08 | 1988-07-12 | Carbo Fleet Chemical Co., Ltd. | Particle separation |
US5051199A (en) * | 1987-11-17 | 1991-09-24 | Fospur Limited | Froth flotation of mineral fines |
US4956077A (en) * | 1987-11-17 | 1990-09-11 | Fospur Limited | Froth flotation of mineral fines |
EP0338778A2 (en) * | 1988-04-19 | 1989-10-25 | The Dow Chemical Company | Pyrite depressants useful in the separation of pyrite from coal |
WO1989010200A1 (en) * | 1988-04-19 | 1989-11-02 | The Dow Chemical Company | Pyrite depressants useful in the separation of pyrite from coal |
EP0338778A3 (en) * | 1988-04-19 | 1991-01-16 | The Dow Chemical Company | Pyrite depressants useful in the separation of pyrite from coal |
AU612487B2 (en) * | 1988-04-19 | 1991-07-11 | Dow Chemical Company, The | Pyrite depressants useful in the separation of pyrite from coal |
US4830740A (en) * | 1988-04-19 | 1989-05-16 | The Dow Chemical Company | Pyrite depressants useful in the separation of pyrite from coal |
EP0339856A2 (en) * | 1988-04-28 | 1989-11-02 | The Dow Chemical Company | Pyrite depressants useful in the separation of pyrite from coal |
EP0339856B1 (en) * | 1988-04-28 | 1994-12-28 | The Dow Chemical Company | Pyrite depressants useful in the separation of pyrite from coal |
AU646329B2 (en) * | 1991-03-28 | 1994-02-17 | Fospur Limited | Froth flotation of fine coal or mineral particles |
US5307938A (en) * | 1992-03-16 | 1994-05-03 | Glenn Lillmars | Treatment of iron ore to increase recovery through the use of low molecular weight polyacrylate dispersants |
US5531330A (en) * | 1995-06-07 | 1996-07-02 | Cytec Technology Corp. | Method of depressing non-sulfide silicate gangue minerals |
US5525212A (en) * | 1995-06-07 | 1996-06-11 | Cytec Technology Corp. | Method of depressing non-sulfide silicate gangue minerals |
US5507395A (en) * | 1995-06-07 | 1996-04-16 | Cytec Technology Corp. | Method of depressing non-sulfide silicate gangue minerals |
US5533626A (en) * | 1995-06-07 | 1996-07-09 | Cytec Technology Corp. | Method of depressing non-sulfide silicate gangue minerals |
WO1996040438A1 (en) * | 1995-06-07 | 1996-12-19 | Cytec Technology Corp. | Method of depressing non-sulfide silicate gangue minerals |
WO1996040439A1 (en) * | 1995-06-07 | 1996-12-19 | Cytec Technology Corp. | Method of depressing non-sulfide silicate gangue minerals |
US5858214A (en) * | 1996-10-17 | 1999-01-12 | Arr-Maz Products, L.P. | Phosphate beneficiation process using polymers as slime flocculants |
US20090008301A1 (en) * | 2000-05-16 | 2009-01-08 | Roe-Hoan Yoon | Methods of Increasing Flotation Rate |
US10144012B2 (en) * | 2000-05-16 | 2018-12-04 | Mineral And Coal Technologies, Inc. | Methods of increasing flotation rate |
US7360656B2 (en) | 2005-12-16 | 2008-04-22 | Rohm And Haas Company | Method to improve the cleaner froth flotation process |
US20070138065A1 (en) * | 2005-12-16 | 2007-06-21 | Santos Daniele Cristina Almeid | Method to improve the cleaner froth flotation process |
US20100021370A1 (en) * | 2008-07-25 | 2010-01-28 | Devarayasamudram Ramachandran Nagaraj | Flotation Reagents and Flotation Processes Utilizing Same |
US8720694B2 (en) | 2008-07-25 | 2014-05-13 | Cytec Technology Corp. | Flotation reagents and flotation processes utilizing same |
US10130956B2 (en) | 2008-07-25 | 2018-11-20 | Cytec Technology Corp. | Flotation reagents and flotation processes utilizing same |
US11007538B2 (en) | 2008-07-25 | 2021-05-18 | Cytec Technology Corp. | Flotation reagents and flotation processes utilizing same |
RU2528186C2 (en) * | 2008-12-18 | 2014-09-10 | С.П.С.М. Са | Improvement of oil recovery method using polymer without additional equipment or product |
US10786819B2 (en) | 2016-01-21 | 2020-09-29 | Regents Of The University Of Minnesota | Cationic flotation of silica and apatite from oxidized iron ores at natural pH |
US10927248B2 (en) | 2016-08-26 | 2021-02-23 | Ecolab Usa Inc. | Sulfonated modifiers for froth flotation |
US10961382B2 (en) | 2016-08-26 | 2021-03-30 | Ecolab Usa Inc. | Sulfonated modifiers for froth flotation |
US11932554B2 (en) | 2022-04-11 | 2024-03-19 | American Hyperform, Inc. | Method of recovering high nickel content cathode material from recycled lithium ion and nickel metal hydride batteries |
Also Published As
Publication number | Publication date |
---|---|
GB749213A (en) | 1956-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2740522A (en) | Flotation of ores using addition polymers as depressants | |
US7360656B2 (en) | Method to improve the cleaner froth flotation process | |
US3595390A (en) | Ore flotation process with poly(ethylene-propylene)glycol frothers | |
US4360425A (en) | Low molecular weight copolymers and terpolymers as depressants in mineral ore flotation | |
US4139455A (en) | Materials and processes for flotation of mineral substances | |
US3138550A (en) | Froth flotation process employing polymeric flocculants | |
US3929629A (en) | Materials and processes for flotation of mineral substances | |
US2442455A (en) | Concentration of nonmicaceous, water-insoluble alkaline-earth metal salt minerals | |
US4387034A (en) | Mixed alkylthionocarbamates flotation collectors and ore dressing methods in which the collectors are employed | |
US4229287A (en) | Tin flotation | |
US3805951A (en) | Selective flocculation and flotation of slimes from sylvinite ores | |
US4929344A (en) | Metals recovery by flotation | |
US4078993A (en) | Processes for flotation of mineral substances | |
US3314537A (en) | Treatment of phosphate rock slimes | |
US2471384A (en) | Froth flotatation of sulfide ores | |
US2407651A (en) | Concentrating fluorspar by froth flotation | |
US4192737A (en) | Froth flotation of insoluble slimes from sylvinite ores | |
US4301973A (en) | Beneficiation of iron ore | |
US2310240A (en) | Flotation of ores | |
US4090955A (en) | Selective flocculation of minerals from a mixture or an ore | |
US3910836A (en) | Pyrochlore flotation | |
US4368116A (en) | Polyhydroxy fatty acids collector-frothers | |
US2312387A (en) | Froth flotation of acidic minerals | |
US3827557A (en) | Method of copper sulfide ore flotation | |
US3902602A (en) | Froth flotation method for recovery of minerals |