US2162533A - Translating device - Google Patents
Translating device Download PDFInfo
- Publication number
- US2162533A US2162533A US581389A US58138931A US2162533A US 2162533 A US2162533 A US 2162533A US 581389 A US581389 A US 581389A US 58138931 A US58138931 A US 58138931A US 2162533 A US2162533 A US 2162533A
- Authority
- US
- United States
- Prior art keywords
- electrodes
- control electrode
- glow discharge
- potential
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/02—Circuits specially adapted for the generation of grid-control or igniter-control voltages for discharge tubes incorporated in static converters
- H02M1/04—Circuits specially adapted for the generation of grid-control or igniter-control voltages for discharge tubes incorporated in static converters for tubes with grid control
- H02M1/042—Circuits specially adapted for the generation of grid-control or igniter-control voltages for discharge tubes incorporated in static converters for tubes with grid control wherein the phase of the control voltage is adjustable with reference to the AC voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/145—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/15—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using discharge tubes only
Definitions
- WITNESSES INVENTOR Jury en 1/011 lssenaorf' v I BY W ATTORNEY Patented June 13, 1939 UNITED STATES TRANSLATING DEVICE Jiirgen von Issendorf, Berlin-Siemensstadt, Germany, assignor to Westinghouse Electric, &
- This invention relates to a scheme for controlling arc rectifiers by means of alternating voltages applied to the control grids, or to the outer layers of the anode tubes; said alternating voltages being adjustable in such a manner that at any instant the grids or the outer layers can be brought either at a positive potential sufficient to ignite the corresponding anode, or at a negative potential sufiicient to make the corresponding anode inoperative.
- the alternating voltages applied to the controlling members, in line with this invention are not sine-shaped, but are given such a curve shape that the transitions of the controlling members from one operating condition to the other, and more inparticular the transitions from the inoperative condition to the ignited condition, will take place almost instantaneously.
- a curve and the connection diagram shown in Figs. 1 and 2 have reference to a known arrangement, and will be used for making comparisons.
- connection diagram of Fig. 7 relates to Fig. 6..
- Comparisons can be based on the sine-shaped voltage curves of Fig. 1, representing the voltage of a rectifier (or valve) anode, and the voltage of the corresponding grid, for the connection shown in Fig. 2.
- the main transformer is designated by I4;
- I5 are the anodes of the rectifier I6 which has grids I! connected through protecting resistors I8 to the transformer I9.
- the cathode of rectifier I6 is designated by 20; resistor 2
- FIG. 7 A connection diagram embodying Fig. 6 is given V in Fig. 7.
- the control members I are connected through ohmic resistances 2, or through other current limiting devices, to a direct current source 3, and further through glow discharge tubes 4 to an'alternating current source 5.
- This arrangement is such that when the ignition voltage of each individual glow discharge tube is being periodically exceeded, a periodical current impulse will flow through that particular tube, changing instantaneously the voltage applied tothe corresponding controlling member.
- a fundamental voltage, negative in respect to the cathode is being applied to the grids.
- the glow discharge lamps 4 is being applied the sine-shaped secondary voltage of the induction regulator 6.
- the glow discharge lamps have quite specific ignition and extinction voltages. This means that as soon as the ignition voltage of a glow discharge lamp is exceeded, that particular lamp will let the current go through, and the corresponding anode grid is given at the very same instant a (more positive) voltage sufiicient to ignite the anode are.
- I indicates the time curve of the anode (single-phase) voltage, and 8 the grid voltage.
- Fig. 6, 9 indicates the secondary (phase) voltage of the induction regulator, III the value of the ignition voltage, II the time curve of the cathode potential, I2 the value of the extinction voltage of the glow discharge tubes.
- Curve I3 represents the voltage of the controlling grid.
- the normally sine-shaped alternating voltages available for application tothe controlling members can be distorted by means of transformers or reactors with saturated iron in such a manner that the time curve of the voltages will have a steep increase, over a certain interval, at least once during each cycle of the alternating voltage (Figs. 3 and 4).
- the normally sine-shaped alternating voltages available for application to the. controlling electrodes can be modified, as shown by Fig. '7, by means of gas-filled discharge tubes or high-vacuum electronic tubes, so that the amplitudes of the voltages, particularly those of negative polarity, will be reduced by diverting or limiting the current flow, whereas the steep parts of the time curve of the voltage remain unchanged. The voltages.
- controlling members can be supplied by a special rectifier of small capacity, which can also be equipped with controlling members, influenced by a control current of suitable curve shape.
- This additional rectifier makes it possible to make the instant of ignition of high-vacuum electronic tubes independent of the current load.
- a translating system comprising an electric discharge device incorporating a control electrode and a plurality of principal electrodes, said device being in deenergized condition when predetermined potentials are impressed between its electrodes and in energized condition when certain other potentials are impressed between its electrodes, and said device being also capable only of abrupt transition from one condition to the other as said potentials are varied through a limiting relationship, a source of electrical potential having a negative terminal and a plurality of positive terminals, means for connecting said negative terminal to said control electrode and one of said positive terminals to one of said principal electrodes to maintain said device in a deenergized condition, an electric discharge device of the glow discharge type having a plurality of electrodes, means for connecting one of said electrodes to said control electrode, means for connecting another of said electrodes to the other positive terminal of said source of potential and means for energizing said glow discharge device thereby to connect said last-named positive terminal to said control electrode and to energize said electric discharge device.
- Translating apparatus comprising an electric discharge device incorporating a cathode, a plurality of anodes and a control electrode to cooperate with each anode, all in a single container, means for impressing potentials between said anodes and said cathode, a source of electrical potential having a negative terminal, an intermediate terminal, and a positive terminal, means for connecting said intermediate terminal to said cathode, means for connecting said negative terminal to said control electrodes, thereby to maintain said electric discharge device normally in deenergized condition, a plurality of glow discharge devices, each of said devices having a plurality of electrodes, means for connecting one of the electrodes of each of said glow discharge devices to a different control electrode, means for connecting another of the electrodes of each of said glow discharge devices to the positive terminal of said source of potential and means for alternately energizing each of said glow discharge devices thereby to connect the corresponding control electrode tosaid positive terminal and to energize said electric discharge device as to the path between said cathode and the anode corresponding to said control electrode.
- Translating apparatus comprising an electric discharge device incorporating a cathode, a plurality of anodes and a control electrode to cooperate with each anode, all in a single con tainer, means for impressing potentials between said anodes and said cathode, a source of electrical potential having a plurality of terminals between which differences of potentials exist, means for connecting one of said terminals to said cathode, means for connecting another of said terminals to said control electrodes, a plurality of glow discharge devices, each of said devices having a plurality of electrodes, means for connecting one of the electrodes of each of said glow discharge devices to a different control electrode, means for connecting another of the electrodes of each of said glow discharge devices to another terminal of said source of potential and means for energizing each of said glow discharge devices thereby to connect the corresponding control electrode to said last-named terminal.
- a translating system comprising an electric discharge device incorporating a control electrode and a plurality of principal electrodes, said device being in deenergized condition when predetermined potentials are impressed between its electrodes and in energized condition when certain other potentials are impressed between its electrodes, and said device being also capable only of abrupt transition from one condition to the other as said potentials are varied through a limiting relationship, a source of electrical potential having a negative terminal and a plurality of positive terminals, means for connecting said negative terminal to said control electrode and one of said positive terminals to one of said principal electrodes to maintain said device in deenergized condition, an electric discharge device of the glow discharge type having a plurality of electrodes, means for connecting one of said electrodes to said control electrode, means for connecting another of said electrodes to a positive terminal of said source of potential and means for periodically impressing a potential that exceeds the ignition potential of said glow discharge device to energize said glow discharge device thereby to connect said last-named positive terminal to said control electrode and to energize said electric discharge device.
- Translating apparatus comprising an elec tric discharge device incorporating a cathode, a plurality of anodes and a control electrode to cooperate with each anode, all in a single container, means for impressing potentials between said anodes and said cathode, a source of electrical potential having a plurality of terminals between which differences of potential exist, means for connecting one of said terminals to said cathode, means for connecting another of said terminals to said control electrodes, a plurality of glow discharge devices, each' of said devices having a plurality of electrodes, means for connecting one of the electrodes of each of said glow discharge devices to a different control electrode, means for connecting another of the electrodes of each of said glow discharge devices to another terminal of said source of potential and means for periodically impressing potentials that exceed the ignition potentials of each of said glow discharge devices to energize said devices thereby to connect the corresponding control electrode to said lastnamed terminal.
- an electric valve having an anode with an associated control electrode and a cathode, a circuit for energizing said control electrode and including a transformer secondary winding, an auxiliary valve, and means connecting said auxiliary valve with said winding, said connecting means including electrical potential supply means, means for impressing only a portion of the potential output of said electrical potential supply means between said cathode and said control electrode, and means for regulating the quantity of current conducted by said auxiliary valve.
- an electric valve having an anode with an associated control electrode and a cathode, a circuit for energizing said control electrode and including a transformor secondary winding, an auxiliary valve, and means connecting said auxiliary valve with said winding, said connecting means including a re sistor and electrical potential supply means, means including apair of conductors, at least one of which connects to said resistor, for impressing a portion only of the potential output of said electrical potential supply means between said cathode and said control electrode, and
- an electri valve having a plurality of principal electrodes and a control electrode, a circuit for energizing said control electrode including a potential responsive auxiliary valve, potential supply means of a value sufficient to render said auxiliary valve conductive and means, connecting said auxiliary valve and said potential supply means, forming a completely closed circuit with said auxiliary valve and means for impressing a potential derived from said closed circuit between said control electrode and one of said principal electrodes.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Plasma Technology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Particle Accelerators (AREA)
Description
June 13, 1939. J-. VON ISSENDORF 2,162,533
TRANSLATING DEVICE Filed Dec. 16, 1931 Q 2 Sheets-Shet 1 wlTNsssEs; INVENTOR 7 1% MM Ja /91911 van fss'enaorf' ATTORNEY June 13, 1939. V NDOR 2,162,533
- TRANSLATING DEVICE v Filed Dec. 16, 1931 2 Sheets-Sheet 2 1 :5 I (I r:\ 5 .3 4
WITNESSES: INVENTOR Jury en 1/011 lssenaorf' v I BY W ATTORNEY Patented June 13, 1939 UNITED STATES TRANSLATING DEVICE Jiirgen von Issendorf, Berlin-Siemensstadt, Germany, assignor to Westinghouse Electric, &
Manufacturing Company,
Pennsylvania a corporation of Application December 16, 1931, Serial No. 581,389 In Germany December 17, 1930 8 Claims.
This invention relates to a scheme for controlling arc rectifiers by means of alternating voltages applied to the control grids, or to the outer layers of the anode tubes; said alternating voltages being adjustable in such a manner that at any instant the grids or the outer layers can be brought either at a positive potential sufficient to ignite the corresponding anode, or at a negative potential sufiicient to make the corresponding anode inoperative.
The alternating voltages applied to the controlling members, in line with this invention, are not sine-shaped, but are given such a curve shape that the transitions of the controlling members from one operating condition to the other, and more inparticular the transitions from the inoperative condition to the ignited condition, will take place almost instantaneously.
A more detailed explanation of the underlying principle of this invention will be given by referring to the examples illustrated on the draw ings.
A curve and the connection diagram shown in Figs. 1 and 2 have reference to a known arrangement, and will be used for making comparisons.
The curves shown in Figs. 3-6 can be adopted for the purpose of this invention.
The connection diagram of Fig. 7 relates to Fig. 6..
Comparisons can be based on the sine-shaped voltage curves of Fig. 1, representing the voltage of a rectifier (or valve) anode, and the voltage of the corresponding grid, for the connection shown in Fig. 2. The main transformer is designated by I4; I5 are the anodes of the rectifier I6 which has grids I! connected through protecting resistors I8 to the transformer I9. The cathode of rectifier I6 is designated by 20; resistor 2| represents the load.
At the instant tz the negative potential of the grid has become too weak to block any longer the operationof the anode. At this instant the anode arc will be ignited. However, this well known control method has the disadvantage that at the instant when ignition takes place, the potential of the grid does not remain constant but depends to a considerable degree on the load current carried by the rectifier. As a consequence the control characteristic (which shows how the rectifier voltage or current depends on the regulating member of the induction regulator) will have an undesirable unsymmetry (jump).
These disadvantages can be avoided, in line with the invention, by distorting the shape of the curves, more particularly as shown in Figs. 3-6,
A connection diagram embodying Fig. 6 is given V in Fig. 7. Here the control members I are connected through ohmic resistances 2, or through other current limiting devices, to a direct current source 3, and further through glow discharge tubes 4 to an'alternating current source 5. This arrangement is such that when the ignition voltage of each individual glow discharge tube is being periodically exceeded, a periodical current impulse will flow through that particular tube, changing instantaneously the voltage applied tothe corresponding controlling member. Through the high resistances 2 .a fundamental voltage, negative in respect to the cathode, is being applied to the grids. In parallel herewith, and through the glow discharge lamps 4, is being applied the sine-shaped secondary voltage of the induction regulator 6. The glow discharge lamps have quite specific ignition and extinction voltages. This means that as soon as the ignition voltage of a glow discharge lamp is exceeded, that particular lamp will let the current go through, and the corresponding anode grid is given at the very same instant a (more positive) voltage sufiicient to ignite the anode are.
In all curve diagrams, I indicates the time curve of the anode (single-phase) voltage, and 8 the grid voltage. In Fig. 6, 9 indicates the secondary (phase) voltage of the induction regulator, III the value of the ignition voltage, II the time curve of the cathode potential, I2 the value of the extinction voltage of the glow discharge tubes. Curve I3 represents the voltage of the controlling grid.
It will be seen from the examples given that the normally sine-shaped alternating voltages available for application tothe controlling members can be distorted by means of transformers or reactors with saturated iron in such a manner that the time curve of the voltages will have a steep increase, over a certain interval, at least once during each cycle of the alternating voltage (Figs. 3 and 4). The normally sine-shaped alternating voltages available for application to the. controlling electrodes can be modified, as shown by Fig. '7, by means of gas-filled discharge tubes or high-vacuum electronic tubes, so that the amplitudes of the voltages, particularly those of negative polarity, will be reduced by diverting or limiting the current flow, whereas the steep parts of the time curve of the voltage remain unchanged. The voltages. for the controlling members can be supplied by a special rectifier of small capacity, which can also be equipped with controlling members, influenced by a control current of suitable curve shape. The use of this additional rectifier makes it possible to make the instant of ignition of high-vacuum electronic tubes independent of the current load.
It is more advantageous, for the purpose of controlling the ignition, to provide an additional inductive coupling between the controlling electrode and the direct current source, by means of which the circuit of the electronic tubes will transmit to the controlling electrode short impulses for initiating the ignition.
The use of an inductive coupling is very advantageous in connection with the fact that the occurrence of improper ignitions can be avoided to a remarkable degree.
I claim as my invention:
1. A translating system comprising an electric discharge device incorporating a control electrode and a plurality of principal electrodes, said device being in deenergized condition when predetermined potentials are impressed between its electrodes and in energized condition when certain other potentials are impressed between its electrodes, and said device being also capable only of abrupt transition from one condition to the other as said potentials are varied through a limiting relationship, a source of electrical potential having a negative terminal and a plurality of positive terminals, means for connecting said negative terminal to said control electrode and one of said positive terminals to one of said principal electrodes to maintain said device in a deenergized condition, an electric discharge device of the glow discharge type having a plurality of electrodes, means for connecting one of said electrodes to said control electrode, means for connecting another of said electrodes to the other positive terminal of said source of potential and means for energizing said glow discharge device thereby to connect said last-named positive terminal to said control electrode and to energize said electric discharge device.
2. Translating apparatus comprising an electric discharge device incorporating a cathode, a plurality of anodes and a control electrode to cooperate with each anode, all in a single container, means for impressing potentials between said anodes and said cathode, a source of electrical potential having a negative terminal, an intermediate terminal, and a positive terminal, means for connecting said intermediate terminal to said cathode, means for connecting said negative terminal to said control electrodes, thereby to maintain said electric discharge device normally in deenergized condition, a plurality of glow discharge devices, each of said devices having a plurality of electrodes, means for connecting one of the electrodes of each of said glow discharge devices to a different control electrode, means for connecting another of the electrodes of each of said glow discharge devices to the positive terminal of said source of potential and means for alternately energizing each of said glow discharge devices thereby to connect the corresponding control electrode tosaid positive terminal and to energize said electric discharge device as to the path between said cathode and the anode corresponding to said control electrode.
3. Translating apparatus comprising an electric discharge device incorporating a cathode, a plurality of anodes and a control electrode to cooperate with each anode, all in a single con tainer, means for impressing potentials between said anodes and said cathode, a source of electrical potential having a plurality of terminals between which differences of potentials exist, means for connecting one of said terminals to said cathode, means for connecting another of said terminals to said control electrodes, a plurality of glow discharge devices, each of said devices having a plurality of electrodes, means for connecting one of the electrodes of each of said glow discharge devices to a different control electrode, means for connecting another of the electrodes of each of said glow discharge devices to another terminal of said source of potential and means for energizing each of said glow discharge devices thereby to connect the corresponding control electrode to said last-named terminal.
4. A translating system comprising an electric discharge device incorporating a control electrode and a plurality of principal electrodes, said device being in deenergized condition when predetermined potentials are impressed between its electrodes and in energized condition when certain other potentials are impressed between its electrodes, and said device being also capable only of abrupt transition from one condition to the other as said potentials are varied through a limiting relationship, a source of electrical potential having a negative terminal and a plurality of positive terminals, means for connecting said negative terminal to said control electrode and one of said positive terminals to one of said principal electrodes to maintain said device in deenergized condition, an electric discharge device of the glow discharge type having a plurality of electrodes, means for connecting one of said electrodes to said control electrode, means for connecting another of said electrodes to a positive terminal of said source of potential and means for periodically impressing a potential that exceeds the ignition potential of said glow discharge device to energize said glow discharge device thereby to connect said last-named positive terminal to said control electrode and to energize said electric discharge device.
5. Translating apparatus comprising an elec tric discharge device incorporating a cathode, a plurality of anodes and a control electrode to cooperate with each anode, all in a single container, means for impressing potentials between said anodes and said cathode, a source of electrical potential having a plurality of terminals between which differences of potential exist, means for connecting one of said terminals to said cathode, means for connecting another of said terminals to said control electrodes, a plurality of glow discharge devices, each' of said devices having a plurality of electrodes, means for connecting one of the electrodes of each of said glow discharge devices to a different control electrode, means for connecting another of the electrodes of each of said glow discharge devices to another terminal of said source of potential and means for periodically impressing potentials that exceed the ignition potentials of each of said glow discharge devices to energize said devices thereby to connect the corresponding control electrode to said lastnamed terminal.
6. In an electric translating system, an electric valve having an anode with an associated control electrode and a cathode, a circuit for energizing said control electrode and including a transformer secondary winding, an auxiliary valve, and means connecting said auxiliary valve with said winding, said connecting means including electrical potential supply means, means for impressing only a portion of the potential output of said electrical potential supply means between said cathode and said control electrode, and means for regulating the quantity of current conducted by said auxiliary valve.
'7. In an electric translating system, an electric valve having an anode with an associated control electrode and a cathode, a circuit for energizing said control electrode and including a transformor secondary winding, an auxiliary valve, and means connecting said auxiliary valve with said winding, said connecting means including a re sistor and electrical potential supply means, means including apair of conductors, at least one of which connects to said resistor, for impressing a portion only of the potential output of said electrical potential supply means between said cathode and said control electrode, and
means for regulating the quantity of current conducted by said auxiliary valve.
8. In an electric translating system, an electri valve having a plurality of principal electrodes and a control electrode, a circuit for energizing said control electrode including a potential responsive auxiliary valve, potential supply means of a value sufficient to render said auxiliary valve conductive and means, connecting said auxiliary valve and said potential supply means, forming a completely closed circuit with said auxiliary valve and means for impressing a potential derived from said closed circuit between said control electrode and one of said principal electrodes.
JURGEN VON ISSENDORF.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE706471T | 1930-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2162533A true US2162533A (en) | 1939-06-13 |
Family
ID=6396839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US581389A Expired - Lifetime US2162533A (en) | 1930-12-17 | 1931-12-16 | Translating device |
Country Status (6)
Country | Link |
---|---|
US (1) | US2162533A (en) |
BE (1) | BE383291A (en) |
DE (1) | DE706471C (en) |
FR (1) | FR724175A (en) |
GB (1) | GB395349A (en) |
NL (1) | NL44135C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE756206C (en) * | 1934-08-04 | 1955-05-12 | Siemens Schuckertwerke A G | Arrangement for the direct conversion of alternating currents of a given frequency into those of a different frequency by means of controlled gas or vapor-filled discharge paths with a clear transmission direction |
DE1143583B (en) * | 1952-12-03 | 1963-02-14 | Bbc Brown Boveri & Cie | Circuit arrangement for generating approximately square-wave electrical pulses, in particular for controlling converters |
-
0
- BE BE383291D patent/BE383291A/xx unknown
-
1930
- 1930-12-17 DE DE1930706471D patent/DE706471C/en not_active Expired
-
1931
- 1931-10-08 FR FR724175D patent/FR724175A/en not_active Expired
- 1931-10-09 GB GB28144/31A patent/GB395349A/en not_active Expired
- 1931-10-14 NL NL44135D patent/NL44135C/xx active
- 1931-12-16 US US581389A patent/US2162533A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
FR724175A (en) | 1932-04-22 |
NL44135C (en) | 1938-10-15 |
GB395349A (en) | 1933-07-10 |
BE383291A (en) | |
DE706471C (en) | 1941-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1694264A (en) | Temperature regulator | |
US2147472A (en) | High current impulse device | |
US2315916A (en) | Electric welding system | |
US1995810A (en) | Electric welding control system | |
US2169023A (en) | Power control system | |
US2001567A (en) | Electric valve translating circuit | |
US2162533A (en) | Translating device | |
US2568391A (en) | Regulating system | |
US2231582A (en) | Electric valve translating apparatus | |
US2106831A (en) | Electric control system | |
US1956416A (en) | High voltage discharge apparatus | |
US1994907A (en) | Arc welding apparatus | |
US2083190A (en) | Welding apparatus | |
US2119130A (en) | Electric valve control system | |
US1947197A (en) | Regulating system | |
US2266714A (en) | Electric valve control circuits | |
US2162519A (en) | Electric discharge apparatus | |
US2283719A (en) | Electric valve circuits | |
US1999736A (en) | Discharge device stabilizer system | |
US2340083A (en) | Spot welder | |
US2247167A (en) | Electric valve circuits | |
US2248611A (en) | Control apparatus for vapor electric discharge devices | |
US2002281A (en) | Electronic current regulator | |
US2373543A (en) | Light sensitive electric valve system | |
US1920569A (en) | Device for keeping constant the terminal voltage of sources of current |