Nothing Special   »   [go: up one dir, main page]

US20240028655A1 - Apparatus for goal generation and a method for its use - Google Patents

Apparatus for goal generation and a method for its use Download PDF

Info

Publication number
US20240028655A1
US20240028655A1 US18/117,091 US202318117091A US2024028655A1 US 20240028655 A1 US20240028655 A1 US 20240028655A1 US 202318117091 A US202318117091 A US 202318117091A US 2024028655 A1 US2024028655 A1 US 2024028655A1
Authority
US
United States
Prior art keywords
goal
user
datum
function
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US18/117,091
Inventor
Travis Adams
Chad Willardson
Scott Donnell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gravystack Inc
Original Assignee
Gravystack Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gravystack Inc filed Critical Gravystack Inc
Priority to US18/117,091 priority Critical patent/US20240028655A1/en
Publication of US20240028655A1 publication Critical patent/US20240028655A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/28Databases characterised by their database models, e.g. relational or object models
    • G06F16/284Relational databases
    • G06F16/285Clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/906Clustering; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/092Reinforcement learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/048Fuzzy inferencing

Definitions

  • the present invention generally relates to the field of artificial intelligence.
  • the present invention is directed to an apparatus for goal generation and a method for its use.
  • Classification of data according to extrinsic criteria can often present a particular challenge, particularly where the extrinsic criteria themselves may be subjective in nature, such as potential or apparent importance to one or more persons.
  • an apparatus for goal generation includes at least a processor and a memory communicatively connected to the at least a processor, the memory containing instructions configuring the at least a processor to generate a goal datum related to a user as a function of at least a behavioral parameter of the user, classify the goal datum to a user goal, and generate a goal path as a function of the user goal, wherein generating the goal path further includes generating a plurality of waypoints as a function of the user goal and the goal datum and generating the goal path as a function of the plurality of waypoints.
  • a method for goal generation includes generating, using a processor, a goal datum related to a user as a function of at least a behavioral parameter of the user, classifying, using the processor, the goal datum to a user goal, assigning, using the processor, the user goal as a function of the classification, generating, using the processor, a goal path, wherein generating the goal path further includes generating a plurality of waypoints as a function of the user goal and the goal datum, and generating the goal path as a function of the plurality of waypoints.
  • FIG. 1 is a block diagram of an exemplary embodiment of an apparatus goal generation
  • FIG. 2 is a block diagram of an exemplary machine-learning process
  • FIG. 3 is a block diagram of an exemplary embodiment of a goal database
  • FIG. 4 is a diagram of an exemplary embodiment of neural network
  • FIG. 5 is a diagram of an exemplary embodiment of a node of a neural network
  • FIG. 6 is a graph illustrating an exemplary relationship between fuzzy sets
  • FIG. 7 is a block diagram of exemplary embodiment of an immutable sequential listing
  • FIG. 8 is a flow diagram of an exemplary method for goal generation.
  • FIG. 9 is a block diagram of a computing system that can be used to implement any one or more of the methodologies disclosed herein and any one or more portions thereof.
  • aspects of the present disclosure are directed to systems and methods for an apparatus for goal generation.
  • the apparatus may include at least a processor and a memory communicatively connected to the at least a processor.
  • the memory may instruct the processor to receive a goal datum related to a user, wherein the goal datum comprises behavioral parameters of the user.
  • the memory may additionally instruct the processor to classify the goal datum to a user goal.
  • the classification may comprise training a goal classifier using a goal training data, wherein the goal training data contains a plurality of data entries correlating examples of goal datum to examples of goals.
  • the classification may also comprise classifying the goal datum to the goal using the goal classifier.
  • the classifier may assign the goal as a function of the classification.
  • the memory may instruct the processor to generate a goal path as a function of the classification of the goal datum to a goal, wherein the goal path is divided into waypoints Exemplary embodiments illustrating aspects of the present disclosure are described below in the context of several specific examples.
  • Apparatus 100 includes a processor 104 .
  • Processor 104 may include any computing device as described in this disclosure, including without limitation a microcontroller, microprocessor, digital signal processor (DSP) and/or system on a chip (SoC) as described in this disclosure.
  • Computing device may include, be included in, and/or communicate with a mobile device such as a mobile telephone or smartphone.
  • Processor 104 may include a single computing device operating independently, or may include two or more computing device operating in concert, in parallel, sequentially or the like; two or more computing devices may be included together in a single computing device or in two or more computing devices.
  • Processor 104 may interface or communicate with one or more additional devices as described below in further detail via a network interface device.
  • Network interface device may be utilized for connecting Processor 104 to one or more of a variety of networks, and one or more devices. Examples of a network interface device include, but are not limited to, a network interface card (e.g., a mobile network interface card, a LAN card), a modem, and any combination thereof.
  • Examples of a network include, but are not limited to, a wide area network (e.g., the Internet, an enterprise network), a local area network (e.g., a network associated with an office, a building, a campus or other relatively small geographic space), a telephone network, a data network associated with a telephone/voice provider (e.g., a mobile communications provider data and/or voice network), a direct connection between two computing devices, and any combinations thereof.
  • a network may employ a wired and/or a wireless mode of communication. In general, any network topology may be used.
  • Information e.g., data, software etc.
  • Information may be communicated to and/or from a computer and/or a computing device.
  • Processor 104 may include but is not limited to, for example, a computing device or cluster of computing devices in a first location and a second computing device or cluster of computing devices in a second location.
  • Processor 104 may include one or more computing devices dedicated to data storage, security, distribution of traffic for load balancing, and the like.
  • Processor 104 may distribute one or more computing tasks as described below across a plurality of computing devices of computing device, which may operate in parallel, in series, redundantly, or in any other manner used for distribution of tasks or memory between computing devices.
  • Processor 104 may be implemented using a “shared nothing” architecture in which data is cached at the worker, in an embodiment, this may enable scalability of apparatus 100 and/or computing device.
  • Processor 104 may be designed and/or configured to perform any method, method step, or sequence of method steps in any embodiment described in this disclosure, in any order and with any degree of repetition.
  • processor 104 may be configured to perform a single step or sequence repeatedly until a desired or commanded outcome is achieved; repetition of a step or a sequence of steps may be performed iteratively and/or recursively using outputs of previous repetitions as inputs to subsequent repetitions, aggregating inputs and/or outputs of repetitions to produce an aggregate result, reduction or decrement of one or more variables such as global variables, and/or division of a larger processing task into a set of iteratively addressed smaller processing tasks.
  • Processor 104 may perform any step or sequence of steps as described in this disclosure in parallel, such as simultaneously and/or substantially simultaneously performing a step two or more times using two or more parallel threads, processor cores, or the like; division of tasks between parallel threads and/or processes may be performed according to any protocol suitable for division of tasks between iterations.
  • Persons skilled in the art upon reviewing the entirety of this disclosure, will be aware of various ways in which steps, sequences of steps, processing tasks, and/or data may be subdivided, shared, or otherwise dealt with using iteration, recursion, and/or parallel processing.
  • processor 104 may be configured to generate a plurality of user goals 108 for the user.
  • a “goal” is a task or an accomplishment that the user would like to achieve.
  • a user goal 108 may be a pecuniary goal, improving pecuniary literacy, musical goal, a vocational goal, an educational goal, a skill goal, a health goal, fitness goal, and the like.
  • a “vocational goal” is a goal that is related to improving a user's career.
  • a “pecuniary goal” is a goal that is related to improving a user's pecuniary position.
  • a “pecuniary literacy” is a user's knowledge of how to improve his or her pecuniary position.
  • an “educational goal” is an element of data used to improve the users formal or professional education. Examples of goals may include saving money, improving pecuniary literacy, buying a home, establishing an emergency fund, optimizing the family budget, starting a new career field, improving overall health, fitness goals, and the like.
  • the processor 104 may generate an educational goal for the user of getting a college degree.
  • the processor may generate a pecuniary goal for the user to save a predetermined amount of money.
  • a user may be assigned a plurality of a user goals 108 as a function of a user input.
  • processor 104 may be configured to generate a goal path 112 for the user.
  • a “goal path” is a series of one or more steps to achieve a user goal 108 .
  • Goal path 112 may include a plurality of instructions regarding how to achieve a user goal 108 .
  • a goal path 112 may be generated as a function of the selection of the user goal 108 .
  • a goal path 112 may be a user goal 108 broken down into a series of sub-goals. In some embodiments, the sub-goals may be smaller or more simple goals used to progress the user towards user goal 108 .
  • a non-limiting example of a goal path 112 for buying a home may be: 1. conducting an evaluation of the user's credit; 2. identifying a price range; 3. promoting the users to save enough money for a down payment; 4. identify a home for sale within the price range; 5. get a mortgage on the home; 6. close on the home.
  • a goal path 112 may be comprised of a plurality of steps and sub steps. A step may comprise a task that a user must complete in to achieve a user goal 108 . Once a user has achieved a plurality of steps and subs steps the user may achieve a waypoint 116 .
  • a goal path 112 may be comprised of a set of waypoints 116 .
  • a “waypoint” is a milestone for accomplishing the user goal 108 .
  • a non-limiting example of a waypoint 116 may be saving 20% of the total cost of a home for a down payment, in reference to the above example.
  • a “milestone” is an event marking a significant change or progress for the user achieving his or her user goal 108 .
  • processor 104 may be configured to select a user goal 108 for the user.
  • “Goal selection” the selection of one or more user goals 108 of the plurality of goals for the user to purse.
  • a goal selection may be generated using a goal machine learning model.
  • Processor 104 may be configured to generate a plurality of user goals 108 using a goal machine learning model 132 .
  • a “goal machine learning model” is a machine learning model, such as a mathematical and/or algorithmic representation of a relationship between inputs and outputs.
  • a goal machine learning model 132 may be consistent with the machine learning model described herein below in FIG. 2 .
  • Inputs to the machine learning model may include an example of user goals 108 , goal datum 120 , survey data 136 , behavioral parameters 124 , action parameters, and the like. This data may be received from a database, such as goal database 300 .
  • Previous user goals 108 , previous goal data 120 , previous waypoints 116 , and previous goal paths 112 may come from the current user or users similarly situated to the users by user interest, pecuniary status, and/or aptitude for task completion.
  • Goal machine learning model 132 may be trained using training data such as prior user goals 108 , survey data 136 , and goal data 120 . Training data may be received from a database, such as training data database 400 .
  • the output of the goal machine learning model 132 may be a plurality of user goals 108 , a goal selection, goal path 112 , and/or waypoints 116 .
  • a “goal datum” is an element of data used to generate the user goals 108 of the user.
  • Goal datum 112 may additionally be used to generate a goal or a goal selection for the user.
  • Goal datum 112 may be a description of a user goal 108 .
  • Goal datum may include a plurality of information regarding a user's aptitude and interest in a given area. In an embodiment, this may be done by classifying goal datum 120 to a plurality of user goals 108 using a goal classifier 128 or another machine learning model.
  • Goal datum 120 may be generated as a function of a survey datum, behavioral parameters 124 , and previous action parameters.
  • goal datum 120 may be information to help determine the aptitude of the user to accomplish a goal.
  • Goal datum 120 may be used to determine a user goal 108 for the user.
  • Examples of goal datum 108 may include information about the users pecuniary literacy, pecuniary history, name, address, occupation, educational history, overall health history, musical aptitude, and the like.
  • a pecuniary history may include an account of the users assets and debts.
  • a pecuniary literacy may include the user's ability to manage his/her assets and debts.
  • An example of an educational history may include both the formal and informal education and training a user has received. This may include a degrees (i.e.
  • goal datum 120 may be generated as a function of a behavioral parameter 124 .
  • a “behavioral parameter” is an element of data relating to the users past behaviors.
  • behavioral parameters 124 may be used to determine the aptitudes or abilities of a user. Examples of a behavioral parameter 124 may include the user's pecuniary behaviors, past experience and skills, and the like. Pecuniary behaviors may include things like spending and saving habits.
  • a behavioral parameter 124 may include an audit of a user's bank and credit card records.
  • a behavioral parameter 124 may include the users education and professional certifications.
  • Pecuniary behaviors may also include an evaluation of the assets and debts that the user has accumulated.
  • a behavioral parameter 124 may additionally include the aptitude of the user to previous complete task and previous user goals 108 .
  • a behavioral parameter 124 may provide a diagnosis of why a user failed to complete a previous goal.
  • goal datum 120 may be generated as a function of an action parameter.
  • action parameter is an element of data used to predict the users future behavior.
  • “future behavior” is a prediction of the user's ability to complete user goals 108 or sub goals.
  • an action parameter may be used to determine the likelihood of success of a user accomplishing a given user goal 108 .
  • An action parameter may be calculated as a function of a user goal 108 , survey data 136 , and behavioral parameters 124 .
  • an action parameter input an element of survey data 136 stating that the user has been unsuccessful in her last three user goals 108 . The action parameter may then predict the user will continue to fail until user take steps to remediate.
  • An action parameter may be generated using a machine learning model or fuzzy set.
  • apparatus 100 may generate goal datum 120 from survey data 136 .
  • survey data is an element of data that is generated from a series of answers to questions by the user.
  • the survey data 136 may include responses to a user survey given to a user.
  • the survey may include questions regarding the user's pecuniary literacy, pecuniary history, occupation, educational history, overall health history, action parameters, behavioral parameters 124 , and the like.
  • the survey data 136 may be used at various points by apparatus 100 .
  • the survey data 136 may be a component of goal datum 120 .
  • survey data 136 may be used to generate goal datum 120 or determine a user goal 108 .
  • survey data 136 may be used to tailor or update user goals 108 and goal data 120 . For example if a user reports pecuniary struggles because of lack of employment or underemployment, this may indicate that user goal 108 needs to be altered to include a waypoint 116 of getting a adequately employed.
  • Processor 104 may be configured to assign the user a user goal 108 as a function of the classification of a user goal 108 to a goal datum 120 .
  • a “goal classifier” is a machine-learning model that sorts inputs into categories or bins of data, outputting the categories or bins of data and/or labels associated therewith. Goal Classifier may be consistent with the classifier described below in FIG. 2 .
  • Inputs to the to the goal classifier 128 may include a plurality of user goals 108 , Goal datum 120 , survey data 136 , behavioral parameters 124 , action parameters, and the like.
  • the output to the classifier 128 may be a goal 180 that is specific to the given user.
  • Goal training data is a plurality of data entries containing a plurality of inputs that are correlated to a plurality of outputs for training a processor by a machine-learning process to align and classify a user's goal datum 108 to a user goal 108 .
  • Goal training data may be received from a database.
  • Goal training data may contain information about plurality of user goals 108 , Goal datum 120 , survey data 136 , behavioral parameters 124 , action parameters, and the like.
  • Goal training data may be generated from any past user goals 108 , goal datum 120 , survey data 136 , behavioral parameters 124 , action parameters, and the like.
  • Goal training data may correlate an example of a user goal 108 to an example of a goal datum 120 .
  • the “example of a goal” and the “example of goal datum” may be prior a prior user goals 108 and a prior goal datum 120 , respectively.
  • goal training data may be configured to correlate a user goal 108 to a goal datum 120 .
  • Classification may be performed using, without limitation, linear classifiers such as without limitation logistic regression and/or naive Bayes classifiers, nearest neighbor classifiers such as k-nearest neighbors classifiers, support vector machines, least squares support vector machines, fisher's linear discriminant, quadratic classifiers, decision trees, boosted trees, random forest classifiers, learning vector quantization, and/or neural network-based classifiers.
  • a classifier such as goal classifier 128
  • a “fuzzy inference” is a method that interprets the values in the input vector (i.e., user goals 108 and goal data 120 .) and, based on a set of rules, assigns values to the output vector.
  • a set of Fuzzy rules may include a collection of linguistic statements that describe how the system should make a decision regarding classifying an input or controlling an output. While using fuzzy logic, the truth of any statement may become a matter of a degree.
  • a fuzzy inference may include the process of mapping from a given input to an output using fuzzy logic.
  • the mapping may then then provide a basis from which decisions can be made or patterns discerned.
  • the process of fuzzy inference may involve functions, fuzzy logic operators, and if-then rules, etc.
  • the system may be applied using two types of fuzzy inference systems: Mamdani-type and Sugeno-type. These two types of inference systems vary somewhat in the way outputs are determined.
  • processor 104 may be utilize a knowledge-based system (KBS) classify a user's goal data 120 to a user goal 108 .
  • KBS knowledge-based system
  • a knowledge base may include technology used to store complex structured and unstructured information used by a computer system, often in some form of subsumption ontology rather than implicitly embedded in procedural code.
  • Other common approaches in addition to a subsumption ontology include frames, conceptual graphs, and logical assertions.
  • the knowledge base may be a storage hub that contains information about past matches of user's user goals 108 to a goal datum 120 based on the similarity of inputs and feedback from users and system administrators about the compatibility of matches.
  • an Inference engine allows new knowledge to be inferred. For example, the inference engine may determine that a user's system has a goal data 120 that is conducive for a user goal 108 of obtaining a professional certification such as commercial driver's license, the system may then infer that the user may need to set an additional user goal 108 of obtaining a job that utilizes that professional certification. Inferences can take the form of IF-THEN rules coupled with forward chaining or backward chaining approaches.
  • Forward chaining starts with the known facts and asserts new facts.
  • Backward chaining starts with goals and works backward to determine what facts must be asserted so that the goals can be achieved.
  • Other approaches include the use of automated theorem provers, logic programming, blackboard systems, and term rewriting systems such as CHR (Constraint Handling Rules).
  • CHR Constraint Handling Rules
  • the inference engine could devise “if goal data 120 consists of a strong interest in the musical arts and an aptitude for musical talent then that goal data 120 is compatible with the users having a user goal 108 of learning how to play a musical instrument.”
  • the inference engine may make predictions or decisions in optimizing classifying user goals 108 to goal datum 120 for a user without being explicitly programmed to do so.
  • the inference engine may receive constant feedback and self-learn based on previous classifications, as described through this disclosure, and recommendations to further refine and strengthen its recommendations.
  • processor 104 may be configured to rank a plurality of user goals 108 in order of most achievable to least achievable, wherein a rank of user goals 108 is based on the success score.
  • a “goal ranking” is a relationship between the goals used to place the goals in an order.
  • goals may be placed in order as a function of time to complete, difficulty to complete, pecuniary burden to complete, desire of the user to complete, and the like.
  • generating the goal ranking may include linear regression techniques.
  • Processor 104 may be designed and configured to create a machine-learning model using techniques for development of linear regression models.
  • Linear regression models may include ordinary least squares regression, which aims to minimize the square of the difference between predicted outcomes and actual outcomes according to an appropriate norm for measuring such a difference (e.g., a vector-space distance norm); coefficients of the resulting linear equation may be modified to improve minimization.
  • Linear regression models may include ridge regression methods, where the function to be minimized includes the least-squares function plus term multiplying the square of each coefficient by a scalar amount to penalize large coefficients.
  • Linear regression models may include least absolute shrinkage and selection operator (LASSO) models, in which ridge regression is combined with multiplying the least-squares term by a factor of 1 divided by double the number of samples.
  • LASSO least absolute shrinkage and selection operator
  • Linear regression models may include a multi-task lasso model wherein the norm applied in the least-squares term of the lasso model is the Frobenius norm mounting to the square root of the sum of squares of all terms.
  • Linear regression models may include the elastic net model, a multi-task elastic net model, a least angle regression model, a LARS lasso model, an orthogonal matching pursuit model, a Bayesian regression model, a logistic regression model, a stochastic gradient descent model, a perceptron model, a passive aggressive algorithm, a robustness regression model, a Huber regression model, or any other suitable model that may occur to persons skilled in the art upon reviewing the entirety of this disclosure.
  • Linear regression models may be generalized in an embodiment to polynomial regression models, whereby a polynomial equation (e.g., a quadratic, cubic or higher-order equation) providing a best predicted output/actual output fit is sought; similar methods to those described above may be applied to minimize error functions, as will be apparent to persons skilled in the art upon reviewing the entirety of this disclosure.
  • a polynomial equation e.g., a quadratic, cubic or higher-order equation
  • processor 104 may be configured to use goal classifier 128 to classify, as a function of goal ranking, the user goal data 120 to a user goal 108 .
  • processor 104 may take inputs of the user goals 108 and sort into categories, selectable by user, such as: most achievable, least achievable, pecuniary goals, goals, educational goals, health goals, musical goals, and the like, and the like.
  • processor 104 may be configured to produce classification output results including the classified goal ranking to user goals 108 in a selectable format by user, including at least the ranked user goals 108 with the success score displayed by each user goal 108 .
  • user may select to output classified goal ranking to user goals 108 in a pie chart, wherein the goal ranking to user goals 108 are divided, and color coded in selectable classification bins, showing the number of user goals 108 that fall into a classification.
  • processor may be configured to generate a classifier, such as goal classifier 128 , using a Na ⁇ ve Bayes classification algorithm.
  • Na ⁇ ve Bayes classification algorithm generates classifiers by assigning class labels to problem instances, represented as vectors of element values. Class labels are drawn from a finite set.
  • Na ⁇ ve Bayes classification algorithm may include generating a family of algorithms that assume that the value of a particular element is independent of the value of any other element, given a class variable.
  • a na ⁇ ve Bayes algorithm may be generated by first transforming training data into a frequency table. Processor 104 may then calculate a likelihood table by calculating probabilities of different data entries and classification labels.
  • Processor 104 may utilize a na ⁇ ve Bayes equation to calculate a posterior probability for each class.
  • a class containing the highest posterior probability is the outcome of prediction.
  • Na ⁇ ve Bayes classification algorithm may include a gaussian model that follows a normal distribution.
  • Na ⁇ ve Bayes classification algorithm may include a multinomial model that is used for discrete counts.
  • Na ⁇ ve Bayes classification algorithm may include a Bernoulli model that may be utilized when vectors are binary.
  • processor 104 may be configured to generate a classifier, such as goal classifier 128 , using a K-nearest neighbors (KNN) algorithm.
  • KNN K-nearest neighbors
  • a “K-nearest neighbors algorithm” as used in this disclosure includes a classification method that utilizes feature similarity to analyze how closely out-of-sample-features resemble training data to classify input data to one or more clusters and/or categories of features as represented in training data; this may be performed by representing both training data and input data in vector forms, and using one or more measures of vector similarity to identify classifications within training data, and to determine a classification of input data.
  • K-nearest neighbors algorithm may include specifying a K-value, or a number directing the classifier to select the k most similar entries training data to a given sample, determining the most common classifier of the entries in the database, and classifying the known sample; this may be performed recursively and/or iteratively to generate a classifier that may be used to classify input data as further samples.
  • an initial set of samples may be performed to cover an initial heuristic and/or “first guess” at an output and/or relationship, which may be seeded, without limitation, using expert input received according to any process as described herein.
  • an initial heuristic may include a ranking of associations between inputs and elements of training data. Heuristic may include selecting some number of highest-ranking associations and/or training data elements.
  • generating k-nearest neighbors algorithm may generate a first vector output containing a data entry cluster, generating a second vector output containing an input data, and calculate the distance between the first vector output and the second vector output using any suitable norm such as cosine similarity, Euclidean distance measurement, or the like.
  • Each vector output may be represented, without limitation, as an n-tuple of values, where n is at least two values.
  • Each value of n-tuple of values may represent a measurement or other quantitative value associated with a given category of data, or attribute, examples of which are provided in further detail below;
  • a vector may be represented, without limitation, in n-dimensional space using an axis per category of value represented in n-tuple of values, such that a vector has a geometric direction characterizing the relative quantities of attributes in the n-tuple as compared to each other.
  • Two vectors may be considered equivalent where their directions, and/or the relative quantities of values within each vector as compared to each other, are the same; thus, as a non-limiting example, a vector represented as [5, 10, 15] may be treated as equivalent, for purposes of this disclosure, as a vector represented as [1, 2, 3].
  • Scaling and/or normalization may function to make vector comparison independent of absolute quantities of attributes, while preserving any dependency on similarity of attributes; this may, for instance, be advantageous where cases represented in training data are represented by different quantities of samples, which may result in proportionally equivalent vectors with divergent values.
  • GUI 140 may be displayed using a graphical user interface (GUI) 140 .
  • GUI graphical user interface
  • a “graphical user interface” may include a plurality of lines, images, symbols.
  • GUI 140 may be displayed on a display device.
  • Display device may include, but is not limited to, a smartphone, tablet, laptop, monitor, tablet, and the like.
  • Display device may include a separate device that includes a transparent screen configured to display computer generated images and/or information. The user may view the information displayed on the display device in real time.
  • GUI 140 may be configured to receive user input.
  • a “User input” as used in this disclosure is information received from an individual.
  • GUI 140 may include one or more event handlers.
  • An “event handler” as used in this disclosure is a callback routine that operates asynchronously once an event takes place.
  • Event handlers may include, without limitation, one or more programs to perform one or more actions based on user input, such as generating pop-up windows, submitting forms, changing background colors of a webpage, and the like.
  • Event handlers may be programmed for specific user input, such as, but not limited to, mouse clicks, mouse hovering, touchscreen input, keystrokes, and the like.
  • an event handler may be programmed to generate a pop-up window if a user double clicks on a specific icon.
  • User input may include, a manipulation of computer icons, such as, but not limited to, clicking, selecting, dragging, and dropping, scrolling, and the like.
  • user input may include an entry of characters and/or symbols in a user input field.
  • a “user input field” as used in this disclosure is a portion of a graphical user interface configured to receive data from an individual.
  • a user input field may include, but is not limited to, text boxes, search fields, filtering fields, and the like.
  • user input may include touch input.
  • Touch input may include, but is not limited to, single taps, double taps, triple taps, long presses, swiping gestures, and the like.
  • GUI 140 may be configured to display a pictorial icon.
  • a “pictorial icon” as used in this disclosure is a graphic illustration displayed on a screen, where the graphic illustration is representative of a category.
  • a “category” as used in this disclosure is a classification of one or more elements to one or more groups.
  • a category may include, but is not limited to, user goal 108 , goal path 112 , and waypoints 116 , and the like.
  • processor 104 may be configured to generate a decentralized fiat 144 as a function of completion of a waypoint 116 .
  • a “decentralized fiat” is a bank-free method of transferring wealth or ownership of any other commodity without needing a third party.
  • Decentralized fiat may include a non-fungible token or various crypto currencies.
  • a “non-fungible token,” as used in this disclosure, is a unique and non-interchangeable unit of data stored on a digital ledger and/or immutable sequential listing.
  • “Cryptocurrency,” as used in this disclosure, is a digital or virtual currency that is secured by cryptography. This makes it nearly impossible to counterfeit or double-spend.
  • cryptocurrencies are decentralized networks based on blockchain technology such as immutable sequential listing, enforced by a network of computing devices.
  • apparatus 100 may allow various types of cryptocurrency such as Ethereum (ETH), Litecoin (LTC), Cardano (ADA), Polkadot (DOT), Bitcoin Cash (BCH), Stellar (XLM), and the like thereof.
  • ETH Ethereum
  • LTC Litecoin
  • ADA Cardano
  • DOT Bitcoin Cash
  • BCH Bitcoin Cash
  • XLM Stellar
  • Decentralized fiat 144 may be associated with reproducible digital files such as photos, videos, and audio.
  • Decentralized fiat 144 may also be associated with physical assets such as real estate, collectables, and other commodities.
  • processor 104 may issue a certificate of completion after a user has achieved a waypoint 116 .
  • Decentralized fiat 144 may be used to represent a certificate of completion. Possession or payment of decentralized fiat 144 may serve as proof that the user has accomplished all or a portion of a user goal 108 or waypoint 116 . In embodiments, the time and level of difficulty for the user to achieve a waypoint 144 may be demonstrated by the value of decentralized fiat 144 .
  • the creator may “tokenize” such assets to be stored on a digital ledger and/or immutable sequential listing, which may ensure non-duplicability and ownership, generate income, and/or enable accessibility of the assets. Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of the various embodiments and purposes of tokenizing an asset.
  • Machine-learning module may perform determinations, classification, and/or analysis steps, methods, processes, or the like as described in this disclosure using machine learning processes.
  • a “machine learning process,” as used in this disclosure, is a process that automatedly uses training data 204 to generate an algorithm that will be performed by a computing device/module to produce outputs 208 given data provided as inputs 212 ; this is in contrast to a non-machine learning software program where the commands to be executed are determined in advance by a user and written in a programming language.
  • training data is data containing correlations that a machine-learning process may use to model relationships between two or more categories of data elements.
  • training data 204 may include a plurality of data entries, each entry representing a set of data elements that were recorded, received, and/or generated together; data elements may be correlated by shared existence in a given data entry, by proximity in a given data entry, or the like.
  • Multiple data entries in training data 204 may evince one or more trends in correlations between categories of data elements; for instance, and without limitation, a higher value of a first data element belonging to a first category of data element may tend to correlate to a higher value of a second data element belonging to a second category of data element, indicating a possible proportional or other mathematical relationship linking values belonging to the two categories.
  • Multiple categories of data elements may be related in training data 204 according to various correlations; correlations may indicate causative and/or predictive links between categories of data elements, which may be modeled as relationships such as mathematical relationships by machine-learning processes as described in further detail below.
  • Training data 204 may be formatted and/or organized by categories of data elements, for instance by associating data elements with one or more descriptors corresponding to categories of data elements.
  • training data 204 may include data entered in standardized forms by persons or processes, such that entry of a given data element in a given field in a form may be mapped to one or more descriptors of categories.
  • Training data 204 may be linked to descriptors of categories by tags, tokens, or other data elements; for instance, and without limitation, training data 204 may be provided in fixed-length formats, formats linking positions of data to categories such as comma-separated value (CSV) formats and/or self-describing formats such as extensible markup language (XML), JavaScript Object Notation (JSON), or the like, enabling processes or devices to detect categories of data.
  • CSV comma-separated value
  • XML extensible markup language
  • JSON JavaScript Object Notation
  • training data 204 may include one or more elements that are not categorized; that is, training data 204 may not be formatted or contain descriptors for some elements of data.
  • Machine-learning algorithms and/or other processes may sort training data 204 according to one or more categorizations using, for instance, natural language processing algorithms, tokenization, detection of correlated values in raw data and the like; categories may be generated using correlation and/or other processing algorithms.
  • phrases making up a number “n” of compound words such as nouns modified by other nouns, may be identified according to a statistically significant prevalence of n-grams containing such words in a particular order; such an n-gram may be categorized as an element of language such as a “word” to be tracked similarly to single words, generating a new category as a result of statistical analysis.
  • a person's name may be identified by reference to a list, dictionary, or other compendium of terms, permitting ad-hoc categorization by machine-learning algorithms, and/or automated association of data in the data entry with descriptors or into a given format.
  • Training data 204 used by machine-learning module 200 may correlate any input data as described in this disclosure to any output data as described in this disclosure.
  • training data may be filtered, sorted, and/or selected using one or more supervised and/or unsupervised machine-learning processes and/or models as described in further detail below; such models may include without limitation a training data classifier 216 .
  • Training data classifier 216 may include a “classifier,” which as used in this disclosure is a machine-learning model as defined below, such as a mathematical model, neural net, or program generated by a machine learning algorithm known as a “classification algorithm,” as described in further detail below, that sorts inputs into categories or bins of data, outputting the categories or bins of data and/or labels associated therewith.
  • a classifier may be configured to output at least a datum that labels or otherwise identifies a set of data that are clustered together, found to be close under a distance metric as described below, or the like.
  • Machine-learning module 200 may generate a classifier using a classification algorithm, defined as a processes whereby a computing device and/or any module and/or component operating thereon derives a classifier from training data 204 .
  • Classification may be performed using, without limitation, linear classifiers such as without limitation logistic regression and/or naive Bayes classifiers, nearest neighbor classifiers such as k-nearest neighbors classifiers, support vector machines, least squares support vector machines, fisher's linear discriminant, quadratic classifiers, decision trees, boosted trees, random forest classifiers, learning vector quantization, and/or neural network-based classifiers.
  • linear classifiers such as without limitation logistic regression and/or naive Bayes classifiers
  • nearest neighbor classifiers such as k-nearest neighbors classifiers
  • support vector machines least squares support vector machines
  • fisher's linear discriminant quadratic classifiers
  • decision trees boosted trees
  • random forest classifiers random forest classifiers
  • learning vector quantization and/or neural network-based classifiers.
  • machine-learning module 200 may be configured to perform a lazy-learning process 220 and/or protocol, which may alternatively be referred to as a “lazy loading” or “call-when-needed” process and/or protocol, may be a process whereby machine learning is conducted upon receipt of an input to be converted to an output, by combining the input and training set to derive the algorithm to be used to produce the output on demand.
  • a lazy-learning process 220 and/or protocol may alternatively be referred to as a “lazy loading” or “call-when-needed” process and/or protocol, may be a process whereby machine learning is conducted upon receipt of an input to be converted to an output, by combining the input and training set to derive the algorithm to be used to produce the output on demand.
  • an initial set of simulations may be performed to cover an initial heuristic and/or “first guess” at an output and/or relationship.
  • an initial heuristic may include a ranking of associations between inputs and elements of training data 204 .
  • Heuristic may include selecting some number of highest-ranking associations and/or training data 204 elements.
  • Lazy learning may implement any suitable lazy learning algorithm, including without limitation a K-nearest neighbors algorithm, a lazy na ⁇ ve Bayes algorithm, or the like; persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various lazy-learning algorithms that may be applied to generate outputs as described in this disclosure, including without limitation lazy learning applications of machine-learning algorithms as described in further detail below.
  • machine-learning processes as described in this disclosure may be used to generate machine-learning models 224 .
  • a “machine-learning model,” as used in this disclosure, is a mathematical and/or algorithmic representation of a relationship between inputs and outputs, as generated using any machine-learning process including without limitation any process as described above and stored in memory; an input is submitted to a machine-learning model 224 once created, which generates an output based on the relationship that was derived.
  • a linear regression model generated using a linear regression algorithm, may compute a linear combination of input data using coefficients derived during machine-learning processes to calculate an output datum.
  • a machine-learning model 224 may be generated by creating an artificial neural network, such as a convolutional neural network comprising an input layer of nodes, one or more intermediate layers, and an output layer of nodes. Connections between nodes may be created via the process of “training” the network, in which elements from a training data 204 set are applied to the input nodes, a suitable training algorithm (such as Levenberg-Marquardt, conjugate gradient, simulated annealing, or other algorithms) is then used to adjust the connections and weights between nodes in adjacent layers of the neural network to produce the desired values at the output nodes. This process is sometimes referred to as deep learning.
  • a suitable training algorithm such as Levenberg-Marquardt, conjugate gradient, simulated annealing, or other algorithms
  • machine-learning algorithms may include at least a supervised machine-learning process 228 .
  • At least a supervised machine-learning process 228 include algorithms that receive a training set relating a number of inputs to a number of outputs, and seek to find one or more mathematical relations relating inputs to outputs, where each of the one or more mathematical relations is optimal according to some criterion specified to the algorithm using some scoring function.
  • a supervised learning algorithm may include a user goals 108 or goal datum 120 as described above as inputs, autonomous functions as outputs, and a scoring function representing a desired form of relationship to be detected between inputs and outputs; scoring function may, for instance, seek to maximize the probability that a given input and/or combination of elements inputs is associated with a given output to minimize the probability that a given input is not associated with a given output. Scoring function may be expressed as a risk function representing an “expected loss” of an algorithm relating inputs to outputs, where loss is computed as an error function representing a degree to which a prediction generated by the relation is incorrect when compared to a given input-output pair provided in training data 204 .
  • Supervised machine-learning processes may include classification algorithms as defined above.
  • machine learning processes may include at least an unsupervised machine-learning processes 232 .
  • An unsupervised machine-learning process is a process that derives inferences in datasets without regard to labels; as a result, an unsupervised machine-learning process may be free to discover any structure, relationship, and/or correlation provided in the data. Unsupervised processes may not require a response variable; unsupervised processes may be used to find interesting patterns and/or inferences between variables, to determine a degree of correlation between two or more variables, or the like.
  • machine-learning module 200 may be designed and configured to create a machine-learning model 224 using techniques for development of linear regression models.
  • Linear regression models may include ordinary least squares regression, which aims to minimize the square of the difference between predicted outcomes and actual outcomes according to an appropriate norm for measuring such a difference (e.g., a vector-space distance norm); coefficients of the resulting linear equation may be modified to improve minimization.
  • Linear regression models may include ridge regression methods, where the function to be minimized includes the least-squares function plus term multiplying the square of each coefficient by a scalar amount to penalize large coefficients.
  • Linear regression models may include least absolute shrinkage and selection operator (LASSO) models, in which ridge regression is combined with multiplying the least-squares term by a factor of 1 divided by double the number of samples.
  • Linear regression models may include a multi-task lasso model wherein the norm applied in the least-squares term of the lasso model is the Frobenius norm amounting to the square root of the sum of squares of all terms.
  • Linear regression models may include the elastic net model, a multi-task elastic net model, a least angle regression model, a LARS lasso model, an orthogonal matching pursuit model, a Bayesian regression model, a logistic regression model, a stochastic gradient descent model, a perceptron model, a passive aggressive algorithm, a robustness regression model, a Huber regression model, or any other suitable model that may occur to persons skilled in the art upon reviewing the entirety of this disclosure.
  • Linear regression models may be generalized in an embodiment to polynomial regression models, whereby a polynomial equation (e.g., a quadratic, cubic or higher-order equation) providing a best predicted output/actual output fit is sought; similar methods to those described above may be applied to minimize error functions, as will be apparent to persons skilled in the art upon reviewing the entirety of this disclosure.
  • a polynomial equation e.g., a quadratic, cubic or higher-order equation
  • machine-learning algorithms may include, without limitation, linear discriminant analysis.
  • Machine-learning algorithm may include quadratic discriminate analysis.
  • Machine-learning algorithms may include kernel ridge regression.
  • Machine-learning algorithms may include support vector machines, including without limitation support vector classification-based regression processes.
  • Machine-learning algorithms may include stochastic gradient descent algorithms, including classification and regression algorithms based on stochastic gradient descent.
  • Machine-learning algorithms may include nearest neighbors algorithms.
  • Machine-learning algorithms may include Gaussian processes such as Gaussian Process Regression.
  • Machine-learning algorithms may include cross-decomposition algorithms, including partial least squares and/or canonical correlation analysis.
  • Machine-learning algorithms may include na ⁇ ve Bayes methods.
  • Machine-learning algorithms may include algorithms based on decision trees, such as decision tree classification or regression algorithms.
  • Machine-learning algorithms may include ensemble methods such as bagging meta-estimator, forest of randomized tress, AdaBoost, gradient tree boosting, and/or voting classifier methods.
  • Machine-learning algorithms may include neural net algorithms
  • neural network also known as an artificial neural network, is a network of “nodes,” or data structures having one or more inputs, one or more outputs, and a function determining outputs based on inputs.
  • nodes may be organized in a network, such as without limitation a convolutional neural network, including an input layer of nodes, one or more intermediate layers, and an output layer of nodes.
  • Connections between nodes may be created via the process of “training” the network, in which elements from a training dataset are applied to the input nodes, a suitable training algorithm (such as Levenberg-Marquardt, conjugate gradient, simulated annealing, or other algorithms) is then used to adjust the connections and weights between nodes in adjacent layers of the neural network to produce the desired values at the output nodes.
  • a suitable training algorithm such as Levenberg-Marquardt, conjugate gradient, simulated annealing, or other algorithms
  • This process is sometimes referred to as deep learning.
  • a node may include, without limitation a plurality of inputs x i that may receive numerical values from inputs to a neural network containing the node and/or from other nodes.
  • Node may perform a weighted sum of inputs using weights w i that are multiplied by respective inputs x i .
  • a bias b may be added to the weighted sum of the inputs such that an offset is added to each unit in the neural network layer that is independent of the input to the layer.
  • the weighted sum may then be input into a function ⁇ , which may generate one or more outputs y.
  • Weight w i applied to an input x i may indicate whether the input is “excitatory,” indicating that it has strong influence on the one or more outputs y, for instance by the corresponding weight having a large numerical value, and/or a “inhibitory,” indicating it has a weak effect influence on the one more inputs y, for instance by the corresponding weight having a small numerical value.
  • the values of weights w i may be determined by training a neural network using training data, which may be performed using any suitable process as described above.
  • a neural network may receive semantic units as inputs and output vectors representing such semantic units according to weights w i that are derived using machine-learning processes as described in this disclosure.
  • Goal database 300 is illustrated by way of block diagram.
  • User goals 108 , Goal datum 120 , goal path 112 , and/or waypoint 116 may be stored in a goal database 300 (also referred to as “database”).
  • Processor 104 may be communicatively connected with goal database 300 .
  • database 300 may be local to processor 104 .
  • database 300 may be remote to processor 104 and communicative with processor 104 by way of one or more networks.
  • Network may include, but not limited to, a cloud network, a mesh network, or the like.
  • a “cloud-based” system can refer to a system which includes software and/or data which is stored, managed, and/or processed on a network of remote servers hosted in the “cloud,” e.g., via the Internet, rather than on local severs or personal computers.
  • a “mesh network” as used in this disclosure is a local network topology in which the infrastructure processor 104 connect directly, dynamically, and non-hierarchically to as many other computing devices as possible.
  • a “network topology” as used in this disclosure is an arrangement of elements of a communication network.
  • Goal database 300 may be implemented, without limitation, as a relational database, a key-value retrieval database such as a NOSQL database, or any other format or structure for use as a database that a person skilled in the art would recognize as suitable upon review of the entirety of this disclosure.
  • Goal database 300 may alternatively or additionally be implemented using a distributed data storage protocol and/or data structure, such as a distributed hash table or the like.
  • Goal database 300 may include a plurality of data entries and/or records as described above. Data entries in a database may be flagged with or linked to one or more additional elements of information, which may be reflected in data entry cells and/or in linked tables such as tables related by one or more indices in a relational database.
  • a neural network 400 also known as an artificial neural network, is a network of “nodes,” or data structures having one or more inputs, one or more outputs, and a function determining outputs based on inputs.
  • nodes may be organized in a network, such as without limitation a convolutional neural network, including an input layer of nodes 404 , one or more intermediate layers 408 , and an output layer of nodes 412 .
  • Connections between nodes may be created via the process of “training” the network, in which elements from a training dataset are applied to the input nodes, a suitable training algorithm (such as Levenberg-Marquardt, conjugate gradient, simulated annealing, or other algorithms) is then used to adjust the connections and weights between nodes in adjacent layers of the neural network to produce the desired values at the output nodes.
  • a suitable training algorithm such as Levenberg-Marquardt, conjugate gradient, simulated annealing, or other algorithms
  • This process is sometimes referred to as deep learning.
  • a neural network may include a convolutional neural network comprising an input layer of nodes, one or more intermediate layers, and an output layer of nodes.
  • a “convolutional neural network,” as used in this disclosure, is a neural network in which at least one hidden layer is a convolutional layer that convolves inputs to that layer with a subset of inputs known as a “kernel,” along with one or more additional layers such as pooling layers, fully connected layers, and the like.
  • a node may include, without limitation a plurality of inputs x i that may receive numerical values from inputs to a neural network containing the node and/or from other nodes.
  • Node may perform a weighted sum of inputs using weights w i that are multiplied by respective inputs x i .
  • a bias b may be added to the weighted sum of the inputs such that an offset is added to each unit in the neural network layer that is independent of the input to the layer.
  • the weighted sum may then be input into a function ⁇ , which may generate one or more outputs y.
  • Weight w i applied to an input x i may indicate whether the input is “excitatory,” indicating that it has strong influence on the one or more outputs y, for instance by the corresponding weight having a large numerical value, and/or a “inhibitory,” indicating it has a weak effect influence on the one more inputs y, for instance by the corresponding weight having a small numerical value.
  • the values of weights w i may be determined by training a neural network using training data, which may be performed using any suitable process as described above.
  • fuzzy set comparison 600 may be consistent with fuzzy set comparison in FIG. 1 .
  • the fuzzy set comparison 600 may be consistent with the name/version matching as described herein.
  • the parameters, weights, and/or coefficients of the membership functions may be tuned using any machine-learning methods for the name/version matching as described herein.
  • the fuzzy set may represent user goals 108 and goal datum 120 from FIG. 1 .
  • fuzzy set comparison 600 may be generated as a function of determining data compatibility threshold.
  • the compatibility threshold may be determined by a computing device.
  • a computing device may use a logic comparison program, such as, but not limited to, a fuzzy logic model to determine the compatibility threshold and/or version authenticator.
  • Each such compatibility threshold may be represented as a value for a posting variable representing the compatibility threshold, or in other words a fuzzy set as described above that corresponds to a degree of compatibility and/or allowability as calculated using any statistical, machine-learning, or other method that may occur to a person skilled in the art upon reviewing the entirety of this disclosure.
  • determining the compatibility threshold and/or version authenticator may include using a linear regression model.
  • a linear regression model may include a machine learning model.
  • a linear regression model may map statistics such as, but not limited to, frequency of the same range of version numbers, and the like, to the compatibility threshold and/or version authenticator.
  • determining the compatibility threshold of any posting may include using a classification model.
  • a classification model may be configured to input collected data and cluster data to a centroid based on, but not limited to, frequency of appearance of the range of versioning numbers, linguistic indicators of compatibility and/or allowability, and the like. Centroids may include scores assigned to them such that the compatibility threshold may each be assigned a score.
  • a classification model may include a K-means clustering model. In some embodiments, a classification model may include a particle swarm optimization model. In some embodiments, determining a compatibility threshold may include using a fuzzy inference engine. A fuzzy inference engine may be configured to map one or more compatibility threshold using fuzzy logic. In some embodiments, a plurality of computing devices may be arranged by a logic comparison program into compatibility arrangements. A “compatibility arrangement” as used in this disclosure is any grouping of objects and/or data based on skill level and/or output score. Membership function coefficients and/or constants as described above may be tuned according to classification and/or clustering algorithms.
  • a clustering algorithm may determine a Gaussian or other distribution of questions about a centroid corresponding to a given compatibility threshold and/or version authenticator, and an iterative or other method may be used to find a membership function, for any membership function type as described above, that minimizes an average error from the statistically determined distribution, such that, for instance, a triangular or Gaussian membership function about a centroid representing a center of the distribution that most closely matches the distribution.
  • Error functions to be minimized, and/or methods of minimization may be performed without limitation according to any error function and/or error function minimization process and/or method as described in this disclosure.
  • inference engine may be implemented according to input and/or output user goals 108 and goal datum 120 .
  • an acceptance variable may represent a first measurable value pertaining to the classification of goal datum 120 to a user goal 108 .
  • an output variable may represent a user goal 108 specific the current user.
  • user goals 108 and goal datum 120 may be represented by their own fuzzy set.
  • a goal datum 120 specific to the user may be represented as a function of the intersection two fuzzy sets as shown in FIG. 6 .
  • An inference engine may combine rules, such as any semantic versioning, semantic language, version ranges, and the like thereof.
  • T-norm triangular norm or “T-norm” of the rule or output function with the input function, such as min (a, b), product of a and b, drastic product of a and b, Hamacher product of a and b,
  • T-conorm may be approximated by sum, as in a “product-sum” inference engine in which T-norm is product and T-conorm is sum.
  • a final output score or other fuzzy inference output may be determined from an output membership function as described above using any suitable defuzzification process, including without limitation Mean of Max defuzzification, Centroid of Area/Center of Gravity defuzzification, Center Average defuzzification, Bisector of Area defuzzification, or the like.
  • output rules may be replaced with functions according to the Takagi-Sugeno-King (TSK) fuzzy model.
  • a first fuzzy set 604 may be represented, without limitation, according to a first membership function 608 representing a probability that an input falling on a first range of values 612 is a member of the first fuzzy set 604 , where the first membership function 608 has values on a range of probabilities such as without limitation the interval [0,1], and an area beneath the first membership function 608 may represent a set of values within first fuzzy set 604 .
  • first range of values 612 is illustrated for clarity in this exemplary depiction as a range on a single number line or axis, first range of values 612 may be defined on two or more dimensions, representing, for instance, a Cartesian product between a plurality of ranges, curves, axes, spaces, dimensions, or the like.
  • First membership function 608 may include any suitable function mapping first range 612 to a probability interval, including without limitation a triangular function defined by two linear elements such as line segments or planes that intersect at or below the top of the probability interval.
  • triangular membership function may be defined as:
  • y ⁇ ( x , a , b , c ) ⁇ 0 , for ⁇ x > c ⁇ and ⁇ x ⁇ a x - a b - a , for ⁇ a ⁇ x ⁇ b c - x c - b , if ⁇ b ⁇ c ⁇ c
  • a trapezoidal membership function may be defined as:
  • y ⁇ ( x , a , b , c , d ) max ( min ⁇ ( x - a b - a , 1 , c - x c - b , 0 )
  • a sigmoidal function may be defined as:
  • a Gaussian membership function may be defined as:
  • a bell membership function may be defined as:
  • First fuzzy set 604 may represent any value or combination of values as described above, including any software component datum, any source repository datum, any malicious quantifier datum, any predictive threshold datum, any string distance datum, any resource datum, any niche datum, and/or any combination of the above.
  • a second fuzzy set 616 which may represent any value which may be represented by first fuzzy set 604 , may be defined by a second membership function 620 on a second range 624 ; second range 624 may be identical and/or overlap with first range 612 and/or may be combined with first range via Cartesian product or the like to generate a mapping permitting evaluation overlap of first fuzzy set 604 and second fuzzy set 616 .
  • first fuzzy set 604 and second fuzzy set 616 have a region 636 that overlaps
  • first membership function 608 and second membership function 620 may intersect at a point 632 representing a probability, as defined on probability interval, of a match between first fuzzy set 604 and second fuzzy set 616 .
  • a single value of first and/or second fuzzy set may be located at a locus 636 on first range 612 and/or second range 624 , where a probability of membership may be taken by evaluation of first membership function 608 and/or second membership function 620 at that range point.
  • a probability at 628 and/or 632 may be compared to a threshold 640 to determine whether a positive match is indicated.
  • Threshold 640 may, in a non-limiting example, represent a degree of match between first fuzzy set 604 and second fuzzy set 616 , and/or single values therein with each other or with either set, which is sufficient for purposes of the matching process; for instance, an achievable user goal 108 may indicate a sufficient degree of overlap with the goal datum 120 for combination to occur as described above.
  • Each threshold may be established by one or more user inputs. Alternatively or additionally, each threshold may be tuned by a machine-learning and/or statistical process, for instance and without limitation as described in further detail below.
  • a degree of match between fuzzy sets may be used to rank one resource against another. For instance, if both user goals 108 and goal datum 120 have fuzzy sets, a user goal 108 may be matched to a goal datum 12 by having a degree of overlap exceeding a predictive threshold, processor 104 may further rank the two resources by ranking a resource having a higher degree of match more highly than a resource having a lower degree of match.
  • degrees of match for each respective fuzzy set may be computed and aggregated through, for instance, addition, averaging, or the like, to determine an overall degree of match, which may be used to rank resources; selection between two or more matching resources may be performed by selection of a highest-ranking resource, and/or multiple notifications may be presented to a user in order of ranking.
  • An “immutable sequential listing,” as used in this disclosure, is a data structure that places data entries in a fixed sequential arrangement, such as a temporal sequence of entries and/or blocks thereof, where the sequential arrangement, once established, cannot be altered, or reordered.
  • An immutable sequential listing may be, include and/or implement an immutable ledger, where data entries that have been posted to the immutable sequential listing cannot be altered.
  • Data elements are listing in immutable sequential listing; data elements may include any form of data, including textual data, image data, encrypted data, cryptographically hashed data, and the like. Data elements may include, without limitation, one or more at least a digitally signed assertions.
  • a digitally signed assertion 704 is a collection of textual data signed using a secure proof as described in further detail below; secure proof may include, without limitation, a digital signature as described above.
  • Collection of textual data may contain any textual data, including without limitation American Standard Code for Information Interchange (ASCII), Unicode, or similar computer-encoded textual data, any alphanumeric data, punctuation, diacritical mark, or any character or other marking used in any writing system to convey information, in any form, including any plaintext or cyphertext data; in an embodiment, collection of textual data may be encrypted, or may be a hash of other data, such as a root or node of a Merkle tree or hash tree, or a hash of any other information desired to be recorded in some fashion using a digitally signed assertion 704 .
  • ASCII American Standard Code for Information Interchange
  • Unicode Unicode
  • computer-encoded textual data any alphanumeric data, punctuation, diacritical mark, or any character or
  • collection of textual data states that the owner of a certain transferable item represented in a digitally signed assertion 704 register is transferring that item to the owner of an address.
  • a digitally signed assertion 704 may be signed by a digital signature created using the private key associated with the owner's public key, as described above.
  • a digitally signed assertion 704 may describe a transfer of virtual currency, such as crypto-currency as described below.
  • the virtual currency may be a digital currency.
  • Item of value may be a transfer of trust, for instance represented by a statement vouching for the identity or trustworthiness of the first entity.
  • Item of value may be an interest in a fungible negotiable financial instrument representing ownership in a public or private corporation, a creditor relationship with a governmental body or a corporation, rights to ownership represented by an option, derivative financial instrument, commodity, debt-backed security such as a bond or debenture or other security as described in further detail below.
  • a resource may be a physical machine e.g. a ride share vehicle or any other asset.
  • a digitally signed assertion 704 may describe the transfer of a physical good; for instance, a digitally signed assertion 704 may describe the sale of a product.
  • a transfer nominally of one item may be used to represent a transfer of another item; for instance, a transfer of virtual currency may be interpreted as representing a transfer of an access right; conversely, where the item nominally transferred is something other than virtual currency, the transfer itself may still be treated as a transfer of virtual currency, having value that depends on many potential factors including the value of the item nominally transferred and the monetary value attendant to having the output of the transfer moved into a particular user's control.
  • the item of value may be associated with a digitally signed assertion 704 by means of an exterior protocol, such as the COLORED COINS created according to protocols developed by The Colored Coins Foundation, the MASTERCOIN protocol developed by the Mastercoin Foundation, or the ETHEREUM platform offered by the Stainless Ethereum Foundation of Baar, Switzerland, the Thunder protocol developed by Thunder Consensus, or any other protocol.
  • an exterior protocol such as the COLORED COINS created according to protocols developed by The Colored Coins Foundation, the MASTERCOIN protocol developed by the Mastercoin Foundation, or the ETHEREUM platform offered by the Stainless Ethereum Foundation of Baar, Switzerland, the Thunder protocol developed by Thunder Consensus, or any other protocol.
  • an address is a textual datum identifying the recipient of virtual currency or another item of value in a digitally signed assertion 704 .
  • address is linked to a public key, the corresponding private key of which is owned by the recipient of a digitally signed assertion 704 .
  • address may be the public key.
  • Address may be a representation, such as a hash, of the public key.
  • Address may be linked to the public key in memory of a computing device, for instance via a “wallet shortener” protocol.
  • a transferee in a digitally signed assertion 704 may record a subsequent a digitally signed assertion 704 transferring some or all of the value transferred in the first a digitally signed assertion 704 to a new address in the same manner.
  • a digitally signed assertion 704 may contain textual information that is not a transfer of some item of value in addition to, or as an alternative to, such a transfer.
  • a digitally signed assertion 704 may indicate a confidence level associated with a distributed storage node as described in further detail below.
  • immutable sequential listing records a series of at least a posted content in a way that preserves the order in which the at least a posted content took place.
  • Temporally sequential listing may be accessible at any of various security settings; for instance, and without limitation, temporally sequential listing may be readable and modifiable publicly, may be publicly readable but writable only by entities and/or devices having access privileges established by password protection, confidence level, or any device authentication procedure or facilities described herein, or may be readable and/or writable only by entities and/or devices having such access privileges.
  • Access privileges may exist in more than one level, including, without limitation, a first access level or community of permitted entities and/or devices having ability to read, and a second access level or community of permitted entities and/or devices having ability to write; first and second community may be overlapping or non-overlapping.
  • posted content and/or immutable sequential listing may be stored as one or more zero knowledge sets (ZKS), Private Information Retrieval (PIR) structure, or any other structure that allows checking of membership in a set by querying with specific properties.
  • ZKS zero knowledge sets
  • PIR Private Information Retrieval
  • Such database may incorporate protective measures to ensure that malicious actors may not query the database repeatedly in an effort to narrow the members of a set to reveal uniquely identifying information of a given posted content.
  • immutable sequential listing may preserve the order in which the at least a posted content took place by listing them in chronological order; alternatively or additionally, immutable sequential listing may organize digitally signed assertions 704 into sub-listings 708 such as “blocks” in a blockchain, which may be themselves collected in a temporally sequential order; digitally signed assertions 704 within a sub-listing 708 may or may not be temporally sequential.
  • the ledger may preserve the order in which at least a posted content took place by listing them in sub-listings 708 and placing the sub-listings 708 in chronological order.
  • the immutable sequential listing may be a distributed, consensus-based ledger, such as those operated according to the protocols promulgated by Ripple Labs, Inc., of San Francisco, Calif., or the Stellar Development Foundation, of San Francisco, Calif, or of Thunder Consensus.
  • the ledger is a secured ledger; in one embodiment, a secured ledger is a ledger having safeguards against alteration by unauthorized parties.
  • the ledger may be maintained by a proprietor, such as a system administrator on a server, that controls access to the ledger; for instance, the user account controls may allow contributors to the ledger to add at least a posted content to the ledger but may not allow any users to alter at least a posted content that have been added to the ledger.
  • ledger is cryptographically secured; in one embodiment, a ledger is cryptographically secured where each link in the chain contains encrypted or hashed information that makes it practically infeasible to alter the ledger without betraying that alteration has taken place, for instance by requiring that an administrator or other party sign new additions to the chain with a digital signature.
  • Immutable sequential listing may be incorporated in, stored in, or incorporate, any suitable data structure, including without limitation any database, datastore, file structure, distributed hash table, directed acyclic graph or the like.
  • the timestamp of an entry is cryptographically secured and validated via trusted time, either directly on the chain or indirectly by utilizing a separate chain.
  • the validity of timestamp is provided using a time stamping authority as described in the RFC 3161 standard for trusted timestamps, or in the ANSI ASC x9.95 standard.
  • the trusted time ordering is provided by a group of entities collectively acting as the time stamping authority with a requirement that a threshold number of the group of authorities sign the timestamp.
  • immutable sequential listing may be inalterable by any party, no matter what access rights that party possesses.
  • immutable sequential listing may include a hash chain, in which data is added during a successive hashing process to ensure non-repudiation.
  • Immutable sequential listing may include a block chain.
  • a block chain is immutable sequential listing that records one or more new at least a posted content in a data item known as a sub-listing 708 or “block.”
  • An example of a block chain is the BITCOIN block chain used to record BITCOIN transactions and values.
  • Sub-listings 708 may be created in a way that places the sub-listings 708 in chronological order and link each sub-listing 708 to a previous sub-listing 708 in the chronological order so that any computing device may traverse the sub-listings 708 in reverse chronological order to verify any at least a posted content listed in the block chain.
  • Each new sub-listing 708 may be required to contain a cryptographic hash describing the previous sub-listing 708 .
  • the block chain contains a single first sub-listing 708 sometimes known as a “genesis block.”
  • the creation of a new sub-listing 708 may be computationally expensive; for instance, the creation of a new sub-listing 708 may be designed by a “proof of work” protocol accepted by all participants in forming the immutable sequential listing to take a powerful set of computing devices a certain period of time to produce. Where one sub-listing 708 takes less time for a given set of computing devices to produce the sub-listing 708 protocol may adjust the algorithm to produce the next sub-listing 708 so that it will require more steps; where one sub-listing 708 takes more time for a given set of computing devices to produce the sub-listing 708 protocol may adjust the algorithm to produce the next sub-listing 708 so that it will require fewer steps.
  • protocol may require a new sub-listing 708 to contain a cryptographic hash describing its contents; the cryptographic hash may be required to satisfy a mathematical condition, achieved by having the sub-listing 708 contain a number, called a nonce, whose value is determined after the fact by the discovery of the hash that satisfies the mathematical condition.
  • the protocol may be able to adjust the mathematical condition so that the discovery of the hash describing a sub-listing 708 and satisfying the mathematical condition requires more or less steps, depending on the outcome of the previous hashing attempt.
  • Mathematical condition might be that the hash contains a certain number of leading zeros and a hashing algorithm that requires more steps to find a hash containing a greater number of leading zeros, and fewer steps to find a hash containing a lesser number of leading zeros.
  • production of a new sub-listing 708 according to the protocol is known as “mining.”
  • the creation of a new sub-listing 708 may be designed by a “proof of stake” protocol as will be apparent to those skilled in the art upon reviewing the entirety of this disclosure.
  • protocol also creates an incentive to mine new sub-listings 708 .
  • the incentive may be financial; for instance, successfully mining a new sub-listing 708 may result in the person or entity that mines the sub-listing 708 receiving a predetermined amount of currency.
  • the currency may be fiat currency.
  • Currency may be cryptocurrency as defined below.
  • incentive may be redeemed for particular products or services; the incentive may be a gift certificate with a particular business, for instance.
  • incentive is sufficiently attractive to cause participants to compete for the incentive by trying to race each other to the creation of sub-listings 708
  • Each sub-listing 708 created in immutable sequential listing may contain a record or at least a posted content describing one or more addresses that receive an incentive, such as virtual currency, as the result of successfully mining the sub-listing 708 .
  • immutable sequential listing may develop a fork; protocol may determine which of the two alternate branches in the fork is the valid new portion of the immutable sequential listing by evaluating, after a certain amount of time has passed, which branch is longer. “Length” may be measured according to the number of sub-listings 708 in the branch. Length may be measured according to the total computational cost of producing the branch. Protocol may treat only at least a posted content contained the valid branch as valid at least a posted content.
  • a branch When a branch is found invalid according to this protocol, at least a posted content registered in that branch may be recreated in a new sub-listing 708 in the valid branch; the protocol may reject “double spending” at least a posted content that transfer the same virtual currency that another at least a posted content in the valid branch has already transferred.
  • the creation of fraudulent at least a posted content requires the creation of a longer immutable sequential listing branch by the entity attempting the fraudulent at least a posted content than the branch being produced by the rest of the participants; as long as the entity creating the fraudulent at least a posted content is likely the only one with the incentive to create the branch containing the fraudulent at least a posted content, the computational cost of the creation of that branch may be practically infeasible, guaranteeing the validity of all at least a posted content in the immutable sequential listing.
  • additional data linked to at least a posted content may be incorporated in sub-listings 708 in the immutable sequential listing; for instance, data may be incorporated in one or more fields recognized by block chain protocols that permit a person or computer forming a at least a posted content to insert additional data in the immutable sequential listing.
  • additional data is incorporated in an unspendable at least a posted content field.
  • the data may be incorporated in an OP_RETURN within the BITCOIN block chain.
  • additional data is incorporated in one signature of a multi-signature at least a posted content.
  • a multi-signature at least a posted content is at least a posted content to two or more addresses.
  • the two or more addresses are hashed together to form a single address, which is signed in the digital signature of the at least a posted content.
  • the two or more addresses are concatenated.
  • two or more addresses may be combined by a more complicated process, such as the creation of a Merkle tree or the like.
  • one or more addresses incorporated in the multi-signature at least a posted content are typical crypto-currency addresses, such as addresses linked to public keys as described above, while one or more additional addresses in the multi-signature at least a posted content contain additional data related to the at least a posted content; for instance, the additional data may indicate the purpose of the at least a posted content, aside from an exchange of virtual currency, such as the item for which the virtual currency was exchanged.
  • additional information may include network statistics for a given node of network, such as a distributed storage node, e.g. the latencies to nearest neighbors in a network graph, the identities or identifying information of neighboring nodes in the network graph, the trust level and/or mechanisms of trust (e.g.
  • certificates of physical encryption keys certificates of software encryption keys, (in non-limiting example certificates of software encryption may indicate the firmware version, manufacturer, hardware version and the like), certificates from a trusted third party, certificates from a decentralized anonymous authentication procedure, and other information quantifying the trusted status of the distributed storage node) of neighboring nodes in the network graph, IP addresses, GPS coordinates, and other information informing location of the node and/or neighboring nodes, geographically and/or within the network graph.
  • additional information may include history and/or statistics of neighboring nodes with which the node has interacted. In some embodiments, this additional information may be encoded directly, via a hash, hash tree or other encoding.
  • a crypto-currency is a digital, currency such as Bitcoins, Peercoins, Namecoins, and Litecoins.
  • Crypto-currency may be a clone of another crypto-currency.
  • the crypto-currency may be an “alt-coin.”
  • Crypto-currency may be decentralized, with no particular entity controlling it; the integrity of the crypto-currency may be maintained by adherence by its participants to established protocols for exchange and for production of new currency, which may be enforced by software implementing the crypto-currency.
  • Crypto-currency may be centralized, with its protocols enforced or hosted by a particular entity.
  • crypto-currency may be maintained in a centralized ledger, as in the case of the XRP currency of Ripple Labs, Inc., of San Francisco, Calif.
  • a centrally controlling authority such as a national bank
  • the number of units of a particular crypto-currency may be limited; the rate at which units of crypto-currency enter the market may be managed by a mutually agreed-upon process, such as creating new units of currency when mathematical puzzles are solved, the degree of difficulty of the puzzles being adjustable to control the rate at which new units enter the market.
  • Mathematical puzzles may be the same as the algorithms used to make productions of sub-listings 708 in a block chain computationally challenging; the incentive for producing sub-listings 708 may include the grant of new crypto-currency to the miners. Quantities of crypto-currency may be exchanged using at least a posted content as described above.
  • Method 800 includes a step 805 , of receiving, using a processor, a goal datum related to a user, wherein goal datum comprises behavioral parameters of the user. This may occur as described above in reference to FIGS. 1 - 8 .
  • the goal datum may comprise the pecuniary knowledge of the user and action parameters.
  • goal datum may be generated as a function of a survey datum.
  • method 800 includes a step 810 of training, using the processor, a goal classifier using goal training data, wherein the goal training data contains a plurality of data entries containing a plurality of goal datum inputs correlated to a plurality of goal outputs. This may occur as described above in reference to FIGS. 1 - 8 .
  • a processor may generate a goal ranking as a function of the classification.
  • the user may be assigned a goal as a function of goal ranking.
  • the coal may comprise a vocational goal or a pecuniary goal.
  • method 800 includes a step 815 classifying, using the processor, the goal datum to the goal selection using the goal classifier. This may occur as described above in reference to FIGS. 1 - 8 .
  • a fuzzy inference may classify the goal to the goal datum to the goal.
  • method 800 includes a step 820 of assigning, using the processor, the goal as a function of the classification. This may occur as described above in reference to FIGS. 1 - 8 .
  • method 800 includes a step 825 of generating, using the processor, a goal path as a function of the classification of the goal datum to the goal, wherein the goal path is divided into a plurality of waypoints. This may occur as described above in reference to FIGS. 1 - 8 .
  • the goal path may be generated using a machine learning model. Decentralized fiat may be generated as a function of completion of waypoints.
  • any one or more of the aspects and embodiments described herein may be conveniently implemented using one or more machines (e.g., one or more computing devices that are utilized as a user computing device for an electronic document, one or more server devices, such as a document server, etc.) programmed according to the teachings of the present specification, as will be apparent to those of ordinary skill in the computer art.
  • Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those of ordinary skill in the software art.
  • Aspects and implementations discussed above employing software and/or software modules may also include appropriate hardware for assisting in the implementation of the machine executable instructions of the software and/or software module.
  • Such software may be a computer program product that employs a machine-readable storage medium.
  • a machine-readable storage medium may be any medium that is capable of storing and/or encoding a sequence of instructions for execution by a machine (e.g., a computing device) and that causes the machine to perform any one of the methodologies and/or embodiments described herein. Examples of a machine-readable storage medium include, but are not limited to, a magnetic disk, an optical disc (e.g., CD, CD-R, DVD, DVD-R, etc.), a magneto-optical disk, a read-only memory “ROM” device, a random access memory “RAM” device, a magnetic card, an optical card, a solid-state memory device, an EPROM, an EEPROM, and any combinations thereof.
  • a machine-readable medium is intended to include a single medium as well as a collection of physically separate media, such as, for example, a collection of compact discs or one or more hard disk drives in combination with a computer memory.
  • a machine-readable storage medium does not include transitory forms of signal transmission.
  • Such software may also include information (e.g., data) carried as a data signal on a data carrier, such as a carrier wave.
  • a data carrier such as a carrier wave.
  • machine-executable information may be included as a data-carrying signal embodied in a data carrier in which the signal encodes a sequence of instruction, or portion thereof, for execution by a machine (e.g., a computing device) and any related information (e.g., data structures and data) that causes the machine to perform any one of the methodologies and/or embodiments described herein.
  • Examples of a computing device include, but are not limited to, an electronic book reading device, a computer workstation, a terminal computer, a server computer, a handheld device (e.g., a tablet computer, a smartphone, etc.), a web appliance, a network router, a network switch, a network bridge, any machine capable of executing a sequence of instructions that specify an action to be taken by that machine, and any combinations thereof.
  • a computing device may include and/or be included in a kiosk.
  • FIG. 9 shows a diagrammatic representation of one embodiment of a computing device in the exemplary form of a computer system 900 within which a set of instructions for causing a control system to perform any one or more of the aspects and/or methodologies of the present disclosure may be executed. It is also contemplated that multiple computing devices may be utilized to implement a specially configured set of instructions for causing one or more of the devices to perform any one or more of the aspects and/or methodologies of the present disclosure.
  • Computer system 900 includes a processor 904 and a memory 908 that communicate with each other, and with other components, via a bus 912 .
  • Bus 912 may include any of several types of bus structures including, but not limited to, a memory bus, a memory controller, a peripheral bus, a local bus, and any combinations thereof, using any of a variety of bus architectures.
  • Processor 904 may include any suitable processor, such as without limitation a processor incorporating logical circuitry for performing arithmetic and logical operations, such as an arithmetic and logic unit (ALU), which may be regulated with a state machine and directed by operational inputs from memory and/or sensors; processor 904 may be organized according to Von Neumann and/or Harvard architecture as a non-limiting example.
  • processor 904 may include any suitable processor, such as without limitation a processor incorporating logical circuitry for performing arithmetic and logical operations, such as an arithmetic and logic unit (ALU), which may be regulated with a state machine and directed by operational inputs from memory and/or sensors; processor 904 may be organized according to Von Neumann and/or Harvard architecture as a non-limiting example.
  • ALU arithmetic and logic unit
  • Processor 904 may include, incorporate, and/or be incorporated in, without limitation, a microcontroller, microprocessor, digital signal processor (DSP), Field Programmable Gate Array (FPGA), Complex Programmable Logic Device (CPLD), Graphical Processing Unit (GPU), general purpose GPU, Tensor Processing Unit (TPU), analog or mixed signal processor, Trusted Platform Module (TPM), a floating point unit (FPU), and/or system on a chip (SoC).
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • GPU Graphical Processing Unit
  • TPU Tensor Processing Unit
  • TPM Trusted Platform Module
  • FPU floating point unit
  • SoC system on a chip
  • Memory 908 may include various components (e.g., machine-readable media) including, but not limited to, a random-access memory component, a read only component, and any combinations thereof.
  • a basic input/output system 916 (BIOS), including basic routines that help to transfer information between elements within computer system 900 , such as during start-up, may be stored in memory 908 .
  • BIOS basic input/output system
  • Memory 908 may also include (e.g., stored on one or more machine-readable media) instructions (e.g., software) 920 embodying any one or more of the aspects and/or methodologies of the present disclosure.
  • memory 908 may further include any number of program modules including, but not limited to, an operating system, one or more application programs, other program modules, program data, and any combinations thereof.
  • Computer system 900 may also include a storage device 924 .
  • a storage device e.g., storage device 924
  • Examples of a storage device include, but are not limited to, a hard disk drive, a magnetic disk drive, an optical disc drive in combination with an optical medium, a solid-state memory device, and any combinations thereof.
  • Storage device 924 may be connected to bus 912 by an appropriate interface (not shown).
  • Example interfaces include, but are not limited to, SCSI, advanced technology attachment (ATA), serial ATA, universal serial bus (USB), IEEE 1394 (FIREWIRE), and any combinations thereof.
  • storage device 924 (or one or more components thereof) may be removably interfaced with computer system 900 (e.g., via an external port connector (not shown)).
  • storage device 924 and an associated machine-readable medium 928 may provide nonvolatile and/or volatile storage of machine-readable instructions, data structures, program modules, and/or other data for computer system 900 .
  • software 920 may reside, completely or partially, within machine-readable medium 928 .
  • software 920 may reside, completely or partially, within processor 904 .
  • Computer system 900 may also include an input device 932 .
  • a user of computer system 900 may enter commands and/or other information into computer system 900 via input device 932 .
  • Examples of an input device 932 include, but are not limited to, an alpha-numeric input device (e.g., a keyboard), a pointing device, a joystick, a gamepad, an audio input device (e.g., a microphone, a voice response system, etc.), a cursor control device (e.g., a mouse), a touchpad, an optical scanner, a video capture device (e.g., a still camera, a video camera), a touchscreen, and any combinations thereof.
  • an alpha-numeric input device e.g., a keyboard
  • a pointing device e.g., a joystick, a gamepad
  • an audio input device e.g., a microphone, a voice response system, etc.
  • a cursor control device e.g.,
  • Input device 932 may be interfaced to bus 912 via any of a variety of interfaces (not shown) including, but not limited to, a serial interface, a parallel interface, a game port, a USB interface, a FIREWIRE interface, a direct interface to bus 912 , and any combinations thereof.
  • Input device 932 may include a touch screen interface that may be a part of or separate from display 936 , discussed further below.
  • Input device 932 may be utilized as a user selection device for selecting one or more graphical representations in a graphical interface as described above.
  • a user may also input commands and/or other information to computer system 900 via storage device 924 (e.g., a removable disk drive, a flash drive, etc.) and/or network interface device 940 .
  • a network interface device such as network interface device 940 , may be utilized for connecting computer system 900 to one or more of a variety of networks, such as network 944 , and one or more remote devices 948 connected thereto. Examples of a network interface device include, but are not limited to, a network interface card (e.g., a mobile network interface card, a LAN card), a modem, and any combination thereof.
  • Examples of a network include, but are not limited to, a wide area network (e.g., the Internet, an enterprise network), a local area network (e.g., a network associated with an office, a building, a campus or other relatively small geographic space), a telephone network, a data network associated with a telephone/voice provider (e.g., a mobile communications provider data and/or voice network), a direct connection between two computing devices, and any combinations thereof.
  • a network such as network 944 , may employ a wired and/or a wireless mode of communication. In general, any network topology may be used.
  • Information e.g., data, software 920 , etc.
  • Computer system 900 may further include a video display adapter 952 for communicating a displayable image to a display device, such as display device 936 .
  • a display device include, but are not limited to, a liquid crystal display (LCD), a cathode ray tube (CRT), a plasma display, a light emitting diode (LED) display, and any combinations thereof.
  • Display adapter 952 and display device 936 may be utilized in combination with processor 904 to provide graphical representations of aspects of the present disclosure.
  • computer system 900 may include one or more other peripheral output devices including, but not limited to, an audio speaker, a printer, and any combinations thereof.
  • peripheral output devices may be connected to bus 912 via a peripheral interface 956 . Examples of a peripheral interface include, but are not limited to, a serial port, a USB connection, a FIREWIRE connection, a parallel connection, and any combinations thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

An apparatus for goal generation is disclosed. The apparatus includes at least a processor and a memory communicatively connected to the at least a processor. The memory instructs the processor to receive a goal datum related to a user, wherein the goal datum comprises behavioral parameters. The memory additionally instructs the processor to classify the goal datum to a user goal. The classification comprises training a goal classifier using a goal training data. Goal training data contains a plurality of data entries containing a plurality of goal datum inputs correlated to a plurality of goal outputs. The classification also comprises classifying the goal datum to the goal using the goal classifier. The classifier assigns the goal as a function of the classification. A goal path is generated as a function of the classification of the goal datum to a goal, wherein the goal path is divided into waypoints.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of Non-provisional application Ser. No. 17/872,364 filed on Jul. 25, 2022, and entitled “APPARATUS FOR GOAL GENERATION AND A METHOD FOR ITS USE,” the entirety of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention generally relates to the field of artificial intelligence. In particular, the present invention is directed to an apparatus for goal generation and a method for its use.
  • BACKGROUND
  • Classification of data according to extrinsic criteria can often present a particular challenge, particularly where the extrinsic criteria themselves may be subjective in nature, such as potential or apparent importance to one or more persons.
  • SUMMARY OF THE DISCLOSURE
  • In an aspect, an apparatus for goal generation includes at least a processor and a memory communicatively connected to the at least a processor, the memory containing instructions configuring the at least a processor to generate a goal datum related to a user as a function of at least a behavioral parameter of the user, classify the goal datum to a user goal, and generate a goal path as a function of the user goal, wherein generating the goal path further includes generating a plurality of waypoints as a function of the user goal and the goal datum and generating the goal path as a function of the plurality of waypoints.
  • In another aspect, a method for goal generation includes generating, using a processor, a goal datum related to a user as a function of at least a behavioral parameter of the user, classifying, using the processor, the goal datum to a user goal, assigning, using the processor, the user goal as a function of the classification, generating, using the processor, a goal path, wherein generating the goal path further includes generating a plurality of waypoints as a function of the user goal and the goal datum, and generating the goal path as a function of the plurality of waypoints.
  • These and other aspects and features of non-limiting embodiments of the present invention will become apparent to those skilled in the art upon review of the following description of specific non-limiting embodiments of the invention in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For the purpose of illustrating the invention, the drawings show aspects of one or more embodiments of the invention. However, it should be understood that the present invention is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:
  • FIG. 1 is a block diagram of an exemplary embodiment of an apparatus goal generation;
  • FIG. 2 is a block diagram of an exemplary machine-learning process;
  • FIG. 3 is a block diagram of an exemplary embodiment of a goal database;
  • FIG. 4 is a diagram of an exemplary embodiment of neural network;
  • FIG. 5 is a diagram of an exemplary embodiment of a node of a neural network;
  • FIG. 6 is a graph illustrating an exemplary relationship between fuzzy sets;
  • FIG. 7 is a block diagram of exemplary embodiment of an immutable sequential listing;
  • FIG. 8 is a flow diagram of an exemplary method for goal generation; and
  • FIG. 9 is a block diagram of a computing system that can be used to implement any one or more of the methodologies disclosed herein and any one or more portions thereof.
  • The drawings are not necessarily to scale and may be illustrated by phantom lines, diagrammatic representations, and fragmentary views. In certain instances, details that are not necessary for an understanding of the embodiments or that render other details difficult to perceive may have been omitted.
  • DETAILED DESCRIPTION
  • At a high level, aspects of the present disclosure are directed to systems and methods for an apparatus for goal generation is disclosed. The apparatus may include at least a processor and a memory communicatively connected to the at least a processor. The memory may instruct the processor to receive a goal datum related to a user, wherein the goal datum comprises behavioral parameters of the user. The memory may additionally instruct the processor to classify the goal datum to a user goal. The classification may comprise training a goal classifier using a goal training data, wherein the goal training data contains a plurality of data entries correlating examples of goal datum to examples of goals. The classification may also comprise classifying the goal datum to the goal using the goal classifier. The classifier may assign the goal as a function of the classification. The memory may instruct the processor to generate a goal path as a function of the classification of the goal datum to a goal, wherein the goal path is divided into waypoints Exemplary embodiments illustrating aspects of the present disclosure are described below in the context of several specific examples.
  • Referring now to FIG. 1 , an exemplary embodiment of an apparatus 100 for goal generation and a method for its use is illustrated. Apparatus 100 includes a processor 104. Processor 104 may include any computing device as described in this disclosure, including without limitation a microcontroller, microprocessor, digital signal processor (DSP) and/or system on a chip (SoC) as described in this disclosure. Computing device may include, be included in, and/or communicate with a mobile device such as a mobile telephone or smartphone. Processor 104 may include a single computing device operating independently, or may include two or more computing device operating in concert, in parallel, sequentially or the like; two or more computing devices may be included together in a single computing device or in two or more computing devices. Processor 104 may interface or communicate with one or more additional devices as described below in further detail via a network interface device. Network interface device may be utilized for connecting Processor 104 to one or more of a variety of networks, and one or more devices. Examples of a network interface device include, but are not limited to, a network interface card (e.g., a mobile network interface card, a LAN card), a modem, and any combination thereof. Examples of a network include, but are not limited to, a wide area network (e.g., the Internet, an enterprise network), a local area network (e.g., a network associated with an office, a building, a campus or other relatively small geographic space), a telephone network, a data network associated with a telephone/voice provider (e.g., a mobile communications provider data and/or voice network), a direct connection between two computing devices, and any combinations thereof. A network may employ a wired and/or a wireless mode of communication. In general, any network topology may be used. Information (e.g., data, software etc.) may be communicated to and/or from a computer and/or a computing device. Processor 104 may include but is not limited to, for example, a computing device or cluster of computing devices in a first location and a second computing device or cluster of computing devices in a second location. Processor 104 may include one or more computing devices dedicated to data storage, security, distribution of traffic for load balancing, and the like. Processor 104 may distribute one or more computing tasks as described below across a plurality of computing devices of computing device, which may operate in parallel, in series, redundantly, or in any other manner used for distribution of tasks or memory between computing devices. Processor 104 may be implemented using a “shared nothing” architecture in which data is cached at the worker, in an embodiment, this may enable scalability of apparatus 100 and/or computing device.
  • With continued reference to FIG. 1 , Processor 104 may be designed and/or configured to perform any method, method step, or sequence of method steps in any embodiment described in this disclosure, in any order and with any degree of repetition. For instance, processor 104 may be configured to perform a single step or sequence repeatedly until a desired or commanded outcome is achieved; repetition of a step or a sequence of steps may be performed iteratively and/or recursively using outputs of previous repetitions as inputs to subsequent repetitions, aggregating inputs and/or outputs of repetitions to produce an aggregate result, reduction or decrement of one or more variables such as global variables, and/or division of a larger processing task into a set of iteratively addressed smaller processing tasks. Processor 104 may perform any step or sequence of steps as described in this disclosure in parallel, such as simultaneously and/or substantially simultaneously performing a step two or more times using two or more parallel threads, processor cores, or the like; division of tasks between parallel threads and/or processes may be performed according to any protocol suitable for division of tasks between iterations. Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various ways in which steps, sequences of steps, processing tasks, and/or data may be subdivided, shared, or otherwise dealt with using iteration, recursion, and/or parallel processing.
  • With continued reference to FIG. 1 , processor 104 may be configured to generate a plurality of user goals 108 for the user. As used in the current disclosure, a “goal” is a task or an accomplishment that the user would like to achieve. In embodiments, a user goal 108 may be a pecuniary goal, improving pecuniary literacy, musical goal, a vocational goal, an educational goal, a skill goal, a health goal, fitness goal, and the like. As used in the current disclosure, a “vocational goal” is a goal that is related to improving a user's career. As used in the current disclosure, a “pecuniary goal” is a goal that is related to improving a user's pecuniary position. As used in the current disclosure, a “pecuniary literacy” is a user's knowledge of how to improve his or her pecuniary position. As used in the current disclosure, an “educational goal” is an element of data used to improve the users formal or professional education. Examples of goals may include saving money, improving pecuniary literacy, buying a home, establishing an emergency fund, optimizing the family budget, starting a new career field, improving overall health, fitness goals, and the like. In a further non-limiting example, the processor 104 may generate an educational goal for the user of getting a college degree. In another non-limiting example, the processor may generate a pecuniary goal for the user to save a predetermined amount of money. A user may be assigned a plurality of a user goals 108 as a function of a user input.
  • With continued reference to FIG. 1 , processor 104 may be configured to generate a goal path 112 for the user. As used in the current disclosure, a “goal path” is a series of one or more steps to achieve a user goal 108. Goal path 112 may include a plurality of instructions regarding how to achieve a user goal 108. In an embodiment, a goal path 112 may be generated as a function of the selection of the user goal 108. A goal path 112 may be a user goal 108 broken down into a series of sub-goals. In some embodiments, the sub-goals may be smaller or more simple goals used to progress the user towards user goal 108. For example, if the processor 104 generates a pecuniary user goal 108 of purchasing a home. A non-limiting example of a goal path 112 for buying a home may be: 1. conducting an evaluation of the user's credit; 2. identifying a price range; 3. promoting the users to save enough money for a down payment; 4. identify a home for sale within the price range; 5. get a mortgage on the home; 6. close on the home. Additionally, a goal path 112 may be comprised of a plurality of steps and sub steps. A step may comprise a task that a user must complete in to achieve a user goal 108. Once a user has achieved a plurality of steps and subs steps the user may achieve a waypoint 116. In embodiments, a goal path 112 may be comprised of a set of waypoints 116. As used in the current disclosure, a “waypoint” is a milestone for accomplishing the user goal 108. A non-limiting example of a waypoint 116 may be saving 20% of the total cost of a home for a down payment, in reference to the above example. As used in the current disclosure, a “milestone” is an event marking a significant change or progress for the user achieving his or her user goal 108.
  • With continued reference to FIG. 1 , processor 104 may be configured to select a user goal 108 for the user. As used in the current disclosure, “Goal selection” the selection of one or more user goals 108 of the plurality of goals for the user to purse. In an embodiment, a goal selection may be generated using a goal machine learning model.
  • With continued reference to FIG. 1 , Processor 104 may be configured to generate a plurality of user goals 108 using a goal machine learning model 132. As used in the current disclosure, a “goal machine learning model” is a machine learning model, such as a mathematical and/or algorithmic representation of a relationship between inputs and outputs. A goal machine learning model 132 may be consistent with the machine learning model described herein below in FIG. 2 . Inputs to the machine learning model may include an example of user goals 108, goal datum 120, survey data 136, behavioral parameters 124, action parameters, and the like. This data may be received from a database, such as goal database 300. Previous user goals 108, previous goal data 120, previous waypoints 116, and previous goal paths 112 may come from the current user or users similarly situated to the users by user interest, pecuniary status, and/or aptitude for task completion. Goal machine learning model 132 may be trained using training data such as prior user goals 108, survey data 136, and goal data 120. Training data may be received from a database, such as training data database 400. The output of the goal machine learning model 132 may be a plurality of user goals 108, a goal selection, goal path 112, and/or waypoints 116.
  • With continued reference to FIG. 1 , receive a goal datum 120 related to a user. As used in the current disclosure, a “goal datum” is an element of data used to generate the user goals 108 of the user. Goal datum 112 may additionally be used to generate a goal or a goal selection for the user. Goal datum 112 may be a description of a user goal 108. Goal datum may include a plurality of information regarding a user's aptitude and interest in a given area. In an embodiment, this may be done by classifying goal datum 120 to a plurality of user goals 108 using a goal classifier 128 or another machine learning model. Goal datum 120 may be generated as a function of a survey datum, behavioral parameters 124, and previous action parameters. In an embodiment, goal datum 120 may be information to help determine the aptitude of the user to accomplish a goal. In another embodiment, Goal datum 120 may be used to determine a user goal 108 for the user. Examples of goal datum 108 may include information about the users pecuniary literacy, pecuniary history, name, address, occupation, educational history, overall health history, musical aptitude, and the like. In a non-limiting example, a pecuniary history may include an account of the users assets and debts. A pecuniary literacy may include the user's ability to manage his/her assets and debts. An example of an educational history may include both the formal and informal education and training a user has received. This may include a degrees (i.e. Bachelors, Masters, High School Diploma, Ph.D., etc.), occupational certifications(i.e. Pipefitting certification, commercial driver's license, welding certification, etc.), various on the job training, and the like. Musical aptitude may also include any previous musical training whether formal or informal.
  • With continued reference to FIG. 1 , goal datum 120 may be generated as a function of a behavioral parameter 124. As used in the current disclosure, a “behavioral parameter” is an element of data relating to the users past behaviors. In an embodiment, behavioral parameters 124 may be used to determine the aptitudes or abilities of a user. Examples of a behavioral parameter 124 may include the user's pecuniary behaviors, past experience and skills, and the like. Pecuniary behaviors may include things like spending and saving habits. In a non-limiting example, a behavioral parameter 124 may include an audit of a user's bank and credit card records. In another non limiting example, a behavioral parameter 124 may include the users education and professional certifications. Pecuniary behaviors may also include an evaluation of the assets and debts that the user has accumulated. A behavioral parameter 124 may additionally include the aptitude of the user to previous complete task and previous user goals 108. A behavioral parameter 124 may provide a diagnosis of why a user failed to complete a previous goal.
  • With continued reference to FIG. 1 , goal datum 120 may be generated as a function of an action parameter. As used in the current disclosure, “action parameter” is an element of data used to predict the users future behavior. As used in the current disclosure, “future behavior” is a prediction of the user's ability to complete user goals 108 or sub goals. In an embodiment, an action parameter may be used to determine the likelihood of success of a user accomplishing a given user goal 108. An action parameter may be calculated as a function of a user goal 108, survey data 136, and behavioral parameters 124. In a non-limiting example, an action parameter input an element of survey data 136 stating that the user has been unsuccessful in her last three user goals 108. The action parameter may then predict the user will continue to fail until user take steps to remediate. An action parameter may be generated using a machine learning model or fuzzy set.
  • With continued reference to FIG. 1 , in some embodiments, apparatus 100 may generate goal datum 120 from survey data 136. As used in the current disclosure, “survey data” is an element of data that is generated from a series of answers to questions by the user. The survey data 136 may include responses to a user survey given to a user. The survey may include questions regarding the user's pecuniary literacy, pecuniary history, occupation, educational history, overall health history, action parameters, behavioral parameters 124, and the like. The survey data 136 may be used at various points by apparatus 100. For example, the survey data 136 may be a component of goal datum 120. In some embodiments, survey data 136 may be used to generate goal datum 120 or determine a user goal 108. For example, if the user reports struggles with finances that may indicate that user needs to set a pecuniary user goal 108. Additionally, survey data 136 may be used to tailor or update user goals 108 and goal data 120. For example if a user reports pecuniary struggles because of lack of employment or underemployment, this may indicate that user goal 108 needs to be altered to include a waypoint 116 of getting a adequately employed.
  • With continued reference to FIG. 1 , Processor 104 may be configured to assign the user a user goal 108 as a function of the classification of a user goal 108 to a goal datum 120. As used in the current disclosure, a “goal classifier” is a machine-learning model that sorts inputs into categories or bins of data, outputting the categories or bins of data and/or labels associated therewith. Goal Classifier may be consistent with the classifier described below in FIG. 2 . Inputs to the to the goal classifier 128 may include a plurality of user goals 108, Goal datum 120, survey data 136, behavioral parameters 124, action parameters, and the like. The output to the classifier 128 may be a goal 180 that is specific to the given user. Goal training data is a plurality of data entries containing a plurality of inputs that are correlated to a plurality of outputs for training a processor by a machine-learning process to align and classify a user's goal datum 108 to a user goal 108. Goal training data may be received from a database. Goal training data may contain information about plurality of user goals 108, Goal datum 120, survey data 136, behavioral parameters 124, action parameters, and the like. Goal training data may be generated from any past user goals 108, goal datum 120, survey data 136, behavioral parameters 124, action parameters, and the like. Goal training data may correlate an example of a user goal 108 to an example of a goal datum 120. The “example of a goal” and the “example of goal datum” may be prior a prior user goals 108 and a prior goal datum 120, respectively. In other embodiments, goal training data may be configured to correlate a user goal 108 to a goal datum 120. Classification may be performed using, without limitation, linear classifiers such as without limitation logistic regression and/or naive Bayes classifiers, nearest neighbor classifiers such as k-nearest neighbors classifiers, support vector machines, least squares support vector machines, fisher's linear discriminant, quadratic classifiers, decision trees, boosted trees, random forest classifiers, learning vector quantization, and/or neural network-based classifiers.
  • With continued reference to FIG. 1 , a classifier, such as goal classifier 128, may be implemented as a fuzzy inferencing system. As used in the current disclosure, a “fuzzy inference” is a method that interprets the values in the input vector (i.e., user goals 108 and goal data 120.) and, based on a set of rules, assigns values to the output vector. A set of Fuzzy rules may include a collection of linguistic statements that describe how the system should make a decision regarding classifying an input or controlling an output. While using fuzzy logic, the truth of any statement may become a matter of a degree. A fuzzy inference may include the process of mapping from a given input to an output using fuzzy logic. The mapping may then then provide a basis from which decisions can be made or patterns discerned. The process of fuzzy inference may involve functions, fuzzy logic operators, and if-then rules, etc. The system may be applied using two types of fuzzy inference systems: Mamdani-type and Sugeno-type. These two types of inference systems vary somewhat in the way outputs are determined.
  • Still referring to FIG. 1 , processor 104 may be utilize a knowledge-based system (KBS) classify a user's goal data 120 to a user goal 108. As used in this disclosure, a KBS is a computer program that reasons and uses a knowledge base to solve complex problems. The KBS has two distinguishing features: a knowledge base and an inference engine. A knowledge base may include technology used to store complex structured and unstructured information used by a computer system, often in some form of subsumption ontology rather than implicitly embedded in procedural code. Other common approaches in addition to a subsumption ontology include frames, conceptual graphs, and logical assertions. In some embodiments, the knowledge base may be a storage hub that contains information about past matches of user's user goals 108 to a goal datum 120 based on the similarity of inputs and feedback from users and system administrators about the compatibility of matches. Next, an Inference engine allows new knowledge to be inferred. For example, the inference engine may determine that a user's system has a goal data 120 that is conducive for a user goal 108 of obtaining a professional certification such as commercial driver's license, the system may then infer that the user may need to set an additional user goal 108 of obtaining a job that utilizes that professional certification. Inferences can take the form of IF-THEN rules coupled with forward chaining or backward chaining approaches. Forward chaining starts with the known facts and asserts new facts. Backward chaining starts with goals and works backward to determine what facts must be asserted so that the goals can be achieved. Other approaches include the use of automated theorem provers, logic programming, blackboard systems, and term rewriting systems such as CHR (Constraint Handling Rules). For example, following the IF-THEN rule format, the inference engine could devise “if goal data 120 consists of a strong interest in the musical arts and an aptitude for musical talent then that goal data 120 is compatible with the users having a user goal 108 of learning how to play a musical instrument.” The inference engine may make predictions or decisions in optimizing classifying user goals 108 to goal datum 120 for a user without being explicitly programmed to do so. The inference engine may receive constant feedback and self-learn based on previous classifications, as described through this disclosure, and recommendations to further refine and strengthen its recommendations.
  • Still referring to FIG. 1 , processor 104 may be configured to rank a plurality of user goals 108 in order of most achievable to least achievable, wherein a rank of user goals 108 is based on the success score. As used in the current disclosure, a “goal ranking” is a relationship between the goals used to place the goals in an order. In an embodiment, goals may be placed in order as a function of time to complete, difficulty to complete, pecuniary burden to complete, desire of the user to complete, and the like. In some embodiments, some embodiments, generating the goal ranking may include linear regression techniques. Processor 104 may be designed and configured to create a machine-learning model using techniques for development of linear regression models. Linear regression models may include ordinary least squares regression, which aims to minimize the square of the difference between predicted outcomes and actual outcomes according to an appropriate norm for measuring such a difference (e.g., a vector-space distance norm); coefficients of the resulting linear equation may be modified to improve minimization. Linear regression models may include ridge regression methods, where the function to be minimized includes the least-squares function plus term multiplying the square of each coefficient by a scalar amount to penalize large coefficients. Linear regression models may include least absolute shrinkage and selection operator (LASSO) models, in which ridge regression is combined with multiplying the least-squares term by a factor of 1 divided by double the number of samples. Linear regression models may include a multi-task lasso model wherein the norm applied in the least-squares term of the lasso model is the Frobenius norm mounting to the square root of the sum of squares of all terms. Linear regression models may include the elastic net model, a multi-task elastic net model, a least angle regression model, a LARS lasso model, an orthogonal matching pursuit model, a Bayesian regression model, a logistic regression model, a stochastic gradient descent model, a perceptron model, a passive aggressive algorithm, a robustness regression model, a Huber regression model, or any other suitable model that may occur to persons skilled in the art upon reviewing the entirety of this disclosure. Linear regression models may be generalized in an embodiment to polynomial regression models, whereby a polynomial equation (e.g., a quadratic, cubic or higher-order equation) providing a best predicted output/actual output fit is sought; similar methods to those described above may be applied to minimize error functions, as will be apparent to persons skilled in the art upon reviewing the entirety of this disclosure.
  • Still referring to FIG. 1 , processor 104 may be configured to use goal classifier 128 to classify, as a function of goal ranking, the user goal data 120 to a user goal 108. For example, processor 104 may take inputs of the user goals 108 and sort into categories, selectable by user, such as: most achievable, least achievable, pecuniary goals, goals, educational goals, health goals, musical goals, and the like, and the like. In some embodiments, processor 104 may be configured to produce classification output results including the classified goal ranking to user goals 108 in a selectable format by user, including at least the ranked user goals 108 with the success score displayed by each user goal 108. For example, user may select to output classified goal ranking to user goals 108 in a pie chart, wherein the goal ranking to user goals 108 are divided, and color coded in selectable classification bins, showing the number of user goals 108 that fall into a classification.
  • Still referring to FIG. 1 , processor may be configured to generate a classifier, such as goal classifier 128, using a Naïve Bayes classification algorithm. Naïve Bayes classification algorithm generates classifiers by assigning class labels to problem instances, represented as vectors of element values. Class labels are drawn from a finite set. Naïve Bayes classification algorithm may include generating a family of algorithms that assume that the value of a particular element is independent of the value of any other element, given a class variable. Naïve Bayes classification algorithm may be based on Bayes Theorem expressed as P(A/B)=P(B/A) P(A)÷P(B), where P(A/B) is the probability of hypothesis A given data B also known as posterior probability; P(B/A) is the probability of data B given that the hypothesis A was true; P(A) is the probability of hypothesis A being true regardless of data also known as prior probability of A; and P(B) is the probability of the data regardless of the hypothesis. A naïve Bayes algorithm may be generated by first transforming training data into a frequency table. Processor 104 may then calculate a likelihood table by calculating probabilities of different data entries and classification labels. Processor 104 may utilize a naïve Bayes equation to calculate a posterior probability for each class. A class containing the highest posterior probability is the outcome of prediction. Naïve Bayes classification algorithm may include a gaussian model that follows a normal distribution. Naïve Bayes classification algorithm may include a multinomial model that is used for discrete counts. Naïve Bayes classification algorithm may include a Bernoulli model that may be utilized when vectors are binary.
  • With continued reference to FIG. 1 , processor 104 may be configured to generate a classifier, such as goal classifier 128, using a K-nearest neighbors (KNN) algorithm. A “K-nearest neighbors algorithm” as used in this disclosure, includes a classification method that utilizes feature similarity to analyze how closely out-of-sample-features resemble training data to classify input data to one or more clusters and/or categories of features as represented in training data; this may be performed by representing both training data and input data in vector forms, and using one or more measures of vector similarity to identify classifications within training data, and to determine a classification of input data. K-nearest neighbors algorithm may include specifying a K-value, or a number directing the classifier to select the k most similar entries training data to a given sample, determining the most common classifier of the entries in the database, and classifying the known sample; this may be performed recursively and/or iteratively to generate a classifier that may be used to classify input data as further samples. For instance, an initial set of samples may be performed to cover an initial heuristic and/or “first guess” at an output and/or relationship, which may be seeded, without limitation, using expert input received according to any process as described herein. As a non-limiting example, an initial heuristic may include a ranking of associations between inputs and elements of training data. Heuristic may include selecting some number of highest-ranking associations and/or training data elements.
  • With continued reference to FIG. 1 , generating k-nearest neighbors algorithm may generate a first vector output containing a data entry cluster, generating a second vector output containing an input data, and calculate the distance between the first vector output and the second vector output using any suitable norm such as cosine similarity, Euclidean distance measurement, or the like. Each vector output may be represented, without limitation, as an n-tuple of values, where n is at least two values. Each value of n-tuple of values may represent a measurement or other quantitative value associated with a given category of data, or attribute, examples of which are provided in further detail below; a vector may be represented, without limitation, in n-dimensional space using an axis per category of value represented in n-tuple of values, such that a vector has a geometric direction characterizing the relative quantities of attributes in the n-tuple as compared to each other. Two vectors may be considered equivalent where their directions, and/or the relative quantities of values within each vector as compared to each other, are the same; thus, as a non-limiting example, a vector represented as [5, 10, 15] may be treated as equivalent, for purposes of this disclosure, as a vector represented as [1, 2, 3]. Vectors may be more similar where their directions are more similar, and more different where their directions are more divergent; however, vector similarity may alternatively or additionally be determined using averages of similarities between like attributes, or any other measure of similarity suitable for any n-tuple of values, or aggregation of numerical similarity measures for the purposes of loss functions as described in further detail below. Any vectors as described herein may be scaled, such that each vector represents each attribute along an equivalent scale of values. Each vector may be “normalized,” or divided by a “length” attribute, such as a length attribute l as derived using a Pythagorean norm: l=√{square root over (Σi=0 nai 2)}, where ai is attribute number experience of the vector. Scaling and/or normalization may function to make vector comparison independent of absolute quantities of attributes, while preserving any dependency on similarity of attributes; this may, for instance, be advantageous where cases represented in training data are represented by different quantities of samples, which may result in proportionally equivalent vectors with divergent values.
  • With continued reference to FIG. 1 , user goal 108, goal path 112, and waypoints 116 may be displayed using a graphical user interface (GUI) 140. As used in the current disclosure, a “graphical user interface” may include a plurality of lines, images, symbols. GUI 140 may be displayed on a display device. Display device may include, but is not limited to, a smartphone, tablet, laptop, monitor, tablet, and the like. Display device may include a separate device that includes a transparent screen configured to display computer generated images and/or information. The user may view the information displayed on the display device in real time. GUI 140 may be configured to receive user input. A “User input” as used in this disclosure is information received from an individual. User input may include, for instance and without limitation, information entered via text fields, information entered via clicking on icons of a graphical user interface (GUI), information entered via touch input received through one or more touch screens, and the like. GUI 140 may include one or more event handlers. An “event handler” as used in this disclosure is a callback routine that operates asynchronously once an event takes place. Event handlers may include, without limitation, one or more programs to perform one or more actions based on user input, such as generating pop-up windows, submitting forms, changing background colors of a webpage, and the like. Event handlers may be programmed for specific user input, such as, but not limited to, mouse clicks, mouse hovering, touchscreen input, keystrokes, and the like. For instance and without limitation, an event handler may be programmed to generate a pop-up window if a user double clicks on a specific icon. User input may include, a manipulation of computer icons, such as, but not limited to, clicking, selecting, dragging, and dropping, scrolling, and the like. In some embodiments, user input may include an entry of characters and/or symbols in a user input field. A “user input field” as used in this disclosure is a portion of a graphical user interface configured to receive data from an individual. A user input field may include, but is not limited to, text boxes, search fields, filtering fields, and the like. In some embodiments, user input may include touch input. Touch input may include, but is not limited to, single taps, double taps, triple taps, long presses, swiping gestures, and the like. One of ordinary skill in the art will appreciate the various ways a user may interact with graphical user interface 140. GUI 140 may be configured to display a pictorial icon. A “pictorial icon” as used in this disclosure is a graphic illustration displayed on a screen, where the graphic illustration is representative of a category. A “category” as used in this disclosure is a classification of one or more elements to one or more groups. A category may include, but is not limited to, user goal 108, goal path 112, and waypoints 116, and the like.
  • With continued reference to FIG. 1 , processor 104 may be configured to generate a decentralized fiat 144 as a function of completion of a waypoint 116. As used in the current disclosure, a “decentralized fiat” is a bank-free method of transferring wealth or ownership of any other commodity without needing a third party. Decentralized fiat may include a non-fungible token or various crypto currencies. A “non-fungible token,” as used in this disclosure, is a unique and non-interchangeable unit of data stored on a digital ledger and/or immutable sequential listing. “Cryptocurrency,” as used in this disclosure, is a digital or virtual currency that is secured by cryptography. This makes it nearly impossible to counterfeit or double-spend. In some embodiments, cryptocurrencies are decentralized networks based on blockchain technology such as immutable sequential listing, enforced by a network of computing devices. In some embodiments, apparatus 100 may allow various types of cryptocurrency such as Ethereum (ETH), Litecoin (LTC), Cardano (ADA), Polkadot (DOT), Bitcoin Cash (BCH), Stellar (XLM), and the like thereof. Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of the various embodiments of different types of money for purposes as described herein. Decentralized fiat 144 may be associated with reproducible digital files such as photos, videos, and audio. Decentralized fiat 144 may also be associated with physical assets such as real estate, collectables, and other commodities. In an embodiment, processor 104 may issue a certificate of completion after a user has achieved a waypoint 116. Decentralized fiat 144 may be used to represent a certificate of completion. Possession or payment of decentralized fiat 144 may serve as proof that the user has accomplished all or a portion of a user goal 108 or waypoint 116. In embodiments, the time and level of difficulty for the user to achieve a waypoint 144 may be demonstrated by the value of decentralized fiat 144. The creator may “tokenize” such assets to be stored on a digital ledger and/or immutable sequential listing, which may ensure non-duplicability and ownership, generate income, and/or enable accessibility of the assets. Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of the various embodiments and purposes of tokenizing an asset.
  • Referring now to FIG. 2 , an exemplary embodiment of a machine-learning module 200 that may perform one or more machine-learning processes as described in this disclosure is illustrated. Machine-learning module may perform determinations, classification, and/or analysis steps, methods, processes, or the like as described in this disclosure using machine learning processes. A “machine learning process,” as used in this disclosure, is a process that automatedly uses training data 204 to generate an algorithm that will be performed by a computing device/module to produce outputs 208 given data provided as inputs 212; this is in contrast to a non-machine learning software program where the commands to be executed are determined in advance by a user and written in a programming language.
  • Still referring to FIG. 2 , “training data,” as used herein, is data containing correlations that a machine-learning process may use to model relationships between two or more categories of data elements. For instance, and without limitation, training data 204 may include a plurality of data entries, each entry representing a set of data elements that were recorded, received, and/or generated together; data elements may be correlated by shared existence in a given data entry, by proximity in a given data entry, or the like. Multiple data entries in training data 204 may evince one or more trends in correlations between categories of data elements; for instance, and without limitation, a higher value of a first data element belonging to a first category of data element may tend to correlate to a higher value of a second data element belonging to a second category of data element, indicating a possible proportional or other mathematical relationship linking values belonging to the two categories. Multiple categories of data elements may be related in training data 204 according to various correlations; correlations may indicate causative and/or predictive links between categories of data elements, which may be modeled as relationships such as mathematical relationships by machine-learning processes as described in further detail below. Training data 204 may be formatted and/or organized by categories of data elements, for instance by associating data elements with one or more descriptors corresponding to categories of data elements. As a non-limiting example, training data 204 may include data entered in standardized forms by persons or processes, such that entry of a given data element in a given field in a form may be mapped to one or more descriptors of categories. Elements in training data 204 may be linked to descriptors of categories by tags, tokens, or other data elements; for instance, and without limitation, training data 204 may be provided in fixed-length formats, formats linking positions of data to categories such as comma-separated value (CSV) formats and/or self-describing formats such as extensible markup language (XML), JavaScript Object Notation (JSON), or the like, enabling processes or devices to detect categories of data.
  • Alternatively, or additionally, and continuing to refer to FIG. 2 , training data 204 may include one or more elements that are not categorized; that is, training data 204 may not be formatted or contain descriptors for some elements of data. Machine-learning algorithms and/or other processes may sort training data 204 according to one or more categorizations using, for instance, natural language processing algorithms, tokenization, detection of correlated values in raw data and the like; categories may be generated using correlation and/or other processing algorithms. As a non-limiting example, in a corpus of text, phrases making up a number “n” of compound words, such as nouns modified by other nouns, may be identified according to a statistically significant prevalence of n-grams containing such words in a particular order; such an n-gram may be categorized as an element of language such as a “word” to be tracked similarly to single words, generating a new category as a result of statistical analysis. Similarly, in a data entry including some textual data, a person's name may be identified by reference to a list, dictionary, or other compendium of terms, permitting ad-hoc categorization by machine-learning algorithms, and/or automated association of data in the data entry with descriptors or into a given format. The ability to categorize data entries automatedly may enable the same training data 204 to be made applicable for two or more distinct machine-learning algorithms as described in further detail below. Training data 204 used by machine-learning module 200 may correlate any input data as described in this disclosure to any output data as described in this disclosure.
  • Further referring to FIG. 2 , training data may be filtered, sorted, and/or selected using one or more supervised and/or unsupervised machine-learning processes and/or models as described in further detail below; such models may include without limitation a training data classifier 216. Training data classifier 216 may include a “classifier,” which as used in this disclosure is a machine-learning model as defined below, such as a mathematical model, neural net, or program generated by a machine learning algorithm known as a “classification algorithm,” as described in further detail below, that sorts inputs into categories or bins of data, outputting the categories or bins of data and/or labels associated therewith. A classifier may be configured to output at least a datum that labels or otherwise identifies a set of data that are clustered together, found to be close under a distance metric as described below, or the like. Machine-learning module 200 may generate a classifier using a classification algorithm, defined as a processes whereby a computing device and/or any module and/or component operating thereon derives a classifier from training data 204. Classification may be performed using, without limitation, linear classifiers such as without limitation logistic regression and/or naive Bayes classifiers, nearest neighbor classifiers such as k-nearest neighbors classifiers, support vector machines, least squares support vector machines, fisher's linear discriminant, quadratic classifiers, decision trees, boosted trees, random forest classifiers, learning vector quantization, and/or neural network-based classifiers.
  • Still referring to FIG. 2 , machine-learning module 200 may be configured to perform a lazy-learning process 220 and/or protocol, which may alternatively be referred to as a “lazy loading” or “call-when-needed” process and/or protocol, may be a process whereby machine learning is conducted upon receipt of an input to be converted to an output, by combining the input and training set to derive the algorithm to be used to produce the output on demand. For instance, an initial set of simulations may be performed to cover an initial heuristic and/or “first guess” at an output and/or relationship. As a non-limiting example, an initial heuristic may include a ranking of associations between inputs and elements of training data 204. Heuristic may include selecting some number of highest-ranking associations and/or training data 204 elements. Lazy learning may implement any suitable lazy learning algorithm, including without limitation a K-nearest neighbors algorithm, a lazy naïve Bayes algorithm, or the like; persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various lazy-learning algorithms that may be applied to generate outputs as described in this disclosure, including without limitation lazy learning applications of machine-learning algorithms as described in further detail below.
  • Alternatively or additionally, and with continued reference to FIG. 2 , machine-learning processes as described in this disclosure may be used to generate machine-learning models 224. A “machine-learning model,” as used in this disclosure, is a mathematical and/or algorithmic representation of a relationship between inputs and outputs, as generated using any machine-learning process including without limitation any process as described above and stored in memory; an input is submitted to a machine-learning model 224 once created, which generates an output based on the relationship that was derived. For instance, and without limitation, a linear regression model, generated using a linear regression algorithm, may compute a linear combination of input data using coefficients derived during machine-learning processes to calculate an output datum. As a further non-limiting example, a machine-learning model 224 may be generated by creating an artificial neural network, such as a convolutional neural network comprising an input layer of nodes, one or more intermediate layers, and an output layer of nodes. Connections between nodes may be created via the process of “training” the network, in which elements from a training data 204 set are applied to the input nodes, a suitable training algorithm (such as Levenberg-Marquardt, conjugate gradient, simulated annealing, or other algorithms) is then used to adjust the connections and weights between nodes in adjacent layers of the neural network to produce the desired values at the output nodes. This process is sometimes referred to as deep learning.
  • Still referring to FIG. 2 , machine-learning algorithms may include at least a supervised machine-learning process 228. At least a supervised machine-learning process 228, as defined herein, include algorithms that receive a training set relating a number of inputs to a number of outputs, and seek to find one or more mathematical relations relating inputs to outputs, where each of the one or more mathematical relations is optimal according to some criterion specified to the algorithm using some scoring function. For instance, a supervised learning algorithm may include a user goals 108 or goal datum 120 as described above as inputs, autonomous functions as outputs, and a scoring function representing a desired form of relationship to be detected between inputs and outputs; scoring function may, for instance, seek to maximize the probability that a given input and/or combination of elements inputs is associated with a given output to minimize the probability that a given input is not associated with a given output. Scoring function may be expressed as a risk function representing an “expected loss” of an algorithm relating inputs to outputs, where loss is computed as an error function representing a degree to which a prediction generated by the relation is incorrect when compared to a given input-output pair provided in training data 204. Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various possible variations of at least a supervised machine-learning process 228 that may be used to determine relation between inputs and outputs. Supervised machine-learning processes may include classification algorithms as defined above.
  • Further referring to FIG. 2 , machine learning processes may include at least an unsupervised machine-learning processes 232. An unsupervised machine-learning process, as used herein, is a process that derives inferences in datasets without regard to labels; as a result, an unsupervised machine-learning process may be free to discover any structure, relationship, and/or correlation provided in the data. Unsupervised processes may not require a response variable; unsupervised processes may be used to find interesting patterns and/or inferences between variables, to determine a degree of correlation between two or more variables, or the like.
  • Still referring to FIG. 2 , machine-learning module 200 may be designed and configured to create a machine-learning model 224 using techniques for development of linear regression models. Linear regression models may include ordinary least squares regression, which aims to minimize the square of the difference between predicted outcomes and actual outcomes according to an appropriate norm for measuring such a difference (e.g., a vector-space distance norm); coefficients of the resulting linear equation may be modified to improve minimization. Linear regression models may include ridge regression methods, where the function to be minimized includes the least-squares function plus term multiplying the square of each coefficient by a scalar amount to penalize large coefficients. Linear regression models may include least absolute shrinkage and selection operator (LASSO) models, in which ridge regression is combined with multiplying the least-squares term by a factor of 1 divided by double the number of samples. Linear regression models may include a multi-task lasso model wherein the norm applied in the least-squares term of the lasso model is the Frobenius norm amounting to the square root of the sum of squares of all terms. Linear regression models may include the elastic net model, a multi-task elastic net model, a least angle regression model, a LARS lasso model, an orthogonal matching pursuit model, a Bayesian regression model, a logistic regression model, a stochastic gradient descent model, a perceptron model, a passive aggressive algorithm, a robustness regression model, a Huber regression model, or any other suitable model that may occur to persons skilled in the art upon reviewing the entirety of this disclosure. Linear regression models may be generalized in an embodiment to polynomial regression models, whereby a polynomial equation (e.g., a quadratic, cubic or higher-order equation) providing a best predicted output/actual output fit is sought; similar methods to those described above may be applied to minimize error functions, as will be apparent to persons skilled in the art upon reviewing the entirety of this disclosure.
  • Continuing to refer to FIG. 2 , machine-learning algorithms may include, without limitation, linear discriminant analysis. Machine-learning algorithm may include quadratic discriminate analysis. Machine-learning algorithms may include kernel ridge regression. Machine-learning algorithms may include support vector machines, including without limitation support vector classification-based regression processes. Machine-learning algorithms may include stochastic gradient descent algorithms, including classification and regression algorithms based on stochastic gradient descent. Machine-learning algorithms may include nearest neighbors algorithms. Machine-learning algorithms may include Gaussian processes such as Gaussian Process Regression. Machine-learning algorithms may include cross-decomposition algorithms, including partial least squares and/or canonical correlation analysis. Machine-learning algorithms may include naïve Bayes methods. Machine-learning algorithms may include algorithms based on decision trees, such as decision tree classification or regression algorithms. Machine-learning algorithms may include ensemble methods such as bagging meta-estimator, forest of randomized tress, AdaBoost, gradient tree boosting, and/or voting classifier methods. Machine-learning algorithms may include neural net algorithms, including convolutional neural net processes.
  • For example, and still referring to FIG. 2 , neural network also known as an artificial neural network, is a network of “nodes,” or data structures having one or more inputs, one or more outputs, and a function determining outputs based on inputs. Such nodes may be organized in a network, such as without limitation a convolutional neural network, including an input layer of nodes, one or more intermediate layers, and an output layer of nodes. Connections between nodes may be created via the process of “training” the network, in which elements from a training dataset are applied to the input nodes, a suitable training algorithm (such as Levenberg-Marquardt, conjugate gradient, simulated annealing, or other algorithms) is then used to adjust the connections and weights between nodes in adjacent layers of the neural network to produce the desired values at the output nodes. This process is sometimes referred to as deep learning.
  • Still referring to FIG. 2 , a node may include, without limitation a plurality of inputs xi that may receive numerical values from inputs to a neural network containing the node and/or from other nodes. Node may perform a weighted sum of inputs using weights wi that are multiplied by respective inputs xi. Additionally or alternatively, a bias b may be added to the weighted sum of the inputs such that an offset is added to each unit in the neural network layer that is independent of the input to the layer. The weighted sum may then be input into a function φ, which may generate one or more outputs y. Weight wi applied to an input xi may indicate whether the input is “excitatory,” indicating that it has strong influence on the one or more outputs y, for instance by the corresponding weight having a large numerical value, and/or a “inhibitory,” indicating it has a weak effect influence on the one more inputs y, for instance by the corresponding weight having a small numerical value. The values of weights wi may be determined by training a neural network using training data, which may be performed using any suitable process as described above. In an embodiment, and without limitation, a neural network may receive semantic units as inputs and output vectors representing such semantic units according to weights wi that are derived using machine-learning processes as described in this disclosure.
  • Now referring to FIG. 3 , an exemplary goal database 300 is illustrated by way of block diagram. User goals 108, Goal datum 120, goal path 112, and/or waypoint 116 may be stored in a goal database 300 (also referred to as “database”). Processor 104 may be communicatively connected with goal database 300. For example, in some cases, database 300 may be local to processor 104. Alternatively or additionally, in some cases, database 300 may be remote to processor 104 and communicative with processor 104 by way of one or more networks. Network may include, but not limited to, a cloud network, a mesh network, or the like. By way of example, a “cloud-based” system, as that term is used herein, can refer to a system which includes software and/or data which is stored, managed, and/or processed on a network of remote servers hosted in the “cloud,” e.g., via the Internet, rather than on local severs or personal computers. A “mesh network” as used in this disclosure is a local network topology in which the infrastructure processor 104 connect directly, dynamically, and non-hierarchically to as many other computing devices as possible. A “network topology” as used in this disclosure is an arrangement of elements of a communication network. Goal database 300 may be implemented, without limitation, as a relational database, a key-value retrieval database such as a NOSQL database, or any other format or structure for use as a database that a person skilled in the art would recognize as suitable upon review of the entirety of this disclosure. Goal database 300 may alternatively or additionally be implemented using a distributed data storage protocol and/or data structure, such as a distributed hash table or the like. Goal database 300 may include a plurality of data entries and/or records as described above. Data entries in a database may be flagged with or linked to one or more additional elements of information, which may be reflected in data entry cells and/or in linked tables such as tables related by one or more indices in a relational database. Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various ways in which data entries in a database may store, retrieve, organize, and/or reflect data and/or records as used herein, as well as categories and/or populations of data consistently with this disclosure.
  • Referring now to FIG. 4 , an exemplary embodiment of neural network 400 is illustrated. A neural network 400 also known as an artificial neural network, is a network of “nodes,” or data structures having one or more inputs, one or more outputs, and a function determining outputs based on inputs. Such nodes may be organized in a network, such as without limitation a convolutional neural network, including an input layer of nodes 404, one or more intermediate layers 408, and an output layer of nodes 412. Connections between nodes may be created via the process of “training” the network, in which elements from a training dataset are applied to the input nodes, a suitable training algorithm (such as Levenberg-Marquardt, conjugate gradient, simulated annealing, or other algorithms) is then used to adjust the connections and weights between nodes in adjacent layers of the neural network to produce the desired values at the output nodes. This process is sometimes referred to as deep learning. Connections may run solely from input nodes toward output nodes in a “feed-forward” network or may feed outputs of one layer back to inputs of the same or a different layer in a “recurrent network.” As a further non-limiting example, a neural network may include a convolutional neural network comprising an input layer of nodes, one or more intermediate layers, and an output layer of nodes. A “convolutional neural network,” as used in this disclosure, is a neural network in which at least one hidden layer is a convolutional layer that convolves inputs to that layer with a subset of inputs known as a “kernel,” along with one or more additional layers such as pooling layers, fully connected layers, and the like.
  • Referring now to FIG. 5 , an exemplary embodiment of a node of a neural network is illustrated. A node may include, without limitation a plurality of inputs xi that may receive numerical values from inputs to a neural network containing the node and/or from other nodes. Node may perform a weighted sum of inputs using weights wi that are multiplied by respective inputs xi. Additionally or alternatively, a bias b may be added to the weighted sum of the inputs such that an offset is added to each unit in the neural network layer that is independent of the input to the layer. The weighted sum may then be input into a function φ, which may generate one or more outputs y. Weight wi applied to an input xi may indicate whether the input is “excitatory,” indicating that it has strong influence on the one or more outputs y, for instance by the corresponding weight having a large numerical value, and/or a “inhibitory,” indicating it has a weak effect influence on the one more inputs y, for instance by the corresponding weight having a small numerical value. The values of weights wi may be determined by training a neural network using training data, which may be performed using any suitable process as described above.
  • Now referring to FIG. 6 , an exemplary embodiment of fuzzy set comparison 600 is illustrated. In a non-limiting embodiment, the fuzzy set comparison. In a non-limiting embodiment, fuzzy set comparison 600 may be consistent with fuzzy set comparison in FIG. 1 . In another non-limiting the fuzzy set comparison 600 may be consistent with the name/version matching as described herein. For example and without limitation, the parameters, weights, and/or coefficients of the membership functions may be tuned using any machine-learning methods for the name/version matching as described herein. In another non-limiting embodiment, the fuzzy set may represent user goals 108 and goal datum 120 from FIG. 1 .
  • Alternatively or additionally, and still referring to FIG. 6 , fuzzy set comparison 600 may be generated as a function of determining data compatibility threshold. The compatibility threshold may be determined by a computing device. In some embodiments, a computing device may use a logic comparison program, such as, but not limited to, a fuzzy logic model to determine the compatibility threshold and/or version authenticator. Each such compatibility threshold may be represented as a value for a posting variable representing the compatibility threshold, or in other words a fuzzy set as described above that corresponds to a degree of compatibility and/or allowability as calculated using any statistical, machine-learning, or other method that may occur to a person skilled in the art upon reviewing the entirety of this disclosure. In some embodiments, determining the compatibility threshold and/or version authenticator may include using a linear regression model. A linear regression model may include a machine learning model. A linear regression model may map statistics such as, but not limited to, frequency of the same range of version numbers, and the like, to the compatibility threshold and/or version authenticator. In some embodiments, determining the compatibility threshold of any posting may include using a classification model. A classification model may be configured to input collected data and cluster data to a centroid based on, but not limited to, frequency of appearance of the range of versioning numbers, linguistic indicators of compatibility and/or allowability, and the like. Centroids may include scores assigned to them such that the compatibility threshold may each be assigned a score. In some embodiments, a classification model may include a K-means clustering model. In some embodiments, a classification model may include a particle swarm optimization model. In some embodiments, determining a compatibility threshold may include using a fuzzy inference engine. A fuzzy inference engine may be configured to map one or more compatibility threshold using fuzzy logic. In some embodiments, a plurality of computing devices may be arranged by a logic comparison program into compatibility arrangements. A “compatibility arrangement” as used in this disclosure is any grouping of objects and/or data based on skill level and/or output score. Membership function coefficients and/or constants as described above may be tuned according to classification and/or clustering algorithms. For instance, and without limitation, a clustering algorithm may determine a Gaussian or other distribution of questions about a centroid corresponding to a given compatibility threshold and/or version authenticator, and an iterative or other method may be used to find a membership function, for any membership function type as described above, that minimizes an average error from the statistically determined distribution, such that, for instance, a triangular or Gaussian membership function about a centroid representing a center of the distribution that most closely matches the distribution. Error functions to be minimized, and/or methods of minimization, may be performed without limitation according to any error function and/or error function minimization process and/or method as described in this disclosure.
  • Still referring to FIG. 6 , inference engine may be implemented according to input and/or output user goals 108 and goal datum 120. For instance, an acceptance variable may represent a first measurable value pertaining to the classification of goal datum 120 to a user goal 108. Continuing the example, an output variable may represent a user goal 108 specific the current user. In an embodiment, user goals 108 and goal datum 120 may be represented by their own fuzzy set. In other embodiments, a goal datum 120 specific to the user may be represented as a function of the intersection two fuzzy sets as shown in FIG. 6 , An inference engine may combine rules, such as any semantic versioning, semantic language, version ranges, and the like thereof. The degree to which a given input function membership matches a given rule may be determined by a triangular norm or “T-norm” of the rule or output function with the input function, such as min (a, b), product of a and b, drastic product of a and b, Hamacher product of a and b, or the like, satisfying the rules of commutativity (T(a, b)=T(b, a)), monotonicity: (T(a, b)≤T(c, d) if a≤c and b≤d), (associativity: T(a, T(b, c))=T(T(a, b), c)), and the requirement that the number 1 acts as an identity element. Combinations of rules (“and” or “or” combination of rule membership determinations) may be performed using any T-conorm, as represented by an inverted T symbol or “⊥,” such as max(a, b), probabilistic sum of a and b (a+b−a*b), bounded sum, and/or drastic T-conorm; any T-conorm may be used that satisfies the properties of commutativity: ⊥(a, b)=⊥(b, a), monotonicity: ⊥(a, b)≤⊥(c, d) if a≤c and b≤d, associativity: ⊥(a, ⊥(b, c))=⊥(⊥(a, b), c), and identity element of 0. Alternatively or additionally T-conorm may be approximated by sum, as in a “product-sum” inference engine in which T-norm is product and T-conorm is sum. A final output score or other fuzzy inference output may be determined from an output membership function as described above using any suitable defuzzification process, including without limitation Mean of Max defuzzification, Centroid of Area/Center of Gravity defuzzification, Center Average defuzzification, Bisector of Area defuzzification, or the like. Alternatively or additionally, output rules may be replaced with functions according to the Takagi-Sugeno-King (TSK) fuzzy model.
  • A first fuzzy set 604 may be represented, without limitation, according to a first membership function 608 representing a probability that an input falling on a first range of values 612 is a member of the first fuzzy set 604, where the first membership function 608 has values on a range of probabilities such as without limitation the interval [0,1], and an area beneath the first membership function 608 may represent a set of values within first fuzzy set 604. Although first range of values 612 is illustrated for clarity in this exemplary depiction as a range on a single number line or axis, first range of values 612 may be defined on two or more dimensions, representing, for instance, a Cartesian product between a plurality of ranges, curves, axes, spaces, dimensions, or the like. First membership function 608 may include any suitable function mapping first range 612 to a probability interval, including without limitation a triangular function defined by two linear elements such as line segments or planes that intersect at or below the top of the probability interval. As a non-limiting example, triangular membership function may be defined as:
  • y ( x , a , b , c ) = { 0 , for x > c and x < a x - a b - a , for a x < b c - x c - b , if b < c c
  • a trapezoidal membership function may be defined as:
  • y ( x , a , b , c , d ) = max ( min ( x - a b - a , 1 , c - x c - b , 0 )
  • a sigmoidal function may be defined as:
  • y ( x , a , c ) = 1 1 - e - a ( x - c )
  • a Gaussian membership function may be defined as:
  • y ( x , c , σ ) = e - 1 2 ( x - c σ ) 2
  • and a bell membership function may be defined as:
  • y ( x , a , b , c , ) = [ 1 + "\[LeftBracketingBar]" x - c a "\[RightBracketingBar]" 2 b ] - 1
  • Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various alternative or additional membership functions that may be used consistently with this disclosure.
  • First fuzzy set 604 may represent any value or combination of values as described above, including any software component datum, any source repository datum, any malicious quantifier datum, any predictive threshold datum, any string distance datum, any resource datum, any niche datum, and/or any combination of the above. A second fuzzy set 616, which may represent any value which may be represented by first fuzzy set 604, may be defined by a second membership function 620 on a second range 624; second range 624 may be identical and/or overlap with first range 612 and/or may be combined with first range via Cartesian product or the like to generate a mapping permitting evaluation overlap of first fuzzy set 604 and second fuzzy set 616. Where first fuzzy set 604 and second fuzzy set 616 have a region 636 that overlaps, first membership function 608 and second membership function 620 may intersect at a point 632 representing a probability, as defined on probability interval, of a match between first fuzzy set 604 and second fuzzy set 616. Alternatively or additionally, a single value of first and/or second fuzzy set may be located at a locus 636 on first range 612 and/or second range 624, where a probability of membership may be taken by evaluation of first membership function 608 and/or second membership function 620 at that range point. A probability at 628 and/or 632 may be compared to a threshold 640 to determine whether a positive match is indicated. Threshold 640 may, in a non-limiting example, represent a degree of match between first fuzzy set 604 and second fuzzy set 616, and/or single values therein with each other or with either set, which is sufficient for purposes of the matching process; for instance, an achievable user goal 108 may indicate a sufficient degree of overlap with the goal datum 120 for combination to occur as described above. There may be multiple thresholds; for instance, a second threshold may indicate a sufficient match for purposes of past posting and posting query as described in this disclosure. Each threshold may be established by one or more user inputs. Alternatively or additionally, each threshold may be tuned by a machine-learning and/or statistical process, for instance and without limitation as described in further detail below.
  • In an embodiment, a degree of match between fuzzy sets may be used to rank one resource against another. For instance, if both user goals 108 and goal datum 120 have fuzzy sets, a user goal 108 may be matched to a goal datum 12 by having a degree of overlap exceeding a predictive threshold, processor 104 may further rank the two resources by ranking a resource having a higher degree of match more highly than a resource having a lower degree of match. Where multiple fuzzy matches are performed, degrees of match for each respective fuzzy set may be computed and aggregated through, for instance, addition, averaging, or the like, to determine an overall degree of match, which may be used to rank resources; selection between two or more matching resources may be performed by selection of a highest-ranking resource, and/or multiple notifications may be presented to a user in order of ranking.
  • Referring now to FIG. 7 , an exemplary embodiment of an immutable sequential listing is illustrated. An “immutable sequential listing,” as used in this disclosure, is a data structure that places data entries in a fixed sequential arrangement, such as a temporal sequence of entries and/or blocks thereof, where the sequential arrangement, once established, cannot be altered, or reordered. An immutable sequential listing may be, include and/or implement an immutable ledger, where data entries that have been posted to the immutable sequential listing cannot be altered. Data elements are listing in immutable sequential listing; data elements may include any form of data, including textual data, image data, encrypted data, cryptographically hashed data, and the like. Data elements may include, without limitation, one or more at least a digitally signed assertions. In one embodiment, a digitally signed assertion 704 is a collection of textual data signed using a secure proof as described in further detail below; secure proof may include, without limitation, a digital signature as described above. Collection of textual data may contain any textual data, including without limitation American Standard Code for Information Interchange (ASCII), Unicode, or similar computer-encoded textual data, any alphanumeric data, punctuation, diacritical mark, or any character or other marking used in any writing system to convey information, in any form, including any plaintext or cyphertext data; in an embodiment, collection of textual data may be encrypted, or may be a hash of other data, such as a root or node of a Merkle tree or hash tree, or a hash of any other information desired to be recorded in some fashion using a digitally signed assertion 704. In an embodiment, collection of textual data states that the owner of a certain transferable item represented in a digitally signed assertion 704 register is transferring that item to the owner of an address. A digitally signed assertion 704 may be signed by a digital signature created using the private key associated with the owner's public key, as described above.
  • Still referring to FIG. 7 , a digitally signed assertion 704 may describe a transfer of virtual currency, such as crypto-currency as described below. The virtual currency may be a digital currency. Item of value may be a transfer of trust, for instance represented by a statement vouching for the identity or trustworthiness of the first entity. Item of value may be an interest in a fungible negotiable financial instrument representing ownership in a public or private corporation, a creditor relationship with a governmental body or a corporation, rights to ownership represented by an option, derivative financial instrument, commodity, debt-backed security such as a bond or debenture or other security as described in further detail below. A resource may be a physical machine e.g. a ride share vehicle or any other asset. A digitally signed assertion 704 may describe the transfer of a physical good; for instance, a digitally signed assertion 704 may describe the sale of a product. In some embodiments, a transfer nominally of one item may be used to represent a transfer of another item; for instance, a transfer of virtual currency may be interpreted as representing a transfer of an access right; conversely, where the item nominally transferred is something other than virtual currency, the transfer itself may still be treated as a transfer of virtual currency, having value that depends on many potential factors including the value of the item nominally transferred and the monetary value attendant to having the output of the transfer moved into a particular user's control. The item of value may be associated with a digitally signed assertion 704 by means of an exterior protocol, such as the COLORED COINS created according to protocols developed by The Colored Coins Foundation, the MASTERCOIN protocol developed by the Mastercoin Foundation, or the ETHEREUM platform offered by the Stiftung Ethereum Foundation of Baar, Switzerland, the Thunder protocol developed by Thunder Consensus, or any other protocol.
  • Still referring to FIG. 7 , in one embodiment, an address is a textual datum identifying the recipient of virtual currency or another item of value in a digitally signed assertion 704. In some embodiments, address is linked to a public key, the corresponding private key of which is owned by the recipient of a digitally signed assertion 704. For instance, address may be the public key. Address may be a representation, such as a hash, of the public key. Address may be linked to the public key in memory of a computing device, for instance via a “wallet shortener” protocol. Where address is linked to a public key, a transferee in a digitally signed assertion 704 may record a subsequent a digitally signed assertion 704 transferring some or all of the value transferred in the first a digitally signed assertion 704 to a new address in the same manner. A digitally signed assertion 704 may contain textual information that is not a transfer of some item of value in addition to, or as an alternative to, such a transfer. For instance, as described in further detail below, a digitally signed assertion 704 may indicate a confidence level associated with a distributed storage node as described in further detail below.
  • In an embodiment, and still referring to FIG. 7 immutable sequential listing records a series of at least a posted content in a way that preserves the order in which the at least a posted content took place. Temporally sequential listing may be accessible at any of various security settings; for instance, and without limitation, temporally sequential listing may be readable and modifiable publicly, may be publicly readable but writable only by entities and/or devices having access privileges established by password protection, confidence level, or any device authentication procedure or facilities described herein, or may be readable and/or writable only by entities and/or devices having such access privileges. Access privileges may exist in more than one level, including, without limitation, a first access level or community of permitted entities and/or devices having ability to read, and a second access level or community of permitted entities and/or devices having ability to write; first and second community may be overlapping or non-overlapping. In an embodiment, posted content and/or immutable sequential listing may be stored as one or more zero knowledge sets (ZKS), Private Information Retrieval (PIR) structure, or any other structure that allows checking of membership in a set by querying with specific properties. Such database may incorporate protective measures to ensure that malicious actors may not query the database repeatedly in an effort to narrow the members of a set to reveal uniquely identifying information of a given posted content.
  • Still referring to FIG. 7 , immutable sequential listing may preserve the order in which the at least a posted content took place by listing them in chronological order; alternatively or additionally, immutable sequential listing may organize digitally signed assertions 704 into sub-listings 708 such as “blocks” in a blockchain, which may be themselves collected in a temporally sequential order; digitally signed assertions 704 within a sub-listing 708 may or may not be temporally sequential. The ledger may preserve the order in which at least a posted content took place by listing them in sub-listings 708 and placing the sub-listings 708 in chronological order. The immutable sequential listing may be a distributed, consensus-based ledger, such as those operated according to the protocols promulgated by Ripple Labs, Inc., of San Francisco, Calif., or the Stellar Development Foundation, of San Francisco, Calif, or of Thunder Consensus. In some embodiments, the ledger is a secured ledger; in one embodiment, a secured ledger is a ledger having safeguards against alteration by unauthorized parties. The ledger may be maintained by a proprietor, such as a system administrator on a server, that controls access to the ledger; for instance, the user account controls may allow contributors to the ledger to add at least a posted content to the ledger but may not allow any users to alter at least a posted content that have been added to the ledger. In some embodiments, ledger is cryptographically secured; in one embodiment, a ledger is cryptographically secured where each link in the chain contains encrypted or hashed information that makes it practically infeasible to alter the ledger without betraying that alteration has taken place, for instance by requiring that an administrator or other party sign new additions to the chain with a digital signature. Immutable sequential listing may be incorporated in, stored in, or incorporate, any suitable data structure, including without limitation any database, datastore, file structure, distributed hash table, directed acyclic graph or the like. In some embodiments, the timestamp of an entry is cryptographically secured and validated via trusted time, either directly on the chain or indirectly by utilizing a separate chain. In one embodiment the validity of timestamp is provided using a time stamping authority as described in the RFC 3161 standard for trusted timestamps, or in the ANSI ASC x9.95 standard. In another embodiment, the trusted time ordering is provided by a group of entities collectively acting as the time stamping authority with a requirement that a threshold number of the group of authorities sign the timestamp.
  • In some embodiments, and with continued reference to FIG. 7 , immutable sequential listing, once formed, may be inalterable by any party, no matter what access rights that party possesses. For instance, immutable sequential listing may include a hash chain, in which data is added during a successive hashing process to ensure non-repudiation. Immutable sequential listing may include a block chain. In one embodiment, a block chain is immutable sequential listing that records one or more new at least a posted content in a data item known as a sub-listing 708 or “block.” An example of a block chain is the BITCOIN block chain used to record BITCOIN transactions and values. Sub-listings 708 may be created in a way that places the sub-listings 708 in chronological order and link each sub-listing 708 to a previous sub-listing 708 in the chronological order so that any computing device may traverse the sub-listings 708 in reverse chronological order to verify any at least a posted content listed in the block chain. Each new sub-listing 708 may be required to contain a cryptographic hash describing the previous sub-listing 708. In some embodiments, the block chain contains a single first sub-listing 708 sometimes known as a “genesis block.”
  • Still referring to FIG. 7 , the creation of a new sub-listing 708 may be computationally expensive; for instance, the creation of a new sub-listing 708 may be designed by a “proof of work” protocol accepted by all participants in forming the immutable sequential listing to take a powerful set of computing devices a certain period of time to produce. Where one sub-listing 708 takes less time for a given set of computing devices to produce the sub-listing 708 protocol may adjust the algorithm to produce the next sub-listing 708 so that it will require more steps; where one sub-listing 708 takes more time for a given set of computing devices to produce the sub-listing 708 protocol may adjust the algorithm to produce the next sub-listing 708 so that it will require fewer steps. As an example, protocol may require a new sub-listing 708 to contain a cryptographic hash describing its contents; the cryptographic hash may be required to satisfy a mathematical condition, achieved by having the sub-listing 708 contain a number, called a nonce, whose value is determined after the fact by the discovery of the hash that satisfies the mathematical condition. Continuing the example, the protocol may be able to adjust the mathematical condition so that the discovery of the hash describing a sub-listing 708 and satisfying the mathematical condition requires more or less steps, depending on the outcome of the previous hashing attempt. Mathematical condition, as an example, might be that the hash contains a certain number of leading zeros and a hashing algorithm that requires more steps to find a hash containing a greater number of leading zeros, and fewer steps to find a hash containing a lesser number of leading zeros. In some embodiments, production of a new sub-listing 708 according to the protocol is known as “mining.” The creation of a new sub-listing 708 may be designed by a “proof of stake” protocol as will be apparent to those skilled in the art upon reviewing the entirety of this disclosure.
  • Continuing to refer to FIG. 7 , in some embodiments, protocol also creates an incentive to mine new sub-listings 708. The incentive may be financial; for instance, successfully mining a new sub-listing 708 may result in the person or entity that mines the sub-listing 708 receiving a predetermined amount of currency. The currency may be fiat currency. Currency may be cryptocurrency as defined below. In other embodiments, incentive may be redeemed for particular products or services; the incentive may be a gift certificate with a particular business, for instance. In some embodiments, incentive is sufficiently attractive to cause participants to compete for the incentive by trying to race each other to the creation of sub-listings 708 Each sub-listing 708 created in immutable sequential listing may contain a record or at least a posted content describing one or more addresses that receive an incentive, such as virtual currency, as the result of successfully mining the sub-listing 708.
  • With continued reference to FIG. 7 , where two entities simultaneously create new sub-listings 708, immutable sequential listing may develop a fork; protocol may determine which of the two alternate branches in the fork is the valid new portion of the immutable sequential listing by evaluating, after a certain amount of time has passed, which branch is longer. “Length” may be measured according to the number of sub-listings 708 in the branch. Length may be measured according to the total computational cost of producing the branch. Protocol may treat only at least a posted content contained the valid branch as valid at least a posted content. When a branch is found invalid according to this protocol, at least a posted content registered in that branch may be recreated in a new sub-listing 708 in the valid branch; the protocol may reject “double spending” at least a posted content that transfer the same virtual currency that another at least a posted content in the valid branch has already transferred. As a result, in some embodiments the creation of fraudulent at least a posted content requires the creation of a longer immutable sequential listing branch by the entity attempting the fraudulent at least a posted content than the branch being produced by the rest of the participants; as long as the entity creating the fraudulent at least a posted content is likely the only one with the incentive to create the branch containing the fraudulent at least a posted content, the computational cost of the creation of that branch may be practically infeasible, guaranteeing the validity of all at least a posted content in the immutable sequential listing.
  • Still referring to FIG. 7 , additional data linked to at least a posted content may be incorporated in sub-listings 708 in the immutable sequential listing; for instance, data may be incorporated in one or more fields recognized by block chain protocols that permit a person or computer forming a at least a posted content to insert additional data in the immutable sequential listing. In some embodiments, additional data is incorporated in an unspendable at least a posted content field. For instance, the data may be incorporated in an OP_RETURN within the BITCOIN block chain. In other embodiments, additional data is incorporated in one signature of a multi-signature at least a posted content. In an embodiment, a multi-signature at least a posted content is at least a posted content to two or more addresses. In some embodiments, the two or more addresses are hashed together to form a single address, which is signed in the digital signature of the at least a posted content. In other embodiments, the two or more addresses are concatenated. In some embodiments, two or more addresses may be combined by a more complicated process, such as the creation of a Merkle tree or the like. In some embodiments, one or more addresses incorporated in the multi-signature at least a posted content are typical crypto-currency addresses, such as addresses linked to public keys as described above, while one or more additional addresses in the multi-signature at least a posted content contain additional data related to the at least a posted content; for instance, the additional data may indicate the purpose of the at least a posted content, aside from an exchange of virtual currency, such as the item for which the virtual currency was exchanged. In some embodiments, additional information may include network statistics for a given node of network, such as a distributed storage node, e.g. the latencies to nearest neighbors in a network graph, the identities or identifying information of neighboring nodes in the network graph, the trust level and/or mechanisms of trust (e.g. certificates of physical encryption keys, certificates of software encryption keys, (in non-limiting example certificates of software encryption may indicate the firmware version, manufacturer, hardware version and the like), certificates from a trusted third party, certificates from a decentralized anonymous authentication procedure, and other information quantifying the trusted status of the distributed storage node) of neighboring nodes in the network graph, IP addresses, GPS coordinates, and other information informing location of the node and/or neighboring nodes, geographically and/or within the network graph. In some embodiments, additional information may include history and/or statistics of neighboring nodes with which the node has interacted. In some embodiments, this additional information may be encoded directly, via a hash, hash tree or other encoding.
  • With continued reference to FIG. 7 , in some embodiments, virtual currency is traded as a crypto-currency. In one embodiment, a crypto-currency is a digital, currency such as Bitcoins, Peercoins, Namecoins, and Litecoins. Crypto-currency may be a clone of another crypto-currency. The crypto-currency may be an “alt-coin.” Crypto-currency may be decentralized, with no particular entity controlling it; the integrity of the crypto-currency may be maintained by adherence by its participants to established protocols for exchange and for production of new currency, which may be enforced by software implementing the crypto-currency. Crypto-currency may be centralized, with its protocols enforced or hosted by a particular entity. For instance, crypto-currency may be maintained in a centralized ledger, as in the case of the XRP currency of Ripple Labs, Inc., of San Francisco, Calif. In lieu of a centrally controlling authority, such as a national bank, to manage currency values, the number of units of a particular crypto-currency may be limited; the rate at which units of crypto-currency enter the market may be managed by a mutually agreed-upon process, such as creating new units of currency when mathematical puzzles are solved, the degree of difficulty of the puzzles being adjustable to control the rate at which new units enter the market. Mathematical puzzles may be the same as the algorithms used to make productions of sub-listings 708 in a block chain computationally challenging; the incentive for producing sub-listings 708 may include the grant of new crypto-currency to the miners. Quantities of crypto-currency may be exchanged using at least a posted content as described above.
  • Referring to FIG. 8 , an exemplary method 800 for goal generation. Method 800 includes a step 805, of receiving, using a processor, a goal datum related to a user, wherein goal datum comprises behavioral parameters of the user. This may occur as described above in reference to FIGS. 1-8 . The goal datum may comprise the pecuniary knowledge of the user and action parameters. In an embodiment, goal datum may be generated as a function of a survey datum.
  • With continued reference to FIG. 8 , method 800 includes a step 810 of training, using the processor, a goal classifier using goal training data, wherein the goal training data contains a plurality of data entries containing a plurality of goal datum inputs correlated to a plurality of goal outputs. This may occur as described above in reference to FIGS. 1-8 . In an embodiment, a processor may generate a goal ranking as a function of the classification. In another embodiment, the user may be assigned a goal as a function of goal ranking. In another embodiment, the coal may comprise a vocational goal or a pecuniary goal.
  • With continued reference to FIG. 8 , method 800 includes a step 815 classifying, using the processor, the goal datum to the goal selection using the goal classifier. This may occur as described above in reference to FIGS. 1-8 . In some embodiments, a fuzzy inference may classify the goal to the goal datum to the goal.
  • With continued reference to FIG. 8 , method 800 includes a step 820 of assigning, using the processor, the goal as a function of the classification. This may occur as described above in reference to FIGS. 1-8 .
  • With continued reference to FIG. 8 , method 800 includes a step 825 of generating, using the processor, a goal path as a function of the classification of the goal datum to the goal, wherein the goal path is divided into a plurality of waypoints. This may occur as described above in reference to FIGS. 1-8 . In other embodiments, the goal path may be generated using a machine learning model. Decentralized fiat may be generated as a function of completion of waypoints.
  • It is to be noted that any one or more of the aspects and embodiments described herein may be conveniently implemented using one or more machines (e.g., one or more computing devices that are utilized as a user computing device for an electronic document, one or more server devices, such as a document server, etc.) programmed according to the teachings of the present specification, as will be apparent to those of ordinary skill in the computer art. Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those of ordinary skill in the software art. Aspects and implementations discussed above employing software and/or software modules may also include appropriate hardware for assisting in the implementation of the machine executable instructions of the software and/or software module.
  • Such software may be a computer program product that employs a machine-readable storage medium. A machine-readable storage medium may be any medium that is capable of storing and/or encoding a sequence of instructions for execution by a machine (e.g., a computing device) and that causes the machine to perform any one of the methodologies and/or embodiments described herein. Examples of a machine-readable storage medium include, but are not limited to, a magnetic disk, an optical disc (e.g., CD, CD-R, DVD, DVD-R, etc.), a magneto-optical disk, a read-only memory “ROM” device, a random access memory “RAM” device, a magnetic card, an optical card, a solid-state memory device, an EPROM, an EEPROM, and any combinations thereof. A machine-readable medium, as used herein, is intended to include a single medium as well as a collection of physically separate media, such as, for example, a collection of compact discs or one or more hard disk drives in combination with a computer memory. As used herein, a machine-readable storage medium does not include transitory forms of signal transmission.
  • Such software may also include information (e.g., data) carried as a data signal on a data carrier, such as a carrier wave. For example, machine-executable information may be included as a data-carrying signal embodied in a data carrier in which the signal encodes a sequence of instruction, or portion thereof, for execution by a machine (e.g., a computing device) and any related information (e.g., data structures and data) that causes the machine to perform any one of the methodologies and/or embodiments described herein.
  • Examples of a computing device include, but are not limited to, an electronic book reading device, a computer workstation, a terminal computer, a server computer, a handheld device (e.g., a tablet computer, a smartphone, etc.), a web appliance, a network router, a network switch, a network bridge, any machine capable of executing a sequence of instructions that specify an action to be taken by that machine, and any combinations thereof. In one example, a computing device may include and/or be included in a kiosk.
  • FIG. 9 shows a diagrammatic representation of one embodiment of a computing device in the exemplary form of a computer system 900 within which a set of instructions for causing a control system to perform any one or more of the aspects and/or methodologies of the present disclosure may be executed. It is also contemplated that multiple computing devices may be utilized to implement a specially configured set of instructions for causing one or more of the devices to perform any one or more of the aspects and/or methodologies of the present disclosure. Computer system 900 includes a processor 904 and a memory 908 that communicate with each other, and with other components, via a bus 912. Bus 912 may include any of several types of bus structures including, but not limited to, a memory bus, a memory controller, a peripheral bus, a local bus, and any combinations thereof, using any of a variety of bus architectures.
  • Processor 904 may include any suitable processor, such as without limitation a processor incorporating logical circuitry for performing arithmetic and logical operations, such as an arithmetic and logic unit (ALU), which may be regulated with a state machine and directed by operational inputs from memory and/or sensors; processor 904 may be organized according to Von Neumann and/or Harvard architecture as a non-limiting example. Processor 904 may include, incorporate, and/or be incorporated in, without limitation, a microcontroller, microprocessor, digital signal processor (DSP), Field Programmable Gate Array (FPGA), Complex Programmable Logic Device (CPLD), Graphical Processing Unit (GPU), general purpose GPU, Tensor Processing Unit (TPU), analog or mixed signal processor, Trusted Platform Module (TPM), a floating point unit (FPU), and/or system on a chip (SoC).
  • Memory 908 may include various components (e.g., machine-readable media) including, but not limited to, a random-access memory component, a read only component, and any combinations thereof. In one example, a basic input/output system 916 (BIOS), including basic routines that help to transfer information between elements within computer system 900, such as during start-up, may be stored in memory 908. Memory 908 may also include (e.g., stored on one or more machine-readable media) instructions (e.g., software) 920 embodying any one or more of the aspects and/or methodologies of the present disclosure. In another example, memory 908 may further include any number of program modules including, but not limited to, an operating system, one or more application programs, other program modules, program data, and any combinations thereof.
  • Computer system 900 may also include a storage device 924. Examples of a storage device (e.g., storage device 924) include, but are not limited to, a hard disk drive, a magnetic disk drive, an optical disc drive in combination with an optical medium, a solid-state memory device, and any combinations thereof. Storage device 924 may be connected to bus 912 by an appropriate interface (not shown). Example interfaces include, but are not limited to, SCSI, advanced technology attachment (ATA), serial ATA, universal serial bus (USB), IEEE 1394 (FIREWIRE), and any combinations thereof. In one example, storage device 924 (or one or more components thereof) may be removably interfaced with computer system 900 (e.g., via an external port connector (not shown)). Particularly, storage device 924 and an associated machine-readable medium 928 may provide nonvolatile and/or volatile storage of machine-readable instructions, data structures, program modules, and/or other data for computer system 900. In one example, software 920 may reside, completely or partially, within machine-readable medium 928. In another example, software 920 may reside, completely or partially, within processor 904.
  • Computer system 900 may also include an input device 932. In one example, a user of computer system 900 may enter commands and/or other information into computer system 900 via input device 932. Examples of an input device 932 include, but are not limited to, an alpha-numeric input device (e.g., a keyboard), a pointing device, a joystick, a gamepad, an audio input device (e.g., a microphone, a voice response system, etc.), a cursor control device (e.g., a mouse), a touchpad, an optical scanner, a video capture device (e.g., a still camera, a video camera), a touchscreen, and any combinations thereof. Input device 932 may be interfaced to bus 912 via any of a variety of interfaces (not shown) including, but not limited to, a serial interface, a parallel interface, a game port, a USB interface, a FIREWIRE interface, a direct interface to bus 912, and any combinations thereof. Input device 932 may include a touch screen interface that may be a part of or separate from display 936, discussed further below. Input device 932 may be utilized as a user selection device for selecting one or more graphical representations in a graphical interface as described above.
  • A user may also input commands and/or other information to computer system 900 via storage device 924 (e.g., a removable disk drive, a flash drive, etc.) and/or network interface device 940. A network interface device, such as network interface device 940, may be utilized for connecting computer system 900 to one or more of a variety of networks, such as network 944, and one or more remote devices 948 connected thereto. Examples of a network interface device include, but are not limited to, a network interface card (e.g., a mobile network interface card, a LAN card), a modem, and any combination thereof. Examples of a network include, but are not limited to, a wide area network (e.g., the Internet, an enterprise network), a local area network (e.g., a network associated with an office, a building, a campus or other relatively small geographic space), a telephone network, a data network associated with a telephone/voice provider (e.g., a mobile communications provider data and/or voice network), a direct connection between two computing devices, and any combinations thereof. A network, such as network 944, may employ a wired and/or a wireless mode of communication. In general, any network topology may be used. Information (e.g., data, software 920, etc.) may be communicated to and/or from computer system 900 via network interface device 940.
  • Computer system 900 may further include a video display adapter 952 for communicating a displayable image to a display device, such as display device 936. Examples of a display device include, but are not limited to, a liquid crystal display (LCD), a cathode ray tube (CRT), a plasma display, a light emitting diode (LED) display, and any combinations thereof. Display adapter 952 and display device 936 may be utilized in combination with processor 904 to provide graphical representations of aspects of the present disclosure. In addition to a display device, computer system 900 may include one or more other peripheral output devices including, but not limited to, an audio speaker, a printer, and any combinations thereof. Such peripheral output devices may be connected to bus 912 via a peripheral interface 956. Examples of a peripheral interface include, but are not limited to, a serial port, a USB connection, a FIREWIRE connection, a parallel connection, and any combinations thereof.
  • The foregoing has been a detailed description of illustrative embodiments of the invention. Various modifications and additions can be made without departing from the spirit and scope of this invention. Features of each of the various embodiments described above may be combined with features of other described embodiments as appropriate in order to provide a multiplicity of feature combinations in associated new embodiments. Furthermore, while the foregoing describes a number of separate embodiments, what has been described herein is merely illustrative of the application of the principles of the present invention. Additionally, although particular methods herein may be illustrated and/or described as being performed in a specific order, the ordering is highly variable within ordinary skill to achieve methods, systems, and software according to the present disclosure. Accordingly, this description is meant to be taken only by way of example, and not to otherwise limit the scope of this invention.
  • Exemplary embodiments have been disclosed above and illustrated in the accompanying drawings. It will be understood by those skilled in the art that various changes, omissions, and additions may be made to that which is specifically disclosed herein without departing from the spirit and scope of the present invention.

Claims (20)

1. An apparatus for goal generation, wherein the apparatus comprises:
at least a processor; and
a memory communicatively connected to the at least a processor, the memory containing instructions configuring the at least a processor to:
generate a goal datum related to a user as a function of at least a behavioral parameter of the user wherein the at least a behavior parameter comprises an aptitude analysis of the user as a function of a previous user goal datum;
generate at least one user goal based on the goal datum, wherein generating the at least one user goal comprises:
iteratively training a goal machine learning model using training data wherein the training data comprises at least a goal datum input and a plurality of user goals output updating the training data as a function of the goal datum and the at least one user goal; and
retraining the goal machine learning model as a function of the updated training data;
and
generate a goal path as a function of the at least one user goal, wherein generating the goal path further comprises:
generating a plurality of waypoints as a function of the user goal and the goal datum; and
generating the goal path as a function of the plurality of waypoints.
2. The apparatus of claim 1, wherein the goal datum comprises the pecuniary knowledge of the user.
3. The apparatus of claim 1, wherein the goal datum comprises a plurality of action parameters.
4. The apparatus of claim 1, wherein the goal datum is generated as a function of a survey datum.
5. The apparatus of claim 1, wherein a goal ranking is generated as a function of the classification of the goal datum.
6. The apparatus of claim 5, wherein user is assigned the goal datum as a function of the goal ranking.
7. The apparatus of claim 1, wherein the goal comprises an educational goal.
8. The apparatus of claim 1, wherein the goal comprises a vocational goal.
9. The apparatus of claim 1, wherein the goal comprises a pecuniary goal.
10. The apparatus of claim 1, wherein a decentralized fiat is generated as a function of completing the plurality of waypoints.
11. A method for goal generation, wherein the method comprises:
generating, using a processor, a goal datum related to a user as a function of at least a behavioral parameter of the user wherein the at least a behavior parameter comprises an aptitude analysis of the user as a function of a previous user goal datum;
generate at least one user goal, wherein generating the at least one user goal comprises:
iteratively training a goal machine learning model using training data wherein the training data comprises at least a goal datum input and a plurality of user goals output;
updating the training data as a function of the goal datum and the at least one user goal;
retraining the goal machine learning model as a function of the updated training data;
assigning, using the processor, the user goal as a function of the classification; and
generating, using the processor, a goal path, wherein generating the goal path further comprises:
generating a plurality of waypoints as a function of the plurality of user goal and the goal datum; and
generating the goal path as a function of the plurality of waypoints.
12. The method of claim 11, wherein the goal datum comprises the pecuniary knowledge of the user.
13. The method of claim 11, wherein the goal datum comprises a plurality of action parameters.
14. The method of claim 11, wherein the goal datum is generated as a function of a survey datum.
15. The method of claim 11, wherein a goal ranking is generated as a function of the classification of the goal datum.
16. The method of claim 15, wherein the user is assigned the goal as a function of the goal ranking.
17. The method of claim 11, wherein the goal comprises an educational goal.
18. The method of claim 11, wherein the goal comprises a vocational goal.
19. The method of claim 11, wherein the goal comprises an pecuniary goal.
20. The method of claim 11, wherein a decentralized fiat is generated as a function of completion of the plurality of waypoints.
US18/117,091 2022-07-25 2023-03-03 Apparatus for goal generation and a method for its use Abandoned US20240028655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/117,091 US20240028655A1 (en) 2022-07-25 2023-03-03 Apparatus for goal generation and a method for its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/872,364 US11599592B1 (en) 2022-07-25 2022-07-25 Apparatus for goal generation and a method for its use
US18/117,091 US20240028655A1 (en) 2022-07-25 2023-03-03 Apparatus for goal generation and a method for its use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/872,364 Continuation US11599592B1 (en) 2022-07-25 2022-07-25 Apparatus for goal generation and a method for its use

Publications (1)

Publication Number Publication Date
US20240028655A1 true US20240028655A1 (en) 2024-01-25

Family

ID=85387006

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/872,364 Active US11599592B1 (en) 2022-07-25 2022-07-25 Apparatus for goal generation and a method for its use
US18/117,091 Abandoned US20240028655A1 (en) 2022-07-25 2023-03-03 Apparatus for goal generation and a method for its use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US17/872,364 Active US11599592B1 (en) 2022-07-25 2022-07-25 Apparatus for goal generation and a method for its use

Country Status (1)

Country Link
US (2) US11599592B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12008080B1 (en) * 2023-05-03 2024-06-11 The Strategic Coach Inc. Apparatus and method for directed process generation

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170046651A1 (en) * 2015-08-13 2017-02-16 The Toronto-Dominion Bank Systems and method for tracking enterprise events using hybrid public-private blockchain ledgers
US20190180358A1 (en) * 2017-12-11 2019-06-13 Accenture Global Solutions Limited Machine learning classification and prediction system
US20200269136A1 (en) * 2019-02-27 2020-08-27 Nvidia Corporation Gamer training using neural networks
US20210065029A1 (en) * 2019-09-03 2021-03-04 International Business Machines Corporation Generating personalized recommendations to address a target problem
US20210065305A1 (en) * 2019-08-26 2021-03-04 Forwardlane Inc Method and apparatus for processing data using artificial intelligence to determine goals
US10984666B1 (en) * 2016-11-03 2021-04-20 Massachusetts Mutual Life Insurance Company Learning engine application
US20210192973A1 (en) * 2019-12-19 2021-06-24 Talaera LLC Systems and methods for generating personalized assignment assets for foreign languages
US11094016B1 (en) * 2016-05-04 2021-08-17 Wells Fargo Bank, N.A. Full balance sheet advisor
US20220004901A1 (en) * 2020-07-01 2022-01-06 EDUCATION4SIGHT GmbH Systems and methods for providing learner-specific learning paths
US20220129988A1 (en) * 2020-10-28 2022-04-28 Banque Nationale Du Canada System and method for generating indicators derived from simulated projections incorporating financial goals
US20220139245A1 (en) * 2020-11-04 2022-05-05 International Business Machines Corporation Using personalized knowledge patterns to generate personalized learning-based guidance
US20220207099A1 (en) * 2020-12-29 2022-06-30 Microsoft Technology Licensing, Llc Techniques for suggesting skills
US20220245721A1 (en) * 2021-02-03 2022-08-04 Intuit Inc. Machine learning based automated savings goals
US11551321B1 (en) * 2021-05-25 2023-01-10 Formation Labs Inc. Dynamic education planning methods and systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10814170B2 (en) * 2017-06-16 2020-10-27 Apple Inc. Techniques for providing customized exercise-related recommendations
WO2020176981A1 (en) * 2019-03-01 2020-09-10 Conquest Planning Inc. Strategic advice manager for financial plans
US20210406025A1 (en) * 2020-06-25 2021-12-30 Kpn Innovations, Llc Method of and system for generating a rank-ordered instruction set using a ranking process

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170046651A1 (en) * 2015-08-13 2017-02-16 The Toronto-Dominion Bank Systems and method for tracking enterprise events using hybrid public-private blockchain ledgers
US11094016B1 (en) * 2016-05-04 2021-08-17 Wells Fargo Bank, N.A. Full balance sheet advisor
US10984666B1 (en) * 2016-11-03 2021-04-20 Massachusetts Mutual Life Insurance Company Learning engine application
US20190180358A1 (en) * 2017-12-11 2019-06-13 Accenture Global Solutions Limited Machine learning classification and prediction system
US20200269136A1 (en) * 2019-02-27 2020-08-27 Nvidia Corporation Gamer training using neural networks
US20210065305A1 (en) * 2019-08-26 2021-03-04 Forwardlane Inc Method and apparatus for processing data using artificial intelligence to determine goals
US20210065029A1 (en) * 2019-09-03 2021-03-04 International Business Machines Corporation Generating personalized recommendations to address a target problem
US20210192973A1 (en) * 2019-12-19 2021-06-24 Talaera LLC Systems and methods for generating personalized assignment assets for foreign languages
US20220004901A1 (en) * 2020-07-01 2022-01-06 EDUCATION4SIGHT GmbH Systems and methods for providing learner-specific learning paths
US20220129988A1 (en) * 2020-10-28 2022-04-28 Banque Nationale Du Canada System and method for generating indicators derived from simulated projections incorporating financial goals
US20220139245A1 (en) * 2020-11-04 2022-05-05 International Business Machines Corporation Using personalized knowledge patterns to generate personalized learning-based guidance
US20220207099A1 (en) * 2020-12-29 2022-06-30 Microsoft Technology Licensing, Llc Techniques for suggesting skills
US20220245721A1 (en) * 2021-02-03 2022-08-04 Intuit Inc. Machine learning based automated savings goals
US11551321B1 (en) * 2021-05-25 2023-01-10 Formation Labs Inc. Dynamic education planning methods and systems

Also Published As

Publication number Publication date
US11599592B1 (en) 2023-03-07

Similar Documents

Publication Publication Date Title
US11900227B1 (en) Apparatus for producing a financial target strategy and a method for its use
US11893121B1 (en) Apparatus and method for providing cyber security defense in digital environments
US11757923B1 (en) Apparatus and method for intelligent processing of cyber security risk data
US11893151B1 (en) Apparatus for external activity verification and a method for its use
US11870799B1 (en) Apparatus and method for implementing a recommended cyber-attack security action
US11816223B1 (en) Apparatus and method for updating cyber security support based on real-time changes
US20230236890A1 (en) Apparatus for generating a resource probability model
US11847660B2 (en) Apparatus for automatic credential classification
US20240028655A1 (en) Apparatus for goal generation and a method for its use
US20230334742A1 (en) Apparatus, system, and method for generating a video avatar
US20240129318A1 (en) Apparatus and method for intelligent processing of cyber security risk data
US12056001B2 (en) Apparatus and method for identifying single points of failure
US11824888B1 (en) Apparatus and method for assessing security risk for digital resources
US11750643B1 (en) Apparatus and method for determining a recommended cyber-attack risk remediation action
US11811818B1 (en) Apparatus and method for determining a risk associated with a cyberattack
US11803575B2 (en) Apparatus, system, and method for classifying and neutralizing bias in an application
US20240121259A1 (en) Apparatus and method for updating risk determination based on real-time changes
US11741432B1 (en) Systems and methods for predictive scoring
US11823100B1 (en) Apparatus and method for evaluating assignments
US12073461B1 (en) Apparatus and method for generating a personalized management system
US11924200B1 (en) Apparatus and method for classifying a user to an electronic authentication card
US20240370833A1 (en) Method and an apparatus for schedule element classification
US11816729B1 (en) Apparatus for producing an autonomy score and a method for its use
US20240029187A1 (en) Apparatus for posting identification and a method for its use
US20240281698A1 (en) Apparatus and method for generating tailored user specific encouragement prompts

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION