US20240000492A1 - Treatment systems and methods for affecting glands and other targeted structures - Google Patents
Treatment systems and methods for affecting glands and other targeted structures Download PDFInfo
- Publication number
- US20240000492A1 US20240000492A1 US18/143,555 US202318143555A US2024000492A1 US 20240000492 A1 US20240000492 A1 US 20240000492A1 US 202318143555 A US202318143555 A US 202318143555A US 2024000492 A1 US2024000492 A1 US 2024000492A1
- Authority
- US
- United States
- Prior art keywords
- skin
- tissue
- cooling
- glands
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 185
- 238000000034 method Methods 0.000 title claims abstract description 116
- 210000004907 gland Anatomy 0.000 title claims abstract description 52
- 238000001816 cooling Methods 0.000 claims abstract description 153
- 206010000496 acne Diseases 0.000 claims abstract description 31
- 208000002874 Acne Vulgaris Diseases 0.000 claims abstract description 26
- 208000008454 Hyperhidrosis Diseases 0.000 claims abstract description 23
- 230000037315 hyperhidrosis Effects 0.000 claims abstract description 17
- 210000001519 tissue Anatomy 0.000 claims description 206
- 210000003491 skin Anatomy 0.000 claims description 204
- 238000007710 freezing Methods 0.000 claims description 59
- 230000008014 freezing Effects 0.000 claims description 57
- 230000006378 damage Effects 0.000 claims description 44
- 150000002632 lipids Chemical class 0.000 claims description 43
- 239000002577 cryoprotective agent Substances 0.000 claims description 39
- 210000002615 epidermis Anatomy 0.000 claims description 37
- 210000001732 sebaceous gland Anatomy 0.000 claims description 32
- 230000002500 effect on skin Effects 0.000 claims description 26
- 238000007920 subcutaneous administration Methods 0.000 claims description 25
- 230000006911 nucleation Effects 0.000 claims description 24
- 238000010899 nucleation Methods 0.000 claims description 24
- 210000003499 exocrine gland Anatomy 0.000 claims description 23
- 210000000106 sweat gland Anatomy 0.000 claims description 21
- 239000000126 substance Substances 0.000 claims description 20
- 210000004207 dermis Anatomy 0.000 claims description 19
- 206010033675 panniculitis Diseases 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 16
- 210000004304 subcutaneous tissue Anatomy 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 230000028327 secretion Effects 0.000 claims description 13
- 208000003367 Hypopigmentation Diseases 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 11
- 230000003810 hyperpigmentation Effects 0.000 claims description 11
- 208000000069 hyperpigmentation Diseases 0.000 claims description 11
- 230000003425 hypopigmentation Effects 0.000 claims description 11
- 210000004243 sweat Anatomy 0.000 claims description 11
- 230000009746 freeze damage Effects 0.000 claims description 10
- 238000010257 thawing Methods 0.000 claims description 7
- 230000001640 apoptogenic effect Effects 0.000 claims description 6
- 230000000977 initiatory effect Effects 0.000 claims description 6
- 210000004003 subcutaneous fat Anatomy 0.000 claims description 6
- 230000001976 improved effect Effects 0.000 claims description 4
- 230000001338 necrotic effect Effects 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 37
- 210000004027 cell Anatomy 0.000 description 96
- 230000036961 partial effect Effects 0.000 description 31
- 230000000762 glandular Effects 0.000 description 21
- 239000012530 fluid Substances 0.000 description 20
- 210000002374 sebum Anatomy 0.000 description 19
- 208000027418 Wounds and injury Diseases 0.000 description 16
- 210000003780 hair follicle Anatomy 0.000 description 16
- 208000014674 injury Diseases 0.000 description 15
- 238000004781 supercooling Methods 0.000 description 15
- 239000013078 crystal Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 238000000315 cryotherapy Methods 0.000 description 12
- 238000002604 ultrasonography Methods 0.000 description 12
- 208000002557 hidradenitis Diseases 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 11
- 230000003248 secreting effect Effects 0.000 description 11
- 239000002826 coolant Substances 0.000 description 10
- 238000002425 crystallisation Methods 0.000 description 10
- 230000008025 crystallization Effects 0.000 description 10
- 230000006907 apoptotic process Effects 0.000 description 9
- 230000004907 flux Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 238000010792 warming Methods 0.000 description 8
- 210000001099 axilla Anatomy 0.000 description 7
- 238000004891 communication Methods 0.000 description 7
- 230000000451 tissue damage Effects 0.000 description 7
- 231100000827 tissue damage Toxicity 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 210000003722 extracellular fluid Anatomy 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 210000004927 skin cell Anatomy 0.000 description 6
- 230000003685 thermal hair damage Effects 0.000 description 6
- 230000030833 cell death Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 210000001339 epidermal cell Anatomy 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 230000017074 necrotic cell death Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000035900 sweating Effects 0.000 description 5
- 208000035484 Cellulite Diseases 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 206010049752 Peau d'orange Diseases 0.000 description 4
- 210000000577 adipose tissue Anatomy 0.000 description 4
- 230000036232 cellulite Effects 0.000 description 4
- 208000031513 cyst Diseases 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 210000002977 intracellular fluid Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 210000005036 nerve Anatomy 0.000 description 4
- 238000012261 overproduction Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 210000004761 scalp Anatomy 0.000 description 4
- 230000008719 thickening Effects 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000008093 supporting effect Effects 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 2
- 206010011732 Cyst Diseases 0.000 description 2
- 241001635598 Enicostema Species 0.000 description 2
- 208000010305 Epidermal Cyst Diseases 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- 208000001034 Frostbite Diseases 0.000 description 2
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 2
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 2
- 206010027626 Milia Diseases 0.000 description 2
- 206010054107 Nodule Diseases 0.000 description 2
- 206010033733 Papule Diseases 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 206010037888 Rash pustular Diseases 0.000 description 2
- 206010039792 Seborrhoea Diseases 0.000 description 2
- 206010040829 Skin discolouration Diseases 0.000 description 2
- 206010047139 Vasoconstriction Diseases 0.000 description 2
- 230000005779 cell damage Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 210000003850 cellular structure Anatomy 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 230000004761 fibrosis Effects 0.000 description 2
- 210000001061 forehead Anatomy 0.000 description 2
- 210000004392 genitalia Anatomy 0.000 description 2
- 210000001703 glandular epithelial cell Anatomy 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 210000004209 hair Anatomy 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000004968 inflammatory condition Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000004130 lipolysis Effects 0.000 description 2
- 230000005923 long-lasting effect Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 208000029561 pustule Diseases 0.000 description 2
- 230000037390 scarring Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000037380 skin damage Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000025033 vasoconstriction Effects 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 206010012426 Dermal cyst Diseases 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 206010063692 Eyelid cyst Diseases 0.000 description 1
- 101000583175 Homo sapiens Prolactin-inducible protein Proteins 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 102100030350 Prolactin-inducible protein Human genes 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 206010048810 Sebaceous hyperplasia Diseases 0.000 description 1
- 206010042658 Sweat gland tumour Diseases 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 208000024248 Vascular System injury Diseases 0.000 description 1
- 208000012339 Vascular injury Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000009925 apoptotic mechanism Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000010428 chromatin condensation Effects 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000008645 cold stress Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 238000002681 cryosurgery Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000003648 hair appearance Effects 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 208000006634 hidrocystoma Diseases 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006749 inflammatory damage Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 238000007443 liposuction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 230000004987 nonapoptotic effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000037312 oily skin Effects 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 230000000242 pagocytic effect Effects 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 201000005218 sebaceous adenoma Diseases 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 230000036559 skin health Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 210000002820 sympathetic nervous system Anatomy 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 210000005239 tubule Anatomy 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B18/0206—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques ultrasonic, e.g. for destroying tissue or enhancing freezing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/04—Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/007—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/006—Apparatus for applying pressure or blows for compressive stressing of a part of the skeletal structure, e.g. for preventing or alleviating osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/008—Apparatus for applying pressure or blows almost perpendicular to the body or limb axis, e.g. chiropractic devices for repositioning vertebrae, correcting deformation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
- A61K31/047—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00273—Anchoring means for temporary attachment of a device to tissue
- A61B2018/00291—Anchoring means for temporary attachment of a device to tissue using suction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
- A61B2018/00458—Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
- A61B2018/00464—Subcutaneous fat, e.g. liposuction, lipolysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00714—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00875—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00994—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0231—Characteristics of handpieces or probes
- A61B2018/0237—Characteristics of handpieces or probes with a thermoelectric element in the probe for cooling purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0231—Characteristics of handpieces or probes
- A61B2018/0262—Characteristics of handpieces or probes using a circulating cryogenic fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/04—Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
- A61B2090/0463—Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery against cooling or freezing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
- A61B2090/065—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0001—Body part
- A61F2007/0002—Head or parts thereof
- A61F2007/0003—Face
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0001—Body part
- A61F2007/0002—Head or parts thereof
- A61F2007/0004—Eyes or part of the face surrounding the eyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0001—Body part
- A61F2007/0018—Trunk or parts thereof
- A61F2007/0019—Breast
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0001—Body part
- A61F2007/0029—Arm or parts thereof
- A61F2007/0036—Hand
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0001—Body part
- A61F2007/0039—Leg or parts thereof
- A61F2007/0045—Foot
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0001—Body part
- A61F2007/0039—Leg or parts thereof
- A61F2007/0047—Sole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0001—Body part
- A61F2007/0052—Body part for treatment of skin or hair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0054—Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water
- A61F2007/0056—Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water for cooling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/007—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
- A61F2007/0075—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating using a Peltier element, e.g. near the spot to be heated or cooled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0087—Hand-held applicators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0093—Heating or cooling appliances for medical or therapeutic treatment of the human body programmed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0095—Heating or cooling appliances for medical or therapeutic treatment of the human body with a temperature indicator
- A61F2007/0096—Heating or cooling appliances for medical or therapeutic treatment of the human body with a temperature indicator with a thermometer
Definitions
- the present disclosure relates generally to treatment systems and methods for affecting target structures in a subject's body.
- several embodiments are directed to treatment systems and methods for affecting glands to treat acne, hyperhidrosis, cysts, or other conditions.
- Exocrine glands found in the skin have a role in maintaining skin health including lubricating, waterproofing, cleansing and/or cooling the skin or hair follicles of the body by excreting water-based, oily and/or waxy substances through skin pores or hair follicles. Overproduction and/or over-secretion of these substances by certain exocrine glands, such as sebaceous glands and sudoriparous glands (e.g., sweat glands), can cause unappealing skin disorders that have proved to be difficult to treat.
- sebum a waxy substance produced and secreted by sebaceous glands
- comedones e.g., blackheads, whiteheads, etc.
- other inflammatory conditions of the skin associated with acne e.g., inflamed papules, pustules, nodules, etc.
- Overproducing sebaceous glands associated with hair follicles can be mostly found in highly visible regions of the body, such as on the face, neck, upper chest, shoulders and back, and demand for effective treatments has been and remains quite high.
- Hyperhidrosis is a condition associated with excessive sweating and results from the overproduction and secretion of sweat from sweat glands in the skin of mammals. Excessive sweating from eccrine sweat glands, which are distributed almost all over the body, can cause discomfort and embarrassment. For example, focal hyperhidrosis can occur on the palms of the hands, soles of the feet, face and scalp. Apocrine sweat glands, particularly in the axilla (i.e., armpits), have oil-producing cells that can contribute to excessive production and undesirable odor. Treatment for these conditions are often ineffective, non-lasting, and/or have undesirable side-effects.
- FIG. 1 is a schematic cross-sectional view of the skin, dermis, and subcutaneous tissue of a subject.
- FIG. 2 is a schematic cross-sectional view of the skin, dermis, and subcutaneous tissue of the subject in FIG. 1 after treating sebaceous glands.
- FIG. 3 is a partially schematic, isometric view of a treatment system for non-invasively treating targeted structures in a human subjects body in accordance with an embodiment of the technology.
- FIG. 4 is a cross-sectional view of a conduit of the treatment system of FIG. 3 .
- FIG. 5 is a cross-sectional view of a treatment device applied to a treatment site in accordance with an embodiment of the technology.
- FIGS. 6 A to 6 C are schematic cross-sectional views of treatment devices in accordance with embodiments of the technology.
- FIG. 6 D is a side view of an applicator for treating discrete features in accordance with embodiments of the technology.
- FIGS. 6 E and 6 F are cross-sectional views of a distal end of the applicator of FIG. 6 D .
- FIGS. 7 to 10 are flow diagrams illustrating methods for affecting target regions in accordance with embodiments of the technology.
- FIG. 11 is a schematic block diagram illustrating computing system software modules and subcomponents of a computing device suitable to be used in treatment systems in accordance with embodiments of the technology.
- the present disclosure describes treatment systems and methods for affecting target structures in tissue.
- the systems and methods disclosed herein can be used to target glands (e.g., exocrine glands, sebaceous glands, sudoriparous glands, etc.), structures in the skin (e.g., hair follicles, superficial nerves, etc.), and/or layer(s) of tissue (e.g., dermal layer, epidermal layer, layer(s) of the epidermis, etc.).
- tissue e.g., dermal layer, epidermal layer, layer(s) of the epidermis, etc.
- the target structures can be glands, hair follicles, nerves (e.g., superficial nerves), or one or more layers of tissue (e.g., dermal layer, epidermal layer, layer(s) of the epidermis, etc.).
- nerves e.g., superficial nerves
- tissue e.g., dermal layer, epidermal layer, layer(s) of the epidermis, etc.
- the surface of the subject's skin can be cooled to produce a temperature at or below 0, 5, 10, 15, or 20 degrees C. and to produce either a cooling event or a freeze event in a targeted portion of the skin with sebaceous glands.
- the skin can be cooled to maintain the cooled state or frozen state of the targeted portion of the skin for a period of time long enough to alter a level of secretion production by the sebaceous glands.
- the characteristics of the cooling event or freeze event can be controlled to manage thermal injury. Such characteristics include, without limitation, the amount of cooling or freezing, density and distribution of ice crystals, freezing rate, etc.
- Cryotherapy can affect, without limitation, glandular function, structures of glands (e.g., gland portions, duct portions, etc.), number of glands, and/or sizes of glands.
- Freeze events can include partially or completely freezing liquids or lipids proximate to or within glands to destroy, reduce, disrupt, modify, or otherwise affect glands or the supporting anatomical features (e.g., ducts, pores, hair follicles, etc.).
- a subject's skin can be cooled to produce a partial freeze event in a portion of skin with exocrine glands.
- the level of freezing can be controlled to limit tissue damage, such as tissue damage to non-targeted tissue, damage of targeted tissue (e.g., to avoid excess damage to targeted tissue), and so forth.
- the subject's skin can be continuously or periodically cooled/heated to adjust the level of freezing. For example, the skin surface can be cooled or heated to increase or decrease, respectively, the number and/or sizes of ice crystals at the target region.
- a method comprises cooling a subject's skin to produce a cooling event in the skin, but not a freeze event.
- the subject's skin is cooled to maintain the cooling event to alter glands (e.g., gland function, gland size, gland structure, gland number, etc.).
- the cooling event can alternatively be a freeze event that involves at least partially or totally freezing a target region with the glands so as to alter secretion levels of the glands.
- the freeze event can injure sebaceous glands to reduce sebum production.
- hyperhidrosis treatments the freeze event can injure sweat glands to reduce sweating.
- the location and characteristics of the freeze event can be selected based on treatments to be performed.
- aspects of the technology can include a method for treating a subject's exocrine glands by cooling a surface of a subject's skin with a cooling device to produce a partial or total freeze event in a portion of the skin with exocrine glands.
- the partial or total freeze event in the patient's skin can be detected.
- the cooling device and other treatment parameters can be controlled to continue to cool the subject's skin after detecting the partial or total freeze event and to maintain a partially or totally frozen state of the portion of the skin for a period of time long enough to alter a level of production by the exocrine glands.
- the period of time is longer than a predetermined threshold period of time, such as 10 seconds, 20 seconds, or other selected period of time.
- the cooling device and treatment parameters can be controlled so as to not cause either or both hypopigmentation or hyperpigmentation more than a day following treatment.
- At least some embodiments are systems and methods for selective non-invasive cooling of tissue sufficiently deep to affect glands.
- Axilla apocrine sweat glands or eccrine sweat glands on the palms of the hands can be at different tissue depths than sebaceous glands within acne-prone regions (e.g., regions along the face, chest, shoulders, or back).
- the systems and methods disclosed herein can controllably cool tissue at specific depths for injuring targeted glands.
- a zone of maximum cooling or maximum freezing can occur at depths between about 1 mm to about 5 mm, between about 2 mm and about 5 mm, between about 3 mm and about 5 mm, or between about 4 mm and about 5 mm.
- a treatment site can be cooled to a temperature equal to or lower than about 0° C., ⁇ 5° C., ⁇ 10° C., ⁇ 15° C., ⁇ 20° C., or ⁇ 25° C. for a treatment period, and either be in a supercooled state, a partial frozen state, or totally frozen state.
- the treatment period can be equal to or greater than about 1 second, 2 seconds, 3 seconds, 5 seconds, 30 seconds, 1 minute, 5 minutes, 10 minutes, 30 minutes, or other time periods selected based on the desired thermal injury.
- the skin is cooled to a supercooled temperature and the epidermis is then warmed to a non-freezing temperature.
- supercooled tissue is nucleated to initiate the freeze event in the supercooled skin.
- a freezing point of a material is most reliably ascertained by warming frozen material slowly and measuring a temperature at which melting begins to occur. This temperature is generally not ambiguous if the material is slowly warmed. Partial melting will begin to occur at the freezing/melting point.
- At least some embodiments of the technology are directed to controlling a cooling device or providing other means for sufficiently protecting the epidermis from injuries that cause hyperpigmentation (skin darkening) or hypopigmentation (skin lightening).
- the other means for protection can include, without limitation, heating the epidermis to a non-freezing temperature while deeper tissue remains cold to induce injury thereto and/or applying a cryoprotectant to a surface of the skin to provide freeze protection to the epidermis while allowing deeper tissue or structures to be more affected by the cooling/cold treatment.
- Applicators disclosed herein can include one or more elements (e.g., resistive heaters, electrodes, transducers, vibrators, etc.) for delivering energy, such as thermal energy, electromagnetic energy, infrared energy, light energy, ultraviolet energy, radiofrequency energy, microwave energy, ultrasound energy (e.g., low frequency ultrasound, high frequency ultrasound, etc.), mechanical massage, and/or electric fields (e.g., AC or DC electric fields).
- energy such as thermal energy, electromagnetic energy, infrared energy, light energy, ultraviolet energy, radiofrequency energy, microwave energy, ultrasound energy (e.g., low frequency ultrasound, high frequency ultrasound, etc.), mechanical massage, and/or electric fields (e.g., AC or DC electric fields).
- the energy can inhibit or reduce freeze damage or cooling damage in non-targeted regions.
- Thermal energy can be used to protect non-targeted tissue, such as facial subcutaneous fat, when cryogenically treating superficial facial dermal structures. Additionally or alternatively, non-targeted regions can be protected by a chemical cryoprotectant.
- applicators can be configured to target other structures, such as collagen and/or elastin for skin tightening and dermal thickening, nerve tissue (e.g., superficial nerves), and/or hair follicles.
- glands e.g., exocrine glands such as sebaceous glands, apocrine sweat glands, eccrine sweat glands, etc.
- applicators can be configured to target other structures, such as collagen and/or elastin for skin tightening and dermal thickening, nerve tissue (e.g., superficial nerves), and/or hair follicles.
- At least some aspects of the technology are directed to systems and methods that enable supercooling of target regions. Aspects of the disclosure are further directed to systems or methods for protecting non-targeted cells, such as cells in the dermal and/or epidermal skin layers, by preventing or limiting thermal damage (e.g., cooling or freeze damage) during dermatological and related aesthetic procedures that require sustained exposure to cold temperatures.
- treatment systems can supercool treatment sites without causing nucleation and freezing.
- Non-targeted tissue can be heated to localize the supercooling, and after localizing the supercooled tissue, supercooled body fluids/lipids can be nucleated by various methods to initiate a partial or total freeze and to damage, reduce, disrupt, modify or otherwise affect targeted cells.
- regions with glands can be supercooled either with or without using any cryoprotectant.
- Non-targeted region(s) can be heated above their freezing points before initiating crystallization of the supercooled tissue.
- the skin can be supercooled either with or without affecting the subcutaneous layer. After heating the epidermal layer so that mostly dermal tissue is supercooled, nucleation in the dermal layer can be initiated. Freezing of the supercooled region can be promoted without damaging non-targeted tissue or non-targeted anatomical features.
- Nucleation can be induced by delivering an alternating current to the tissue, applying a nucleating solution onto the surface of the skin (for example one that includes bacteria which initiate nucleation), applying fields (e.g., electric fields), and/or by creating a mechanical perturbation to the tissue, such as by use of vibration, ultrasound energy, etc.
- a nucleating solution onto the surface of the skin (for example one that includes bacteria which initiate nucleation)
- fields e.g., electric fields
- a mechanical perturbation to the tissue, such as by use of vibration, ultrasound energy, etc.
- FIG. 1 is a schematic cross-sectional view of tissue of a subject in accordance with one embodiment.
- the subject's skin 10 includes the dermis 12 located between the epidermis 14 and the subcutaneous layer 16 .
- the dermis 12 includes sebaceous glands 17 that produce sebum for moisturizing the skin and hair.
- Acne is a skin condition typically characterized by excess sebum that may plug hair follicles and/or pores.
- the level of sebum production may vary between individuals and may vary by body location depending on the number and sizes of the sebaceous glands. Sebum can flow along the healthy hair follicle 20 to moisturize the hair 23 and/or epidermis 14 .
- the sebaceous glands 17 When the sebaceous glands 17 produce excess sebum, it can collect and/or become trapped in hair follicles. Overproduction and/or entrapment of sebum, the waxy substance produced and secreted by sebaceous glands 17 , can lead to formation of comedones (e.g., blackheads, whiteheads, etc.) as well as other inflammatory conditions of the skin associated with acne (e.g., inflamed papules, pustules, nodules, etc.). In some individuals, inflamed follicles and pores can become infected and the condition can potentially lead to scarring of the skin. The illustrated hair follicle 22 is clogged with excess sebum to form a pimple or red spot.
- comedones e.g., blackheads, whiteheads, etc.
- other inflammatory conditions of the skin associated with acne e.g., inflamed papules, pustules, nodu
- overactive sebaceous glands which produce an excess of sebum
- sebaceous cysts include sebaceous cysts, hyperplasia and sebaceous adenoma.
- Non-medical, but cosmetically unappealing, conditions associated with overactive sebaceous glands include oily skin and/or oily hair (e.g., on the scalp).
- Hyperhidrosis is a skin condition characterized by abnormal sweating due to high secretion levels of sweat glands 26 .
- Eccrine sweat glands are controlled by the sympathetic nervous system and regulate body temperature. When an individual's body temperature rises, eccrine sweat glands secrete sweat (i.e., water and other solutes) that flows through a gland tubule 28 . The sweat can evaporate from the skin surface to cool the body.
- Apocrine sweat glands (not shown) secrete an oil-containing sweat into hair follicles 20 .
- the axilla (e.g., armpit) and genital regions often have a higher concentration of apocrine sweat glands.
- Hyperhidrosis occurs when sweat glands produce and secrete sweat at levels above that required for regulation of body temperature, and the condition can be generalized or localized (i.e., focal hyperhidrosis) to specific body parts (e.g., palms of hands, soles of feet, brow, scalp, face, underarms, etc.).
- FIG. 2 is a schematic cross-sectional view of the skin 10 in FIG. 1 showing a reduction of acne after treatment in accordance with aspects of the present technology.
- a treatment device in the form of a thermoelectric applicator 104 (“applicator 104 ”) has been applied to and cooled the skin 10 to produce a freeze-induced injury that affected the sebaceous glands 17 .
- the reduction in acne is shown while the applicator 104 is applied to the skin 10 , it may take a relatively long period of time (e.g., days, weeks, months, etc.) for acne to be reduced after treatment.
- the sebum production level of the two sebaceous glands 17 along the hair follicle 22 has been substantially reduced to inhibit clogging to minimize, reduce, or eliminate acne.
- the sweat gland 26 can also be targeted.
- the applicator 104 can produce a partial or total freeze event or non-freezing cooling event or supercooling event to injure the sweat gland 26 and/or duct 28 in a region of the skin located along the hands, armpits, or other locations with excess sweating.
- Cryotherapy can be performed any number of times at the same site or different sites to treat acne, hyperhidrosis, or other conditions.
- FIG. 3 and the following discussion provide a general description of an example of a suitable non-invasive treatment system 100 in which aspects of the technology can be implemented.
- the treatment system 100 can be a temperature-controlled cooling apparatus for cooling tissue at a targeted treatment site to perform cryotherapy.
- Physiological characteristics affected by cryotherapy can include, without limitation, cellular stability, cell/tissue elasticity, cell size, cell number, and/or gland size or secretion ability (e.g., size/diameter of the duct portion).
- the treatment system 100 can cool the epidermis, dermis, subcutaneous fat, or other targeted tissue to modify glandular function, reduce gland size, etc.
- Non-targeted tissue such as subdermal tissue or tissue adjacent the targeted exocrine glands
- the treatment system 100 can be configured to cool the skin of the patient to selectively affect (e.g., injure, damage, kill) secreting exocrine glandular cells.
- cooling can produce a cold shock response to modify a secretion volume from a targeted exocrine gland of the epidermis and/or dermis by affecting protein proliferation and other cellular functions.
- lipid-producing cells residing in or at least proximate to sebaceous glands e.g., glandular epithelial cells
- the lipid-producing cells residing in or proximate to sebaceous glands contribute to production of sebum, the waxy and oily secretion that can contribute to acne.
- the treatment system 100 can be configured to reduce a temperature of a dermal layer of skin to reduce the temperature of lipid-producing cells residing in or at least proximate to sebaceous glands such that the targeted lipid-producing cells excrete a lower amount of sebum, such that there are fewer lipid-producing cells resulting in less sebum production within the targeted sebaceous glands, or in another embodiment, such that the sebaceous glands are destroyed.
- the treatment system 100 can be configured, for example, to reduce a subject's acne by cooling acne-prone regions of the body.
- secreting glandular cells residing in axilla apocrine sweat glands can be targeted by the treatment system 100 for the treatment of hyperhidrosis.
- Apocrine sweat glands comprise a coiled secretory portion located at the junction of the dermis and the subcutaneous fat, and a duct portion that funnels the secreted sweat substance into a portion of a hair follicle.
- Secreting glandular cells residing in the coiled secretory portion between the dermis and the subcutaneous layers produce an oily compound and create a secretion substance that also includes water and other solutes, such as minerals, lactate and urea to form apocrine sweat.
- the treatment system 100 can be configured to reduce a temperature of a dermal layer of skin (e.g., at or near the axilla) to reduce the temperature of secreting glandular cells residing in the coiled portion of the apocrine sweat glands such that the targeted cells excrete a lower amount of oil-containing sweat, such that there are fewer sweat-producing cells resulting in less sweat/oil production within the targeted apocrine sweat glands, or in another embodiment, such that the apocrine sweat glands are destroyed.
- a temperature of a dermal layer of skin e.g., at or near the axilla
- secreting glandular cells residing in or proximate to eccrine sweat glands can be targeted by the treatment system 100 for the treatment of focal hyperhidrosis at those treatment sites.
- the applicator 104 is suitable for altering a function of a gland residing in skin without affecting subcutaneous tissue (e.g., subcutaneous adipose tissue, etc.).
- the applicator 104 can be suitable for modifying a secretion volume, level, biochemical content, or other factor from targeted exocrine glands (e.g., sebaceous glands 17 or sweat glands 26 shown in FIG. 1 ) by cooling the skin without permanently altering cells of non-targeted tissue (e.g., deep dermal tissue, subdermal tissue, etc.).
- the effect of cooling selected cells is believed to result in, for example, protein alteration (e.g., synthesis of heat shock proteins, stress proteins, etc.), cell size alteration, cell division, wound remodeling (e.g., thickening of the epidermis, contraction of the epidermis, etc.), fibrosis, and so forth.
- protein alteration e.g., synthesis of heat shock proteins, stress proteins, etc.
- cell size alteration e.g., cell size alteration
- cell division e.g., wound remodeling (e.g., thickening of the epidermis, contraction of the epidermis, etc.), fibrosis, and so forth.
- the applicator 104 can be used to perform a wide range of different cryotherapy procedures.
- One cryotherapy procedure involves at least partially freezing tissue (e.g., cellular structures, intracellular fluid, extracellular fluid, connective tissue etc.) in a target tissue region to form crystals that alter targeted cells to modify a glandular secretion characteristic (e.g., volume, content, etc.) without destroying a significant amount of cells in the skin.
- tissue e.g., cellular structures, intracellular fluid, extracellular fluid, connective tissue etc.
- a glandular secretion characteristic e.g., volume, content, etc.
- the surface of the patient's skin can be cooled to temperatures no lower than, for example, ⁇ 40° C.
- a duration short enough to avoid, for example, excessive ice formation, permanent thermal damage, or lightening or darkening skin such as significant hypopigmentation (including long-lasting or permanent hypopigmentation) or hyperpigmentation (including long-lasting or permanent hyperpigmentation) in a period of time following a treatment, such as several hours; one, two, three days; or one, two, three weeks; and longer periods of time following a treatment.
- undue destruction of skin cells, epidermal cells in particular can be avoided by applying heat to the surface of the patient's skin to heat these skin cells above their freezing temperature.
- the patient's skin can be warmed to at least about ⁇ 30° C., ⁇ 25° C., ⁇ 20° C., ⁇ 15° C., ⁇ 10° C., 0° C., 20° C., 30° C., or other temperature sufficient to avoid, for example, excessive ice formation, permanent thermal damage, or significant hypopigmentation or hyperpigmentation of the non-targeted and/or epidermal tissue.
- skin can be cooled to produce partial or total freeze events that cause apoptotic damage to skin tissue without causing significant damage to adjacent subcutaneous tissue.
- Apoptosis also referred to as “programmed cell death”
- of the skin tissue can be a genetically-induced death mechanism by which cells slowly self-destruct without incurring damage to surrounding tissues. Other cryotherapy procedures may cause non-apoptotic responses.
- the applicator 104 can controllably freeze tissue (e.g., organic matter, inorganic matter, etc.) within a tissue region and can detect the freeze event. After detecting the freeze event, the applicator 104 can periodically or continuously remove heat from the target tissue to keep a volume of target tissue frozen for a suitable predetermined length of time to elicit a desired response and yet a short enough period of time to not cause any unwanted or undesired side effects, such as hypopigmentation and/or hyperpigmentation.
- the detected freeze event can be a partial freeze event, a complete freeze event, etc.
- the controlled freezing causes tightening of the skin, thickening of the skin, and/or a cold shock response at the cellular level in the skin.
- the applicator 104 can produce a partial or total freeze event that includes, without limitation, partial or full thickness freezing of the patient's skin for a relatively short limit to avoid cooling the adjacent subcutaneous tissue to a low enough temperature for subcutaneous cell death.
- the freezing process can include forming ice crystals in intracellular and/or extracellular fluids, and the ice crystals can be small enough to avoid disrupting membranes so as to prevent significant permanent tissue damage, such as necrosis.
- Some partial freeze events can include freezing mostly extracellular material without freezing a substantial amount of intercellular material.
- partial freeze events can include freezing mostly intercellular material without freezing a substantial amount of extracellular material.
- the frozen target tissue can remain in the frozen state long enough to affect the target tissue but short enough to avoid damaging non-targeted tissue or damaging an undue amount of the target tissue.
- the duration of the freeze event can be shorter than about 20 seconds, 30 seconds, or 45 seconds or about 1, 2, 3, 4, 5 or 10 minutes.
- the frozen tissue can be thawed to prevent necrosis and, in some embodiments, can be thawed within about 20 seconds, 30 seconds, or 45 seconds or about 1, 2, 3, 4, 5, or 10 minutes after initiation of the freeze event.
- the mechanisms of cold-induced tissue injury in cryotherapy can also involve direct cellular injury (e.g., damage to the cellular machinery) and/or vascular injury in embodiments where freezing occurs and in embodiments where freezing does not occur.
- cell injury can be controlled by adjusting thermal parameters, including (1) cooling rate, (2) end (or minimum) temperature, (3) time held at the minimum temperature (or hold time), (4) temperature profile, and (5) thawing rate.
- increasing the hold time can allow the intracellular compartments to equilibrate with the extracellular space, thereby increasing cellular dehydration.
- Another mechanism of cold-induced injury is cold and/or freeze-stimulated immunologic injury.
- the immune system of the host is sensitized to the disrupted tissue (e.g., lethally damaged tissue, undamaged tissue, or sublethally injured tissue), which can be subsequently destroyed by the immune system.
- disrupted tissue e.g., lethally damaged tissue, undamaged tissue, or sublethally injured tissue
- One mechanism to selectively affect oil and/or sebum-producing and secreting glandular cells is to cool the targeted tissue to temperatures that affect lipid-rich cells (which generally freeze or are damaged at temperatures which are higher than temperatures at which non-lipid rich cells are damaged) but that do not negatively affect non-lipid rich cells, such as other cells in the epidermal and dermal layers at or proximate to the treatment site which have lower temperature damage thresholds.
- the treatment system 100 can be configured to cool the subject's skin for a period of time long enough so that lipid-rich cells (sebum or oil-producing cells residing in or at least proximate to exocrine glands) in the dermal layer are substantially affected to cause, for example, apoptosis.
- Apoptosis of lipid-rich cells may be a desirable outcome for beneficially altering (e.g., reducing) glandular function that may contribute to an undesirable appearance (e.g., acne, hyperhidrosis, etc.).
- Apoptosis of glandular lipid-rich cells can involve ordered series of biochemical events that induce cells to morphologically change. These changes include cellular blebbing, loss of cell membrane asymmetry and attachment, cell shrinkage, chromatin condensation, and chromosomal DNA fragmentation.
- Injury via an external stimulus, such as cold exposure is one mechanism that can induce apoptosis in cells. Nagle, W. A., Soloff, B. L., Moss, A. J. Jr., Henle, K. J.
- apoptosis in contrast to cellular necrosis (a traumatic form of cell death causing, and sometimes induced by, local inflammation), is that apoptotic cells express and display phagocytic markers on the surface of the cell membrane, thus marking the cells for phagocytosis by, for example, macrophages.
- phagocytes can engulf and remove the dying cells (e.g., the lipid-rich cells) without eliciting an immune response.
- one mechanism of apoptotic lipid-rich cell death by cooling is believed to involve localized crystallization of lipids within the adipocytes at temperatures that may or may not induce crystallization in non-lipid-rich cells.
- the crystallized lipids may selectively injure these cells, inducing apoptosis (and may also induce necrotic death if the crystallized lipids damage or rupture the bilayer lipid membrane of the glandular cell).
- Another mechanism of injury involves the lipid phase transition of those lipids within the cell's bilayer lipid membrane, which results in membrane disruption, thereby inducing apoptosis. This mechanism is well documented for many cell types and may be active when lipid-rich cells, are cooled.
- targeted glandular tissue may experience a restriction in blood supply and thus be starved of oxygen due to isolation while pulled into, e.g., a vacuum cup, or simply as a result of the cooling which may affect vasoconstriction in the cooled tissue.
- restoration of blood flow after cooling treatment may additionally produce reperfusion injury to the glandular cells due to inflammation and oxidative damage that is known to occur when oxygenated blood is restored to tissue that has undergone a period of ischemia.
- This type of injury may be accelerated by exposing the glandular cells to an energy source (via, e.g., thermal, electrical, chemical, mechanical, acoustic or other means) or otherwise increasing the blood flow rate in connection with or after cooling treatment as described herein.
- an energy source via, e.g., thermal, electrical, chemical, mechanical, acoustic or other means
- Increasing vasoconstriction in such glandular tissue by, e.g., various mechanical means (e.g., application of pressure or massage), chemical means or certain cooling conditions, as well as the local introduction of oxygen radical-forming compounds to stimulate inflammation and/or leukocyte activity in glandular tissue may also contribute to accelerating injury to such cells.
- Other yet-to-be understood mechanisms of injury may also exist.
- lipid-rich cells In addition to the apoptotic mechanisms involved in lipid-rich cell death, local cold exposure may induce lipolysis (i.e., fat metabolism) of lipid-rich cells.
- lipolysis i.e., fat metabolism
- cold stress has been shown to enhance rates of lipolysis from that observed under normal conditions which serves to further increase the volumetric reduction of lipid-rich cells.
- lipid-rich cells e.g., sebum-producing cells within sebaceous glands, oil-producing cells within sweat glands
- the remaining cells in the epidermis and dermis of the subject 101 have lower amounts of lipids compared to the secreting lipid-rich cells forming portions of the glandular tissue.
- lipid-rich cells are more sensitive to cold-induced damage than non-lipid-rich cells, it is possible to use non-invasive or minimally invasive cooling to destroy lipid-rich cells without destroying the overlying or surrounding skin cells. In some embodiments, lipid-rich cells within secretory glands are destroyed while the appearance of overlying skin is improved.
- Lipid-containing cells are more easily damaged by low temperatures than the non-lipid rich dermal and epidermal cells, and as such, the treatment system 100 can be used to cool the desired layers of skin at the treatment sites to a temperature above the freezing point of water, but below the freezing point of fat. It is believed that the temperatures can be controlled to manage damage in the non-lipid-rich cells of the epidermis and/or dermis via, for example, intracellular and/or extracellular ice formation. Excessive ice formation may rupture the cell wall and may also form sharp crystals that locally pierce the cell wall as well as vital internal organelles. Ice crystal initiation and growth can be managed to avoid cell death in the non-targeted portions of the skin.
- the applicator 104 can reduce the temperature of the lipid-rich cells found in the targeted glandular tissue such that the lipid rich cells are destroyed while the temperature of the remaining skin cells are maintained at a high enough temperature to produce non-destructive freeze events in the skin. Cryoprotectants and/or thermal cycling can prevent destructive freeze events in the non-targeted skin tissue.
- At least some aspects of the technology are directed to systems and methods of treating a patient by cooling a surface of the patient's skin to a temperature sufficiently low to cause supercooling of targeted tissue below the skin surface.
- the surface of the skin can then be heated to a non-supercooled temperature while the targeted tissue remains in a supercooled state. After heating the non-targeted tissue, the supercooled targeted tissue can be controllably frozen.
- nucleation can be controlled to cause partial or total freezing.
- the applicator 104 can be kept generally stationary relative to the treatment site during cooling to avoid pressure changes that would cause nucleation.
- the applicator can cause nucleation in the supercooled targeted tissue by, for example, varying applied pressures, delivering energy (e.g., ultrasound energy, RF energy, ultrasound energy), applying fields (e.g., electric fields), or providing other perturbations (e.g., vibrations, pulses, etc.), as well as combinations thereof. Because the non-targeted tissue has been warmed to a non-supercooled state, it does not experience a freeze event.
- the applicator can include one or more movable plates (e.g., plates movable to vary applied pressures), rotatable eccentric masses, ultrasound transducers, electrical current generators, or other elements capable of providing nucleating perturbations. Vacuum applicators can increase and decrease vacuum levels to massage tissue, vary applied pressures, etc.
- the partial or total freeze event can be detected, and a cooling device associated with the treatment system 100 can be controlled to continue cooling the patient's skin so as to maintain a frozen state of targeted tissue for a desired period of time.
- the skin can be periodically or continuously cooled to keep a sufficient volume of the tissue in a frozen state.
- the targeted tissue can be kept frozen for longer or shorter than about, for example, 1 second, 5 seconds, 10 seconds, 20 seconds, 30 seconds, 1 minute, several minutes, or other time period selected to reduce or limit frostbite or necrosis.
- the temperature of the upper tissue of the skin can be detected, and the treatment system can be controlled to apply heat to the surface of the patient's skin for a preselected period of time to prevent freezing of non-targeted tissue.
- the preselected period of time can be longer or shorter than about 1, 2, 3, 4, or 5 seconds. Accordingly, non-targeted tissue can be protected without using a chemical cryoprotectant that may cause unwanted side effects. Alternatively, a cryoprotectant can also be used if an additional margin of safety for some tissue, such as the epidermis, is desired.
- FIG. 3 is a partially schematic, isometric view of a treatment system for non-invasively treating targeted structures in a human subjects body in accordance with an embodiment of the technology.
- the treatment system 100 can include the applicator 104 , a connector 103 , and a base unit 106 .
- the applicator 104 can cool cells in or associated with targeted glands.
- the applicator 104 can be applied to acne-prone regions and can transcutaneously cool skin to reduce the temperature of lipid-producing cells residing in or at least proximate to sebaceous glands (e.g., glandular epithelial cells) to lower the amount of secreted sebum and thereby eliminate, reduce, or limit acne.
- the applicator 104 can also cool sweat glands and associated structures to treat hyperhidrosis.
- the connector 103 can be an umbilical cord that provides energy, fluid, and/or suction from the base unit 106 to the applicator 104 .
- the base unit 106 can include a fluid chamber or reservoir 105 (illustrated in phantom line) and a controller 114 carried by a housing 125 with wheels 126 .
- the base unit 106 can include a refrigeration unit, a cooling tower, a thermoelectric chiller, heaters, or any other devices capable of controlling the temperature of coolant in the fluid chamber 105 and can be connectable to an external power source and/or include an internal power supply 110 (shown in phantom line).
- the power supply 110 can provide electrical energy (e.g., a direct current voltage) for powering electrical elements of the applicator 104 .
- a municipal water supply (e.g., tap water) can be used in place of or in conjunction with the fluid chamber 105 .
- the system 100 includes a pressurization device 117 that can provide suction and can include one or more pumps, valves, and/or regulators. Air pressure can be controlled by a regulator located between the pressurization device 117 and the applicator 104 . If the vacuum level is too low, tissue may not be adequately (or at all) held against the applicator 104 , and the applicator 104 may tend to move along the patient's skin. If the vacuum level is too high, undesirable patient discomfort and/or tissue damage could occur. A vacuum level can be selected based on the characteristics of the tissue and desired level of comfort.
- An operator can control operation of the treatment system 100 using an input/output device 118 of the controller 114 .
- the input/output device 118 can display the state of operation of the applicator 104 and treatment information.
- the controller 114 can exchange data with the applicator 104 via a wired connection or a wireless or an optical communication link and can monitor and adjust treatment based on, without limitation, one or more treatment profiles and/or patient-specific treatment plans, such as those described, for example, in commonly assigned U.S. Pat. No. 8,275,442.
- the controller 114 can be incorporated into the applicator 104 or another component of the system 100 .
- the controller 114 can cycle through each segment of a prescribed treatment plan. Segments may be designed to freeze tissue, thaw tissue, supercool tissue, nucleate supercooled tissue, and so on.
- the power supply 110 and the fluid chamber 105 can provide power and coolant to one or more functional components of the applicator 104 , such as thermoelectric coolers (e.g., TEC “zones”), to begin a cooling cycle and, in some embodiments, activate features or modes such as vibration, massage, vacuum, etc.
- the controller 114 can receive temperature readings from temperature sensors, which can be part of the applicator 104 or proximate to the applicator 104 , the patient's skin, a patient protection device, etc.
- region of the body may be close but not equal to the target temperature, e.g., because of the body's natural heating and cooling variations.
- the system 100 may attempt to heat or cool tissue to the target temperature or to provide a target heat flux, a sensor may measure a sufficiently close temperature or heat flux. If the target temperature or the flux has not been reached, power can be increased or decreased to change heat flux to maintain the target temperature or “set-point” selectively to affect targeted tissue.
- FIG. 4 is a cross-sectional view of the connector 103 taken along line 4 - 4 of FIG. 3 in accordance with at least some embodiments of the technology.
- the connector 103 can be a multi-line or multi-lumen conduit with a main body 179 (e.g., a solid or hollow main body), a supply fluid line or lumen 180 a (“supply fluid line 180 a ”), and a return fluid line or lumen 180 b (“return fluid line 180 b ”).
- the main body 179 may be configured (via one or more adjustable joints) to “set” in place for the treatment of the subject.
- the supply and return fluid lines 180 a , 180 b can be tubes made of polyethylene, polyvinyl chloride, polyurethane, and/or other materials that can accommodate circulating coolant, such as water, glycol, synthetic heat transfer fluid, oil, a refrigerant, and/or any other suitable heat conducting fluid.
- each fluid line 180 a , 180 b can be a flexible hose surrounded by the main body 179 .
- coolant can be continuously or intermittently delivered to the applicator 104 via the supply fluid line 180 a and can circulate through the applicator 104 to absorb heat.
- the connector 103 can also include one or more electrical lines 112 for providing power to the applicator 104 ( FIG. 3 ) and one or more control lines 116 for providing communication between the base unit 106 ( FIG. 3 ) and the applicator 104 ( FIG. 3 ).
- the connector 103 can include one or more vacuum tubes or lines 119 .
- FIG. 5 is a schematic cross-sectional view of a treatment device in the form a non-invasive applicator 204 suitable for the treatment system 100 in accordance with an embodiment of the present technology.
- the applicator 204 can cool tissue to produce a thermal event (e.g., supercooling event, freezing event, cooling event, etc.) in a targeted cooling or event zone 232 (shown in phantom line).
- a thermal event e.g., supercooling event, freezing event, cooling event, etc.
- the controller 114 can be programmed to cause the applicator 204 to cool the subject's skin after detecting the thermal event (e.g., freeze event, supercooling event, reaching a target temperature with or without causing a freeze event, or other detectable thermal event) so that the thermal event lasts a sufficient period of time to substantially alter secretion production levels of the glands.
- a cooling event can last long enough to permanently decrease production levels of the glands in the event zone 232 in which most significant damage occurs. For example, most or substantially all the sebaceous glands 17 in the event zone 232 can be destroyed, reduced, or otherwise altered to reduce or otherwise modify sebum production.
- a central region 234 of the event zone 232 can be deeper than most of the epidermal layer 14 to avoid or limit damage to epidermal tissue which could lead to undesired skin coloration changes.
- a distance 237 between the surface of the skin and the event zone 232 can be generally equal to or greater than the thickness of the epidermis 14 and, in some embodiments, can be between about 0.1 mm to about 1.5 mm, between about 0.5 mm to about 1.5 mm, or other distances selected to keep thermal damage to epidermal tissue at or below an acceptable level.
- the event zone 232 can be at a maximum depth 239 between about 0.25 mm to about 5 mm, between about 0.25 mm to about 6 mm, between about 0.3 mm to about 5 mm, between about mm to about 6 mm, between about 0.5 mm to about 5 mm, between about 0.5 mm to about 6 mm, or other depths selected to avoid or limit injures to deeper non-targeted tissue (e.g., subcutaneous tissue 16 ) or structures.
- non-targeted tissue e.g., subcutaneous tissue 16
- the height 241 of the event zone 232 can be between about between about 0.1 mm to about 6 mm, between about 0.1 mm to about 3.5 mm, between about 0.3 mm to about 5 mm, between about 1 mm to about 3 mm, or other heights selected based on the thickness of the dermis 12 .
- the height 241 can be slightly greater than the thickness of the dermis 12 to keep thermal-injuries, if any, to the epidermis 14 and/or subcutaneous layer 16 at an acceptable level.
- the event zone 232 can be generally centered in the dermis 12 , and the height 241 can be less than the thickness of the dermis 12 .
- Adjacent epidermal and subdermal tissue may also be cooled but can be at a sufficiently high temperature to avoid or limit thermal injury.
- the location and dimensions (e.g., height 241 , width, length, etc.) of the event zone 232 can be selected based on the location of the targeted structures, tissue characteristics at the target site, etc.
- the event zone 232 can comprise significant amounts of epidermal and dermal tissue.
- the event zone 232 can comprise most of the tissue located directly between the cooled heat-exchanging surface 219 and the subcutaneous tissue 16 . In some procedures, at least about 60%, 70%, 80%, 90%, or 95% of the tissue directly between the heat-exchanging surface 219 and the subcutaneous layer 16 can be located within the event zone 232 . Heating, cryoprotectants, and/or supercooling techniques can be used to avoid injury to the epidermal tissue.
- the applicator 204 can include a cooling device 210 and an interface layer 220 .
- the cooling device 210 can include, without limitation, one or more thermoelectric coolers 213 , each including one or more the thermoelectric elements (e.g., Peltier-type TEC elements) powered by electrical energy from a treatment tower or base unit (e.g., base unit 106 of FIG. 3 ) or another power source.
- the thermoelectric coolers 213 can also include controllers, temperature regulators, sensors, and other electrical components.
- each thermoelectric cooler 213 can include an array of individually controlled thermoelectric elements and a controller.
- the controller 114 can be programmed to control operation of the thermoelectric coolers 213 to remove heat from tissue at a sufficient rate to produce a cooling event (e.g., a freeze or non-freeze event) that can cause destruction of targeted cells.
- a cooling event e.g., a freeze or non-freeze event
- ice crystals may nucleate and grow in the event zone 232 and can damage cells to inhibit or otherwise affect gland function, but they may also locally pierce a sufficient amount of the cell walls to destroy the glands.
- the applicator 204 can include sensors configured to measure tissue impedance, pressure applied to the subject, optical characteristics of tissue, and/or tissue temperatures. As described herein, sensors can be used to monitor tissue and, in some embodiments, to detect events. The number and types of sensors can be selected based on the treatment to be performed.
- the applicator 204 can include a communication component 215 that communicates with the controller 114 to provide a first sensor reading 242 , and a sensor 217 that measures, e.g., temperature of the cooling device 210 , heat flux across a surface of or plane within the cooling device 210 , tissue impedance, application force, tissue characteristics (e.g., optical characteristics), etc.
- the interface layer 220 can be a plate, a film, a covering, a sleeve, a substance reservoir or other suitable element described herein and, in some embodiments, may serve as the patient protection device described herein.
- the interface layer 220 can also contain a similar communication component 225 that communicates with the controller 114 to provide a second sensor reading 244 and a sensor 227 that measures, e.g., the skin temperature, temperature of the interface layer 220 , heat flux across a surface of or plane within the interface layer 220 , contact pressure with the skin of the patient, etc.
- a sensor 227 measures, e.g., the skin temperature, temperature of the interface layer 220 , heat flux across a surface of or plane within the interface layer 220 , contact pressure with the skin of the patient, etc.
- the communication components 215 , 225 can receive and transmit information, such as temperature and/or heat flux information as determined by one or both of sensors 217 , 227 .
- the sensors 217 , 227 are configured to measure a parameter of the interface without substantially impeding heat transfer between the applicator 204 and the patient's skin.
- the applicator 204 can include a sleeve or liner 250 (shown schematically in phantom line) for contacting the patient's skin 230 , for example, to prevent direct contact between the applicator 204 and the patient's skin 230 , and thereby reduce the likelihood of cross-contamination between patients, minimize cleaning requirements for the applicator 204 , etc.
- the sleeve 250 can include a first sleeve portion 252 and a second sleeve portion 254 extending from the first sleeve portion.
- the first sleeve portion 252 can contact and/or facilitate contact of the applicator 204 with the patient's skin 230
- the second sleeve portion 254 can be an isolation layer extending from the first sleeve portion 252 .
- the second sleeve portion 254 can be constructed from latex, rubber, nylon, Kevlar, or other substantially impermeable or semi-permeable material.
- the second sleeve portion 254 can prevent contact between the patient's skin 230 and the applicator 204 , among other things. Further details regarding a patient protection device may be found in U.S. Patent Publication No. 2008/0077201.
- the applicator 204 can be manually held against the subject's skin and can also include a belt or other retention devices (not shown) for holding the applicator 204 against the skin.
- the belt may be rotatably connected to the applicator 204 by a plurality of coupling elements that can be, for example, pins, ball joints, bearings, or other types of rotatable joints.
- retention devices can be rigidly affixed to the end portions of the interface layer 220 . Further details regarding suitable belt devices or retention devices may be found in U.S. Patent Publication No. 2008/0077211.
- a vacuum can assist in forming a contact between the applicator 204 (such as via the interface layer 220 or sleeve 250 ) and the patient's skin 230 .
- the sensors 217 , 227 can serve as event detect sensors that provide output (e.g., sensor readings 242 , 244 ) collected in real-time because real-time processing of such output can help correctly and efficaciously administer treatment.
- the output can be detected temperatures, heat fluxes, optical characteristics of tissue, mechanical characteristics of tissue, etc.
- real-time data processing is used to detect cooling events and to determine a period of time to continue cooling the patient's skin after one or more cooling events are detected. Tissue can be monitored to keep a desired region or volume of tissue in the cooled state (e.g., at least partially or totally frozen state) for a period of time selected by the controller 114 or an operator.
- the period of time can be equal to or longer than about, for example, 5 seconds, 10 seconds, 30 seconds, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30 minutes, 1 hour, or other suitable period of time.
- the cooling event is a freeze event that lasts a period of time which is longer than 10 seconds and shorter than 10 minutes.
- the applicator 204 can include one or more features used with supercooling.
- the interface layer 220 can include one or more nucleation elements 231 , 233 in the form of positive and negative electrodes for heating the skin using alternating current heating.
- the nucleation elements 231 , 233 can be radiofrequency electrodes.
- the power supply 110 FIG. 3
- the nucleation elements 231 , 233 can also be configured to provide changes in applied pressure to cause nucleation. Any number of different types of nucleation elements can be incorporated into the interface layer 220 or other components of the applicator 204 to provide the ability to controllably nucleate supercooled tissue.
- thermoelectric elements 213 can heat tissue
- the applicator 204 can also include dedicated heating elements used to, for example, thaw tissue.
- FIG. 5 shows the interface layer 220 including heaters 235 for generating heat delivered to the surface of the skin 230 .
- the heaters 235 can be resistive heaters, Peltier devices, or other thermoelectric elements.
- the nucleation elements 231 , 233 can also be used to control the temperature of the skin 230 .
- the nucleation elements 231 , 233 can include RF electrodes that cooperate to deliver RF energy to heat the skin 230 or deeper tissue.
- applicators may be concurrently or sequentially used during a treatment session, and such applicators can include, without limitation, vacuum applicators, belt applicators, and so forth.
- Each applicator may be designed to treat identified portions of the patient's body, such as the chin, cheeks, forehead, back, shoulders, arms, pectoral areas, armpits, genital region, palms of hands, soles of feet and so forth.
- a vacuum applicator may be applied at the back region, and the belt applicator may be applied around the thigh region, either with or without massage or vibration.
- Exemplary applicators and their configurations usable or adaptable for use with the treatment system 100 are described in, e.g., U.S. Pat. No. 8,834,547 and commonly assigned U.S. Pat. No. 7,854,754 and U.S. Patent Publication Nos. 2008/0077201, 2008/0077211, and 2008/0287839, which are incorporated by reference in their entireties.
- FIGS. 6 A to 6 C illustrate treatment devices suitable for use with treatment systems disclosed herein in accordance with embodiments of the technology.
- FIG. 6 A is a schematic, cross-sectional view illustrating an applicator 260 for non-invasively removing heat from target areas of a subject 262 .
- the applicator 260 can include a heat-exchanging unit or cooling device 264 (shown in phantom line) and an interface layer 265 (shown in phantom line).
- the interface layer 265 can have a rigid or compliant concave surface 267 .
- the compliant concave surface 267 can be suitable for being applied to a subject's chin, cheek, forehead, or other contoured body area.
- One or more vacuum ports can be positioned along the surface 267 to draw the skin 262 against the surface 267 .
- the configuration of the applicator 260 can be selected based on the treatment site.
- FIG. 6 B is a schematic, cross-sectional view illustrating an applicator 270 that can include a heat-exchanging unit 274 having a rigid or compliant convex surface 276 configured to be applied to concave regions of the subject.
- the convex surface 276 can spread tissue to reduce the distance between the convex surface 276 and targeted tissue under the convex surface 276 .
- the applicator 270 can be applied to the axilla (i.e., armpit) region to affect apocrine sweat glands.
- FIG. 6 C is a schematic, cross-sectional view illustrating an applicator 280 including a surface 282 movable between a planar configuration 284 and a non-planar configuration 285 (shown in phantom).
- the surface 282 is capable of conforming to the treatment site to provide a large contact area.
- the surface 282 can be sufficiently compliant to conform to highly contoured regions of a subject's face when the applicator 280 is pressed against facial tissue.
- the applicator 280 can include actuators or other devices configured to move the surface 282 to a concave configuration, a convex configuration, or the like.
- the surface 282 can be reconfigured to treat different treatment sites of the same subject or multiple subjects.
- FIG. 6 D is a side view of an applicator 289 configured to treat a targeted feature.
- Targeted features can be, without limitation, cysts, glands, or other discrete features.
- the applicator 289 can include a main housing 290 , a cooling assembly 291 , and a control element 292 .
- the main housing 290 can be a tubular member that surrounds and protects the cooling assembly 291 .
- the cooling assembly 291 can include, without limitation, a cooling device or element 293 (“cooling element 293 ”) and a connector 294 .
- the cooling element 293 can be connected to another device (e.g., a control tower or base unit) by the connector 294 .
- the connector 294 can be a rod that is moved distally (indicated by arrow 295 ) or proximally (indicated by arrow 296 ) to move the cooling element 293 along a passageway of the housing 290 .
- the connector 294 can include one or more conduits, wires, passageways, or other features for providing energy (e.g., electrical energy, radiofrequency energy, etc.), coolant, a vacuum, or the like.
- the connector 294 can be an umbilical rod that provides energy, fluid, and/or suction.
- the applicator 289 can include sensors or other applicator components disclosed herein.
- the applicator 289 can include sensors configured to measure tissue impedance, pressure applied to the subject, optical characteristics of tissue, and/or tissue temperatures in order to monitor tissue and, in some embodiments, to detect events, such as partial or complete freeze events.
- FIG. 6 E is a cross-sectional view of a distal portion of the applicator 289 .
- the cooling element 293 is spaced apart from an opening 303 for receiving a feature 297 to be treated.
- the connector 294 can be pushed distally (indicated by arrow 299 ) to move the cooling element 293 relative to a longitudinal axis 305 of the applicator 289 .
- the connector 294 is manually moved through the housing 290 .
- the applicator 289 can include or be used with a drive device configured to move the connector 294 .
- the drive device can include, without limitation, one or more motors (e.g., drive motors, stepper motors, etc.), sensors (e.g., position sensors), controllers, or other components.
- FIG. 6 F is a cross-sectional view of the applicator 289 after the cooling element 293 thermally contacts the target feature 297 .
- the cooling element 293 can have a generally concave surface 301 for contacting a large area of the protruding target feature 297 , such as a sebaceous cyst, sudoriferous cyst, cyst of Zeis, hidrocystoma, bulging gland, acne, or other treatable feature.
- the control element 292 can be used to adjust the cooling element 293 by, for example, bending or otherwise adjusting the configuration of the cooling element 293 .
- the curvature of the surface 301 can be increased or decreased by moving the control element 292 inwardly or outwardly, respectively.
- the control element 292 can include, without limitation, one or more clamps, bands, locking features, etc. for adjusting the configuration of the distal end of the main housing 290 and cooling element 293 .
- the cooling element 293 can be flexible to comfortably engage the target features, such as a bulging cyst.
- a physician can select a curved cooling element 293 with a configuration (e.g., a partially spherical shape, partially elliptical shape, etc.) selected based on, for example, the shape and/or configuration of targeted feature(s).
- the cooling element 293 can include, without limitation, one or more cooling devices, thermoelectric coolers, cooling channels, electrodes, heating elements, or other features for treating the target feature 297 . After the cooling element 293 contacts the skin 307 , the cooling element 293 can actively cool the target feature 297 .
- the applicator 289 can be used to cool/heat relatively small features that may be near sensitive non-targeted tissue.
- the size of the cooling element 293 can be selected to minimize treatment of non-targeted tissue.
- the applicator 289 can be selected such that most of the tissue received by the cooling element 293 is targeted tissue to avoid affecting surrounding tissue.
- the applicator 289 can be applied to the subject such that the targeted feature is positioned within the opening 303 ( FIG. 6 E ).
- the cooling element 293 can be moved through the housing 290 and into thermal contact with the subject's skin 307 .
- the cooling element 293 can be moved back and forth to adjust the applied pressure, provide a massaging effect, promote nucleation, or the like.
- the applicator 289 can treat a wide range of features or areas at various locations along the subject's body.
- FIGS. 7 and 8 are flow diagrams illustrating methods for treating sites in accordance with embodiments of the technology. Although specific example methods are described herein, one skilled in the art is capable of identifying other methods that could be performed using embodiments disclosed herein. The methods are generally described with reference to the treatment system 100 of FIG. 3 , but the methods may also be performed by other treatment systems with additional or different hardware and/or software components.
- FIG. 7 is a flow diagram illustrating a method 350 for treating exocrine glands in accordance with embodiments of the technology.
- a subject's skin can be cooled to thermally affect a target region containing exocrine glands. Treatment can be monitored in order to keep tissue cooled for a sufficient length of time to affect the exocrine glands. Details of method 350 are discussed below.
- a treatment device is applied to a subject by placing its heat-exchanging surface or other feature in thermal contact with the subject's skin.
- the surface of the subject's skin can be continuously or periodically cooled to produce at least one cooling event (e.g., a partial freeze event, a complete freeze event, supercooling event, etc.) in a portion of the skin with exocrine glands.
- the targeted glands can be sebaceous glands and/or supporting structures, which may be in the epidermis and/or dermis.
- the targeted glands can be sweat glands and/or supporting structures.
- Rapid cooling can create a thermal gradient with the coldest temperatures in the region of skin near the treatment device whereas rapid heating can create a thermal gradient with the highest temperatures in the region of skin near the treatment device.
- skin can be frozen for a short enough duration to not establish a temperature equilibrium across the skin and adjacent subcutaneous tissue.
- Cryoprotectant(s) and/or warming cycle(s) can be used to inhibit freezing of the uppermost non-targeted layer or layers of skin (e.g., layers of the epidermis).
- a cryoprotectant can be applied to the treatment site to inhibit damage to the epidermis while cooling and freezing the dermal layer without causing freeze damage to subcutaneous tissue.
- the combination of cryoprotectant and controlled cooling can produce a desired cooling zone, and cooling of the cooling zone can be controlled to either have a non-freeze cooling event, a partial freeze event or a total brief freeze event.
- the treatment device can non-invasively produce a freeze event that begins within a predetermined period of time after the applicator begins cooling the patient's skin.
- the predetermined period of time can be equal to or shorter than about 10 seconds, 30 seconds, 60 seconds, 90 seconds, 120 seconds, or 150 seconds or longer periods and, in some embodiments, can be from between about 10 seconds to about 150 seconds, between about 30 seconds to about 150 seconds, or between about 60 seconds to about 150 seconds.
- the predetermined period of time can be shorter than about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 minutes.
- a controller e.g., controller 114 of FIG. 2
- an operator can select the period of time for cooling and can enter it into the controller 114 .
- the subject's skin can be cooled to produce a partial freeze event that includes at least some crystallization (e.g., formation of microscopic ice crystals) in intercellular material (e.g., fluid, cell components, etc.) and/or extracellular fluid.
- crystallization e.g., formation of microscopic ice crystals
- intercellular material e.g., fluid, cell components, etc.
- extracellular fluid e.g., cell components, etc.
- partial freeze events can occur without excessive tissue damage.
- the surface of the patient's skin can be cooled to a temperature no lower than about ⁇ 40° C., ⁇ 30° C., ⁇ 20° C., ⁇ 10° C., ⁇ 5° C., or ⁇ 3° C. to produce a partial freeze event in the skin without causing irreversible skin damage.
- the surface of the skin can be cooled to from about ⁇ 40° C. to about 0° C., from about ⁇ 30° C. to about 0° C., from about ⁇ 20° C. to about 0° C., or from about ⁇ 15° C. to about 0° C. or below about ⁇ 10° C., ⁇ 20° C., ⁇ 20° C., ⁇ 30° C., or ⁇ 40° C. It will be appreciated that the surface of the skin can be cooled to other temperatures that are selected based on the mechanism of action.
- one or more events can be detected using one or more electrical components of the treatment device.
- targeted tissue can reach a temperature below the freezing point of its biological tissue and fluids (e.g., approximately ⁇ 1.8° C.).
- tissue, fluids, and lipids freeze, crystals can form and energy associated with the latent heat of crystallization is released.
- the treatment system can determine the extent of freezing based on the detected temperature changes caused of crystallization. A relatively small positive change in tissue temperature can indicate a partial or total freeze event whereas a relatively large positive change in tissue temperature can indicate a complete freeze event.
- the treatment system 5 can be freeze detect sensors capable of detecting the positive change in tissue temperature, and the treatment system can identify it as a freeze event.
- the treatment system can be programmed so that small temperature variations do not cause false alarms with respect to false events. Additionally or alternatively, the treatment systems may detect changes in the temperature of its components or changes in power supplied to treatment devices, or other components, to identify freeze events.
- the treatment system 100 of FIG. 3 can use optical techniques to detect cooling events at block 354 of FIG. 7 .
- sensor 167 of FIG. 2 and sensors 217 , 227 of FIG. 5 can be optical sensors capable of detecting changes in the optical characteristics of tissue caused by freezing.
- Optical sensors can include, without limitation, one or more energy emitters (e.g., light sources, light emitting diodes, etc.), detector elements (e.g., light detectors), or other components for non-invasively monitoring optical characteristics of tissue.
- tissue can be monitored using electrical and/or mechanical techniques.
- the sensors e.g., sensor 167 of FIG. 2 and sensors 217 , 227 of FIG.
- the sensors disclosed herein can comprise one or more mechanical sensors which can include, without limitation, force sensors, pressure sensors, and so on.
- the treatment device and other treatment parameters can be controlled to control the temperature in the target region and, in some embodiments, includes periodically or continuously cooling the patient's tissue to keep a target region of skin in a cooled state (e.g., a frozen state) for a period of time.
- the treatment parameters can include, for example, cryoprotectant protocols, temperature profiles, treatment durations, number of cooling zones, characteristics of cooling zones, energy delivered to tissue, control parameters (e.g., control parameters for features such as vibration, massage, vacuum, and other treatment modes), or the like.
- control parameters e.g., control parameters for features such as vibration, massage, vacuum, and other treatment modes
- the skin within the cooling zone e.g., event zone 232 of FIG. 5
- the period of time can be equal to or shorter than about 5, 10, 15, 20, or 25 seconds. In longer treatments, the period of time can be equal to or longer than about seconds, 30 seconds, 45 seconds or 1, 2, 3, 4, 5, or 10 minutes.
- the treatment device can be controlled so that the skin is partially or completely frozen for no longer than, for example, 5 minutes, 10 minutes, 20 minutes, minutes, 45 minutes, or 1 hour. In some examples, the skin is frozen for about 1 minute to about 5 minutes, about 5 minutes to about 10 minutes, about 10 minutes to about 20 minutes, about 20 minutes to about 30 minutes, or about 30 minutes to about 1 hour.
- the treatment system can control the treatment device so that the freeze event causes apoptotic damage to targeted glands but does not cause such damage to non-targeted tissue.
- the treatment device produces a partial freeze event short enough to prevent establishing equilibrium temperature gradients in the patient's skin. This allows freezing of shallow targeted tissue without substantially affecting deeper non-targeted tissue.
- cells in the dermal layer can be affected to a greater extent than the cells in the subdermal layer (e.g., subcutaneous adipose tissue).
- the subdermal layer can be kept at a sufficiently high temperature (e.g., at or above 0° C.) while the shallower dermal tissue experiences the partial or total freeze event.
- the treatment system can also control operation of the treatment devices to thermally injure tissue to cause fibrosis, which increases the amount of connective tissue in a desired tissue layer (e.g., epidermis and/or dermis) to increase the firmness and appearance of the skin.
- a desired tissue layer e.g., epidermis and/or dermis
- the treatment system controls one or more applicators to supercool and freeze dermal tissue.
- the frozen region can be thawed by heating it and/or applying a topical substance in order to minimize, reduce, or limit tissue damage.
- the applicator can thaw the patient's skin after the freeze event occurs and after a period of time has transpired. The period of time can be equal to or shorter than about 5, 10, 15, 20, or seconds or about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 minutes.
- the uppermost skin layer(s) can be periodically heated to a temperature above the skin's freezing point to provide freeze protection thereto.
- the applicator can include one or more thermal elements (e.g., resistive heaters, electromagnetic energy emitters, Peltier devices, etc.) for heating tissue.
- the applicator 104 of FIGS. 2 and 3 can have separate and independently controlled cooling elements and heating elements that can cooperate to provide precise temperature control for freezing and thawing/warming cycles.
- applicators may stop cooling tissue to allow frozen tissue to passively warm and thaw.
- the treatment systems disclosed herein can monitor the location and/or movement of the treatment devices and may prevent false or inaccurate determinations of treatment events based on such monitoring.
- the treatment device may move which may cause it to contact a warmer area of skin, to no longer contact the skin, and so on. This may cause the treatment system to register a difference in temperature that is inconsistent with a normal treatment.
- Controllers e.g., controller 114 of FIG. 3
- U.S. Pat. No. 8,285,390 discloses techniques for monitoring and detecting freeze events and applicator movement and is incorporated by reference in its entirety. Additionally, treatment systems can provide an indication or alarm to alert the operator to the source of this temperature increase. In the case of a temperature increase not associated with an event, the system may also suppress false indications, while in the case of a temperature increase associated with freezing, the system take any number of actions based on that detection.
- FIG. 8 is a flow diagram illustrating a method 400 in accordance with an aspect of the present technology.
- a substance can be applied to the treatment site.
- the applicator can be applied to the treatment site and can cool tissue while the cryoprotectant protects non-targeted tissue.
- a cooled region e.g., a frozen or non-frozen region
- warmed e.g., thawed
- the treatment site can be monitored to keep tissue frozen or non-frozen but yet cold for a sufficient length of time to affect glands. Details of method 400 are discussed below.
- a substance can be applied to the subject's skin to improve heat transfer between the treatment device and the subjects skin, selectively protect non-target tissues from thermal damage (e.g., freeze damage due to crystallization), and/or initiate/control thermal events.
- the substance can be a cryoprotectant that prevents, inhibit, or limits damage to non-targeted tissue.
- the cryoprotectant can allow, for example, the treatment device to be pre-cooled prior to being applied to the subject for more efficient treatment. Further, the cryoprotectant can also enable the treatment device to be maintained at a desired low temperature while preventing ice formation on the cooled surface of the treatment device, and thus reduces the delay in reapplying the treatment device to the subject.
- cryoprotectant may prevent the treatment device from freezing to the subject's skin.
- Certain cryoprotectants can allow microscopic crystals to form in the tissue but can limit crystal growth that would cause cell destruction and, in some embodiments, can allow for enhanced uptake or absorption and/or retention in target glands and/or surrounding tissue prior to and during cooling.
- cryoprotectant with a freezing point depressant that can assist in preventing freeze damage that would destroy cells.
- Suitable cryoprotectants and processes for implementing cryoprotectants are described in commonly-assigned U.S. Patent Publication No. 2007/0255362.
- the cryoprotectant may additionally include a thickening agent, a pH buffer, a humectant, a surfactant, and/or other additives and adjuvants as described herein.
- Freezing point depressants may include, for example, propylene glycol (PG), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO), or other suitable alcohol compounds.
- Cryoprotectant can be delivered to the surface of the patient's skin for a period of time which is short enough to not significantly inhibit the initiation of the partial freeze event in dermal tissue but which is long enough to provide substantial protection to non-targeted tissue epidermal.
- Multiple cryoprotectants can be used to protect different tissue layers. For example, a first cryoprotectant for protecting deep tissue can be applied before a second cryoprotectant for protecting shallow tissue because the first cryoprotectant may require a longer delivery time to reach the deeper tissue.
- the rate of cryoprotectant delivery can be selected based on the characteristics of the cryoprotectant and the desired amount of tissue protection.
- an interface member is placed directly over the target area, and the treatment device with a disposable sleeve or liner is placed in contact with the interface member.
- the interface member can be a cotton pad, a gauze pad, a pouch, or a container with a reservoir containing a volume of cryoprotectant or other flowable conductive substance.
- the interface member can include, for example, a non-woven cotton fabric pad saturated with cryoprotectant that is delivered at a desired delivery rate. Suitable pads include WebrilTM pads manufactured by Covidien of Mansfield, Massachusetts. Further details regarding interface members and associated systems and methods of use are described in commonly-assigned U.S. Patent Publication No. 2010/0280582.
- the subjects skin can be cooled using a treatment device in thermal contact with the subject's skin.
- the surface of the subject's skin can be continuously or periodically cooled to produce a freeze event (e.g., partial freeze event, complete freeze event, etc.).
- a freeze event e.g., partial freeze event, complete freeze event, etc.
- thermal energy can be delivered to the surface of the skin before, during, and/or after skin cooling to protect non-targeted tissue in the uppermost region of the skin.
- the dermal tissue with glands below the epidermis can be frozen/supercooled.
- the treatment device can heat the surface of the skin to warm the epidermis or portions thereof to prevent, inhibit, or limit damage to non-targeted epidermal tissue while the region of dermal tissue with glands remains in a frozen/supercooled state. If the targeted region is supercooled, it can be controllably frozen using one or more nucleation initiators (e.g., mechanical perturbation such as vibration, ultrasound pulse, change in pressure, etc.).
- nucleation initiators e.g., mechanical perturbation such as vibration, ultrasound pulse, change in pressure, etc.
- Heat can be delivered transcutaneously to the subcutaneous layer to protect the subcutaneous tissue.
- subcutaneous tissue can be heated prior to tissue cooling the subject's skin at block 404 .
- the subcutaneous tissue can be periodically heated (e.g., heated using radiofrequency energy) during skin cooling.
- the skin can be alternatingly heated and cooled.
- the heating cycles can be used to keep the subcutaneous tissue at or above a threshold temperature (e.g., above its freezing point) to avoid freeze damage to the subcutaneous layer.
- the cooling cycles can be used to periodically cool the targeted dermal tissue and/or epidermal tissue.
- the topical substance can be applied in order to minimize, reduce, or limit tissue damage.
- the frozen region can be warmed (e.g., thawed).
- the applicator can thaw the patient's skin after the freeze event occurs and after a period of time has transpired.
- the thawing process at block 408 can be the same as the thawing process of block 358 of FIG. 7 .
- FIGS. 9 and 10 are flow diagrams illustrating methods for supercooling regions in accordance with embodiments of the technology.
- a surface of a human subject's skin can be cooled to a temperature no lower than ⁇ 40° C. to avoid unwanted skin damage and so that the temperature of at least a portion of tissue is in a supercooled state.
- the surface of the skin can be heated to bring shallow non-targeted tissue out of the supercooled state while the deeper targeted region remains in the supercooled state.
- the supercooled targeted region can be nucleated due to a perturbation that causes at least partial or total freezing that destroys or damages targeted cells, for example, due to crystallization of intracellular and/or extracellular fluids.
- mechanical perturbation and/or other catalyst for nucleation within the target tissue can be provided only following a protective increase of a temperature of non-targeted epidermal layers.
- the mechanical perturbations can be vibrations, ultrasound pulses, and/or changes in pressure.
- the non-targeted layers can be warmed enough to avoid freezing of non-targeted tissue upon nucleation.
- the treatment system 100 FIG. 3
- FIG. 9 is a flow diagram illustrating a method 450 in accordance with an aspect of the present technology.
- An early stage of the method 450 can include cooling a surface of a human subject's skin to a first temperature (block 452 ).
- the first temperature can be, for example, between about ⁇ 10° C. and ⁇ 40° C. such that a portion of tissue below the surface is in a supercooled state.
- the first temperature can be a temperature between about ⁇ 15° C. and ⁇ 25° C., a temperature between about ⁇ 20° C. and about ⁇ 30° C., or other temperature below a freezing temperature.
- the surface of the human subject's skin is heated an amount sufficient to raise the skin surface temperature from the first temperature to a second temperature, which can be a non-supercooled temperature, while the targeted region remains in the supercooled state.
- the treatment system can be used to heat the surface of the skin to a temperature higher than about 0° C., higher than about higher than about 10° C., higher than about 20° C., higher than about 30° C., or higher than about 35° C.
- the supercooled portion of tissue below the skin surface can be nucleated to cause at least some fluid and cells in the supercooled tissue to at least partially or totally freeze.
- nucleation of the supercooled tissue is caused by a mechanical perturbation, ultrasound, massaging, or other suitable nucleation initiator. Warmed cells residing at the surface of the human subject's skin do not freeze at block 456 . As such, cells at the skin surface are protected without using a chemical cryoprotectant.
- the chemical cryoprotectants can be selected to inhibit or limit hyperpigmentation or hypopigmentation.
- the supercooled tissue can be maintained in the at least partially or totally frozen state for a predetermined period of time longer than, for example, about 10 seconds, 12 seconds, 15 seconds, or 20 seconds.
- the supercooled tissue in a cooling zone e.g., event zone 232 of FIG. 5
- the skin is cooled/heated to maintain targeted tissue in at least a partially or totally frozen state for the predetermined time longer than about 10 seconds, longer than about 12 seconds, longer than about 15 seconds, or longer than about 20 seconds.
- FIG. 10 illustrates a method 500 for affecting a target region in a human subject's body in accordance with another embodiment of the present technology.
- the method 500 can include transdermally removing heat from tissue at a target region such that the target region is cooled to a supercooled temperature (block 502 ).
- the supercooled temperature can be, for example, below about 0° C. or within a range from about 0° C. to about ⁇ 20° C., from about ⁇ 10° C. to about ⁇ 30° C., from about ⁇ 20° C. to about ⁇ 40° C., or no lower than about ⁇ 40° C.
- Cryoprotectants can be used when cooling tissue to very low temperatures, including temperatures lower than ⁇ 40° C.
- the method 500 includes applying heat to an epidermis of the target region to warm epidermal cells in the target region to a temperature above freezing while glands in the dermis are at or near the supercooled temperature.
- the step of applying heat can include warming a portion of most of the epidermal layer under the treatment device to a temperature above about 0° C., about about 10° C., about 20° C., about 25° C., or about 32° C. Warming can be accomplished by thermal heaters (e.g., heaters 235 in FIG. 5 ) disposed on a surface of the applicator contacting or confronting a skin surface.
- the elements 235 of FIG. 5 can be electrodes or transducers.
- a freeze event in the dermal layer can selectively affect the targeted glands while epidermal cells are not affected by the freeze event.
- the method 500 can include providing at least one of vibration, mechanical pressure, and ultrasound pulses to the target region to cause such a freeze event.
- the freeze event can cause at least partial crystallization of a plurality of gland cells in the target region.
- the epidermal cells are protected to avoid or limit freeze damage to those cells.
- supercooled temperatures of the targeted tissue can be achieved without initiating nucleation by cooling the treatment site at a relatively slow rate (e.g., the temperature profile can cause a slow cooling of the tissue at the target region) at block 502 .
- the rate of cooling can be either equal to, slower or faster than about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 degrees C. per minute.
- a preferred rate of cooling is about either 2, 4, or 6 degrees C. per minute.
- a treatment device can apply a generally constant pressure during cooling to the supercooled temperature range to avoid pressure changes that would cause inadvertent nucleation.
- the targeted tissue can be cooled while the patient is held still (e.g., without movement of the treatment site) to avoid mechanically disturbing the supercooled tissue and unintentionally causing crystallization.
- the temperature of the non-targeted surface tissue can be warmed to a non-freezing temperature and/or a non-supercooled temperature prior to perturbation and subsequent freezing.
- the warming cycle of the temperature profile can occur quickly such that the underlying and/or targeted tissue remains in the supercooled state throughout the warming cycle.
- the supercooled tissue can then be nucleated at block 506 .
- Various aspects of the methods disclosed herein can include cosmetic treatment methods for treating the target region of a human subject's body to achieve a cosmetically beneficial alteration of a portion of tissue within the target region.
- Such cosmetic methods can be administered by a non-medically trained person.
- the methods disclosed herein can also be used to (a) improve the appearance of skin by tightening the skin, improving skin tone and texture, eliminating or reducing wrinkles, increasing skin smoothness, thickening the skin, (b) improve the appearance of cellulite, and/or (c) treat sebaceous glands, hair follicles, and/or sweat glands.
- FIG. 11 is a schematic block diagram illustrating subcomponents of a computing device 700 suitable for the system 100 of FIG. 3 in accordance with an embodiment of the disclosure.
- the computing device 700 can include a processor 701 , a memory 702 (e.g., SRAM, DRAM, flash, or other memory devices), input/output devices 703 , and/or subsystems and other components 704 .
- the computing device 700 can perform any of a wide variety of computing processing, storage, sensing, imaging, and/or other functions.
- Components of the computing device 700 may be housed in a single unit or distributed over multiple, interconnected units (e.g., though a communications network).
- the components of the computing device 700 can accordingly include local and/or remote memory storage devices and any of a wide variety of computer-readable media.
- the processor 701 can include a plurality of functional modules 706 , such as software modules, for execution by the processor 701 .
- the various implementations of source code i.e., in a conventional programming language
- the modules 706 of the processor can include an input module 708 , a database module 710 , a process module 712 , an output module 714 , and, optionally, a display module 716 .
- the input module 708 accepts an operator input 719 via the one or more input/output devices described above with respect to FIG. 5 , and communicates the accepted information or selections to other components for further processing.
- the database module 710 organizes records, including patient records, treatment data sets, treatment profiles and operating records and other operator activities, and facilitates storing and retrieving of these records to and from a data storage device (e.g., internal memory 702 , an external database, etc.). Any type of database organization can be utilized, including a flat file system, hierarchical database, relational database, distributed database, etc.
- the process module 712 can generate control variables based on sensor readings 718 from sensors (e.g., sensor 167 of FIG. 2 , the temperature measurement components 217 and 227 of FIG. 5 , etc.) and/or other data sources, and the output module 714 can communicate operator input to external computing devices and control variables to the controller 114 ( FIGS. 3 and 5 ).
- the display module 816 can be configured to convert and transmit processing parameters, sensor readings 818 , output signals 720 , input data, treatment profiles and prescribed operational parameters through one or more connected display devices, such as a display screen, printer, speaker system, etc.
- a suitable display module 716 may include a video driver that enables the controller 114 to display the sensor readings 718 or other status of treatment progression.
- the processor 701 can be a standard central processing unit or a secure processor.
- Secure processors can be special-purpose processors (e.g., reduced instruction set processor) that can withstand sophisticated attacks that attempt to extract data or programming logic.
- the secure processors may not have debugging pins that enable an external debugger to monitor the secure processor's execution or registers.
- the system may employ a secure field programmable gate array, a smartcard, or other secure devices.
- the memory 702 can be standard memory, secure memory, or a combination of both memory types. By employing a secure processor and/or secure memory, the system can ensure that data and instructions are both highly secure and sensitive operations such as decryption are shielded from observation.
- the memory 702 can contain executable instructions for cooling the surface of the subject's skin to a temperature and controlling treatment devices in response to, for example, detection of a partial or complete freeze events.
- the memory 702 can include thawing instructions that, when executed, causes the controller to control the applicator to heat tissue.
- the memory 702 stores instructions that can be executed to control the applicators to perform the methods disclosed herein without causing undesired effects, such as significantly lightening or darkening skin one of more days after the freeze event ends.
- the instructions can be modified based on patient information and treatments to be performed.
- Other instructions can be stored and executed to perform the methods disclosed herein.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Otolaryngology (AREA)
- Medicinal Chemistry (AREA)
- Vascular Medicine (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Pain & Pain Management (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Rheumatology (AREA)
- Radiology & Medical Imaging (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Pathology (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Surgical Instruments (AREA)
- Medicinal Preparation (AREA)
- Cosmetics (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
- This application is a Divisional of U.S. patent application Ser. No. 15/115,503, filed Jul. 29, 2016, now pending, which is a 35 U.S.C. § 371 U.S. National Phase application of International Application No. PCT/US2015/013971, filed Jan. 30, 2015, which claims priority to U.S. Provisional Patent Application No. 61/934,549, filed Jan. 31, 2014, entitled “COMPOSITIONS, TREATMENT SYSTEMS AND METHODS FOR IMPROVED COOLING OF LIPID-RICH TISSUE;” U.S. Provisional Patent Application No. 61/943,250, filed Feb. 21, 2014, entitled “TREATMENT SYSTEMS, METHODS, AND APPARATUSES FOR IMPROVING THE APPEARANCE OF SKIN;” and U.S. Provisional Patent Application No. 61/943,257, filed Feb. 21, 2014, entitled “TREATMENT SYSTEMS, METHODS AND APPARATUS FOR REDUCING SKIN IRREGULARITIES CAUSED BY CELLULITE.” All of these patent applications are incorporated herein by reference in their entireties.
- The following commonly assigned U.S. patent applications and U.S. patents are incorporated herein by reference in their entirety:
- U.S. Patent Publication No. 2008/0287839 entitled “METHOD OF ENHANCED REMOVAL OF HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS AND TREATMENT APPARATUS HAVING AN ACTUATOR”;
- U.S. Pat. No. 6,032,675 entitled “FREEZING METHOD FOR CONTROLLED REMOVAL OF FATTY TISSUE BY LIPOSUCTION”;
- U.S. Patent Publication No. 2007/0255362 entitled “CRYOPROTECTANT FOR USE WITH A TREATMENT DEVICE FOR IMPROVED COOLING OF SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. Pat. No. 7,854,754 entitled “COOLING DEVICE FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. Patent Publication No. 2011/0066216 entitled “COOLING DEVICE FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. Patent Publication No. 2008/0077201 entitled “COOLING DEVICES WITH FLEXIBLE SENSORS”;
- U.S. Patent Publication No. 2008/0077211 entitled “COOLING DEVICE HAVING A PLURALITY OF CONTROLLABLE COOLING ELEMENTS TO PROVIDE A PREDETERMINED COOLING PROFILE”;
- U.S. Patent Publication No. 2009/0118722, filed Oct. 31, 2007, entitled “METHOD AND APPARATUS FOR COOLING SUBCUTANEOUS LIPID-RICH CELLS OR TISSUE”;
- U.S. Patent Publication No. 2009/0018624 entitled “LIMITING USE OF DISPOSABLE SYSTEM PATIENT PROTECTION DEVICES”;
- U.S. Patent Publication No. 2009/0018623 entitled “SYSTEM FOR TREATING LIPID-RICH REGIONS”;
- U.S. Patent Publication No. 2009/0018625 entitled “MANAGING SYSTEM TEMPERATURE TO REMOVE HEAT FROM LIPID-RICH REGIONS”;
- U.S. Patent Publication No. 2009/0018627 entitled “SECURE SYSTEM FOR REMOVING HEAT FROM LIPID-RICH REGIONS”;
- U.S. Patent Publication No. 2009/0018626 entitled “USER INTERFACES FOR A SYSTEM THAT REMOVES HEAT FROM LIPID-RICH REGIONS”;
- U.S. Pat. No. 6,041,787 entitled “USE OF CRYOPROTECTIVE AGENT COMPOUNDS DURING CRYOSURGERY”;
- U.S. Pat. No. 8,285,390 entitled “MONITORING THE COOLING OF SUBCUTANEOUS LIPID-RICH CELLS, SUCH AS THE COOLING OF ADIPOSE TISSUE”;
- U.S. Provisional patent application Ser. No. 60/941,567 entitled “METHODS, APPARATUSES AND SYSTEMS FOR COOLING THE SKIN AND SUBCUTANEOUS TISSUE”;
- U.S. Pat. No. 8,275,442 entitled “TREATMENT PLANNING SYSTEMS AND METHODS FOR BODY CONTOURING APPLICATIONS”;
- U.S. patent application Ser. No. 12/275,002 entitled “APPARATUS WITH HYDROPHILIC RESERVOIRS FOR COOLING SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. patent application Ser. No. 12/275,014 entitled “APPARATUS WITH HYDROPHOBIC FILTERS FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. Patent Publication No. 2010/0152824 entitled “SYSTEMS AND METHODS WITH INTERRUPT/RESUME CAPABILITIES FOR COOLING SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. Pat. No. 8,192,474 entitled “TISSUE TREATMENT METHODS”;
- U.S. Patent Publication No. 2010/0280582 entitled “DEVICE, SYSTEM AND METHOD FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. Patent Publication No. 2012/0022518 entitled “COMBINED MODALITY TREATMENT SYSTEMS, METHODS AND APPARATUS FOR BODY CONTOURING APPLICATIONS”;
- U.S. Publication No. 2011/0238050 entitled “HOME-USE APPLICATORS FOR NON-INVASIVELY REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS VIA PHASE CHANGE COOLANTS, AND ASSOCIATED DEVICES, SYSTEMS AND METHODS”;
- U.S. Publication No. 2011/0238051 entitled “HOME-USE APPLICATORS FOR NON-INVASIVELY REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS VIA PHASE CHANGE COOLANTS, AND ASSOCIATED DEVICES, SYSTEMS AND METHODS”;
- U.S. Publication No. 2012/0239123 entitled “DEVICES, APPLICATION SYSTEMS AND METHODS WITH LOCALIZED HEAT FLUX ZONES FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;
- U.S. patent application Ser. No. 13/830,413 entitled “MULTI-MODALITY TREATMENT SYSTEMS, METHODS AND APPARATUS FOR ALTERING SUBCUTANEOUS LIPID-RICH TISSUE”;
- U.S. patent application Ser. No. 13/830,027 entitled “TREATMENT SYSTEMS WITH FLUID MIXING SYSTEMS AND FLUID-COOLED APPLICATORS AND METHODS OF USING THE SAME”;
- U.S. Provisional Patent Application No. 61/943,251 entitled “TREATMENT SYSTEMS AND METHODS FOR TREATING CELLULITE”; and
- U.S. Provisional Patent Application No. 61/943,257 entitled “TREATMENT SYSTEMS, METHODS, AND APPARATUS FOR REDUCING IRREGULARITIES CAUSED BY CELLULITE.”
- The present disclosure relates generally to treatment systems and methods for affecting target structures in a subject's body. In particular, several embodiments are directed to treatment systems and methods for affecting glands to treat acne, hyperhidrosis, cysts, or other conditions.
- Exocrine glands found in the skin have a role in maintaining skin health including lubricating, waterproofing, cleansing and/or cooling the skin or hair follicles of the body by excreting water-based, oily and/or waxy substances through skin pores or hair follicles. Overproduction and/or over-secretion of these substances by certain exocrine glands, such as sebaceous glands and sudoriparous glands (e.g., sweat glands), can cause unappealing skin disorders that have proved to be difficult to treat. For example, overproduction of sebum, a waxy substance produced and secreted by sebaceous glands, can lead to formation of comedones (e.g., blackheads, whiteheads, etc.) as well as other inflammatory conditions of the skin associated with acne (e.g., inflamed papules, pustules, nodules, etc.) and can potentially lead to scarring of the skin. Overproducing sebaceous glands associated with hair follicles can be mostly found in highly visible regions of the body, such as on the face, neck, upper chest, shoulders and back, and demand for effective treatments has been and remains quite high.
- Hyperhidrosis is a condition associated with excessive sweating and results from the overproduction and secretion of sweat from sweat glands in the skin of mammals. Excessive sweating from eccrine sweat glands, which are distributed almost all over the body, can cause discomfort and embarrassment. For example, focal hyperhidrosis can occur on the palms of the hands, soles of the feet, face and scalp. Apocrine sweat glands, particularly in the axilla (i.e., armpits), have oil-producing cells that can contribute to excessive production and undesirable odor. Treatment for these conditions are often ineffective, non-lasting, and/or have undesirable side-effects.
- In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale.
-
FIG. 1 is a schematic cross-sectional view of the skin, dermis, and subcutaneous tissue of a subject. -
FIG. 2 is a schematic cross-sectional view of the skin, dermis, and subcutaneous tissue of the subject inFIG. 1 after treating sebaceous glands. -
FIG. 3 is a partially schematic, isometric view of a treatment system for non-invasively treating targeted structures in a human subjects body in accordance with an embodiment of the technology. -
FIG. 4 is a cross-sectional view of a conduit of the treatment system ofFIG. 3 . -
FIG. 5 is a cross-sectional view of a treatment device applied to a treatment site in accordance with an embodiment of the technology. -
FIGS. 6A to 6C are schematic cross-sectional views of treatment devices in accordance with embodiments of the technology. -
FIG. 6D is a side view of an applicator for treating discrete features in accordance with embodiments of the technology. -
FIGS. 6E and 6F are cross-sectional views of a distal end of the applicator ofFIG. 6D . -
FIGS. 7 to 10 are flow diagrams illustrating methods for affecting target regions in accordance with embodiments of the technology. -
FIG. 11 is a schematic block diagram illustrating computing system software modules and subcomponents of a computing device suitable to be used in treatment systems in accordance with embodiments of the technology. - The present disclosure describes treatment systems and methods for affecting target structures in tissue. The systems and methods disclosed herein can be used to target glands (e.g., exocrine glands, sebaceous glands, sudoriparous glands, etc.), structures in the skin (e.g., hair follicles, superficial nerves, etc.), and/or layer(s) of tissue (e.g., dermal layer, epidermal layer, layer(s) of the epidermis, etc.). Several of the details set forth below are provided to describe the following examples and methods in a manner sufficient to enable a person skilled in the relevant art to practice, make, and use them. Several of the details and advantages described below, however, may not be necessary to practice certain examples and methods of the technology. Although described examples and methods target glands, the technology can target other structures or features and may include other examples and methods that are within the scope of the technology but are not described in detail. The treatment systems and treatment devices disclosed herein can perform a wide range of cryotherapy procedures.
- Reference throughout this specification to “one example,” “an example,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present technology. Thus, the occurrences of the phrases “in one example,” “in an example,” “one embodiment,” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same example. Furthermore, the particular features, structures, routines, blocks, stages, or characteristics may be combined in any suitable manner in one or more examples of the technology. The headings provided herein are for convenience only and are not intended to limit or interpret the scope or meaning of the technology.
- Various aspects of the technology are directed to treatment systems and methods for affecting target structures in a human subject's body. The target structures can be glands, hair follicles, nerves (e.g., superficial nerves), or one or more layers of tissue (e.g., dermal layer, epidermal layer, layer(s) of the epidermis, etc.). To treat acne, the surface of the subject's skin can be cooled to produce a temperature at or below 0, 5, 10, 15, or 20 degrees C. and to produce either a cooling event or a freeze event in a targeted portion of the skin with sebaceous glands. The skin can be cooled to maintain the cooled state or frozen state of the targeted portion of the skin for a period of time long enough to alter a level of secretion production by the sebaceous glands. The characteristics of the cooling event or freeze event can be controlled to manage thermal injury. Such characteristics include, without limitation, the amount of cooling or freezing, density and distribution of ice crystals, freezing rate, etc. Cryotherapy can affect, without limitation, glandular function, structures of glands (e.g., gland portions, duct portions, etc.), number of glands, and/or sizes of glands.
- Freeze events can include partially or completely freezing liquids or lipids proximate to or within glands to destroy, reduce, disrupt, modify, or otherwise affect glands or the supporting anatomical features (e.g., ducts, pores, hair follicles, etc.). In some embodiments, to treat exocrine glands, a subject's skin can be cooled to produce a partial freeze event in a portion of skin with exocrine glands. The level of freezing can be controlled to limit tissue damage, such as tissue damage to non-targeted tissue, damage of targeted tissue (e.g., to avoid excess damage to targeted tissue), and so forth. The subject's skin can be continuously or periodically cooled/heated to adjust the level of freezing. For example, the skin surface can be cooled or heated to increase or decrease, respectively, the number and/or sizes of ice crystals at the target region.
- In some embodiments, a method comprises cooling a subject's skin to produce a cooling event in the skin, but not a freeze event. After the cooling event begins, the subject's skin is cooled to maintain the cooling event to alter glands (e.g., gland function, gland size, gland structure, gland number, etc.). The cooling event can alternatively be a freeze event that involves at least partially or totally freezing a target region with the glands so as to alter secretion levels of the glands. In acne treatments, the freeze event can injure sebaceous glands to reduce sebum production. In hyperhidrosis treatments, the freeze event can injure sweat glands to reduce sweating. The location and characteristics of the freeze event can be selected based on treatments to be performed.
- Aspects of the technology can include a method for treating a subject's exocrine glands by cooling a surface of a subject's skin with a cooling device to produce a partial or total freeze event in a portion of the skin with exocrine glands. The partial or total freeze event in the patient's skin can be detected. The cooling device and other treatment parameters can be controlled to continue to cool the subject's skin after detecting the partial or total freeze event and to maintain a partially or totally frozen state of the portion of the skin for a period of time long enough to alter a level of production by the exocrine glands. In one embodiment, the period of time is longer than a predetermined threshold period of time, such as 10 seconds, 20 seconds, or other selected period of time. If the epidermis is overly frozen, hyperpigmentation (skin darkening) or hypopigmentation (skin lightening) can result, which is often undesirable. The cooling device and treatment parameters can be controlled so as to not cause either or both hypopigmentation or hyperpigmentation more than a day following treatment.
- At least some embodiments are systems and methods for selective non-invasive cooling of tissue sufficiently deep to affect glands. Axilla apocrine sweat glands or eccrine sweat glands on the palms of the hands can be at different tissue depths than sebaceous glands within acne-prone regions (e.g., regions along the face, chest, shoulders, or back). The systems and methods disclosed herein can controllably cool tissue at specific depths for injuring targeted glands. In various embodiments, a zone of maximum cooling or maximum freezing can occur at depths between about 1 mm to about 5 mm, between about 2 mm and about 5 mm, between about 3 mm and about 5 mm, or between about 4 mm and about 5 mm. Other depths can be selected based on the location of the targeted structures. In some embodiments, a treatment site can be cooled to a temperature equal to or lower than about 0° C., −5° C., −10° C., −15° C., −20° C., or −25° C. for a treatment period, and either be in a supercooled state, a partial frozen state, or totally frozen state. The treatment period can be equal to or greater than about 1 second, 2 seconds, 3 seconds, 5 seconds, 30 seconds, 1 minute, 5 minutes, 10 minutes, 30 minutes, or other time periods selected based on the desired thermal injury. In some supercooling embodiments, the skin is cooled to a supercooled temperature and the epidermis is then warmed to a non-freezing temperature. After warming the epidermis, supercooled tissue is nucleated to initiate the freeze event in the supercooled skin. A freezing point of a material is most reliably ascertained by warming frozen material slowly and measuring a temperature at which melting begins to occur. This temperature is generally not ambiguous if the material is slowly warmed. Partial melting will begin to occur at the freezing/melting point. Conversely, if a non-frozen material is cooled, its freezing/melting point is harder to ascertain since it is known that many materials can simply “supercool,” that is they can be cooled to a bulk temperature below their freezing/melting point and still remain in a non-frozen state. As used herein, “supercooling,” “supercooled,” “supercool,” etc., refers to a condition in which a material is at a temperature below its freezing/melting point but is still in an unfrozen or mostly unfrozen state.
- With or without freezing, at least some embodiments of the technology are directed to controlling a cooling device or providing other means for sufficiently protecting the epidermis from injuries that cause hyperpigmentation (skin darkening) or hypopigmentation (skin lightening). The other means for protection can include, without limitation, heating the epidermis to a non-freezing temperature while deeper tissue remains cold to induce injury thereto and/or applying a cryoprotectant to a surface of the skin to provide freeze protection to the epidermis while allowing deeper tissue or structures to be more affected by the cooling/cold treatment.
- Applicators disclosed herein can include one or more elements (e.g., resistive heaters, electrodes, transducers, vibrators, etc.) for delivering energy, such as thermal energy, electromagnetic energy, infrared energy, light energy, ultraviolet energy, radiofrequency energy, microwave energy, ultrasound energy (e.g., low frequency ultrasound, high frequency ultrasound, etc.), mechanical massage, and/or electric fields (e.g., AC or DC electric fields). The energy can inhibit or reduce freeze damage or cooling damage in non-targeted regions. Thermal energy can be used to protect non-targeted tissue, such as facial subcutaneous fat, when cryogenically treating superficial facial dermal structures. Additionally or alternatively, non-targeted regions can be protected by a chemical cryoprotectant. In addition to targeting glands (e.g., exocrine glands such as sebaceous glands, apocrine sweat glands, eccrine sweat glands, etc.), applicators can be configured to target other structures, such as collagen and/or elastin for skin tightening and dermal thickening, nerve tissue (e.g., superficial nerves), and/or hair follicles.
- At least some aspects of the technology are directed to systems and methods that enable supercooling of target regions. Aspects of the disclosure are further directed to systems or methods for protecting non-targeted cells, such as cells in the dermal and/or epidermal skin layers, by preventing or limiting thermal damage (e.g., cooling or freeze damage) during dermatological and related aesthetic procedures that require sustained exposure to cold temperatures. For example, treatment systems can supercool treatment sites without causing nucleation and freezing. Non-targeted tissue can be heated to localize the supercooling, and after localizing the supercooled tissue, supercooled body fluids/lipids can be nucleated by various methods to initiate a partial or total freeze and to damage, reduce, disrupt, modify or otherwise affect targeted cells.
- In some supercooling embodiments, regions with glands can be supercooled either with or without using any cryoprotectant. Non-targeted region(s) can be heated above their freezing points before initiating crystallization of the supercooled tissue. In certain embodiments for affecting glands in the dermal layer, the skin can be supercooled either with or without affecting the subcutaneous layer. After heating the epidermal layer so that mostly dermal tissue is supercooled, nucleation in the dermal layer can be initiated. Freezing of the supercooled region can be promoted without damaging non-targeted tissue or non-targeted anatomical features. Nucleation can be induced by delivering an alternating current to the tissue, applying a nucleating solution onto the surface of the skin (for example one that includes bacteria which initiate nucleation), applying fields (e.g., electric fields), and/or by creating a mechanical perturbation to the tissue, such as by use of vibration, ultrasound energy, etc.
-
FIG. 1 is a schematic cross-sectional view of tissue of a subject in accordance with one embodiment. The subject'sskin 10 includes thedermis 12 located between the epidermis 14 and thesubcutaneous layer 16. Thedermis 12 includessebaceous glands 17 that produce sebum for moisturizing the skin and hair. Acne is a skin condition typically characterized by excess sebum that may plug hair follicles and/or pores. The level of sebum production may vary between individuals and may vary by body location depending on the number and sizes of the sebaceous glands. Sebum can flow along thehealthy hair follicle 20 to moisturize thehair 23 and/orepidermis 14. When thesebaceous glands 17 produce excess sebum, it can collect and/or become trapped in hair follicles. Overproduction and/or entrapment of sebum, the waxy substance produced and secreted bysebaceous glands 17, can lead to formation of comedones (e.g., blackheads, whiteheads, etc.) as well as other inflammatory conditions of the skin associated with acne (e.g., inflamed papules, pustules, nodules, etc.). In some individuals, inflamed follicles and pores can become infected and the condition can potentially lead to scarring of the skin. The illustratedhair follicle 22 is clogged with excess sebum to form a pimple or red spot. Other medical conditions associated with overactive sebaceous glands which produce an excess of sebum include sebaceous cysts, hyperplasia and sebaceous adenoma. Non-medical, but cosmetically unappealing, conditions associated with overactive sebaceous glands include oily skin and/or oily hair (e.g., on the scalp). - Hyperhidrosis is a skin condition characterized by abnormal sweating due to high secretion levels of
sweat glands 26. Eccrine sweat glands are controlled by the sympathetic nervous system and regulate body temperature. When an individual's body temperature rises, eccrine sweat glands secrete sweat (i.e., water and other solutes) that flows through agland tubule 28. The sweat can evaporate from the skin surface to cool the body. Apocrine sweat glands (not shown) secrete an oil-containing sweat intohair follicles 20. The axilla (e.g., armpit) and genital regions often have a higher concentration of apocrine sweat glands. Hyperhidrosis occurs when sweat glands produce and secrete sweat at levels above that required for regulation of body temperature, and the condition can be generalized or localized (i.e., focal hyperhidrosis) to specific body parts (e.g., palms of hands, soles of feet, brow, scalp, face, underarms, etc.). -
FIG. 2 is a schematic cross-sectional view of theskin 10 inFIG. 1 showing a reduction of acne after treatment in accordance with aspects of the present technology. A treatment device in the form of a thermoelectric applicator 104 (“applicator 104”) has been applied to and cooled theskin 10 to produce a freeze-induced injury that affected thesebaceous glands 17. Although the reduction in acne is shown while theapplicator 104 is applied to theskin 10, it may take a relatively long period of time (e.g., days, weeks, months, etc.) for acne to be reduced after treatment. The sebum production level of the twosebaceous glands 17 along thehair follicle 22 has been substantially reduced to inhibit clogging to minimize, reduce, or eliminate acne. Thesweat gland 26 can also be targeted. For example, theapplicator 104 can produce a partial or total freeze event or non-freezing cooling event or supercooling event to injure thesweat gland 26 and/orduct 28 in a region of the skin located along the hands, armpits, or other locations with excess sweating. Cryotherapy can be performed any number of times at the same site or different sites to treat acne, hyperhidrosis, or other conditions. -
FIG. 3 and the following discussion provide a general description of an example of a suitablenon-invasive treatment system 100 in which aspects of the technology can be implemented. Thetreatment system 100 can be a temperature-controlled cooling apparatus for cooling tissue at a targeted treatment site to perform cryotherapy. Physiological characteristics affected by cryotherapy can include, without limitation, cellular stability, cell/tissue elasticity, cell size, cell number, and/or gland size or secretion ability (e.g., size/diameter of the duct portion). For example, thetreatment system 100 can cool the epidermis, dermis, subcutaneous fat, or other targeted tissue to modify glandular function, reduce gland size, etc. Non-targeted tissue, such as subdermal tissue or tissue adjacent the targeted exocrine glands, can remain generally unaffected. In various embodiments, thetreatment system 100 can be configured to cool the skin of the patient to selectively affect (e.g., injure, damage, kill) secreting exocrine glandular cells. In a particular example, cooling can produce a cold shock response to modify a secretion volume from a targeted exocrine gland of the epidermis and/or dermis by affecting protein proliferation and other cellular functions. Those skilled in the relevant art will appreciate that other examples of the disclosure can be practiced with other treatment systems and treatment protocols, including invasive, minimally invasive, other non-invasive medical treatments. - In one example, lipid-producing cells residing in or at least proximate to sebaceous glands (e.g., glandular epithelial cells) present in the dermis of a target region can be targeted by the
treatment system 100 for the treatment of acne or other skin condition. The lipid-producing cells residing in or proximate to sebaceous glands contribute to production of sebum, the waxy and oily secretion that can contribute to acne. For example, thetreatment system 100 can be configured to reduce a temperature of a dermal layer of skin to reduce the temperature of lipid-producing cells residing in or at least proximate to sebaceous glands such that the targeted lipid-producing cells excrete a lower amount of sebum, such that there are fewer lipid-producing cells resulting in less sebum production within the targeted sebaceous glands, or in another embodiment, such that the sebaceous glands are destroyed. Thetreatment system 100 can be configured, for example, to reduce a subject's acne by cooling acne-prone regions of the body. - In another example, secreting glandular cells residing in axilla apocrine sweat glands can be targeted by the
treatment system 100 for the treatment of hyperhidrosis. Apocrine sweat glands comprise a coiled secretory portion located at the junction of the dermis and the subcutaneous fat, and a duct portion that funnels the secreted sweat substance into a portion of a hair follicle. Secreting glandular cells residing in the coiled secretory portion between the dermis and the subcutaneous layers produce an oily compound and create a secretion substance that also includes water and other solutes, such as minerals, lactate and urea to form apocrine sweat. Thetreatment system 100 can be configured to reduce a temperature of a dermal layer of skin (e.g., at or near the axilla) to reduce the temperature of secreting glandular cells residing in the coiled portion of the apocrine sweat glands such that the targeted cells excrete a lower amount of oil-containing sweat, such that there are fewer sweat-producing cells resulting in less sweat/oil production within the targeted apocrine sweat glands, or in another embodiment, such that the apocrine sweat glands are destroyed. In yet another embodiment, secreting glandular cells residing in or proximate to eccrine sweat glands (e.g., in the palms of the hands, soles of the feet, scalp, face, axilla region, etc.) can be targeted by thetreatment system 100 for the treatment of focal hyperhidrosis at those treatment sites. - Referring to
FIG. 3 , theapplicator 104 is suitable for altering a function of a gland residing in skin without affecting subcutaneous tissue (e.g., subcutaneous adipose tissue, etc.). Theapplicator 104 can be suitable for modifying a secretion volume, level, biochemical content, or other factor from targeted exocrine glands (e.g.,sebaceous glands 17 orsweat glands 26 shown inFIG. 1 ) by cooling the skin without permanently altering cells of non-targeted tissue (e.g., deep dermal tissue, subdermal tissue, etc.). Without being bound by theory, the effect of cooling selected cells (e.g., glandular secreting cells, hair follicles, etc.) is believed to result in, for example, protein alteration (e.g., synthesis of heat shock proteins, stress proteins, etc.), cell size alteration, cell division, wound remodeling (e.g., thickening of the epidermis, contraction of the epidermis, etc.), fibrosis, and so forth. By cooling the skin to a sufficient low temperature, target cells that contribute to the presence of undesired features can be selectively affected while non-targeted tissue can be unaffected. - The
applicator 104 can be used to perform a wide range of different cryotherapy procedures. One cryotherapy procedure involves at least partially freezing tissue (e.g., cellular structures, intracellular fluid, extracellular fluid, connective tissue etc.) in a target tissue region to form crystals that alter targeted cells to modify a glandular secretion characteristic (e.g., volume, content, etc.) without destroying a significant amount of cells in the skin. To avoid destroying skin cells in a partial freeze embodiment and in an embodiment where tissue is not partially frozen, the surface of the patient's skin can be cooled to temperatures no lower than, for example, −40° C. for a duration short enough to avoid, for example, excessive ice formation, permanent thermal damage, or lightening or darkening skin, such as significant hypopigmentation (including long-lasting or permanent hypopigmentation) or hyperpigmentation (including long-lasting or permanent hyperpigmentation) in a period of time following a treatment, such as several hours; one, two, three days; or one, two, three weeks; and longer periods of time following a treatment. In another embodiment, undue destruction of skin cells, epidermal cells in particular, can be avoided by applying heat to the surface of the patient's skin to heat these skin cells above their freezing temperature. The patient's skin can be warmed to at least about −30° C., −25° C., −20° C., −15° C., −10° C., 0° C., 20° C., 30° C., or other temperature sufficient to avoid, for example, excessive ice formation, permanent thermal damage, or significant hypopigmentation or hyperpigmentation of the non-targeted and/or epidermal tissue. In some treatments, skin can be cooled to produce partial or total freeze events that cause apoptotic damage to skin tissue without causing significant damage to adjacent subcutaneous tissue. Apoptosis, also referred to as “programmed cell death”, of the skin tissue can be a genetically-induced death mechanism by which cells slowly self-destruct without incurring damage to surrounding tissues. Other cryotherapy procedures may cause non-apoptotic responses. - In some tissue-freezing procedures, the
applicator 104 can controllably freeze tissue (e.g., organic matter, inorganic matter, etc.) within a tissue region and can detect the freeze event. After detecting the freeze event, theapplicator 104 can periodically or continuously remove heat from the target tissue to keep a volume of target tissue frozen for a suitable predetermined length of time to elicit a desired response and yet a short enough period of time to not cause any unwanted or undesired side effects, such as hypopigmentation and/or hyperpigmentation. The detected freeze event can be a partial freeze event, a complete freeze event, etc. In some embodiments, the controlled freezing causes tightening of the skin, thickening of the skin, and/or a cold shock response at the cellular level in the skin. In one tissue-freezing treatment, theapplicator 104 can produce a partial or total freeze event that includes, without limitation, partial or full thickness freezing of the patient's skin for a relatively short limit to avoid cooling the adjacent subcutaneous tissue to a low enough temperature for subcutaneous cell death. The freezing process can include forming ice crystals in intracellular and/or extracellular fluids, and the ice crystals can be small enough to avoid disrupting membranes so as to prevent significant permanent tissue damage, such as necrosis. Some partial freeze events can include freezing mostly extracellular material without freezing a substantial amount of intercellular material. In other procedures, partial freeze events can include freezing mostly intercellular material without freezing a substantial amount of extracellular material. The frozen target tissue can remain in the frozen state long enough to affect the target tissue but short enough to avoid damaging non-targeted tissue or damaging an undue amount of the target tissue. For example, the duration of the freeze event can be shorter than about 20 seconds, 30 seconds, or 45 seconds or about 1, 2, 3, 4, 5 or 10 minutes. The frozen tissue can be thawed to prevent necrosis and, in some embodiments, can be thawed within about 20 seconds, 30 seconds, or 45 seconds or about 1, 2, 3, 4, 5, or 10 minutes after initiation of the freeze event. - The mechanisms of cold-induced tissue injury in cryotherapy can also involve direct cellular injury (e.g., damage to the cellular machinery) and/or vascular injury in embodiments where freezing occurs and in embodiments where freezing does not occur. For example, cell injury can be controlled by adjusting thermal parameters, including (1) cooling rate, (2) end (or minimum) temperature, (3) time held at the minimum temperature (or hold time), (4) temperature profile, and (5) thawing rate. In one example, increasing the hold time can allow the intracellular compartments to equilibrate with the extracellular space, thereby increasing cellular dehydration. Another mechanism of cold-induced injury is cold and/or freeze-stimulated immunologic injury. Without being bound by theory, it is believed that after cryotherapy, the immune system of the host is sensitized to the disrupted tissue (e.g., lethally damaged tissue, undamaged tissue, or sublethally injured tissue), which can be subsequently destroyed by the immune system.
- One mechanism to selectively affect oil and/or sebum-producing and secreting glandular cells is to cool the targeted tissue to temperatures that affect lipid-rich cells (which generally freeze or are damaged at temperatures which are higher than temperatures at which non-lipid rich cells are damaged) but that do not negatively affect non-lipid rich cells, such as other cells in the epidermal and dermal layers at or proximate to the treatment site which have lower temperature damage thresholds. The
treatment system 100 can be configured to cool the subject's skin for a period of time long enough so that lipid-rich cells (sebum or oil-producing cells residing in or at least proximate to exocrine glands) in the dermal layer are substantially affected to cause, for example, apoptosis. Apoptosis of lipid-rich cells may be a desirable outcome for beneficially altering (e.g., reducing) glandular function that may contribute to an undesirable appearance (e.g., acne, hyperhidrosis, etc.). Apoptosis of glandular lipid-rich cells can involve ordered series of biochemical events that induce cells to morphologically change. These changes include cellular blebbing, loss of cell membrane asymmetry and attachment, cell shrinkage, chromatin condensation, and chromosomal DNA fragmentation. Injury via an external stimulus, such as cold exposure, is one mechanism that can induce apoptosis in cells. Nagle, W. A., Soloff, B. L., Moss, A. J. Jr., Henle, K. J. “Cultured Chinese Hamster Cells Undergo Apoptosis After Exposure to Cold but Nonfreezing Temperatures” Cryobiology 27, 439-451 (1990). One aspect of apoptosis, in contrast to cellular necrosis (a traumatic form of cell death causing, and sometimes induced by, local inflammation), is that apoptotic cells express and display phagocytic markers on the surface of the cell membrane, thus marking the cells for phagocytosis by, for example, macrophages. As a result, phagocytes can engulf and remove the dying cells (e.g., the lipid-rich cells) without eliciting an immune response. - Without being bound by theory, one mechanism of apoptotic lipid-rich cell death by cooling is believed to involve localized crystallization of lipids within the adipocytes at temperatures that may or may not induce crystallization in non-lipid-rich cells. The crystallized lipids may selectively injure these cells, inducing apoptosis (and may also induce necrotic death if the crystallized lipids damage or rupture the bilayer lipid membrane of the glandular cell). Another mechanism of injury involves the lipid phase transition of those lipids within the cell's bilayer lipid membrane, which results in membrane disruption, thereby inducing apoptosis. This mechanism is well documented for many cell types and may be active when lipid-rich cells, are cooled. Mazur, P., “Cryobiology: the Freezing of Biological Systems” Science, 68: 939-949 (1970); Quinn, P. J., “A Lipid Phase Separation Model of Low Temperature Damage to Biological Membranes” Cryobiology, 22: 128-147 (1985); Rubinsky, B., “Principles of Low Temperature Preservation” Heart Failure Reviews, 8, 277-284 (2003). Other possible mechanisms of lipid-rich cell damage, described in U.S. Pat. No. 8,192,474, relates to ischemia/reperfusion injury that may occur under certain conditions when such cells are cooled as described herein. For instance, during treatment by cooling as described herein, targeted glandular tissue may experience a restriction in blood supply and thus be starved of oxygen due to isolation while pulled into, e.g., a vacuum cup, or simply as a result of the cooling which may affect vasoconstriction in the cooled tissue. In addition to the ischemic damage caused by oxygen starvation and the build-up of metabolic waste products in the tissue during the period of restricted blood flow, restoration of blood flow after cooling treatment may additionally produce reperfusion injury to the glandular cells due to inflammation and oxidative damage that is known to occur when oxygenated blood is restored to tissue that has undergone a period of ischemia. This type of injury may be accelerated by exposing the glandular cells to an energy source (via, e.g., thermal, electrical, chemical, mechanical, acoustic or other means) or otherwise increasing the blood flow rate in connection with or after cooling treatment as described herein. Increasing vasoconstriction in such glandular tissue by, e.g., various mechanical means (e.g., application of pressure or massage), chemical means or certain cooling conditions, as well as the local introduction of oxygen radical-forming compounds to stimulate inflammation and/or leukocyte activity in glandular tissue may also contribute to accelerating injury to such cells. Other yet-to-be understood mechanisms of injury may also exist.
- In addition to the apoptotic mechanisms involved in lipid-rich cell death, local cold exposure may induce lipolysis (i.e., fat metabolism) of lipid-rich cells. For example, cold stress has been shown to enhance rates of lipolysis from that observed under normal conditions which serves to further increase the volumetric reduction of lipid-rich cells. Vallerand, A. L., Zamecnik. J., Jones, P. J. H., Jacobs, I. “Cold Stress Increases Lipolysis, FFA Ra and TG/FFA Cycling in Humans” Aviation, Space and Environmental Medicine 70, 42-50 (1999).
- Without being bound by theory, the effect of cooling on lipid-rich cells is believed to result in, for example, membrane disruption, shrinkage, disabling, destroying, removing, killing, or another method of lipid-rich cell alteration. For example, when cooling glandular tissue in the dermal layer to a temperature lower than 37° C., lipid-rich cells (e.g., sebum-producing cells within sebaceous glands, oil-producing cells within sweat glands) can selectively be affected. In general, the remaining cells in the epidermis and dermis of the subject 101 have lower amounts of lipids compared to the secreting lipid-rich cells forming portions of the glandular tissue. Since lipid-rich cells are more sensitive to cold-induced damage than non-lipid-rich cells, it is possible to use non-invasive or minimally invasive cooling to destroy lipid-rich cells without destroying the overlying or surrounding skin cells. In some embodiments, lipid-rich cells within secretory glands are destroyed while the appearance of overlying skin is improved.
- Lipid-containing cells are more easily damaged by low temperatures than the non-lipid rich dermal and epidermal cells, and as such, the
treatment system 100 can be used to cool the desired layers of skin at the treatment sites to a temperature above the freezing point of water, but below the freezing point of fat. It is believed that the temperatures can be controlled to manage damage in the non-lipid-rich cells of the epidermis and/or dermis via, for example, intracellular and/or extracellular ice formation. Excessive ice formation may rupture the cell wall and may also form sharp crystals that locally pierce the cell wall as well as vital internal organelles. Ice crystal initiation and growth can be managed to avoid cell death in the non-targeted portions of the skin. When extracellular water freezes to form ice, the remaining extracellular fluid becomes progressively more concentrated with solutes. The high solute concentration of the extracellular fluid may cause intracellular fluid to be driven through the semi-permeable cellular wall by osmosis resulting in cell dehydration. Theapplicator 104 can reduce the temperature of the lipid-rich cells found in the targeted glandular tissue such that the lipid rich cells are destroyed while the temperature of the remaining skin cells are maintained at a high enough temperature to produce non-destructive freeze events in the skin. Cryoprotectants and/or thermal cycling can prevent destructive freeze events in the non-targeted skin tissue. - At least some aspects of the technology are directed to systems and methods of treating a patient by cooling a surface of the patient's skin to a temperature sufficiently low to cause supercooling of targeted tissue below the skin surface. The surface of the skin can then be heated to a non-supercooled temperature while the targeted tissue remains in a supercooled state. After heating the non-targeted tissue, the supercooled targeted tissue can be controllably frozen. In some embodiments, nucleation can be controlled to cause partial or total freezing. The
applicator 104 can be kept generally stationary relative to the treatment site during cooling to avoid pressure changes that would cause nucleation. After heating non-targeted tissue, the applicator can cause nucleation in the supercooled targeted tissue by, for example, varying applied pressures, delivering energy (e.g., ultrasound energy, RF energy, ultrasound energy), applying fields (e.g., electric fields), or providing other perturbations (e.g., vibrations, pulses, etc.), as well as combinations thereof. Because the non-targeted tissue has been warmed to a non-supercooled state, it does not experience a freeze event. In some embodiments, the applicator can include one or more movable plates (e.g., plates movable to vary applied pressures), rotatable eccentric masses, ultrasound transducers, electrical current generators, or other elements capable of providing nucleating perturbations. Vacuum applicators can increase and decrease vacuum levels to massage tissue, vary applied pressures, etc. - Once catalyzed, the partial or total freeze event can be detected, and a cooling device associated with the
treatment system 100 can be controlled to continue cooling the patient's skin so as to maintain a frozen state of targeted tissue for a desired period of time. The skin can be periodically or continuously cooled to keep a sufficient volume of the tissue in a frozen state. In some embodiments, the targeted tissue can be kept frozen for longer or shorter than about, for example, 1 second, 5 seconds, 10 seconds, 20 seconds, 30 seconds, 1 minute, several minutes, or other time period selected to reduce or limit frostbite or necrosis. Further, the temperature of the upper tissue of the skin can be detected, and the treatment system can be controlled to apply heat to the surface of the patient's skin for a preselected period of time to prevent freezing of non-targeted tissue. The preselected period of time can be longer or shorter than about 1, 2, 3, 4, or 5 seconds. Accordingly, non-targeted tissue can be protected without using a chemical cryoprotectant that may cause unwanted side effects. Alternatively, a cryoprotectant can also be used if an additional margin of safety for some tissue, such as the epidermis, is desired. -
FIG. 3 is a partially schematic, isometric view of a treatment system for non-invasively treating targeted structures in a human subjects body in accordance with an embodiment of the technology. Thetreatment system 100 can include theapplicator 104, aconnector 103, and abase unit 106. After applying theapplicator 104 to a subject 101, it can cool cells in or associated with targeted glands. For example, theapplicator 104 can be applied to acne-prone regions and can transcutaneously cool skin to reduce the temperature of lipid-producing cells residing in or at least proximate to sebaceous glands (e.g., glandular epithelial cells) to lower the amount of secreted sebum and thereby eliminate, reduce, or limit acne. Theapplicator 104 can also cool sweat glands and associated structures to treat hyperhidrosis. - The
connector 103 can be an umbilical cord that provides energy, fluid, and/or suction from thebase unit 106 to theapplicator 104. Thebase unit 106 can include a fluid chamber or reservoir 105 (illustrated in phantom line) and acontroller 114 carried by ahousing 125 withwheels 126. Thebase unit 106 can include a refrigeration unit, a cooling tower, a thermoelectric chiller, heaters, or any other devices capable of controlling the temperature of coolant in thefluid chamber 105 and can be connectable to an external power source and/or include an internal power supply 110 (shown in phantom line). Thepower supply 110 can provide electrical energy (e.g., a direct current voltage) for powering electrical elements of theapplicator 104. A municipal water supply (e.g., tap water) can be used in place of or in conjunction with thefluid chamber 105. In some embodiments, thesystem 100 includes a pressurization device 117 that can provide suction and can include one or more pumps, valves, and/or regulators. Air pressure can be controlled by a regulator located between the pressurization device 117 and theapplicator 104. If the vacuum level is too low, tissue may not be adequately (or at all) held against theapplicator 104, and theapplicator 104 may tend to move along the patient's skin. If the vacuum level is too high, undesirable patient discomfort and/or tissue damage could occur. A vacuum level can be selected based on the characteristics of the tissue and desired level of comfort. - An operator can control operation of the
treatment system 100 using an input/output device 118 of thecontroller 114. The input/output device 118 can display the state of operation of theapplicator 104 and treatment information. In some embodiments, thecontroller 114 can exchange data with theapplicator 104 via a wired connection or a wireless or an optical communication link and can monitor and adjust treatment based on, without limitation, one or more treatment profiles and/or patient-specific treatment plans, such as those described, for example, in commonly assigned U.S. Pat. No. 8,275,442. In some embodiments, thecontroller 114 can be incorporated into theapplicator 104 or another component of thesystem 100. - Upon receiving input to start a treatment protocol, the
controller 114 can cycle through each segment of a prescribed treatment plan. Segments may be designed to freeze tissue, thaw tissue, supercool tissue, nucleate supercooled tissue, and so on. In so doing, thepower supply 110 and thefluid chamber 105 can provide power and coolant to one or more functional components of theapplicator 104, such as thermoelectric coolers (e.g., TEC “zones”), to begin a cooling cycle and, in some embodiments, activate features or modes such as vibration, massage, vacuum, etc. Thecontroller 114 can receive temperature readings from temperature sensors, which can be part of theapplicator 104 or proximate to theapplicator 104, the patient's skin, a patient protection device, etc. It will be appreciated that while a target region of the body has been cooled or heated to the target temperature, in actuality that region of the body may be close but not equal to the target temperature, e.g., because of the body's natural heating and cooling variations. Thus, although thesystem 100 may attempt to heat or cool tissue to the target temperature or to provide a target heat flux, a sensor may measure a sufficiently close temperature or heat flux. If the target temperature or the flux has not been reached, power can be increased or decreased to change heat flux to maintain the target temperature or “set-point” selectively to affect targeted tissue. -
FIG. 4 is a cross-sectional view of theconnector 103 taken along line 4-4 ofFIG. 3 in accordance with at least some embodiments of the technology. Theconnector 103 can be a multi-line or multi-lumen conduit with a main body 179 (e.g., a solid or hollow main body), a supply fluid line orlumen 180 a (“supply fluid line 180 a”), and a return fluid line or lumen 180 b (“return fluid line 180 b”). Themain body 179 may be configured (via one or more adjustable joints) to “set” in place for the treatment of the subject. The supply and returnfluid lines 180 a, 180 b can be tubes made of polyethylene, polyvinyl chloride, polyurethane, and/or other materials that can accommodate circulating coolant, such as water, glycol, synthetic heat transfer fluid, oil, a refrigerant, and/or any other suitable heat conducting fluid. In one embodiment, eachfluid line 180 a, 180 b can be a flexible hose surrounded by themain body 179. Referring toFIGS. 3 and 4 , coolant can be continuously or intermittently delivered to theapplicator 104 via thesupply fluid line 180 a and can circulate through theapplicator 104 to absorb heat. The coolant, which has absorbed heat, can flow from theapplicator 104 back to thebase unit 106 via the return fluid line 180 b. For warming periods, the base unit 106 (FIG. 3 ) can heat the coolant such that warm coolant is circulated through theapplicator 104. Referring now toFIG. 4 , theconnector 103 can also include one or moreelectrical lines 112 for providing power to the applicator 104 (FIG. 3 ) and one ormore control lines 116 for providing communication between the base unit 106 (FIG. 3 ) and the applicator 104 (FIG. 3 ). To provide suction, theconnector 103 can include one or more vacuum tubes or lines 119. -
FIG. 5 is a schematic cross-sectional view of a treatment device in the form anon-invasive applicator 204 suitable for thetreatment system 100 in accordance with an embodiment of the present technology. Theapplicator 204 can cool tissue to produce a thermal event (e.g., supercooling event, freezing event, cooling event, etc.) in a targeted cooling or event zone 232 (shown in phantom line). Thecontroller 114 can be programmed to cause theapplicator 204 to cool the subject's skin after detecting the thermal event (e.g., freeze event, supercooling event, reaching a target temperature with or without causing a freeze event, or other detectable thermal event) so that the thermal event lasts a sufficient period of time to substantially alter secretion production levels of the glands. In some procedures, a cooling event can last long enough to permanently decrease production levels of the glands in theevent zone 232 in which most significant damage occurs. For example, most or substantially all thesebaceous glands 17 in theevent zone 232 can be destroyed, reduced, or otherwise altered to reduce or otherwise modify sebum production. - A
central region 234 of theevent zone 232 can be deeper than most of theepidermal layer 14 to avoid or limit damage to epidermal tissue which could lead to undesired skin coloration changes. Adistance 237 between the surface of the skin and theevent zone 232 can be generally equal to or greater than the thickness of theepidermis 14 and, in some embodiments, can be between about 0.1 mm to about 1.5 mm, between about 0.5 mm to about 1.5 mm, or other distances selected to keep thermal damage to epidermal tissue at or below an acceptable level. Theevent zone 232 can be at amaximum depth 239 between about 0.25 mm to about 5 mm, between about 0.25 mm to about 6 mm, between about 0.3 mm to about 5 mm, between about mm to about 6 mm, between about 0.5 mm to about 5 mm, between about 0.5 mm to about 6 mm, or other depths selected to avoid or limit injures to deeper non-targeted tissue (e.g., subcutaneous tissue 16) or structures. Theheight 241 of theevent zone 232 can be between about between about 0.1 mm to about 6 mm, between about 0.1 mm to about 3.5 mm, between about 0.3 mm to about 5 mm, between about 1 mm to about 3 mm, or other heights selected based on the thickness of thedermis 12. For example, theheight 241 can be slightly greater than the thickness of thedermis 12 to keep thermal-injuries, if any, to theepidermis 14 and/orsubcutaneous layer 16 at an acceptable level. In some embodiments, theevent zone 232 can be generally centered in thedermis 12, and theheight 241 can be less than the thickness of thedermis 12. Adjacent epidermal and subdermal tissue may also be cooled but can be at a sufficiently high temperature to avoid or limit thermal injury. The location and dimensions (e.g.,height 241, width, length, etc.) of theevent zone 232 can be selected based on the location of the targeted structures, tissue characteristics at the target site, etc. In some embodiments, theevent zone 232 can comprise significant amounts of epidermal and dermal tissue. For example, theevent zone 232 can comprise most of the tissue located directly between the cooled heat-exchangingsurface 219 and thesubcutaneous tissue 16. In some procedures, at least about 60%, 70%, 80%, 90%, or 95% of the tissue directly between the heat-exchangingsurface 219 and thesubcutaneous layer 16 can be located within theevent zone 232. Heating, cryoprotectants, and/or supercooling techniques can be used to avoid injury to the epidermal tissue. - The
applicator 204 can include acooling device 210 and aninterface layer 220. Thecooling device 210 can include, without limitation, one or morethermoelectric coolers 213, each including one or more the thermoelectric elements (e.g., Peltier-type TEC elements) powered by electrical energy from a treatment tower or base unit (e.g.,base unit 106 ofFIG. 3 ) or another power source. Thethermoelectric coolers 213 can also include controllers, temperature regulators, sensors, and other electrical components. For example, eachthermoelectric cooler 213 can include an array of individually controlled thermoelectric elements and a controller. In some embodiments, thecontroller 114 can be programmed to control operation of thethermoelectric coolers 213 to remove heat from tissue at a sufficient rate to produce a cooling event (e.g., a freeze or non-freeze event) that can cause destruction of targeted cells. In freeze event embodiments, ice crystals may nucleate and grow in theevent zone 232 and can damage cells to inhibit or otherwise affect gland function, but they may also locally pierce a sufficient amount of the cell walls to destroy the glands. - The
applicator 204 can include sensors configured to measure tissue impedance, pressure applied to the subject, optical characteristics of tissue, and/or tissue temperatures. As described herein, sensors can be used to monitor tissue and, in some embodiments, to detect events. The number and types of sensors can be selected based on the treatment to be performed. In some embodiments, theapplicator 204 can include acommunication component 215 that communicates with thecontroller 114 to provide a first sensor reading 242, and asensor 217 that measures, e.g., temperature of thecooling device 210, heat flux across a surface of or plane within thecooling device 210, tissue impedance, application force, tissue characteristics (e.g., optical characteristics), etc. Theinterface layer 220 can be a plate, a film, a covering, a sleeve, a substance reservoir or other suitable element described herein and, in some embodiments, may serve as the patient protection device described herein. - The
interface layer 220 can also contain asimilar communication component 225 that communicates with thecontroller 114 to provide a second sensor reading 244 and asensor 227 that measures, e.g., the skin temperature, temperature of theinterface layer 220, heat flux across a surface of or plane within theinterface layer 220, contact pressure with the skin of the patient, etc. For example, one or both of thecommunication components sensors sensors applicator 204 and the patient's skin. - In certain embodiments, the
applicator 204 can include a sleeve or liner 250 (shown schematically in phantom line) for contacting the patient'sskin 230, for example, to prevent direct contact between theapplicator 204 and the patient'sskin 230, and thereby reduce the likelihood of cross-contamination between patients, minimize cleaning requirements for theapplicator 204, etc. Thesleeve 250 can include afirst sleeve portion 252 and asecond sleeve portion 254 extending from the first sleeve portion. Thefirst sleeve portion 252 can contact and/or facilitate contact of theapplicator 204 with the patient'sskin 230, while thesecond sleeve portion 254 can be an isolation layer extending from thefirst sleeve portion 252. Thesecond sleeve portion 254 can be constructed from latex, rubber, nylon, Kevlar, or other substantially impermeable or semi-permeable material. Thesecond sleeve portion 254 can prevent contact between the patient'sskin 230 and theapplicator 204, among other things. Further details regarding a patient protection device may be found in U.S. Patent Publication No. 2008/0077201. - The
applicator 204 can be manually held against the subject's skin and can also include a belt or other retention devices (not shown) for holding theapplicator 204 against the skin. The belt may be rotatably connected to theapplicator 204 by a plurality of coupling elements that can be, for example, pins, ball joints, bearings, or other types of rotatable joints. Alternatively, retention devices can be rigidly affixed to the end portions of theinterface layer 220. Further details regarding suitable belt devices or retention devices may be found in U.S. Patent Publication No. 2008/0077211. In conjunction with or in place of a retention device, a vacuum can assist in forming a contact between the applicator 204 (such as via theinterface layer 220 or sleeve 250) and the patient'sskin 230. - The
sensors sensor readings 242, 244) collected in real-time because real-time processing of such output can help correctly and efficaciously administer treatment. The output can be detected temperatures, heat fluxes, optical characteristics of tissue, mechanical characteristics of tissue, etc. In one example, real-time data processing is used to detect cooling events and to determine a period of time to continue cooling the patient's skin after one or more cooling events are detected. Tissue can be monitored to keep a desired region or volume of tissue in the cooled state (e.g., at least partially or totally frozen state) for a period of time selected by thecontroller 114 or an operator. The period of time can be equal to or longer than about, for example, 5 seconds, 10 seconds, 30 seconds, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30 minutes, 1 hour, or other suitable period of time. In some procedures, the cooling event is a freeze event that lasts a period of time which is longer than 10 seconds and shorter than 10 minutes. - Optionally, the
applicator 204 can include one or more features used with supercooling. For example, theinterface layer 220 can include one ormore nucleation elements nucleation elements FIG. 3 ) can include an RF generator for driving theelements nucleation elements interface layer 220 or other components of theapplicator 204 to provide the ability to controllably nucleate supercooled tissue. - Although the
thermoelectric elements 213 can heat tissue, theapplicator 204 can also include dedicated heating elements used to, for example, thaw tissue.FIG. 5 shows theinterface layer 220 includingheaters 235 for generating heat delivered to the surface of theskin 230. Theheaters 235 can be resistive heaters, Peltier devices, or other thermoelectric elements. Optionally, thenucleation elements skin 230. For example, thenucleation elements skin 230 or deeper tissue. - Multiple applicators may be concurrently or sequentially used during a treatment session, and such applicators can include, without limitation, vacuum applicators, belt applicators, and so forth. Each applicator may be designed to treat identified portions of the patient's body, such as the chin, cheeks, forehead, back, shoulders, arms, pectoral areas, armpits, genital region, palms of hands, soles of feet and so forth. For example, a vacuum applicator may be applied at the back region, and the belt applicator may be applied around the thigh region, either with or without massage or vibration. Exemplary applicators and their configurations usable or adaptable for use with the
treatment system 100 are described in, e.g., U.S. Pat. No. 8,834,547 and commonly assigned U.S. Pat. No. 7,854,754 and U.S. Patent Publication Nos. 2008/0077201, 2008/0077211, and 2008/0287839, which are incorporated by reference in their entireties. -
FIGS. 6A to 6C illustrate treatment devices suitable for use with treatment systems disclosed herein in accordance with embodiments of the technology.FIG. 6A is a schematic, cross-sectional view illustrating anapplicator 260 for non-invasively removing heat from target areas of a subject 262. Theapplicator 260 can include a heat-exchanging unit or cooling device 264 (shown in phantom line) and an interface layer 265 (shown in phantom line). Theinterface layer 265 can have a rigid or compliantconcave surface 267. When theapplicator 260 is held against the subject, the subject's tissue can be pressed against thecurved surface 267. In some treatments, the compliantconcave surface 267 can be suitable for being applied to a subject's chin, cheek, forehead, or other contoured body area. One or more vacuum ports can be positioned along thesurface 267 to draw theskin 262 against thesurface 267. The configuration of theapplicator 260 can be selected based on the treatment site. -
FIG. 6B is a schematic, cross-sectional view illustrating anapplicator 270 that can include a heat-exchangingunit 274 having a rigid or compliantconvex surface 276 configured to be applied to concave regions of the subject. Advantageously, theconvex surface 276 can spread tissue to reduce the distance between theconvex surface 276 and targeted tissue under theconvex surface 276. In some treatments, theapplicator 270 can be applied to the axilla (i.e., armpit) region to affect apocrine sweat glands. -
FIG. 6C is a schematic, cross-sectional view illustrating anapplicator 280 including asurface 282 movable between aplanar configuration 284 and a non-planar configuration 285 (shown in phantom). Thesurface 282 is capable of conforming to the treatment site to provide a large contact area. In some embodiments, thesurface 282 can be sufficiently compliant to conform to highly contoured regions of a subject's face when theapplicator 280 is pressed against facial tissue. In other embodiments, theapplicator 280 can include actuators or other devices configured to move thesurface 282 to a concave configuration, a convex configuration, or the like. Thesurface 282 can be reconfigured to treat different treatment sites of the same subject or multiple subjects. -
FIG. 6D is a side view of anapplicator 289 configured to treat a targeted feature. Targeted features can be, without limitation, cysts, glands, or other discrete features. Theapplicator 289 can include amain housing 290, a coolingassembly 291, and acontrol element 292. Themain housing 290 can be a tubular member that surrounds and protects the coolingassembly 291. The coolingassembly 291 can include, without limitation, a cooling device or element 293 (“coolingelement 293”) and aconnector 294. Thecooling element 293 can be connected to another device (e.g., a control tower or base unit) by theconnector 294. Theconnector 294 can be a rod that is moved distally (indicated by arrow 295) or proximally (indicated by arrow 296) to move thecooling element 293 along a passageway of thehousing 290. Theconnector 294 can include one or more conduits, wires, passageways, or other features for providing energy (e.g., electrical energy, radiofrequency energy, etc.), coolant, a vacuum, or the like. In some embodiments, theconnector 294 can be an umbilical rod that provides energy, fluid, and/or suction. Theapplicator 289 can include sensors or other applicator components disclosed herein. For example, theapplicator 289 can include sensors configured to measure tissue impedance, pressure applied to the subject, optical characteristics of tissue, and/or tissue temperatures in order to monitor tissue and, in some embodiments, to detect events, such as partial or complete freeze events. -
FIG. 6E is a cross-sectional view of a distal portion of theapplicator 289. Thecooling element 293 is spaced apart from anopening 303 for receiving afeature 297 to be treated. Theconnector 294 can be pushed distally (indicated by arrow 299) to move thecooling element 293 relative to alongitudinal axis 305 of theapplicator 289. In some embodiments, theconnector 294 is manually moved through thehousing 290. In other embodiments, theapplicator 289 can include or be used with a drive device configured to move theconnector 294. The drive device can include, without limitation, one or more motors (e.g., drive motors, stepper motors, etc.), sensors (e.g., position sensors), controllers, or other components. -
FIG. 6F is a cross-sectional view of theapplicator 289 after thecooling element 293 thermally contacts thetarget feature 297. In some embodiments, thecooling element 293 can have a generallyconcave surface 301 for contacting a large area of the protrudingtarget feature 297, such as a sebaceous cyst, sudoriferous cyst, cyst of Zeis, hidrocystoma, bulging gland, acne, or other treatable feature. - The
control element 292 can be used to adjust thecooling element 293 by, for example, bending or otherwise adjusting the configuration of thecooling element 293. The curvature of thesurface 301 can be increased or decreased by moving thecontrol element 292 inwardly or outwardly, respectively. Thecontrol element 292 can include, without limitation, one or more clamps, bands, locking features, etc. for adjusting the configuration of the distal end of themain housing 290 andcooling element 293. Thecooling element 293 can be flexible to comfortably engage the target features, such as a bulging cyst. In rigid embodiments, a physician can select acurved cooling element 293 with a configuration (e.g., a partially spherical shape, partially elliptical shape, etc.) selected based on, for example, the shape and/or configuration of targeted feature(s). Thecooling element 293 can include, without limitation, one or more cooling devices, thermoelectric coolers, cooling channels, electrodes, heating elements, or other features for treating thetarget feature 297. After thecooling element 293 contacts theskin 307, thecooling element 293 can actively cool thetarget feature 297. - The
applicator 289 can be used to cool/heat relatively small features that may be near sensitive non-targeted tissue. The size of thecooling element 293 can be selected to minimize treatment of non-targeted tissue. To treat features around the eyes, theapplicator 289 can be selected such that most of the tissue received by thecooling element 293 is targeted tissue to avoid affecting surrounding tissue. In some procedures, theapplicator 289 can be applied to the subject such that the targeted feature is positioned within the opening 303 (FIG. 6E ). Thecooling element 293 can be moved through thehousing 290 and into thermal contact with the subject'sskin 307. In some procedures, thecooling element 293 can be moved back and forth to adjust the applied pressure, provide a massaging effect, promote nucleation, or the like. Theapplicator 289 can treat a wide range of features or areas at various locations along the subject's body. -
FIGS. 7 and 8 are flow diagrams illustrating methods for treating sites in accordance with embodiments of the technology. Although specific example methods are described herein, one skilled in the art is capable of identifying other methods that could be performed using embodiments disclosed herein. The methods are generally described with reference to thetreatment system 100 ofFIG. 3 , but the methods may also be performed by other treatment systems with additional or different hardware and/or software components. -
FIG. 7 is a flow diagram illustrating amethod 350 for treating exocrine glands in accordance with embodiments of the technology. Generally, a subject's skin can be cooled to thermally affect a target region containing exocrine glands. Treatment can be monitored in order to keep tissue cooled for a sufficient length of time to affect the exocrine glands. Details ofmethod 350 are discussed below. - At
block 352, a treatment device is applied to a subject by placing its heat-exchanging surface or other feature in thermal contact with the subject's skin. The surface of the subject's skin can be continuously or periodically cooled to produce at least one cooling event (e.g., a partial freeze event, a complete freeze event, supercooling event, etc.) in a portion of the skin with exocrine glands. In treatments for acne, the targeted glands can be sebaceous glands and/or supporting structures, which may be in the epidermis and/or dermis. In treatments for excessive sweating, the targeted glands can be sweat glands and/or supporting structures. - Rapid cooling can create a thermal gradient with the coldest temperatures in the region of skin near the treatment device whereas rapid heating can create a thermal gradient with the highest temperatures in the region of skin near the treatment device. During cooling, skin can be frozen for a short enough duration to not establish a temperature equilibrium across the skin and adjacent subcutaneous tissue. Cryoprotectant(s) and/or warming cycle(s) can be used to inhibit freezing of the uppermost non-targeted layer or layers of skin (e.g., layers of the epidermis). In some procedures, a cryoprotectant can be applied to the treatment site to inhibit damage to the epidermis while cooling and freezing the dermal layer without causing freeze damage to subcutaneous tissue. As such, the combination of cryoprotectant and controlled cooling can produce a desired cooling zone, and cooling of the cooling zone can be controlled to either have a non-freeze cooling event, a partial freeze event or a total brief freeze event. In some embodiments, the treatment device can non-invasively produce a freeze event that begins within a predetermined period of time after the applicator begins cooling the patient's skin. The predetermined period of time can be equal to or shorter than about 10 seconds, 30 seconds, 60 seconds, 90 seconds, 120 seconds, or 150 seconds or longer periods and, in some embodiments, can be from between about 10 seconds to about 150 seconds, between about 30 seconds to about 150 seconds, or between about 60 seconds to about 150 seconds. In some embodiments, the predetermined period of time can be shorter than about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 minutes. A controller (e.g.,
controller 114 ofFIG. 2 ) can select the predetermined period of time for producing a cooling event based on the treatment temperatures, treatment sites, and/or cryotherapy to be performed. Alternatively, an operator can select the period of time for cooling and can enter it into thecontroller 114. - In some embodiments, the subject's skin can be cooled to produce a partial freeze event that includes at least some crystallization (e.g., formation of microscopic ice crystals) in intercellular material (e.g., fluid, cell components, etc.) and/or extracellular fluid. By avoiding extensive ice crystal formation that would cause frostbite or necrosis, partial freeze events can occur without excessive tissue damage. In some embodiments, the surface of the patient's skin can be cooled to a temperature no lower than about −40° C., −30° C., −20° C., −10° C., −5° C., or −3° C. to produce a partial freeze event in the skin without causing irreversible skin damage. In one example, the surface of the skin can be cooled to from about −40° C. to about 0° C., from about −30° C. to about 0° C., from about −20° C. to about 0° C., or from about −15° C. to about 0° C. or below about −10° C., −20° C., −20° C., −30° C., or −40° C. It will be appreciated that the surface of the skin can be cooled to other temperatures that are selected based on the mechanism of action.
- At
block 354, one or more events (e.g., freeze events) can be detected using one or more electrical components of the treatment device. During cooling, targeted tissue can reach a temperature below the freezing point of its biological tissue and fluids (e.g., approximately −1.8° C.). As tissue, fluids, and lipids freeze, crystals can form and energy associated with the latent heat of crystallization is released. The treatment system can determine the extent of freezing based on the detected temperature changes caused of crystallization. A relatively small positive change in tissue temperature can indicate a partial or total freeze event whereas a relatively large positive change in tissue temperature can indicate a complete freeze event. The sensor 167 (FIG. 2 ) and thesensor 227 ofFIG. 5 can be freeze detect sensors capable of detecting the positive change in tissue temperature, and the treatment system can identify it as a freeze event. The treatment system can be programmed so that small temperature variations do not cause false alarms with respect to false events. Additionally or alternatively, the treatment systems may detect changes in the temperature of its components or changes in power supplied to treatment devices, or other components, to identify freeze events. - The
treatment system 100 ofFIG. 3 can use optical techniques to detect cooling events atblock 354 ofFIG. 7 . For example,sensor 167 ofFIG. 2 andsensors FIG. 5 can be optical sensors capable of detecting changes in the optical characteristics of tissue caused by freezing. Optical sensors can include, without limitation, one or more energy emitters (e.g., light sources, light emitting diodes, etc.), detector elements (e.g., light detectors), or other components for non-invasively monitoring optical characteristics of tissue. In place of or in conjunction with monitoring using optical techniques, tissue can be monitored using electrical and/or mechanical techniques. In embodiments for measuring electrical impedance of tissue, the sensors (e.g.,sensor 167 ofFIG. 2 andsensors FIG. 5 ) can include two electrodes that can be placed in electrical communication with the skin for monitoring electrical energy traveling between the electrodes via the tissue. In embodiments for measuring mechanical properties of tissue, the sensors disclosed herein can comprise one or more mechanical sensors which can include, without limitation, force sensors, pressure sensors, and so on. - At
block 356, the treatment device and other treatment parameters can be controlled to control the temperature in the target region and, in some embodiments, includes periodically or continuously cooling the patient's tissue to keep a target region of skin in a cooled state (e.g., a frozen state) for a period of time. The treatment parameters can include, for example, cryoprotectant protocols, temperature profiles, treatment durations, number of cooling zones, characteristics of cooling zones, energy delivered to tissue, control parameters (e.g., control parameters for features such as vibration, massage, vacuum, and other treatment modes), or the like. For example, the skin within the cooling zone (e.g.,event zone 232 ofFIG. 5 ) can be kept frozen for a length of time selected based on the desired severity of the freeze injury. In short treatments, the period of time can be equal to or shorter than about 5, 10, 15, 20, or 25 seconds. In longer treatments, the period of time can be equal to or longer than about seconds, 30 seconds, 45 seconds or 1, 2, 3, 4, 5, or 10 minutes. In some procedures, the treatment device can be controlled so that the skin is partially or completely frozen for no longer than, for example, 5 minutes, 10 minutes, 20 minutes, minutes, 45 minutes, or 1 hour. In some examples, the skin is frozen for about 1 minute to about 5 minutes, about 5 minutes to about 10 minutes, about 10 minutes to about 20 minutes, about 20 minutes to about 30 minutes, or about 30 minutes to about 1 hour. - In some embodiments, the treatment system can control the treatment device so that the freeze event causes apoptotic damage to targeted glands but does not cause such damage to non-targeted tissue. In one example, the treatment device produces a partial freeze event short enough to prevent establishing equilibrium temperature gradients in the patient's skin. This allows freezing of shallow targeted tissue without substantially affecting deeper non-targeted tissue. Moreover, cells in the dermal layer can be affected to a greater extent than the cells in the subdermal layer (e.g., subcutaneous adipose tissue). In some procedures, the subdermal layer can be kept at a sufficiently high temperature (e.g., at or above 0° C.) while the shallower dermal tissue experiences the partial or total freeze event. The treatment system can also control operation of the treatment devices to thermally injure tissue to cause fibrosis, which increases the amount of connective tissue in a desired tissue layer (e.g., epidermis and/or dermis) to increase the firmness and appearance of the skin. In other treatments, the treatment system controls one or more applicators to supercool and freeze dermal tissue.
- At
block 358, the frozen region can be thawed by heating it and/or applying a topical substance in order to minimize, reduce, or limit tissue damage. The applicator can thaw the patient's skin after the freeze event occurs and after a period of time has transpired. The period of time can be equal to or shorter than about 5, 10, 15, 20, or seconds or about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 minutes. In one example, the uppermost skin layer(s) can be periodically heated to a temperature above the skin's freezing point to provide freeze protection thereto. The applicator can include one or more thermal elements (e.g., resistive heaters, electromagnetic energy emitters, Peltier devices, etc.) for heating tissue. For example, acooling element 109 ofFIG. 2 can be a Peltier device or one or more resistive heaters capable of generating heat for thawing tissue. In some embodiments, theapplicator 104 ofFIGS. 2 and 3 can have separate and independently controlled cooling elements and heating elements that can cooperate to provide precise temperature control for freezing and thawing/warming cycles. In some embodiments, applicators may stop cooling tissue to allow frozen tissue to passively warm and thaw. - The treatment systems disclosed herein can monitor the location and/or movement of the treatment devices and may prevent false or inaccurate determinations of treatment events based on such monitoring. During treatment, the treatment device may move which may cause it to contact a warmer area of skin, to no longer contact the skin, and so on. This may cause the treatment system to register a difference in temperature that is inconsistent with a normal treatment. Controllers (e.g.,
controller 114 ofFIG. 3 ) may be programmed to differentiate between these types of temperature increases and a temperature increase associated with freezing. U.S. Pat. No. 8,285,390 discloses techniques for monitoring and detecting freeze events and applicator movement and is incorporated by reference in its entirety. Additionally, treatment systems can provide an indication or alarm to alert the operator to the source of this temperature increase. In the case of a temperature increase not associated with an event, the system may also suppress false indications, while in the case of a temperature increase associated with freezing, the system take any number of actions based on that detection. -
FIG. 8 is a flow diagram illustrating amethod 400 in accordance with an aspect of the present technology. Generally, a substance can be applied to the treatment site. The applicator can be applied to the treatment site and can cool tissue while the cryoprotectant protects non-targeted tissue. A cooled region (e.g., a frozen or non-frozen region) can be warmed (e.g., thawed) to inhibit or limit thermal damage to tissue. In some embodiments, the treatment site can be monitored to keep tissue frozen or non-frozen but yet cold for a sufficient length of time to affect glands. Details ofmethod 400 are discussed below. - At
block 402, a substance can be applied to the subject's skin to improve heat transfer between the treatment device and the subjects skin, selectively protect non-target tissues from thermal damage (e.g., freeze damage due to crystallization), and/or initiate/control thermal events. In one embodiment, the substance can be a cryoprotectant that prevents, inhibit, or limits damage to non-targeted tissue. Additionally or alternatively, the cryoprotectant can allow, for example, the treatment device to be pre-cooled prior to being applied to the subject for more efficient treatment. Further, the cryoprotectant can also enable the treatment device to be maintained at a desired low temperature while preventing ice formation on the cooled surface of the treatment device, and thus reduces the delay in reapplying the treatment device to the subject. Yet another aspect of the technology is the cryoprotectant may prevent the treatment device from freezing to the subject's skin. Certain cryoprotectants can allow microscopic crystals to form in the tissue but can limit crystal growth that would cause cell destruction and, in some embodiments, can allow for enhanced uptake or absorption and/or retention in target glands and/or surrounding tissue prior to and during cooling. - Some embodiments according to the present technology may use a cryoprotectant with a freezing point depressant that can assist in preventing freeze damage that would destroy cells. Suitable cryoprotectants and processes for implementing cryoprotectants are described in commonly-assigned U.S. Patent Publication No. 2007/0255362. The cryoprotectant may additionally include a thickening agent, a pH buffer, a humectant, a surfactant, and/or other additives and adjuvants as described herein. Freezing point depressants may include, for example, propylene glycol (PG), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO), or other suitable alcohol compounds. Cryoprotectant can be delivered to the surface of the patient's skin for a period of time which is short enough to not significantly inhibit the initiation of the partial freeze event in dermal tissue but which is long enough to provide substantial protection to non-targeted tissue epidermal. Multiple cryoprotectants can be used to protect different tissue layers. For example, a first cryoprotectant for protecting deep tissue can be applied before a second cryoprotectant for protecting shallow tissue because the first cryoprotectant may require a longer delivery time to reach the deeper tissue.
- The rate of cryoprotectant delivery can be selected based on the characteristics of the cryoprotectant and the desired amount of tissue protection. In one specific treatment, an interface member is placed directly over the target area, and the treatment device with a disposable sleeve or liner is placed in contact with the interface member. The interface member can be a cotton pad, a gauze pad, a pouch, or a container with a reservoir containing a volume of cryoprotectant or other flowable conductive substance. The interface member can include, for example, a non-woven cotton fabric pad saturated with cryoprotectant that is delivered at a desired delivery rate. Suitable pads include Webril™ pads manufactured by Covidien of Mansfield, Massachusetts. Further details regarding interface members and associated systems and methods of use are described in commonly-assigned U.S. Patent Publication No. 2010/0280582.
- In
block 404, the subjects skin can be cooled using a treatment device in thermal contact with the subject's skin. The surface of the subject's skin can be continuously or periodically cooled to produce a freeze event (e.g., partial freeze event, complete freeze event, etc.). The description ofblock 352 inFIG. 7 applies equally to block 404 inFIG. 8 . - In
block 406, thermal energy can be delivered to the surface of the skin before, during, and/or after skin cooling to protect non-targeted tissue in the uppermost region of the skin. In some embodiments, the dermal tissue with glands below the epidermis can be frozen/supercooled. The treatment device can heat the surface of the skin to warm the epidermis or portions thereof to prevent, inhibit, or limit damage to non-targeted epidermal tissue while the region of dermal tissue with glands remains in a frozen/supercooled state. If the targeted region is supercooled, it can be controllably frozen using one or more nucleation initiators (e.g., mechanical perturbation such as vibration, ultrasound pulse, change in pressure, etc.). - Heat can be delivered transcutaneously to the subcutaneous layer to protect the subcutaneous tissue. For example, subcutaneous tissue can be heated prior to tissue cooling the subject's skin at
block 404. In some procedures, the subcutaneous tissue can be periodically heated (e.g., heated using radiofrequency energy) during skin cooling. Some embodiments, the skin can be alternatingly heated and cooled. The heating cycles can be used to keep the subcutaneous tissue at or above a threshold temperature (e.g., above its freezing point) to avoid freeze damage to the subcutaneous layer. The cooling cycles can be used to periodically cool the targeted dermal tissue and/or epidermal tissue. In some embodiments, the topical substance can be applied in order to minimize, reduce, or limit tissue damage. - At
block 408, the frozen region can be warmed (e.g., thawed). In freeze event embodiments, the applicator can thaw the patient's skin after the freeze event occurs and after a period of time has transpired. The thawing process atblock 408 can be the same as the thawing process ofblock 358 ofFIG. 7 . -
FIGS. 9 and 10 are flow diagrams illustrating methods for supercooling regions in accordance with embodiments of the technology. Generally, a surface of a human subject's skin can be cooled to a temperature no lower than −40° C. to avoid unwanted skin damage and so that the temperature of at least a portion of tissue is in a supercooled state. The surface of the skin can be heated to bring shallow non-targeted tissue out of the supercooled state while the deeper targeted region remains in the supercooled state. The supercooled targeted region can be nucleated due to a perturbation that causes at least partial or total freezing that destroys or damages targeted cells, for example, due to crystallization of intracellular and/or extracellular fluids. In one embodiment, mechanical perturbation and/or other catalyst for nucleation (e.g., RF energy, alternating electric fields, etc.) within the target tissue can be provided only following a protective increase of a temperature of non-targeted epidermal layers. The mechanical perturbations can be vibrations, ultrasound pulses, and/or changes in pressure. The non-targeted layers can be warmed enough to avoid freezing of non-targeted tissue upon nucleation. The treatment system 100 (FIG. 3 ) can utilize applicators disclosed herein to perform such supercooling methods. -
FIG. 9 is a flow diagram illustrating amethod 450 in accordance with an aspect of the present technology. An early stage of themethod 450 can include cooling a surface of a human subject's skin to a first temperature (block 452). The first temperature can be, for example, between about −10° C. and −40° C. such that a portion of tissue below the surface is in a supercooled state. In other embodiments, the first temperature can be a temperature between about −15° C. and −25° C., a temperature between about −20° C. and about −30° C., or other temperature below a freezing temperature. - In
block 454, the surface of the human subject's skin is heated an amount sufficient to raise the skin surface temperature from the first temperature to a second temperature, which can be a non-supercooled temperature, while the targeted region remains in the supercooled state. For example, the treatment system can be used to heat the surface of the skin to a temperature higher than about 0° C., higher than about higher than about 10° C., higher than about 20° C., higher than about 30° C., or higher than about 35° C. There can be a temperature gradient between the targeted tissue and the skin surface such that most of the non-targeted tissue (e.g., epidermis) is at a non-supercooled temperature. - In
block 456, the supercooled portion of tissue below the skin surface can be nucleated to cause at least some fluid and cells in the supercooled tissue to at least partially or totally freeze. In one embodiment, nucleation of the supercooled tissue is caused by a mechanical perturbation, ultrasound, massaging, or other suitable nucleation initiator. Warmed cells residing at the surface of the human subject's skin do not freeze atblock 456. As such, cells at the skin surface are protected without using a chemical cryoprotectant. The chemical cryoprotectants can be selected to inhibit or limit hyperpigmentation or hypopigmentation. - In
block 458, the supercooled tissue can be maintained in the at least partially or totally frozen state for a predetermined period of time longer than, for example, about 10 seconds, 12 seconds, 15 seconds, or 20 seconds. In various arrangements, the supercooled tissue in a cooling zone (e.g.,event zone 232 ofFIG. 5 ) can be maintained in the at least partially or totally frozen state for a duration of time sufficient to treat acne, improve a quality of hair, treat hyperhidrosis, etc. In certain embodiments, the skin is cooled/heated to maintain targeted tissue in at least a partially or totally frozen state for the predetermined time longer than about 10 seconds, longer than about 12 seconds, longer than about 15 seconds, or longer than about 20 seconds. -
FIG. 10 illustrates amethod 500 for affecting a target region in a human subject's body in accordance with another embodiment of the present technology. Themethod 500 can include transdermally removing heat from tissue at a target region such that the target region is cooled to a supercooled temperature (block 502). The supercooled temperature can be, for example, below about 0° C. or within a range from about 0° C. to about −20° C., from about −10° C. to about −30° C., from about −20° C. to about −40° C., or no lower than about −40° C. Cryoprotectants can be used when cooling tissue to very low temperatures, including temperatures lower than −40° C. - In
block 504, themethod 500 includes applying heat to an epidermis of the target region to warm epidermal cells in the target region to a temperature above freezing while glands in the dermis are at or near the supercooled temperature. For example, the step of applying heat can include warming a portion of most of the epidermal layer under the treatment device to a temperature above about 0° C., about about 10° C., about 20° C., about 25° C., or about 32° C. Warming can be accomplished by thermal heaters (e.g.,heaters 235 inFIG. 5 ) disposed on a surface of the applicator contacting or confronting a skin surface. Alternatively, if deeper tissue is not targeted, such tissue could be warmed using focused electrical currents which focus their energy below the skin surface, focused ultrasound which has a focal point for its energy below the skin surface, or RF energy. In such embodiments, theelements 235 ofFIG. 5 can be electrodes or transducers. - In
block 506, a freeze event in the dermal layer can selectively affect the targeted glands while epidermal cells are not affected by the freeze event. Themethod 500 can include providing at least one of vibration, mechanical pressure, and ultrasound pulses to the target region to cause such a freeze event. In various arrangements, the freeze event can cause at least partial crystallization of a plurality of gland cells in the target region. Beneficially, the epidermal cells are protected to avoid or limit freeze damage to those cells. - In some
methods 500, supercooled temperatures of the targeted tissue can be achieved without initiating nucleation by cooling the treatment site at a relatively slow rate (e.g., the temperature profile can cause a slow cooling of the tissue at the target region) atblock 502. For example, the rate of cooling can be either equal to, slower or faster than about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 degrees C. per minute. A preferred rate of cooling is about either 2, 4, or 6 degrees C. per minute. Additionally or alternatively, a treatment device can apply a generally constant pressure during cooling to the supercooled temperature range to avoid pressure changes that would cause inadvertent nucleation. In a further embodiment, the targeted tissue can be cooled while the patient is held still (e.g., without movement of the treatment site) to avoid mechanically disturbing the supercooled tissue and unintentionally causing crystallization. Atblock 504, the temperature of the non-targeted surface tissue can be warmed to a non-freezing temperature and/or a non-supercooled temperature prior to perturbation and subsequent freezing. In one embodiment, the warming cycle of the temperature profile can occur quickly such that the underlying and/or targeted tissue remains in the supercooled state throughout the warming cycle. The supercooled tissue can then be nucleated atblock 506. - Various aspects of the methods disclosed herein can include cosmetic treatment methods for treating the target region of a human subject's body to achieve a cosmetically beneficial alteration of a portion of tissue within the target region. Such cosmetic methods can be administered by a non-medically trained person. The methods disclosed herein can also be used to (a) improve the appearance of skin by tightening the skin, improving skin tone and texture, eliminating or reducing wrinkles, increasing skin smoothness, thickening the skin, (b) improve the appearance of cellulite, and/or (c) treat sebaceous glands, hair follicles, and/or sweat glands.
-
FIG. 11 is a schematic block diagram illustrating subcomponents of acomputing device 700 suitable for thesystem 100 ofFIG. 3 in accordance with an embodiment of the disclosure. Thecomputing device 700 can include aprocessor 701, a memory 702 (e.g., SRAM, DRAM, flash, or other memory devices), input/output devices 703, and/or subsystems andother components 704. Thecomputing device 700 can perform any of a wide variety of computing processing, storage, sensing, imaging, and/or other functions. Components of thecomputing device 700 may be housed in a single unit or distributed over multiple, interconnected units (e.g., though a communications network). The components of thecomputing device 700 can accordingly include local and/or remote memory storage devices and any of a wide variety of computer-readable media. - As illustrated in
FIG. 11 , theprocessor 701 can include a plurality offunctional modules 706, such as software modules, for execution by theprocessor 701. The various implementations of source code (i.e., in a conventional programming language) can be stored on a computer-readable storage medium or can be embodied on a transmission medium in a carrier wave. Themodules 706 of the processor can include aninput module 708, adatabase module 710, aprocess module 712, anoutput module 714, and, optionally, adisplay module 716. - In operation, the
input module 708 accepts anoperator input 719 via the one or more input/output devices described above with respect toFIG. 5 , and communicates the accepted information or selections to other components for further processing. Thedatabase module 710 organizes records, including patient records, treatment data sets, treatment profiles and operating records and other operator activities, and facilitates storing and retrieving of these records to and from a data storage device (e.g.,internal memory 702, an external database, etc.). Any type of database organization can be utilized, including a flat file system, hierarchical database, relational database, distributed database, etc. - In the illustrated example, the
process module 712 can generate control variables based onsensor readings 718 from sensors (e.g.,sensor 167 ofFIG. 2 , thetemperature measurement components FIG. 5 , etc.) and/or other data sources, and theoutput module 714 can communicate operator input to external computing devices and control variables to the controller 114 (FIGS. 3 and 5 ). The display module 816 can be configured to convert and transmit processing parameters, sensor readings 818, output signals 720, input data, treatment profiles and prescribed operational parameters through one or more connected display devices, such as a display screen, printer, speaker system, etc. Asuitable display module 716 may include a video driver that enables thecontroller 114 to display thesensor readings 718 or other status of treatment progression. - In various embodiments, the
processor 701 can be a standard central processing unit or a secure processor. Secure processors can be special-purpose processors (e.g., reduced instruction set processor) that can withstand sophisticated attacks that attempt to extract data or programming logic. The secure processors may not have debugging pins that enable an external debugger to monitor the secure processor's execution or registers. In other embodiments, the system may employ a secure field programmable gate array, a smartcard, or other secure devices. - The
memory 702 can be standard memory, secure memory, or a combination of both memory types. By employing a secure processor and/or secure memory, the system can ensure that data and instructions are both highly secure and sensitive operations such as decryption are shielded from observation. Thememory 702 can contain executable instructions for cooling the surface of the subject's skin to a temperature and controlling treatment devices in response to, for example, detection of a partial or complete freeze events. Thememory 702 can include thawing instructions that, when executed, causes the controller to control the applicator to heat tissue. In some embodiments, thememory 702 stores instructions that can be executed to control the applicators to perform the methods disclosed herein without causing undesired effects, such as significantly lightening or darkening skin one of more days after the freeze event ends. The instructions can be modified based on patient information and treatments to be performed. Other instructions can be stored and executed to perform the methods disclosed herein. - Suitable computing environments and other computing devices and user interfaces are described in commonly assigned U.S. Pat. No. 8,275,442, entitled “TREATMENT PLANNING SYSTEMS AND METHODS FOR BODY CONTOURING APPLICATIONS,” which is incorporated herein in its entirety by reference.
- It will be appreciated that some well-known structures or functions may not be shown or described in detail, so as to avoid unnecessarily obscuring the relevant description of the various embodiments. Although some embodiments may be within the scope of the technology, they may not be described in detail with respect to the Figures. Furthermore, features, structures, or characteristics of various embodiments may be combined in any suitable manner. The technology disclosed herein can be used for improving skin and skin conditions and to perform the procedures disclosure in U.S. Provisional Application Ser. No. 61/943,250, filed Feb. 21, 2014, U.S. Pat. No. 7,367,341 entitled “METHODS AND DEVICES FOR SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al., and U.S. Patent Publication No. US 2005/0251120 entitled “METHODS AND DEVICES FOR DETECTION AND CONTROL OF SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al., the disclosures of which are incorporated herein by reference in their entireties. The technology disclosed herein can target tissue for tightening the skin, improving skin tone or texture, eliminating or reducing wrinkles, increasing skin smoothness as disclosed in U.S. Provisional Application Ser. No. 61/943,250.
- Unless the context clearly requires otherwise, throughout the description, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. Use of the word “or” in reference to a list of two or more items covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list. In those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense of the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense of the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.).
- Any patents, applications and other references, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the described technology can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments. While the above description details certain embodiments and describes the best mode contemplated, no matter how detailed, various changes can be made. Implementation details may vary considerably, while still being encompassed by the technology disclosed herein. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/143,555 US20240000492A1 (en) | 2014-01-31 | 2023-05-04 | Treatment systems and methods for affecting glands and other targeted structures |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461934549P | 2014-01-31 | 2014-01-31 | |
US201461943250P | 2014-02-21 | 2014-02-21 | |
US201461943257P | 2014-02-21 | 2014-02-21 | |
PCT/US2015/013971 WO2015117032A1 (en) | 2014-01-31 | 2015-01-30 | Treatment systems for treating glands by cooling |
US201615115503A | 2016-07-29 | 2016-07-29 | |
US16/736,672 US20200138501A1 (en) | 2014-01-31 | 2020-01-07 | Treatment systems and methods for affecting glands and other targeted structures |
US18/143,555 US20240000492A1 (en) | 2014-01-31 | 2023-05-04 | Treatment systems and methods for affecting glands and other targeted structures |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/736,672 Continuation US20200138501A1 (en) | 2014-01-31 | 2020-01-07 | Treatment systems and methods for affecting glands and other targeted structures |
Publications (1)
Publication Number | Publication Date |
---|---|
US20240000492A1 true US20240000492A1 (en) | 2024-01-04 |
Family
ID=52469360
Family Applications (15)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/115,503 Active 2036-10-17 US10575890B2 (en) | 2014-01-31 | 2015-01-30 | Treatment systems and methods for affecting glands and other targeted structures |
US14/611,052 Abandoned US20150216719A1 (en) | 2014-01-31 | 2015-01-30 | Treatment systems and methods for treating cellulite and for providing other treatments |
US14/610,807 Active US9861421B2 (en) | 2014-01-31 | 2015-01-30 | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
US14/611,127 Active 2036-10-07 US10201380B2 (en) | 2014-01-31 | 2015-01-30 | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
US15/833,329 Active 2036-12-03 US10912599B2 (en) | 2014-01-31 | 2017-12-06 | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
US16/227,376 Abandoned US20190142493A1 (en) | 2014-01-31 | 2018-12-20 | Treatment systems and methods for treating cellulite and for providing other treatments |
US16/233,951 Active US10806500B2 (en) | 2014-01-31 | 2018-12-27 | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
US16/736,672 Abandoned US20200138501A1 (en) | 2014-01-31 | 2020-01-07 | Treatment systems and methods for affecting glands and other targeted structures |
US17/072,020 Abandoned US20210038278A1 (en) | 2014-01-31 | 2020-10-15 | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
US17/143,163 Active 2035-11-07 US11819257B2 (en) | 2014-01-31 | 2021-01-07 | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
US17/719,661 Abandoned US20220387091A1 (en) | 2014-01-31 | 2022-04-13 | Treatment systems and methods for treating cellulite and for providing other treatments |
US18/143,555 Abandoned US20240000492A1 (en) | 2014-01-31 | 2023-05-04 | Treatment systems and methods for affecting glands and other targeted structures |
US18/469,396 Abandoned US20240197382A1 (en) | 2014-01-31 | 2023-09-18 | Treatment systems and methods for treating cellulite and for providing other treatments |
US18/485,282 Pending US20240180604A1 (en) | 2014-01-31 | 2023-10-11 | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
US18/489,289 Pending US20240189008A1 (en) | 2014-01-31 | 2023-10-18 | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
Family Applications Before (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/115,503 Active 2036-10-17 US10575890B2 (en) | 2014-01-31 | 2015-01-30 | Treatment systems and methods for affecting glands and other targeted structures |
US14/611,052 Abandoned US20150216719A1 (en) | 2014-01-31 | 2015-01-30 | Treatment systems and methods for treating cellulite and for providing other treatments |
US14/610,807 Active US9861421B2 (en) | 2014-01-31 | 2015-01-30 | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
US14/611,127 Active 2036-10-07 US10201380B2 (en) | 2014-01-31 | 2015-01-30 | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
US15/833,329 Active 2036-12-03 US10912599B2 (en) | 2014-01-31 | 2017-12-06 | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
US16/227,376 Abandoned US20190142493A1 (en) | 2014-01-31 | 2018-12-20 | Treatment systems and methods for treating cellulite and for providing other treatments |
US16/233,951 Active US10806500B2 (en) | 2014-01-31 | 2018-12-27 | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
US16/736,672 Abandoned US20200138501A1 (en) | 2014-01-31 | 2020-01-07 | Treatment systems and methods for affecting glands and other targeted structures |
US17/072,020 Abandoned US20210038278A1 (en) | 2014-01-31 | 2020-10-15 | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
US17/143,163 Active 2035-11-07 US11819257B2 (en) | 2014-01-31 | 2021-01-07 | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
US17/719,661 Abandoned US20220387091A1 (en) | 2014-01-31 | 2022-04-13 | Treatment systems and methods for treating cellulite and for providing other treatments |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/469,396 Abandoned US20240197382A1 (en) | 2014-01-31 | 2023-09-18 | Treatment systems and methods for treating cellulite and for providing other treatments |
US18/485,282 Pending US20240180604A1 (en) | 2014-01-31 | 2023-10-11 | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
US18/489,289 Pending US20240189008A1 (en) | 2014-01-31 | 2023-10-18 | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
Country Status (4)
Country | Link |
---|---|
US (15) | US10575890B2 (en) |
EP (5) | EP3099261A2 (en) |
ES (1) | ES2974899T3 (en) |
WO (4) | WO2015117036A2 (en) |
Families Citing this family (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101039758B1 (en) | 2006-04-28 | 2011-06-09 | 젤티크 애스세틱스, 인코포레이티드. | Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells |
US20080077201A1 (en) | 2006-09-26 | 2008-03-27 | Juniper Medical, Inc. | Cooling devices with flexible sensors |
US9132031B2 (en) | 2006-09-26 | 2015-09-15 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
US8192474B2 (en) | 2006-09-26 | 2012-06-05 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
US20080287839A1 (en) | 2007-05-18 | 2008-11-20 | Juniper Medical, Inc. | Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator |
US8523927B2 (en) | 2007-07-13 | 2013-09-03 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
JP5474791B2 (en) | 2007-08-21 | 2014-04-16 | ゼルティック エステティックス インコーポレイテッド | Monitoring of cooling of subcutaneous lipid-rich cells such as cooling of adipose tissue |
US8603073B2 (en) | 2008-12-17 | 2013-12-10 | Zeltiq Aesthetics, Inc. | Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells |
KR101701137B1 (en) | 2009-04-30 | 2017-02-01 | 젤티크 애스세틱스, 인코포레이티드. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
HUE026723T2 (en) | 2009-09-18 | 2016-09-28 | Viveve Inc | Vaginal remodeling device |
US9844461B2 (en) | 2010-01-25 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants |
US8676338B2 (en) | 2010-07-20 | 2014-03-18 | Zeltiq Aesthetics, Inc. | Combined modality treatment systems, methods and apparatus for body contouring applications |
WO2012103242A1 (en) | 2011-01-25 | 2012-08-02 | Zeltiq Aesthetics, Inc. | Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells |
WO2012135786A2 (en) * | 2011-04-01 | 2012-10-04 | The Regents Of The University Of California | Cryoelectric systems and methods for treatment of biological matter |
WO2013074664A1 (en) * | 2011-11-14 | 2013-05-23 | Kornstein Andrew | Cryolipolyis device having a curved applicator surface |
DE102012013534B3 (en) | 2012-07-05 | 2013-09-19 | Tobias Sokolowski | Apparatus for repetitive nerve stimulation for the degradation of adipose tissue by means of inductive magnetic fields |
US9545523B2 (en) | 2013-03-14 | 2017-01-17 | Zeltiq Aesthetics, Inc. | Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue |
US9844460B2 (en) | 2013-03-14 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same |
WO2015117036A2 (en) | 2014-01-30 | 2015-08-06 | Zeltiq Aesthetics, Inc. | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing for other treatments |
US10675176B1 (en) | 2014-03-19 | 2020-06-09 | Zeltiq Aesthetics, Inc. | Treatment systems, devices, and methods for cooling targeted tissue |
USD777338S1 (en) | 2014-03-20 | 2017-01-24 | Zeltiq Aesthetics, Inc. | Cryotherapy applicator for cooling tissue |
US10952891B1 (en) | 2014-05-13 | 2021-03-23 | Zeltiq Aesthetics, Inc. | Treatment systems with adjustable gap applicators and methods for cooling tissue |
US10568759B2 (en) | 2014-08-19 | 2020-02-25 | Zeltiq Aesthetics, Inc. | Treatment systems, small volume applicators, and methods for treating submental tissue |
US10935174B2 (en) | 2014-08-19 | 2021-03-02 | Zeltiq Aesthetics, Inc. | Stress relief couplings for cryotherapy apparatuses |
EP3200736B8 (en) | 2014-10-01 | 2020-06-17 | CryOSA, Inc. | Apparatus for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues |
US10124187B2 (en) * | 2015-04-28 | 2018-11-13 | Btl Holdings Limited | Combination of radiofrequency and magnetic treatment methods |
US11491342B2 (en) | 2015-07-01 | 2022-11-08 | Btl Medical Solutions A.S. | Magnetic stimulation methods and devices for therapeutic treatments |
US11957635B2 (en) | 2015-06-20 | 2024-04-16 | Therabody, Inc. | Percussive therapy device with variable amplitude |
US10478633B2 (en) | 2015-07-01 | 2019-11-19 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10245439B1 (en) | 2015-07-01 | 2019-04-02 | Medical Technologies Cz A.S. | Aesthetic method of biological structure treatment by magnetic field |
US10493293B2 (en) | 2015-07-01 | 2019-12-03 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10709894B2 (en) | 2015-07-01 | 2020-07-14 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US20180001107A1 (en) | 2016-07-01 | 2018-01-04 | Btl Holdings Limited | Aesthetic method of biological structure treatment by magnetic field |
US10549110B1 (en) | 2015-07-01 | 2020-02-04 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US11266850B2 (en) | 2015-07-01 | 2022-03-08 | Btl Healthcare Technologies A.S. | High power time varying magnetic field therapy |
US10695575B1 (en) | 2016-05-10 | 2020-06-30 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10569094B2 (en) | 2015-07-01 | 2020-02-25 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10478634B2 (en) | 2015-07-01 | 2019-11-19 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10821295B1 (en) | 2015-07-01 | 2020-11-03 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10695576B2 (en) | 2015-07-01 | 2020-06-30 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10569095B1 (en) | 2015-07-01 | 2020-02-25 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US9937358B2 (en) | 2015-07-01 | 2018-04-10 | Btl Holdings Limited | Aesthetic methods of biological structure treatment by magnetic field |
US9974519B1 (en) | 2015-07-01 | 2018-05-22 | Btl Holdings Limited | Aesthetic method of biologoical structure treatment by magnetic field |
US10471269B1 (en) | 2015-07-01 | 2019-11-12 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10549109B2 (en) | 2015-07-01 | 2020-02-04 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
WO2017041022A1 (en) | 2015-09-04 | 2017-03-09 | R2 Dermatology, Inc. | Medical systems, methods, and devices for hypopigmentation cooling treatments |
EP3352716A1 (en) * | 2015-09-21 | 2018-08-01 | Zeltiq Aesthetics, Inc. | Transcutaneous treatment systems and cooling devices |
CN105169574B (en) * | 2015-09-30 | 2018-06-26 | 广州市瑞思美容设备有限公司 | A kind of ultrasonic wave cold freeze-thaw fat equipment |
WO2017070112A1 (en) | 2015-10-19 | 2017-04-27 | Zeltiq Aesthetics, Inc. | Vascular treatment systems, cooling devices, and methods for cooling vascular structures |
US11253717B2 (en) | 2015-10-29 | 2022-02-22 | Btl Healthcare Technologies A.S. | Aesthetic method of biological structure treatment by magnetic field |
JP6833869B2 (en) * | 2016-01-07 | 2021-02-24 | ゼルティック エステティックス インコーポレイテッド | Temperature-dependent adhesion between applicator and skin during tissue cooling |
US10765552B2 (en) | 2016-02-18 | 2020-09-08 | Zeltiq Aesthetics, Inc. | Cooling cup applicators with contoured heads and liner assemblies |
US11464993B2 (en) | 2016-05-03 | 2022-10-11 | Btl Healthcare Technologies A.S. | Device including RF source of energy and vacuum system |
US11247039B2 (en) | 2016-05-03 | 2022-02-15 | Btl Healthcare Technologies A.S. | Device including RF source of energy and vacuum system |
US11534619B2 (en) | 2016-05-10 | 2022-12-27 | Btl Medical Solutions A.S. | Aesthetic method of biological structure treatment by magnetic field |
US10682297B2 (en) | 2016-05-10 | 2020-06-16 | Zeltiq Aesthetics, Inc. | Liposomes, emulsions, and methods for cryotherapy |
WO2017196548A1 (en) | 2016-05-10 | 2017-11-16 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
US10555831B2 (en) | 2016-05-10 | 2020-02-11 | Zeltiq Aesthetics, Inc. | Hydrogel substances and methods of cryotherapy |
US11382790B2 (en) | 2016-05-10 | 2022-07-12 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
US10709895B2 (en) | 2016-05-10 | 2020-07-14 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US20220211319A1 (en) * | 2016-05-11 | 2022-07-07 | The Regents Of The University Of California | Non-invasive proprioceptive stimulation for treating epilepsy |
US10583287B2 (en) | 2016-05-23 | 2020-03-10 | Btl Medical Technologies S.R.O. | Systems and methods for tissue treatment |
KR102448859B1 (en) * | 2016-06-03 | 2022-10-04 | 알2 테크놀로지스, 인크. | Cooling systems and methods for skin treatment |
US10556122B1 (en) | 2016-07-01 | 2020-02-11 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
IT201600080827A1 (en) * | 2016-08-01 | 2018-02-01 | Mcc Sistemi S R L | Apparatus and method for the therapeutic treatment of tissue lesions. |
WO2018044825A1 (en) * | 2016-08-30 | 2018-03-08 | The General Hospital Corporation | Cryotherapy and cryoablation systems and methods for treatment of tissue |
MX2019003524A (en) * | 2016-09-28 | 2019-06-03 | High Tech Products S L U | Device for protecting skin and tissues for aesthetic cold treatments. |
WO2018067496A1 (en) | 2016-10-04 | 2018-04-12 | Avent, Inc. | Cooled rf probes |
AU2017355364A1 (en) | 2016-11-02 | 2019-05-23 | Miraki Innovation Think Tank Llc | Devices and methods for slurry generation |
US11324673B2 (en) | 2016-11-18 | 2022-05-10 | Miraki Innovation Think Tank Llc | Cosmetic appearance of skin |
WO2018111068A1 (en) * | 2016-12-15 | 2018-06-21 | Castro Baldenebro Brayan Gamaniel | System for treating skin lesions caused by acne by means of thermal shocks |
WO2018111069A1 (en) * | 2016-12-15 | 2018-06-21 | Castro Baldenebro Brayan Gamaniel | Method for identifying skin lesions caused by acne by means of multispectral-image capture with prior cooling |
US20200222103A1 (en) * | 2017-01-19 | 2020-07-16 | The General Hospital Corporation | Systems and methods for thermal treatment of tissue |
US20180263677A1 (en) * | 2017-03-16 | 2018-09-20 | Zeltiq Aesthetics, Inc. | Adhesive liners for cryotherapy |
WO2018175111A1 (en) | 2017-03-21 | 2018-09-27 | Zeltiq Aesthetics, Inc. | Use of saccharides for cryoprotection and related technology |
WO2018187581A1 (en) | 2017-04-05 | 2018-10-11 | Arctic Fox Biomedical, Inc. | Cold slurry containment |
KR20200017385A (en) | 2017-04-05 | 2020-02-18 | 미라키 이노베이션 씽크 탱크 엘엘씨 | Low Temperature Slurry Generation at the Delivery Point |
US11076879B2 (en) | 2017-04-26 | 2021-08-03 | Zeltiq Aesthetics, Inc. | Shallow surface cryotherapy applicators and related technology |
WO2018221848A1 (en) * | 2017-05-30 | 2018-12-06 | 주식회사 리센스메디컬 | Medical cooling device |
EP3644881A4 (en) | 2017-06-30 | 2021-04-07 | R2 Technologies, Inc. | Dermatological cryospray devices having linear array of nozzles and methods of use |
US10500342B2 (en) | 2017-08-21 | 2019-12-10 | Miraki Innovation Think Tank Llc | Cold slurry syringe |
KR102040913B1 (en) * | 2017-09-12 | 2019-11-05 | (주)클래시스 | Anti-freezing membrane for operating coolsculpting cryolipolysis |
US11400308B2 (en) | 2017-11-21 | 2022-08-02 | Cutera, Inc. | Dermatological picosecond laser treatment systems and methods using optical parametric oscillator |
RU2686107C1 (en) * | 2018-01-16 | 2019-04-24 | Федеральное государственное бюджетное учреждение науки "Кировский научно-исследовательский институт гематологии и переливания крови Федерального медико-биологического агентства" | Method of optimal cryoprotector selection having glycogen content in preserved blood leukocytes |
WO2019162539A1 (en) * | 2018-02-26 | 2019-08-29 | High Technology Products, Sl | Skin and tissue protection device for aesthetics treatments with cold temperatures |
US11395925B2 (en) * | 2018-04-29 | 2022-07-26 | Brian A. Gandel | Device and method for inducing lypolysis in humans |
AU2019204574A1 (en) | 2018-06-27 | 2020-01-23 | Viveve, Inc. | Methods for treating urinary stress incontinence |
MX2021000902A (en) * | 2018-07-23 | 2021-08-24 | Revelle Aesthetics Inc | Cellulite treatment system and methods. |
MX2021000901A (en) * | 2018-07-23 | 2021-06-18 | Revelle Aesthetics Inc | Cellulite treatment system and methods. |
KR20210038661A (en) * | 2018-07-31 | 2021-04-07 | 젤티크 애스세틱스, 인코포레이티드. | Methods, devices, and systems for improving skin properties |
WO2020026253A2 (en) * | 2018-08-02 | 2020-02-06 | Sofwave Medical Ltd. | Fat tissue treatment |
US20200069458A1 (en) * | 2018-08-31 | 2020-03-05 | Zeltiq Aesthetics, Inc. | Compositions, treatment systems, and methods for fractionally freezing tissue |
FI128964B (en) * | 2018-09-18 | 2021-04-15 | Cryotech Nordic As | Applicator device and related apparatus |
US11974816B2 (en) | 2018-12-21 | 2024-05-07 | R2 Technologies, Inc. | Automated control and positioning systems for dermatological cryospray devices |
US10940081B2 (en) | 2019-05-07 | 2021-03-09 | Theragun, Inc. | Percussive massage device with force meter |
US11452670B2 (en) | 2018-12-26 | 2022-09-27 | Therabody, Inc. | Percussive therapy device with orientation, position, and force sensing and accessory therefor |
US11564860B2 (en) | 2018-12-26 | 2023-01-31 | Therabody, Inc. | Percussive therapy device with electrically connected attachment |
US12064387B2 (en) | 2018-12-26 | 2024-08-20 | Therabody, Inc. | Percussive therapy device with electrically connected attachment |
US11890253B2 (en) * | 2018-12-26 | 2024-02-06 | Therabody, Inc. | Percussive therapy device with interchangeable modules |
US11357697B2 (en) * | 2018-12-26 | 2022-06-14 | Therabody, Inc. | Percussive therapy device |
US10610280B1 (en) | 2019-02-02 | 2020-04-07 | Ayad K. M. Agha | Surgical method and apparatus for destruction and removal of intraperitoneal, visceral, and subcutaneous fat |
WO2020161452A1 (en) * | 2019-02-06 | 2020-08-13 | Bb Brands Ltd | Cryotherapy device |
JP2022527128A (en) * | 2019-04-10 | 2022-05-30 | リポコスム リミテッド ライアビリティ カンパニー | Vibration surgical instruments for liposuction and other orthodontic applications |
EP3952984B1 (en) | 2019-04-11 | 2024-09-04 | BTL Medical Solutions a.s. | Devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy |
US11813221B2 (en) | 2019-05-07 | 2023-11-14 | Therabody, Inc. | Portable percussive massage device |
US11998504B2 (en) | 2019-05-07 | 2024-06-04 | Therabody, Inc. | Chair including percussive massage therapy |
CN110078945B (en) * | 2019-05-28 | 2021-07-30 | 陕西科技大学 | Preparation method of gelatin-based high-strength hydrogel |
US11253720B2 (en) | 2020-02-29 | 2022-02-22 | Cutera, Inc. | Dermatological systems and methods with handpiece for coaxial pulse delivery and temperature sensing |
US10864380B1 (en) | 2020-02-29 | 2020-12-15 | Cutera, Inc. | Systems and methods for controlling therapeutic laser pulse duration |
US11878167B2 (en) | 2020-05-04 | 2024-01-23 | Btl Healthcare Technologies A.S. | Device and method for unattended treatment of a patient |
AU2021269187B2 (en) | 2020-05-04 | 2023-02-23 | Btl Healthcare Technologies A.S. | Device and method for unattended treatment of a patient |
CN113827545A (en) * | 2020-06-23 | 2021-12-24 | 微创医美科技(嘉兴)有限公司 | Antifreeze injection preparation assisting in frozen fat dissolution, liquid guide device, kit and frozen fat dissolution system |
CN114052887A (en) * | 2020-07-30 | 2022-02-18 | 上海微创惟美医疗科技(集团)有限公司 | Frozen fat-dissolving treatment component, device and antifreezing agent |
US20220087250A1 (en) * | 2020-09-24 | 2022-03-24 | Everest Medical Innovation GmbH | Cryoprotective Compositions and Methods for Protection of a Surgical Site During Cryosurgery |
TWI764421B (en) * | 2020-12-09 | 2022-05-11 | 羅莎國際有限公司 | Polymeric low temperature ionic gas promotes wound healing device |
CN112220551B (en) * | 2020-12-10 | 2021-04-16 | 微创医美科技(嘉兴)有限公司 | Freezing fat-dissolving treatment assembly and device |
EP4082460A1 (en) * | 2021-04-28 | 2022-11-02 | High Technology Products, S.L.U. | Methods and systems for determining freezing of skin during cooling |
EP4415812A1 (en) | 2021-10-13 | 2024-08-21 | BTL Medical Solutions a.s. | Devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy |
US11896816B2 (en) | 2021-11-03 | 2024-02-13 | Btl Healthcare Technologies A.S. | Device and method for unattended treatment of a patient |
US11857481B2 (en) | 2022-02-28 | 2024-01-02 | Therabody, Inc. | System for electrical connection of massage attachment to percussive therapy device |
Family Cites Families (767)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US681806A (en) | 1901-05-25 | 1901-09-03 | Armand Mignault | Lung-protector. |
US889810A (en) | 1908-01-04 | 1908-06-02 | Henry Robinson | Medicating and massaging appliance. |
US1093868A (en) | 1912-03-11 | 1914-04-21 | Henry W Jacobs | Means for forming couplings or joints. |
DE532976C (en) | 1930-07-29 | 1931-09-11 | Lorenz Akt Ges C | Transmitter device for spring writers, in which the transmission rails are moved in the direction of movement of the transmission buttons |
GB387960A (en) | 1932-09-17 | 1933-02-16 | William Hipon Horsfield | Electro-therapeutic massaging appliance |
FR854937A (en) | 1939-05-19 | 1940-04-27 | Suction massage device | |
GB578157A (en) | 1942-12-21 | 1946-06-18 | Johnson & Johnson | Improvements in and relating to surgical dressings |
US2516491A (en) | 1945-10-08 | 1950-07-25 | Henry A Swastek | Massage and shampoo device |
US2521780A (en) | 1947-06-12 | 1950-09-12 | Bertha A Dodd | Cushion or receptacle |
US2726658A (en) | 1953-04-27 | 1955-12-13 | Donald E Chessey | Therapeutic cooling devices for domestic and hospital use |
BE527380A (en) | 1953-04-29 | |||
US2766619A (en) | 1953-06-26 | 1956-10-16 | Tribus Myron | Ice detecting apparatus |
CH333982A (en) | 1954-06-11 | 1958-11-15 | Usag Ultraschall Ag | Ultrasonic irradiation device |
US3093135A (en) | 1962-01-29 | 1963-06-11 | Max L Hirschhorn | Cooled surgical instrument |
US3133539A (en) | 1962-08-06 | 1964-05-19 | Eidus William | Thermoelectric medical instrument |
US3132688A (en) | 1963-04-08 | 1964-05-12 | Welville B Nowak | Electronic cold and/or hot compress device |
US3282267A (en) | 1964-05-05 | 1966-11-01 | Eidus William | Thermoelectric hypothermia instrument |
US3502080A (en) | 1965-06-28 | 1970-03-24 | Max L Hirschhorn | Thermoelectrically cooled surgical instrument |
US3341230A (en) | 1965-10-23 | 1967-09-12 | Swivelier Company Inc | Swivel unit |
US3591645A (en) | 1968-05-20 | 1971-07-06 | Gulf Research Development Co | Process for preparing a halogenated aromatic |
US3566871A (en) | 1968-06-11 | 1971-03-02 | American Cyanamid Co | Hydrophilic medical sponge and method of using same |
FR1595285A (en) | 1968-12-18 | 1970-06-08 | ||
US3703897A (en) | 1969-10-09 | 1972-11-28 | Kendall & Co | Hydrophobic non-adherent wound dressing |
US3587577A (en) | 1970-05-09 | 1971-06-28 | Oleg Alexandrovich Smirnov | Device for applying selective and general hypothermy to and reheating of human body through the common integuments thereof |
US3710784A (en) | 1972-04-03 | 1973-01-16 | C Taylor | Massaging device |
US4002221A (en) | 1972-09-19 | 1977-01-11 | Gilbert Buchalter | Method of transmitting ultrasonic impulses to surface using transducer coupling agent |
US3827436A (en) | 1972-11-10 | 1974-08-06 | Frigitronics Of Conn Inc | Multipurpose cryosurgical probe |
US3786814A (en) * | 1972-12-15 | 1974-01-22 | T Armao | Method of preventing cryoadhesion of cryosurgical instruments and cryosurgical instruments |
US3942519A (en) | 1972-12-26 | 1976-03-09 | Ultrasonic Systems, Inc. | Method of ultrasonic cryogenic cataract removal |
DE2343910C3 (en) | 1973-08-31 | 1979-02-15 | Draegerwerk Ag, 2400 Luebeck | Cryomedical facility |
US4269068A (en) | 1974-02-21 | 1981-05-26 | Rockwell International Corporation | Ultrasonic couplant compositions and method for employing same |
SU532976A1 (en) | 1974-05-05 | 1978-11-05 | Киевский Государственный Институт Усовершенстовования Врачей Министерства Здравоохранения Ссср | Apparatus for local refrigeration of tissue |
US3986385A (en) | 1974-08-05 | 1976-10-19 | Rosemount Engineering Company Limited | Apparatus for determining the freezing point of a liquid |
US3993053A (en) | 1974-08-05 | 1976-11-23 | Murray Grossan | Pulsating massage system |
JPS5417360B2 (en) | 1974-08-15 | 1979-06-29 | ||
US4008910A (en) | 1975-05-16 | 1977-02-22 | Roche Thomas F | Universal electrical swivel |
US4026299A (en) | 1975-09-26 | 1977-05-31 | Vari-Temp Manufacturing Co. | Cooling and heating apparatus |
US4202336A (en) | 1976-05-14 | 1980-05-13 | Erbe Elektromedizin Kg | Cauterizing probes for cryosurgery |
US4140130A (en) | 1977-05-31 | 1979-02-20 | Storm Iii Frederick K | Electrode structure for radio frequency localized heating of tumor bearing tissue |
US4149529A (en) | 1977-09-16 | 1979-04-17 | Jobst Institute, Inc. | Portable thermo-hydraulic physiotherapy device |
USD260173S (en) | 1978-10-13 | 1981-08-11 | International Business Machines Corporation | Electrocardiograph |
US4178429A (en) | 1978-11-17 | 1979-12-11 | Scheffer Karl D | Catalyst for curing resins |
DE2851602A1 (en) | 1978-11-29 | 1980-06-12 | Messerschmitt Boelkow Blohm | Medical cooling device for localised inflammation - with Peltier element between heat conductive block and cooling pad applied to patient's skin |
US4381009A (en) | 1980-01-28 | 1983-04-26 | Bon F Del | Hand-held device for the local heat-treatment of the skin |
US4428368A (en) | 1980-09-29 | 1984-01-31 | Masakatsu Torii | Massage device |
US4470263A (en) | 1980-10-14 | 1984-09-11 | Kurt Lehovec | Peltier-cooled garment |
US4396011A (en) | 1981-01-09 | 1983-08-02 | Clairol Incorporated | Heating pad |
US4459854A (en) | 1981-07-24 | 1984-07-17 | National Research Development Corporation | Ultrasonic transducer coupling member |
US4528979A (en) | 1982-03-18 | 1985-07-16 | Kievsky Nauchno-Issledovatelsky Institut Otolaringologii Imeni Professora A.S. Kolomiiobenka | Cryo-ultrasonic surgical instrument |
JPS58187454A (en) | 1982-04-27 | 1983-11-01 | Nippon Kayaku Co Ltd | Anthraquinone compound |
US4555313A (en) | 1982-10-21 | 1985-11-26 | The United States Of America As Represented By The United States Department Of Energy | Method of forming a continuous polymeric skin on a cellular foam material |
US4548212A (en) | 1982-10-29 | 1985-10-22 | Leung Frank K | Apparatus for thermographic examinations |
US4483341A (en) | 1982-12-09 | 1984-11-20 | Atlantic Richfield Company | Therapeutic hypothermia instrument |
US4644955A (en) | 1982-12-27 | 1987-02-24 | Rdm International, Inc. | Circuit apparatus and method for electrothermal treatment of cancer eye |
US4531524A (en) | 1982-12-27 | 1985-07-30 | Rdm International, Inc. | Circuit apparatus and method for electrothermal treatment of cancer eye |
US4961422A (en) | 1983-01-21 | 1990-10-09 | Marchosky J Alexander | Method and apparatus for volumetric interstitial conductive hyperthermia |
DE3308553C2 (en) | 1983-03-10 | 1986-04-10 | Udo Prof. Dr.med. 4130 Moers Smidt | Means for reducing the human body weight |
US4614191A (en) | 1983-09-02 | 1986-09-30 | Perler Robert F | Skin-cooling probe |
JPS6094113A (en) | 1983-10-26 | 1985-05-27 | Kobe Steel Ltd | Mobile dust collector |
DE3381512D1 (en) | 1983-10-26 | 1990-06-07 | Nihon Kenkozoshin Kenkyukai Kk | A MAGNETIC FIELD HALF-DEVICE. |
JPS6094113U (en) | 1983-12-06 | 1985-06-27 | 瀧川株式会社 | beauty facial machine |
US5158070A (en) | 1983-12-14 | 1992-10-27 | Edap International, S.A. | Method for the localized destruction of soft structures using negative pressure elastic waves |
WO1985003216A1 (en) | 1984-01-18 | 1985-08-01 | Bailey David F | Multi-layer disposable medical thermal blanket |
US4603076A (en) | 1985-03-04 | 1986-07-29 | Norwood Industries, Inc. | Hydrophilic foam |
US4869250A (en) | 1985-03-07 | 1989-09-26 | Thermacor Technology, Inc. | Localized cooling apparatus |
US4664110A (en) | 1985-03-18 | 1987-05-12 | University Of Southern California | Controlled rate freezing for cryorefractive surgery |
US4585002A (en) | 1985-04-22 | 1986-04-29 | Igor Kissin | Method and apparatus for treatment of pain by frequently alternating temperature stimulation |
JPS6282977A (en) | 1985-10-07 | 1987-04-16 | オムロン株式会社 | Heating/cooling low frequency medical treatment apparatus |
US4700701A (en) | 1985-10-23 | 1987-10-20 | Montaldi David H | Sterilization method and apparatus |
JPH0765230B2 (en) | 1986-09-19 | 1995-07-12 | 三菱マテリアル株式会社 | Method for forming porous layer on metal surface |
GB2190842B (en) | 1986-05-05 | 1990-03-07 | Oreal | Apparatus for the cryogenic treatment of the skin |
WO1987006825A1 (en) | 1986-05-16 | 1987-11-19 | Term-Ac S.A. | Therapeutic device including a mass of a thermally active material |
SU1563684A1 (en) | 1986-05-26 | 1990-05-15 | Томский государственный медицинский институт | Cryosurgical scalpel |
GB8620227D0 (en) | 1986-08-20 | 1986-10-01 | Smith & Nephew Ass | Wound dressing |
US4880564A (en) | 1986-09-29 | 1989-11-14 | Ciba-Geigy Corporation | Antifoams for aqueous systems and their use |
US4741338A (en) | 1986-10-06 | 1988-05-03 | Toshiaki Miyamae | Thermoelectric physical remedy apparatus |
US5018521A (en) | 1986-10-24 | 1991-05-28 | Campbell William P | Method of and apparatus for increased transfer of heat into or out of the body |
US4764463A (en) | 1986-10-30 | 1988-08-16 | The University Of Tennessee Research Corporation | Platelet cyropreservation |
US4906463A (en) | 1986-12-22 | 1990-03-06 | Cygnus Research Corporation | Transdermal drug-delivery composition |
CN86200604U (en) | 1987-01-10 | 1987-10-14 | Zhichang Yang | Apparatus for freezing freckle and treating some skin diseases with freezing |
US4846176A (en) | 1987-02-24 | 1989-07-11 | Golden Theodore A | Thermal bandage |
US4962761A (en) | 1987-02-24 | 1990-10-16 | Golden Theodore A | Thermal bandage |
GB8706141D0 (en) | 1987-03-16 | 1987-04-23 | Thorner D | Treatment of damaged limb |
US4935345A (en) | 1987-04-07 | 1990-06-19 | Arizona Board Of Regents | Implantable microelectronic biochemical sensor incorporating thin film thermopile |
US4802475A (en) | 1987-06-22 | 1989-02-07 | Weshahy Ahmed H A G | Methods and apparatus of applying intra-lesional cryotherapy |
US5084671A (en) | 1987-09-02 | 1992-01-28 | Tokyo Electron Limited | Electric probing-test machine having a cooling system |
US5143063A (en) | 1988-02-09 | 1992-09-01 | Fellner Donald G | Method of removing adipose tissue from the body |
JPH01223961A (en) | 1988-03-02 | 1989-09-07 | Kineshio:Kk | Method for improvement of muscle subcutaneous tissue and subcutaneous tissue activating device |
US5065752A (en) | 1988-03-29 | 1991-11-19 | Ferris Mfg. Co. | Hydrophilic foam compositions |
DK161260C (en) | 1988-05-06 | 1991-12-30 | Paul Verner Nielsen | flow measurement |
US4930317A (en) | 1988-05-20 | 1990-06-05 | Temperature Research Corporation | Apparatus for localized heat and cold therapy |
DE3821219C1 (en) | 1988-06-23 | 1989-08-24 | Phywe Systeme Gmbh, 3400 Goettingen, De | |
US5108390A (en) | 1988-11-14 | 1992-04-28 | Frigitronics, Inc. | Flexible cryoprobe |
US4905697A (en) | 1989-02-14 | 1990-03-06 | Cook Pacemaker Corporation | Temperature-controlled cardiac pacemaker responsive to body motion |
US5024650A (en) | 1989-02-15 | 1991-06-18 | Matsushita Electric Works, Ltd. | Stress dissolving refreshment system |
DE8905769U1 (en) | 1989-05-09 | 1989-07-13 | Schulte, Franz-Josef, Dipl.-Ing., 59939 Olsberg | Device for generating cold and heat |
US5200170A (en) | 1989-07-18 | 1993-04-06 | Mcdow Ronald A | Medical process--use of dichlorodifluoromethane (CCl2 F2) and chlorodifluoromethane (CHClF2) as cryogens for treating skin lesions |
US5516505A (en) | 1989-07-18 | 1996-05-14 | Mcdow; Ronald A. | Method for using cryogenic agents for treating skin lesions |
JP2625548B2 (en) | 1989-07-19 | 1997-07-02 | 沖電気工業株式会社 | Image generation method and image generation device |
US5160312A (en) | 1990-02-09 | 1992-11-03 | W. R. Grace & Co.-Conn. | Cryopreservation process for direct transfer of embryos |
US5575812A (en) | 1990-02-26 | 1996-11-19 | Vesture Corporation | Cooling pad method |
US5817149A (en) | 1990-02-26 | 1998-10-06 | Vesture Corporation | Heat application method |
US5339541A (en) | 1990-02-26 | 1994-08-23 | Vesture Corporation | Footwear with therapeutic pad |
JPH03259975A (en) | 1990-03-09 | 1991-11-20 | Matsushita Refrig Co Ltd | Water-repellent coating composition and heat exchanger coated therewith |
FR2659851A1 (en) | 1990-03-20 | 1991-09-27 | Karagozian Serge | MASSAGE APPARATUS. |
JP3065657B2 (en) | 1990-06-08 | 2000-07-17 | 株式会社リコー | Dry type electrophotographic toner |
US5362966A (en) | 1990-06-27 | 1994-11-08 | Rosenthal Robert D | Measurement of finger temperature in near-infrared quantitative measurement instrument |
US5148804A (en) | 1990-06-28 | 1992-09-22 | Hill Dennis M | Device, system, and methods for applying cryotherapy |
JPH0493597A (en) | 1990-08-08 | 1992-03-26 | Matsushita Refrig Co Ltd | Water repellent coating composition and heat exchanger coated with water repellant coating composition |
US5336616A (en) | 1990-09-12 | 1994-08-09 | Lifecell Corporation | Method for processing and preserving collagen-based tissues for transplantation |
US5209227A (en) | 1990-09-25 | 1993-05-11 | Richard Deutsch | Thermoelectric therapy device and moisturizing device therefor |
GB2248183A (en) | 1990-09-25 | 1992-04-01 | Lin Ju Nin | Facial sauna apparatus |
US5221726A (en) | 1990-10-09 | 1993-06-22 | Mcneil-Ppc, Inc. | Hydrophilic materials useful in preparing fluid-absorbent products |
US5342617A (en) | 1990-12-03 | 1994-08-30 | Medical Polymers, Inc. | Water-based human tissue lubricant |
US5139496A (en) | 1990-12-20 | 1992-08-18 | Hed Aharon Z | Ultrasonic freeze ablation catheters and probes |
JP3217386B2 (en) | 1991-04-24 | 2001-10-09 | オリンパス光学工業株式会社 | Diagnostic system |
US5358467A (en) | 1991-05-05 | 1994-10-25 | Anatole Milstein | Method for vacuum mechanothermal stimulation of the body surface |
US5207674A (en) | 1991-05-13 | 1993-05-04 | Hamilton Archie C | Electronic cryogenic surgical probe apparatus and method |
WO1993000807A1 (en) | 1991-07-03 | 1993-01-21 | Cryolife, Inc. | Method for stabilization of biomaterials |
US20010031459A1 (en) | 1991-07-08 | 2001-10-18 | The American National Red Cross | Method of preparing tissues for vitrification |
DE4125463A1 (en) | 1991-08-01 | 1993-02-04 | Deutsches Inst Lebensmitteltec | METHOD AND DEVICE FOR CONTINUOUS, CONTROLLED STRUCTURING, IN PARTICULAR CRYSTALLIZATION OF SUBSTANCE SYSTEMS IN A FLOWABLE CONDITION, PARTICULARLY FATTY MEASURES, LIKE CHOCOLATE MATERIAL |
US5352711A (en) | 1991-08-12 | 1994-10-04 | The Proctor & Gamble Company | Method for hydrophilizing absorbent foam materials |
US5169384A (en) | 1991-08-16 | 1992-12-08 | Bosniak Stephen L | Apparatus for facilitating post-traumatic, post-surgical, and/or post-inflammatory healing of tissue |
US5514105A (en) | 1992-01-03 | 1996-05-07 | The Procter & Gamble Company | Resilient plastic web exhibiting reduced skin contact area and enhanced fluid transfer properties |
US5531742A (en) | 1992-01-15 | 1996-07-02 | Barken; Israel | Apparatus and method for computer controlled cryosurgery |
GB9201940D0 (en) | 1992-01-28 | 1992-03-18 | S I Ind Limited | Cooling or heating arrangement |
IT1259424B (en) | 1992-03-11 | 1996-03-18 | CONTAINMENT AND COOLING ELEMENT TO APPLY TO ARTS AFFECTED BY TRAUMAS | |
WO1993019705A1 (en) | 1992-03-31 | 1993-10-14 | Massachusetts Institute Of Technology | Apparatus and method for acoustic heat generation and hyperthermia |
US5954680A (en) | 1992-06-19 | 1999-09-21 | Augustine Medical, Inc. | Near hyperthermic heater wound covering |
DE4224595A1 (en) | 1992-07-23 | 1994-01-27 | Steindorf Susanne Ruth | Surgical instrument for treating diseased tissue esp. prostate - has heating system located in probe within body opening and-or diseased organs adjacent to body openings |
CA2142813A1 (en) | 1992-08-17 | 1994-03-03 | Thomas L. Mehl | Hand held, multipurpose portable steamer having modular components and attachents |
US5327886A (en) | 1992-08-18 | 1994-07-12 | Chiu Cheng Pang | Electronic massage device with cold/hot compress function |
AU692424B2 (en) | 1992-10-02 | 1998-06-11 | Beiersdorf Aktiengesellschaft | Hydrophilic polyurethane gel foams, particularly for treating deep wounds, wound dressing based on hydrophilic polyurethane gel foams and method of manufacture |
GB9222335D0 (en) | 1992-10-23 | 1992-12-09 | Unilever Plc | Acyl lactylates as skin elasticity enhancing agents |
US5314423A (en) | 1992-11-03 | 1994-05-24 | Seney John S | Cold electrode pain alleviating tissue treatment assembly |
DE4238291A1 (en) | 1992-11-13 | 1994-05-19 | Diehl Gmbh & Co | Cryo-therapy system for small areal freezing of surfaces esp. for skin alterations - has cold probe and heat exchanger which are connected heat-conducting with each other by Peltier elements having heat contact surfaces |
US5333460A (en) | 1992-12-21 | 1994-08-02 | Carrier Corporation | Compact and serviceable packaging of a self-contained cryocooler system |
US5277030A (en) | 1993-01-22 | 1994-01-11 | Welch Allyn, Inc. | Preconditioning stand for cooling probe |
US5386837A (en) | 1993-02-01 | 1995-02-07 | Mmtc, Inc. | Method for enhancing delivery of chemotherapy employing high-frequency force fields |
US6620188B1 (en) | 1998-08-24 | 2003-09-16 | Radiant Medical, Inc. | Methods and apparatus for regional and whole body temperature modification |
US5902256A (en) | 1993-02-12 | 1999-05-11 | Jb Research, Inc. | Massage unit with replaceable hot and cold packs |
US5433717A (en) | 1993-03-23 | 1995-07-18 | The Regents Of The University Of California | Magnetic resonance imaging assisted cryosurgery |
US5456703A (en) | 1993-04-28 | 1995-10-10 | Therabite Corporation | Apparatus for application of heat/cold to target regions of the human anatomy |
AU6831294A (en) | 1993-05-12 | 1994-12-12 | Jeffrey S. Yablon | Portable therapeutic device |
RU2047298C1 (en) | 1993-05-27 | 1995-11-10 | Специализированное конструкторско-технологическое бюро "Норд" | Device for cryomassage |
CN1102851C (en) | 1993-06-04 | 2003-03-12 | 生物时间公司 | Plasma-like solution |
US5411541A (en) | 1993-08-05 | 1995-05-02 | Oansh Designs Ltd. | Portable fluid therapy device |
US5372608A (en) | 1993-08-12 | 1994-12-13 | Johnson; Bertrand L. | Circulating chilled-fluid therapeutic device |
US5334131A (en) | 1993-08-20 | 1994-08-02 | Omandam Ismael C | Strap-on massager with vibratory unbalanced weight |
US5891617A (en) | 1993-09-15 | 1999-04-06 | Organogenesis Inc. | Cryopreservation of harvested skin and cultured skin or cornea equivalents by slow freezing |
US5871526A (en) | 1993-10-13 | 1999-02-16 | Gibbs; Roselle | Portable temperature control system |
US5764794A (en) | 1993-10-27 | 1998-06-09 | Perlin; Kenneth | Method and apparatus for electronically storing alphanumeric characters |
GB2283678B (en) | 1993-11-09 | 1998-06-03 | Spembly Medical Ltd | Cryosurgical catheter probe |
US5885211A (en) | 1993-11-15 | 1999-03-23 | Spectrix, Inc. | Microporation of human skin for monitoring the concentration of an analyte |
JPH07194666A (en) | 1993-12-30 | 1995-08-01 | Daisee Kogyo Kk | Massaging appliance and method |
US5472416A (en) | 1994-01-10 | 1995-12-05 | Very Inventive Physicians, Inc. | Tumescent lipoplastic method and apparatus |
RU2036667C1 (en) | 1994-01-24 | 1995-06-09 | Олег Алексеевич Машков | Method for treating disseminated psoriasis |
US5497596A (en) | 1994-01-27 | 1996-03-12 | E. I. Du Pont De Nemours And Company | Method for reducing penetration of liquid through nonwoven film-fibril sheets pierced by fastening elements |
GB2286660A (en) | 1994-02-01 | 1995-08-23 | David Thorner | Peltier effect cooling apparatus for treating diseased or injured tissue |
US5647868A (en) | 1994-02-02 | 1997-07-15 | Chinn; Douglas Owen | Cryosurgical integrated control and monitoring system and method |
US5725483A (en) | 1994-02-22 | 1998-03-10 | Podolsky; Grigory | Massaging device |
US5363347A (en) | 1994-02-24 | 1994-11-08 | Hap Nguyen | Vending tanning timer |
US5833685A (en) | 1994-03-15 | 1998-11-10 | Tortal; Proserfina R. | Cryosurgical technique and devices |
US5507790A (en) | 1994-03-21 | 1996-04-16 | Weiss; William V. | Method of non-invasive reduction of human site-specific subcutaneous fat tissue deposits by accelerated lipolysis metabolism |
US5505726A (en) | 1994-03-21 | 1996-04-09 | Dusa Pharmaceuticals, Inc. | Article of manufacture for the photodynamic therapy of dermal lesion |
JPH07268274A (en) | 1994-04-01 | 1995-10-17 | Kansai Paint Co Ltd | Composition and method for imparting hydrophilicity |
JP3263275B2 (en) | 1994-04-05 | 2002-03-04 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Apparatus for laser treatment of living tissue and laser treatment apparatus for flame-like nevus |
US5962477A (en) * | 1994-04-12 | 1999-10-05 | Adolor Corporation | Screening methods for cytokine inhibitors |
US6230501B1 (en) | 1994-04-14 | 2001-05-15 | Promxd Technology, Inc. | Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control |
US5792080A (en) | 1994-05-18 | 1998-08-11 | Matsushita Electric Works, Ltd. | Massaging apparatus having self-adjusting constant strength and non-adjust strength modes |
US5672172A (en) | 1994-06-23 | 1997-09-30 | Vros Corporation | Surgical instrument with ultrasound pulse generator |
US5505730A (en) | 1994-06-24 | 1996-04-09 | Stuart D. Edwards | Thin layer ablation apparatus |
IL110176A (en) | 1994-06-30 | 1999-12-31 | Israel State | Multiprobe surgical cryogenic apparatus |
US5529067A (en) | 1994-08-19 | 1996-06-25 | Novoste Corporation | Methods for procedures related to the electrophysiology of the heart |
US5967976A (en) | 1994-08-19 | 1999-10-19 | Novoste Corporation | Apparatus and methods for procedures related to the electrophysiology of the heart |
US5514170A (en) | 1994-08-25 | 1996-05-07 | Mauch; Rose M. | Cold pack device |
USD362091S (en) | 1994-09-09 | 1995-09-05 | Emerson Electric Co. | Combined wet/dry vacuum cleaner with detachable blower |
US5486207A (en) | 1994-09-20 | 1996-01-23 | Mahawili; Imad | Thermal pad for portable body heating/cooling system and method of use |
US5895418A (en) | 1994-09-30 | 1999-04-20 | Saringer Research Inc. | Device for producing cold therapy |
US5628769A (en) | 1994-09-30 | 1997-05-13 | Saringer Research, Inc. | Method and devices for producing somatosensory stimulation using temperature |
AU4106796A (en) | 1994-11-09 | 1996-06-06 | Federico Castro Munozledo | Wound repair dressings and methods for their preservation |
US5817145A (en) | 1994-11-21 | 1998-10-06 | Augustine Medical, Inc. | Wound treatment device |
DE4445627A1 (en) | 1994-12-21 | 1996-06-27 | Holland Letz Horst | Heat exchanger for thermal therapy pad |
US6426445B1 (en) | 1995-01-10 | 2002-07-30 | The Procter & Gamble Company | Absorbent members comprising an agglomerate of hydrogel-forming absorbent polymer and particulate hydrophilic foam |
US5735844A (en) | 1995-02-01 | 1998-04-07 | The General Hospital Corporation | Hair removal using optical pulses |
US5647051A (en) | 1995-02-22 | 1997-07-08 | Seabrook Medical Systems, Inc. | Cold therapy system with intermittent fluid pumping for temperature control |
US5635162A (en) | 1995-02-23 | 1997-06-03 | Ultradent Products, Inc. | Hemostatic composition for treating gingival area |
US5980561A (en) | 1995-03-01 | 1999-11-09 | Kolen; Paul T. | Applying thermal therapy to living tissue |
IES950163A2 (en) | 1995-03-01 | 1995-12-27 | Shannon Cool Limited | Cold therapy apparatus |
US5558376A (en) | 1995-03-02 | 1996-09-24 | Engineered Transitions Co., Inc. | Low profile swivel adapters |
US5580714A (en) | 1995-03-08 | 1996-12-03 | Celox Laboratories, Inc. | Cryopreservation solution |
ATE250894T1 (en) | 1995-04-28 | 2003-10-15 | Endocare Inc | INTEGRATED CRYO-SURGICAL CONTROL AND MONITORING SYSTEM |
US6241753B1 (en) | 1995-05-05 | 2001-06-05 | Thermage, Inc. | Method for scar collagen formation and contraction |
US5660836A (en) | 1995-05-05 | 1997-08-26 | Knowlton; Edward W. | Method and apparatus for controlled contraction of collagen tissue |
US6430446B1 (en) | 1995-05-05 | 2002-08-06 | Thermage, Inc. | Apparatus for tissue remodeling |
US6425912B1 (en) | 1995-05-05 | 2002-07-30 | Thermage, Inc. | Method and apparatus for modifying skin surface and soft tissue structure |
US5755753A (en) | 1995-05-05 | 1998-05-26 | Thermage, Inc. | Method for controlled contraction of collagen tissue |
US5634890A (en) | 1995-05-09 | 1997-06-03 | Aquasage, Inc. | Water massage therapy device and method for using the same |
US5901707A (en) | 1995-05-19 | 1999-05-11 | Hpl Biomedical, Inc. | Silicone mask for cryosurgery and method |
US5965438A (en) | 1995-06-07 | 1999-10-12 | Phyton, Inc. | Cryopreservation of plant cells |
US5741248A (en) | 1995-06-07 | 1998-04-21 | Temple University-Of The Commonwealth System Of Higher Education | Fluorochemical liquid augmented cryosurgery |
US5769879A (en) | 1995-06-07 | 1998-06-23 | Medical Contouring Corporation | Microwave applicator and method of operation |
AU725269B2 (en) | 1995-07-25 | 2000-10-12 | Massachusetts Institute Of Technology | Enhanced transdermal transport using ultrasound |
US5853364A (en) | 1995-08-07 | 1998-12-29 | Nellcor Puritan Bennett, Inc. | Method and apparatus for estimating physiological parameters using model-based adaptive filtering |
US5746736A (en) | 1995-08-09 | 1998-05-05 | Lumedics, Ltd. | Cryogenic laser lithotripsy with enhanced light absorption |
US5964749A (en) | 1995-09-15 | 1999-10-12 | Esc Medical Systems Ltd. | Method and apparatus for skin rejuvenation and wrinkle smoothing |
US5654546A (en) | 1995-11-07 | 1997-08-05 | Molecular Imaging Corporation | Variable temperature scanning probe microscope based on a peltier device |
US5733280A (en) | 1995-11-15 | 1998-03-31 | Avitall; Boaz | Cryogenic epicardial mapping and ablation |
US5755755A (en) | 1995-12-13 | 1998-05-26 | Panyard; Albert A. | Therapeutic structure and method |
US5634940A (en) | 1995-12-13 | 1997-06-03 | Panyard; Albert A. | Therapeutic structure and methods |
JPH09164163A (en) | 1995-12-15 | 1997-06-24 | Matsushita Electric Ind Co Ltd | Local part cooler-heater |
WO1997022262A2 (en) | 1995-12-19 | 1997-06-26 | Jie Hao | Soft ice |
WO1997024088A1 (en) | 1995-12-29 | 1997-07-10 | Life Resuscitation Technologies, Inc. | Total body cooling system |
US7473251B2 (en) | 1996-01-05 | 2009-01-06 | Thermage, Inc. | Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient |
US6413255B1 (en) | 1999-03-09 | 2002-07-02 | Thermage, Inc. | Apparatus and method for treatment of tissue |
US7141049B2 (en) | 1999-03-09 | 2006-11-28 | Thermage, Inc. | Handpiece for treatment of tissue |
US7006874B2 (en) | 1996-01-05 | 2006-02-28 | Thermage, Inc. | Treatment apparatus with electromagnetic energy delivery device and non-volatile memory |
US7229436B2 (en) | 1996-01-05 | 2007-06-12 | Thermage, Inc. | Method and kit for treatment of tissue |
US6350276B1 (en) | 1996-01-05 | 2002-02-26 | Thermage, Inc. | Tissue remodeling apparatus containing cooling fluid |
US7267675B2 (en) | 1996-01-05 | 2007-09-11 | Thermage, Inc. | RF device with thermo-electric cooler |
US7022121B2 (en) | 1999-03-09 | 2006-04-04 | Thermage, Inc. | Handpiece for treatment of tissue |
US7115123B2 (en) | 1996-01-05 | 2006-10-03 | Thermage, Inc. | Handpiece with electrode and non-volatile memory |
US7189230B2 (en) | 1996-01-05 | 2007-03-13 | Thermage, Inc. | Method for treating skin and underlying tissue |
CA2242596C (en) | 1996-01-11 | 2012-06-19 | Mrj, Inc. | System for controlling access and distribution of digital property |
US5651773A (en) | 1996-01-19 | 1997-07-29 | Perry; Larry C. | Skin protector for ultrasonic-assisted liposuction and accessories |
US5650450A (en) | 1996-01-25 | 1997-07-22 | Foamex L.P. | Hydrophilic urethane foam |
FR2744358B1 (en) | 1996-02-01 | 1998-05-07 | Biogenie Beaute Concept | MASSAGE HEAD COMBINING SUCTION MASSAGE AND ELECTROTHERAPY |
FR2745935B1 (en) | 1996-03-11 | 1998-05-22 | Ygk Holding S A | AUTOMATED TANNING EQUIPMENT |
US5654279A (en) | 1996-03-29 | 1997-08-05 | The Regents Of The University Of California | Tissue destruction in cryosurgery by use of thermal hysteresis |
US6180867B1 (en) | 1996-04-17 | 2001-01-30 | General Electric Company | Thermal sensor array and methods of fabrication and use |
SE510531C2 (en) | 1996-05-02 | 1999-05-31 | Sca Hygiene Prod Ab | Hollow-casing layer for absorbing articles, as well as ways of making the casing layer |
JP4012252B2 (en) | 1996-06-18 | 2007-11-21 | アルザ コーポレイション | Device for enhancing transdermal release or sampling of drugs |
AU3813897A (en) | 1996-07-25 | 1998-02-20 | Light Medicine, Inc. | Photodynamic therapy apparatus and methods |
US5976123A (en) | 1996-07-30 | 1999-11-02 | Laser Aesthetics, Inc. | Heart stabilization |
US5966763A (en) | 1996-08-02 | 1999-10-19 | Hill-Rom, Inc. | Surface pad system for a surgical table |
US6102885A (en) | 1996-08-08 | 2000-08-15 | Bass; Lawrence S. | Device for suction-assisted lipectomy and method of using same |
US5840080A (en) | 1996-08-15 | 1998-11-24 | Der Ovanesian; Mary | Hot or cold applicator with inner element |
US5665053A (en) | 1996-09-27 | 1997-09-09 | Jacobs; Robert A. | Apparatus for performing endermology with ultrasound |
US5941825A (en) | 1996-10-21 | 1999-08-24 | Philipp Lang | Measurement of body fat using ultrasound methods and devices |
BE1010730A7 (en) | 1996-11-04 | 1998-12-01 | Pira Luc Louis Marie Francis | Cryoprobe based on peltier module. |
US5952168A (en) * | 1996-11-07 | 1999-09-14 | 21St Century Medicine, Inc. | Method for vitrification of biological materials using alkoxylated compounds |
US5800490A (en) | 1996-11-07 | 1998-09-01 | Patz; Herbert Samuel | Lightweight portable cooling or heating device with multiple applications |
USD399493S (en) | 1996-11-11 | 1998-10-13 | Toshiba Kikai Kabushiki Kaisha | Machine tool operation console |
US8182473B2 (en) | 1999-01-08 | 2012-05-22 | Palomar Medical Technologies | Cooling system for a photocosmetic device |
US6517532B1 (en) | 1997-05-15 | 2003-02-11 | Palomar Medical Technologies, Inc. | Light energy delivery head |
US7204832B2 (en) | 1996-12-02 | 2007-04-17 | Pálomar Medical Technologies, Inc. | Cooling system for a photo cosmetic device |
US6273884B1 (en) | 1997-05-15 | 2001-08-14 | Palomar Medical Technologies, Inc. | Method and apparatus for dermatology treatment |
US20060149343A1 (en) | 1996-12-02 | 2006-07-06 | Palomar Medical Technologies, Inc. | Cooling system for a photocosmetic device |
US5964092A (en) | 1996-12-13 | 1999-10-12 | Nippon Sigmax, Co., Ltd. | Electronic cooling apparatus |
WO1998029134A2 (en) | 1996-12-31 | 1998-07-09 | Altea Technologies, Inc. | Microporation of tissue for delivery of bioactive agents |
US6102875A (en) | 1997-01-16 | 2000-08-15 | Jones; Rick E. | Apparatus for combined application of massage, accupressure and biomagnetic therapy |
US5830208A (en) | 1997-01-31 | 1998-11-03 | Laserlite, Llc | Peltier cooled apparatus and methods for dermatological treatment |
JPH10216169A (en) | 1997-02-05 | 1998-08-18 | Kanae Kagawa:Kk | Cold-feeling/cooling sheet |
JPH10223961A (en) | 1997-02-10 | 1998-08-21 | Furukawa Electric Co Ltd:The | Optical amplifier |
US5925026A (en) | 1997-03-10 | 1999-07-20 | Kimberly-Clark Worldwide, Inc. | Apertured absorbent pads for use in absorbent articles |
US6032675A (en) | 1997-03-17 | 2000-03-07 | Rubinsky; Boris | Freezing method for controlled removal of fatty tissue by liposuction |
US6041787A (en) | 1997-03-17 | 2000-03-28 | Rubinsky; Boris | Use of cryoprotective agent compounds during cryosurgery |
GB2323659A (en) | 1997-03-25 | 1998-09-30 | Paul Weatherstone | Hand directable chilled air blower |
NL1007696C1 (en) | 1997-05-01 | 1998-11-03 | Inst Voor Agrotech Onderzoek | Controlled-release coated substance. |
US5817050A (en) | 1997-05-29 | 1998-10-06 | Klein; Jeffrey A. | Liposuction cannula |
AU8149198A (en) | 1997-06-17 | 1999-01-04 | Cool Laser Optics, Inc. | Method and apparatus for temperature control of biologic tissue with simultaneous irradiation |
US6104959A (en) | 1997-07-31 | 2000-08-15 | Microwave Medical Corp. | Method and apparatus for treating subcutaneous histological features |
WO1999008598A1 (en) | 1997-08-19 | 1999-02-25 | Mendlein John D | Ultrasonic transmission films and devices, particularly for hygienic transducer surfaces |
FR2767476B1 (en) | 1997-08-25 | 1999-10-15 | Juliette Dubois | PHYSIOTHERAPEUTIC DEVICE FOR THE TREATMENT OF THE SKIN BY VACUUM AND ULTRASOUND SUCTION |
US6023932A (en) | 1997-08-25 | 2000-02-15 | Johnston; Robert | Topical cooling device |
US5802865A (en) | 1997-09-05 | 1998-09-08 | The Sharper Image | Evaporative personal cooler |
US6113558A (en) | 1997-09-29 | 2000-09-05 | Angiosonics Inc. | Pulsed mode lysis method |
US6623430B1 (en) | 1997-10-14 | 2003-09-23 | Guided Therapy Systems, Inc. | Method and apparatus for safety delivering medicants to a region of tissue using imaging, therapy and temperature monitoring ultrasonic system |
USD424699S (en) | 1997-10-23 | 2000-05-09 | Donald Allen | Wound dressing |
US6071239A (en) | 1997-10-27 | 2000-06-06 | Cribbs; Robert W. | Method and apparatus for lipolytic therapy using ultrasound energy |
GB9724186D0 (en) | 1997-11-14 | 1998-01-14 | British Tech Group | Low temperature coatings |
US6113559A (en) | 1997-12-29 | 2000-09-05 | Klopotek; Peter J. | Method and apparatus for therapeutic treatment of skin with ultrasound |
US6104952A (en) | 1998-01-07 | 2000-08-15 | Tu; Lily Chen | Devices for treating canker sores, tissues and methods thereof |
DE19800416C2 (en) | 1998-01-08 | 2002-09-19 | Storz Karl Gmbh & Co Kg | Device for the treatment of body tissue, in particular soft tissue close to the surface, by means of ultrasound |
US7458984B2 (en) | 1998-01-23 | 2008-12-02 | Innercool Therapies, Inc. | System and method for inducing hypothermia with active patient temperature control employing catheter-mounted temperature sensor and temperature projection algorithm |
US6251129B1 (en) | 1998-03-24 | 2001-06-26 | Innercool Therapies, Inc. | Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control |
IL126783A0 (en) | 1998-03-05 | 1999-08-17 | M T R E Advanced Technology Lt | System and method for heat control of a living body |
US6047215A (en) | 1998-03-06 | 2000-04-04 | Sonique Surgical Systems, Inc. | Method and apparatus for electromagnetically assisted liposuction |
DE69926348T2 (en) | 1998-03-12 | 2006-06-01 | Palomar Medical Technologies, Inc., Burlington | SYSTEM FOR THE ELECTROMAGNETIC IRRADIATION OF THE SKIN |
WO1999047085A1 (en) | 1998-03-17 | 1999-09-23 | Kochamba Gary S | Method and apparatus for stabilizing tissue |
US6551349B2 (en) | 1998-03-24 | 2003-04-22 | Innercool Therapies, Inc. | Selective organ cooling apparatus |
CA2326120C (en) | 1998-03-27 | 2015-01-13 | The General Hospital Corporation | Method and apparatus for the selective targeting of lipid-rich tissues |
US6031525A (en) | 1998-04-01 | 2000-02-29 | New York University | Method and apparatus for writing |
FR2776920B3 (en) | 1998-04-03 | 2000-04-28 | Elie Piana | VACUUM MASSAGE DEVICE |
US6569189B1 (en) | 1998-04-06 | 2003-05-27 | Augustine Medical, Inc. | Tissue treatment apparatus including a bandpass filter transparent to selected wavelengths of IR electromagnetic spectrum |
US6264649B1 (en) | 1998-04-09 | 2001-07-24 | Ian Andrew Whitcroft | Laser treatment cooling head |
US5997530A (en) | 1998-04-13 | 1999-12-07 | The Regents Of The University Of California | Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations |
US6354297B1 (en) | 1998-04-16 | 2002-03-12 | The Uniformed Services University Of The Health Sciences | Method and device for destroying fat cells by induction of programmed cell death |
US6113626A (en) | 1998-04-23 | 2000-09-05 | The Board Of Regents Of The University Of Texas System | Heat transfer blanket for controlling a patient's temperature |
WO1999053874A1 (en) | 1998-04-23 | 1999-10-28 | The Board Of Regents Of The University Of Texas System | Heat transfer blanket for and method of controlling a patient's temperature |
US6375673B1 (en) | 1998-04-23 | 2002-04-23 | The Board Of Regents Of The University Of Texas System | Heat transfer blanket for and method of controlling a patient's temperature |
US6151735A (en) | 1998-05-05 | 2000-11-28 | Imak Corporation | Zone inflatable orthopedic pillow |
US20050143797A1 (en) | 2003-07-18 | 2005-06-30 | Thermotek, Inc. | Compression sequenced thermal therapy system |
US6015390A (en) | 1998-06-12 | 2000-01-18 | D. Krag Llc | System and method for stabilizing and removing tissue |
US6039694A (en) | 1998-06-25 | 2000-03-21 | Sonotech, Inc. | Coupling sheath for ultrasound transducers |
US6312453B1 (en) | 1998-07-16 | 2001-11-06 | Olympic Medical Corp. | Device for cooling infant's brain |
US6673098B1 (en) | 1998-08-24 | 2004-01-06 | Radiant Medical, Inc. | Disposable cassette for intravascular heat exchange catheter |
US6620189B1 (en) | 2000-02-28 | 2003-09-16 | Radiant Medical, Inc. | Method and system for control of a patient's body temperature by way of a transluminally insertable heat exchange catheter |
US6139545A (en) | 1998-09-09 | 2000-10-31 | Vidaderm | Systems and methods for ablating discrete motor nerve regions |
US6093230A (en) | 1998-10-12 | 2000-07-25 | Allegiance Corporation | Filter assembly comprising two filter elements separated by a hydrophobic foam |
US6059820A (en) | 1998-10-16 | 2000-05-09 | Paradigm Medical Corporation | Tissue cooling rod for laser surgery |
TW514521B (en) | 1998-10-16 | 2002-12-21 | Coolsystems Inc | Compliant heat exchange splint and control unit |
US6150148A (en) | 1998-10-21 | 2000-11-21 | Genetronics, Inc. | Electroporation apparatus for control of temperature during the process |
IL126723A0 (en) | 1998-10-22 | 1999-08-17 | Medoc Ltd | Vaginal probe and method |
DE19852948C2 (en) | 1998-11-12 | 2002-07-18 | Asclepion Meditec Ag | Dermatological handpiece |
US6887260B1 (en) | 1998-11-30 | 2005-05-03 | Light Bioscience, Llc | Method and apparatus for acne treatment |
US6120519A (en) | 1998-12-02 | 2000-09-19 | Weber; Paul J. | Advanced fulcrum liposuction device |
US7785359B2 (en) | 1998-12-18 | 2010-08-31 | Traumatec, Inc. | Therapeutic cooling devices |
AU2222800A (en) | 1999-01-04 | 2000-07-24 | Medivance, Incorporated | Improved cooling/heating pad and system |
US6183773B1 (en) | 1999-01-04 | 2001-02-06 | The General Hospital Corporation | Targeting of sebaceous follicles as a treatment of sebaceous gland disorders |
US6306119B1 (en) | 1999-01-20 | 2001-10-23 | Pearl Technology Holdings, Llc | Skin resurfacing and treatment using biocompatible materials |
US6592577B2 (en) | 1999-01-25 | 2003-07-15 | Cryocath Technologies Inc. | Cooling system |
US6635053B1 (en) | 1999-01-25 | 2003-10-21 | Cryocath Technologies Inc. | Cooling system |
ATE216875T1 (en) | 1999-01-27 | 2002-05-15 | Idea Ag | NON-INVASIVE VACCINATION THROUGH THE SKIN |
US6200308B1 (en) | 1999-01-29 | 2001-03-13 | Candela Corporation | Dynamic cooling of tissue for radiation treatment |
WO2000044346A1 (en) | 1999-02-03 | 2000-08-03 | Gerard Hassler | Lowering skin temperature |
FR2789893B1 (en) | 1999-02-24 | 2001-05-11 | Serge Karagozian | COMBINATION DERMOTONY AND MAGNETOTHERAPY MASSAGE APPARATUS |
US6468297B1 (en) | 1999-02-24 | 2002-10-22 | Cryovascular Systems, Inc. | Cryogenically enhanced intravascular interventions |
US6176869B1 (en) | 1999-02-25 | 2001-01-23 | Breg, Inc. | Fluid drive mechanism for a therapeutic treatment system |
US6678558B1 (en) | 1999-03-25 | 2004-01-13 | Genetronics, Inc. | Method and apparatus for reducing electroporation-mediated muscle reaction and pain response |
JP2002543668A (en) | 1999-04-22 | 2002-12-17 | ベリディコム・インコーポレイテッド | Highly Secure Biometric Authentication Using Public / Private Key Encryption Pairs |
US20040009936A1 (en) | 1999-05-03 | 2004-01-15 | Tang De-Chu C. | Vaccine and drug delivery by topical application of vectors and vector extracts |
WO2000067685A1 (en) | 1999-05-12 | 2000-11-16 | Burns Terrence R | Thermoregulation systems |
US6643535B2 (en) | 1999-05-26 | 2003-11-04 | Endocare, Inc. | System for providing computer guided ablation of tissue |
US6694170B1 (en) | 1999-05-26 | 2004-02-17 | Endocare, Inc. | Computer guided surgery for prostatic nerve sparing |
US6139544A (en) | 1999-05-26 | 2000-10-31 | Endocare, Inc. | Computer guided cryosurgery |
US20020198518A1 (en) | 1999-05-26 | 2002-12-26 | Mikus Paul W. | Entry position grid for computer guided cryosurgery |
US6357907B1 (en) | 1999-06-15 | 2002-03-19 | V & P Scientific, Inc. | Magnetic levitation stirring devices and machines for mixing in vessels |
JP2005512671A (en) | 1999-06-30 | 2005-05-12 | サーメイジ インコーポレイテッド | Fluid dosing device |
KR200173222Y1 (en) | 1999-07-19 | 2000-03-15 | 이강민 | Supersonic skin massager |
AU6756300A (en) | 1999-08-02 | 2001-02-19 | Lance B. Becker | Method for inducing hypothermia |
JP2001046416A (en) | 1999-08-10 | 2001-02-20 | Try Company:Kk | Body cooling apparatus |
US6548728B1 (en) | 1999-08-11 | 2003-04-15 | Medical Products, Inc. | Wound dressing garment |
US6290713B1 (en) | 1999-08-24 | 2001-09-18 | Thomas A. Russell | Flexible illuminators for phototherapy |
US7113821B1 (en) | 1999-08-25 | 2006-09-26 | Johnson & Johnson Consumer Companies, Inc. | Tissue electroperforation for enhanced drug delivery |
IL131834A0 (en) | 1999-09-09 | 2001-03-19 | M T R E Advanced Technology Lt | Method and system for improving cardiac output of a patient |
US6471693B1 (en) | 1999-09-10 | 2002-10-29 | Cryocath Technologies Inc. | Catheter and system for monitoring tissue contact |
US6226996B1 (en) | 1999-10-06 | 2001-05-08 | Paul J. Weber | Device for controlled cooling of a surface |
GB9923804D0 (en) | 1999-10-08 | 1999-12-08 | Hewlett Packard Co | Electronic commerce system |
WO2001032114A1 (en) | 1999-11-02 | 2001-05-10 | Wizcare Ltd. | Skin-gripper |
GB2356145B (en) | 1999-11-10 | 2004-07-28 | Mas Mfg Ltd | Dressing |
US6743222B2 (en) | 1999-12-10 | 2004-06-01 | Candela Corporation | Method of treating disorders associated with sebaceous follicles |
US6402775B1 (en) | 1999-12-14 | 2002-06-11 | Augustine Medical, Inc. | High-efficiency cooling pads, mattresses, and sleeves |
JP2004159666A (en) | 1999-12-21 | 2004-06-10 | Ya Man Ltd | Laser epilation device |
JP4723707B2 (en) | 1999-12-22 | 2011-07-13 | パナソニック電工株式会社 | Slimming equipment |
US6699237B2 (en) | 1999-12-30 | 2004-03-02 | Pearl Technology Holdings, Llc | Tissue-lifting device |
JP2001190586A (en) | 2000-01-11 | 2001-07-17 | Ohiro Seisakusho:Kk | Facial treatment implement |
US6840955B2 (en) | 2000-01-27 | 2005-01-11 | Robert J. Ein | Therapeutic apparatus |
US6551251B2 (en) | 2000-02-14 | 2003-04-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Passive fetal heart monitoring system |
FR2805989B1 (en) | 2000-03-10 | 2003-02-07 | Prod Ella Bache Laboratoire Su | PROCESS FOR TREATING INESTHETISMS OF SILHOUETTE OF THE HUMAN BODY AND DEVICE FOR IMPLEMENTING THE METHOD |
WO2001067859A2 (en) | 2000-03-14 | 2001-09-20 | Alnis Biosciences, Inc. | Cryoprotective system |
KR100367639B1 (en) | 2000-03-20 | 2003-01-14 | 안문휘 | Cryogenic stimulating device of acupuncture points |
US6311497B1 (en) | 2000-03-22 | 2001-11-06 | Young-Chun Chung | Device for cold and warm formentations |
US20020188478A1 (en) | 2000-03-24 | 2002-12-12 | Joe Breeland | Health-care systems and methods |
US6354099B1 (en) | 2000-04-11 | 2002-03-12 | Augustine Medical, Inc. | Cooling devices with high-efficiency cooling features |
AU2001257136B2 (en) | 2000-04-20 | 2005-12-01 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and devices for cooling body core |
US20020151830A1 (en) | 2000-04-28 | 2002-10-17 | Rocky Kahn | Hydrotherapy system with water pervious body support |
US6494844B1 (en) | 2000-06-21 | 2002-12-17 | Sanarus Medical, Inc. | Device for biopsy and treatment of breast tumors |
AU2001276895A1 (en) | 2000-07-13 | 2002-01-30 | Medtronic, Inc. | Non-invasive carotid cooler brain hypothermia medical device |
WO2002009571A2 (en) | 2000-07-31 | 2002-02-07 | Galil Medical Ltd. | Planning and facilitation systems and methods for cryosurgery |
US8251986B2 (en) | 2000-08-17 | 2012-08-28 | Angiodynamics, Inc. | Method of destroying tissue cells by eletroporation |
US6697670B2 (en) | 2001-08-17 | 2004-02-24 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients |
US6795728B2 (en) | 2001-08-17 | 2004-09-21 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits by electroporation |
US6892099B2 (en) | 2001-02-08 | 2005-05-10 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation |
WO2002014774A2 (en) | 2000-08-17 | 2002-02-21 | Ocean Power Corporation | Heat exchange element with hydrophilic evaporator surface |
US6458888B1 (en) | 2000-09-15 | 2002-10-01 | Isp Investments Inc. | Rheology modifier for use in aqueous compositions |
US20040034321A1 (en) | 2000-10-05 | 2004-02-19 | Seacoast Technologies, Inc. | Conformal pad for neurosurgery and method thereof |
US6527765B2 (en) | 2000-10-06 | 2003-03-04 | Charles D. Kelman | Cryogenic surgical system and method of use in removal of tissue |
US6579281B2 (en) | 2000-10-11 | 2003-06-17 | Popcab, Llc | Instrument stabilizer for through-a-port surgery |
US6540694B1 (en) | 2000-10-16 | 2003-04-01 | Sanarus Medical, Inc. | Device for biopsy tumors |
JP3655820B2 (en) | 2000-10-23 | 2005-06-02 | 繁雄 小林 | Head cooling and heating device |
EP1201266A1 (en) | 2000-10-26 | 2002-05-02 | Compex SA | Method for programming stimulation data into a stimulation device |
DE10056242A1 (en) | 2000-11-14 | 2002-05-23 | Alstom Switzerland Ltd | Condensation heat exchanger has heat exchanger surfaces having a coating consisting of a alternating sequence of layers made up of a hard layer with amorphous carbon or a plasma polymer |
US6821274B2 (en) | 2001-03-07 | 2004-11-23 | Gendel Ltd. | Ultrasound therapy for selective cell ablation |
US7549987B2 (en) | 2000-12-09 | 2009-06-23 | Tsunami Medtech, Llc | Thermotherapy device |
US6626854B2 (en) | 2000-12-27 | 2003-09-30 | Insightec - Txsonics Ltd. | Systems and methods for ultrasound assisted lipolysis |
US6645162B2 (en) | 2000-12-27 | 2003-11-11 | Insightec - Txsonics Ltd. | Systems and methods for ultrasound assisted lipolysis |
ES2274915T3 (en) | 2000-12-28 | 2007-06-01 | Palomar Medical Technologies, Inc. | ELECTROMAGNETIC RADIATION TREATMENT DEVICE (EMR) OF THE SKIN. |
US7347855B2 (en) | 2001-10-29 | 2008-03-25 | Ultrashape Ltd. | Non-invasive ultrasonic body contouring |
US6607498B2 (en) | 2001-01-03 | 2003-08-19 | Uitra Shape, Inc. | Method and apparatus for non-invasive body contouring by lysing adipose tissue |
KR100948543B1 (en) | 2001-01-03 | 2010-03-18 | 울트라쉐이프 엘티디 | Non-invasive ultrasonic body contouring |
US6551348B1 (en) | 2001-01-26 | 2003-04-22 | Deroyal Industries, Inc. | Temperature controlled fluid therapy system |
JP2002224051A (en) | 2001-01-30 | 2002-08-13 | Yamaguchi Prefecture | Nonrestraint life monitor |
US20050145372A1 (en) | 2004-01-02 | 2005-07-07 | Noel Thomas P. | Method and thermally active multi-phase heat transfer apparatus and method for abstracting heat using liquid bi-phase heat exchanging composition |
US6904956B2 (en) | 2002-10-18 | 2005-06-14 | Thomas P. Noel | Method and thermally active convection apparatus and method for abstracting heat with circulation intermediate three dimensional-parity heat transfer elements in bi-phase heat exchanging composition |
JP4027049B2 (en) | 2001-02-28 | 2007-12-26 | 株式会社ニデック | Laser therapy device |
US6948903B2 (en) | 2001-03-15 | 2005-09-27 | Maxon Lift Corporation | Unitary liftgate |
JP4938177B2 (en) | 2001-03-22 | 2012-05-23 | 小林製薬株式会社 | Cold / warm pad |
JP2002290397A (en) | 2001-03-23 | 2002-10-04 | Iryo Joho Syst Kaihatsu Center | Secure communication method |
US7083580B2 (en) | 2001-04-06 | 2006-08-01 | Mattioli Engineering Ltd. | Method and apparatus for skin absorption enhancement and transdermal drug delivery |
CA2382928A1 (en) | 2001-04-23 | 2002-10-23 | Stephen Cheung | Thermal control suit |
WO2002087700A1 (en) | 2001-04-26 | 2002-11-07 | The Procter & Gamble Company | Method, kit and device for the treatment of cosmetic skin conditions |
US6438954B1 (en) | 2001-04-27 | 2002-08-27 | 3M Innovative Properties Company | Multi-directional thermal actuator |
FR2823973B1 (en) | 2001-04-27 | 2003-12-26 | Alain Meunier | MASSAGE APPARATUS FOR PERFORMING "PRESS-PRESS-TIRE" MASSAGE |
US6430956B1 (en) | 2001-05-15 | 2002-08-13 | Cimex Biotech Lc | Hand-held, heat sink cryoprobe, system for heat extraction thereof, and method therefore |
GB0111986D0 (en) | 2001-05-16 | 2001-07-04 | Optomed As | Cryosurgical apparatus and methods |
CN2514795Y (en) | 2001-05-18 | 2002-10-09 | 郑晓丹 | Multi-contact freezing beauty pencil |
US7192426B2 (en) | 2001-05-31 | 2007-03-20 | Endocare, Inc. | Cryogenic system |
US20020188286A1 (en) | 2001-06-06 | 2002-12-12 | Quijano Rodolfo C. | Methods for treating vulnerable plaque |
US6551341B2 (en) | 2001-06-14 | 2003-04-22 | Advanced Cardiovascular Systems, Inc. | Devices configured from strain hardened Ni Ti tubing |
FR2826107A1 (en) | 2001-06-19 | 2002-12-20 | M D I C | Cold pack useful for cryotherapy or food preservation comprises sealed flexible casing containing aqueous composition, hydrocolloid thickener and freezing point depressant |
KR100699759B1 (en) | 2001-06-27 | 2007-03-27 | 라디언시 인크. | Acne treatment |
TW476644B (en) | 2001-06-28 | 2002-02-21 | Wen-Hu Liau | Portable first-aid cold hot compress pack |
JP3393128B1 (en) | 2001-07-18 | 2003-04-07 | 正雄 酒井 | Female wearing condom |
CN2514811Y (en) | 2001-07-31 | 2002-10-09 | 尹旭光 | Electrothermal device for heatig foot |
US20040260209A1 (en) | 2003-06-23 | 2004-12-23 | Engli (2001) Ltd. | System and method for face and body treatment |
US20040260210A1 (en) | 2003-06-23 | 2004-12-23 | Engii (2001) Ltd. | System and method for face and body treatment |
US20030032900A1 (en) | 2001-08-08 | 2003-02-13 | Engii (2001) Ltd. | System and method for facial treatment |
US6438964B1 (en) | 2001-09-10 | 2002-08-27 | Percy Giblin | Thermoelectric heat pump appliance with carbon foam heat sink |
US6572450B2 (en) | 2001-09-21 | 2003-06-03 | Iphotonics, Inc. | Roll format polishing process for optical devices |
US20030062040A1 (en) | 2001-09-28 | 2003-04-03 | Lurie Keith G. | Face mask ventilation/perfusion systems and method |
US20030114885A1 (en) | 2001-10-02 | 2003-06-19 | Nova Richard C. | System and device for implementing an integrated medical device component package |
ATE287904T1 (en) | 2001-10-05 | 2005-02-15 | Basf Ag | METHOD FOR CROSSLINKING HYDROGELS WITH MORPHOLINE-2,3-DIONES |
US6699267B2 (en) | 2001-10-11 | 2004-03-02 | Medivance Incorporated | Patient temperature control system with fluid temperature response |
US6660027B2 (en) | 2001-10-11 | 2003-12-09 | Medivance Incorporated | Patient temperature control system with fluid preconditioning |
US7112340B2 (en) | 2001-10-19 | 2006-09-26 | Baxter International Inc. | Compositions of and method for preparing stable particles in a frozen aqueous matrix |
US20030125649A1 (en) | 2001-10-31 | 2003-07-03 | Mcintosh Laura Janet | Method and system apparatus using temperature and pressure for treating medical disorders |
AU2002348315A1 (en) | 2001-11-20 | 2003-06-10 | Senvid, Inc. | Access and control system for network-enabled devices |
US6889090B2 (en) | 2001-11-20 | 2005-05-03 | Syneron Medical Ltd. | System and method for skin treatment using electrical current |
US20040162596A1 (en) | 2002-10-07 | 2004-08-19 | Palomar Medical Technologies, Inc. | Methods and apparatus for performing photobiostimulation |
US6648904B2 (en) | 2001-11-29 | 2003-11-18 | Palomar Medical Technologies, Inc. | Method and apparatus for controlling the temperature of a surface |
US6849075B2 (en) | 2001-12-04 | 2005-02-01 | Estech, Inc. | Cardiac ablation devices and methods |
US6699266B2 (en) | 2001-12-08 | 2004-03-02 | Charles A. Lachenbruch | Support surface with phase change material or heat tubes |
US20030109910A1 (en) | 2001-12-08 | 2003-06-12 | Lachenbruch Charles A. | Heating or cooling pad or glove with phase change material |
US6755852B2 (en) | 2001-12-08 | 2004-06-29 | Charles A. Lachenbruch | Cooling body wrap with phase change material |
EP1627662B1 (en) | 2004-06-10 | 2011-03-02 | Candela Corporation | Apparatus for vacuum-assisted light-based treatments of the skin |
US7762965B2 (en) | 2001-12-10 | 2010-07-27 | Candela Corporation | Method and apparatus for vacuum-assisted light-based treatments of the skin |
JP2003190201A (en) | 2001-12-26 | 2003-07-08 | Lion Corp | Body cooler and body warmer |
EP1476080A4 (en) | 2002-02-20 | 2010-06-02 | Medicis Technologies Corp | Ultrasonic treatment and imaging of adipose tissue |
US6523354B1 (en) | 2002-03-08 | 2003-02-25 | Deborah Ann Tolbert | Cooling blanket |
US7367341B2 (en) | 2002-03-15 | 2008-05-06 | The General Hospital Corporation | Methods and devices for selective disruption of fatty tissue by controlled cooling |
US8840608B2 (en) | 2002-03-15 | 2014-09-23 | The General Hospital Corporation | Methods and devices for selective disruption of fatty tissue by controlled cooling |
US6662054B2 (en) | 2002-03-26 | 2003-12-09 | Syneron Medical Ltd. | Method and system for treating skin |
US20030236487A1 (en) | 2002-04-29 | 2003-12-25 | Knowlton Edward W. | Method for treatment of tissue with feedback |
US20040176667A1 (en) | 2002-04-30 | 2004-09-09 | Mihai Dan M. | Method and system for medical device connectivity |
USD471982S1 (en) | 2002-05-03 | 2003-03-18 | Ming-Chuan Cheng | Oxygen concentrator |
US20030220594A1 (en) | 2002-05-24 | 2003-11-27 | United States Manufacturing Company, Inc. | Torso orthosis apparatus and method |
US6746474B2 (en) | 2002-05-31 | 2004-06-08 | Vahid Saadat | Apparatus and methods for cooling a region within the body |
WO2003105400A1 (en) | 2002-06-07 | 2003-12-18 | ソニー株式会社 | Data processing system, data processing device, data processing method, and computer program |
JP3786055B2 (en) | 2002-06-07 | 2006-06-14 | ソニー株式会社 | Data processing system, data processing apparatus and method, and computer program |
WO2004000150A1 (en) | 2002-06-19 | 2003-12-31 | Palomar Medical Technologies, Inc. | Method and apparatus for photothermal treatment of tissue at depth |
US7276058B2 (en) | 2002-06-19 | 2007-10-02 | Palomar Medical Technologies, Inc. | Method and apparatus for treatment of cutaneous and subcutaneous conditions |
JP2004073812A (en) | 2002-06-20 | 2004-03-11 | Ya Man Ltd | Massager |
KR100923717B1 (en) | 2002-06-25 | 2009-10-27 | 울트라세이프 인코포레이티드 | Devices and methodologies useful in body aesthetics |
US6820961B2 (en) | 2002-06-28 | 2004-11-23 | Lexmark International, Inc. | Stationary ink mist chimney for ink jet printer |
US6969399B2 (en) | 2002-07-11 | 2005-11-29 | Life Recovery Systems Hd, Llc | Apparatus for altering the body temperature of a patient |
US7452712B2 (en) | 2002-07-30 | 2008-11-18 | Applied Biosystems Inc. | Sample block apparatus and method of maintaining a microcard on a sample block |
US7393350B2 (en) | 2002-08-06 | 2008-07-01 | Erbe Elektromedizin Gmbh | Cryo-surgical apparatus and methods |
US7250047B2 (en) | 2002-08-16 | 2007-07-31 | Lumenis Ltd. | System and method for treating tissue |
US6860896B2 (en) | 2002-09-03 | 2005-03-01 | Jeffrey T. Samson | Therapeutic method and apparatus |
US6789545B2 (en) | 2002-10-04 | 2004-09-14 | Sanarus Medical, Inc. | Method and system for cryoablating fibroadenomas |
US8226698B2 (en) | 2002-10-08 | 2012-07-24 | Vitalwear, Inc. | Therapeutic cranial wrap for a contrast therapy system |
US6994151B2 (en) | 2002-10-22 | 2006-02-07 | Cooligy, Inc. | Vapor escape microchannel heat exchanger |
CN1708261B (en) | 2002-10-23 | 2012-07-04 | 帕洛玛医疗技术公司 | Phototreatment device for use with coolants and topical substances |
US20040082886A1 (en) | 2002-10-24 | 2004-04-29 | Timpson Sandra Tee | Therapeutic device for relieving pain and stress |
GB2396109B (en) | 2002-12-12 | 2006-04-19 | Johnson & Johnson Medical Ltd | Absorbent multilayer hydrogel wound dressings |
US20040116866A1 (en) | 2002-12-17 | 2004-06-17 | William Gorman | Skin attachment apparatus and method for patient infusion device |
CN1511503A (en) | 2002-12-30 | 2004-07-14 | 中国科学院理化技术研究所 | Weight-reducing device for alternately applying cold and heat stimulation to skin |
US7976519B2 (en) | 2002-12-31 | 2011-07-12 | Kci Licensing, Inc. | Externally-applied patient interface system and method |
US6915641B2 (en) | 2003-01-14 | 2005-07-12 | Mark R. Harvie | Personal cooling and heating system |
US7410484B2 (en) | 2003-01-15 | 2008-08-12 | Cryodynamics, Llc | Cryotherapy probe |
AU2004206911B2 (en) | 2003-01-15 | 2009-07-16 | Adagio Medical, Inc. | Cryotherapy probe and system |
US7273479B2 (en) | 2003-01-15 | 2007-09-25 | Cryodynamics, Llc | Methods and systems for cryogenic cooling |
US7083612B2 (en) | 2003-01-15 | 2006-08-01 | Cryodynamics, Llc | Cryotherapy system |
US20050143781A1 (en) | 2003-01-31 | 2005-06-30 | Rafael Carbunaru | Methods and systems for patient adjustment of parameters for an implanted stimulator |
US20060234899A1 (en) | 2003-03-05 | 2006-10-19 | H.H. Brown Shoe Technologies Inc. D/B/A Dicon Technologies | Hydrophilic polyurethane foam articles comprising an antimicrobial compound |
EP1624787A4 (en) | 2003-03-06 | 2010-12-15 | Tria Beauty Inc | Method and device for sensing skin contact |
US7037326B2 (en) | 2003-03-14 | 2006-05-02 | Hee-Young Lee | Skin cooling device using thermoelectric element |
CN2617189Y (en) | 2003-03-22 | 2004-05-26 | 仇刚强 | Antifreezing hand protector |
DE10314138A1 (en) | 2003-03-25 | 2004-10-07 | Krüger & Gothe GmbH | Heating / cooling device |
US9149322B2 (en) | 2003-03-31 | 2015-10-06 | Edward Wells Knowlton | Method for treatment of tissue |
US20040206365A1 (en) | 2003-03-31 | 2004-10-21 | Knowlton Edward Wells | Method for treatment of tissue |
GB0307963D0 (en) | 2003-04-05 | 2003-05-14 | Eastman Kodak Co | A foamed material and a method of making thereof |
US7659301B2 (en) | 2003-04-15 | 2010-02-09 | The General Hospital Corporation | Methods and devices for epithelial protection during photodynamic therapy |
US7220778B2 (en) | 2003-04-15 | 2007-05-22 | The General Hospital Corporation | Methods and devices for epithelial protection during photodynamic therapy |
US20040210287A1 (en) | 2003-04-21 | 2004-10-21 | Greene Judy L. | Portable cooling or heating device for applying cryotherapy |
KR20040094508A (en) | 2003-05-02 | 2004-11-10 | 김창선 | Apparatus for Skin Treatment Using Ultra-sonic And Cold-Hot |
US20070129441A1 (en) | 2003-05-06 | 2007-06-07 | University Of North Texas Health Science Center At Fort Worth | Protection of cells from adverse external or intrinsic effects, cellular degeneration and death by n-acylethanolamines |
US20040249427A1 (en) | 2003-06-06 | 2004-12-09 | Yunes Nabilsi | Medical cooler device |
US7147610B2 (en) | 2003-06-19 | 2006-12-12 | Tarek Maalouf | Multiple combination heat/massage devices |
JP4504099B2 (en) | 2003-06-25 | 2010-07-14 | 株式会社リコー | Digital certificate management system, digital certificate management apparatus, digital certificate management method, update procedure determination method and program |
US7479104B2 (en) | 2003-07-08 | 2009-01-20 | Maquet Cardiovascular, Llc | Organ manipulator apparatus |
US8100956B2 (en) | 2006-05-09 | 2012-01-24 | Thermotek, Inc. | Method of and system for thermally augmented wound care oxygenation |
US20050043723A1 (en) | 2003-08-19 | 2005-02-24 | Schering-Plough Healthcare Products, Inc. | Cryosurgery device |
JP2005065984A (en) | 2003-08-25 | 2005-03-17 | Nikon Corp | Massage machine |
US20050049661A1 (en) | 2003-09-03 | 2005-03-03 | Koffroth Shirley B. | Ice belt to reduce body temperature |
US20050049526A1 (en) | 2003-09-03 | 2005-03-03 | Baer Mark P. | Massage devices and methods thereof |
WO2005023200A2 (en) | 2003-09-09 | 2005-03-17 | Seacost Technologies, Inc. | System and method for cooling internal tissue |
CA2441489A1 (en) | 2003-09-12 | 2005-03-12 | Jocelyn Tortal | Inducing and contouring ice formation |
US7077858B2 (en) | 2003-09-22 | 2006-07-18 | Coolhead Technologies, Inc. | Flexible heat exchangers for medical cooling and warming applications |
CN1860455B (en) | 2003-09-30 | 2010-09-22 | 索尼株式会社 | Content acquisition method |
JP2005110755A (en) | 2003-10-03 | 2005-04-28 | Shinko Denshi Kk | Heating/cooling apparatus for reducing muscular fatigue |
US7282036B2 (en) | 2003-10-24 | 2007-10-16 | Masatoshi Masuda | Cosmetic device having vibrator |
EP1527760A1 (en) | 2003-10-29 | 2005-05-04 | Normand, Jacques | Thermal pad and its use |
US7613523B2 (en) | 2003-12-11 | 2009-11-03 | Apsara Medical Corporation | Aesthetic thermal sculpting of skin |
US7857773B2 (en) | 2003-12-30 | 2010-12-28 | Medicis Technologies Corporation | Apparatus and methods for the destruction of adipose tissue |
KR101188930B1 (en) | 2003-12-30 | 2012-10-08 | 메디시스 테크놀로지스 코포레이션 | Ultrasound therapy head with movement control |
WO2005065407A2 (en) | 2003-12-30 | 2005-07-21 | Liposonix, Inc. | Position tracking device |
KR20060121277A (en) | 2003-12-30 | 2006-11-28 | 리포소닉스 인코포레이티드 | Component ultrasound transducer |
EP1699354A4 (en) | 2003-12-30 | 2011-01-05 | Medicis Technologies Corp | Systems and methods for the destruction of adipose tissue |
US20050149153A1 (en) | 2004-01-07 | 2005-07-07 | Kazuo Nakase | Body temperature adjuster |
WO2005074627A2 (en) | 2004-02-02 | 2005-08-18 | Hydrophilix Corporation | Process for controlling the density, conformation and composition of the hydrophilic layer of a polyurethane composite |
JP2005237908A (en) | 2004-02-12 | 2005-09-08 | Tamotsu Nishizaki | Cryosurgical unit using heat exchanger |
US7052167B2 (en) | 2004-02-25 | 2006-05-30 | Vanderschuit Carl R | Therapeutic devices and methods for applying therapy |
JP4109640B2 (en) | 2004-02-25 | 2008-07-02 | 株式会社エム・アイ・ラボ | Automatic excitation massager |
US20060035380A1 (en) | 2004-03-12 | 2006-02-16 | L'oreal | Fake-proof marking of a composition |
USD546949S1 (en) | 2004-03-24 | 2007-07-17 | Maxima Air Separation Center Ltd. | Device for transporting canisters of gas |
JP2005312950A (en) | 2004-03-31 | 2005-11-10 | Terumo Corp | Medical tool for energy irradiation and medical energy irradiation device |
CA2579146C (en) | 2004-04-01 | 2016-06-21 | The General Hospital Corporation | Method and apparatus for dermatological treatment |
ES2611284T3 (en) | 2004-04-01 | 2017-05-08 | The General Hospital Corporation | Device for skin treatment and tissue remodeling |
US20070179482A1 (en) | 2004-05-07 | 2007-08-02 | Anderson Robert S | Apparatuses and methods to treat biological external tissue |
US8571648B2 (en) | 2004-05-07 | 2013-10-29 | Aesthera | Apparatus and method to apply substances to tissue |
US7842029B2 (en) | 2004-05-07 | 2010-11-30 | Aesthera | Apparatus and method having a cooling material and reduced pressure to treat biological external tissue |
US20050251117A1 (en) | 2004-05-07 | 2005-11-10 | Anderson Robert S | Apparatus and method for treating biological external tissue |
JP2005323716A (en) | 2004-05-13 | 2005-11-24 | Takeshi Shimizu | Cold spot stimulation device |
WO2005113005A2 (en) | 2004-05-20 | 2005-12-01 | The United States Of America As Represented By The Secretary Of The Army | Transcutaneous and/or transdermal transport of materials |
US20050277859A1 (en) | 2004-05-27 | 2005-12-15 | Carlsmith Bruce S | Joint protection device |
US7959657B1 (en) | 2004-07-07 | 2011-06-14 | Harsy Douglas R | Portable thermal therapeutic apparatus and method |
JP4579603B2 (en) | 2004-07-14 | 2010-11-10 | 株式会社リブドゥコーポレーション | Non-woven fabric for skin cleaning |
US20060036300A1 (en) | 2004-08-16 | 2006-02-16 | Syneron Medical Ltd. | Method for lypolisis |
US7171508B2 (en) | 2004-08-23 | 2007-01-30 | Micron Technology, Inc. | Dual port memory with asymmetric inputs and outputs, device, system and method |
US8535228B2 (en) | 2004-10-06 | 2013-09-17 | Guided Therapy Systems, Llc | Method and system for noninvasive face lifts and deep tissue tightening |
US7241263B2 (en) | 2004-09-30 | 2007-07-10 | Scimed Life Systems, Inc. | Selectively rotatable shaft coupler |
EP2409728B1 (en) | 2004-10-06 | 2017-09-27 | Guided Therapy Systems, L.L.C. | System for ultrasound tissue treatment |
US20060111744A1 (en) | 2004-10-13 | 2006-05-25 | Guided Therapy Systems, L.L.C. | Method and system for treatment of sweat glands |
US20120046547A1 (en) | 2004-10-06 | 2012-02-23 | Guided Therapy Systems, Llc | System and method for cosmetic treatment |
US8663112B2 (en) | 2004-10-06 | 2014-03-04 | Guided Therapy Systems, Llc | Methods and systems for fat reduction and/or cellulite treatment |
KR101328103B1 (en) | 2004-10-06 | 2013-11-13 | 가이디드 테라피 시스템스, 엘.엘.씨. | Method and system for noninvasive cosmetic enhancement |
US8133180B2 (en) | 2004-10-06 | 2012-03-13 | Guided Therapy Systems, L.L.C. | Method and system for treating cellulite |
US8690778B2 (en) | 2004-10-06 | 2014-04-08 | Guided Therapy Systems, Llc | Energy-based tissue tightening |
USD525592S1 (en) | 2004-10-18 | 2006-07-25 | Mold-Masters Limited | Controller |
US20060094988A1 (en) | 2004-10-28 | 2006-05-04 | Tosaya Carol A | Ultrasonic apparatus and method for treating obesity or fat-deposits or for delivering cosmetic or other bodily therapy |
JP4324673B2 (en) | 2004-11-05 | 2009-09-02 | 国立大学法人東北大学 | Cryotherapy device with Peltier module |
US20060122509A1 (en) | 2004-11-24 | 2006-06-08 | Liposonix, Inc. | System and methods for destroying adipose tissue |
US7828831B1 (en) | 2004-12-06 | 2010-11-09 | Deroyal Industries, Inc. | Hot and cold fluid therapy system |
US7780656B2 (en) | 2004-12-10 | 2010-08-24 | Reliant Technologies, Inc. | Patterned thermal treatment using patterned cryogen spray and irradiation by light |
GB2422109B (en) | 2005-01-13 | 2007-02-21 | Richard Mills | Apparatus for providing a heating and cooling effect |
WO2006077572A2 (en) | 2005-01-24 | 2006-07-27 | Yuval Avni | Devices and method for applying vibrations to joints |
WO2006086513A2 (en) | 2005-02-08 | 2006-08-17 | Carewave, Inc. | Apparatus and method for using a portable thermal device to reduce accommodation of nerve receptors |
US7458808B2 (en) | 2005-02-22 | 2008-12-02 | Woodlane Environmental Technology, Inc. | Gel fuel log set |
US8801701B2 (en) | 2005-03-09 | 2014-08-12 | Sunnybrook Health Sciences Centre | Method and apparatus for obtaining quantitative temperature measurements in prostate and other tissue undergoing thermal therapy treatment |
RU2007137198A (en) | 2005-03-09 | 2009-04-20 | Рональд Аллан ГРИНБЕРГ (AU) | DEVICE AND METHOD FOR FORMING BODY CIRCUITS AND SKIN CONDITIONING |
US20060206040A1 (en) | 2005-03-09 | 2006-09-14 | Greenberg Ronald A | aparatus and method of body contouring and skin conditioning using a mobile suction device |
US9581942B1 (en) | 2005-03-23 | 2017-02-28 | Shippert Enterprises, Llc | Tissue transfer method and apparatus |
WO2006106836A1 (en) | 2005-03-31 | 2006-10-12 | Nikon Corporation | Exposure method, exposure apparatus and device manufacturing method |
US7975702B2 (en) | 2005-04-05 | 2011-07-12 | El.En. S.P.A. | System and method for laser lipolysis |
EP2305188B1 (en) | 2005-04-27 | 2015-06-03 | ZOLL Circulation, Inc. | Apparatus for providing enhanced heat transfer from a body |
US7217265B2 (en) | 2005-05-18 | 2007-05-15 | Cooltouch Incorporated | Treatment of cellulite with mid-infrared radiation |
US7713266B2 (en) | 2005-05-20 | 2010-05-11 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US7850683B2 (en) | 2005-05-20 | 2010-12-14 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
US20090326621A1 (en) | 2005-05-24 | 2009-12-31 | Rizk El-Galley | Surgical delivery devices and methods |
CN2843367Y (en) | 2005-07-01 | 2006-12-06 | 李铁军 | The refrigerating plant that is used for the treatment of skin vegetations |
KR20080031965A (en) | 2005-07-20 | 2008-04-11 | 베리메트릭스 인코퍼레이티드 | Network user authentication system and method |
US7955262B2 (en) | 2005-07-26 | 2011-06-07 | Syneron Medical Ltd. | Method and apparatus for treatment of skin using RF and ultrasound energies |
US20070032561A1 (en) | 2005-08-05 | 2007-02-08 | I-Sioun Lin | Modified hydrophilic polyurethane memory foam, application and manufacturing method thereof |
US20070055173A1 (en) | 2005-08-23 | 2007-03-08 | Sanarus Medical, Inc. | Rotational core biopsy device with liquid cryogen adhesion probe |
CN2850584Y (en) | 2005-09-05 | 2006-12-27 | 李钟俊 | Freezing skin-softening cosmetic instrument |
CN2850585Y (en) | 2005-09-05 | 2006-12-27 | 李钟俊 | Novel freezing skin-softening cosmetic instrument with magnetic field |
GB2431108A (en) | 2005-09-07 | 2007-04-18 | Mohammed Firoz Hussein | Applicator for dispensing cryogenic fluid |
US7967763B2 (en) | 2005-09-07 | 2011-06-28 | Cabochon Aesthetics, Inc. | Method for treating subcutaneous tissues |
US8518069B2 (en) | 2005-09-07 | 2013-08-27 | Cabochon Aesthetics, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
EP1928549B1 (en) | 2005-09-28 | 2014-06-11 | Candela Corporation | Apparatus for treating cellulite |
US20070078502A1 (en) | 2005-10-05 | 2007-04-05 | Thermage, Inc. | Method and apparatus for estimating a local impedance factor |
US7572268B2 (en) | 2005-10-13 | 2009-08-11 | Bacoustics, Llc | Apparatus and methods for the selective removal of tissue using combinations of ultrasonic energy and cryogenic energy |
US8702691B2 (en) | 2005-10-19 | 2014-04-22 | Thermage, Inc. | Treatment apparatus and methods for delivering energy at multiple selectable depths in tissue |
US7729773B2 (en) | 2005-10-19 | 2010-06-01 | Advanced Neuromodualation Systems, Inc. | Neural stimulation and optical monitoring systems and methods |
WO2007056493A1 (en) | 2005-11-08 | 2007-05-18 | Schumann Daniel H | Device and method for the treatment of pain with electrical energy |
US9248317B2 (en) | 2005-12-02 | 2016-02-02 | Ulthera, Inc. | Devices and methods for selectively lysing cells |
US20080195036A1 (en) | 2005-12-02 | 2008-08-14 | Cabochon Aesthetics, Inc. | Devices and methods for selectively lysing cells |
US20080014627A1 (en) | 2005-12-02 | 2008-01-17 | Cabochon Aesthetics, Inc. | Devices and methods for selectively lysing cells |
US20070135876A1 (en) | 2005-12-08 | 2007-06-14 | Weber Paul J | Acne and skin defect treatment via non-radiofrequency electrical current controlled power delivery device and methods |
US7799018B2 (en) | 2006-01-06 | 2010-09-21 | Olga Goulko | Cryogenic applicator for rejuvenating human skin and related method |
US20090312676A1 (en) | 2006-02-02 | 2009-12-17 | Tylerton International Inc. | Metabolic Sink |
CN100362067C (en) | 2006-02-08 | 2008-01-16 | 舒宏纪 | Interface paint with high hydrophobicity, heat conductivity and adhesion |
US7824437B1 (en) | 2006-02-13 | 2010-11-02 | Gina Saunders | Multi-functional abdominal cramp reducing device and associated method |
WO2007098094A2 (en) | 2006-02-16 | 2007-08-30 | Polacek Denise C | Thermoelectric cooler and reservoir for medical treatment |
US8133191B2 (en) | 2006-02-16 | 2012-03-13 | Syneron Medical Ltd. | Method and apparatus for treatment of adipose tissue |
US7854754B2 (en) | 2006-02-22 | 2010-12-21 | Zeltiq Aesthetics, Inc. | Cooling device for removing heat from subcutaneous lipid-rich cells |
GB0605107D0 (en) | 2006-03-14 | 2006-04-26 | Bioforskning As | Use |
JP4903471B2 (en) | 2006-03-30 | 2012-03-28 | 東急建設株式会社 | Building wall material and wireless transmission system |
US20070249519A1 (en) | 2006-04-20 | 2007-10-25 | Kalypsys, Inc. | Methods for the upregulation of glut4 via modulation of ppar delta in adipose tissue and for the treatment of disease |
US20070255187A1 (en) | 2006-04-26 | 2007-11-01 | Branch Alan P | Vibrating therapy device |
ES2784023T3 (en) | 2006-04-28 | 2020-09-21 | Zeltiq Aesthetics Inc | Cryoprotectant for use with a treatment device for enhanced cooling of lipid-rich subcutaneous cells |
KR101039758B1 (en) | 2006-04-28 | 2011-06-09 | 젤티크 애스세틱스, 인코포레이티드. | Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells |
US7615036B2 (en) | 2006-05-11 | 2009-11-10 | Kalypto Medical, Inc. | Device and method for wound therapy |
US20070282318A1 (en) | 2006-05-16 | 2007-12-06 | Spooner Gregory J | Subcutaneous thermolipolysis using radiofrequency energy |
US20070270925A1 (en) | 2006-05-17 | 2007-11-22 | Juniper Medical, Inc. | Method and apparatus for non-invasively removing heat from subcutaneous lipid-rich cells including a coolant having a phase transition temperature |
KR100746323B1 (en) | 2006-06-12 | 2007-08-06 | 주식회사 바이오스마트 | Roller type skin treatment device for cryo-surgery and cryo-skin treatment |
KR100746322B1 (en) | 2006-06-12 | 2007-08-06 | 주식회사 바이오스마트 | Rod type skin treatment device for cryo-surgery and cryo-skin treatment |
US8246611B2 (en) | 2006-06-14 | 2012-08-21 | Candela Corporation | Treatment of skin by spatial modulation of thermal heating |
FR2902645B1 (en) | 2006-06-22 | 2008-10-03 | Louisin Researhc Dev Ltd | DEVICE FOR THE TREATMENT, IN PARTICULAR OF MASSAGE, OF THE CONNECTIVE TISSUE OF THE SKIN |
US8460352B2 (en) | 2006-07-05 | 2013-06-11 | Kaz Usa, Inc. | Site-specific pad with notch |
USD550362S1 (en) | 2006-07-26 | 2007-09-04 | Alcon, Inc. | Surgical console |
US20080046047A1 (en) | 2006-08-21 | 2008-02-21 | Daniel Jacobs | Hot and cold therapy device |
US8758786B2 (en) | 2006-08-28 | 2014-06-24 | Gerard Hassler | Preparation for reducing and/or preventing body fat and respective uses, in particular together with a dressing material |
US20090171253A1 (en) | 2006-09-06 | 2009-07-02 | Cutera, Inc. | System and method for dermatological treatment using ultrasound |
WO2008029408A1 (en) | 2006-09-08 | 2008-03-13 | Arbel Medical Ltd. | Method and device for combined treatment |
US20080097207A1 (en) | 2006-09-12 | 2008-04-24 | Siemens Medical Solutions Usa, Inc. | Ultrasound therapy monitoring with diagnostic ultrasound |
US8192474B2 (en) | 2006-09-26 | 2012-06-05 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
US9132031B2 (en) | 2006-09-26 | 2015-09-15 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
US20080077201A1 (en) | 2006-09-26 | 2008-03-27 | Juniper Medical, Inc. | Cooling devices with flexible sensors |
ITMI20061918A1 (en) | 2006-10-06 | 2008-04-07 | Nanovector S R L | SUITABLE FORMULATIONS TO BE GIVEN BY TRANSDERMIC CONTAINING ACTIVE INGREDIENTS IN SLN |
AU2007313633A1 (en) | 2006-10-31 | 2008-05-08 | Zeltiq Aesthetics, Inc. | Method and apparatus for cooling subcutaneous lipid-rich cells or tissue |
CN200970265Y (en) | 2006-11-09 | 2007-11-07 | 韩秀玲 | Freezing therapeutic device |
US20080114348A1 (en) | 2006-11-13 | 2008-05-15 | Vancelette David W | Cryoprotective Agent Delivery |
US20080140371A1 (en) | 2006-11-15 | 2008-06-12 | General Electric Company | System and method for treating a patient |
US20100028969A1 (en) | 2006-12-18 | 2010-02-04 | Koninklijke Philips Electronics N.V. | Cell lysis or electroporation device comprising at least one pyroelectric material |
US9254162B2 (en) | 2006-12-21 | 2016-02-09 | Myoscience, Inc. | Dermal and transdermal cryogenic microprobe systems |
US20080161892A1 (en) | 2006-12-28 | 2008-07-03 | John Anthony Mercuro | Facial Cold -Pack Holder |
US8128401B2 (en) | 2006-12-29 | 2012-03-06 | Clifford J. Ruddle | Cannula for a combined dental irrigator and vacuum device |
US8267983B2 (en) | 2007-01-11 | 2012-09-18 | Scion Neurostim, Llc. | Medical devices incorporating thermoelectric transducer and controller |
US20080208181A1 (en) | 2007-01-19 | 2008-08-28 | Arbel Medical Ltd. | Thermally Insulated Needles For Dermatological Applications |
KR20090000258A (en) | 2007-02-08 | 2009-01-07 | 황보의 | Target education system and education method thereof |
US8414631B2 (en) | 2007-02-13 | 2013-04-09 | Thermotek, Inc. | System and method for cooled airflow for dermatological applications |
KR20100031652A (en) | 2007-02-16 | 2010-03-24 | 파울 케이. 펄 | Devices and methods for non-invasive ultrasound-guided body contouring using skin contact cooling |
CN101259329A (en) | 2007-03-08 | 2008-09-10 | 德切勒·克里斯托夫·迪亚特曼 | Plush toy warming device |
US20090016980A1 (en) * | 2007-03-26 | 2009-01-15 | Irina Tsivkin | Method of Pre-Treating Hair Prior to Coloring |
USD568258S1 (en) | 2007-04-06 | 2008-05-06 | Zeltiq Aesthetics, Inc. | Control unit |
ES2522299T3 (en) | 2007-04-19 | 2014-11-14 | Miramar Labs, Inc. | Systems to create an effect on a specified tissue using microwave energy |
WO2009128940A1 (en) | 2008-04-17 | 2009-10-22 | Miramar Labs, Inc. | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
WO2008131302A2 (en) | 2007-04-19 | 2008-10-30 | The Foundry, Inc. | Methods and apparatus for reducing sweat production |
US20080287839A1 (en) | 2007-05-18 | 2008-11-20 | Juniper Medical, Inc. | Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator |
WO2008151260A2 (en) | 2007-06-04 | 2008-12-11 | Farr Laboratories, Llc | Skin care method and kit using peltier thermoelectric device |
KR20100039330A (en) | 2007-06-08 | 2010-04-15 | 싸이노슈어, 인코포레이티드 | Thermal surgical monitoring |
US20080312651A1 (en) | 2007-06-15 | 2008-12-18 | Karl Pope | Apparatus and methods for selective heating of tissue |
US20090012434A1 (en) | 2007-07-03 | 2009-01-08 | Anderson Robert S | Apparatus, method, and system to treat a volume of skin |
KR20090000258U (en) | 2007-07-06 | 2009-01-09 | 주식회사 바이오스마트 | Roller type skin treatment device for cryo-surgery and cryo-skin treatment |
US20090018625A1 (en) | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | Managing system temperature to remove heat from lipid-rich regions |
US20090018624A1 (en) | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | Limiting use of disposable system patient protection devices |
US20090018626A1 (en) | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | User interfaces for a system that removes heat from lipid-rich regions |
US8523927B2 (en) | 2007-07-13 | 2013-09-03 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
WO2009011708A1 (en) | 2007-07-13 | 2009-01-22 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
US20090018627A1 (en) | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | Secure systems for removing heat from lipid-rich regions |
JP5474791B2 (en) | 2007-08-21 | 2014-04-16 | ゼルティック エステティックス インコーポレイテッド | Monitoring of cooling of subcutaneous lipid-rich cells such as cooling of adipose tissue |
EP2027827B1 (en) | 2007-08-24 | 2012-03-07 | Ellipse A/S | Skin cooling for a dermatologic treatment procedure |
US8433400B2 (en) | 2007-10-24 | 2013-04-30 | Marina Prushinskaya | Method and portable device for treating skin disorders |
US20090111736A1 (en) | 2007-10-29 | 2009-04-30 | Sri International | Orally-Absorbed Solid Dose Formulation for Vancomycin |
US20090118684A1 (en) * | 2007-11-05 | 2009-05-07 | Da Silva Luiz B | Thermal personal care systems and methods |
US20090149930A1 (en) | 2007-12-07 | 2009-06-11 | Thermage, Inc. | Apparatus and methods for cooling a treatment apparatus configured to non-invasively deliver electromagnetic energy to a patient's tissue |
ES2471971T3 (en) | 2007-12-12 | 2014-06-27 | Miramar Labs, Inc. | System and apparatus for non-invasive treatment of tissue using microwave energy |
AU2008335715B2 (en) | 2007-12-12 | 2014-01-23 | Miradry, Inc. | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
WO2009095894A2 (en) | 2008-02-01 | 2009-08-06 | Alma Lasers Ltd. | Apparatus and method for selective ultrasonic damage of adipocytes |
JP2009189757A (en) | 2008-02-15 | 2009-08-27 | Akira Hirai | Fever relieving device |
US20090228082A1 (en) | 2008-03-07 | 2009-09-10 | Smiths Medical Asd, Inc. | Patient heat transfer device |
WO2009111793A2 (en) | 2008-03-07 | 2009-09-11 | Myoscience, Inc. | Subdermal tissue remodeling using myostatin, methods and related systems |
WO2009135054A1 (en) | 2008-04-30 | 2009-11-05 | Eric William Brader | Apparatus and method for preventing brain damage during cardiac arrest, cpr, or severe shock |
WO2009137699A2 (en) | 2008-05-07 | 2009-11-12 | Sanuwave, Inc. | Medical treatment system including an ancillary medical treatment apparatus with an associated data storage medium |
US20180104094A9 (en) | 2008-05-16 | 2018-04-19 | Seth A. Biser | Thermal eye compress systems and methods of use |
US20090299234A1 (en) | 2008-05-28 | 2009-12-03 | Nuga Medical Co., Ltd | Fat remover |
US10537304B2 (en) | 2008-06-06 | 2020-01-21 | Ulthera, Inc. | Hand wand for ultrasonic cosmetic treatment and imaging |
US20090306749A1 (en) | 2008-06-07 | 2009-12-10 | Damalie Mulindwa | Therapeutic hot and cold water belt |
US20090312693A1 (en) | 2008-06-13 | 2009-12-17 | Vytronus, Inc. | System and method for delivering energy to tissue |
US8285392B2 (en) | 2008-06-19 | 2012-10-09 | Thermage, Inc. | Leakage-resistant tissue treatment apparatus and methods of using such tissue treatment apparatus |
KR102280017B1 (en) | 2008-08-07 | 2021-07-22 | 더 제너럴 하스피탈 코포레이션 | Skin cosmetic device for dermatological hypopigmentation |
US20100036295A1 (en) * | 2008-08-08 | 2010-02-11 | Palomar Medical Technologies, Inc. | Method and apparatus for fractional deformation and treatment of cutaneous and subcutaneous tissue |
US8672931B2 (en) | 2008-08-18 | 2014-03-18 | 3JT Enterprises, LLC | Cryosurgical device with metered dose |
US9149386B2 (en) | 2008-08-19 | 2015-10-06 | Niveus Medical, Inc. | Devices and systems for stimulation of tissues |
US8409184B2 (en) | 2009-09-09 | 2013-04-02 | Cpsi Holdings Llc | Cryo-medical injection device and method of use |
EP2330995B1 (en) | 2008-09-03 | 2015-08-05 | Endocare, Inc. | A cryogenic system and method of use |
WO2010036732A1 (en) | 2008-09-25 | 2010-04-01 | Zeltiq Aesthetics, Inc. | Treatment planning systems and methods for body contouring applications |
US20100087806A1 (en) | 2008-10-07 | 2010-04-08 | Vandolay, Inc. | Automated Cryogenic Skin Treatment |
US20100217357A1 (en) | 2008-10-31 | 2010-08-26 | Da Silva Luiz B | Methods and Apparatus for Personal Care |
US8387631B1 (en) | 2008-12-10 | 2013-03-05 | Western Digital Technologies, Inc. | HDA vacuum cleaning machine for manufacturing of HDD |
US8603073B2 (en) | 2008-12-17 | 2013-12-10 | Zeltiq Aesthetics, Inc. | Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells |
CA2748022A1 (en) | 2008-12-22 | 2010-07-01 | Myoscience, Inc. | Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments |
US20100168726A1 (en) | 2008-12-31 | 2010-07-01 | Marc Arthur Brookman | Cryogenic Dispensing System and Method for Treatment of Dermatological Conditions |
US7981080B2 (en) | 2009-01-07 | 2011-07-19 | Halaka Folim G | Skin cooling apparatus and method |
US8882758B2 (en) | 2009-01-09 | 2014-11-11 | Solta Medical, Inc. | Tissue treatment apparatus and systems with pain mitigation and methods for mitigating pain during tissue treatments |
US8372130B2 (en) | 2009-01-23 | 2013-02-12 | Forever Young International, Inc. | Temperature controlled facial mask with area-specific treatments |
WO2010096776A2 (en) | 2009-02-20 | 2010-08-26 | Niveus Medical, Inc. | Systems and methods of powered muscle stimulation using an energy guidance field |
WO2010096840A2 (en) | 2009-02-23 | 2010-08-26 | Miramar Labs, Inc. | Tissue interface system and method |
US8939914B2 (en) | 2009-02-27 | 2015-01-27 | Thermimage, Inc. | Radiometers and related devices and methods |
US8298225B2 (en) | 2009-03-19 | 2012-10-30 | Tyco Healthcare Group Lp | System and method for return electrode monitoring |
DE102009014976B3 (en) | 2009-03-30 | 2010-06-02 | Jutta Munz | Applicator device for applying e.g. cream on eye portion of human body, has activator device provided in upper housing part, and producing heat or coldness that is transmitted to substance contained in substance chamber |
GB2481760B (en) | 2009-04-30 | 2014-01-29 | Alma Lasers Ltd | Devices for dermatological treatment |
KR101701137B1 (en) | 2009-04-30 | 2017-02-01 | 젤티크 애스세틱스, 인코포레이티드. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
FR2946845B1 (en) | 2009-06-18 | 2011-08-19 | Oreal | DEVICE FOR TREATING HUMAN KERATINIC MATERIALS |
US9919168B2 (en) | 2009-07-23 | 2018-03-20 | Palomar Medical Technologies, Inc. | Method for improvement of cellulite appearance |
US8523791B2 (en) | 2009-08-11 | 2013-09-03 | Laboratoire Naturel Paris, Llc | Multi-modal drug delivery system |
US20110040361A1 (en) | 2009-08-12 | 2011-02-17 | Elizabeth Joyce Levy | Cosmetic and Dermatological Cryotherapy Device |
US8152904B2 (en) | 2009-09-29 | 2012-04-10 | Liposonix, Inc. | Liquid degas system |
US20110112520A1 (en) | 2009-11-11 | 2011-05-12 | Invasix Corporation | Method and device for fat treatment |
US20110300079A1 (en) | 2010-01-21 | 2011-12-08 | Zeltiq Aesthetics, Inc. | Compositions for use with a system for improved cooling of subcutaneous lipid-rich tissue |
KR20120107529A (en) | 2010-01-25 | 2012-10-02 | 이난타 파마슈티칼스, 인코포레이티드 | Hepatitis c virus inhibitors |
US9844461B2 (en) | 2010-01-25 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants |
DE102010007177B4 (en) | 2010-02-08 | 2017-06-22 | Siemens Healthcare Gmbh | Display method for an image of the interior of a vessel located in front of a widening device and display device corresponding thereto |
US20110196438A1 (en) | 2010-02-10 | 2011-08-11 | Lukas Mnozil | Therapy device and method for treating underlying tissue using electrical and acoustic energies |
US20110202048A1 (en) | 2010-02-12 | 2011-08-18 | Solta Medical, Inc. | Methods for pain reduction with functional thermal stimulation and tissue treatment systems |
WO2011100692A1 (en) | 2010-02-15 | 2011-08-18 | The General Hospital Corporation | Methods and devices for selective disruption of visceral fat by controlled cooling |
US20120089211A1 (en) * | 2010-04-08 | 2012-04-12 | Myoscience, Inc. | Methods and apparatus for cryogenically treating multiple tissue sites with a single puncture |
US20110257642A1 (en) | 2010-04-16 | 2011-10-20 | Griggs Iii Charles Sherman | Method for producing a permanent or nearly permanent skin image, design or tattoo by freezing the skin |
WO2011163264A2 (en) | 2010-06-21 | 2011-12-29 | Candela Corporation | Driving microneedle arrays into skin and delivering rf energy |
US8676338B2 (en) | 2010-07-20 | 2014-03-18 | Zeltiq Aesthetics, Inc. | Combined modality treatment systems, methods and apparatus for body contouring applications |
FR2967893B1 (en) | 2010-11-25 | 2013-10-18 | Zadeh David Khorassani | MASSAGE APPARATUS COMPRISING A SUCTION SYSTEM |
AU2011253768B2 (en) | 2010-12-01 | 2016-08-11 | Gold Rythmn Pty Ltd | Product or process for modifying skin |
WO2012094426A2 (en) | 2011-01-04 | 2012-07-12 | Schwartz Alan N | Gel-based seals and fixation devices and associated systems and methods |
WO2012103242A1 (en) | 2011-01-25 | 2012-08-02 | Zeltiq Aesthetics, Inc. | Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells |
BR112013019303B1 (en) | 2011-01-28 | 2021-08-31 | The General Hospital Corporation | Apparatus and method for cosmetic surface recomposition of skin tissue |
US20120209363A1 (en) | 2011-02-10 | 2012-08-16 | R2T2 Solutions Llc | Hot and cold therapy device |
US9021614B2 (en) | 2011-02-18 | 2015-05-05 | Medical Techology, Inc. | Leg protector for sports activities |
WO2012129129A2 (en) | 2011-03-18 | 2012-09-27 | Augustine Biomedical And Design Llc | Non-invasive core temperature sensor |
US9038640B2 (en) | 2011-03-31 | 2015-05-26 | Viora Ltd. | System and method for fractional treatment of skin |
US20120310232A1 (en) | 2011-06-06 | 2012-12-06 | Danny Erez | System and method for treating a tissue using multiple energy types |
RU2491337C2 (en) * | 2011-06-09 | 2013-08-27 | Елена Владимировна Орлова | Preparation and method of cultivation, storage and cryoconservation of stem and differentiated human and animal cells |
CN103763956A (en) | 2011-07-20 | 2014-04-30 | Scr有限公司 | Athletic cooling and heating systems, devices and methods |
US9314301B2 (en) | 2011-08-01 | 2016-04-19 | Miramar Labs, Inc. | Applicator and tissue interface module for dermatological device |
US9532832B2 (en) | 2011-09-05 | 2017-01-03 | Venus Concept Ltd. | Esthetic device for beautifying skin and methods thereof |
US20130073017A1 (en) | 2011-09-15 | 2013-03-21 | Fong Yu Liu | Thermal vacuum therapy and apparatus thereof |
US20140228718A1 (en) | 2011-10-04 | 2014-08-14 | Bioheat Transfer, Llc | Cryotherapy devices and methods to limit ischemic injury side effects |
KR20130043299A (en) | 2011-10-20 | 2013-04-30 | 김기태 | Medical skin beauty care apparatus for heating and stimulating skin using thermoelectric module and ultra-sonic vibrator |
CN116236339A (en) | 2011-11-16 | 2023-06-09 | 通用医疗公司 | Method and device for the cryogenic treatment of skin tissue |
WO2013075006A1 (en) | 2011-11-16 | 2013-05-23 | The General Hospital Corporation | Method and apparatus for cryogenic treatment of skin tissue |
EP2606845B1 (en) | 2011-12-23 | 2016-10-26 | Lina Medical ApS | Pulse generator |
JP5972398B2 (en) | 2012-01-17 | 2016-08-17 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | ICE-based NAT traversal |
US8397518B1 (en) | 2012-02-20 | 2013-03-19 | Dhama Innovations PVT. Ltd. | Apparel with integral heating and cooling device |
US20130315999A1 (en) * | 2012-04-20 | 2013-11-28 | The General Hospital Corporation | Compositions and methods comprising energy absorbing compoundfs for follicular delivery |
US20130331914A1 (en) | 2012-06-11 | 2013-12-12 | Martin Lee | Thermal therapy system and method of use |
USD702848S1 (en) | 2012-06-18 | 2014-04-15 | Myoscience, Inc. | Handheld device |
ES2657640T3 (en) | 2012-06-22 | 2018-03-06 | Physiolab Technologies Limited | Thermal and / or pressure regulation control system |
KR20140038165A (en) | 2012-09-20 | 2014-03-28 | (주)휴톤 | Multi function apparatus for treating skin |
RU2519637C1 (en) * | 2012-12-20 | 2014-06-20 | Федеральное государственное бюджетное учреждение "Медицинский радиологический научный центр" Министерства здравоохранения Российской Федерации (ФГБУ МРНЦ Минздрава России) | Method for fertility recovery in patients with oncological diseases |
US9710607B2 (en) | 2013-01-15 | 2017-07-18 | Itrace Biomedical Inc. | Portable electronic therapy device and the method thereof |
KR20140092121A (en) | 2013-01-15 | 2014-07-23 | 삼성전자주식회사 | Method for cooling ultrasound treatment apparatus, ultrasound treatment apparatus by using the same |
KR101451891B1 (en) | 2013-01-22 | 2014-10-16 | 유니스파테크주식회사 | Decompression skin management device |
US9844460B2 (en) | 2013-03-14 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same |
US9545523B2 (en) | 2013-03-14 | 2017-01-17 | Zeltiq Aesthetics, Inc. | Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue |
EP3437575B1 (en) | 2013-03-15 | 2021-04-21 | Edge Systems LLC | Devices and systems for treating the skin |
JP6259908B2 (en) | 2013-05-30 | 2018-01-10 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Non-invasive device for regenerating skin tissue using therapeutic pressure below ambient pressure |
US9681980B2 (en) | 2013-06-07 | 2017-06-20 | Core Thermal, Inc. | Modifying humidity to glabrous tissue for the treatment of migraine and other conditions |
KR101487850B1 (en) | 2013-08-08 | 2015-02-02 | (주)클래시스 | apparatus for treating obesity by freezing fat cell |
TWM476644U (en) | 2013-10-11 | 2014-04-21 | Maxxam Tech Corp | Water purifier structure |
US10390874B2 (en) | 2013-11-14 | 2019-08-27 | Rm2 Technology Llc | Methods, systems, and apparatuses for tissue ablation using electrolysis and permeabilization |
US8764693B1 (en) | 2013-11-20 | 2014-07-01 | Richard A. Graham | Systems and methods for decompression and elliptical traction of the cervical and thoracic spine |
RU2585787C2 (en) | 2013-12-09 | 2016-06-10 | Общество с ограниченной ответственностью "Умные адгезивы" | Hydrophilic thermally switched pressure-sensitive adhesive composition reversibly coming off in water at elevated temperatures |
JP2017505657A (en) | 2014-01-10 | 2017-02-23 | マーシオ マーク アブリュー | Device for monitoring and providing treatment in the Abreu brain tunnel |
WO2015117036A2 (en) | 2014-01-30 | 2015-08-06 | Zeltiq Aesthetics, Inc. | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing for other treatments |
EP3099262B1 (en) | 2014-01-31 | 2022-02-23 | The General Hospital Corporation | Cooling device to disrupt function sebaceous glands |
EP3586804A1 (en) | 2014-02-12 | 2020-01-01 | The General Hospital Corporation | Apparatus for affecting pigmentation of tissue |
US10675176B1 (en) | 2014-03-19 | 2020-06-09 | Zeltiq Aesthetics, Inc. | Treatment systems, devices, and methods for cooling targeted tissue |
USD777338S1 (en) | 2014-03-20 | 2017-01-24 | Zeltiq Aesthetics, Inc. | Cryotherapy applicator for cooling tissue |
US10952891B1 (en) | 2014-05-13 | 2021-03-23 | Zeltiq Aesthetics, Inc. | Treatment systems with adjustable gap applicators and methods for cooling tissue |
CN104127279B (en) | 2014-08-06 | 2019-03-15 | 珠海横琴早晨科技有限公司 | A kind of film of multi-functional spontaneous adjusting temperature and its application |
EP3182943A4 (en) | 2014-08-18 | 2018-03-21 | Miramar Labs, Inc. | Apparatus, system and method for treating fat tissue |
US10935174B2 (en) | 2014-08-19 | 2021-03-02 | Zeltiq Aesthetics, Inc. | Stress relief couplings for cryotherapy apparatuses |
US10568759B2 (en) | 2014-08-19 | 2020-02-25 | Zeltiq Aesthetics, Inc. | Treatment systems, small volume applicators, and methods for treating submental tissue |
US9752856B2 (en) | 2014-08-21 | 2017-09-05 | Michael Blake Rashad | Protective collapsible shield |
WO2016048721A1 (en) | 2014-09-25 | 2016-03-31 | Zeltiq Aesthetics, Inc. | Treatment systems, methods, and apparatuses for altering the appearance of skin |
JP6923443B2 (en) | 2014-10-15 | 2021-08-18 | ブレインクール アーベー | Devices and methods for lowering a patient's core body temperature for hypothermia treatment by cooling at least two body parts of the patient |
US20160317346A1 (en) | 2015-04-28 | 2016-11-03 | Zeltiq Aesthetics, Inc. | Systems and methods for monitoring cooling of skin and tissue to identify freeze events |
WO2017041022A1 (en) | 2015-09-04 | 2017-03-09 | R2 Dermatology, Inc. | Medical systems, methods, and devices for hypopigmentation cooling treatments |
EP3352716A1 (en) | 2015-09-21 | 2018-08-01 | Zeltiq Aesthetics, Inc. | Transcutaneous treatment systems and cooling devices |
WO2017070112A1 (en) | 2015-10-19 | 2017-04-27 | Zeltiq Aesthetics, Inc. | Vascular treatment systems, cooling devices, and methods for cooling vascular structures |
JP6833869B2 (en) | 2016-01-07 | 2021-02-24 | ゼルティック エステティックス インコーポレイテッド | Temperature-dependent adhesion between applicator and skin during tissue cooling |
US10765552B2 (en) | 2016-02-18 | 2020-09-08 | Zeltiq Aesthetics, Inc. | Cooling cup applicators with contoured heads and liner assemblies |
US11382790B2 (en) | 2016-05-10 | 2022-07-12 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
US10555831B2 (en) | 2016-05-10 | 2020-02-11 | Zeltiq Aesthetics, Inc. | Hydrogel substances and methods of cryotherapy |
US20170326346A1 (en) | 2016-05-10 | 2017-11-16 | Zeltiq Aesthetics, Inc. | Permeation enhancers and methods of cryotherapy |
US10682297B2 (en) | 2016-05-10 | 2020-06-16 | Zeltiq Aesthetics, Inc. | Liposomes, emulsions, and methods for cryotherapy |
US20180263677A1 (en) | 2017-03-16 | 2018-09-20 | Zeltiq Aesthetics, Inc. | Adhesive liners for cryotherapy |
WO2018175111A1 (en) | 2017-03-21 | 2018-09-27 | Zeltiq Aesthetics, Inc. | Use of saccharides for cryoprotection and related technology |
US11076879B2 (en) | 2017-04-26 | 2021-08-03 | Zeltiq Aesthetics, Inc. | Shallow surface cryotherapy applicators and related technology |
GB2565139A (en) | 2017-08-04 | 2019-02-06 | R N Ventures | Cryotherapy device |
KR20210038661A (en) | 2018-07-31 | 2021-04-07 | 젤티크 애스세틱스, 인코포레이티드. | Methods, devices, and systems for improving skin properties |
US20200069458A1 (en) | 2018-08-31 | 2020-03-05 | Zeltiq Aesthetics, Inc. | Compositions, treatment systems, and methods for fractionally freezing tissue |
USD921911S1 (en) | 2019-06-21 | 2021-06-08 | Recensmedical, Inc. | Medical cooling device |
USD921211S1 (en) | 2019-06-21 | 2021-06-01 | Recensmedical, Inc. | Medical cooling device |
EP4196059A1 (en) | 2020-08-14 | 2023-06-21 | Zeltiq Aesthetics, Inc. | Multi-applicator system and method for body contouring |
-
2015
- 2015-01-30 WO PCT/US2015/013985 patent/WO2015117036A2/en active Application Filing
- 2015-01-30 EP EP15704663.2A patent/EP3099261A2/en not_active Withdrawn
- 2015-01-30 US US15/115,503 patent/US10575890B2/en active Active
- 2015-01-30 US US14/611,052 patent/US20150216719A1/en not_active Abandoned
- 2015-01-30 EP EP15704438.9A patent/EP3099260A2/en not_active Withdrawn
- 2015-01-30 WO PCT/US2015/013959 patent/WO2015117026A2/en active Application Filing
- 2015-01-30 ES ES15704186T patent/ES2974899T3/en active Active
- 2015-01-30 EP EP15704186.4A patent/EP3099258B1/en active Active
- 2015-01-30 US US14/610,807 patent/US9861421B2/en active Active
- 2015-01-30 WO PCT/US2015/013971 patent/WO2015117032A1/en active Application Filing
- 2015-01-30 EP EP23186988.4A patent/EP4279041A3/en active Pending
- 2015-01-30 US US14/611,127 patent/US10201380B2/en active Active
- 2015-01-30 EP EP15704437.1A patent/EP3099259A1/en not_active Withdrawn
- 2015-01-30 WO PCT/US2015/013912 patent/WO2015117001A1/en active Application Filing
-
2017
- 2017-12-06 US US15/833,329 patent/US10912599B2/en active Active
-
2018
- 2018-12-20 US US16/227,376 patent/US20190142493A1/en not_active Abandoned
- 2018-12-27 US US16/233,951 patent/US10806500B2/en active Active
-
2020
- 2020-01-07 US US16/736,672 patent/US20200138501A1/en not_active Abandoned
- 2020-10-15 US US17/072,020 patent/US20210038278A1/en not_active Abandoned
-
2021
- 2021-01-07 US US17/143,163 patent/US11819257B2/en active Active
-
2022
- 2022-04-13 US US17/719,661 patent/US20220387091A1/en not_active Abandoned
-
2023
- 2023-05-04 US US18/143,555 patent/US20240000492A1/en not_active Abandoned
- 2023-09-18 US US18/469,396 patent/US20240197382A1/en not_active Abandoned
- 2023-10-11 US US18/485,282 patent/US20240180604A1/en active Pending
- 2023-10-18 US US18/489,289 patent/US20240189008A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240000492A1 (en) | Treatment systems and methods for affecting glands and other targeted structures | |
US20240164938A1 (en) | Skin freezing systems for treating acne and skin conditions | |
US20240122822A1 (en) | Liposomes, emulsions, and methods for cryotherapy | |
US10555831B2 (en) | Hydrogel substances and methods of cryotherapy | |
US11154418B2 (en) | Vascular treatment systems, cooling devices, and methods for cooling vascular structures | |
US20170326346A1 (en) | Permeation enhancers and methods of cryotherapy | |
US9545523B2 (en) | Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue | |
US10935174B2 (en) | Stress relief couplings for cryotherapy apparatuses | |
WO2017196548A1 (en) | Skin freezing systems for treating acne and skin conditions | |
US10952891B1 (en) | Treatment systems with adjustable gap applicators and methods for cooling tissue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ZELTIQ AESTHETICS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WEBER, BRYAN J.;REEL/FRAME:065466/0821 Effective date: 20170405 Owner name: ZELTIQ AESTHETICS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TATSUTANI, KRISTINE;REEL/FRAME:065466/0796 Effective date: 20170302 Owner name: ZELTIQ AESTHETICS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEBENEDICTIS, LEONARD C.;FRANGINEAS, GEORGE, JR.;JIANG, KERRIE;AND OTHERS;SIGNING DATES FROM 20150304 TO 20150316;REEL/FRAME:065466/0759 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |