US20230383298A1 - Methods and Compositions for Reducing Immunosupression by Tumor Cells - Google Patents
Methods and Compositions for Reducing Immunosupression by Tumor Cells Download PDFInfo
- Publication number
- US20230383298A1 US20230383298A1 US18/149,520 US202318149520A US2023383298A1 US 20230383298 A1 US20230383298 A1 US 20230383298A1 US 202318149520 A US202318149520 A US 202318149520A US 2023383298 A1 US2023383298 A1 US 2023383298A1
- Authority
- US
- United States
- Prior art keywords
- tumor
- shrna
- cell
- cells
- nucleic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 69
- 239000000203 mixture Substances 0.000 title abstract description 26
- 210000004881 tumor cell Anatomy 0.000 title description 26
- 108091027967 Small hairpin RNA Proteins 0.000 claims abstract description 352
- 239000004055 small Interfering RNA Substances 0.000 claims abstract description 278
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 claims abstract description 59
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 290
- 206010028980 Neoplasm Diseases 0.000 claims description 254
- 210000004027 cell Anatomy 0.000 claims description 155
- 150000007523 nucleic acids Chemical class 0.000 claims description 137
- 102000039446 nucleic acids Human genes 0.000 claims description 129
- 108020004707 nucleic acids Proteins 0.000 claims description 129
- 230000000295 complement effect Effects 0.000 claims description 101
- 230000014509 gene expression Effects 0.000 claims description 77
- 239000000427 antigen Substances 0.000 claims description 72
- 108091007433 antigens Proteins 0.000 claims description 72
- 102000036639 antigens Human genes 0.000 claims description 72
- 239000013598 vector Substances 0.000 claims description 68
- 239000002773 nucleotide Substances 0.000 claims description 67
- 125000003729 nucleotide group Chemical group 0.000 claims description 67
- 108091008874 T cell receptors Proteins 0.000 claims description 31
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 claims description 31
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 claims description 30
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 claims description 21
- 230000001506 immunosuppresive effect Effects 0.000 claims description 20
- 210000000581 natural killer T-cell Anatomy 0.000 claims description 19
- 230000001965 increasing effect Effects 0.000 claims description 11
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 claims description 10
- 230000004936 stimulating effect Effects 0.000 claims description 10
- 239000012634 fragment Substances 0.000 claims description 9
- 230000002441 reversible effect Effects 0.000 claims description 9
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 claims description 8
- 206010025323 Lymphomas Diseases 0.000 claims description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 8
- 201000001441 melanoma Diseases 0.000 claims description 8
- 208000032839 leukemia Diseases 0.000 claims description 6
- 201000009030 Carcinoma Diseases 0.000 claims description 4
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 4
- 208000032612 Glial tumor Diseases 0.000 claims description 4
- 206010018338 Glioma Diseases 0.000 claims description 4
- 206010039491 Sarcoma Diseases 0.000 claims description 4
- 208000009956 adenocarcinoma Diseases 0.000 claims description 4
- 210000004556 brain Anatomy 0.000 claims description 4
- 210000000481 breast Anatomy 0.000 claims description 4
- 210000001072 colon Anatomy 0.000 claims description 4
- 201000004101 esophageal cancer Diseases 0.000 claims description 4
- 210000003238 esophagus Anatomy 0.000 claims description 4
- 210000003128 head Anatomy 0.000 claims description 4
- 210000003734 kidney Anatomy 0.000 claims description 4
- 201000007270 liver cancer Diseases 0.000 claims description 4
- 208000014018 liver neoplasm Diseases 0.000 claims description 4
- 210000004072 lung Anatomy 0.000 claims description 4
- 210000003739 neck Anatomy 0.000 claims description 4
- 230000002611 ovarian Effects 0.000 claims description 4
- 210000000496 pancreas Anatomy 0.000 claims description 4
- 210000002307 prostate Anatomy 0.000 claims description 4
- 210000003491 skin Anatomy 0.000 claims description 4
- 210000002784 stomach Anatomy 0.000 claims description 4
- 230000002381 testicular Effects 0.000 claims description 4
- 210000003932 urinary bladder Anatomy 0.000 claims description 4
- 206010062016 Immunosuppression Diseases 0.000 claims description 3
- 208000019420 lymphoid neoplasm Diseases 0.000 claims description 2
- 238000001727 in vivo Methods 0.000 abstract description 19
- 230000001225 therapeutic effect Effects 0.000 abstract description 14
- 238000009169 immunotherapy Methods 0.000 abstract description 5
- 101150109113 ppp2r2d gene Proteins 0.000 description 184
- 108090000623 proteins and genes Proteins 0.000 description 133
- -1 Akap81 Proteins 0.000 description 117
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 56
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 56
- 101150043341 Socs3 gene Proteins 0.000 description 53
- 101710143123 Mothers against decapentaplegic homolog 2 Proteins 0.000 description 50
- 102100025751 Mothers against decapentaplegic homolog 2 Human genes 0.000 description 50
- 241001529936 Murinae Species 0.000 description 44
- 101150045565 Socs1 gene Proteins 0.000 description 43
- 241000699670 Mus sp. Species 0.000 description 41
- 210000000952 spleen Anatomy 0.000 description 41
- 101150059401 EGR2 gene Proteins 0.000 description 39
- 101100323015 Mus musculus Alk gene Proteins 0.000 description 37
- 101150116845 Cblb gene Proteins 0.000 description 36
- 101150050688 DGKA gene Proteins 0.000 description 35
- 101150057529 Dgkz gene Proteins 0.000 description 34
- 101100523877 Mus musculus Rbks gene Proteins 0.000 description 34
- 101150086096 Eif2ak3 gene Proteins 0.000 description 33
- 101100140972 Mus musculus Arhgap5 gene Proteins 0.000 description 33
- 102100040604 Myotubularin-related protein 5 Human genes 0.000 description 33
- 108050003253 Myotubularin-related protein 5 Proteins 0.000 description 33
- 102000004169 proteins and genes Human genes 0.000 description 33
- 101150041972 CDKN2A gene Proteins 0.000 description 32
- 101100503636 Danio rerio fyna gene Proteins 0.000 description 32
- 101150018272 FYN gene Proteins 0.000 description 32
- 101150028994 Prkab2 gene Proteins 0.000 description 32
- 101150000990 Stk17b gene Proteins 0.000 description 32
- 101150099709 GRK6 gene Proteins 0.000 description 31
- 101150036988 IPMK gene Proteins 0.000 description 31
- 101100400776 Mus musculus Mdfic gene Proteins 0.000 description 31
- 101150073764 NPTXR gene Proteins 0.000 description 31
- 101150054125 Nuak2 gene Proteins 0.000 description 31
- 101150045183 TRPM7 gene Proteins 0.000 description 31
- 101150072409 VAMP7 gene Proteins 0.000 description 31
- 101100400777 Xenopus laevis mdfic gene Proteins 0.000 description 31
- 201000011510 cancer Diseases 0.000 description 31
- 150000001875 compounds Chemical class 0.000 description 31
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 29
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 29
- 239000003112 inhibitor Substances 0.000 description 29
- 101150036451 PPM1G gene Proteins 0.000 description 28
- 230000000694 effects Effects 0.000 description 27
- 108090000765 processed proteins & peptides Proteins 0.000 description 27
- 238000012360 testing method Methods 0.000 description 27
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 26
- 108020004999 messenger RNA Proteins 0.000 description 25
- 101150001354 Ptpn2 gene Proteins 0.000 description 24
- 102000004196 processed proteins & peptides Human genes 0.000 description 24
- 102000004127 Cytokines Human genes 0.000 description 22
- 108090000695 Cytokines Proteins 0.000 description 22
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 22
- 230000035508 accumulation Effects 0.000 description 22
- 238000009825 accumulation Methods 0.000 description 22
- 201000010099 disease Diseases 0.000 description 22
- 238000000684 flow cytometry Methods 0.000 description 22
- 230000009368 gene silencing by RNA Effects 0.000 description 22
- 230000003915 cell function Effects 0.000 description 21
- 230000006870 function Effects 0.000 description 21
- 238000011282 treatment Methods 0.000 description 21
- 102100033793 ALK tyrosine kinase receptor Human genes 0.000 description 20
- 108700027336 Suppressor of Cytokine Signaling 1 Proteins 0.000 description 20
- 102100024779 Suppressor of cytokine signaling 1 Human genes 0.000 description 20
- 239000002299 complementary DNA Substances 0.000 description 20
- 101150065562 F11R gene Proteins 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 19
- 101100029886 Caenorhabditis elegans lov-1 gene Proteins 0.000 description 18
- 101150117736 Entpd1 gene Proteins 0.000 description 18
- 101150101098 HIPK1 gene Proteins 0.000 description 18
- 101150061177 ROCK1 gene Proteins 0.000 description 18
- 102000058015 Suppressor of Cytokine Signaling 3 Human genes 0.000 description 18
- 108700027337 Suppressor of Cytokine Signaling 3 Proteins 0.000 description 18
- 101150104157 YES1 gene Proteins 0.000 description 18
- 230000007423 decrease Effects 0.000 description 18
- 210000001165 lymph node Anatomy 0.000 description 18
- 230000011664 signaling Effects 0.000 description 18
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 17
- 102100024458 Cyclin-dependent kinase inhibitor 2A Human genes 0.000 description 17
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 16
- 101000926508 Homo sapiens Eukaryotic translation initiation factor 2-alpha kinase 3 Proteins 0.000 description 16
- 101000761581 Homo sapiens Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B delta isoform Proteins 0.000 description 16
- 102100020783 Ribokinase Human genes 0.000 description 16
- 102100037310 Serine/threonine-protein kinase D1 Human genes 0.000 description 16
- 230000002401 inhibitory effect Effects 0.000 description 16
- 102100038049 5'-AMP-activated protein kinase subunit beta-2 Human genes 0.000 description 15
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 15
- 102100024059 A-kinase anchor protein 8-like Human genes 0.000 description 15
- 102100022735 Diacylglycerol kinase alpha Human genes 0.000 description 15
- 102100030220 Diacylglycerol kinase zeta Human genes 0.000 description 15
- 102100023227 E3 SUMO-protein ligase EGR2 Human genes 0.000 description 15
- 102100035273 E3 ubiquitin-protein ligase CBL-B Human genes 0.000 description 15
- 102100029722 Ectonucleoside triphosphate diphosphohydrolase 1 Human genes 0.000 description 15
- 102100034174 Eukaryotic translation initiation factor 2-alpha kinase 3 Human genes 0.000 description 15
- 102100027944 Flavin reductase (NADPH) Human genes 0.000 description 15
- 102100023686 G protein-coupled receptor kinase 6 Human genes 0.000 description 15
- 102100032822 Homeodomain-interacting protein kinase 1 Human genes 0.000 description 15
- 101000742799 Homo sapiens 5'-AMP-activated protein kinase subunit beta-2 Proteins 0.000 description 15
- 101000833668 Homo sapiens A-kinase anchor protein 8-like Proteins 0.000 description 15
- 101001044817 Homo sapiens Diacylglycerol kinase alpha Proteins 0.000 description 15
- 101000864576 Homo sapiens Diacylglycerol kinase zeta Proteins 0.000 description 15
- 101001049692 Homo sapiens E3 SUMO-protein ligase EGR2 Proteins 0.000 description 15
- 101000737265 Homo sapiens E3 ubiquitin-protein ligase CBL-B Proteins 0.000 description 15
- 101001012447 Homo sapiens Ectonucleoside triphosphate diphosphohydrolase 1 Proteins 0.000 description 15
- 101000935587 Homo sapiens Flavin reductase (NADPH) Proteins 0.000 description 15
- 101000829473 Homo sapiens G protein-coupled receptor kinase 6 Proteins 0.000 description 15
- 101001066404 Homo sapiens Homeodomain-interacting protein kinase 1 Proteins 0.000 description 15
- 101001046633 Homo sapiens Junctional adhesion molecule A Proteins 0.000 description 15
- 101001018300 Homo sapiens Microtubule-associated serine/threonine-protein kinase 2 Proteins 0.000 description 15
- 101001018552 Homo sapiens MyoD family inhibitor domain-containing protein Proteins 0.000 description 15
- 101000970025 Homo sapiens NUAK family SNF1-like kinase 2 Proteins 0.000 description 15
- 101001108242 Homo sapiens Neuronal pentraxin receptor Proteins 0.000 description 15
- 101000663003 Homo sapiens Non-receptor tyrosine-protein kinase TNK1 Proteins 0.000 description 15
- 101000742060 Homo sapiens Protein phosphatase 1G Proteins 0.000 description 15
- 101000669917 Homo sapiens Rho-associated protein kinase 1 Proteins 0.000 description 15
- 101000717377 Homo sapiens Ribokinase Proteins 0.000 description 15
- 101000661819 Homo sapiens Serine/threonine-protein kinase 17B Proteins 0.000 description 15
- 101000611251 Homo sapiens Serine/threonine-protein phosphatase 2B catalytic subunit gamma isoform Proteins 0.000 description 15
- 101000844518 Homo sapiens Transient receptor potential cation channel subfamily M member 7 Proteins 0.000 description 15
- 101000962366 Homo sapiens Type II inositol 1,4,5-trisphosphate 5-phosphatase Proteins 0.000 description 15
- 101000820294 Homo sapiens Tyrosine-protein kinase Yes Proteins 0.000 description 15
- 101000852166 Homo sapiens Vesicle-associated membrane protein 7 Proteins 0.000 description 15
- 102100025479 Inositol polyphosphate multikinase Human genes 0.000 description 15
- 108010071021 Inositol-polyphosphate multikinase Proteins 0.000 description 15
- 102100022304 Junctional adhesion molecule A Human genes 0.000 description 15
- 102100033253 Microtubule-associated serine/threonine-protein kinase 2 Human genes 0.000 description 15
- 102100033699 MyoD family inhibitor domain-containing protein Human genes 0.000 description 15
- 102100021733 NUAK family SNF1-like kinase 2 Human genes 0.000 description 15
- 102100021877 Neuronal pentraxin receptor Human genes 0.000 description 15
- 102100037669 Non-receptor tyrosine-protein kinase TNK1 Human genes 0.000 description 15
- 102100038672 Protein phosphatase 1G Human genes 0.000 description 15
- 102100039313 Rho-associated protein kinase 1 Human genes 0.000 description 15
- 102100037959 Serine/threonine-protein kinase 17B Human genes 0.000 description 15
- 102100024927 Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B delta isoform Human genes 0.000 description 15
- 102100040320 Serine/threonine-protein phosphatase 2B catalytic subunit gamma isoform Human genes 0.000 description 15
- 102000003611 TRPM7 Human genes 0.000 description 15
- 102100039257 Type II inositol 1,4,5-trisphosphate 5-phosphatase Human genes 0.000 description 15
- 102100021788 Tyrosine-protein kinase Yes Human genes 0.000 description 15
- 102100036499 Vesicle-associated membrane protein 7 Human genes 0.000 description 15
- 238000013459 approach Methods 0.000 description 15
- 239000003814 drug Substances 0.000 description 15
- 101001135572 Homo sapiens Tyrosine-protein phosphatase non-receptor type 2 Proteins 0.000 description 14
- 108020004459 Small interfering RNA Proteins 0.000 description 14
- 102100033141 Tyrosine-protein phosphatase non-receptor type 2 Human genes 0.000 description 14
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 13
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 13
- 238000012350 deep sequencing Methods 0.000 description 13
- 230000001105 regulatory effect Effects 0.000 description 13
- 150000003384 small molecules Chemical class 0.000 description 13
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 12
- 101000693231 Homo sapiens PDZK1-interacting protein 1 Proteins 0.000 description 12
- 101001106395 Homo sapiens Rho GTPase-activating protein 5 Proteins 0.000 description 12
- 102100025648 PDZK1-interacting protein 1 Human genes 0.000 description 12
- 101710173693 Short transient receptor potential channel 1 Proteins 0.000 description 12
- LVTKHGUGBGNBPL-UHFFFAOYSA-N Trp-P-1 Chemical compound N1C2=CC=CC=C2C2=C1C(C)=C(N)N=C2C LVTKHGUGBGNBPL-UHFFFAOYSA-N 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- 102100021428 Rho GTPase-activating protein 5 Human genes 0.000 description 11
- 230000030279 gene silencing Effects 0.000 description 11
- 230000008595 infiltration Effects 0.000 description 11
- 238000001764 infiltration Methods 0.000 description 11
- 229920001184 polypeptide Polymers 0.000 description 11
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 10
- 230000006907 apoptotic process Effects 0.000 description 10
- 230000037361 pathway Effects 0.000 description 10
- 230000008685 targeting Effects 0.000 description 10
- 239000013603 viral vector Substances 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 9
- 238000010212 intracellular staining Methods 0.000 description 9
- 101000741929 Caenorhabditis elegans Serine/threonine-protein phosphatase 2A catalytic subunit Proteins 0.000 description 8
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 230000001086 cytosolic effect Effects 0.000 description 8
- 230000028993 immune response Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 210000000056 organ Anatomy 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 108020003175 receptors Proteins 0.000 description 8
- 229940124597 therapeutic agent Drugs 0.000 description 8
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 7
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 7
- 108091000080 Phosphotransferase Proteins 0.000 description 7
- 230000000259 anti-tumor effect Effects 0.000 description 7
- 238000010790 dilution Methods 0.000 description 7
- 239000012895 dilution Substances 0.000 description 7
- 239000012636 effector Substances 0.000 description 7
- 102000020233 phosphotransferase Human genes 0.000 description 7
- 238000011002 quantification Methods 0.000 description 7
- 238000012216 screening Methods 0.000 description 7
- 230000028327 secretion Effects 0.000 description 7
- 238000011740 C57BL/6 mouse Methods 0.000 description 6
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 6
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 6
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 6
- 108010002350 Interleukin-2 Proteins 0.000 description 6
- 238000011529 RT qPCR Methods 0.000 description 6
- RQVYBGPQFYCBGX-UHFFFAOYSA-N ametryn Chemical compound CCNC1=NC(NC(C)C)=NC(SC)=N1 RQVYBGPQFYCBGX-UHFFFAOYSA-N 0.000 description 6
- 238000003491 array Methods 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 239000004205 dimethyl polysiloxane Substances 0.000 description 6
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 6
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 210000005212 secondary lymphoid organ Anatomy 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- 108090000397 Caspase 3 Proteins 0.000 description 5
- 102100029855 Caspase-3 Human genes 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 5
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 5
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 5
- 241000713666 Lentivirus Species 0.000 description 5
- 239000000232 Lipid Bilayer Substances 0.000 description 5
- 102000043129 MHC class I family Human genes 0.000 description 5
- 108091054437 MHC class I family Proteins 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 238000000692 Student's t-test Methods 0.000 description 5
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 5
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 230000000692 anti-sense effect Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 230000000139 costimulatory effect Effects 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 210000002865 immune cell Anatomy 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 5
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 5
- 102000040430 polynucleotide Human genes 0.000 description 5
- 108091033319 polynucleotide Proteins 0.000 description 5
- 239000002157 polynucleotide Substances 0.000 description 5
- 230000008844 regulatory mechanism Effects 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 238000011830 transgenic mouse model Methods 0.000 description 5
- 108090000672 Annexin A5 Proteins 0.000 description 4
- 102000004121 Annexin A5 Human genes 0.000 description 4
- 102100026008 Breakpoint cluster region protein Human genes 0.000 description 4
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 4
- 108091033380 Coding strand Proteins 0.000 description 4
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 4
- 102000001398 Granzyme Human genes 0.000 description 4
- 108060005986 Granzyme Proteins 0.000 description 4
- 101000933320 Homo sapiens Breakpoint cluster region protein Proteins 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 241000699660 Mus musculus Species 0.000 description 4
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 4
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 4
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 4
- 108700019345 SYT-SSX fusion Proteins 0.000 description 4
- 108010046308 Type II DNA Topoisomerases Proteins 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 230000001640 apoptogenic effect Effects 0.000 description 4
- 230000005754 cellular signaling Effects 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000011443 conventional therapy Methods 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 238000003197 gene knockdown Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000003362 replicative effect Effects 0.000 description 4
- 230000001177 retroviral effect Effects 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 238000010361 transduction Methods 0.000 description 4
- 230000026683 transduction Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 3
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 3
- 102100032912 CD44 antigen Human genes 0.000 description 3
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 3
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 3
- 241000702421 Dependoparvovirus Species 0.000 description 3
- 208000001382 Experimental Melanoma Diseases 0.000 description 3
- 102100039698 G antigen 5 Human genes 0.000 description 3
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 3
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 3
- 101000886135 Homo sapiens G antigen 5 Proteins 0.000 description 3
- 101001018097 Homo sapiens L-selectin Proteins 0.000 description 3
- 108010074328 Interferon-gamma Proteins 0.000 description 3
- 108010002586 Interleukin-7 Proteins 0.000 description 3
- 102100033467 L-selectin Human genes 0.000 description 3
- 102000017578 LAG3 Human genes 0.000 description 3
- 101150030213 Lag3 gene Proteins 0.000 description 3
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 3
- 102100022430 Melanocyte protein PMEL Human genes 0.000 description 3
- 208000034578 Multiple myelomas Diseases 0.000 description 3
- 102100022678 Nucleophosmin Human genes 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 230000033540 T cell apoptotic process Effects 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 238000011467 adoptive cell therapy Methods 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000016396 cytokine production Effects 0.000 description 3
- 231100000433 cytotoxic Toxicity 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 230000004064 dysfunction Effects 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 108091006047 fluorescent proteins Proteins 0.000 description 3
- 102000034287 fluorescent proteins Human genes 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 108091070501 miRNA Proteins 0.000 description 3
- 238000002493 microarray Methods 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000003753 real-time PCR Methods 0.000 description 3
- 210000003289 regulatory T cell Anatomy 0.000 description 3
- 210000000130 stem cell Anatomy 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 241001430294 unidentified retrovirus Species 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- 102100039583 116 kDa U5 small nuclear ribonucleoprotein component Human genes 0.000 description 2
- 102100035389 2'-5'-oligoadenylate synthase 3 Human genes 0.000 description 2
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 2
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 2
- 102100039769 39S ribosomal protein L28, mitochondrial Human genes 0.000 description 2
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 2
- 102100037563 40S ribosomal protein S2 Human genes 0.000 description 2
- 102100027271 40S ribosomal protein SA Human genes 0.000 description 2
- 102100022406 60S ribosomal protein L10a Human genes 0.000 description 2
- 102100026802 72 kDa type IV collagenase Human genes 0.000 description 2
- 102100024049 A-kinase anchor protein 13 Human genes 0.000 description 2
- 108091007505 ADAM17 Proteins 0.000 description 2
- 108060000255 AIM2 Proteins 0.000 description 2
- 102100028162 ATP-binding cassette sub-family C member 3 Human genes 0.000 description 2
- 102100028221 Abl interactor 2 Human genes 0.000 description 2
- 102100022907 Acrosin-binding protein Human genes 0.000 description 2
- 101710196690 Actin B Proteins 0.000 description 2
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 2
- 102100021305 Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 Human genes 0.000 description 2
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 description 2
- 108020000543 Adenylate kinase Proteins 0.000 description 2
- 102000002281 Adenylate kinase Human genes 0.000 description 2
- 102100040069 Aldehyde dehydrogenase 1A1 Human genes 0.000 description 2
- 102100037982 Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A Human genes 0.000 description 2
- 102100032959 Alpha-actinin-4 Human genes 0.000 description 2
- 102100023635 Alpha-fetoprotein Human genes 0.000 description 2
- 102000052587 Anaphase-Promoting Complex-Cyclosome Apc3 Subunit Human genes 0.000 description 2
- 108700004606 Anaphase-Promoting Complex-Cyclosome Apc3 Subunit Proteins 0.000 description 2
- 102100023003 Ankyrin repeat domain-containing protein 30A Human genes 0.000 description 2
- 102100034613 Annexin A2 Human genes 0.000 description 2
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 2
- 101000719121 Arabidopsis thaliana Protein MEI2-like 1 Proteins 0.000 description 2
- 102100035526 B melanoma antigen 1 Human genes 0.000 description 2
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 2
- 102100035730 B-cell receptor-associated protein 31 Human genes 0.000 description 2
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 2
- 102100024272 BTB/POZ domain-containing protein 2 Human genes 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 2
- 102100027522 Baculoviral IAP repeat-containing protein 7 Human genes 0.000 description 2
- 102100026596 Bcl-2-like protein 1 Human genes 0.000 description 2
- 101150008012 Bcl2l1 gene Proteins 0.000 description 2
- 102100027950 Bile acid-CoA:amino acid N-acyltransferase Human genes 0.000 description 2
- 102100037086 Bone marrow stromal antigen 2 Human genes 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- 101150108242 CDC27 gene Proteins 0.000 description 2
- 108091011896 CSF1 Proteins 0.000 description 2
- 108091058559 CXorf61 Proteins 0.000 description 2
- 102100039532 Calcium-activated chloride channel regulator 2 Human genes 0.000 description 2
- 102100038613 Calreticulin-3 Human genes 0.000 description 2
- 102100039510 Cancer/testis antigen 2 Human genes 0.000 description 2
- 102100024423 Carbonic anhydrase 9 Human genes 0.000 description 2
- 102100038916 Caspase-5 Human genes 0.000 description 2
- 102100026548 Caspase-8 Human genes 0.000 description 2
- 102100028914 Catenin beta-1 Human genes 0.000 description 2
- 108091007741 Chimeric antigen receptor T cells Proteins 0.000 description 2
- 102100028757 Chondroitin sulfate proteoglycan 4 Human genes 0.000 description 2
- 102100039361 Chondrosarcoma-associated gene 2/3 protein Human genes 0.000 description 2
- 108010077544 Chromatin Proteins 0.000 description 2
- 102100038641 Cleavage and polyadenylation specificity factor subunit 1 Human genes 0.000 description 2
- 102100031552 Coactosin-like protein Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 108010058546 Cyclin D1 Proteins 0.000 description 2
- 108010068106 Cyclin T Proteins 0.000 description 2
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 2
- 108010016788 Cyclin-Dependent Kinase Inhibitor p21 Proteins 0.000 description 2
- 102100036873 Cyclin-I Human genes 0.000 description 2
- 102100036252 Cyclin-dependent kinase 4 Human genes 0.000 description 2
- 102100033270 Cyclin-dependent kinase inhibitor 1 Human genes 0.000 description 2
- 102100027417 Cytochrome P450 1B1 Human genes 0.000 description 2
- 102100024829 DNA polymerase delta catalytic subunit Human genes 0.000 description 2
- 102100033587 DNA topoisomerase 2-alpha Human genes 0.000 description 2
- 102100033589 DNA topoisomerase 2-beta Human genes 0.000 description 2
- 102100030074 Dickkopf-related protein 1 Human genes 0.000 description 2
- 101100216227 Dictyostelium discoideum anapc3 gene Proteins 0.000 description 2
- 102100031111 Disintegrin and metalloproteinase domain-containing protein 17 Human genes 0.000 description 2
- 102100022839 DnaJ homolog subfamily C member 8 Human genes 0.000 description 2
- 101100219190 Drosophila melanogaster byn gene Proteins 0.000 description 2
- 102100036109 Dual specificity protein kinase TTK Human genes 0.000 description 2
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 2
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 2
- 102100026245 E3 ubiquitin-protein ligase RNF43 Human genes 0.000 description 2
- 102100025026 E3 ubiquitin-protein ligase TRIM68 Human genes 0.000 description 2
- 102100037238 E3 ubiquitin-protein ligase UBR4 Human genes 0.000 description 2
- 101150115146 EEF2 gene Proteins 0.000 description 2
- 101150084967 EPCAM gene Proteins 0.000 description 2
- 101150076616 EPHA2 gene Proteins 0.000 description 2
- 101150016325 EPHA3 gene Proteins 0.000 description 2
- 102100039577 ETS translocation variant 5 Human genes 0.000 description 2
- 102100031334 Elongation factor 2 Human genes 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 description 2
- 102100030324 Ephrin type-A receptor 3 Human genes 0.000 description 2
- 102100031940 Epithelial cell adhesion molecule Human genes 0.000 description 2
- 102100036725 Epithelial discoidin domain-containing receptor 1 Human genes 0.000 description 2
- 101710131668 Epithelial discoidin domain-containing receptor 1 Proteins 0.000 description 2
- 101100129584 Escherichia coli (strain K12) trg gene Proteins 0.000 description 2
- 102100022466 Eukaryotic translation initiation factor 4E-binding protein 1 Human genes 0.000 description 2
- 102100028073 Fibroblast growth factor 5 Human genes 0.000 description 2
- 102100027842 Fibroblast growth factor receptor 3 Human genes 0.000 description 2
- 108010013996 Fibromodulin Proteins 0.000 description 2
- 102000017177 Fibromodulin Human genes 0.000 description 2
- 102100037362 Fibronectin Human genes 0.000 description 2
- 238000000729 Fisher's exact test Methods 0.000 description 2
- 108010009306 Forkhead Box Protein O1 Proteins 0.000 description 2
- 102100035427 Forkhead box protein O1 Human genes 0.000 description 2
- 102100028930 Formin-like protein 1 Human genes 0.000 description 2
- 102100039717 G antigen 1 Human genes 0.000 description 2
- 102100039701 G antigen 2B/2C Human genes 0.000 description 2
- 102100039699 G antigen 4 Human genes 0.000 description 2
- 102100039713 G antigen 6 Human genes 0.000 description 2
- 102100040578 G antigen 7 Human genes 0.000 description 2
- 102100039860 G-protein coupled receptor 143 Human genes 0.000 description 2
- 102100024165 G1/S-specific cyclin-D1 Human genes 0.000 description 2
- 102100032340 G2/mitotic-specific cyclin-B1 Human genes 0.000 description 2
- 102100024405 GPI-linked NAD(P)(+)-arginine ADP-ribosyltransferase 1 Human genes 0.000 description 2
- 101710144640 GPI-linked NAD(P)(+)-arginine ADP-ribosyltransferase 1 Proteins 0.000 description 2
- 102100030708 GTPase KRas Human genes 0.000 description 2
- 102100039788 GTPase NRas Human genes 0.000 description 2
- 102100039835 Galactoside alpha-(1,2)-fucosyltransferase 1 Human genes 0.000 description 2
- 102100040510 Galectin-3-binding protein Human genes 0.000 description 2
- 108090000369 Glutamate Carboxypeptidase II Proteins 0.000 description 2
- 229930186217 Glycolipid Natural products 0.000 description 2
- 102100032530 Glypican-3 Human genes 0.000 description 2
- 108091059596 H3F3A Proteins 0.000 description 2
- 102100040352 Heat shock 70 kDa protein 1A Human genes 0.000 description 2
- 102100040407 Heat shock 70 kDa protein 1B Human genes 0.000 description 2
- 102100028006 Heme oxygenase 1 Human genes 0.000 description 2
- 102100024025 Heparanase Human genes 0.000 description 2
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 description 2
- 101710083479 Hepatitis A virus cellular receptor 2 homolog Proteins 0.000 description 2
- 102100028818 Heterogeneous nuclear ribonucleoprotein L Human genes 0.000 description 2
- 102100039236 Histone H3.3 Human genes 0.000 description 2
- 102100022823 Histone RNA hairpin-binding protein Human genes 0.000 description 2
- 102100038970 Histone-lysine N-methyltransferase EZH2 Human genes 0.000 description 2
- 208000017604 Hodgkin disease Diseases 0.000 description 2
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- 101000608799 Homo sapiens 116 kDa U5 small nuclear ribonucleoprotein component Proteins 0.000 description 2
- 101000597332 Homo sapiens 2'-5'-oligoadenylate synthase 3 Proteins 0.000 description 2
- 101000667524 Homo sapiens 39S ribosomal protein L28, mitochondrial Proteins 0.000 description 2
- 101001098029 Homo sapiens 40S ribosomal protein S2 Proteins 0.000 description 2
- 101000694288 Homo sapiens 40S ribosomal protein SA Proteins 0.000 description 2
- 101000773083 Homo sapiens 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 2
- 101000755323 Homo sapiens 60S ribosomal protein L10a Proteins 0.000 description 2
- 101000627872 Homo sapiens 72 kDa type IV collagenase Proteins 0.000 description 2
- 101000833679 Homo sapiens A-kinase anchor protein 13 Proteins 0.000 description 2
- 101000779641 Homo sapiens ALK tyrosine kinase receptor Proteins 0.000 description 2
- 101000986633 Homo sapiens ATP-binding cassette sub-family C member 3 Proteins 0.000 description 2
- 101000724231 Homo sapiens Abl interactor 2 Proteins 0.000 description 2
- 101000756551 Homo sapiens Acrosin-binding protein Proteins 0.000 description 2
- 101001042227 Homo sapiens Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 Proteins 0.000 description 2
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 description 2
- 101000890570 Homo sapiens Aldehyde dehydrogenase 1A1 Proteins 0.000 description 2
- 101000951392 Homo sapiens Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A Proteins 0.000 description 2
- 101000797282 Homo sapiens Alpha-actinin-4 Proteins 0.000 description 2
- 101000757191 Homo sapiens Ankyrin repeat domain-containing protein 30A Proteins 0.000 description 2
- 101000924474 Homo sapiens Annexin A2 Proteins 0.000 description 2
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 2
- 101000874316 Homo sapiens B melanoma antigen 1 Proteins 0.000 description 2
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 2
- 101000874270 Homo sapiens B-cell receptor-associated protein 31 Proteins 0.000 description 2
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 2
- 101000761884 Homo sapiens BTB/POZ domain-containing protein 2 Proteins 0.000 description 2
- 101000936083 Homo sapiens Baculoviral IAP repeat-containing protein 7 Proteins 0.000 description 2
- 101000697858 Homo sapiens Bile acid-CoA:amino acid N-acyltransferase Proteins 0.000 description 2
- 101000740785 Homo sapiens Bone marrow stromal antigen 2 Proteins 0.000 description 2
- 101000888580 Homo sapiens Calcium-activated chloride channel regulator 2 Proteins 0.000 description 2
- 101000741289 Homo sapiens Calreticulin-3 Proteins 0.000 description 2
- 101000889345 Homo sapiens Cancer/testis antigen 2 Proteins 0.000 description 2
- 101000910338 Homo sapiens Carbonic anhydrase 9 Proteins 0.000 description 2
- 101000914324 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 5 Proteins 0.000 description 2
- 101000741072 Homo sapiens Caspase-5 Proteins 0.000 description 2
- 101000983528 Homo sapiens Caspase-8 Proteins 0.000 description 2
- 101000916173 Homo sapiens Catenin beta-1 Proteins 0.000 description 2
- 101000916489 Homo sapiens Chondroitin sulfate proteoglycan 4 Proteins 0.000 description 2
- 101000745414 Homo sapiens Chondrosarcoma-associated gene 2/3 protein Proteins 0.000 description 2
- 101000957603 Homo sapiens Cleavage and polyadenylation specificity factor subunit 1 Proteins 0.000 description 2
- 101000940352 Homo sapiens Coactosin-like protein Proteins 0.000 description 2
- 101000713124 Homo sapiens Cyclin-I Proteins 0.000 description 2
- 101000868333 Homo sapiens Cyclin-dependent kinase 1 Proteins 0.000 description 2
- 101000725164 Homo sapiens Cytochrome P450 1B1 Proteins 0.000 description 2
- 101000909198 Homo sapiens DNA polymerase delta catalytic subunit Proteins 0.000 description 2
- 101000729474 Homo sapiens DNA-directed RNA polymerase I subunit RPA1 Proteins 0.000 description 2
- 101000864646 Homo sapiens Dickkopf-related protein 1 Proteins 0.000 description 2
- 101000903063 Homo sapiens DnaJ homolog subfamily C member 8 Proteins 0.000 description 2
- 101000659223 Homo sapiens Dual specificity protein kinase TTK Proteins 0.000 description 2
- 101000692702 Homo sapiens E3 ubiquitin-protein ligase RNF43 Proteins 0.000 description 2
- 101000830201 Homo sapiens E3 ubiquitin-protein ligase TRIM68 Proteins 0.000 description 2
- 101000807547 Homo sapiens E3 ubiquitin-protein ligase UBR4 Proteins 0.000 description 2
- 101000813745 Homo sapiens ETS translocation variant 5 Proteins 0.000 description 2
- 101001024566 Homo sapiens Ecto-ADP-ribosyltransferase 4 Proteins 0.000 description 2
- 101000678280 Homo sapiens Eukaryotic translation initiation factor 4E-binding protein 1 Proteins 0.000 description 2
- 101001060267 Homo sapiens Fibroblast growth factor 5 Proteins 0.000 description 2
- 101000917148 Homo sapiens Fibroblast growth factor receptor 3 Proteins 0.000 description 2
- 101001027128 Homo sapiens Fibronectin Proteins 0.000 description 2
- 101001059386 Homo sapiens Formin-like protein 1 Proteins 0.000 description 2
- 101000886137 Homo sapiens G antigen 1 Proteins 0.000 description 2
- 101000886151 Homo sapiens G antigen 2A Proteins 0.000 description 2
- 101000886136 Homo sapiens G antigen 4 Proteins 0.000 description 2
- 101000886141 Homo sapiens G antigen 6 Proteins 0.000 description 2
- 101000893968 Homo sapiens G antigen 7 Proteins 0.000 description 2
- 101000887425 Homo sapiens G-protein coupled receptor 143 Proteins 0.000 description 2
- 101000868643 Homo sapiens G2/mitotic-specific cyclin-B1 Proteins 0.000 description 2
- 101000584612 Homo sapiens GTPase KRas Proteins 0.000 description 2
- 101000744505 Homo sapiens GTPase NRas Proteins 0.000 description 2
- 101000885616 Homo sapiens Galactoside alpha-(1,2)-fucosyltransferase 1 Proteins 0.000 description 2
- 101000967904 Homo sapiens Galectin-3-binding protein Proteins 0.000 description 2
- 101001014668 Homo sapiens Glypican-3 Proteins 0.000 description 2
- 101001037759 Homo sapiens Heat shock 70 kDa protein 1A Proteins 0.000 description 2
- 101001037968 Homo sapiens Heat shock 70 kDa protein 1B Proteins 0.000 description 2
- 101001079623 Homo sapiens Heme oxygenase 1 Proteins 0.000 description 2
- 101001047819 Homo sapiens Heparanase Proteins 0.000 description 2
- 101000839078 Homo sapiens Heterogeneous nuclear ribonucleoprotein L Proteins 0.000 description 2
- 101000825762 Homo sapiens Histone RNA hairpin-binding protein Proteins 0.000 description 2
- 101000882127 Homo sapiens Histone-lysine N-methyltransferase EZH2 Proteins 0.000 description 2
- 101001103039 Homo sapiens Inactive tyrosine-protein kinase transmembrane receptor ROR1 Proteins 0.000 description 2
- 101001056180 Homo sapiens Induced myeloid leukemia cell differentiation protein Mcl-1 Proteins 0.000 description 2
- 101000975421 Homo sapiens Inositol 1,4,5-trisphosphate receptor type 2 Proteins 0.000 description 2
- 101000599782 Homo sapiens Insulin-like growth factor 2 mRNA-binding protein 3 Proteins 0.000 description 2
- 101000997670 Homo sapiens Integrin beta-8 Proteins 0.000 description 2
- 101001011441 Homo sapiens Interferon regulatory factor 4 Proteins 0.000 description 2
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 2
- 101001003132 Homo sapiens Interleukin-13 receptor subunit alpha-2 Proteins 0.000 description 2
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 2
- 101000691574 Homo sapiens Junction plakoglobin Proteins 0.000 description 2
- 101000614481 Homo sapiens Kidney-associated antigen 1 Proteins 0.000 description 2
- 101001051093 Homo sapiens Low-density lipoprotein receptor Proteins 0.000 description 2
- 101001065550 Homo sapiens Lymphocyte antigen 6K Proteins 0.000 description 2
- 101000739159 Homo sapiens Mammaglobin-A Proteins 0.000 description 2
- 101001011906 Homo sapiens Matrix metalloproteinase-14 Proteins 0.000 description 2
- 101001134060 Homo sapiens Melanocyte-stimulating hormone receptor Proteins 0.000 description 2
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 2
- 101001005728 Homo sapiens Melanoma-associated antigen 1 Proteins 0.000 description 2
- 101001005725 Homo sapiens Melanoma-associated antigen 10 Proteins 0.000 description 2
- 101001005717 Homo sapiens Melanoma-associated antigen 12 Proteins 0.000 description 2
- 101001005718 Homo sapiens Melanoma-associated antigen 2 Proteins 0.000 description 2
- 101001005719 Homo sapiens Melanoma-associated antigen 3 Proteins 0.000 description 2
- 101001005720 Homo sapiens Melanoma-associated antigen 4 Proteins 0.000 description 2
- 101001005722 Homo sapiens Melanoma-associated antigen 6 Proteins 0.000 description 2
- 101001005724 Homo sapiens Melanoma-associated antigen 9 Proteins 0.000 description 2
- 101001036688 Homo sapiens Melanoma-associated antigen B1 Proteins 0.000 description 2
- 101001036686 Homo sapiens Melanoma-associated antigen B2 Proteins 0.000 description 2
- 101001057156 Homo sapiens Melanoma-associated antigen C2 Proteins 0.000 description 2
- 101001057131 Homo sapiens Melanoma-associated antigen D4 Proteins 0.000 description 2
- 101000798109 Homo sapiens Melanotransferrin Proteins 0.000 description 2
- 101000576802 Homo sapiens Mesothelin Proteins 0.000 description 2
- 101000628547 Homo sapiens Metalloreductase STEAP1 Proteins 0.000 description 2
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 2
- 101001133081 Homo sapiens Mucin-2 Proteins 0.000 description 2
- 101001090860 Homo sapiens Myeloblastin Proteins 0.000 description 2
- 101000978949 Homo sapiens NADP-dependent malic enzyme Proteins 0.000 description 2
- 101000979297 Homo sapiens Negative elongation factor A Proteins 0.000 description 2
- 101000896414 Homo sapiens Nuclear nucleic acid-binding protein C1D Proteins 0.000 description 2
- 101001103036 Homo sapiens Nuclear receptor ROR-alpha Proteins 0.000 description 2
- 101000588345 Homo sapiens Nuclear transcription factor Y subunit gamma Proteins 0.000 description 2
- 101001109719 Homo sapiens Nucleophosmin Proteins 0.000 description 2
- 101001131829 Homo sapiens P protein Proteins 0.000 description 2
- 101001131670 Homo sapiens PWWP domain-containing DNA repair factor 3A Proteins 0.000 description 2
- 101000613490 Homo sapiens Paired box protein Pax-3 Proteins 0.000 description 2
- 101001135738 Homo sapiens Parathyroid hormone-related protein Proteins 0.000 description 2
- 101000611202 Homo sapiens Peptidyl-prolyl cis-trans isomerase B Proteins 0.000 description 2
- 101001096050 Homo sapiens Perilipin-2 Proteins 0.000 description 2
- 101001064774 Homo sapiens Peroxidasin-like protein Proteins 0.000 description 2
- 101000619805 Homo sapiens Peroxiredoxin-5, mitochondrial Proteins 0.000 description 2
- 101000579123 Homo sapiens Phosphoglycerate kinase 1 Proteins 0.000 description 2
- 101001091365 Homo sapiens Plasma kallikrein Proteins 0.000 description 2
- 101000610208 Homo sapiens Poly(A) polymerase gamma Proteins 0.000 description 2
- 101000933173 Homo sapiens Pro-cathepsin H Proteins 0.000 description 2
- 101000983170 Homo sapiens Proliferation-associated protein 2G4 Proteins 0.000 description 2
- 101001043564 Homo sapiens Prolow-density lipoprotein receptor-related protein 1 Proteins 0.000 description 2
- 101001136592 Homo sapiens Prostate stem cell antigen Proteins 0.000 description 2
- 101000605534 Homo sapiens Prostate-specific antigen Proteins 0.000 description 2
- 101001001272 Homo sapiens Prostatic acid phosphatase Proteins 0.000 description 2
- 101000880769 Homo sapiens Protein SSX1 Proteins 0.000 description 2
- 101000880770 Homo sapiens Protein SSX2 Proteins 0.000 description 2
- 101000880774 Homo sapiens Protein SSX4 Proteins 0.000 description 2
- 101000642815 Homo sapiens Protein SSXT Proteins 0.000 description 2
- 101000877404 Homo sapiens Protein enabled homolog Proteins 0.000 description 2
- 101000613617 Homo sapiens Protein mono-ADP-ribosyltransferase PARP12 Proteins 0.000 description 2
- 101000613391 Homo sapiens Protocadherin beta-16 Proteins 0.000 description 2
- 101000725916 Homo sapiens Putative tumor antigen NA88-A Proteins 0.000 description 2
- 101000999079 Homo sapiens Radiation-inducible immediate-early gene IEX-1 Proteins 0.000 description 2
- 101000620554 Homo sapiens Ras-related protein Rab-38 Proteins 0.000 description 2
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 2
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 2
- 101000591201 Homo sapiens Receptor-type tyrosine-protein phosphatase kappa Proteins 0.000 description 2
- 101000710137 Homo sapiens Recoverin Proteins 0.000 description 2
- 101001092125 Homo sapiens Replication protein A 70 kDa DNA-binding subunit Proteins 0.000 description 2
- 101001112293 Homo sapiens Retinoic acid receptor alpha Proteins 0.000 description 2
- 101001081189 Homo sapiens Rho GTPase-activating protein 45 Proteins 0.000 description 2
- 101000857677 Homo sapiens Runt-related transcription factor 1 Proteins 0.000 description 2
- 101000628514 Homo sapiens STAGA complex 65 subunit gamma Proteins 0.000 description 2
- 101000821981 Homo sapiens Sarcoma antigen 1 Proteins 0.000 description 2
- 101000665137 Homo sapiens Scm-like with four MBT domains protein 1 Proteins 0.000 description 2
- 101000654335 Homo sapiens Secernin-1 Proteins 0.000 description 2
- 101000654668 Homo sapiens Septin-2 Proteins 0.000 description 2
- 101000632314 Homo sapiens Septin-6 Proteins 0.000 description 2
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 2
- 101000987310 Homo sapiens Serine/threonine-protein kinase PAK 2 Proteins 0.000 description 2
- 101000770774 Homo sapiens Serine/threonine-protein kinase WNK2 Proteins 0.000 description 2
- 101000702707 Homo sapiens Smad nuclear-interacting protein 1 Proteins 0.000 description 2
- 101000665150 Homo sapiens Small nuclear ribonucleoprotein Sm D1 Proteins 0.000 description 2
- 101000665250 Homo sapiens Small nuclear ribonucleoprotein Sm D2 Proteins 0.000 description 2
- 101000824971 Homo sapiens Sperm surface protein Sp17 Proteins 0.000 description 2
- 101000873927 Homo sapiens Squamous cell carcinoma antigen recognized by T-cells 3 Proteins 0.000 description 2
- 101000643620 Homo sapiens Synaptonemal complex protein 1 Proteins 0.000 description 2
- 101000714470 Homo sapiens Synaptotagmin-1 Proteins 0.000 description 2
- 101000740523 Homo sapiens Syntenin-1 Proteins 0.000 description 2
- 101000679307 Homo sapiens T cell receptor gamma constant 2 Proteins 0.000 description 2
- 101000946860 Homo sapiens T-cell surface glycoprotein CD3 epsilon chain Proteins 0.000 description 2
- 101000649068 Homo sapiens Tapasin Proteins 0.000 description 2
- 101000612875 Homo sapiens Testis-specific Y-encoded-like protein 1 Proteins 0.000 description 2
- 101000809797 Homo sapiens Thymidylate synthase Proteins 0.000 description 2
- 101000830713 Homo sapiens Torsin-3A Proteins 0.000 description 2
- 101000648075 Homo sapiens Trafficking protein particle complex subunit 1 Proteins 0.000 description 2
- 101000813738 Homo sapiens Transcription factor ETV6 Proteins 0.000 description 2
- 101000664703 Homo sapiens Transcription factor SOX-10 Proteins 0.000 description 2
- 101000825086 Homo sapiens Transcription factor SOX-11 Proteins 0.000 description 2
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 description 2
- 101000642514 Homo sapiens Transcription factor SOX-4 Proteins 0.000 description 2
- 101000904724 Homo sapiens Transmembrane glycoprotein NMB Proteins 0.000 description 2
- 101000801742 Homo sapiens Triosephosphate isomerase Proteins 0.000 description 2
- 101000801433 Homo sapiens Trophoblast glycoprotein Proteins 0.000 description 2
- 101000830781 Homo sapiens Tropomyosin alpha-4 chain Proteins 0.000 description 2
- 101000823316 Homo sapiens Tyrosine-protein kinase ABL1 Proteins 0.000 description 2
- 101001047681 Homo sapiens Tyrosine-protein kinase Lck Proteins 0.000 description 2
- 101000836268 Homo sapiens U4/U6.U5 tri-snRNP-associated protein 1 Proteins 0.000 description 2
- 101000939500 Homo sapiens UBX domain-containing protein 11 Proteins 0.000 description 2
- 101000807344 Homo sapiens Ubiquitin-conjugating enzyme E2 A Proteins 0.000 description 2
- 101000808753 Homo sapiens Ubiquitin-conjugating enzyme E2 variant 1 Proteins 0.000 description 2
- 101000982054 Homo sapiens Unconventional myosin-Ib Proteins 0.000 description 2
- 101000650009 Homo sapiens WD repeat-containing protein 46 Proteins 0.000 description 2
- 101000814512 Homo sapiens X antigen family member 1 Proteins 0.000 description 2
- 101000666295 Homo sapiens X-box-binding protein 1 Proteins 0.000 description 2
- 101000964713 Homo sapiens Zinc finger protein 395 Proteins 0.000 description 2
- 102100027735 Hyaluronan mediated motility receptor Human genes 0.000 description 2
- 108010007666 IMP cyclohydrolase Proteins 0.000 description 2
- 101710123134 Ice-binding protein Proteins 0.000 description 2
- 101710082837 Ice-structuring protein Proteins 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 102100039615 Inactive tyrosine-protein kinase transmembrane receptor ROR1 Human genes 0.000 description 2
- 102100026539 Induced myeloid leukemia cell differentiation protein Mcl-1 Human genes 0.000 description 2
- 102100020796 Inosine 5'-monophosphate cyclohydrolase Human genes 0.000 description 2
- 102100024037 Inositol 1,4,5-trisphosphate receptor type 2 Human genes 0.000 description 2
- 102100037920 Insulin-like growth factor 2 mRNA-binding protein 3 Human genes 0.000 description 2
- 102100033336 Integrin beta-8 Human genes 0.000 description 2
- 102100037850 Interferon gamma Human genes 0.000 description 2
- 102100030126 Interferon regulatory factor 4 Human genes 0.000 description 2
- 102100024064 Interferon-inducible protein AIM2 Human genes 0.000 description 2
- 102100027268 Interferon-stimulated gene 20 kDa protein Human genes 0.000 description 2
- 102100020793 Interleukin-13 receptor subunit alpha-2 Human genes 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 102100026153 Junction plakoglobin Human genes 0.000 description 2
- 102100034872 Kallikrein-4 Human genes 0.000 description 2
- 102100040442 Kidney-associated antigen 1 Human genes 0.000 description 2
- 102100021533 Kita-kyushu lung cancer antigen 1 Human genes 0.000 description 2
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 2
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 102100032129 Lymphocyte antigen 6K Human genes 0.000 description 2
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 2
- 102100037273 Mammaglobin-A Human genes 0.000 description 2
- 102100030216 Matrix metalloproteinase-14 Human genes 0.000 description 2
- 102100034216 Melanocyte-stimulating hormone receptor Human genes 0.000 description 2
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 2
- 102100025050 Melanoma-associated antigen 1 Human genes 0.000 description 2
- 102100025049 Melanoma-associated antigen 10 Human genes 0.000 description 2
- 102100025084 Melanoma-associated antigen 12 Human genes 0.000 description 2
- 102100025081 Melanoma-associated antigen 2 Human genes 0.000 description 2
- 102100025082 Melanoma-associated antigen 3 Human genes 0.000 description 2
- 102100025077 Melanoma-associated antigen 4 Human genes 0.000 description 2
- 102100025075 Melanoma-associated antigen 6 Human genes 0.000 description 2
- 102100025079 Melanoma-associated antigen 9 Human genes 0.000 description 2
- 102100039477 Melanoma-associated antigen B1 Human genes 0.000 description 2
- 102100039479 Melanoma-associated antigen B2 Human genes 0.000 description 2
- 102100027252 Melanoma-associated antigen C2 Human genes 0.000 description 2
- 102100027257 Melanoma-associated antigen D4 Human genes 0.000 description 2
- 102100032239 Melanotransferrin Human genes 0.000 description 2
- 102100025096 Mesothelin Human genes 0.000 description 2
- 102000003735 Mesothelin Human genes 0.000 description 2
- 108090000015 Mesothelin Proteins 0.000 description 2
- 102100026712 Metalloreductase STEAP1 Human genes 0.000 description 2
- 102100034256 Mucin-1 Human genes 0.000 description 2
- 102100034263 Mucin-2 Human genes 0.000 description 2
- 102100034681 Myeloblastin Human genes 0.000 description 2
- 102100022913 NAD-dependent protein deacetylase sirtuin-2 Human genes 0.000 description 2
- 102100023175 NADP-dependent malic enzyme Human genes 0.000 description 2
- 102100023062 Negative elongation factor A Human genes 0.000 description 2
- 102100021713 Nuclear nucleic acid-binding protein C1D Human genes 0.000 description 2
- 102100031719 Nuclear transcription factor Y subunit gamma Human genes 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 108010058846 Ovalbumin Proteins 0.000 description 2
- 102100034574 P protein Human genes 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 101150021662 PDP1 gene Proteins 0.000 description 2
- KJWZYMMLVHIVSU-IYCNHOCDSA-N PGK1 Chemical compound CCCCC[C@H](O)\C=C\[C@@H]1[C@@H](CCCCCCC(O)=O)C(=O)CC1=O KJWZYMMLVHIVSU-IYCNHOCDSA-N 0.000 description 2
- 108091008121 PML-RARA Proteins 0.000 description 2
- 102000036673 PRAME Human genes 0.000 description 2
- 108060006580 PRAME Proteins 0.000 description 2
- 102100040891 Paired box protein Pax-3 Human genes 0.000 description 2
- 102100036899 Parathyroid hormone-related protein Human genes 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 102100040283 Peptidyl-prolyl cis-trans isomerase B Human genes 0.000 description 2
- 102100037896 Perilipin-2 Human genes 0.000 description 2
- 102100031894 Peroxidasin-like protein Human genes 0.000 description 2
- 102100022078 Peroxiredoxin-5, mitochondrial Human genes 0.000 description 2
- 102100028251 Phosphoglycerate kinase 1 Human genes 0.000 description 2
- 102100040153 Poly(A) polymerase gamma Human genes 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- 102100025974 Pro-cathepsin H Human genes 0.000 description 2
- 102100026899 Proliferation-associated protein 2G4 Human genes 0.000 description 2
- 102100036735 Prostate stem cell antigen Human genes 0.000 description 2
- 102100038358 Prostate-specific antigen Human genes 0.000 description 2
- 102100035703 Prostatic acid phosphatase Human genes 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- 102100037687 Protein SSX1 Human genes 0.000 description 2
- 102100037686 Protein SSX2 Human genes 0.000 description 2
- 102100037727 Protein SSX4 Human genes 0.000 description 2
- 102100035586 Protein SSXT Human genes 0.000 description 2
- 102100035093 Protein enabled homolog Human genes 0.000 description 2
- 102100040845 Protein mono-ADP-ribosyltransferase PARP12 Human genes 0.000 description 2
- 102100027596 Putative tumor antigen NA88-A Human genes 0.000 description 2
- 108010016790 RNA-Induced Silencing Complex Proteins 0.000 description 2
- 102000000574 RNA-Induced Silencing Complex Human genes 0.000 description 2
- 102100022491 RNA-binding protein NOB1 Human genes 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 102100036900 Radiation-inducible immediate-early gene IEX-1 Human genes 0.000 description 2
- 102100022305 Ras-related protein Rab-38 Human genes 0.000 description 2
- 101100443768 Rattus norvegicus Dock9 gene Proteins 0.000 description 2
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 2
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 description 2
- 102100034089 Receptor-type tyrosine-protein phosphatase kappa Human genes 0.000 description 2
- 102100034572 Recoverin Human genes 0.000 description 2
- 102100037421 Regulator of G-protein signaling 5 Human genes 0.000 description 2
- 101710140403 Regulator of G-protein signaling 5 Proteins 0.000 description 2
- 102100035729 Replication protein A 70 kDa DNA-binding subunit Human genes 0.000 description 2
- 102100023606 Retinoic acid receptor alpha Human genes 0.000 description 2
- 102100027748 Rho GTPase-activating protein 45 Human genes 0.000 description 2
- 102100025373 Runt-related transcription factor 1 Human genes 0.000 description 2
- 108091058557 SILV Proteins 0.000 description 2
- 108091006541 SLC35A4 Proteins 0.000 description 2
- 102100036913 SLC35A4 upstream open reading frame protein Human genes 0.000 description 2
- 108091007568 SLC45A3 Proteins 0.000 description 2
- 102100026710 STAGA complex 65 subunit gamma Human genes 0.000 description 2
- 108010044012 STAT1 Transcription Factor Proteins 0.000 description 2
- 101100346945 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) MUM3 gene Proteins 0.000 description 2
- 102100021466 Sarcoma antigen 1 Human genes 0.000 description 2
- 102100038689 Scm-like with four MBT domains protein 1 Human genes 0.000 description 2
- 102100031312 Secernin-1 Human genes 0.000 description 2
- 108091081021 Sense strand Proteins 0.000 description 2
- 102100027982 Septin-6 Human genes 0.000 description 2
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 2
- 102100027939 Serine/threonine-protein kinase PAK 2 Human genes 0.000 description 2
- 102100029063 Serine/threonine-protein kinase WNK2 Human genes 0.000 description 2
- 102100023085 Serine/threonine-protein kinase mTOR Human genes 0.000 description 2
- 102100029904 Signal transducer and activator of transcription 1-alpha/beta Human genes 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 108010041216 Sirtuin 2 Proteins 0.000 description 2
- 102100030914 Smad nuclear-interacting protein 1 Human genes 0.000 description 2
- 102100038685 Small nuclear ribonucleoprotein Sm D2 Human genes 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102100037253 Solute carrier family 45 member 3 Human genes 0.000 description 2
- 102100022441 Sperm surface protein Sp17 Human genes 0.000 description 2
- 102100035748 Squamous cell carcinoma antigen recognized by T-cells 3 Human genes 0.000 description 2
- 108010002687 Survivin Proteins 0.000 description 2
- 102100036234 Synaptonemal complex protein 1 Human genes 0.000 description 2
- 102100035721 Syndecan-1 Human genes 0.000 description 2
- 108090000058 Syndecan-1 Proteins 0.000 description 2
- 102100037219 Syntenin-1 Human genes 0.000 description 2
- 230000006044 T cell activation Effects 0.000 description 2
- 230000006052 T cell proliferation Effects 0.000 description 2
- 102100022571 T cell receptor gamma constant 2 Human genes 0.000 description 2
- 229940126547 T-cell immunoglobulin mucin-3 Drugs 0.000 description 2
- 102100035794 T-cell surface glycoprotein CD3 epsilon chain Human genes 0.000 description 2
- 101150057140 TACSTD1 gene Proteins 0.000 description 2
- 108700019889 TEL-AML1 fusion Proteins 0.000 description 2
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 2
- 102000003610 TRPM8 Human genes 0.000 description 2
- 102100028082 Tapasin Human genes 0.000 description 2
- 102100040953 Testis-specific Y-encoded-like protein 1 Human genes 0.000 description 2
- 102100038618 Thymidylate synthase Human genes 0.000 description 2
- 102100024603 Torsin-3A Human genes 0.000 description 2
- 102100025256 Trafficking protein particle complex subunit 1 Human genes 0.000 description 2
- 102100039580 Transcription factor ETV6 Human genes 0.000 description 2
- 102100038808 Transcription factor SOX-10 Human genes 0.000 description 2
- 102100022415 Transcription factor SOX-11 Human genes 0.000 description 2
- 102100024270 Transcription factor SOX-2 Human genes 0.000 description 2
- 102100036693 Transcription factor SOX-4 Human genes 0.000 description 2
- 108010082684 Transforming Growth Factor-beta Type II Receptor Proteins 0.000 description 2
- 102000004060 Transforming Growth Factor-beta Type II Receptor Human genes 0.000 description 2
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 2
- 102100033598 Triosephosphate isomerase Human genes 0.000 description 2
- 102100033579 Trophoblast glycoprotein Human genes 0.000 description 2
- 102100024944 Tropomyosin alpha-4 chain Human genes 0.000 description 2
- 101150111302 Trpm8 gene Proteins 0.000 description 2
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 2
- 102100036856 Tumor necrosis factor receptor superfamily member 9 Human genes 0.000 description 2
- 101710107540 Type-2 ice-structuring protein Proteins 0.000 description 2
- 102100022596 Tyrosine-protein kinase ABL1 Human genes 0.000 description 2
- 102100024036 Tyrosine-protein kinase Lck Human genes 0.000 description 2
- 102100027244 U4/U6.U5 tri-snRNP-associated protein 1 Human genes 0.000 description 2
- 102100029645 UBX domain-containing protein 11 Human genes 0.000 description 2
- 102100031929 UDP-N-acetylglucosamine-peptide N-acetylglucosaminyltransferase 110 kDa subunit Human genes 0.000 description 2
- 101710117112 UDP-N-acetylglucosamine-peptide N-acetylglucosaminyltransferase 110 kDa subunit Proteins 0.000 description 2
- 102000006275 Ubiquitin-Protein Ligases Human genes 0.000 description 2
- 108010083111 Ubiquitin-Protein Ligases Proteins 0.000 description 2
- 102100037261 Ubiquitin-conjugating enzyme E2 A Human genes 0.000 description 2
- 102100038467 Ubiquitin-conjugating enzyme E2 variant 1 Human genes 0.000 description 2
- 102100026776 Unconventional myosin-Ib Human genes 0.000 description 2
- 102100028276 WD repeat-containing protein 46 Human genes 0.000 description 2
- 102000040856 WT1 Human genes 0.000 description 2
- 108700020467 WT1 Proteins 0.000 description 2
- 101150084041 WT1 gene Proteins 0.000 description 2
- 102100039490 X antigen family member 1 Human genes 0.000 description 2
- 102100038151 X-box-binding protein 1 Human genes 0.000 description 2
- 102100040733 Zinc finger protein 395 Human genes 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 108700000711 bcl-X Proteins 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 125000004057 biotinyl group Chemical group [H]N1C(=O)N([H])[C@]2([H])[C@@]([H])(SC([H])([H])[C@]12[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000009566 cancer vaccine Methods 0.000 description 2
- 229940022399 cancer vaccine Drugs 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 238000002659 cell therapy Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 229940044683 chemotherapy drug Drugs 0.000 description 2
- 210000003483 chromatin Anatomy 0.000 description 2
- 238000003501 co-culture Methods 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 229960005061 crizotinib Drugs 0.000 description 2
- KTEIFNKAUNYNJU-GFCCVEGCSA-N crizotinib Chemical compound O([C@H](C)C=1C(=C(F)C=CC=1Cl)Cl)C(C(=NC=1)N)=CC=1C(=C1)C=NN1C1CCNCC1 KTEIFNKAUNYNJU-GFCCVEGCSA-N 0.000 description 2
- 238000004163 cytometry Methods 0.000 description 2
- 238000000432 density-gradient centrifugation Methods 0.000 description 2
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 2
- 230000009699 differential effect Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 108010087914 epidermal growth factor receptor VIII Proteins 0.000 description 2
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 2
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000012226 gene silencing method Methods 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 108010003425 hyaluronan-mediated motility receptor Proteins 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 108091008042 inhibitory receptors Proteins 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 108010024383 kallikrein 4 Proteins 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 2
- 201000011649 lymphoblastic lymphoma Diseases 0.000 description 2
- 210000005210 lymphoid organ Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010208 microarray analysis Methods 0.000 description 2
- 210000000066 myeloid cell Anatomy 0.000 description 2
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 2
- 230000037125 natural defense Effects 0.000 description 2
- 230000008689 nuclear function Effects 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 229940092253 ovalbumin Drugs 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 210000004180 plasmocyte Anatomy 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 201000006845 reticulosarcoma Diseases 0.000 description 2
- 208000029922 reticulum cell sarcoma Diseases 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 238000005556 structure-activity relationship Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 208000008732 thymoma Diseases 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- SZPQTEWIRPXBTC-KFOWTEFUSA-N 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'D-myo-inositol-3'-phosphate) Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)COP(O)(=O)O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](OP(O)(O)=O)[C@H]1O SZPQTEWIRPXBTC-KFOWTEFUSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 1
- 108010011122 A Kinase Anchor Proteins Proteins 0.000 description 1
- 102000014022 A Kinase Anchor Proteins Human genes 0.000 description 1
- 101710168331 ALK tyrosine kinase receptor Proteins 0.000 description 1
- 108010011376 AMP-Activated Protein Kinases Proteins 0.000 description 1
- 102000014156 AMP-Activated Protein Kinases Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 1
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 1
- 208000034048 Asymptomatic disease Diseases 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 108010017500 Biliverdin reductase Proteins 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 241001598984 Bromius obscurus Species 0.000 description 1
- 101150012716 CDK1 gene Proteins 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- 108010042955 Calcineurin Proteins 0.000 description 1
- 102000004631 Calcineurin Human genes 0.000 description 1
- 102100024965 Caspase recruitment domain-containing protein 11 Human genes 0.000 description 1
- 101710205695 Caspase recruitment domain-containing protein 11 Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 1
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 1
- 102100024109 Cyclin-T1 Human genes 0.000 description 1
- 102100024112 Cyclin-T2 Human genes 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- 230000007023 DNA restriction-modification system Effects 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 101100015729 Drosophila melanogaster drk gene Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102100025137 Early activation antigen CD69 Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 101001076781 Fructilactobacillus sanfranciscensis (strain ATCC 27651 / DSM 20451 / JCM 5668 / CCUG 30143 / KCTC 3205 / NCIMB 702811 / NRRL B-3934 / L-12) Ribose-5-phosphate isomerase A Proteins 0.000 description 1
- 101710098476 G antigen 2D Proteins 0.000 description 1
- 102100039700 G antigen 2E Human genes 0.000 description 1
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 1
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 1
- 230000037057 G1 phase arrest Effects 0.000 description 1
- 102100038393 Granzyme H Human genes 0.000 description 1
- 101710113220 Granzyme H Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102100029360 Hematopoietic cell signal transducer Human genes 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 101000934374 Homo sapiens Early activation antigen CD69 Proteins 0.000 description 1
- 101000990188 Homo sapiens Hematopoietic cell signal transducer Proteins 0.000 description 1
- 101001055145 Homo sapiens Interleukin-2 receptor subunit beta Proteins 0.000 description 1
- 101001043809 Homo sapiens Interleukin-7 receptor subunit alpha Proteins 0.000 description 1
- 101001034314 Homo sapiens Lactadherin Proteins 0.000 description 1
- 101000835877 Homo sapiens Mothers against decapentaplegic homolog 2 Proteins 0.000 description 1
- 101000966872 Homo sapiens Myotubularin-related protein 2 Proteins 0.000 description 1
- 101001130763 Homo sapiens Protein OS-9 Proteins 0.000 description 1
- 101000842302 Homo sapiens Protein-cysteine N-palmitoyltransferase HHAT Proteins 0.000 description 1
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108090000177 Interleukin-11 Proteins 0.000 description 1
- 102100026879 Interleukin-2 receptor subunit beta Human genes 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 102100021593 Interleukin-7 receptor subunit alpha Human genes 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 230000004163 JAK-STAT signaling pathway Effects 0.000 description 1
- 239000002146 L01XE16 - Crizotinib Substances 0.000 description 1
- 102100039648 Lactadherin Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108010020004 Microtubule-Associated Proteins Proteins 0.000 description 1
- 102000009664 Microtubule-Associated Proteins Human genes 0.000 description 1
- 101100508818 Mus musculus Inpp5k gene Proteins 0.000 description 1
- 102100040602 Myotubularin-related protein 2 Human genes 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 108010025568 Nucleophosmin Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 101150052068 PDZK1IP1 gene Proteins 0.000 description 1
- 101150037263 PIP2 gene Proteins 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 101150114533 Pdzk1 gene Proteins 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- KHGNFPUMBJSZSM-UHFFFAOYSA-N Perforine Natural products COC1=C2CCC(O)C(CCC(C)(C)O)(OC)C2=NC2=C1C=CO2 KHGNFPUMBJSZSM-UHFFFAOYSA-N 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 208000006994 Precancerous Conditions Diseases 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 102100031492 Protein OS-9 Human genes 0.000 description 1
- 102000009516 Protein Serine-Threonine Kinases Human genes 0.000 description 1
- 108010009341 Protein Serine-Threonine Kinases Proteins 0.000 description 1
- 102100030616 Protein-cysteine N-palmitoyltransferase HHAT Human genes 0.000 description 1
- 108010087776 Proto-Oncogene Proteins c-myb Proteins 0.000 description 1
- 102000009096 Proto-Oncogene Proteins c-myb Human genes 0.000 description 1
- 101100328743 Pyrococcus abyssi (strain GE5 / Orsay) cobD gene Proteins 0.000 description 1
- 102000020286 Pyruvate Dehydrogenase (Lipoamide)-Phosphatase Human genes 0.000 description 1
- 108010040259 Pyruvate Dehydrogenase (Lipoamide)-Phosphatase Proteins 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 102000014450 RNA Polymerase III Human genes 0.000 description 1
- 108010078067 RNA Polymerase III Proteins 0.000 description 1
- 101100366438 Rattus norvegicus Sphkap gene Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 101100262439 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UBA2 gene Proteins 0.000 description 1
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 230000017274 T cell anergy Effects 0.000 description 1
- 108010018242 Transcription Factor AP-1 Proteins 0.000 description 1
- 102100023132 Transcription factor Jun Human genes 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 108091005906 Type I transmembrane proteins Proteins 0.000 description 1
- 102100021125 Tyrosine-protein kinase ZAP-70 Human genes 0.000 description 1
- 102100021657 Tyrosine-protein phosphatase non-receptor type 6 Human genes 0.000 description 1
- 101710128901 Tyrosine-protein phosphatase non-receptor type 6 Proteins 0.000 description 1
- 108010046882 ZAP-70 Protein-Tyrosine Kinase Proteins 0.000 description 1
- UZMPYXSDDZXMAI-OHKKONBVSA-N [(2r)-2-hexadecanoyloxy-3-[hydroxy-[(2r,3r,5s,6r)-2,4,6-trihydroxy-3,5-diphosphonooxycyclohexyl]oxyphosphoryl]oxypropyl] hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)COP(O)(=O)OC1[C@H](O)[C@@H](OP(O)(O)=O)C(O)[C@@H](OP(O)(O)=O)[C@H]1O UZMPYXSDDZXMAI-OHKKONBVSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000031016 anaphase Effects 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 238000011122 anti-angiogenic therapy Methods 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000005809 anti-tumor immunity Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 102000004558 biliverdin reductase Human genes 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 230000023852 carbohydrate metabolic process Effects 0.000 description 1
- 235000021256 carbohydrate metabolism Nutrition 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000025084 cell cycle arrest Effects 0.000 description 1
- 230000023359 cell cycle switching, meiotic to mitotic cell cycle Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000004709 cell invasion Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229960001602 ceritinib Drugs 0.000 description 1
- VERWOWGGCGHDQE-UHFFFAOYSA-N ceritinib Chemical compound CC=1C=C(NC=2N=C(NC=3C(=CC=CC=3)S(=O)(=O)C(C)C)C(Cl)=CN=2)C(OC(C)C)=CC=1C1CCNCC1 VERWOWGGCGHDQE-UHFFFAOYSA-N 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 229940047120 colony stimulating factors Drugs 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000004940 costimulation Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 230000031376 exit from mitosis Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 230000004136 fatty acid synthesis Effects 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000011223 gene expression profiling Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 101150098203 grb2 gene Proteins 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000010842 high-capacity cDNA reverse transcription kit Methods 0.000 description 1
- 102000053514 human ARHGAP5 Human genes 0.000 description 1
- 102000053115 human EIF2AK3 Human genes 0.000 description 1
- 102000044613 human PPP2R2D Human genes 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000008102 immune modulation Effects 0.000 description 1
- 102000027596 immune receptors Human genes 0.000 description 1
- 108091008915 immune receptors Proteins 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 108060004006 inositol polyphosphate 5-phosphatase Proteins 0.000 description 1
- 102000030582 inositol polyphosphate 5-phosphatase Human genes 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000011242 molecular targeted therapy Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 229930192851 perforin Natural products 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 108020000161 polyphosphate kinase Proteins 0.000 description 1
- 208000017805 post-transplant lymphoproliferative disease Diseases 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 108010061269 protein kinase D Proteins 0.000 description 1
- GPTFURBXHJWNHR-UHFFFAOYSA-N protopine Chemical compound C1=C2C(=O)CC3=CC=C4OCOC4=C3CN(C)CCC2=CC2=C1OCO2 GPTFURBXHJWNHR-UHFFFAOYSA-N 0.000 description 1
- 238000010833 quantitative mass spectrometry Methods 0.000 description 1
- 102000016914 ras Proteins Human genes 0.000 description 1
- 108010014186 ras Proteins Proteins 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000033300 receptor internalization Effects 0.000 description 1
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000029964 regulation of glucose metabolic process Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000022120 response to tumor cell Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 108010056030 retronectin Proteins 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 102000007268 rho GTP-Binding Proteins Human genes 0.000 description 1
- 108010033674 rho GTP-Binding Proteins Proteins 0.000 description 1
- 108010041788 rho-Associated Kinases Proteins 0.000 description 1
- 102000000568 rho-Associated Kinases Human genes 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229940126586 small molecule drug Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000001324 spliceosome Anatomy 0.000 description 1
- 108010087686 src-Family Kinases Proteins 0.000 description 1
- 102000009076 src-Family Kinases Human genes 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 238000013042 tunel staining Methods 0.000 description 1
- 108010014402 tyrosinase-related protein-1 Proteins 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 230000006648 viral gene expression Effects 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
- C12N5/0638—Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001193—Prostate associated antigens e.g. Prostate stem cell antigen [PSCA]; Prostate carcinoma tumor antigen [PCTA]; PAP or PSGR
- A61K39/001195—Prostate specific membrane antigen [PSMA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/463—Cellular immunotherapy characterised by recombinant expression
- A61K39/4631—Chimeric Antigen Receptors [CAR]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/32—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5158—Antigen-pulsed cells, e.g. T-cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/58—Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
- A61K2039/585—Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2121/00—Preparations for use in therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/33—Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/50—Physical structure
- C12N2310/53—Physical structure partially self-complementary or closed
- C12N2310/531—Stem-loop; Hairpin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/31—Combination therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/32—Special delivery means, e.g. tissue-specific
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/178—Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
Definitions
- the instant application contains a Sequence Listing which has been submitted electronically in ST.26 XML format and is hereby incorporated by reference in its entirety.
- the ST.26 XML, created on Jan. 3, 2023, is named 514293_50010064_SEQ_LISTING_ST26.txt and is 427 KB in size.
- This invention relates to methods of discovering immunotherapy targets in vivo, therapeutic compositions that modulate immunotherapy targets (e.g., shRNA, immunoresponsive cells expressing shRNA and, in some cases a receptor targeting a cancer cell, e.g., a chimeric antigen receptors (CAR)), and related methods of use.
- immunotherapy targets e.g., shRNA, immunoresponsive cells expressing shRNA and, in some cases a receptor targeting a cancer cell, e.g., a chimeric antigen receptors (CAR)
- CAR chimeric antigen receptors
- Cytotoxic T cells play a central role in immune-mediated control of cancers 1-3 , and monoclonal antibodies that target inhibitory receptors on T cells can induce significant clinical benefit in patients with advanced disease 4-6 .
- tumors have developed numerous immunosuppressive mechanisms to promote their own growth and to successfully evade the host immune system, effectively blocking the activity of T cells in the tumor microenvironment. This is a central issue in oncology because strong infiltration by CD8 T cells, which have cytotoxic function against tumor cells, is associated with a favorable prognosis in multiple types of human cancer 1,3,11 . This natural defense mechanism is severely blunted in the majority of patients by multiple inhibitory signals emanating from the tumor, its stroma, regulatory T cells and myeloid cell populations.
- the present disclosure provides targets for inhibiting immunosuppressive pathways used by tumor cells to inactivate and/or suppress immune cells.
- the disclosure also provides provides compositions and methods related to shRNA with therapeutic potential.
- the disclosure also provides immunoresponsive cells, including T cells (e.g., cells targeting a tumor antigen) expressing at least one shRNA or other nucleic acid molecule capable of silencing genes that inhibit T cell function.
- T cells e.g., cells targeting a tumor antigen
- shRNA or other nucleic acid molecule capable of silencing genes that inhibit T cell function.
- the disclosure also provides immunoresponsive cells, including T cells, harboring at least one vector expressing a shRNA and at least one chimeric antigen receptor directed to a tumor antigen.
- the disclosure provides immunoresponsive cells having tumor specificity comprising a vector encoding a shRNA capable of silencing genes that inhibit T cell function.
- the shRNA sequence reduces the expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm 1 g, Blvrb, Tnkl, Prkab2, Trpm7 or Ppp3cc.
- the shRNA comprises 15 contiguous nucleotides complementary to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678.
- the immunoresponsive cell further comprises a vector encoding a tumor-specific T-cell receptor.
- the immunoresponsive cell is selected from the group consisting of a tumor-infiltrating lymphocyte (TIL), a Natural Killer T cell (NKT), a cytotoxic T lymphocyte (CTL), and a CD4 T cell.
- the immunoresponsive cell comprises a vector encoding a CAR, wherein the CAR comprises an antigen binding domain, a transmembrane domain, and a stimulatory domain.
- the antigen binding domain binds a tumor antigen or pathogen antigen.
- Exemplary tumor antigens include, for example, prostate-specific membrane antigen (PSMA), Carcinoembryonic Antigen (CEA), CD19, CD20, CD22, ROR1, mesothelin, CD333/IL3Ra, c-Met, Glycolipid F77, EGFRvIII, GD-2, NY-ESO-1 TCR, ERBB2, BIRC5, CEACAM5, WDR46, BAGE, CSAG2, DCT, MAGED4, GAGE1, GAGE2, GAGE3, GAGE4, GAGE5, GAGE6, GAGE7, GAGE8, IL13RA2, MAGEA1, MAGEA2, MAGEA3, MAGEA4, MAGEA6, MAGEA9, MAGEA10, MAGEA12, MAGEB1, MAGEB2, MAGEC2, TP53, TYR, TYRP1, SAGE1, SYCP1, SSX2, SSX4, KRAS, PRAME, NRAS, ACTN4, CTNNB1, CASP8, CDC27, CDK4, E
- the antigen binding domain is an antigen-binding fragment of an antibody (e.g., Fab or a scFv).
- the intracellular domains of such CARs contain cytoplasmic signaling domains derived from the T cell receptor and costimulatory molecules.
- the vector is a plasmid, retroviral vector, or lentiviral vector.
- the disclosure provides isolated nucleic acid molecules encoding a shRNA sequence. In another embodiment, the disclosure provides isolated nucleic acid molecules encoding a CAR. In yet another embodiment, the disclosure provides isolated nucleic acid molecules encoding a CAR and a shRNA sequence.
- the isolated nucleic acid encodes a shRNA sequence reduces the expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, or Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm 1 g, Blvrb, Tnkl, Prkab2, Trpm7 or Ppp3cc.
- the isolated nucleic acid encodes a shRNA comprising 15 contiguous nucleotides complementary a nucleic
- the isolated nucleic acid encodes a CAR comprising an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain.
- the antigen binding domain is an antigen-binding fragment of an antibody (e.g., Fab or a scFv).
- the antigen binding domain is a cytoplasmic signaling domain derived from the T cell receptor and costimulatory molecules.
- the antigen-binding domain binds tumor antigen (e.g., a tumor antigen associated with a solid tumor, lymphoid tumor, melanoma, carcinoma, sarcomas, adenocarcinoma, lymphoma, leukemia, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer).
- tumor antigen e.g., a tumor antigen associated with a solid tumor, lymphoid tumor, melanoma, carcinoma, sarcomas, adenocarcinoma, lymphoma, leukemia, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer.
- the disclosure provides vectors comprising an isolated nucleic acid encoding a shRNA sequence, an isolated nucleic acid encoding a CAR, or an isolated nucleic acid encoding a CAR and a shRNA sequence.
- the vector is a plasmid, lentiviral vector, retroviral vector, adenoviral vector, adeno-associated viral vector.
- the shRNA can be operably linked to RNA polymerase II promoter or an RNA polymerase III promoter.
- the invention provides compositions comprising immunoresponsive cells according to the invention, and a pharmaceutically acceptable carrier.
- the disclosure provides immunoresponsive cells transfected with a first vector encoding a CAR and a second vector encoding a shRNA sequence.
- the shRNA sequence reduces the expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Map3k3, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm 1 g, Blvrb, Tnkl, Prkab2, Trpm7 or Ppp3cc
- the shRNA comprise 15 contiguous nucleotides complementary a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678.
- the immunoresponsive cell further comprises a vector encoding a tumor-specific T-cell receptor.
- the immunoresponsive cell is selected from the group consisting of a tumor-infiltrating lymphocyte (TIL), a Natural Killer T cell (NKT), a cytotoxic T lymphocyte (CTL), and a CD4 T cell.
- the disclosure provides methods for treating cancer in a subject, the method comprising administering to the subject an autologous T cell modified to express a tumor-specific T-cell receptor or CAR and an shRNA, wherein the shRNA sequence reduces the expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Map3k3, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm1g, Blvrb, Tnkl, Prkab2,
- the shRNA sequence comprises 15 contiguous nucleotides complementary to a nucleic acid sequence selected from the group consisting of: SEQ ID NOs: 604-620 and 653-678; and wherein the CAR comprises an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain. In some aspects, the CAR comprises an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain.
- the disclosure provides methods for treating cancer in a subject, the method comprising administering to the subject an autologous T cell modified to express a tumor-specific T-cell receptor or CAR and an shRNA of the invention.
- the disclosure provides methods for treating cancer in a subject in need thereof by silencing genes that inhibit T cell function comprising administering to the subject an immunoresponsive cell comprising a vector, the vector encoding a tumor-specific T-cell receptor or a CAR and a shRNA sequence of the invention.
- the disclosure provides methods for identifying a gene that inhibits the function of an immunoresponsive T cell, the method comprising providing a population of immunoresponsive T cells harboring vectors expressing a shRNA, contacting the population of immunoresponsive T cells with an immunosuppressive tumor, determining whether a shRNA restores T cell function within the immunosuppressive tumor, and identifying a gene associated with a shRNA that restores T cell function within the tumor as a gene that inhibits the function of tumor-infiltrating T cells.
- the disclosure provides methods for increasing the immune response in a subject in need thereof, the method comprising administering a therapeutic agent that modulates the activity of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm1g, Blvrb, Tnkl, Prkab2, Trpm7 and Ppp3cc.
- a therapeutic agent that modulates the activity of a gene selected from the group consisting of P
- sequence encoding an shRNA comprises a first sequence comprising 15-25 (15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25) nucleotides complementary to any of SEQ ID NOs: 604-620 or SEQ ID NOs: 653-678 and a second sequence that is the reverse complement of the first sequence with one or no mismatches (i.e., is perfectly complementary to the first sequence), and a third sequence of 5-9 nucleotides positioned between the first and second sequences.
- FIG. 1 is a schematic diagram demonstrating an exemplary approach for in vivo discovery of shRNAs that enhance T cell infiltration and accumulation within the tumor microenvironment.
- FIG. 2 is a set of graphs showing representative flow cytometry plots of CD8+T cells from Rag1 ⁇ / ⁇ /OT-I TCR transgenic mice following infection with an shRNA vector. Transduction efficiency was determined based on expression of the Thy1.1 reporter encoded by the lentiviral vector. Cytokine-cultured T cells expressing the LacZ control shRNA were then stained with a panel of activation markers (black lines; isotype control, shaded). The majority of infected T cells exhibited a central memory phenotype (CD62L+CD44 + ).
- FIG. 3 is a set of graphs showing representative flow cytometry plots of OT-I T cells sorted from tumors and secondary lymphoid organs for deep sequencing analysis (dLN, tumor-draining lymph node; irLN, irrelevant lymph node).
- CD8 + Va2 + Vf35 + Thy 1.1 + cells were sorted and genomic DNA was extracted for PCR amplification of the shRNA cassette.
- FIG. 4 is a set of graphs showing deep sequencing data from in vivo shRNA pool screen.
- Upper row sequence reads for all genes in a pool in tumor, irrelevant (irLN) and draining lymph node (dLN); lower row, three individual genes (LacZ, negative control) are plotted in comparison to spleen for tumors, irrelevant lymph nodes (irLN) and tumor-draining lymph nodes (dLN). Sequence reads are plotted for these tissues versus spleen. Dashed lines indicate a deviation by log 2 from diagonal.
- FIG. 5 is a set of graphs showing deep sequencing data from T cell dysfunction screen.
- shRNA sequencing reads for genes positive in secondary screen are plotted in comparison to spleen for tumors (red), irrelevant lymph nodes (irLN, blue) and tumor-draining lymph nodes (dLN, green), with dashed lines indicating a deviation of log 2 from the diagonal. Data show enrichment of particular shRNAs representing these genes in tumors compared to spleens or lymph nodes.
- FIG. 6 is a graph showing flow cytometry based quantification of OT-I CD8 + T cell enrichment in tumors relative to spleen.
- the percentage of shRNA-expressing OT-I T cells was determined by flow cytometry in tumors/spleens by gating on reporter proteins in CD8 + Va2 + Vf35 + T cells.
- FIG. 7 is a set of graphs showing representative flow cytometry plots of cell enrichment in tumor transduced with shRNA vectors (LacZ, Akap8I, Smad2, Rbks, Dgkz). The percentage of shRNA-expressing OT-I T cells was determined by flow cytometry in tumors/spleens by gating on reporter proteins in CD8 + Va2 + Vf35 + T cells.
- FIG. 8 is a set of graphs showing flow cytometry-based quantification of CD4+ and CD8+ T cell enrichment in tumors.
- shRNA-expressing T cells were identified in tumors and spleens using Thy1.1 reporter (% Thy1.1+CD8 T cells or CD4+ T cells, top and bottom panels).
- Total numbers of LacZ or Ppp2r2d shRNA-expressing T cells were determined in tumors and spleens 7 days following transfer of 2 ⁇ 106 shRNA-expressing cells (right panels). Fold-enrichment of Ppp2r2d versus LacZ shRNA-expressing T cells in tumors is indicated.
- FIG. 9 is a graph showing reversal of Ppp2r2d shRNA-mediated T cell expansion in tumors by Ppp2r2d cDNA with a mutated shRNA binding site but preserved protein sequence.
- the three cell populations were identified based on co-expressed reporters; fold-enrichment was calculated based on percentage of reporter-positive cells in tumors versus spleens.
- FIG. 10 a describes the generation of mutant Ppp2r2d cDNA with preserved protein sequence but disrupted shRNA binding site.
- EL4 cells were transduced with mutant or wild type Ppp2r2d cDNA on a vector also containing GFP.
- GFP-positive cells were sorted to purity and transduced with LacZ or Ppp2r2d shRNA vectors expressing a Thy1.1 reporter.
- shRNA-transduced (Thy1.1 + ) cells were analyzed by flow cytometry for GFP expression.
- the Ppp2r2d shRNA reduced GFP levels when wild-type Ppp2r2d, but not when mutant Ppp2r2d was expressed. (SEQ ID NOS: 679-681 shown.)
- FIG. 10 b demonstrates that expression of Ppp2r2d mutant cDNA prevents phenotype induced by Ppp2r2d shRNA.
- OT-I T cells were transduced with a vector encoding LacZ shRNA, Ppp2r2d shRNA or Ppp2r2d shRNA plus mutant Ppp2r2d cDNA. The different cell populations were normalized for transduction efficiency and co-injected into B16-Ova tumor bearing mice.
- FIG. 11 is a graph demonstrating real-time qPCR analysis for Ppp2r2d mRNA levels in OT-I T cells transduced with LacZ shRNA or one of three Ppp2r2d shRNAs identified in the screen.
- FIG. 12 a is a table demonstrating enrichment of particular shRNAs in tumor versus spleen which was calculated based on deep sequencing results from the secondary screen.
- FIG. 12 b demonstrates clustering of mean expression levels for mRNAs found to be significantly regulated by T cells in or tumors expressing the LacZ control shRNA or one of five experimental shRNAs. Significant expression differences were defined as an Anova p value ⁇ 0.01 between T cells expressing LacZ control shRNA or one of five experimental shRNAs (Alk, Arhgap5, Egr2, Ptpn2 or Ppp2r2d) (JMP-Genomics 6.0, SAS Institute Inc.). mRNAs significantly regulated in one or more treatment groups are shown after clustering (Fast Ward).
- FIG. 12 c is a Venn diagram showing overlaps between expression signatures by tumor-infiltrating T cells transduced with one of the five experimental shRNAs (signatures defined as an Anova p ⁇ 0.01 as described above). Indicated are the numbers of overlapping probe IDs for any combination of the 5 signatures, as indicated by the overlapping ovals. The significance of the overlaps versus that expected by random chance (Fishers Exact Test) is shown in the accompanying table.
- FIG. 13 a is a set of graphs showing representative flow cytometry plots of demonstrating the frequency of Ppp2r2d or LacZ shRNA-transduced CD8 T cells in tumors on day 1.
- FIG. 13 b are a pair of graphs demonstrating the degree of proliferation (based on CFSE dilution) by Ppp2r2d shRNA-transduced CD8 T cells compared to LacZ shRNA-transduced T cells in tumors on days 1, 3, 5, and 7.
- FIG. 13 c is a set of graphs demonstrating that Ppp2r2d-silencing inhibits T cell apoptosis upon encounter of tumor cells.
- CFSE-labeled OT-I T cells were co-cultured with B16-Ova tumor cells for 72 hours. Cells were stained with CD8 and annexin V.
- FIG. 13 d is a set of graphs demonstrating intracellular staining for anti-apoptotic proteins.
- OT-I T cells expressing LacZ or Ppp2r2d shRNA were co-cultured with B16-Ova tumor cells for 48 hours and then stained with isotype control (grey) and phospho-AKT (Ser473), phospho-Bad (Ser 112) or B c1-2 antibodies.
- FIG. 13 e is a graph demonstrating increased IFN- ⁇ secretion by Ppp2r2d-silenced T cells.
- OT-I T cells isolated from B16-Ova tumor-bearing mice were assayed for IFN- ⁇ expression by intracellular staining.
- FIG. 13 f is a set of graphs demonstrating Ppp2r2d-silenced T cells expand in tumors even without presentation of tumor antigens by professional antigen presenting cells.
- LacZ or Ppp2r2d shRNA-expressing OT-I T cells were transferred into day 14 B16-Ova tumor-bearing C57BL/6 or b2m-1-mice.
- shRNA-expressing T cells were identified based on expression of teal fluorescent protein (TFP) or Thy1.1 (fold enrichment in tumors compared to spleens).
- TFP teal fluorescent protein
- Thy1.1 fold enrichment in tumors compared to spleens.
- FIG. 13 g is a graph demonstrating that Ppp2r2d-silencing inhibits T cell apoptosis upon encounter of tumor cells.
- CFSE-labeled OT-I T cells were co-cultured with B16-Ova tumor cells for 72 hours (activated caspase-3).
- FIG. 14 is a set of graphs demonstrating OT-I T cells expressing LacZ or Ppp2r2d shRNAs labeled with CFSE and stimulated with CD3 antibody for 72 h. Cells were then stained with CD8 and annexin V and analyzed by flow cytometry.
- FIG. 15 is a set of graphs demonstrating accumulation of Ppp2r2d shRNA-expressing T cells in tumors and tumor-draining lymph nodes, but not other secondary lymphoid organs.
- OT-I T cells expressing Ppp2r2d or LacZ shRNAs were labeled with CFSE and injected into B16-Ova tumor-bearing mice.
- T cells were isolated from the indicated organs on days 1, 3, 5 and 7 to examine the extent of T cell accumulation based on dilution of the CSFE dye.
- FIGS. 16 a - c are a set of graphs demonstrating that the silencing of Ppp2r2d enhances anti-tumor activity of CD4 and CD8 T cells.
- T cells were activated with anti-CD3/CD28 beads, infected with lentiviruses driving LacZ or Ppp2r2d shRNA expression and injected into B16-Ova (a,b) or B16 (c) tumor-bearing mice. Tumor size was measured every three days following T cell transfer using calipers on the two longest axes.
- a,b CD4 + TRP-1 and/or CD8 + OT-I T cells (2 ⁇ 10 6 ) were transferred (day 12 and 17) into mice bearing day 12 B16-Ova tumors.
- CD4 + TRP-1 and CD8 + pmel-1 T cells (3 ⁇ 10 6 CD4 + TRP-1 plus 3 ⁇ 10 6 CD8 + pmel-1) were transferred (day 10 and 15) into mice with day 10 B16 tumors.
- Log-rank (Mantel-Cox) test was performed using GraphPad Prism version 6 comparing survival of mice treated with LacZ versus Ppp2r2d shRNA-expressing T cells.
- FIG. 18 is a set of graphs demonstrating Ppp2r2d protein quantification by mass spectrometry with labeled synthetic peptides (AQUA, ratio of endogenous to AQUA peptides). Representative data from two independent experiments (a-d); Two-sided student's t-test, * P ⁇ 0.05, ** P ⁇ 0.01; mean+/ ⁇ s.d.
- FIG. 19 is a graph demonstrating qPCR analysis for Ppp2r2d mRNA in tumor-infiltrating OT-I T cells (day 7).
- FIG. 20 a are graphs showing representative flow cytometry plots demonstrating proliferation of Ppp2r2d shRNA-expressing T cells in tumors and tumor-draining lymph nodes.
- OTI T cells expressing Ppp2r2d or LacZ shRNAs were labeled with CFSE and injected into B16-Ova tumor-bearing mice.
- T cells were isolated from the indicated organs on days 1, 3, 5 and 7 to examine the extent of T cell proliferation based on CFSE dilution. T cells that had not diluted CFSE (nondividing cells) were quantified (right).
- FIG. 20 b are graphs showing representative flow cytometry plots demonstrating viability of tumor-infiltrating T cells.
- OT-I T cells expressing Pp2r2d or LacZ shRNAs were injected into B16-Ova tumor-bearing mice. T cells were isolated on day 7 and apoptosis was assessed by intracellular staining with an antibody specific for activated caspase-3 (some T cell death may have been caused by the isolation procedure from tumors).
- FIGS. 21 a - c are a series of graphs demonstrating ex vivo analysis of cytokine production by tumor-infiltrating OT-I T cells at a single-cell level using a nanowell device (84,672 wells of picoliter volume).
- a Representative single cells in nanowells and corresponding patterns of cytokine secretion.
- b Percentage of T cells secreting indicated cytokines.
- c Cytokine secretion rates calculated from standard curves (mean+/ ⁇ s.d., Mann Whitney test * P ⁇ 0.05).
- FIG. 22 a is a set of graphs showing representative flow cytometry plots demonstrating that the majority of adoptively transferred OT-I cells have a memory phenotype in lymph nodes but an effector phenotype in tumors.
- Cytokine pre-treated cells expressing Ppp2r2d or LacZ shRNAs were injected into mice bearing day 14 B16-Ova tumors.
- T cells were harvested from the indicated organs and stained with CD62L and CD44 antibodies. FACS analysis of shRNA-expressing OT-I cells was performed by gating on CD8/Thy1.1 double-positive cells.
- FIG. 22 b is a set of graphs showing representative flow cytometry plots demonstrating analysis of exhaustion markers.
- FIG. 23 a is a set of graphs showing demonstrating intracellular staining for granzyme B by OT-I T cells in tumor-draining lymph nodes and tumors.
- FIG. 23 b is a pair of images and a graph demonstrating infiltration of shRNA-expressing T cells into tumors.
- OT-I T cells were transduced with LacZ or Ppp2r2d shRNA vectors encoding a GFP reporter and injected into B16-Ova tumor-bearing mice. After 7 days, tumors were excised and frozen sections stained with anti-GFP and DAPI to enumerate shRNAexpressing OT-I T cells in tumors.
- FIG. 23 c is a pair of images and a graph demonstrating TUNEL immunohistochemistry performed on tissue sections and apoptotic cells were quantified.
- the present disclosure is based, in part, on the observation that the regulatory mechanisms that result in loss of T cell function within immunosuppressive tumors can be systematically discovered in vivo using a pooled small hairpin RNA (shRNA) screening approach aimed at identifying genes that block the function of tumor infiltrating T-cells.
- shRNA small hairpin RNA
- tumor associated immunosuppressive mechanisms actively block the activity of T cells in the tumor microenvironment.
- the methods described herein identify shRNAs that enable robust T cell infiltration and accumulation in tumors, despite the multiple inhibitory signals.
- the methods identify shRNA that silence expression of genes responsible for immunosuppression by tumors, allowing for enhanced T cell infiltration and accumulation in tumors and resistance to apoptosis.
- the disclosure provides methods for specifically identifying regulatory mechanisms that result in the loss of T cell function within the tumor microenvironment. These methods can include: providing a population of T cells harboring vectors expressing a shRNA; contacting the population of T cells with an immunosuppressive tumor; determining whether a shRNA restores T cell function (e.g., restores ability of T cell to infiltrate and proliferate within the tumor microenvironment) within the immunosuppressive tumor; identifying a gene associated with a shRNA that restores T cell function within the tumor as a gene that inhibits T cell function within the tumor microenvironment.
- a shRNA restores T cell function e.g., restores ability of T cell to infiltrate and proliferate within the tumor microenvironment
- the disclosure provides target genes for reducing the immunosuppressive effect of tumors.
- the expression of the target genes can be reduced in immune cells, e.g., T cells that recognize tumor associated antigens, and the reduction in expression of the target genes can increase the ability of the cells to evade tumor associated immunosuppressive mechanisms.
- shRNAs that reduce (e.g., silence, eliminate, knock down, knock out, or decrease) expression of genes that impair the function of tumor infiltrating T-cells. These shRNA were identified from the transfer of shRNA transduced T cells into tumors, followed by deep sequencing to quantify the representation of all shRNAs in the tumor and lymphoid organs.
- shRNA disclosed herein include shRNA that reduce the activity of genes including, for example, Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm 1 g, Blvrb, Tnkl, Prkab2, Trpm7 and Ppp3cc.
- genes including, for example, Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka,
- the disclosure provides therapeutic compositions (e.g., including isolated nucleic acid molecules, vectors expressing nucleic acid molecules encoding the shRNA) related to the shRNAs that silence expression of genes that block the function of tumor infiltrating T-cells.
- the disclosure provides modified immunoresponsive cells (e.g., T cells, including Natural Killer T cells (NKT), a cytotoxic T lymphocytes (CTL), and a regulatory T cells) that harbor vectors capable of expressing the shRNA described herein.
- the modified immunoresponsive cells further harbor a vector capable of expressing a CAR having an antigen binding domain that targets a tumor specific antigen.
- RNA interference is an effective tool for genome-scale, high throughput analysis of gene function.
- RNA interference also called post transcriptional gene silencing (PTGS)
- PTGS post transcriptional gene silencing
- RNA interfering agent is defined as any agent that interferes with or inhibits expression of a target gene, e.g., a target gene of the invention, by RNA interference (RNAi).
- RNA interfering agents include, but are not limited to, nucleic acid molecules including RNA molecules which are homologous to the target gene, e.g., a target gene of the invention, or a fragment thereof, short interfering RNA (siRNA), short hairpin RNA (shRNA), and small molecules which interfere with or inhibit expression of a target gene by RNA interference (RNAi).
- siRNA short interfering RNA
- shRNA short hairpin RNA
- RNAi RNA interference
- RNA interference is a process whereby the expression or introduction of RNA of a sequence that is identical or highly similar to a target gene results in the sequence specific degradation or PTGS of messenger RNA (mRNA) transcribed from that targeted gene, thereby inhibiting expression of the target gene. This process has been described in plants, invertebrates, and mammalian cells. RNAi can also be initiated by introducing nucleic acid molecules, e.g., synthetic siRNAs or RNA interfering agents, to inhibit or silence the expression of target genes.
- nucleic acid molecules e.g., synthetic siRNAs or RNA interfering agents
- “inhibition of target gene expression” or “inhibition of marker gene expression” includes any decrease in expression or protein activity or level of the target gene (e.g., a marker gene of the invention) or protein encoded by the target gene, e.g., a marker protein of the invention.
- the decrease may be of at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% or more as compared to the expression of a target gene or the activity or level of the protein encoded by a target gene which has not been targeted by an RNA interfering agent.
- siRNA Short interfering RNA
- small interfering RNA is defined as an agent which functions to inhibit expression of a target gene.
- RISC RNA-induced silencing complex
- shRNAs short hairpin RNAs
- long dsRNAs long dsRNAs
- short temporal RNAs short temporal RNAs
- miRNAs micro RNAs
- shRNA effector molecules either are processed into siRNA, such as in the case of shRNA, or directly aid gene silencing, as in the case of miRNA.
- the present invention thus encompasses the use of shRNA as well as any other suitable form of RNA to effect posttranscriptional gene silencing by RNAi.
- Use of shRNA has the advantage over use of chemically synthesized siRNA in that the suppression of the target gene is typically long-term and stable.
- An siRNA may be chemically synthesized, may be produced by in vitro by transcription, or may be produced within a host cell from expressed shRNA.
- a siRNA is a small hairpin (also called stem loop) RNA (shRNA).
- shRNAs are composed of a short (e.g., 19-25 nucleotides) antisense strand, followed by a 5-9 nucleotide loop, and the complementary sense strand. Alternatively, the sense strand may precede the nucleotide loop structure and the antisense strand may follow.
- shRNAs may be contained in plasmids, retroviruses, and lentiviruses.
- gene silencing induced by RNA interference refers to a decrease in the mRNA level in a cell for a target gene by at least about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 99%, about 100% of the mRNA level found in the cell without introduction of RNA interference.
- the mRNA levels are decreased by at least about 70%, about 80%, about 90%, about 95%, about 99%, about 100%.
- reduced or “reduce” as used herein generally means a decrease by at least 10% as compared to a reference level, for example a decrease by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% decrease, or any integer decrease between 10-100% as compared to a reference level.
- the term “increased” or “increase” as used herein generally means an increase of at least 10% as compared to a reference level, for example an increase of at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% increase or any integer increase between 10-100% as compared to a reference level, or about a 2-fold, or about a 3-fold, or about a 4-fold, or about a 5-fold or about a 10-fold increase, or any increase between 2-fold and 10-fold or greater as compared to a reference level.
- the disclosure provides immunoresponsive cells, including T cells, cytotoxic T cells, tumor-infiltrating lymphocytes (TIL), regulatory (CD4) T cells, and Natural Killer (NKT) cells, expressing at least one of an antigen-recognizing receptor.
- TIL tumor-infiltrating lymphocytes
- CD4 regulatory
- NKT Natural Killer
- the immunoresponsive cells express at least one tumor specific antigen-recognizing receptor.
- tumor cell antigen specific T cells, NKT cells, TIL, CTL cells or other immunoresponsive cells are used.
- Non-limiting examples of immunoresponsive cells include T cells, such as, for example, ⁇ -TCR+ T cells (e.g., CD8+ T cells or CD4+ T cells) ⁇ -TCR+ T cells, tumor-infiltrating lymphocytes (TIL), Natural Killer T cells (NKT), a cytotoxic T lymphocytes (CTL), and a CD4 T cells.
- TIL tumor-infiltrating lymphocytes
- NKT Natural Killer T cells
- CTL cytotoxic T lymphocytes
- CD4 T cells a CD4 T cells.
- the disclosure provides isolated nucleic acids encoding shRNA sequences comprising a sequence at least 12, 15, 20 or 25 contiguous nucleotides complementary to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678.
- the shRNA also includes the reverse complement of the contiguous nucleotide sequence and a short sequence located between the two sequences so that the two sequences form a stem loop shRNA that can be processed within a cell provide an siRNA that inhibits the expression of the protein encoded by one of SEQ ID NOs: 604-620 and 653-678, and compositions thereof.
- Table 1 provides a list of genes identified here as being involved with tumor immunosuppression of T cells.
- the nucleic acids of the compositions encode the shRNA sequences targeting the sequences provided in Table 2.
- Table 2 further demonstrates enrichment in tumor versus spleen for the selected shRNA based on deep sequencing analysis (“Enrich Fold”)
- shRNAs demonstrating an at least ⁇ 3 shRNAs fold enrichment in tumor relative to spleen indicate a more active target sequence region.
- nucleic acids of the compositions encode the shRNA sequences targeting the human Ppp2r2d and Cb1b sequences provided in Table 2a.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Ppp2r2d target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 372, 373, 374, 375, 376, 377, 378, 378, 379, 380, 381, 382, 383, 384, 385, or 386.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Pp2r2d sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 372, 373, 374, 375, 376, 377, 378, 378, 379, 380, 381, 382, 383, 384, 385, or 386.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Eif2ak3 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146 or 147.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Eif2ak3 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146 or 147.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Arhgap5 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or 42.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Arhgap5 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or 42.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Smad2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, or 490.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Smad2 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, or 490.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Akap81 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Akap81 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Rbks target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, or 445.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Rbks sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, or 445.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Egr2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, or 132.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Egr2 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, or 132.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Dgka target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116 or 117.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Dgka sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116 or 117.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Cb1b target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, or 72.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Cb1b sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, or 72.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Mdfic target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, or 299.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Mdfic sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, or 299.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Entpdl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, or 162.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Entpdl sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, or 162.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Vamp7 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, or 587.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Vamp7sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, or 587.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Hipkl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, or 222.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Hipkl sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, or 222.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Nuak2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, or 329.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Nuak2 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, or 329.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Alk target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or 31.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Alk sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or 31.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Pdzklipltarget sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, or 341.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Pdzkliplsequence that corresponds to a murine target sequence set forth in SEQ ID NO: 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, or 341.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Blvrb target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 52, 53, 54, 55, 56 or 57.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Blvrb that corresponds to a murine target sequence set forth in SEQ ID NO: 52, 53, 54, 55, 56 or 57.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Cdkn2a target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 83, 84, 85, 86 or 87.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Cdkn2a that corresponds to a murine target sequence set forth in SEQ ID NO: 83, 84, 85, 86 or 87.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Fllr target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 175, 176 or 177.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human F11r that corresponds to a murine target sequence set forth in SEQ ID NO: 175, 176 or 177.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Fyn target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 187, 191 or 192.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Fyn that corresponds to a murine target sequence set forth in SEQ ID NO: 187, 191 or 192.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Grk6 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 204, 205, 206 or 207.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Grk6 that corresponds to a murine target sequence set forth in SEQ ID NO: 204, 205, 206 or 207.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Inpp5b target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 232, 234, 235, 236 or 237.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Inpp5b that corresponds to a murine target sequence set forth in SEQ ID NO: 232, 234, 235, 236 or 237.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Impk target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 248, 249, 250, 251 or 252.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Impk that corresponds to a murine target sequence set forth in SEQ ID NO: 248, 249, 250, 251 or 252.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Jun target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 263, 264, 265, 266, 267, 268 or 269.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Jun that corresponds to a murine target sequence set forth in SEQ ID NO: 263, 264, 265, 266, 267, 268 or 269.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Mast2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 281, 282, 283 or 284.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Mast2 that corresponds to a murine target sequence set forth in SEQ ID NO: 281, 282, 283 or 284.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Nptxr target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 311, 312, 313 or 314.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Nptxr that corresponds to a murine target sequence set forth in SEQ ID NO: 311, 312, 313 or 314.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Pkdl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 351, 352, 353, 354, 355 or 356.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Pkdl that corresponds to a murine target sequence set forth in SEQ ID NO: 351, 352, 353, 354, 355 or 356.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Ppm1g target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 367, 368, 369, 370 or 371.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Ppm1g that corresponds to a murine target sequence set forth in SEQ ID NO: 367, 368, 369, 370 or 371.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Ppp3cc target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 399, 400 or 401.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Ppp3cc that corresponds to a murine target sequence set forth in SEQ ID NO: 399, 400 or 401.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Prkab2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 414, 415 or 416.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Prkab2 that corresponds to a murine target sequence set forth in SEQ ID NO: 414, 415 or 416.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Ptpn2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 426, 427, 428, 429 or 430.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Ptpn2 that corresponds to a murine target sequence set forth in SEQ ID NO: 426, 427, 428, 429 or 430.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Rockl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 457, 458, 459 or 460.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Rockl that corresponds to a murine target sequence set forth in SEQ ID NO: 457, 458, 459 or 460.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Sbfl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 470, 471, 472, 473, 474 or 475.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Sbfl that corresponds to a murine target sequence set forth in SEQ ID NO: 470, 471, 472, 473, 474 or 475.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Socsl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 504, 505, 506, 507, 508, 509 or 510.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Socsl that corresponds to a murine target sequence set forth in SEQ ID NO: 504, 505, 506, 507, 508, 509 or 510.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Socs3 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 524, 525, 526, 527 or 528.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Socs3 that corresponds to a murine target sequence set forth in SEQ ID NO: 524, 525, 526, 527 or 528.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Stk17b target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 539, 540, 541, 542 or 543.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Stk17b that corresponds to a murine target sequence set forth in SEQ ID NO: 539, 540, 541, 542 or 543.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Tnkl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 556, 557 or 558.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Tnkl that corresponds to a murine target sequence set forth in SEQ ID NO: 556, 557 or 558.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Trpm7 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 569, 570, 571, 572 or 573.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Trpm7 that corresponds to a murine target sequence set forth in SEQ ID NO: 569, 570, 571, 572 or 573.
- the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Yesl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 600, 601, 602 or 603.
- the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Yesl that corresponds to a murine target sequence set forth in SEQ ID NO: 600, 601, 602 or 603.
- a human sequence that corresponds to a murine target sequence is a sequence which perfectly corresponds to the human gene sequence, and for example, can have none, 1, 2, 3 or 4 nucleotide mismatches with the at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides of the selected murine target sequence.
- an isolated nucleic acid can be, for example, a DNA molecule, provided one of the nucleic acid sequences normally found immediately flanking that DNA molecule in a naturally-occurring genome is removed or absent.
- an isolated nucleic acid includes, without limitation, a DNA molecule that exists as a separate molecule (e.g., a chemically synthesized nucleic acid, cDNA, or genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of other sequences as well as DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a retrovirus, lentivirus, adenovirus, adeno-associated virus, or herpes virus), or into the genomic DNA of a prokaryote or eukaryote.
- a virus e.g., a retrovirus, lentivirus, adenovirus, adeno-associated virus, or herpes virus
- an isolated nucleic acid can include an engineered nucleic acid such as a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid.
- percent sequence identity two sequences are aligned and the number of identical matches of nucleotides or amino acid residues between the two sequences is determined. The number of identical matches is divided by the length of the aligned region (i.e., the number of aligned nucleotides or amino acid residues) and multiplied by 100 to arrive at a percent sequence identity value. It will be appreciated that the length of the aligned region can be a portion of one or both sequences up to the full-length size of the shortest sequence. It also will be appreciated that a single sequence can align with more than one other sequence and hence, can have different percent sequence identity values over each aligned region. It is noted that the percent identity value is usually rounded to the nearest integer.
- 78.1%, 78.2%, 78.3%, and 78.4% are rounded down to 78%, while 78.5%, 78.6%, 78.7%, 78.8%, and 78.9% are rounded up to 79%. It is also noted that the length of the aligned region is always an integer.
- percent sequence identity refers to the degree of identity between any given query sequence and a subject sequence.
- a percent identity for any query nucleic acid or amino acid sequence, e.g., a transcription factor, relative to another subject nucleic acid or amino acid sequence can be determined as follows.
- complementary nucleotide sequence also known as an “antisense sequence,” refers to a sequence of a nucleic acid that is completely complementary to the sequence of a “sense” nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence).
- nucleic acid molecules are provided that comprise a sequence complementary to at least about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides or an entire gene coding strand, or to only a portion thereof.
- nucleotide sequence refers to a nucleotide sequence of a nucleic acid encoding an identical sequence.
- siRNA small inhibitory RNA
- sequences of those nucleic acids will be highly complementary to the mRNA target sequence, and will have no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 base mismatches throughout the sequence.
- sequences of the nucleic acids may be exact matches, i.e. be completely complementary to the sequence to which the oligonucleotide specifically binds, and therefore have zero mismatches along the complementary stretch.
- Highly complementary sequences will typically bind quite specifically to the target sequence region of the mRNA and will therefore be highly efficient in reducing, and/or even inhibiting the translation of the target mRNA sequence into polypeptide product.
- vector refers to any viral or non-viral vector, as well as any plasmid, cosmid, phage or binary vector in double or single stranded linear or circular form that may or may not be self transmissible or mobilizable, and that can transform prokaryotic or eukaryotic host cells either by integration into the cellular genome or which can exist extrachromosomally (e.g., autonomous replicating plasmid with an origin of replication). Any vector known in the art is envisioned for use in the practice of this invention.
- Vectors can be viral vectors or non-viral vectors. Should viral vectors be used, it is preferred the viral vectors are replication defective, which can be achieved for example by removing all viral nucleic acids that encode for replication. A replication defective viral vector will still retain its infective properties and enters the cells in a similar manner as a replicating adenoviral vector, however once admitted to the cell a replication defective viral vector does not reproduce or multiply. Vectors also encompass liposomes and nanoparticles and other means to deliver DNA molecule to a cell.
- viral vectors refers to the use of viruses, or virus-associated vectors as carriers of a nucleic acid construct into a cell. Constructs may be integrated and packaged into non-replicating, defective viral genomes like Adenovirus, Adeno-associated virus (AAV), or Herpes simplex virus (HSV) or others, including retroviral and lentiviral vectors, for infection or transduction into cells.
- AAV Adeno-associated virus
- HSV Herpes simplex virus
- the vector may or may not be incorporated into the cell's genome.
- Encoding refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom,
- a gene encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system
- Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA can be referred to as encoding the protein or other product of that gene or cDNA.
- expression is defined as the transcription and/or translation of a particular nucleotide sequence driven by its promoter.
- an “Expression vector” is a specialized vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed.
- An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system.
- Expression vectors include all those known in the art, such as cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.
- cosmids e.g., naked or contained in liposomes
- viruses e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses
- the disclosure provides modified cells that harbor vectors capable of expressing the shRNA described herein and further modified to express a CAR.
- the shRNA and the CAR are expressed on the same vector.
- the shRNA and the CAR are expressed on separate vectors.
- the modified cells described herein are immunoresponsive cells.
- the immunoresponsive cells express at least one of an antigen-recognizing receptor.
- the immunoresponsive cells express at least one of an tumor specific antigen-recognizing receptor.
- tumor cell antigen specific T cells, NKT cells, TIL, CTL cells or other immunoresponsive cells are used.
- immunoresponsive cells include T cells, such as, for example, ⁇ -TCR+ T cells (e.g., CD8+ T cells or CD4+ T cells) ⁇ -TCR+ T cells, tumor-infiltrating lymphocytes (TIL), Natural Killer T cells (NKT), a cytotoxic T lymphocytes (CTL), and a CD4 T cells.
- compositions comprising the immunoresponsive cells of the invention (e.g., T cells, NKT cells, TILs, CTL cells, or their progenitors) can be provided systemically or directly to a subject for the treatment of a cancer.
- cells of the invention are directly injected into an organ of interest (e.g., an organ affected by a cancer).
- compositions comprising genetically modified immunoresponsive cells are provided indirectly to the organ of interest, for example, by administration into the circulatory system (e.g., the tumor vasculature).
- Expansion and differentiation agents can be provided prior to, during or after administration of the cells to increase production of T cells, NKT cells, TILs, CTL cells in vitro or in vivo.
- the modified immunoresponsive cells can be administered in any physiologically acceptable vehicle, normally intravascularly, although they may also be introduced into bone or other convenient site where the cells may find an appropriate site for regeneration and differentiation (e.g., thymus). Usually, at least 1 ⁇ 10 5 cells will be administered, eventually reaching 1 ⁇ 10 10 , or more.
- Immunoresponsive cells of the invention can comprise a purified population of cells. Those skilled in the art can readily determine the percentage of genetically modified immunoresponsive cells in a population using various well-known methods, such as fluorescence activated cell sorting (FACS). Preferable ranges of purity in populations comprising genetically modified immunoresponsive cells are about 50 to about 55%, about 55 to about 60%, and about 65 to about 70%.
- the purity is about 70 to about 75%, about 75 to about 80%, about 80 to about 85%; and still more preferably the purity is about 85 to about 90%, about 90 to about 95%, and about 95 to about 100%. Dosages can be readily adjusted by those skilled in the art (e.g., a decrease in purity may require an increase in dosage).
- the cells can be introduced by injection, catheter, or the like.
- factors can also be included, including, but not limited to, interleukins, e.g. IL-2, IL-3, IL-6, and IL-11, as well as the other interleukins, the colony stimulating factors, such as G-, M- and GM-CSF, interferons, e.g. .gamma.-interferon and erythropoietin.
- compositions of the invention include pharmaceutical compositions comprising the immunoresponsive cells of the invention or their progenitors and a pharmaceutically acceptable carrier.
- Administration can be autologous or heterologous.
- immunoresponsive cells, or progenitors can be obtained from one subject, and administered to the same subject or a different, compatible subject.
- the invention provides chimeric antigen receptors (CARs) comprising an antigen binding domain directed to a tumor cell antigen.
- CAR is an artificially constructed hybrid protein or polypeptide containing an extracellular portion that recognizes a tumor cell antigen (e.g., the antigen binding domains of an antibody (scFv) and a cytoplasmic signaling domain derived from the T cell receptor and costimulatory domain.
- a tumor cell antigen e.g., the antigen binding domains of an antibody (scFv) and a cytoplasmic signaling domain derived from the T cell receptor and costimulatory domain.
- Characteristics of CARs include their ability to redirect T-cell specificity and reactivity toward a selected target in a non-MHC—restricted manner, exploiting the antigen-binding properties of monoclonal antibodies.
- the CAR-modified T-cells have the potential to replicate in vivo and long term persistence allows for sustained tumor control and obviate the need for repeated infusions of antibody. (Kalos M, et al., Sci Transl Med. 2011 Aug. 10; 3(95))
- the non-MHC-restricted antigen recognition gives T cells expressing CARs the ability to recognize antigen independent of antigen processing, thus bypassing a major mechanism of tumor escape.
- CARs when expressed in T-cells, CARs advantageously do not dimerize with endogenous T cell receptor (TCR) alpha and beta chains.
- TCR T cell receptor
- a CAR combines the binding site of a molecule that recognizes an antigen being targeted (i.e., an “antigen binding domain”) with one or more domains of conventional immune receptors responsible for initiating signal transduction that leads to lymphocyte activation (e.g., the “stimulatory domain” or “signaling domain”).
- an antigen binding domain i.e., an “antigen binding domain”
- one or more domains of conventional immune receptors responsible for initiating signal transduction that leads to lymphocyte activation e.g., the “stimulatory domain” or “signaling domain”.
- the binding portion used is derived from the structure of the Fab (antigen binding) fragment of a monoclonal antibody (mAb) that has high affinity for the tumor antigen being targeted.
- Fab antigen binding
- mAb monoclonal antibody
- the Fab is the product of two genes, the corresponding sequences are usually combined via a short linker fragment that allows the heavy-chain to fold over the light-chain derived peptides into their native configuration, creating a single-chain fragment variable (scFv) region.
- Fv or (scFv) antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain.
- the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains, which enables the scFv to form the desired structure for antigen binding.
- the binding portion used is derived from a cytoplasmic signaling domain derived from T cell receptor and costimulatory molecules.
- the signaling portion of CARs contains usually the intracellular domains of the zeta ( ⁇ ) chain of the TCR/CD3 complex 25 or, less commonly, of the gamma ( ⁇ ) chain of the immunoglobulin receptor FccRI 26, 27 or the CD3-epsilon ( ⁇ ) chain, 28 with the transmembrane region being derived from the same molecule.
- the CARs comprise an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain.
- Further embodiments of the invention provide related nucleic acids, recombinant expression vectors, host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions relating to the CARs of the invention.
- the antigen binding domain binds to a tumor cell antigen.
- tumor cell antigen or “tumor antigen” as used herein refers to any polypeptide expressed by a tumor that is capable of inducing an immune response.
- tumor antigens include, for example, prostate-specific membrane antigen (PSMA), Carcinoembryonic Antigen (CEA), CD19, CD20, CD22, ROR1, mesothelin, CD333/IL3Ra, c-Met, Glycolipid F77, EGFRvIII, GD-2, NY-ESO-1 TCR, ERBB2, BIRC5, CEACAM5, WDR46, BAGE, CSAG2, DCT, MAGED4, GAGE1, GAGE2, GAGE3, GAGE4, GAGE5, GAGE6, GAGE7, GAGE5, IL13RA2, MAGEA1, MAGEA2, MAGEA3, MAGEA4, MAGEA6, MAGEA9, MAGEA10, MAGEA12, MAGEB1, MAGEB2, MAGEC2, TP53, TYR, TYRP1, SAGE1, SYCP1, SSX2, SSX4, KRAS, PRAME, NRAS, ACTN4, CTNNB1, CASP8, CDC27, CDK
- PSMA
- the present invention relates generally to the use of T cells genetically modified to stably express a shRNA of the invention and a desired CAR.
- T cells expressing a CAR are generally referred to as CAR T cells.
- T cells expressing a CAR are referred to herein as CAR T cells or CAR modified T cells.
- the cell can be genetically modified to stably express an antibody binding domain on its surface, conferring novel antigen specificity that is WIC independent.
- the T cell is genetically modified to stably express a CAR that combines an antigen recognition domain of a specific antibody with an intracellular stimulatory domain (e.g., signaling domain).
- the CAR in addition to an antigen binding domain can include the intracellular domains of the zeta ( ⁇ ) chain of the TCR/CD3 complex, the gamma ( ⁇ ) chain of the immunoglobulin receptor FccRI26, 27 or the CD3-epsilon ( ⁇ ) chain.
- the CAR can also include a transmembrane region being from the same molecules or other type I transmembrane proteins such as CD4, CD8 and CD28.
- the CAR of the invention comprises an extracellular domain having an antigen recognition domain, a transmembrane domain, and a cytoplasmic domain.
- the transmembrane domain that naturally is associated with one of the domains in the CAR is used.
- the cytoplasmic domain can be designed to comprise a stimulatory domain and a costimulatory domain.
- a CAR can include intracytoplasmatic portion of co-stimulatory molecules, such as CD28, CD134/0X40, CD137/4-1BB, Lck, ICOS or DAP10.
- the disclosure also relates to a strategy of Adoptive cell therapy (ACT).
- ACT is a procedure in which therapeutic lymphocytes are administered to patients in order to treat cancer. This approach entails the ex vivo generation of tumor specific T cell lymphocytes and infusing them to patients.
- the host may be manipulated in other ways which support the take of the T cells and their immune response, for example, preconditioning the host (with radiation or chemotherapy) and administration of lymphocyte growth factors (such as IL-2).
- lymphocyte growth factors such as IL-2
- One method for generating such tumor specific lymphocytes involves the expansion of antigen specific T cells.
- the invention provides generating T cells expressing a shRNA of the invention and a desired CAR directed to a tumor antigen.
- the modified T cells can be generated by introducing a vector (e.g., plasmid, lentiviral vector, retroviral vector, adenoviral vector, adeno-associated viral vector) encoding both 1) an shRNA capable of reducing expression of a target gene described herein and 2) a desired CAR into the cells.
- a vector e.g., plasmid, lentiviral vector, retroviral vector, adenoviral vector, adeno-associated viral vector
- the modified T cells of the invention are able to replicate in vivo resulting in long term persistence that can lead to tumor control.
- the disclosure provides methods of treating cancer comprising administering a composition capable of silencing genes that inhibit T cell function.
- the methods relate to administering T cell expressing a shRNA of the invention and a desired CAR directed to a tumor antigen.
- the T cell to be administered comprises a vector encoding a shRNA of the invention and a desired CAR directed to a tumor antigen.
- therapeutic compositions disclosed herein can include, in addition to the tumor targeting T cells, compounds, drugs, and/or agents used for the treatment of cancer.
- Such compounds, drugs, and/or agents can include, for example, chemotherapy drugs, small molecule drugs or antibodies that stimulate the immune response to a given cancer.
- therapeutic compositions can include, for example, one or more small molecule inhibitors that silence, reduces, eliminates, knocks down, knocks out, or decreases the expression and/or activity of genes selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, F11r, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm1g, Blvrb, Tnkl, Prkab2, Trpm7 and Ppp3cc.
- small molecule inhibitors that silence, reduces, eliminate
- the invention provides one or more inhibitors of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm1g, Blvrb, Tnkl, Prkab2, Trpm7 or Ppp3cc.
- the invention provides one or more inhibitors of Ppp2r2d.
- the invention provides one or more inhibitors of Eif2ak3.
- the invention provides one or more inhibitors of Arhgap5.
- the invention provides one or more inhibitors of Smad2.
- the invention provides one or more inhibitors of Akap81.
- the invention provides one or more inhibitors of Rbks.
- the invention provides one or more inhibitors of Egr2.
- the invention provides one or more inhibitors of Dgka.
- the invention provides one or more inhibitors of Cb1b.
- the invention provides one or more inhibitors of Map3k3.
- the invention provides one or more inhibitors vMdfic.
- the invention provides one or more inhibitors of Entpdl.
- the invention provides one or more inhibitors of Dgkz.
- the invention provides one or more inhibitors of Vamp7.
- the invention provides one or more inhibitors of Nuak2.
- the invention provides one or more inhibitors of Hipkl.
- the invention provides one or more inhibitors of Alk.
- the inhibitor of Alk includes, for example, for example CH5424802 (Hoffmann-La Roche), LDK378 (Novartis), Crizotinib and PF-02341066 (Pfizer) or AP26113 (Ariad Pharmaceuticals).
- the invention provides one or more inhibitors of Pdzklipl.
- therapeutic compositions can include, for example, cytokines, chemokines and other biologic signaling molecules, tumor specific vaccines, cellular cancer vaccines (e.g., GM-CSF transduced cancer cells), tumor specific monoclonal antibodies, autologous and allogeneic stem cell rescue (e.g., to augment graft versus tumor effects), other therapeutic antibodies, molecular targeted therapies, anti-angiogenic therapy, infectious agents with therapeutic intent (such as tumor localizing bacteria) and gene therapy.
- cytokines e.g., chemokines and other biologic signaling molecules
- tumor specific vaccines e.g., GM-CSF transduced cancer cells
- tumor specific monoclonal antibodies e.g., GM-CSF transduced cancer cells
- autologous and allogeneic stem cell rescue e.g., to augment graft versus tumor effects
- other therapeutic antibodies e.g., to augment graft versus tumor effects
- molecular targeted therapies e.g., anti-ang
- compositions disclosed herein can be formulated for use as or in pharmaceutical compositions.
- Such compositions can be formulated or adapted for administration to a subject via any route, e.g., any route approved by the Food and Drug Administration (FDA).
- FDA Food and Drug Administration
- Exemplary methods are described in the FDA's CDER Data Standards Manual, version number 004 (which is available at fda.give/cder/dsm/DRG/drg00301.htm).
- compositions can include an effective amount of one or more peptides.
- effective amount and “effective to treat,” as used herein, refer to an amount or a concentration of one or more peptides for a period of time (including acute or chronic administration and periodic or continuous administration) that is effective within the context of its administration for causing an intended effect or physiological outcome.
- compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles.
- pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form.
- methods can include selection of a human subject who has or had a condition or disease (e.g., cancer).
- suitable subjects include, for example, subjects who have or had a condition or disease but that resolved the disease or an aspect thereof, present reduced symptoms of disease (e.g., relative to other subjects (e.g., the majority of subjects) with the same condition or disease), and/or that survive for extended periods of time with the condition or disease (e.g., relative to other subjects (e.g., the majority of subjects) with the same condition or disease), e.g., in an asymptomatic state (e.g., relative to other subjects (e.g., the majority of subjects) with the same condition or disease).
- subject refers to any animal. In some instances, the subject is a mammal. In some instances, the term “subject”, as used herein, refers to a human (e.g., a man, a woman, or a child). Samples for use in the methods can include serum samples, e.g., obtained from the selected subject.
- subject selection can include obtaining a sample from a subject (e.g., a candidate subject) and testing the sample for an indication that the subject is suitable for selection.
- the subject can be confirmed or identified, e.g. by a health care professional, as having had or having a condition or disease.
- exhibition of a positive immune response towards a condition or disease can be made from patient records, family history, and/or detecting an indication of a positive immune response.
- multiple parties can be included in subject selection. For example, a first party can obtain a sample from a candidate subject and a second party can test the sample.
- subjects can be selected and/or referred by a medical practitioner (e.g., a general practitioner).
- subject selection can include obtaining a sample from a selected subject and storing the sample and/or using the in the methods disclosed herein. Samples can include, for example, cells or populations of cells.
- the disclosure provides methods for increasing the immune response in a subject in need thereof.
- the disclosure provides therapies that are particularly useful for the treatment of subjects having cancer.
- the disclosure provides methods of treatment that include administering to a subject a composition disclosed herein.
- a composition capable of silencing genes that inhibit T cell function e.g., an immunoresponsive T cell expressing a shRNA of the invention and a desired CAR directed to a tumor antigen.
- T cell is derived from the patient to be treated and has been modified to express the CAR and an shRNA that reduces expression of a target gene described herein.
- the cancer is a carcinoma, sarcomas, adenocarcinoma, lymphoma, leukemia, etc., including solid and lymphoid cancers, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer, including hepatocarcinoma, lymphoma, including B-acute lymphoblastic lymphoma, non-Hodgkin's lymphomas (e.g., Burkitt's, Small Cell, and Large Cell lymphomas) and Hodgkin's lymphoma, leukemia (including AML, ALL, and CML), and multiple myeloma.
- solid and lymphoid cancers including solid and lymphoid cancers, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, test
- the cancer is melanoma.
- the cancer is a plasma cell malignancy, for example, multiple myeloma (MM) or pre-malignant condition of plasma cells.
- MM multiple myeloma
- the subject has been diagnosed as having a cancer or as being predisposed to cancer.
- cancer refers to human cancers and carcinomas, sarcomas, adenocarcinomas, lymphomas, leukemias, etc., including solid and lymphoid cancers, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer, including hepatocarcinoma, lymphoma, including B-acute lymphoblastic lymphoma, non-Hodgkin's lymphomas (e.g., Burkitt's, Small Cell, and Large Cell lymphomas) and Hodgkin's lymphoma, leukemia (including AML, ALL, and CML), and multiple myeloma.
- cancer refers to human cancers and carcinomas, sarcomas, adenocarcinomas, lymphomas, leukemias, etc., including solid and lymphoid cancers, kidney, breast
- anti-tumor effect refers to a biological effect which can be manifested by a decrease in tumor volume, a decrease in the number of tumor cells, a decrease in the number of metastases, an increase in life expectancy, or amelioration of various physiological symptoms associated with the cancerous condition.
- An “anti-tumor effect” can also be manifested by the ability of the peptides, polynucleotides, cells and antibodies of the invention in prevention of the occurrence of tumor in the first place.
- treat refers to partially or completely alleviating, inhibiting, ameliorating, and/or relieving the disease or condition from which the subject is suffering. In some instances, treatment can result in the continued absence of the disease or condition from which the subject is suffering.
- methods include selecting a subject at risk for or with a condition or disease.
- the subject's condition or disease can be treated with a pharmaceutical composition disclosed herein.
- methods include selecting a subject with cancer, e.g., wherein the subject's cancer can be treated by increasing T cell accumulation and infiltration within the tumor.
- treatments methods can include a single administration, multiple administrations, and repeating administration as required for the prophylaxis or treatment of the disease or condition from which the subject is suffering.
- treatment methods can include assessing a level of disease in the subject prior to treatment, during treatment, and/or after treatment. In some instances, treatment can continue until a decrease in the level of disease in the subject is detected.
- the subject can be evaluated to detect, assess, or determine their level of disease.
- treatment can continue until a change (e.g., reduction) in the level of disease in the subject is detected.
- a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.
- a therapeutic agent includes, but is not limited to, small molecules, peptides, antibodies, ribozymes, antisense oligonucleotides, chemotherapeutic agents and radiation.
- any of the methods and any of the compositions disclosed herein with conventional cancer therapies and various drugs in order to enhance the efficacy of such therapies through either reducing the doses/toxicity of conventional therapies and/or to increase the sensitivity of conventional therapies.
- One conventional therapy is the use of radiation therapy.
- Another conventional therapy is the use of chemotherapeutic drugs that can be divided into: alkylating agents, antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, and antitumour agents. All of these drugs affect cell division or DNA synthesis and function in some way.
- Other conventional cancer therapies are agents that do not directly interfere with DNA.
- agents for which to combine with the present invention may include for example “small-molecule” drugs that block specific enzymes involved in cancer cell growth.
- Monoclonal antibodies, cancer vaccines, angiogenesis inhibitors, and gene therapy are targeted therapies that can also be combined with the compositions and methods disclosed herein because they also interfere with the growth of cancer cells.
- test compounds e.g., polypeptides, polynucleotides, inorganic or organic large or small molecule test compounds
- test compounds that silence, reduces, eliminates, knocks down, knocks out, modulates, or decreases the expression and/or activity of genes selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met
- small molecules refers to small organic or inorganic molecules of molecular weight below about 3,000 Daltons.
- small molecules useful for the invention have a molecular weight of less than 3,000 Daltons (Da).
- the small molecules can be, e.g., from at least about 100 Da to about 3,000 Da (e.g., between about 100 to about 3,000 Da, about 100 to about 2500 Da, about 100 to about 2,000 Da, about 100 to about 1,750 Da, about 100 to about 1,500 Da, about 100 to about 1,250 Da, about 100 to about 1,000 Da, about 100 to about 750 Da, about 100 to about 500 Da, about 200 to about 1500, about 500 to about 1000, about 300 to about 1000 Da, or about 100 to about 250 Da).
- test compounds can be, e.g., natural products or members of a combinatorial chemistry library.
- a set of diverse molecules should be used to cover a variety of functions such as charge, aromaticity, hydrogen bonding, flexibility, size, length of side chain, hydrophobicity, and rigidity.
- Combinatorial techniques suitable for synthesizing small molecules are known in the art, e.g., as exemplified by Obrecht and Villalgordo, Solid-Supported Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compound Libraries, Pergamon-Elsevier Science Limited (1998), and include those such as the “split and pool” or “parallel” synthesis techniques, solid-phase and solution-phase techniques, and encoding techniques (see, for example, Czarnik, Curr. Opin. Chem. Bio. 1:60-6 (1997)).
- a number of small molecule libraries are commercially available. A number of suitable small molecule test compounds are listed in U.S. Pat. No. 6,503,713, incorporated herein by reference in its entirety.
- Libraries screened using the methods of the present invention can comprise a variety of types of test compounds.
- a given library can comprise a set of structurally related or unrelated test compounds.
- the test compounds are peptide or peptidomimetic molecules.
- the test compounds are nucleic acids.
- test compounds and libraries thereof can be obtained by systematically altering the structure of a first test compound, e.g., a first test compound that is structurally similar to a known natural binding partner of the target polypeptide, or a first small molecule identified as capable of binding the target polypeptide, e.g., using methods known in the art or the methods described herein, and correlating that structure to a resulting biological activity, e.g., a structure-activity relationship study. As one of skill in the art will appreciate, there are a variety of standard methods for creating such a structure-activity relationship.
- the work may be largely empirical, and in others, the three-dimensional structure of an endogenous polypeptide or portion thereof can be used as a starting point for the rational design of a small molecule compound or compounds.
- a general library of small molecules is screened, e.g., using the methods described herein.
- a test compound is applied to a test sample, e.g., a cell or living tissue or organ, e.g., an eye, and one or more effects of the test compound is evaluated.
- a test sample e.g., a cell or living tissue or organ, e.g., an eye
- the test sample is, or is derived from (e.g., a sample taken from) an in vivo model of a disorder as described herein.
- an animal model e.g., a rodent such as a rat, can be used.
- Methods for evaluating each of these effects are known in the art. For example, ability to modulate expression of a protein can be evaluated at the gene or protein level, e.g., using quantitative PCR or immunoassay methods. In some embodiments, high throughput methods, e.g., protein or gene chips as are known in the art (see, e.g., Ch. 12, Genomics, in Griffiths et al., Eds. Modern genetic Analysis, 1999,W. H.
- a candidate compound that has been screened, e.g., in an in vivo model of a disorder, e.g., cancer, and determined to have a desirable effect on the disorder, e.g., on one or more symptoms of the disorder, can be considered a candidate therapeutic agent.
- Candidate therapeutic agents, once screened in a clinical setting, are therapeutic agents.
- Candidate compounds, candidate therapeutic agents, and therapeutic agents can be optionally optimized and/or derivatized, and formulated with physiologically acceptable excipients to form pharmaceutical compositions.
- test compounds identified as “hits” can be selected and systematically altered, e.g., using rational design, to optimize binding affinity, avidity, specificity, or other parameter. Such optimization can also be screened for using the methods described herein.
- the invention includes screening a first library of compounds using a method known in the art and/or described herein, identifying one or more hits in that library, subjecting those hits to systematic structural alteration to create a second library of compounds structurally related to the hit, and screening the second library using the methods described herein.
- cytotoxic T cells play a central role in immune-mediated control of cancers 1-3 , and monoclonal antibodies that target inhibitory receptors on T cells can induce significant clinical benefit in patients with advanced disease 4-6.
- many of the regulatory mechanisms that result in loss of T cell function within immunosuppressive tumors remain unknown.
- the inventors demonstrate that such regulatory mechanisms can be systematically discovered in vivo in the tumor microenvironment. The inventors postulated that shRNAs targeting key inhibitors would enable robust T cell infiltration and accumulation in tumors, despite multiple inhibitory signals.
- candidate shRNA were discovered by transfer of shRNA-transduced T cells into tumor-bearing mice, followed by deep sequencing to quantify the representation of all hairpins in tumors and lymphoid organs.
- the majority of shRNAs induced T cell accumulation in tumors but not the spleen, demonstrating feasibility of discovering shRNAs with differential action across tissues.
- One of the targets was Ppp2r2d, a regulatory subunit of the PP2A phosphatase 7 .
- Control shRNA-transduced T cells underwent apoptosis upon recognition of melanoma cells, while Ppp2r2d shRNA-transduced T cells accumulated in tumors due to enhanced proliferation and resistance to apoptosis. Ppp2r2d shRNA-expressing T cells also significantly delayed tumor growth. This in vivo approach has wide-spread applications to dissect complex immune functions in relevant tissue microenvironments.
- Immune cells perform complex surveillance functions throughout the body and interact with many different types of cells in distinct tissue microenvironments.
- Therapeutic targets for modulating immune responses are typically identified in vitro and tested in animal models at a late stage of the process.
- the inventors have addressed the challenge of how targets for immune modulation can be systematically discovered in vivo. This is a central issue in oncology because strong infiltration by CD8 T cells—which have cytotoxic function against tumor cells—is associated with a favorable prognosis in multiple types of human cancer 1..3.8 .
- this natural defense mechanism is severely blunted in the majority of patients by multiple inhibitory signals emanating from the tumor, its stroma, regulatory T cells and myeloid cell populations.
- mice C57BL/6 mice, TRP-1 mice (transgenic mice expressing T-cell receptor (TCR) specific for tyrosinase-related protein 1) 23 , pmel-1 mice (transgenic mice expressing TCR specific for gp100) 18 , and b2m-1-mice 24 were purchased from The Jackson Laboratory.
- the Rag1 ⁇ / ⁇ OT-I mice 16 were purchased from Taconic Farms, Inc. Mice were bred at the Dana-Farber Cancer Institute animal facility. All experimental procedures were approved by the Dana-Farber Cancer Institute Animal Care and Use Committee.
- B16 melanomas an aggressive tumor that is difficult to treat, express the surrogate tumor antigen Ovalbumin (Ova), which is recognized by CD8 T cells from OT-I T cell receptor transgenic mice 16, 17 .
- Ovalbumin Ovalbumin
- EL4 thymoma 38 and B16-F10 melanoma 15 cells were maintained in RPMI 1640 supplemented with 10% FBS, 2 mM L-glutamine, 10011 g/ml streptomycin and 10011 g/ml penicillin.
- Ovalbumin-expressing B16 tumor cells (B16-Ova) were maintained in the same media with addition of 600 m/mL G418 (Invitrogen).
- shRNAs were selected for 255 genes over-expressed in dysfunctional T cells (anergic or exhausted state).
- pLKO.3G vector was obtained from The RNAi Consortium.
- pLKO-Thy1.1, pLKO-Ametrine, pLKO-RFP, pLKO-TFP vectors were modified from pLKO.3G vector by replacing GFP with the corresponding reporter gene.
- Murine Ppp2r2d and Cb1b sequences targeted by 10 selected shRNAs are provided in Table 3 (listed in order of shRNA activity (highest to lowest)).
- the LacZ target sequence targeted by a control shRNA is also listed. All other target sequences can be found in Table 2.
- Antibodies used were specific for CD4, CD8, Va2, V ⁇ 5.1/5.2, Thy1.1, CD25, CD44, CD62L, CD69, CD122, CD127, IFN ⁇ , TNF ⁇ (BioLegend), PD-1, TIM-3, LAG-3, granzyme B, and H-2Kb (BioLegend),Va3.2 (eBioscience), V ⁇ 13, V ⁇ 14 (BD Biosciences), phospho-Akt (Ser473) and phospho-Bad (Ser112) (Cell Signaling). Apoptotic cells were detected by labeling with annexin V (BioLegend) or activated caspase-3 antibody (Cell Signaling). Mouse anti-CD3/CD28 beads were purchased from Invitrogen.
- B16-Ova melanomas were cut into small pieces in petri dishes containing 5 mL of PBS, 2% FBS and washed with PBS. Tumors were resuspended in 15 mL RPMI supplemented with 2% FBS, 50U/mL Collagenase Type IV (Invitrogen), 20U/mL DNase (Roche), samples incubated at 37° C. for 2 hours and tissue further dissociated using a gentleMACS Dissociator (Miltenyi Biotech). Suspensions were washed three times with PBS and passed through a 70 ⁇ M strainer.
- Lymphocytes were isolated by density gradient centrifugation and then either analyzed or sorted by flow cytometry using a FACSAria (BD Biosciences). T cell apoptosis. Cytokine pre-treated OT-I cells were transduced with LacZ or Ppp2r2d shRNAs and injected into mice bearing day 14 B16-Ova tumors. After 7 days, intracellular staining was performed using an activated caspase-3 antibody (Cell Signaling) and CD8/Thy1.1 double-positive T cells were gated in the FACS analysis.
- B16-Ova tumors from mice treated with OT-I T cells expressing LacZ or Ppp2r2d shRNAs (GFP-expressing vector) were cryopreserved in optimal cutting temperature (O.C.T.) compound (Tissue-Tek).
- 10 ⁇ m-sections from cryopreserved tumors were were permeabilized with 0.2% Triton X-100, fixed in 4% paraformaldehyde and stained with a GFP antibody (Molecular Probes) in combination with DAPI.
- TUNEL detection sections were stained with TACS 2 TdT Blue Label (Trevigen) based on manufacturer's directions.
- RNA samples were visualized using a laser-scanning confocal microscope (Leica SP5X) and analyzed with ImageJ software (NIH). qRT-PCR assay.
- Total RNA was extracted using TRIzol reagent (Invitrogen).
- RNA was reverse transcribed with the High Capacity cDNA Reverse Transcription kit (Applied Biosystems).
- Real time quantitative PCR reactions were performed as triplicates using an ABI 7900HT instrument with SYBR green (ABI). Rp123 levels were used for normalization.
- Ppp2r2d forward GGAAGCCGACATCATCTCCAC (SEQ ID NO: 622), Ppp2r2d reverse GTGAGCGCGGCCTTTATTCT (SEQ ID NO: 623); Cb1b forward GGTCGCATTTTGGGGATTATTGA (SEQ ID NO: 624), Cb1b reverse TTTGGCACAGTCTTACCACTTT (SEQ ID NO: 625); Rp123 forward CTGTGAAGGGAATCAAGGGA (SEQ ID NO: 626) and Rp123 reverse TGTCGAATTACCACTGCTGG (SEQ ID NO: 627).
- IL-7/IL-15 cultured OT-I T cells were transduced with one of five experimental shRNAs (Ppp2r2d, Arhgap5, Alk, Egr2, Ptpn2) or a LacZ control shRNA. Infected cells were sorted to purity using GFP encoded by the vector as a reporter. T cells (5 ⁇ 10 6 ) were injected i.v. into mice bearing day 14 B16-Ova tumors. Seven days later, shRNA-expressing OT-I T cells (CD8+GFP+) were isolated from tumors and spleens.
- shRNA-expressing OT-I T cells CD8+GFP+
- Antibodies used for T cell activation were anti-mouse CD3 and anti-mouse CD28 (Biolegend).
- Antibodies used to capture secreted cytokines were anti-mouse IFN ⁇ (Biolegend), anti-mouse IL-2 (Biolegend), anti-mouse TNF ⁇ (Biolegend) and anti-mouse GM-CSF (Biolegend).
- Detection antibodies were anti-mouse IFN ⁇ (Biolegend), anti-mouse IL-2 (Biolegend), anti-mouse TNF ⁇ (Biolegend) and anti-mouse GM-CSF (Biolegend), and they were fluorescently labeled with appropriate Alexa Fluor dyes (Invitrogen) following manufacturer's instructions.
- the lipids used to prepare supported bilayers were: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotinyl Cap PE) (Avanti Polar Lipids).
- DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine
- Biotinyl Cap PE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotinyl Cap PE) (Avanti Polar Lipids).
- the array of nanowells was manufactured by injecting polydimethylsiloxane (PDMS, Dow Corning) prepared at a 10:1 base/catalyst weight ratio into a custom-built mold encasing a micropatterned silicon master. Arrays of nanowells were cured at 70° C. for 4-16 h. Each array comprised 72 ⁇ 24 blocks, each containing a 7 ⁇ 7 (50 ⁇ m ⁇ 50 ⁇ m ⁇ 50 ⁇ m) subarray of nanowells (total of 84,672 wells). The PDMS arrays adhered directly to a 3′′ ⁇ 1′′ glass slide forming a 1 mm thick layer.
- PDMS polydimethylsiloxane
- lipid bilayers were prepared as described previously14. Bilayers were generated by applying DOPC liposomes containing 2 mol % biotin-Cap-PE lipids on the PDMS array of nanowells. The surfaces were rinsed with deionized water to remove excess liposomes. Before use, the lipid bilayer was blocked with BSA in PBS (100 ⁇ g/mL) for 45 minutes. The bilayer was then incubated with 1 ⁇ g/mL of streptavidin in a solution of 100 ⁇ g/mL BSA in PBS, followed by incubation with biotinylated CD3 and CD28 antibodies. The device was rinsed extensively with PBS before adding the cells.
- Capture antibodies were diluted in borate buffer (50 mM sodium borate, 8 mM sucrose, and 50 mM NaCl, pH 9.0) to a final concentration of 10 ⁇ g/mL and deposited on the surface of epoxy-modified slides for 1 h at room temperature. Slides were blocked with 3% non-fat milk in PB ST (PBS with 0.05% (v/v) Tween 20) for 30 min at room temperature and washed with PBS before placing them into contact with the PDMS array of nanowells. A suspension of T cells was dispensed onto the surface of the nanowells, modified with a supported lipid bilayer in media and allowed to settle into the wells.
- borate buffer 50 mM sodium borate, 8 mM sucrose, and 50 mM NaCl, pH 9.0
- PB ST PBS with 0.05% (v/v) Tween 20
- the density of suspended cells applied to the array was optimized empirically to maximize well occupancy by single cells (typically ⁇ 30% of wells).
- a glass slide coated with capture antibodies was then placed onto the loaded array for cytokine capture.
- the microarray and glass slide were held together by compression in a hybridization chamber (Agilent Technologies, G2534A) and incubated for 1 h at 37° C. with 5% CO 2. The glass slide was then separated from the array and placed in PBS.
- slides were incubated for 30 min with blocking buffer (PBS, 10 mg/mL BSA, 0.05% (v/v) Tween-20, 2% mouse serum and 2 mM sodium azide), washed with PBST (PBS+0.05% v/v Tween-20), and then incubated with fluorescence detection antibodies at 1 ⁇ g/mL for 45 min at 25° C.
- the slides were washed with PBST and PBS, rinsed briefly with water, and dried with a N 2 stream. Reference slides were generated at the end of each experiment with the same detection antibodies used on the printed slides.
- On-chip image-based cytometry T cells were stained with CellMaskTM Plasma Membrane Stain (Invitrogen, Life Technologies) and SYTOX green (for detection of dead cells, Life Technologies). The cell-loaded arrays of nanowells were mounted face-up on the microscope with a coverslip placed on top of the array. Images were acquired on an automated inverted epifluorescence microscope (Carl Zeiss). Transmitted light and epifluoresence micrographs were collected block-by-block (7 ⁇ 7 microwells per block). The resulting collection of images was analyzed using a custom program to determine the number of cells present in each well and the mean fluorescence intensity of each label. Only viable T cells were considered for the analysis. Although the cells expressed GFP, the fluorescence intensity of GFP was negligible under the utilized microscope acquisition setting compared to SYTOX green, enabling identification of dead cells.
- shRNAs targeting 255 genes over-expressed in dysfunctional T cells (anergic or exhausted state) 31-37 and 1,307 kinase/phosphatase genes ( ⁇ 5 shRNAs per gene) were obtained from The RNAi Consortium (TRC; Broad Institute, Cambridge, MA, USA).
- TRC RNAi Consortium
- OT-I T cells isolated by negative selection were cultured with IL-7 (5 ng/mL, Peprotech) and IL-15 (100 ng/mL, Peprotech) in complete RPMI media (RPMI 1640, 10% FBS, 20 mM HEPES, 1 mM sodium pyruvate, 0.05 mM 2-mercaptoethonal, 2 mM L-glutamine, 100 ⁇ g/ml streptomycin and 100 ⁇ g/ml penicillin).
- IL-7 5 ng/mL, Peprotech
- IL-15 100 ng/mL, Peprotech
- complete RPMI media RPMI 1640, 10% FBS, 20 mM HEPES, 1 mM sodium pyruvate, 0.05 mM 2-mercaptoethonal, 2 mM L-glutamine, 100 ⁇ g/ml streptomycin and 100 ⁇ g/ml penicillin.
- OT-I T cells were spin-infected with lentiviral pools (nine lentiviral shRNA pools and a LacZ control shRNA lentiviral vector control) supplemented with protamine sulfate (5 ⁇ g/mL) in 24-well plates coated with retronectin (5 ⁇ g/mL) at a multiplicity of infection (MOI) of 15. Typically, ⁇ 5 ⁇ 10 6 OT-1 T cells were infected for each pool.
- OT-I cells were cultured with IL-7 (2.5 ng/mL), IL-15 (50 ng/mL) and IL-2 (2 ng/mL) in complete RPMI media.
- live shRNA-transduced T were enriched using a dead cell removal kit (Miltenyi), and infected cells were positively selected based on Thy1.1 marker (Stemcell Technologies) to 50-60% Thy1.1 positivity.
- Successful transduction was monitored by surface expression of the Thy1.1 reporter ( FIG. 2 ).
- T cells (5 ⁇ 10 6 ) were injected i.v. into C57BL/6 mice bearing day 14 B16-Ova tumors (15 mice per shRNA pool)(number of animals chosen to provide sufficient cells for T cell isolation and PCR).
- Genomic DNA was isolated from 5 ⁇ 10 6 enriched OT-I cells as the start population for deep sequencing. Seven days later, shRNA-expressing T cells (CD8 + Va2 + V(35 + Thy1.1 + ) were isolated by flow cytometry from tumors, spleens, tumor-draining lymph nodes and irrelevant lymph nodes for isolation of genomic DNA, followed by PCR amplification of the shRNA cassette.
- FIG. 3 Genomic DNA was isolated (Qiagen) and deep-sequencing templates were generated by PCR of the shRNA cassette. Representation of shRNAs in each pool was analyzed by deep sequencing using an Illumina Genome Analyzer 30. Data were normalized using the average reads of control shRNAs in each pool. Kinase/phosphatase genes were selected for the secondary screen based on expression levels in T cells.
- shRNAs were over-represented in all tested tissues compared to the starting T cell population (e.g. SHP-1), indicative of enhanced proliferation independent of TCR recognition of a tumor antigen.
- T cell population e.g. SHP-1
- shRNAs were over-represented in all tested tissues compared to the starting T cell population (e.g. SHP-1), indicative of enhanced proliferation independent of TCR recognition of a tumor antigen.
- there was a selective loss of shRNAs within tumors e.g. ZAP-70, a critical kinase in the T cell activation pathway.
- ZAP-70 a critical kinase in the T cell activation pathway
- lentiviral vectors encoding five different reporter proteins (GFP, TFP, RFP or Ametrine fluorescent proteins, Thy1.1).
- Cytokine-pretreated OT-I T cells were transduced with lentiviral vectors driving expression of a single shRNA and a reporter protein; 1 ⁇ 10 6 T cells of each population were mixed and co-injected i.v. into C57BL/6 mice bearing day 14 B16-Ova tumors. After seven days T cells were isolated from tumors, spleens and lymph nodes, and the percentage of reporter-positive CD8 + Va2 + Vf35 + T cells was determined by flow cytometry based on co-introduced reporters.
- T cell accumulation in tumors was >10-fold relative to spleen.
- the strongest phenotype was observed with shRNAs targeting Ppp2r2d, a regulatory subunit of the PP2A phosphatase7.
- CD8+OT-I or CD4+ TRP-1 T cells expressing Ppp2r2d or LacZ shRNAs were injected into mice bearing day 14 B16-Ova tumors.
- shRNA-expressing T cells were identified in tumors and spleens using Thy1.1 reporter ( FIG. 8 , % Thy1.1 + CD8 T cells, left panels).
- Total numbers of LacZ or Ppp2r2d shRNA-expressing T cells were determined in tumors and spleens 7 days following transfer of 2 ⁇ 10 6 shRNA-expressing cells ( FIG. 8 , right panels). Fold-enrichment of Ppp2r2d versus LacZ shRNA-expressing T cells in tumors is indicated.
- Ppp2r2d shRNA not only induced accumulation of OT-I CD8 T cells, but also CD4 T cells (from TRP-1 TCR transgenic mice) 23 , with T cell numbers in tumors being significantly higher when Ppp2r2d rather than LacZ shRNA was expressed (36.3-fold for CD8; 16.2-fold for CD4 T cells) ( FIG. 8 ).
- T cell enrichment in tumors compared to spleen for cells expressing a panel of Ppp2r2d or Cb1b shRNAs ( FIG. 17 , upper panels) Ppp2r2d and Cb1b mRNA levels were also measured by qPCR prior to T cell transfer ( FIG. 17 , lower panels). The strongest T cell enrichment in tumors was observed for shRNAs with >80% knock-down efficiency at the mRNA level (shRNAs #1 and 2 for both Ppp2r2d and Cb1b).
- CD8 T cell accumulation correlated with the degree of Ppp2r2d knock-down, and two Ppp2r2d shRNAs with the highest in vivo activity induced the lowest levels of Ppp2r2d mRNA ( FIG. 17 ).
- Ppp2r2d knockdown was also confirmed at the protein level using a quantitative mass spectrometry approach ( FIG. 18 ).
- a previously reported approach for absolute quantification (AQUA) of proteins from cell lysates by mass spectrometry was used to measure the effect of Ppp2r2d shRNA expression at the protein level (Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W. & Gygi, S. P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. PNAS, 100, 6940-6945 (2003).
- This strategy is based on a ‘selective reaction monitoring’ approach in which a synthetic peptide with incorporated stable isotopes is used as an internal standard for mass spectrometry analysis.
- OT-I cells expressing LacZ or Ppp2r2d shRNAs were sorted to purity using FACS.
- Cells (1 ⁇ 10 6 ) were lysed in 1 ml of MPER extraction reagent (Pierce) containing a Protease Inhibitor Cocktail (Sigma), 1 mM EDTA and 1 mM PMSF for 15 minutes on ice with occasional vortexing. Cell debris was removed by centrifugation and the protein supernatant was filtered (0.2 ⁇ m SpinX centrifuge filter, Costar).
- Protein concentration was determined by Bradford assay (Biorad) and UV280 nm analysis (Nanodrop instrument); 0.1 mg of cellular protein was separated by SDS-PAGE and stained with Coomassie blue reagent (Pierce). Gel bands corresponding to a MW range of 45-60 kDa were excised followed by in-gel digestion of proteins with trypsin.
- Eluted peptides were spiked with 300 fmol of isotopically labeled Ppp2r2d (FFEEPEDPSS[13C-15N-R]-OH)(SEQ ID NO: 628) and Actin B (GYSFTTTAE[13C-15N-R]-OH) (SEQ ID NO: 629) peptides (21st Century Biochemicals) for quantification by LC MS/MS (LTQ XL Orbitrap, Thermo Scientific).
- the Ppp2r2d peptide was chosen from a region of the protein that differs from other regulatory subunits of PP2A.
- Ppp2r2d shRNA activity was specific because the phenotype was reversed when a mutated Ppp2r2d cDNA (with wild-type protein sequence, but mutated DNA sequence at the shRNA binding site) was co-introduced with the Ppp2r2d shRNA ( FIG. 9 , 10 a - c ).
- OT-I CD8 T cells over-expressed Ppp2r2d in tumors compared to spleen (in the absence of any shRNA expression), suggesting that it is an intrinsic component of the signaling network inhibiting T cell function in tumors ( FIG. 19 ).
- Mutant Ppp2r2d cDNA with preserved protein sequence but disrupted shRNA binding site were generated. Wild-type Ppp2r2d cDNA was isolated by RT-PCR using forward primer GGATCCATGGCAGGAGCTGGAGGC (SEQ ID NO: 630) and reverse primer: GCTAGCATTAATTTTGTCCTGGAATATATACAAGTTATTGGTGG (SEQ ID NO: 631).
- the target sequence of Ppp2r2d shRNA, CCCACATCAGTGCAATGTATT was mutated to TCCCCACCAATGTAACGTGTT (SEQ ID NO: 633) by overlapping PCR (which conserves protein coding sequence) using forward primer: TCCATCCCCACCAATGTAACGTGTTTGTTTACAGCAGCAGCAAGG (SEQ ID NO: 634) and reverse primer: AAACAAACACGTTACATTGGTGGGGATGGAACTCTGCGGCAGTGA (SEQ ID NO: 635).
- the Ppp2r2d shRNA reduced GFP levels when wild-type Ppp2r2d.
- the Ppp2r2d shRNA was not able to reduce expression of the GFP reporter in cells expressing the mutant Ppp2r2d cDNA, demonstrating that the shRNA binding site had been successfully mutated. ( FIG. 10 a )
- Ppp2r2d mutant cDNA also prevents phenotype induced by Ppp2r2d shRNA.
- FIG. 10 b Ppp2r2d shRNA was cloned into the mutant Ppp2r2d cDNA-2A-GFP construct which resulted in co-expression of Ppp2r2d shRNA and mutated Ppp2r2d cDNA in one vector.
- OT-I T cells were separately infected with lentiviruses encoding LacZ shRNA (Thy1.1), Ppp2r2d shRNA (Ametrine) or Ppp2r2d shRNA plus mutant Ppp2r2d cDNA (GFP).
- mice 10 b These three populations there then mixed at the same ratio and injected into mice bearing day 14 B16-Ova tumors.
- each T cell population was quantified in tumors and spleens by gating on OT-I (CD8 + Va2 + V(35 + )-T cells followed by analysis of populations marked by Thy1.1, Ametrine or GFP expression.
- FIG. 10 c provides real-time PCR analysis for Ppp2r2d expression in OT-I T cells transduced with LacZ shRNA, Ppp2r2d shRNA, and Ppp2r2d shRNA plus Ppp2r2d mutant cDNA. Also, the Ppp2r2d shRNA with the highest in vivo activity was associated with the lowest levels of Ppp2r2d mRNA ( FIG. 11 ).
- FIG. 12 a Microarray analysis of tumor-infiltrating T cells expressing experimental or control shRNAs showed that each shRNA induced a distinct set of gene expression changes, with some overlap between particular shRNAs.
- Two genes (Egr2 and Ptpn2) have known functions in T cells. Enrichment in tumor versus spleen was calculated based on deep sequencing results from the secondary screen.
- FIG. 12 a Clustering of mean expression levels for mRNAs found to be significantly regulated by T cells in spleens or tumors expressing the LacZ control shRNA or one of five experimental shRNAs.
- FIG. 12 c is a Venn diagram showing overlaps between expression signatures by tumor-infiltrating T cells transduced with one of the five experimental shRNAs (signatures defined as an Anova p ⁇ 0.01 as described above). Indicated are the numbers of overlapping probe IDs for any combination of the 5 signatures, as indicated by the overlapping ovals. The significance of the overlaps versus that expected by random chance (Fishers Exact Test) is shown in the accompanying table.
- T cell infiltration into tumors was assessed by transfer of OT-I CD8 T cells labeled with a cytosolic dye, CFSE.
- OT-I T cells expressing Ppp2r2d or LacZ shRNAs were labeled with CFSE and injected into B16-Ova tumor-bearing mice. Twenty-four hours later transduced T cells were isolated from tumors and spleens and quantified by flow cytometry.
- OT-I T cells expressing LacZ or Ppp2r2d shRNAs were purified using the Thy1.1 reporter and cultured in complete RPMI media without added cytokines for 24 hours.
- Live cells isolated by Ficoll density gradient centrifugation (Sigma) were labeled with CFSE (carboxyfluorescein diacetate, succinimidyl ester, Invitrogen), and 2 ⁇ 106 labeled cells were injected into mice bearing day 14 B16-Ova tumors.
- CFSE dilution was quantified by flow cytometry at 24 hours and days 3, 5 and 7 following transfer.
- intracellular staining was performed on days 3, 5 and 7 for IFN ⁇ , TNF ⁇ and isotype controls (BD).
- Ppp2r2d The action of Ppp2r2d was downstream of T cell receptor activation because T cell accumulation was enhanced in tumors and to a lesser extent in tumor-draining lymph nodes. In contrast, no accumulation was observed in irrelevant lymph nodes or the spleen where the relevant antigen is not presented to T cells ( FIG. 15 ).A substantial degree of T cell accumulation was even observed for LacZ shRNA-transduced T cells (complete dilution of CFSE dye by day 7), despite the presence of small numbers of such cells in tumors. This suggested that LacZ shRNA-transduced T cells were lost by apoptosis.
- OT-I T cells expressing LacZ or Ppp2r2d shRNAs were purified based on Thy1.1 expression and labeled with CFSE, as described above.
- CFSE labeled OT-I T cells (1 ⁇ 10 5 ) were co-cultured with 5 ⁇ 10 4 B16-Ova cells per well in a 96-well plate for 72 h. Prior to the assay, B16-Ova cells were exposed to 1 ng/mL IFN ⁇ for 48 hours (to induce MHC class I, which is not expressed in vitro) and washed three times. Apoptosis of OT-I T cells was detected by annexin V labeling of CD8+ cells. ( FIG.
- B16-Ova cells (2 ⁇ 10 5 ) were injected s.c. into female C57BL/6 mice (10 weeks of age). On day 12, mice bearing tumors of similar size were divided into 7 groups (7-8 mice/group).
- Anti-CD3/CD28 bead activated CD4 TRP-1 or/and CD8 OT-I T cells infected with Ppp2r2d or LacZ shRNA vectors (2 ⁇ 10 6 T cells each) were injected i.v. on days 12 and day 17.
- mice were treated at day 10 with anti-CD3/CD28 bead activated CD4 TRP-1 and CD8 pmel-1 T cells expressing Ppp2r2d or LacZ shRNAs (3 ⁇ 10 6 T cells each). Tumor size was measured every three days following transfer and calculated as length ⁇ width. Mice with tumors ⁇ 20 mm on the longest axis were sacrificed.
- Ppp2r2d shRNA-transduced CD8 T cells may be able to proliferate and survive even when they recognize their antigen directly presented by B16-Ova tumor cells.
- This idea was tested by implantation of tumor cells into b2m ⁇ / ⁇ mice which are deficient in expression of MHC class I proteins. In such mice, only tumor cells but not professional antigen presenting cells of the host could present tumor antigens to T cells.
- Ppp2r2d shRNA-transduced OT-I CD8 T cells showed massive accumulation within B16-Ova tumors in b2m ⁇ / ⁇ mice ( FIG. 120 while there were very small numbers of T cells in contralateral B16 tumors that lacked expression of the Ova antigen. T cells expressing a Ppp2r2d shRNA could thus effectively proliferate and survive in response to tumor cells, despite a lack of suitable co-stimulatory signals and an inhibitory microenvironment.
- T cells were activated for 3 hours by CD3/CD28 antibodies on lipid bilayers, followed by 1 hour cytokine capture on antibody-coated slides.
- CD8 T cells showed a higher secretion rate for IFN ⁇ , IL-2 and GM-CSF, and a larger fraction of T cells more than one cytokine ( FIG. 21 b, c ).
- the presence of larger numbers of IFN ⁇ -producing T cells was confirmed by intracellular cytokine staining ( FIG. 21 d , FIG. 20 ).
- PP2A phosphatase is composed of a catalytic and scaffolding subunit, and its substrate specificity is determined by one of many regulatory subunits 7.
- Ppp2r2d directs PP2A to Cdk1 substrates during interphase and anaphase; it thereby inhibits entry into mitosis and induces exit from mitosis 25 .
- PP2A plays a gatekeeper role for BAD-mediated apoptosis.
- Phosphorylated BAD is sequestered in its inactive form in the cytosol by 14-3-3, while dephosphorylated BAD is targeted to mitochondria where it causes cell death by binding Bc1-X L and Bc1-2 26 .
- PP2A phosphatases have also been shown to interact with the cytoplasmic domains of CD28 and CTLA-4 as well as Carma1 (upstream of the NF- K B pathway), but it is not known which regulatory subunits are required for these activities; Ppp2r2d antibodies suitable for the required biochemical studies are currently not available.
- B16-Ova tumor cells (2 ⁇ 10 5 ) were injected subcutaneously into female C57BL/6 mice (10 weeks of age). On day 12, mice bearing tumors of similar size were divided into seven groups (7-8 mice/group), either receiving no T cells, 2 ⁇ 10 6 shRNA-transduced TRP-1 CD4 T cells, 2 ⁇ 10 6 shRNA infected OT-I CD8 T cells, or both CD4 and CD8 T cells (days 12 and day 17).
- anti-CD3/CD28 bead activated CD4 TRP-1 or/and CD8 OT-I T cells infected with Ppp2r2d or LacZ shRNA vectors (2 ⁇ 10 6 T cells each) were injected i.v. on days 12 and day 17.
- mice were treated at day 10 with anti-CD3/CD28 bead activated CD4 TRP-1 and CD8 pmel-1 T cells expressing Ppp2r2d or LacZ shRNAs (3 ⁇ 106 T cells each). Tumor size was measured every three days following transfer and calculated as length ⁇ width. Mice with tumors ⁇ 20 mm on the longest axis were sacrificed.
- Ppp2r2d-silencing improved the therapeutic activity of CD4 and CD8 T cells, and a synergistic effect was observed when Ppp2r2d shRNA-transduced CD4 and CD8 T cells were co-administered ( FIG. 16 a, b ).
- a Ppp2r2d shRNA also enhanced anti-tumor responses when introduced into T cells specific for endogenous tumor antigens (pmel-1 CD8 T cells and TRP-1 CD4 T cells) ( FIG. 16 c ).
- Ppp2r2d-silenced T cells acquired an effector phenotype in tumors ( FIG. 22 a ) and >30% of the cells expressed granzyme B ( FIG. 23 a ). Consistent with greatly increased numbers of such effector T cells in tumors ( FIG. 23 b ), TUNEL staining demonstrated increased apoptosis in tumors when Ppp2r2d rather than LacZ shRNA expressing T cells were present ( FIG. 23 c ). B16 melanomas are highly aggressive tumors in part because MHC class I expression is very low. Interestingly, Ppp2r2d but not LacZ shRNA-expressing T cells significantly increased MHC class I expression (H-2Kb) by tumor cells ( FIG.
- FIG. 23 d possibly due to the observed increase in IFN ⁇ secretion by T cells ( FIG. 21 a - c , FIG. 13 e ).
- a Ppp2r2d shRNA did not reduce expression of inhibitory PD-1 or LAG-3 receptors on tumor-infiltrating T cells, demonstrating that its mechanism of action is distinct from these known negative regulators of T cell function ( FIG. 22 b ). This finding suggests combination approaches targeting these intracellular and cell surface molecules.
- Targeting of key regulatory switches may offer new approaches to modify the activity of T cells in cancer and other pathologies.
- the efficacy of such T cell-based therapies could be enhanced by shRNA-mediated silencing of genes that inhibit T cell function in the tumor microenvironment.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Oncology (AREA)
- Plant Pathology (AREA)
- Hematology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Virology (AREA)
- Hospice & Palliative Care (AREA)
Abstract
The present disclosure provides, in part, methods of discovering immunotherapy targets in vivo, therapeutic compositions (e.g., shRNA, immunoresponsive cells expressing shRNA and/or a chimeric antigen receptors (CAR)), and methods of use thereof.
Description
- This application is a continuation of application Ser. No. 17/102,787, filed Nov. 24, 2020, which is a continuation of application Ser. No. 15/944,330, filed Apr. 3, 2018, now U.S. Pat. No. 10,876,120, which is a division of application Ser. No. 14/897,210, filed Dec. 9, 2015, now U.S. Pat. No. 9,944,931, which claims the benefit under 35 U.S.C. § 371 of International Application No. PCT/US2014/041739, filed Jun. 10, 2014, which claims priority to and the benefit of provisional applications U.S. Ser. No. 61/929,821, filed Jan. 21, 2014, U.S. Ser. No. 61/921,303, filed Dec. 27, 2013 and U.S. Ser. No. 61/833,298, filed Jun. 10, 2013, the contents of all of which are incorporated herein by reference in their entireties.
- This invention was made with government support under grant numbers R01 CA173750, AI073861, and P30 CA014051 awarded by The National Institutes of Health. The government has certain rights in the invention.
- The instant application contains a Sequence Listing which has been submitted electronically in ST.26 XML format and is hereby incorporated by reference in its entirety. The ST.26 XML, created on Jan. 3, 2023, is named 514293_50010064_SEQ_LISTING_ST26.txt and is 427 KB in size.
- This invention relates to methods of discovering immunotherapy targets in vivo, therapeutic compositions that modulate immunotherapy targets (e.g., shRNA, immunoresponsive cells expressing shRNA and, in some cases a receptor targeting a cancer cell, e.g., a chimeric antigen receptors (CAR)), and related methods of use.
- Cytotoxic T cells play a central role in immune-mediated control of cancers1-3, and monoclonal antibodies that target inhibitory receptors on T cells can induce significant clinical benefit in patients with advanced disease4-6. For survival, tumors have developed numerous immunosuppressive mechanisms to promote their own growth and to successfully evade the host immune system, effectively blocking the activity of T cells in the tumor microenvironment. This is a central issue in oncology because strong infiltration by CD8 T cells, which have cytotoxic function against tumor cells, is associated with a favorable prognosis in multiple types of human cancer1,3,11. This natural defense mechanism is severely blunted in the majority of patients by multiple inhibitory signals emanating from the tumor, its stroma, regulatory T cells and myeloid cell populations.9-11 Various molecular and cellular immunosuppressive mechanisms responsible for tumor evasion have been identified. Certain of these mechanisms target immune antitumor effector cells. However, many of the regulatory mechanisms that result in loss of T cell function within immunosuppressive tumors remain unknown. Improving on the limited success of cancer immunotherapy requires new approaches to inhibit immunosuppressive pathways initiated by tumor cells to evade the host immune system.
- The present disclosure provides targets for inhibiting immunosuppressive pathways used by tumor cells to inactivate and/or suppress immune cells.
- The disclosure also provides provides compositions and methods related to shRNA with therapeutic potential.
- The disclosure also provides immunoresponsive cells, including T cells (e.g., cells targeting a tumor antigen) expressing at least one shRNA or other nucleic acid molecule capable of silencing genes that inhibit T cell function.
- The disclosure also provides immunoresponsive cells, including T cells, harboring at least one vector expressing a shRNA and at least one chimeric antigen receptor directed to a tumor antigen.
- In some embodiments, the disclosure provides immunoresponsive cells having tumor specificity comprising a vector encoding a shRNA capable of silencing genes that inhibit T cell function. In some aspects, the shRNA sequence reduces the expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm 1 g, Blvrb, Tnkl, Prkab2, Trpm7 or Ppp3cc. In another aspect, the shRNA comprises 15 contiguous nucleotides complementary to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678. In some aspects, the immunoresponsive cell further comprises a vector encoding a tumor-specific T-cell receptor. In some aspects, the immunoresponsive cell is selected from the group consisting of a tumor-infiltrating lymphocyte (TIL), a Natural Killer T cell (NKT), a cytotoxic T lymphocyte (CTL), and a CD4 T cell.
- In some embodiments, the immunoresponsive cell comprises a vector encoding a CAR, wherein the CAR comprises an antigen binding domain, a transmembrane domain, and a stimulatory domain. In some aspects, the antigen binding domain binds a tumor antigen or pathogen antigen. Exemplary tumor antigens include, for example, prostate-specific membrane antigen (PSMA), Carcinoembryonic Antigen (CEA), CD19, CD20, CD22, ROR1, mesothelin, CD333/IL3Ra, c-Met, Glycolipid F77, EGFRvIII, GD-2, NY-ESO-1 TCR, ERBB2, BIRC5, CEACAM5, WDR46, BAGE, CSAG2, DCT, MAGED4, GAGE1, GAGE2, GAGE3, GAGE4, GAGE5, GAGE6, GAGE7, GAGE8, IL13RA2, MAGEA1, MAGEA2, MAGEA3, MAGEA4, MAGEA6, MAGEA9, MAGEA10, MAGEA12, MAGEB1, MAGEB2, MAGEC2, TP53, TYR, TYRP1, SAGE1, SYCP1, SSX2, SSX4, KRAS, PRAME, NRAS, ACTN4, CTNNB1, CASP8, CDC27, CDK4, EEF2, FN1, HSPA1B, LPGAT1, ME1, HEAT, TRAPPC1, MUM3, MYO1B, PAPOLG, OS9, PTPRK, TPI1, ADFP, AFP, AIM2, ANXA2, ART4, CLCA2, CPSF1, PPIB, EPHA2, EPHA3, FGF5, CA9, TERT, MGAT5, CEL, F4.2, CAN, ETV6, BIRC7, CSF1, OGT, MUC1, MUC2, MUM1, CTAG1A, CTAG2, CTAG, MRPL28, FOLH1, RAGE, SFMBT1, KAAG1, SART1, TSPYL1, SART3, SOX10, TRG, WT1, TACSTD1, SILV, SCGB2A2, MC1R, MLANA, GPR143, OCA2, KLK3, SUPT7L, ARTC1, BRAF, CASP5, CDKN2A, UBXD5, EFTUD2, GPNMB, NFYC, PRDX5, ZUBR1, SIRT2, SNRPD1, HERV-K-MEL, CXorf61, CCDCl10, VENTXP1, SPA17, KLK4, ANKRD30A, RAB38, CCND1, CYP1B1, MDM2, MMP2, ZNF395, RNF43, SCRN1, STEAP1, 707-AP, TGFBR2, PXDNL, AKAP13, PRTN3, PSCA, RHAMM, ACPP, ACRBP, LCK, RCVRN, RPS2, RPL10A, SLC45A3, BCL2L1, DKK1, ENAH, CSPG4, RGS5, BCR, BCR-ABL, ABL-BCR, DEK, DEK-CAN, ETV6-AML1, LDLR-FUT, NPM1-ALK1, PML-RARA, SYT-SSX1, SYT-SSX2, FLT3, ABL1, AML1, LDLR, FUT1, NPM1, ALK, PML1, RARA, SYT, SSX1, MSLN, UBE2V1, HNRPL, WHSC2, EIF4EBP1, WNK2, OAS3, BCL-2, MCL1, CTSH, ABCC3, BST2, 1VIFGE8, TPBG, FMOD, XAGE1, RPSA, COTL1, CALR3, PA2G4, EZH2, FMNL1, HPSE, APC, UBE2A, BCAP31, TOP2A, TOP2B, ITGB8, RPA1, ABI2, CCNI, CDC2, SEPT2, STAT1, LRP1, ADAM17, JUP, DDR1, ITPR2, HMOX1, TPM4, BAAT, DNAJC8, TAPBP, LGALS3BP, PAGE4, PAK2, CDKN1A, PTHLH, SOX2, SOX11, TRPM8, TYMS, ATIC, PGK1, SOX4, TOR3A, TRGC2, BTBD2, SLBP, EGFR, IER3, TTK, LY6K, IGF2BP3, GPC3, SLC35A4, HSMD, H3F3A, ALDH1A1, MFI2, MMP14, SDCBP, PARP12, MET, CCNB1, PAX3-FKHR, PAX3, FOXO1, XBP1, SYND1, ETV5, HSPA1A, HMHA1, TRIM68, and any combination thereof. In some aspects, the antigen binding domain is an antigen-binding fragment of an antibody (e.g., Fab or a scFv). The intracellular domains of such CARs contain cytoplasmic signaling domains derived from the T cell receptor and costimulatory molecules.
- In some embodiments, the vector is a plasmid, retroviral vector, or lentiviral vector.
- In some embodiments, the disclosure provides isolated nucleic acid molecules encoding a shRNA sequence. In another embodiment, the disclosure provides isolated nucleic acid molecules encoding a CAR. In yet another embodiment, the disclosure provides isolated nucleic acid molecules encoding a CAR and a shRNA sequence. In some aspects, the isolated nucleic acid encodes a shRNA sequence reduces the expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, or Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm 1 g, Blvrb, Tnkl, Prkab2, Trpm7 or Ppp3cc. In another aspect, the isolated nucleic acid encodes a shRNA comprising 15 contiguous nucleotides complementary a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678.
- In some embodiments, the isolated nucleic acid encodes a CAR comprising an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain. In some embodiments, the antigen binding domain is an antigen-binding fragment of an antibody (e.g., Fab or a scFv). In some embodiments, the antigen binding domain is a cytoplasmic signaling domain derived from the T cell receptor and costimulatory molecules.
- In some embodiments, the antigen-binding domain binds tumor antigen (e.g., a tumor antigen associated with a solid tumor, lymphoid tumor, melanoma, carcinoma, sarcomas, adenocarcinoma, lymphoma, leukemia, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer).
- In some embodiments the disclosure provides vectors comprising an isolated nucleic acid encoding a shRNA sequence, an isolated nucleic acid encoding a CAR, or an isolated nucleic acid encoding a CAR and a shRNA sequence. In some aspects, the vector is a plasmid, lentiviral vector, retroviral vector, adenoviral vector, adeno-associated viral vector. The shRNA can be operably linked to RNA polymerase II promoter or an RNA polymerase III promoter.
- In yet other embodiments, the invention provides compositions comprising immunoresponsive cells according to the invention, and a pharmaceutically acceptable carrier.
- In some embodiments, the disclosure provides immunoresponsive cells transfected with a first vector encoding a CAR and a second vector encoding a shRNA sequence. In some aspects, the shRNA sequence reduces the expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Map3k3, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm 1 g, Blvrb, Tnkl, Prkab2, Trpm7 or Ppp3cc. In another aspect, the shRNA comprise 15 contiguous nucleotides complementary a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678. In some aspects, the immunoresponsive cell further comprises a vector encoding a tumor-specific T-cell receptor. In some aspects, the immunoresponsive cell is selected from the group consisting of a tumor-infiltrating lymphocyte (TIL), a Natural Killer T cell (NKT), a cytotoxic T lymphocyte (CTL), and a CD4 T cell.
- In some embodiments, the disclosure provides methods for treating cancer in a subject, the method comprising administering to the subject an autologous T cell modified to express a tumor-specific T-cell receptor or CAR and an shRNA, wherein the shRNA sequence reduces the expression of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Map3k3, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm1g, Blvrb, Tnkl, Prkab2, Trpm7 or Ppp3cc. In some aspects, the shRNA sequence comprises 15 contiguous nucleotides complementary to a nucleic acid sequence selected from the group consisting of: SEQ ID NOs: 604-620 and 653-678; and wherein the CAR comprises an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain. In some aspects, the CAR comprises an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain.
- In some embodiments, the disclosure provides methods for treating cancer in a subject, the method comprising administering to the subject an autologous T cell modified to express a tumor-specific T-cell receptor or CAR and an shRNA of the invention. In yet another embodiment, the disclosure provides methods for treating cancer in a subject in need thereof by silencing genes that inhibit T cell function comprising administering to the subject an immunoresponsive cell comprising a vector, the vector encoding a tumor-specific T-cell receptor or a CAR and a shRNA sequence of the invention.
- In some embodiments, the disclosure provides methods for identifying a gene that inhibits the function of an immunoresponsive T cell, the method comprising providing a population of immunoresponsive T cells harboring vectors expressing a shRNA, contacting the population of immunoresponsive T cells with an immunosuppressive tumor, determining whether a shRNA restores T cell function within the immunosuppressive tumor, and identifying a gene associated with a shRNA that restores T cell function within the tumor as a gene that inhibits the function of tumor-infiltrating T cells.
- In some embodiments, the disclosure provides methods for increasing the immune response in a subject in need thereof, the method comprising administering a therapeutic agent that modulates the activity of a gene selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm1g, Blvrb, Tnkl, Prkab2, Trpm7 and Ppp3cc.
- In some cases the sequence encoding an shRNA comprises a first sequence comprising 15-25 (15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25) nucleotides complementary to any of SEQ ID NOs: 604-620 or SEQ ID NOs: 653-678 and a second sequence that is the reverse complement of the first sequence with one or no mismatches (i.e., is perfectly complementary to the first sequence), and a third sequence of 5-9 nucleotides positioned between the first and second sequences.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present invention; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.
- Other features and advantages of the invention will be apparent from the following detailed description and figures, and from the claims.
- The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
-
FIG. 1 is a schematic diagram demonstrating an exemplary approach for in vivo discovery of shRNAs that enhance T cell infiltration and accumulation within the tumor microenvironment. -
FIG. 2 is a set of graphs showing representative flow cytometry plots of CD8+T cells from Rag1−/−/OT-I TCR transgenic mice following infection with an shRNA vector. Transduction efficiency was determined based on expression of the Thy1.1 reporter encoded by the lentiviral vector. Cytokine-cultured T cells expressing the LacZ control shRNA were then stained with a panel of activation markers (black lines; isotype control, shaded). The majority of infected T cells exhibited a central memory phenotype (CD62L+CD44+). -
FIG. 3 is a set of graphs showing representative flow cytometry plots of OT-I T cells sorted from tumors and secondary lymphoid organs for deep sequencing analysis (dLN, tumor-draining lymph node; irLN, irrelevant lymph node). CD8+Va2+Vf35+Thy 1.1+ cells were sorted and genomic DNA was extracted for PCR amplification of the shRNA cassette. -
FIG. 4 is a set of graphs showing deep sequencing data from in vivo shRNA pool screen. Upper row, sequence reads for all genes in a pool in tumor, irrelevant (irLN) and draining lymph node (dLN); lower row, three individual genes (LacZ, negative control) are plotted in comparison to spleen for tumors, irrelevant lymph nodes (irLN) and tumor-draining lymph nodes (dLN). Sequence reads are plotted for these tissues versus spleen. Dashed lines indicate a deviation bylog 2 from diagonal. -
FIG. 5 is a set of graphs showing deep sequencing data from T cell dysfunction screen. shRNA sequencing reads for genes positive in secondary screen are plotted in comparison to spleen for tumors (red), irrelevant lymph nodes (irLN, blue) and tumor-draining lymph nodes (dLN, green), with dashed lines indicating a deviation oflog 2 from the diagonal. Data show enrichment of particular shRNAs representing these genes in tumors compared to spleens or lymph nodes. -
FIG. 6 is a graph showing flow cytometry based quantification of OT-I CD8+T cell enrichment in tumors relative to spleen. The percentage of shRNA-expressing OT-I T cells was determined by flow cytometry in tumors/spleens by gating on reporter proteins in CD8+Va2+Vf35+T cells. Statistical significance was determined for each experimental shRNA against LacZ shRNA (fold enrichment tumor/spleen) (n=3; * p<0.05, ** p<0.01, Student's t-test). -
FIG. 7 is a set of graphs showing representative flow cytometry plots of cell enrichment in tumor transduced with shRNA vectors (LacZ, Akap8I, Smad2, Rbks, Dgkz). The percentage of shRNA-expressing OT-I T cells was determined by flow cytometry in tumors/spleens by gating on reporter proteins in CD8+Va2+Vf35+ T cells. -
FIG. 8 is a set of graphs showing flow cytometry-based quantification of CD4+ and CD8+ T cell enrichment in tumors. shRNA-expressing T cells were identified in tumors and spleens using Thy1.1 reporter (% Thy1.1+CD8 T cells or CD4+ T cells, top and bottom panels). Total numbers of LacZ or Ppp2r2d shRNA-expressing T cells were determined in tumors andspleens 7 days following transfer of 2×106 shRNA-expressing cells (right panels). Fold-enrichment of Ppp2r2d versus LacZ shRNA-expressing T cells in tumors is indicated. -
FIG. 9 is a graph showing reversal of Ppp2r2d shRNA-mediated T cell expansion in tumors by Ppp2r2d cDNA with a mutated shRNA binding site but preserved protein sequence. The three cell populations were identified based on co-expressed reporters; fold-enrichment was calculated based on percentage of reporter-positive cells in tumors versus spleens. -
FIG. 10 a describes the generation of mutant Ppp2r2d cDNA with preserved protein sequence but disrupted shRNA binding site. EL4 cells were transduced with mutant or wild type Ppp2r2d cDNA on a vector also containing GFP. GFP-positive cells were sorted to purity and transduced with LacZ or Ppp2r2d shRNA vectors expressing a Thy1.1 reporter. shRNA-transduced (Thy1.1+) cells were analyzed by flow cytometry for GFP expression. The Ppp2r2d shRNA reduced GFP levels when wild-type Ppp2r2d, but not when mutant Ppp2r2d was expressed. (SEQ ID NOS: 679-681 shown.) -
FIG. 10 b demonstrates that expression of Ppp2r2d mutant cDNA prevents phenotype induced by Ppp2r2d shRNA. OT-I T cells were transduced with a vector encoding LacZ shRNA, Ppp2r2d shRNA or Ppp2r2d shRNA plus mutant Ppp2r2d cDNA. The different cell populations were normalized for transduction efficiency and co-injected into B16-Ova tumor bearing mice. The percentage of each T cell population in tumors and spleens was quantified by gating on CD8+Va2+Vf35+T cells; transduced cells were detected based on expression of Thy1.1 or Ametrine/GFP fluorescent reporters (representative data from 2 independent experiments, n=3 mice per experiment). -
FIG. 10 c is a graph demonstrating real-time PCR analysis for Ppp2r2d expression in OT-I T cells transduced with LacZ shRNA, Ppp2r2d shRNA, and Ppp2r2d shRNA plus Ppp2r2d mutant cDNA. Data represent biological replicates (n=3), each value represents mean+/−s.d. -
FIG. 11 is a graph demonstrating real-time qPCR analysis for Ppp2r2d mRNA levels in OT-I T cells transduced with LacZ shRNA or one of three Ppp2r2d shRNAs identified in the screen. -
FIG. 12 a is a table demonstrating enrichment of particular shRNAs in tumor versus spleen which was calculated based on deep sequencing results from the secondary screen. -
FIG. 12 b demonstrates clustering of mean expression levels for mRNAs found to be significantly regulated by T cells in or tumors expressing the LacZ control shRNA or one of five experimental shRNAs. Significant expression differences were defined as an Anova p value <0.01 between T cells expressing LacZ control shRNA or one of five experimental shRNAs (Alk, Arhgap5, Egr2, Ptpn2 or Ppp2r2d) (JMP-Genomics 6.0, SAS Institute Inc.). mRNAs significantly regulated in one or more treatment groups are shown after clustering (Fast Ward). -
FIG. 12 c is a Venn diagram showing overlaps between expression signatures by tumor-infiltrating T cells transduced with one of the five experimental shRNAs (signatures defined as an Anova p<0.01 as described above). Indicated are the numbers of overlapping probe IDs for any combination of the 5 signatures, as indicated by the overlapping ovals. The significance of the overlaps versus that expected by random chance (Fishers Exact Test) is shown in the accompanying table. -
FIG. 13 a is a set of graphs showing representative flow cytometry plots of demonstrating the frequency of Ppp2r2d or LacZ shRNA-transduced CD8 T cells in tumors onday 1. -
FIG. 13 b are a pair of graphs demonstrating the degree of proliferation (based on CFSE dilution) by Ppp2r2d shRNA-transduced CD8 T cells compared to LacZ shRNA-transduced T cells in tumors ondays -
FIG. 13 c is a set of graphs demonstrating that Ppp2r2d-silencing inhibits T cell apoptosis upon encounter of tumor cells. CFSE-labeled OT-I T cells were co-cultured with B16-Ova tumor cells for 72 hours. Cells were stained with CD8 and annexin V. -
FIG. 13 d is a set of graphs demonstrating intracellular staining for anti-apoptotic proteins. OT-I T cells expressing LacZ or Ppp2r2d shRNA were co-cultured with B16-Ova tumor cells for 48 hours and then stained with isotype control (grey) and phospho-AKT (Ser473), phospho-Bad (Ser 112) or B c1-2 antibodies. -
FIG. 13 e is a graph demonstrating increased IFN-γ secretion by Ppp2r2d-silenced T cells. OT-I T cells isolated from B16-Ova tumor-bearing mice were assayed for IFN-γ expression by intracellular staining. -
FIG. 13 f is a set of graphs demonstrating Ppp2r2d-silenced T cells expand in tumors even without presentation of tumor antigens by professional antigen presenting cells. LacZ or Ppp2r2d shRNA-expressing OT-I T cells were transferred intoday 14 B16-Ova tumor-bearing C57BL/6 or b2m-1-mice. shRNA-expressing T cells were identified based on expression of teal fluorescent protein (TFP) or Thy1.1 (fold enrichment in tumors compared to spleens). -
FIG. 13 g is a graph demonstrating that Ppp2r2d-silencing inhibits T cell apoptosis upon encounter of tumor cells. CFSE-labeled OT-I T cells were co-cultured with B16-Ova tumor cells for 72 hours (activated caspase-3). -
FIG. 14 is a set of graphs demonstrating OT-I T cells expressing LacZ or Ppp2r2d shRNAs labeled with CFSE and stimulated with CD3 antibody for 72 h. Cells were then stained with CD8 and annexin V and analyzed by flow cytometry. -
FIG. 15 is a set of graphs demonstrating accumulation of Ppp2r2d shRNA-expressing T cells in tumors and tumor-draining lymph nodes, but not other secondary lymphoid organs. OT-I T cells expressing Ppp2r2d or LacZ shRNAs were labeled with CFSE and injected into B16-Ova tumor-bearing mice. T cells were isolated from the indicated organs ondays -
FIGS. 16 a-c are a set of graphs demonstrating that the silencing of Ppp2r2d enhances anti-tumor activity of CD4 and CD8 T cells. T cells were activated with anti-CD3/CD28 beads, infected with lentiviruses driving LacZ or Ppp2r2d shRNA expression and injected into B16-Ova (a,b) or B16 (c) tumor-bearing mice. Tumor size was measured every three days following T cell transfer using calipers on the two longest axes. a,b CD4+TRP-1 and/or CD8+OT-I T cells (2×106) were transferred (day 12 and 17) intomice bearing day 12 B16-Ova tumors. Tumor burden (a) and survival (b) were assessed. c, CD4+TRP-1 and CD8+pmel-1 T cells (3×106 CD4+TRP-1 plus 3×106 CD8+pmel-1) were transferred (day 10 and 15) into mice withday 10 B16 tumors. Log-rank (Mantel-Cox) test was performed usingGraphPad Prism version 6 comparing survival of mice treated with LacZ versus Ppp2r2d shRNA-expressing T cells. -
FIG. 17 is a set of graphs demonstrating FACS analysis of T cell enrichment in tumors compared to spleen for cells expressing a panel of Ppp2r2d or Cb1b shRNAs (upper panels). Ppp2r2d and Cb1b mRNA levels were measured by qPCR prior to T cell transfer (lower panels). Data represent biological replicates (n=3), each value represents mean+/−s.d. -
FIG. 18 is a set of graphs demonstrating Ppp2r2d protein quantification by mass spectrometry with labeled synthetic peptides (AQUA, ratio of endogenous to AQUA peptides). Representative data from two independent experiments (a-d); Two-sided student's t-test, * P<0.05, ** P<0.01; mean+/−s.d. -
FIG. 19 is a graph demonstrating qPCR analysis for Ppp2r2d mRNA in tumor-infiltrating OT-I T cells (day 7). -
FIG. 20 a are graphs showing representative flow cytometry plots demonstrating proliferation of Ppp2r2d shRNA-expressing T cells in tumors and tumor-draining lymph nodes. OTI T cells expressing Ppp2r2d or LacZ shRNAs were labeled with CFSE and injected into B16-Ova tumor-bearing mice. T cells were isolated from the indicated organs ondays -
FIG. 20 b are graphs showing representative flow cytometry plots demonstrating viability of tumor-infiltrating T cells. OT-I T cells expressing Pp2r2d or LacZ shRNAs were injected into B16-Ova tumor-bearing mice. T cells were isolated onday 7 and apoptosis was assessed by intracellular staining with an antibody specific for activated caspase-3 (some T cell death may have been caused by the isolation procedure from tumors). -
FIG. 20 c are graphs showing representative flow cytometry plots demonstrating intracellularcytokine staining for IFNγ by LacZ and Ppp2r2d shRNA-expressing T cells harvested from B16-Ova tumors; T cells were labeled with CFSE prior to injection. Data for all experiments are representative of two independent trials. Statistical analysis was performed on biological replicates (n=3); * P<0.05, ** P<0.01, two-sided Student's t-test. Each value represents mean+/−s.d. -
FIGS. 21 a-c are a series of graphs demonstrating ex vivo analysis of cytokine production by tumor-infiltrating OT-I T cells at a single-cell level using a nanowell device (84,672 wells of picoliter volume). a, Representative single cells in nanowells and corresponding patterns of cytokine secretion. b, Percentage of T cells secreting indicated cytokines. c, Cytokine secretion rates calculated from standard curves (mean+/−s.d., Mann Whitney test * P<0.05). -
FIG. 22 a is a set of graphs showing representative flow cytometry plots demonstrating that the majority of adoptively transferred OT-I cells have a memory phenotype in lymph nodes but an effector phenotype in tumors. Cytokine pre-treated cells expressing Ppp2r2d or LacZ shRNAs were injected intomice bearing day 14 B16-Ova tumors. Onday 7 following transfer, T cells were harvested from the indicated organs and stained with CD62L and CD44 antibodies. FACS analysis of shRNA-expressing OT-I cells was performed by gating on CD8/Thy1.1 double-positive cells. -
FIG. 22 b is a set of graphs showing representative flow cytometry plots demonstrating analysis of exhaustion markers. OT-I cells were harvested from draining lymph nodes and tumors of mice and stained with antibodies specific for TIM-3, LAG-3, PD-1 and CD25. For all experiments (n=3 biological replicates; * P<0.05, ** P<0.01, Two-sided Student's t-test); each value represents mean+/−s.d. -
FIG. 23 a is a set of graphs showing demonstrating intracellular staining for granzyme B by OT-I T cells in tumor-draining lymph nodes and tumors. -
FIG. 23 b is a pair of images and a graph demonstrating infiltration of shRNA-expressing T cells into tumors. OT-I T cells were transduced with LacZ or Ppp2r2d shRNA vectors encoding a GFP reporter and injected into B16-Ova tumor-bearing mice. After 7 days, tumors were excised and frozen sections stained with anti-GFP and DAPI to enumerate shRNAexpressing OT-I T cells in tumors. -
FIG. 23 c is a pair of images and a graph demonstrating TUNEL immunohistochemistry performed on tissue sections and apoptotic cells were quantified. -
FIG. 23 d is a set of graphs demonstrating MHC class I expression by tumor cells. Tumors were digested with collagenase and stained with CD45.2 and H-2Kb antibodies. FACS analysis for H-2Kb expression was performed by gating on CD45.2-negative melanoma cells. Datarepresent biological replicates (n=3), each value represents mean+/−s.d. - The present disclosure is based, in part, on the observation that the regulatory mechanisms that result in loss of T cell function within immunosuppressive tumors can be systematically discovered in vivo using a pooled small hairpin RNA (shRNA) screening approach aimed at identifying genes that block the function of tumor infiltrating T-cells. As described in the background section above, tumor associated immunosuppressive mechanisms actively block the activity of T cells in the tumor microenvironment. The methods described herein identify shRNAs that enable robust T cell infiltration and accumulation in tumors, despite the multiple inhibitory signals. As described below, the methods identify shRNA that silence expression of genes responsible for immunosuppression by tumors, allowing for enhanced T cell infiltration and accumulation in tumors and resistance to apoptosis.
- In some instances, the disclosure provides methods for specifically identifying regulatory mechanisms that result in the loss of T cell function within the tumor microenvironment. These methods can include: providing a population of T cells harboring vectors expressing a shRNA; contacting the population of T cells with an immunosuppressive tumor; determining whether a shRNA restores T cell function (e.g., restores ability of T cell to infiltrate and proliferate within the tumor microenvironment) within the immunosuppressive tumor; identifying a gene associated with a shRNA that restores T cell function within the tumor as a gene that inhibits T cell function within the tumor microenvironment.
- The disclosure provides target genes for reducing the immunosuppressive effect of tumors. The expression of the target genes can be reduced in immune cells, e.g., T cells that recognize tumor associated antigens, and the reduction in expression of the target genes can increase the ability of the cells to evade tumor associated immunosuppressive mechanisms.
- The disclosure provides shRNAs that reduce (e.g., silence, eliminate, knock down, knock out, or decrease) expression of genes that impair the function of tumor infiltrating T-cells. These shRNA were identified from the transfer of shRNA transduced T cells into tumors, followed by deep sequencing to quantify the representation of all shRNAs in the tumor and lymphoid organs. Representative shRNA disclosed herein include shRNA that reduce the activity of genes including, for example, Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm 1 g, Blvrb, Tnkl, Prkab2, Trpm7 and Ppp3cc.
- In some instances, the disclosure provides therapeutic compositions (e.g., including isolated nucleic acid molecules, vectors expressing nucleic acid molecules encoding the shRNA) related to the shRNAs that silence expression of genes that block the function of tumor infiltrating T-cells. In other aspects, the disclosure provides modified immunoresponsive cells (e.g., T cells, including Natural Killer T cells (NKT), a cytotoxic T lymphocytes (CTL), and a regulatory T cells) that harbor vectors capable of expressing the shRNA described herein. In another aspect, the modified immunoresponsive cells further harbor a vector capable of expressing a CAR having an antigen binding domain that targets a tumor specific antigen.
- One of the most important recent discoveries in biomedical research is the RNA interference (RNAi) pathway, which is used by cells to regulate the activity of many genes. The principles of RNAi have opened many new possibilities for the identification of therapeutic targets. RNA interference (RNAi) is an effective tool for genome-scale, high throughput analysis of gene function. The term “RNA interference” (RNAi), also called post transcriptional gene silencing (PTGS), refers to the biological process in which RNA molecules inhibit gene expression. An “RNA interfering agent” as used herein, is defined as any agent that interferes with or inhibits expression of a target gene, e.g., a target gene of the invention, by RNA interference (RNAi). Such RNA interfering agents include, but are not limited to, nucleic acid molecules including RNA molecules which are homologous to the target gene, e.g., a target gene of the invention, or a fragment thereof, short interfering RNA (siRNA), short hairpin RNA (shRNA), and small molecules which interfere with or inhibit expression of a target gene by RNA interference (RNAi).
- “RNA interference (RNAi)” is a process whereby the expression or introduction of RNA of a sequence that is identical or highly similar to a target gene results in the sequence specific degradation or PTGS of messenger RNA (mRNA) transcribed from that targeted gene, thereby inhibiting expression of the target gene. This process has been described in plants, invertebrates, and mammalian cells. RNAi can also be initiated by introducing nucleic acid molecules, e.g., synthetic siRNAs or RNA interfering agents, to inhibit or silence the expression of target genes. As used herein, “inhibition of target gene expression” or “inhibition of marker gene expression” includes any decrease in expression or protein activity or level of the target gene (e.g., a marker gene of the invention) or protein encoded by the target gene, e.g., a marker protein of the invention. The decrease may be of at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% or more as compared to the expression of a target gene or the activity or level of the protein encoded by a target gene which has not been targeted by an RNA interfering agent.
- “Short interfering RNA” (siRNA), also referred to herein as “small interfering RNA” is defined as an agent which functions to inhibit expression of a target gene. These are the effector molecules for inducing RNAi, leading to posttranscriptional gene silencing with RNA-induced silencing complex (RISC). In addition to siRNA, which can be chemically synthesized, various other systems in the form of potential effector molecules for posttranscriptional gene silencing are available, including short hairpin RNAs (shRNAs), long dsRNAs, short temporal RNAs, and micro RNAs (miRNAs). These effector molecules either are processed into siRNA, such as in the case of shRNA, or directly aid gene silencing, as in the case of miRNA. The present invention thus encompasses the use of shRNA as well as any other suitable form of RNA to effect posttranscriptional gene silencing by RNAi. Use of shRNA has the advantage over use of chemically synthesized siRNA in that the suppression of the target gene is typically long-term and stable. An siRNA may be chemically synthesized, may be produced by in vitro by transcription, or may be produced within a host cell from expressed shRNA.
- In one embodiment, a siRNA is a small hairpin (also called stem loop) RNA (shRNA). These shRNAs are composed of a short (e.g., 19-25 nucleotides) antisense strand, followed by a 5-9 nucleotide loop, and the complementary sense strand. Alternatively, the sense strand may precede the nucleotide loop structure and the antisense strand may follow. These shRNAs may be contained in plasmids, retroviruses, and lentiviruses.
- As used herein, “gene silencing” induced by RNA interference refers to a decrease in the mRNA level in a cell for a target gene by at least about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 99%, about 100% of the mRNA level found in the cell without introduction of RNA interference. In one preferred embodiment, the mRNA levels are decreased by at least about 70%, about 80%, about 90%, about 95%, about 99%, about 100%.
- The term “reduced” or “reduce” as used herein generally means a decrease by at least 10% as compared to a reference level, for example a decrease by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% decrease, or any integer decrease between 10-100% as compared to a reference level.
- The term “increased” or “increase” as used herein generally means an increase of at least 10% as compared to a reference level, for example an increase of at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% increase or any integer increase between 10-100% as compared to a reference level, or about a 2-fold, or about a 3-fold, or about a 4-fold, or about a 5-fold or about a 10-fold increase, or any increase between 2-fold and 10-fold or greater as compared to a reference level.
- In some embodiments, the disclosure provides immunoresponsive cells, including T cells, cytotoxic T cells, tumor-infiltrating lymphocytes (TIL), regulatory (CD4) T cells, and Natural Killer (NKT) cells, expressing at least one of an antigen-recognizing receptor. In any aspect, the immunoresponsive cells express at least one tumor specific antigen-recognizing receptor. In some aspects, tumor cell antigen specific T cells, NKT cells, TIL, CTL cells or other immunoresponsive cells are used. Non-limiting examples of immunoresponsive cells include T cells, such as, for example, αβ-TCR+ T cells (e.g., CD8+ T cells or CD4+ T cells) γδ-TCR+ T cells, tumor-infiltrating lymphocytes (TIL), Natural Killer T cells (NKT), a cytotoxic T lymphocytes (CTL), and a CD4 T cells.
- In some embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences comprising a sequence at least 12, 15, 20 or 25 contiguous nucleotides complementary to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 604-620 and 653-678. The shRNA also includes the reverse complement of the contiguous nucleotide sequence and a short sequence located between the two sequences so that the two sequences form a stem loop shRNA that can be processed within a cell provide an siRNA that inhibits the expression of the protein encoded by one of SEQ ID NOs: 604-620 and 653-678, and compositions thereof.
- Table 1 provides a list of genes identified here as being involved with tumor immunosuppression of T cells.
-
TABLE 1 Human Murine Sequence Sequence Accession Accession Gene Human Gene Sequence No. No. Ppp2r2d gtgtccggccaagcggcgccctgaaggcgtgtccggccgcagcttaggctctccgg NM_018461 NM_026391 gagtccccggagagtaggggcggccggcggcgctagtcttctggggagcgccgg gtgcacaccggaccactgcgggaggcctagggccgagggccgaggagctggcct gcgcccggcgaccccggcttccctccgcagtcgcccaggcgtcccttcccccctac agccgagcggcgccgggcgcaggcgcattggggcccccggcagcccccgcgg cccgccccgtccgctgcccgtccgaggaggcggagggcgatgacgtcatcgagc ggggcgacgggcattgggcgccattttgaaaagggaaaaaaatccctccccggcg gcggcggcggcggcggcggcgccggcggtggtggcggccccggggctgagcg ctcggctgcagcggcgcggaggccgtctccctggtctgccgcggtccccgcccgtc ccgccgccggctgccatggcaggagccggaggcggcggctgccccgcgggcgg caacgacttccagtggtgcttctcgcaggtcaagggggccatcgacgaggacgtgg ccgaagcggacatcatttccaccgttgagtttaattactctggagatcttcttgcaacag gagacaagggggcagagttgttatttttcagcgtgaacaagagaataaaagccgcc ctcattctaggggagaatataatgtttacagcacctttcaaagtcatgaaccggagtttg actatttgaaaagtctagaaattgaggaaaaaattaataaaattaggtggttaccacaac agaatgctgctcattttctactgtctacaaatgataaaactataaaattatggaaaataag tgaacgggataaaagagcagaaggttataacctgaaagacgaagatggaagacttc gagacccatttaggatcacggcgctacgggtcccaatattgaagcccatggatcttat ggtagaagcgagtccacggcgaatttttgcaaatgctcacacatatcatataaattcca tttcagtaaatagtgatcatgaaacatatctttctgcagatgacctgagaattaatttatgg cacttagaaatcacagatagaagctttaacatcgtggacatcaagcctgctaacatgg aggagctgaccgaagtcatcactgcagccgagttccacccgcaccagtgcaacgtg ttcgtctacagcagtagcaaagggaccatccgcctgtgtgacatgcgctcctcggcc ctgtgcgacagacactccaagttttttgaagagcctgaagatcccagcagtaggtcctt cttctcagaaataatttcatccatatccgatgtaaaattcagtcatagtgggcggtacatg atgaccagagactacctgtcggtgaaggtgtgggacctcaacatggagagcaggcc ggtggagacccaccaggtccacgagtacctgcgcagcaagctctgctctctctatga gaacgactgcatctttgacaagtttgagtgttgctggaacggttcggatagcgccatca tgaccgggtcctataacaacttcttcaggatgtttgatagagacacgcggagggatgt gaccctggaggcctcgagagagagcagcaaaccgcgcgccagcctcaaaccccg gaaggtgtgtacggggggtaagcggaggaaagacgagatcagtgtggacagtctg gacttcaacaagaagatcctgcacacagcctggcaccccgtggacaatgtcattgcc gtggctgccaccaataacttgtacatattccaggacaaaatcaactagagacgcgaac gtgaggaccaagtcttgtcttgcatagttaagccggacatttttctgtcagagaaaagg catcattgtccgctccattaagaacagtgacgcacctgctacttcccttcacagacaca ggagaaagccgcctccgctggaggcccggtgtggttccgcctcggcgaggcgcga gacaggcgctgctgctcacgtggagacgctctcgaagcagagttgacggacactgc tcccaaaaggtcattactcagaataaatgtatttatttcagtccgagccttcctttccaattt atagaccaaaaaattaacatccaagagaaaagttattgtcagataccgctctttctccaa ctttccctctttctctgccatcacacttgggccttcactgcagcgtggtgtggccaccgt ccgtgtcctctcggccttcctccgagtccaggtggactctgtggatgtgtggatgtggc ccgagcaggctcaggggccccactcacccacagcatccgccgccaccccttcgg gtgtgagcgctcaataaaaacaacacactataaagtgtttttaaatccaaaaaaaaaaa aaaa (SEQ ID NO: 604) Eif2ak3 ggaaagtccaccttccccaacaaggccagcctgggaacatggagtggcagcggcc NM_004836.5 NM_010121.2 gcagccaatgagagagcaaacgcgcggaaagtttgctcaatgggcgatgtccgag ataggctgtcactcaggtggcagcggcagaggccgggctgagacgtggccaggg gaacacggctggctgtccaggccgtcggggggcagtagggtccctagcacgtcct tgccttcttgggagctccaagcggcgggagaggcaggcgtcagtggctgcgcctcc atgcctgcgcgcggggcgggacgctgatggagcgcgccatcagcccggggctgc tggtacgggcgctgctgctgctgctgctgctgctggggctcgcggcaaggacggtg gccgcggggcgcgcccgtggcctcccagcgccgacggcggaggcggcgttcgg cctcggggcggccgctgctcccacctcagcgacgcgagtaccggcggcgggcgc cgtggctgcggccgaggtgactgtggaggacgctgaggcgctgccggcagccgc gggagagcaggagcctcggggtccggaaccagacgatgagacagagttgcgacc gcgcggcaggtcattagtaattatcagcactttagatgggagaattgctgccttggatc ctgaaaatcatggtaaaaagcagtgggatttggatgtgggatccggttccttggtgtca tccagccttagcaaaccagaggtatttgggaataagatgatcattccttccctggatgg agccctcttccagtgggaccaagaccgtgaaagcatggaaacagttcctttcacagtt gaatcacttcttgaatcttcttataaatttggagatgatgttgttttggttggaggaaaatct ctgactacatatggactcagtgcatatagtggaaaggtgaggtatatctgttcagctctg ggttgtcgccaatgggatagtgacgaaatggaacaagaggaagacatcctgcttcta cagcgtacccaaaaaactgttagagctgtcggacctcgcagtggcaatgagaagtg gaatttcagtgttggccactttgaacttcggtatattccagacatggaaacgagagccg gatttattgaaagcacctttaagcccaatgagaacacagaagagtctaaaattatttcag atgtggaagaacaggaagctgccataatggacatagtgataaaggtttcggttgctga ctggaaagttatggcattcagtaagaagggaggacatctggaatgggagtaccagttt tgtactccaattgcatctgcctggttacttaaggatgggaaagtcattcccatcagtctttt tgatgatacaagttatacatctaatgatgatgttttagaagatgaagaagacattgtaga agctgccagaggagccacagaaaacagtgtttacttgggaatgtatagaggccagct gtatctgcagtcatcagtcagaatttcagaaaagtttccttcaagtcccaaggctttgga atctgtcactaatgaaaacgcaattattcctttaccaacaatcaaatggaaacccttaatt cattctccttccagaactcctgtcttggtaggatctgatgaatttgacaaatgtctcagta atgataagttttctcatgaagaatatagtaatggtgcactttcaatcttgcagtatccatat gataatggttattatctaccatactacaagagggagaggaacaaacgaagcacacag attacagtcagattcctcgacaacccacattacaacaagaatatccgcaaaaaggatc ctgttcttcttttacactggtggaaagaaatagttgcaacgattttgttttgtatcatagcaa caacgtttattgtgcgcaggcttttccatcctcatcctcacaggcaaaggaaggagtct gaaactcagtgtcaaactgaaaataaatatgattctgtaagtggtgaagccaatgaca gtagctggaatgacataaaaaactctggatatatatcacgatatctaactgattttgagc caattcaatgcctgggacgtggtggctttggagttgtttttgaagctaaaaacaaagta gatgactgcaattatgctatcaagaggatccgtctccccaatagggaattggctcggg aaaaggtaatgcgagaagttaaagccttagccaagcttgaacacccgggcattgtta gatatttcaatgcctggctcgaagcaccaccagagaagtggcaagaaaagatggatg aaatttggctgaaagatgaaagcacagactggccactcagctctcctagcccaatgg atgcaccatcagttaaaatacgcagaatggatcctttcgctacaaaagaacatattgaa atcatagctccttcaccacaaagaagcaggtctttttcagtagggatttcctgtgaccag acaagttcatctgagagccagttctcaccactggaattctcaggaatggaccatgagg acatcagtgagtcagtggatgcagcatacaacctccaggacagttgccttacagactg tgatgtggaagatgggactatggatggcaatgatgaggggcactcctttgaactttgtc cttctgaagcttctccttatgtaaggtcaagggagagaacctcctcttcaatagtatttga agattctggctgtgataatgcttccagtaaagaagagccgaaaactaatcgattgcata ttggcaaccattgtgctaataaactaactgctttcaagcccaccagtagcaaatcttcttc tgaagctacattgtctatttctcctccaagaccaaccactttaagtttagatctcactaaaa acaccacagaaaaactccagcccagttcaccaaaggtgtatctttacattcaaatgca gctgtgcagaaaagaaaacctcaaagactggatgaatggacgatgtaccatagagg agagagagaggagcgtgtgtctgcacatcttcctgcagatcgcagaggcagtggag tttcttcacagtaaaggactgatgcacagggacctcaagccatccaacatattctttaca atggatgatgtggtcaaggttggagactttgggttagtgactgcaatggaccaggatg aggaagagcagacggttctgaccccaatgccagcttatgccagacacacaggacaa gtagggaccaaactgtatatgagcccagagcagattcatggaaacagctattctcata aagtggacatcttttctttaggcctgattctatttgaattgctgtatccattcagcactcag atggagagagtcaggaccttaactgatgtaagaaatctcaaatttccaccattatttact cagaaatatccttgtgagtacgtgatggttcaagacatgctctctccatcccccatgga acgacctgaagctataaacatcattgaaaatgctgtatttgaggacttggactttccagg aaaaacagtgctcagacagaggtctcgctccttgagttcatcgggaacaaaacattca agacagtccaacaactcccatagccctttgccaagcaattagccttaagttgtgctagc aaccctaataggtgatgcagataatagcctacttcttagaatatgcctgtccaaaattgc agacttgaaaagtttgttcttcgctcaatttttttgtggactactttttttatatcaaatttaag ctggatttgggggcataacctaatttgagccaactcctgagttttgctatacttaaggaa agggctatctttgttctttgttagtctcttgaaactggctgctggccaagctttatagccct caccatttgcctaaggaggtagcagcaatccctaatatatatatatagtgagaactaaa atggatatatttttataatgcagaagaaggaaagtccccctgtgtggtaactgtattgttc tagaaatatgctttctagagatatgatgattttgaaactgatttctagaaaaagctgactc catttttgtccctgggggtaaattaggaatctgcactattttggaggacaagtagcaca aactgtataacggtttatgtccgtagttttatagtcctatttgtagcattcaatagctttattc cttagatggttctagggtgggtttacagctttttgtacttttacctccaataaagggaaaat gaagctttttatgtaaattggttgaaaggtctagttttgggaggaaaaaagccgtagtaa gaaatggatcatatatattacaactaacttcttcaactatggactttttaagcctaatgaaa tcttaagtgtcttatatgtaatcctgtaggttggtacttcccccaaactgattataggtaac agtttaatcatctcacttgctaacatgtttttatttttcactgtaaatatgtttatgttttatttata aaaattctgaaatcaatccatttgggttggtggtgtacagaacacacttaagtgtgttaa cttgtgacttctttcaagtctaaatgatttaataaaactttttttaaattaaaaaaaaaaaaa aaaaaa (SEQ ID NO: 605) Arhgap5 ctcggtgagcgcgccgaggaagagaggcgagcggagagtggaggaggaggcg NM_ NM_009706.2 gcggcggcgggagcggtccccaggaatgtcgctgccgccgccaccgccggggc 001030055.1 cgctgccgttgaggaggagacggaggagaccgacgttgttaggaagatgatcccta tgatcttgaagatgtttctgcacagaaatgagggaaatacaaagaaccaaatacagttc tgaaatttgggatctgtattttgagatgattttattttcagaatgagaagcatatctggttac ctttatgaatgtagagacatgagaagagagttatgatggcaaaaaacaaagagcctc gtcccccatcctataccatcagtatagttggactctctgggactgaaaaagacaaaggt aactgtggagttggaaagtcttgtttgtgcaatagatttgtacgctcaaaagcagatgaa tattatccagagcatacttctgtgcttagcaccattgactttggaggacgagtagtaaac aatgatcactttttgtactggggtgacataatacaaaatagtgaagatggagtagaatg caaaattcatgtcattgaacaaacagagttcattgatgaccagactttcttgcctcatcg gagtacgaatttgcaaccatatataaaacgtgcagctgcatctaaattgcagtcagcag aaaaactaatgtacatttgcactgatcagctaggcttagaacaagactttgaacagaag caaatgcctgaagggaagctcaacgtagatggatttttattatgcattgatgtaagtcaa ggatgcaataggaagtttgatgatcaacttaaatttgtgaataacctttttgtccagttatc aaaatcaaaaaaacctgtaataatagcagcaactaaatgtgatgaatgcgtggatcatt atcttagagaagttcaggcatttgcttcaaataaaaagaaccttcttgtagtggaaacat cagcacgatttaatgtcaacattgaaacatgttttactgcactggtacaaatgttggataa aactcgtagcaagcctaaaattattccctatttggatgcttataaaacacagagacaact tgttgtcacagcaacagataagtttgaaaaacttgtgcagactgtgagagattatcatg caacttggaaaactgttagtaataaattaaaaaatcatcctgattatgaagaatacatca acttagagggaacaagaaaggccagaaatacattctcaaaacatatagaacaactta aacaggaacatataagaaaaaggagagaagagtatataaatactttaccaagagcttt taacactcttttgccaaatctagaagagattgaacatttgaattggtcagaagctttgaa gttaatggaaaagagagcagatttccagttatgttttgtggtgctagaaaaaactccttg ggatgaaactgaccatatagacaaaattaatgataggcggattccatttgacctcctga gcactttagaagctgaaaaagtctatcagaaccatgtacagcatctgatatccgagaa gaggagggtggaaatgaaggaaaaattcaaaaagactttggaaaaaattcaattcatt tcaccagggcagccatgggaggaagttatgtgctttgttatggaggatgaagcctaca aatatatcactgaggctgatagcaaagaggtatatggtaggcatcagcgagaaatagt tgaaaaagccaaagaagagtttcaagaaatgctttttgagcattctgaacttttttatgatt tagatcttaatgcaacacctagttcagataaaatgagtgaaattcatacagttctgagtg aagaacctagatataaagctttacagaaacttgcacctgatagggaatcccttctactta agcatataggatttgtttatcatcccactaaagaaacatgtcttagtggccaaaattgtac agacattaaagtggagcagttacttgctagtagtcttttacagttggatcatggccgctt aagattatatcacgatagtaccaatatagataaagttaacctttttattttagggaaggat ggccttgcccaagaactagcaaatgagataaggacacaatccactgatgatgagtat gccttagatggaaaaatttatgaacttgatcttcggccggttgatgccaaatcgccttac tttttgagtcagttatggactgccgcctttaaaccacatgggtgcttctgtgtatttaattcc attgagtcattgagttttattggggaatttattgggaaaataagaactgaagcttctcaga tcagaaaagataaatacatggctaatcttccatttacattaattctggctaatcagagag attccattagtaagaatctaccaattctcaggcaccaagggcagcagttggcaaacaa gttgcaatgtccttttgtagatgtacctgctggtacatatcctcgtaaatttaatgaaaccc aaataaagcaagctctcagaggagtattggaatcagttaaacacaatttggatgtggtg agcccaattcctgccaataaggacttatcagaagctgacttgagaattgtcatgtgcgc catgtgtggagatccatttagtgtggatcttattctttcacccttccttgattctcattcttgc agtgctgctcaagctggacagaataattccctaatgcttgataaaatcattggtgaaaa aaggaggcgaatacagatcacaatattatcataccactcttcaattggagtaagaaaa gatgaactagttcatgggtatatattagtttactctgcaaaacggaaagcttcgatggga atgcttcgagcatttctatcagaagttcaagacaccattcctgtacagctggtggcagtt actgacagccaagcagatttttttgaaaatgaggctatcaaagagttaatgactgaagg agaacacattgcaactgagatcactgctaaatttacagcactgtattctttatctcagtat catcggcaaactgaggtctttactctgttttttagtgatgttctagagaaaaaaaatatgat agaaaattcttatttgtctgataatacaagggaatcaacccatcaaagtgaagatgttttt ctaccatctcccagagactgttttccctataataactaccctgattcagatgatgacaca gaagcaccacctccttatagtccaattggggatgatgtacagttgcttccaacacctag tgaccgttccagatatagattagatttggaaggaaatgagtatcctattcatagtacccc aaactgtcatgaccatgaacgcaaccataaagtgcctccacctattaaacctaaacca gttgtacctaagacaaatgtgaaaaaactcgatccaaaccttttaaaaacaattgaagc tggtattggtaaaaatccaagaaagcagacttcccgggtgcctttggcacatcctgaa gatatggatccttcagataactatgcggaacccattgatacaattttcaaacagaaggg ctattctgatgagatttatgttgtcccagatgatagtcaaaatcgtattaaaattcgaaact catttgtaaataacacccaaggagatgaagaaaatgggttttctgatagaacctcaaaa agtcatggggaacggaggccttcaaaatacaaatataaatctaaaaccttgtttagtaa agccaagtcatactatagaagaacacattcagatgccagtgatgatgaggctttcacc acttctaaaacaaaaagaaaaggaagacatcgtggaagtgaagaagatccacttcttt ctcctgttgaaacttggaaaggtggtattgataatcctgcaatcacttctgaccaggagt tagatgataagaagatgaagaagaaaacccacaaagtgaaagaagataaaaagca gaaaaagaaaactaagaacttcaatccaccaacacgtagaaattgggaaagtaatta ctttgggatgcccctccaggatctggttacagctgagaagcccataccactatttgttg agaaatgtgtggaatttattgaagatacagggttatgtaccgaaggactctaccgtgtc agcgggaataaaactgaccaagacaatattcaaaagcagtttgatcaagatcataata tcaatctagtgtcaatggaagtaacagtaaatgctgtagctggagcccttaaagctttct ttgcagatctgccagatcctttaattccatattctcttcatccagaactattggaagcagc aaaaatcccggataaaacagaacgtcttcatgccttgaaagaaattgttaagaaatttc atcctgtaaactatgatgtattcagatacgtgataacacatctaaacagggttagtcagc aacataaaatcaacctaatgacagcagacaacttatccatctgtttttggccaaccttga tgagacctgattttgaaaatcgagagtttctgtctactactaagattcatcaatctgttgtt gaaacattcattcagcagtgtcagtttttcttttacaatggagaaattgtagaaacgacaa acattgtggctcctccaccaccttcaaacccaggacagttggtggaaccaatggtgcc acttcagttgccgccaccattgcaacctcagctgatacaaccacaattacaaacggat cctcttggtattatatgagtaggaagtgattgcaaacaggctggatttggacaaaaagc aaatctagacatgcatgtttcagggttcagtagtatacttcatgtttcatacagataattca cattcaaaattacattttctctttgaactagatggtattccttattcacttacattacaaatct aagaccatgtgataagcatgactggagaggtttaatttttataaacaaaaatagctataa agtacaaagctgctgctgcatgcaaccttattgcaatcagtatatcattcctgtggcaatt tctgtcaccttatattgtgaataaaatttttctatagaaattaaatgatttaaaaactcaccta tatgaaacatttaatgcttttcagcctgctttctggctgattttgttatttgatgtgctaatttg ggcaacttaatttacattctggcagtcggtgtagataactaaaagcccagttaagtatttt ataatttcaggctactgaggccatgcttgggatgttgtttgaaagaaagaaaaaataca cttgacatatttcacatttctgtaccttcatctttacttccaagtaaacccgtggatgatttg atgagggataaatgaacctatttcttttacacacataccaaggacatgcttgtggctaaa gtgagttgataatgttgtgcaaaggatagttgtcaccaactcatttctttatggtccataat gaaataaaaattttgtatactgttaattctgtaaacagatgcatgttcaaaagatctatgat ggtcttgtaatcttaatctaatatattttagatattttaattttttccctcttggggaacacattt agtatagtgtagaaaatacttccatgacattttcatataaggttatataacttttcatacata aacatgaaatttgttgtagaaaattctttaaaccaaacatttaaatctaggacttcaattta atttgttccttgaatctatttttatgtggcccttaaaaaatatccaaaaaacccattgctaat atagcaataaaaatactttgggtactgacagactctttggagtgtttatattacaaatttgt attcatattcttttctgtgatgtgttgtactaaaatccaaaatggcttttgcaccatttttaag ccaattttttcctttgatgttggtaccagaattactataagtgactgctgcttttgggggta aacattttgttagtgaagataaaaccagaacactaaattatggataaaattttcagaata ggtggcacaggtaaatttcactaggttatattttgtgtagtaaagaaaaaaattatttggt caatgttatcttaattcatactacaatttaagattatcttatgtgtattatagtaaatagatga ttttcagattcaaggctcctaagagtttgatttgctctgttttttcctaaaataaatattgtctc tcccaactgttaagttctaggtattgtacttccaattttaacttcagaaccaagatgttggc atgaaccaggctgctgttgaagtacatgtatattataaattatcttatttgtgttatactctta catgttatcttttctaagaaaacaaagtccctattattcctattgcaaagcacacaggaat taagaaagtacagtaatttttaaaaaaaaatccggtaaatgtagtattcttaacctgttcta tattacttatacctattgtctatatagctttaatttatagttgtcagtttaactattggcatgtct ggcaaagaaaattaaactttaagagttttataaactgtttctaggttgctaaagaatttattt ttctactatatatggtatagacaaagcatcaaactatgtacaggaaaaaagcctgactat ttctatttggaagtaggctgaaaagagaattttcaaaactgttcgtgtcttcagttcattct gtcataactttgctattgtaatatgtgaataccagtttatttaagctgttctcttttatactgta ttaatttaatgttcatctgcgtttagtaccatttttgttattaaaactggcatttaccgtttttca cattaacccaccttgcaccttcccccaaacttatctccacttttctatgcattctatcattga tttgacacacttcatagtgagtcatttaaatactctacgtttggttcaattaaccagtaggtt acagttattgaaaattaaagtacagtttaaagctcagtctgttacactgaattgattgtgtt tgtttttgccaagggtttagatatgcttttaaatattagaaacatctaagaacagaataac ataattaaacttttttctggtaagttactggaaggtttcactgtttagggacctatcatatga gacttcttaaaggattaaaagaataggatagtctcataattgtgagtaaacatcaaggc attatattttacaatactgaataaaatttcatctacacacatgttgccattgtttcatttaagg ttcagtgcttatagttaactacaatattggacctaacaggatctagattagcaatataaag aagcatagtggtactctgtttcacactttcagtagatttattagaagtcaaattctattcaa cagacacttattaggatatacaactaatttaagaataaaattccaggcacaatatatttttt ttaaatggtatttgttagtagtgcttcttccccttaacatttacagtgtaaatactgcaggta accgcaatctaagttagccaaaaagcagctttttttcccatactgtatgtaaataatgtag acctgggtttttttgtttatttgggtttgtttttttttttgaggtactggaatctaattaatatctc ttaggtatcaacaaaagggaacaattggaatgagaatttaggccttagcttccatggtg atttttagttttttatacagtaataattgtgatgctatttgtcaactggatataaatacacatat aattttaaaaagtcaaaagtgcttttgtttctttgtttaatgtaatttttgtgcttcacctacag gatgctgcagtaaattaaatatcagtgaagcttctgatgtataaagaatgctatgaataa aacattaagaagctgtgtaattttaagttatagttgcctctatttttaccatttcattggtaaa aattagctaatttttttcaagtgaaatgaaaaataaaaatataaatttatcaatatgatgga aatcttattaaggagatgtattattgaattttcactgtacctgaaaaggagattcaaaatttt ttctggggatgtatataggtgaaaatttgattttttaaattatcaggaaaacaagataatg cacagatttctaagactaagatcttacctggatgtgatttttgagctgtggctagacattc tttagagccactggaaatattttgaaaactattctagttatagcagagctgctaatattaa cgaatatatttgtgtcttcatggtttgtgactattaggccaaattttgtggtatatgttgtca gtctggatctggtgaggtctgttcaacatgaatctttgtgttatcttgaatttagtagtttca aggtacttaaattcttaacagtttctaatttgtttcaatacatatgggacatggttgattttttt actgtattagaactcttggaagttcttagccttttcaggttatgaaatacctgaaagtaaa attttctaagatttaataagggaagatactattcaaatcattttcttaggatagcatctttac atacaatgagaggattgtacaagcattaatctcatattccaacatccagttacttgatgtg atccaagtaccctggtctttttgaagcagttaaaatctaattaattaactttgggagtcttc actattcaattgatcctcatcattgtcctatttgcatgactccattttttcctccactatatga gttttctttgtcagggggagaggagtgggaagagtcacagaatctcatattcacatctt aattaaattgtgtgaaattagtcttttgtggaaattctgtaggcagtatgattttgaaaagc taaccaatgataattagcattttagttaatactaaatgcataaaattataacccttgaaatt aatttggtgctggcagttctggtttagtcatttttaccagtagttagtagtattaagacctg cagtatatgcactttttgagtagctgtcaaataattgtagttgagaaacaacttgtttattct cacaattcagattttctattcagttttgtctcaaatagtaagttattgtgaacaatttaataac ggccctcctgttctagtttgcctaatattttagttaagatttagtgttttaacctatttttttaag tttattttttgtattagattttatttgaataagttatgtgggtttagtaattgacctatttattcatt gcttcactaattcatccagattagttttaagtgtgtatatgtatttgctcaccagatcattttc ttgggaccttgaactgtgaatgttttgtcctaaccatttaatattttctaggtacttgctgca agttcttgaactattttaccagctttaactttggggctcttagtttcttttctccagattcttgtt attttattttatccaaataaatatttaggtgttctaagaa (SEQ ID NO: 606) Smad2 cggccgggaggcggggcgggccgtaggcaaagggaggtggggaggcggtggc NM_001003652 NM_ cggcgactccccgcgccccgctcgccccccggcccttcccgcggtgctcggcctc 001252481 gttcctttcctcctccgctccctccgtcttccatacccgccccgcgcggctttcggccg gcgtgcctcgcgccctaacgggcggctggaggcgccaatcagcgggcggcaggg tgccagccccggggctgcgccggcgaatcggcggggcccgcggcccagggtgg cagggggtctacccgcgcggccgcggcggcggagaagcagctcgccagccag cagcccgccagccgccgggaggttcgatacaagaggctgttttcctagcgtggcttg ctgcctttggtaagaacatgtcgtccatcttgccattcacgccgccagttgtgaagaga ctgctgggatggaagaagtcagctggtgggtctggaggagcaggcggaggagag cagaatgggcaggaagaaaagtggtgtgagaaagcagtgaaaagtctggtgaaga agctaaagaaaacaggacgattagatgagcttgagaaagccatcaccactcaaaact gtaatactaaatgtgttaccataccaagcacttgctctgaaatttggggactgagtacac caaatacgatagatcagtgggatacaacaggcctttacagcttctctgaacaaaccag gtctcttgatggtcgtctccaggtatcccatcgaaaaggattgccacatgttatatattgc cgattatggcgctggcctgatcttcacagtcatcatgaactcaaggcaattgaaaactg cgaatatgcttttaatcttaaaaaggatgaagtatgtgtaaacccttaccactatcagag agttgagacaccagttttgcctccagtattagtgccccgacacaccgagatcctaaca gaacttccgcctctggatgactatactcactccattccagaaaacactaacttcccagc aggaattgagccacagagtaattatattccagaaacgccacctcctggatatatcagtg aagatggagaaacaagtgaccaacagttgaatcaaagtatggacacaggctctcca gcagaactatctcctactactctttcccctgttaatcatagcttggatttacagccagttac ttactcagaacctgcattttggtgttcgatagcatattatgaattaaatcagagggttgga gaaaccttccatgcatcacagccctcactcactgtagatggctttacagacccatcaaa ttcagagaggttctgcttaggtttactctccaatgttaaccgaaatgccacggtagaaat gacaagaaggcatataggaagaggagtgcgcttatactacataggtggggaagttttt gctgagtgcctaagtgatagtgcaatctttgtgcagagccccaattgtaatcagagata tggctggcaccctgcaacagtgtgtaaaattccaccaggctgtaatctgaagatcttca acaaccaggaatttgctgctcttctggctcagtctgttaatcagggttttgaagccgtcta tcagctaactagaatgtgcaccataagaatgagttttgtgaaagggtggggagcaga ataccgaaggcagacggtaacaagtactccttgctggattgaacttcatctgaatgga cctctacagtggttggacaaagtattaactcagatgggatccccttcagtgcgttgctc aagcatgtcataaagcttcaccaatcaagtcccatgaaaagacttaatgtaacaactctt ctgtcatagcattgtgtgtggtccctatggactgtttactatccaaaagttcaagagaga aaacagcacttgaggtctcatcaattaaagcaccttgtggaatctgtttcctatatttgaa tattagatgggaaaattagtgtctagaaatactctcccattaaagaggaagagaagattt taaagacttaatgatgtcttattgggcataaaactgagtgtcccaaaggtttattaataac agtagtagttatgtgtacaggtaatgtatcatgatccagtatcacagtattgtgctgtttat atacatttttagtttgcatagatgaggtgtgtgtgtgcgctgcttcttgatctaggcaaac ctttataaagttgcagtacctaatctgttattcccacttctctgttatttttgtgtgtcttttttaa tatataatatatatcaagattttcaaattatttagaagcagattttcctgtagaaaaactaat ttttctgccttttaccaaaaataaactcttgggggaagaaaagtggattaacttttgaaat ccttgaccttaatgtgttcagtggggcttaaacagtcattctttttgtggttttttgttttttttt gtttttttttttaactgctaaatcttattataaggaaaccatactgaaaacctttccaagcct cttttttccattcccatttttgtcctcataatcaaaacagcataacatgacatcatcaccagt aatagttgcattgatactgctggcaccagttaattctgggatacagtaagaattcatatg gagaaagtccctttgtcttatgcccaaatttcaacaggaataattggcttgtataatctag cagtctgttgatttatccttccacctcataaaaaatgcataggtggcagtataattattttc agggatatgctagaattacttccacatatttatccctttttaaaaaagctaatctataaata ccgtttttccaaaggtattttacaatatttcaacagcagaccttctgctcttcgagtagtttg atttggtttagtaaccagattgcattatgaaatgggccttttgtaaatgtaattgtttctgca aaatacctagaaaagtgatgctgaggtaggatcagcagatatgggccatctgtttttaa agtatgttgtattcagtttataaattgattgttattctacacataattatgaattcagaatttta aaaattgggggaaaagccatttatttagcaagttttttagcttataagttacctgcagtct gagctgttcttaactgatcctggttttgtgattgacaatatttcatgctctgtagtgagagg agatttccgaaactctgttgctagttcattctgcagcaaataattattatgtctgatgttga ctcattgcagtttaaacatttcttcttgtttgcatcttagtagaaatggaaaataaccactc ctggtcgtcttttcataaattttcatatttttgaagctgtctttggtacttgttctttgaaatcat atccacctgtctctataggtatcattttcaatactttcaacatttggtggttttctattgggta ctccccattttcctatatttgtgtgtatatgtatgtgttcatgtaaatttggtatagtaatttttt attcattcaacaaatatttattgttcacctgtttgtaccaggaacttttcttagtctttgggta aaggtgaacaagacaactacagttcctgcctttgctgagacagcagttacactaaccc ttaattatcttacttgtctatgaaggagataaacagggtactgtactggagaataacaga tgggatgcttcaggtaggacatcaaggaaagcctctaaggaaaggatgcatgagcta acacctgacattaaagaagcaagccaagtgaggagccaggggagataagcattcct ggcaaagagaatagcatcaaatgcaaaaaggttcacactaaaggaaactcctgatta ggtattaatgctttatacagaaacctctatacaaatccaaacttgaagatcagaatggtt ctacagttcataacattttgaaggtggccttattttgtgatagtctgcttcatgtgattctca ctaacatatctccttcctcaacctttgctgtaaaaatttcatttgcaccacatcagtactact taatttaacaagcttttgttgtgtaagctctcactgttttagtgccctgctgcttgcttccag actttgtgctgtccagtaattatgtcttccactacccatcttgtgagcagagtaaatgtcct aggtaataccactatcaggcctgtaggagatactcagtggagcctctgcccttctttttc ttacttgagaacttgtaatggtgttagggaacagttgtaggggcagaaaacaactctga aagtggtagaaggtcctgatcttggtggttactcttgcattactgtgttaggtcaagcag tgcctactatgctgtttcagtagtggagcgcatctctacagttctgatgcgatttttctgta cagtatgaaattgggactcaactctttgaaaacacctattgagcagttatacctgttgag cagtttacttcctggttgtaattacatttgtgtgaatgtgtttgatgctttttaacgagatgat gttttttgtattttatctactgtggcctgattttttttttgttttctgcccctccccccatttatag gtgtggttttcatttttctaagtgatagaatcccctctttgttgaatttttgtctttatttaaatta gcaacattacttaggatttattcttcacaatactgttaattttctaggaatgatgacctgag aaccgaatggccatgctttctatcacatttctaagatgagtaatattttttccagtaggttc cacagagacaccttgggggctggcttaggggaggctgttggagttctcactgactta gtggcatatttattctgtactgaagaactgcatggggtttcttttggaaagagtttcattgc tttaaaaagaagctcagaaagtctttataaccactggtcaacgattagaaaaatataact ggatttaggcctaccttctggaataccgctgattgtgctctttttatcctactttaaagaag ctttcatgattagatttgagctatatcagttataccgattataccttataatacacattcagtt agtaaacatttattgatgcctgttgtttgcccagccactgtgatggatattgaataataaa aagatgactaggacggggccctgacccttgagctgtgcttggtcttgtagaggttgtgt tttttttcctcaggacctgtcactttggcagaaggaaatctgcctaatttttcttgaaagct aaattttctttgtaagtttttacaaattgtttaatacctagttgtattttttaccttaagccacat tgagttttgcttgatttgtctgtcttttaaacactgtcaaatgctttcccttttgttaaaattatt ttaatttcactttttttgtgcccttgtcaatttaagactaagactttgaaggtaaaacaaaca aacaaacatcagtcttagtctcttgctagttgaaatcaaataaaagaaaatatataccca gttggtttctctacctcttaaaagcttcccatatatacctttaagatccttctcttttttctttaa ctactaaataggttcagcatttattcagtgttagataccctcttcgtctgagggtggcgta ggtttatgttgggatataaagtaacacaagacaatcttcactgtacataaaatatgtcttc atgtacagtctttactttaaaagctgaacattccaatttgcgccttccctcccaagcccct gcccaccaagtatctctttagatatctagtctgtggacatgaacaatgaatacttttttctt actctgatcgaaggcattgatacttagacatatcaaacatttcttcctttcatatgctttact ttgctaaatctattatattcattgcctgaattttattcttcctttctacctgacaacacacatc caggtggtacttgctggttatcctctttcttgttagccttgttttttgttttttttttttttttttgag agggagtctcgctctgttgcccaacctggagtgcagtggtgcgatcttggttcactgc aagctccgcctcccgggttcacgccatgcttctgcctcagcctcccaagtagctggga ctacaggcgcccaccaccacactcggctaattttttgtatttttagtagagacggggttt caccgtgttggccaggatggtctcgatctcctgacctcgtgatctgtccacctcggctt cccaaagtgctgggattacaggcatgagccaccgcgcccagcctagccatatttttat ctgcatatatcagaatgtttctctcctttgaacttattaacaaaaaaggaacatgcttttcat acctagagtcctaatttcttcatcatgaaggttgctattcaaattgatcaatcattttaatttt acaaatggctcaaaaattctgttcagtaaatgtctttgtgactggcaaatggcataaatta tgtttaagattatgaacttttctgacagttgcagccaatgttttccctacgataccagatttc catcttggggcatattggattgttgtatttaagacagtcagaataatgatagtgtgtggtc tccagaggtagtcagaatcctgctattgagttctttttatatcttccttttcaattttttattac cattttgtttgtttagactacactttgtagggattgaggggcaaattatctcttggagtgga attcctgtgttttgagccttacaaccaggaaatatgagctatactagatagcctcatgata gcatttacgataagaacttatctcgtgtgttcatgtaattttttgagtaggaactgttttatct tgaatattgtagctaactatatatagcagaactgcctcagtctttttaagaaggaaataaa taatatatgtgtatgaatttatatatacatatacactcatagacaaacttaacagttggggt cattctaacagttaaaacaattgttccattgtttaaatctcagatcctggtaaaatgttctta atttgtctgtgtacattttcctttcatggacagaccattggagtacattaattttcttaatctg ccatttggcagttcatttaatataccattttttggcaacttggtaactaagaatcacagcca aaatttgttaacatcaaagaaagctctgccatataccccgttactaaattattatacatcc agcagattctgggatgtactaacttagggttaactttgttgttgttgataatactagattgc tccctctttaattcttcttctggtgcaaggttgctgcttaagttaccctgggaaatactact acaaggtcaaattttctagtatcttacagcctgattgaaggtgattcagatctttgctcaat ataaatggattttccaagattctctgggccatccttgacccacaggtgatctcgctgga gtatattaacttaacttcagtgccagttggtttggtgccatgagatccataatgaatccag aacttcaccattgcttagatataagagtcccttggaagaataatgccactgatgatggg ggtcagaaggtgtattaactcaacatagagggcttttagatttttcttcaaaaaaatttcg agaaaagtattcttttaccctccaaacagttaacagctcttagtttctccaaatatgctcttt gatttacttatttttaattaaagatggtaatttattgaacaatgaaatccgtaatatattgattt aaggacaaaagtgaagttttagaattataaaagtacttaaatattatatattttccatttcat aattgttttcctttctctgtggctttaaagtttttgactattttacaatgttaatcactaggtaa cttgccatatttctggttctatattaagttctatcctttataatgctgttattataaagctggttt ttagcatttgtctgtagcaatagaaattttactaagtctctgttctcccagtaagttttttcttt tctcagtaagtccctaagaaaacatttgtttgccactcttactattcccaatcttggattgtt cgagctgaaaaaaaatttgatgagaaacaggaggatccttttctggtgaatataggttc ctgctttaagaatgtggaaatccattgctttatataactaatatacacacagattaattaaa attgtgagaaataattcacacatgacaagtaggtaacatgcatgagttttgaatttttttaa aaacccaactgtttgacaaaatatagaacccaaattggtactttcttagaccagtgtaac ctcacacctcagttttgcttttccaaccctgacttgaaaggcatatttgtatctttttattagt gatagtgaagctgtgacactaaccttttatacaaaagagtaaagaaagaaaaactaca gcgattaagatgagaacagttctgcagttgttgaactagatcacagcattgtaggcag aataaaaaatgttcatatctgagaatattcctttcgccatcttttcccaaggccagacctc ctggtggagcacagttaaaagtaacattctgggcctttgtaatcggagggctgtgtctc cagctggcagcctttgttttaatatataatgcaggactgtggaaaacagttggcataga atattttcacctaaaaaagaaagaaaagacatacaaaactggattaattgcaaaaaga gaatacagtaaaataccatataactggacaaagctagaagaacctttagaagatttgtc tgaaaacagatttcaagagtgagcttttatacactgctcactaatttgcttgattactacca actcttcttaaagttaacacgtttaaggtatttctggacttcctagccttttagcaagcttag aggaactagccattagctagtgatgtaaaaatattttggggactgatgcccttaaaggtt atgcccttgaaagttcttaccttttctctagtgatattaaggaacgagtgggtagtgttctc agggtgaccagctgccctaaagtgcctgggattgagggtttccctggatgcgggact ttccctggatacaaaacttttagcagagttttgtatatatgtggatttttctgataagtagca catcagaggccttaaccactgcccaaaagcgattctccattgagagtacatatcttgaa cttaagaaattcatttgctctgatttttaatcttgtaaagtttttgctaaactcaaaacaagtc ccaggcacaccagaaggagctgaccaccttaggtgttcttgtgatttatccttacttccc tatgttgtcatagttgcttctaaactcagctgcactatggctgtcaacatttctgatacttat tgggatatgtgccatccagtcatttagtactttgaatggaacatgagatttataacacag gtaatagctgaaggtaccagtatggtggtgagactcacacttagtgatccagctaagg taactgatgttataatggaacagagaagaggccaactagatagctaagttcttctgaac ctatgtgtatatgtaagtacaaatcatgcgtccttatggggttaaacttaatctgaaattta catttttcatagtaaaaggaaaccaattgttgcagatttcttttcttgtgaggaaatacatg gcctttgatgctctggcgtctactgcatttcccagtctgttctgctcgagaagccagaat gtgttgttaacatttttccgtgaatgttgtgttaaaatgattaaatgcatcagccaatggca agtgaaggaattgggtgtcctgatgcagactgagcagtttctctcaattgtagcctcata ctcataaggtgcttaccagctagaacattgagcacgtgaggtgagattttttttctctgat ggcattaactttgtaatgcaatatgatggatgcagaccctgttcttgtttccctctggaag tccttagtggctgcatccttggtgcactgtgatggagatattaaatgtgttctttgtgagct ttcgttctatgattgtcaaaagtacgatgtggttccttttttatttttattaaacaatgagctg aggctttattacagctggttttcaagttaaaattgttgaatactgatgtctttctcccaccta caccaaatattttagtctatttaaagtacaaaaaaagttctgcttaagaaaacattgcttac atgtcctgtgatttctggtcaatttttatatatatttgtgtgcatcatctgtatgtgctttcactt tttaccttgtttgctcttacctgtgttaacagccctgtcaccgttgaaaggtggacagtttt cctagcattaaaagaaagccatttgagttgtttaccatgttaaaaaaaaaaaaaaaa (SEQ ID NO: 607) Akap81 gtgtgtggaggggaccctgtggttagcagcagctatcgcagcgtcggatgttcagag NM_014371 NM_017476 cagcagaagccggcgtcgtcggatgttgtgttgcccgccaccatgagctacacagg ctttgtccagggatctgaaaccactttgcagtcgacatactcggataccagcgctcag cccacctgtgattatggatatggaacttggaactctgggacaaatagaggctacgagg gctatggctatggctatggctatggccaggataacaccaccaactatgggtatggtat ggccacttcacactcttgggaaatgcctagctctgacacaaatgcaaacactagtgcc tcgggtagcgccagtgccgattccgttttatccagaattaaccagcgcttagatatggt gccgcatttggagacagacatgatgcaaggaggcgtgtacggctcaggtggagaaa ggtatgactcttatgagtcctgcgactcgagggccgtcctgagtgagcgcgacctgta ccggtcaggctatgactacagcgagcttgaccctgagatggaaatggcctatgaggg ccaatacgatgcctaccgcgaccagttccgcatgcgtggcaacgacaccttcggtcc cagggcacagggctgggcccgggatgcccggagcggccggccaatggcctcag gctatgggcgcatgtgggaagaccccatgggggcccggggccagtgcatgtctggt gcctctcggctgccctccctcttctcccagaacatcatccccgagtacggcatgttcca gggcatgcgaggtgggggcgccttcccgggcggctcccgctttggtttcgggtttgg caatggcatgaagcagatgaggcggacctggaagacctggaccacagccgacttc cgaaccaagaagaagaagagaaagcagggcggcagtcctgatgagccagatagc aaagccacccgcacggactgctcggacaacagcgactcagacaatgatgagggca ccgagggggaagccacagagggccttgaaggcaccgaggctgtggagaagggct ccagagtggacggagaggatgaggagggaaaagaggatgggagagaagaaggc aaagaggatccagagaagggggccctaaccacccaggatgaaaatggccagacc aagcgcaagttgcaggcaggcaagaagagtcaggacaagcagaaaaagcggcag cgagaccgcatggtggaaaggatccagtttgtgtgttctctgtgcaaataccggacctt ctatgaggacgagatggccagccatcttgacagcaagttccacaaggaacactttaa gtacgtaggcaccaagctccctaagcagacggctgactttctgcaggagtacgtcac taacaagaccaagaagacagaggagctccgaaaaaccgtggaggaccttgatggc ctcatccaccaaatctacagagaccaggatctgacccaggaaattgccatggagcatt ttgtgaagaaggtggaggcagcccattgtgcagcctgcgacctcttcattcccatgca gtttgggatcatccagaagcatctgaagaccatggatcacaaccggaaccgcaggct catgatggagcagtccaagaagtcctccctcatggtggcccgcagtattctcaacaac aagctcatcagcaagaagctggagcgctacctgaagggcgagaaccctttcaccga cagccccgaggaggagaaggagcaggaggaggctgagggcggtgccctggacg agggggcgcagggcgaagcggcagggatctcggagggcgcagagggcgtgcc ggcgcagcctcccgtgcccccagagccagcccccggggccgtgtcgccgccacc gccgccgcccccagaggaggaggaggagggcgccgtgcccttgctgggagggg cgctgcaacgccagatccgcggcatcccgggcctcgacgtggaggacgacgagg agggcggcgggggcgccccgtgacccgagctcggggcgggcggagcccgcgt ggccgaagctggaaaccaaacctaataaagttttcccatcccaccaaaaaaaaaaaa aaaaaaaaaa (SEQ ID NO: 608) Rbks acctttgagcgatggcggcgtctggggaaccccagaggcagtggcaagaggaggt NM_022128 NM_153196 ggcggcggtggtagtggtgggctcctgcatgaccgacctggtcagtcttacttctcgtt tgccaaaaactggagaaaccatccatggacataagttttttattggctttggagggaaa ggtgccaaccagtgtgtccaagctgctcggcttggagcaatgacgtccatggtgtgta aggttggcaaagattcttttggcaatgattatatagaaaacttaaaacagaatgatatttc tacagaatttacatatcagactaaagatgctgctacaggaactgcttctataattgtcaat aatgaaggccagaatatcattgtcatagtggctggagcaaatttacttttgaatacgga ggatctgagggcagcagccaatgtcattagcagagccaaagtcatggtctgccagct cgaaataactccagcaacttctttggaagccctaacaatggcccgcaggagtggagt gaaaaccttgttcaatccagcccctgccattgctgacctggatccccagttctacaccc tctcagatgtgttctgctgcaatgaaagtgaggctgagattttaactggcctcacggtg ggcagcgctgcagatgctggggaggctgcattagtgctcttgaaaaggggctgcca ggtggtaatcattaccttaggggctgaaggatgtgtggtgctgtcacagacagaacct gagccaaagcacattcccacagagaaagtcaaggctgtggataccacgggtgctgg tgacagctttgtgggagctctggccttctacctggcttactatccaaatctgtccttggaa gacatgctcaacagatccaatttcattgcagcagtcagtgtccaggctgcaggaacac agtcatcttacccttacaaaaaagaccttccgcttactctgttttgattgctattagtccca aaataaatatacctgggaataaaatgtacttgggggtggctgctcctggctaatgcttat tagaaaatgtcctcgtcccctttctttgcaaatattagttcttttacgaagtcatcctcaag cttcaatttatttataacgatgattcttttgctttccatgcatttgcacaaaacaaccagaat taaagattccacaacc (SEQ ID NO: 609) Egr2 aactgagcgaggagcaattgattaatagctcggcgaggggactcactgactgttataa NM_000399 NM_010118 taacactacaccagcaactcctggcttcccagcagccggaacacagacaggagaga gtcagtggcaaatagacatttttcttatttcttaaaaaacagcaacttgtttgctacttttatt tctgttgatttttttttcttggtgtgtgtggtggttgtttttaagtgtggagggcaaaaggag ataccatcccaggctcagtccaacccctctccaaaacggcttttctgacactccaggta gcgagggagttgggtctccaggttgtgcgaggagcaaatgatgaccgccaaggcc gtagacaaaatcccagtaactctcagtggttttgtgcaccagctgtctgacaacatcta cccggtggaggacctcgccgccacgtcggtgaccatctttcccaatgccgaactgg gaggcccctttgaccagatgaacggagtggccggagatggcatgatcaacattgac atgactggagagaagaggtcgttggatctcccatatcccagcagctttgctcccgtctc tgcacctagaaaccagaccttcacttacatgggcaagttctccattgaccctcagtacc ctggtgccagctgctacccagaaggcataatcaatattgtgagtgcaggcatcttgca aggggtcacttccccagcttcaaccacagcctcatccagcgtcacctctgcctccccc aacccactggccacaggacccctgggtgtgtgcaccatgtcccagacccagcctga cctggaccacctgtactctccgccaccgcctcctcctccttattctggctgtgcaggag acctctaccaggacccttctgcgttcctgtcagcagccaccacctccacctcttcctctc tggcctacccaccacctccttcctatccatcccccaagccagccacggacccaggtct cttcccaatgatcccagactatcctggattctttccatctcagtgccagagagacctaca tggtacagctggcccagaccgtaagccctttccctgcccactggacaccctgcgggt gccccctccactcactccactctctacaatccgtaactttaccctggggggccccagt gctggggtgaccggaccaggggccagtggaggcagcgagggaccccggctgcct ggtagcagctcagcagcagcagcagccgccgccgccgccgcctataacccacacc acctgccactgggcccattctgaggcctcgcaagtaccccaacagacccagcaag acgccggtgcacgagaggccctacccgtgcccagcagaaggctgcgaccggcgg ttctcccgctctgacgagctgacacggcacatccgaatccacactgggcataagccc ttccagtgtcggatctgcatgcgcaacttcagccgcagtgaccacctcaccacccata tccgcacccacaccggtgagaagcccttcgcctgtgactactgtggccgaaagtttg cccggagtgatgagaggaagcgccacaccaagatccacctgagacagaaagagc ggaaaagcagtgccccctctgcatcggtgccagccccctctacagcctcctgctctg ggggcgtgcagcctgggggtaccctgtgcagcagtaacagcagcagtcttggcgg agggccgctcgccccttgctcctctcggacccggacaccttgagatgagactcaggc tgatacaccagctcccaaaggtcccggaggccctttgtccactggagctgcacaaca aacactaccaccctttcctgtccctctctccctttgttgggcaaagggctttggtggagc tagcactgccccctttccacctagaagcaggttcttcctaaaacttagcccattctagtct ctcttaggtgagttgactatcaacccaaggcaaaggggaggctcagaaggaggtgg tgtggggacccctggccaagagggctgaggtctgaccctgctttaaagggttgtttga ctaggttttgctaccccacttccccttattttgacccatcacaggtttttgaccctggatgt cagagttgatctaagacgttttctacaataggttgggagatgctgatcccttcaagtgg ggacagcaaaaagacaagcaaaactgatgtgcactttatggcttgggactgatttggg ggacattgtacagtgagtgaagtatagcctttatgccacactctgtggccctaaaatgg tgaatcagagcatatctagttgtctcaacccttgaagcaatatgtattataaactcagag aacagaagtgcaatgtgatgggaggaacatagcaatatctgctccttttcgagttgtttg agaaatgtaggctattttttcagtgtatatccactcagattttgtgtatttttgatgtacactg ttctctaaattctgaatctttgggaaaaaatgtaaagcatttatgatctcagaggttaactt atttaagggggatgtacatatattctctgaaactaggatgcatgcaattgtgttggaagt gtccttggtgccttgtgtgatgtagacaatgttacaaggtctgcatgtaaatgggttgcc ttattatggagaaaaaaatcactccctgagtttagtatggctgtatatttctgcctattaata tttggaattttttttagaaagtatatttttgtatgctttgttttgtgacttaaaagtgttacctttg tagtcaaatttcagataagaatgtacataatgttaccggagctgatttgtttggtcattag ctcttaatagttgtgaaaaaataaatctattctaacgcaaaaccactaactgaagttcag ataatggatggtttgtgactatagtgtaaataaatacttttcaacaataaaaaaaaaaaaa aa (SEQ ID NO: 610) Dgka agttcctgccagtgagtccctaggcctccatctctctcccttgctgtaccaccttcacca NM_001345 NM_016811 ccatccatgcgaccccaagagccttaatgactctagaagagactccaggcagggga agctgaaaggacctttcactccctacttttggccagggccttctgtgccacctgccaag accagcaggcctaccctctgaagaggtccaagcaacggaagtactactacgaagct gcctttctggccatccttgagaaaaatagacagatggccaaggagaggggcctaata agccccagtgattttgcccagctgcaaaaatacatggaatactccaccaaaaaggtca gtgatgtcctaaagctcttcgaggatggcgagatggctaaatatgtccaaggagatgc cattgggtacgagggattccagcaattcctgaaaatctatctcgaagtggataatgttc ccagacacctaagcctggcactgtttcaatcctttgagactggtcactgcttaaatgag acaaatgtgacaaaagatgtggtgtgtctcaatgatgtttcctgctacttttcccttctgg agggtggtcggccagaagacaagttagaattcaccttcaagctgtacgacacggaca gaaatgggatcctggacagctcagaagtggacaaaattatcctacagatgatgcgag tggctgaatacctggattgggatgtgtctgagctgaggccgattcttcaggagatgatg aaagagattgactatgatggcagtggctctgtctctcaagctgagtgggtccgggctg gggccaccaccgtgccactgctagtgctgctgggtctggagatgactctgaaggac gacggacagcacatgtggaggcccaagaggttccccagaccagtctactgcaatct gtgcgagtcaagcattggtcttggcaaacagggactgagctgtaacctctgtaagtac actgttcacgaccagtgtgccatgaaagccctgccttgtgaagtcagcacctatgcca agtctcggaaggacattggtgtccaatcacatgtgtgggtgcgaggaggctgtgagt ccgggcgctgcgaccgctgtcagaaaaagatccggatctaccacagtctgaccggg ctgcattgtgtatggtgccacctagagatccacgatgactgcctgcaagcggtgggc catgagtgtgactgtgggctgctccgggatcacatcctgcctccatcttccatctatccc agtgtcctggcctctggaccggatcgtaaaaatagcaaaacaagccagaagaccat ggatgatttaaatttgagcacctctgaggctctgcggattgaccctgttcctaacaccca cccacttctcgtctttgtcaatcctaagagtggcgggaagcaggggcaaagggtgct ctggaagttccagtatatattaaaccctcgacaggtgttcaacctcctaaaggatggtc ctgagatagggctccgattattcaaggatgttcctgatagccggattttggtgtgtggtg gagacggcacagtaggctggattctagagaccattgacaaagctaacttgccagtttt gcctcctgttgctgtgttgcccctgggtactggaaatgatctggctcgatgcctaagat ggggaggaggttatgaaggacagaatctggcaaagatcctcaaggatttagagatg agtaaagtggtacatatggatcgatggtctgtggaggtgatacctcaacaaactgaag aaaaaagtgacccagtcccctttcaaatcatcaataactacttctctattggcgtggatg cctctattgctcatcgattccacatcatgcgagagaaatatccggagaagttcaacagc agaatgaagaacaagctatggtacttcgaatttgccacatctgaatccatcttctcaaca tgcaaaaagctggaggagtctttgacagttgagatctgtgggaaaccgctggatctga gcaacctgtccctagaaggcatcgcagtgctaaacatccctagcatgcatggtggctc caacctctggggtgataccaggagaccccatggggatatctatgggatcaaccagg ccttaggtgctacagctaaagtcatcaccgaccctgatatcctgaaaacctgtgtacca gacctaagtgacaagagactggaagtggttgggctggagggtgcaattgagatggg ccaaatctataccaagctcaagaatgctggacgtcggctggccaagtgctctgagatc accttccacaccacaaaaacccttcccatgcaaattgacggagaaccctggatgcag acgccctgtacaatcaagatcacccacaagaaccagatgcccatgctcatgggccca cccccccgctccaccaatttctttggcttcttgagctaagggggacacccttggcctcc aagccagccttgaacccacctccctgtccctggactctactcccgaggctctgtacatt gctgccacatactcctgccagcttgggggagtgttccttcaccctcacagtatttattat cctgcaccacctcactgttccccatgcgcacacacatacacacaccccaaaacacat acattgaaagtgcctcatctgaataaaatgacttgtgtttcccctttgggatctgctaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaa (SEQ ID NO: 611) Cb1b ctgggtcctgtgtgtgccacaggggggggtgtccagcgagcggtctcctcctcctg NM_170662 NM_ ctagtgctgctgcggcgtcccgcggcctccccgagtcgggcgggaggggagagc 001033238 gggtgtggatttgtcttgacggtaattgttgcgtttccacgtctcggaggcctgcgcgct gggttgctccttcttcgggagcgagctgttctcagcgatcccactcccagccggggct ccccacacacactgggctgcgtgcgtgtggagtgggacccgcgcacacgcgtgtct ctggacagctacggcgccgaaagaactaaaattccagatggcaaactcaatgaatg gcagaaaccctggtggtcgaggaggaaatccccgaaaaggtcgaattttgggtatta ttgatgctattcaggatgcagttggaccccctaagcaagctgccgcagatcgcagga ccgtggagaagacttggaagctcatggacaaagtggtaagactgtgccaaaatccca aacttcagttgaaaaatagcccaccatatatacttgatattttgcctgatacatatcagca tttacgacttatattgagtaaatatgatgacaaccagaaacttgcccaactcagtgagaa tgagtactttaaaatctacattgatagccttatgaaaaagtcaaaacgggcaataagact ctttaaagaaggcaaggagagaatgtatgaagaacagtcacaggacagacgaaatc tcacaaaactgtcccttatcttcagtcacatgctggcagaaatcaaagcaatctttccca atggtcaattccagggagataactttcgtatcacaaaagcagatgctgctgaattctgg agaaagttttttggagacaaaactatcgtaccatggaaagtattcagacagtgccttcat gaggtccaccagattagctctggcctggaagcaatggctctaaaatcaacaattgattt aacttgcaatgattacatttcagtttttgaatttgatatttttaccaggctgtttcagccttgg ggctctattttgcggaattggaatttcttagctgtgacacatccaggttacatggcatttct cacatatgatgaagttaaagcacgactacagaaatatagcaccaaacccggaagcta tattttccggttaagttgcactcgattgggacagtgggccattggctatgtgactgggg atgggaatatcttacagaccatacctcataacaagcccttatttcaagccctgattgatg gcagcagggaaggattttatctttatcctgatgggaggagttataatcctgatttaactg gattatgtgaacctacacctcatgaccatataaaagttacacaggaacaatatgaattat attgtgaaatgggctccacttttcagctctgtaagatttgtgcagagaatgacaaagatg tcaagattgagccttgtgggcatttgatgtgcacctcttgccttacggcatggcaggag tcggatggtcagggctgccctttctgtcgttgtgaaataaaaggaactgagcccataat cgtggacccctttgatccaagagatgaaggctccaggtgttgcagcatcattgacccc tttggcatgccgatgctagacttggacgacgatgatgatcgtgaggagtccttgatgat gaatcggttggcaaacgtccgaaagtgcactgacaggcagaactcaccagtcacat caccaggatcctctccccttgcccagagaagaaagccacagcctgacccactccag atcccacatctaagcctgccacccgtgcctcctcgcctggatctaattcagaaaggca tagttagatctccctgtggcagcccaacgggttcaccaaagtcttctccttgcatggtg agaaaacaagataaaccactcccagcaccacctcctcccttaagagatcctcctccac cgccacctgaaagacctccaccaatcccaccagacaatagactgagtagacacatc catcatgtggaaagcgtgccttccagagacccgccaatgcctcttgaagcatggtgc cctcgggatgtgtttgggactaatcagcttgtgggatgtcgactcctaggggagggct ctccaaaacctggaatcacagcgagttcaaatgtcaatggaaggcacagtagagtgg gctctgacccagtgcttatgcggaaacacagacgccatgatttgcctttagaaggagc taaggtcttttccaatggtcaccttggaagtgaagaatatgatgttcctccccggctttct cctcctcctccagttaccaccctcctccctagcataaagtgtactggtccgttagcaaat tctctttcagagaaaacaagagacccagtagaggaagatgatgatgaatacaagattc cttcatcccaccctgtttccctgaattcacaaccatctcattgtcataatgtaaaacctcct gttcggtcttgtgataatggtcactgtatgctgaatggaacacatggtccatcttcagag aagaaatcaaacatccctgacttaagcatatatttaaagggagatgtttttgattcagcct ctgatcccgtgccattaccacctgccaggcctccaactcgggacaatccaaagcatg gttcttcactcaacaggacgccctctgattatgatcttctcatccctccattaggtgaaga tgcttttgatgccctccctccatctctcccacctcccccacctcctgcaaggcatagtct cattgaacattcaaaacctcctggctccagtagccggccatcctcaggacaggatcttt ttcttcttccttcagatccctttgttgatctagcaagtggccaagttcctttgcctcctgcta gaaggttaccaggtgaaaatgtcaaaactaacagaacatcacaggactatgatcagc ttccttcatgttcagatggttcacaggcaccagccagaccccctaaaccacgaccgcg caggactgcaccagaaattcaccacagaaaaccccatgggcctgaggcggcattgg aaaatgtcgatgcaaaaattgcaaaactcatgggagagggttatgcctttgaagaggt gaagagagccttagagatagcccagaataatgtcgaagttgcccggagcatcctccg agaatttgccttccctcctccagtatccccacgtctaaatctatagcagccagaactgta gacaccaaaatggaaagcaatcgatgtattccaagagtgtggaaataaagagaactg agatggaattcaagagagaagtgtctcctcctcgtgtagcagcttgagaagaggcttg ggagtgcagcttctcaaaggagaccgatgcttgctcaggatgtcgacagctgtggctt ccttgtttttgctagccatatttttaaatcagggttgaactgacaaaaataatttaaagacg tttacttcccttgaactttgaacctgtgaaatgctttaccttgtttacagtttggcaaagttg cagtttgttcttgtttttagtttagttttgttttggtgttttgatacctgtactgtgttcttcacag accctttgtagcgtggtcaggtctgctgtaacatttcccaccaactctcttgctgtccaca tcaacagctaaatcatttattcatatggatctctaccatccccatgccttgcccaggtcca gttccatttctctcattcacaagatgctttgaaggttctgattttcaactgatcaaactaatg caaaaaaaaaaaagtatgtattcttcactactgagtttcttctttggaaaccatcactattg agagatgggaaaaacctgaatgtataaagcatttatttgtcaataaactgccttttgtaa ggggttttcacataacata (SEQ ID NO: 612) Mdfic cccaggccggctctggcctcctgacccagacagcgcagggcgcgagggatcgcg NM_001166345 NM_175088 cggccgagcccgggtcgcgccgctcccagcatcggggccgctagccaagagttcg aggccttcccgatccggatgtgatgaaaaagagcaacagagggagaagtgtttcag gattgtaggagtggaagaggggaaagagaggcagagagggggaaggccccctc gcaggggagccggctggagtgagctggctggaaagagggggcggagtgcgcgg agtcagagccgccaccgctgccgcagttgccgccactgcggcgtctgggctgagc cggagggaggcgggaggacgcgcaggggcggccgccgccgtcgtcaggccac cggggcgaaaatgcggccgctgccggaggctcgctaactttccggggcggaagag gaggaggaggaggaggaaggggcttggagcgactacggggggatgcggagaag cagtcagttccctgcacccagcacctcacagcccttcctccgtgcgccctgccgggc ggcgagctaggcggcagcggcgcggcgcgggctcggcggagcggcccatgtcc ggcgcgggcgaagccctcgctcccgggcccgtggggccgcagcgcgtggccga ggcgggcggcggccagctgggctccacagcccagggaaaatgtgataaagacaat actgagaaagatataactcaagctaccaatagccacttcacacatggagagatgcaa gaccagtccatttggggaaatccttcggatggtgaactcattagaacccaacctcagc gcttgcctcagcttcagacttcagcccaggtgccaagtggtgaggaaataggcaaga taaagaacggccacacaggtctgagcaatggaaatggaattcaccacggggccaaa cacggatccgcagataatcgcaaactttcagcacctgtttctcaaaaaatgcatagaaa aattcagtccagcttgtctgtaaacagcgatatcagtaagaagagcaaagtaaatgct gtcttttcccaaaagacaggctcttcacctgaagattgttgtgtccactgtatcctggctt gcttgttctgcgaattcctgaccctttgcaacattgtcctgggacaagcgtcatgtggca tctgcacctcagaagcctgctgctgttgctgtggtgacgagatgggggatgattgtaa ctgcccttgtgatatggactgtggcatcatggatgcctgttgtgaatcatcagactgctt ggaaatctgtatggaatgctgtggaatttgttttccttcataaatatttatcttttgtttgtgtt aaaactggagagtgtttaaaaatttccttttggggggaagaaaagcacattgtaagatt ctcatgaaacaacatggaatttgcactgttaactcattattgtaagtaatctctgaaagcc tttttactttaaccaaatctacatggtttaatatgtgaaattttaactactttaactagttttata aatttcttaatatgttacaataacttagggacattttgacaccccccttcccaaatgttaaa tgccttctcctttttaccgatatttctgtttcttttaaccgttctcaggagcactttgctccaa atatattatttttcagtgtgtatttaaacgaggcagtttattttgatatgtatctattcatgatt gaaaggaagcagtcttggccaggcacggtggcttacacctgtaaccctggcattttg ggaggccaaggtgggcagattgcctgagctcaggagttcgagaccagccagggca acatggtgaaaccccatctctactaaaatacaaaaagttagctgggcttggcggtgtg cgcctgtagtcccagctactcaggaggctgaggcaggagaattgcttgaacccgag aggcggaagttgcagtgagccgagattgtgccactgaactccaacctgcactccagc ctgggcaacagagcgagactccatctctaaataaataaataaataaataaataaataa ataaataaataaacaaaccagtctttattttaaaagaaactttaggaaacaaacccacat aatagttgggaaccagtgttgatctctctcccttaccttctccacttgttcaacagactct gaatgccgactgtgtggactctcttcctcagactgtggggacagatacaattccactcc tgtccacaggaacatgagatttagcagactaaggagatctgtaaagaatgaaccatac cacaaggcatactgaagtgaggattataagagaaataaactcaaaatgctgttggaat atgcagagaattgctaccagaatattcagtaaggtttcagggagaatgtggcatttgag gactctcttagaatgagtgattcacctgctatttaaatgaattatttagatttttgacaaaga tttaggtggacaccctaaactgtgtgtgcctttaaccagttaaaagaacagtgccttcag catacttttttattagttgtaggaatacagctttttgaaaaagctataaagtttaaattaacta aaaatatgcattttcttacacataatttaaatgttatcatacttttttgatgaaaacataatgc cttagtaaaatagctctatttaataaagaagattgagtactctgacacatttcatttaaatta ggaaatttttaatattaaaatcccagtgttctgagttattgaaaggctttcttttattttgaga gctttaggtctttttgggatgagaacattttagttgtttagtttgtttcttaagcagtgctattt tttgtaaacacagataaatggaaaccattcttttcaatgcagaagaaatctagatatccc ctactgtgaccaaatttctgtattacgattttatgttaaattaaactaatatggcaggttata atgatccttaagtgtaaagaaatcagtcaattacaagagtaattgtatagttattgagacc tatagtgtgtggcttagatgaaagggagagtaaattttcataccatgctctctcctactca gtttgatctctctaaaattgtagtttggtttgatttaatataattcttagtagaaattttgaaag tatgctttgggattaataattatttttaatttttctggctgaatatcaaattgatagtaacaac agaagcataattttaggaaggctttcgcaaacctagccttttaagagaggtttttaacct gaagcatgagaatatatcacctgtggtttttcctttgagatgaaacgtagtttctagttata tcattacttaaagggcttaaaaagaaaaaacttagcaaacttttgaatctttcttttattgct atttacacatacatacacacatacaaaacctttaaattttgggatctgaatataattctggt aaacagctgtcttcatttttctcctctaaagaacttaattcatttgttacataaaatataagg aaatctttatactattttacagtaaccacaatctaaatatttacatatacccaaaattaactt atgctcatatattaggatgtgagaatatcatctgtttatggacacatgaaacctcctaatg acctggaattgttagaatatttgactttttatatgcaaagtttttcaaccaagtggtttgtcta atatttaaacatgtactggcacaatttgtgatgaaaatattagcacatttgcaataatgttt ctccataacagagaatgttaatggataccagaattttatttttgtatttatgttcatagtactt ttcctcttgtctactccagacagttattccataaagcatttgtataattaaaaggaaaaca gaaaaaggaaaagtaggcaaatgtgaaaatagtttcaatatatcttatgatttcttaatgt aaaatgttttgttgaagtatatggctatcatgactaagtgctagaatttatagttacaggc ggtgtccttttaaatgtggaaaggcttttaaaatattttaaaactggacctgtattatcctg aatacactattttgaaaatttttaaaaatgacttctttattttgctttaccgtatgtttatatcta attgacatattgactaatgtttgaaagaattcaaccataagttaaaatctgaaggttatctt tatcatgtttcatccctgtctgaagatttcctagtcttcttatgtaaatcacatgactcatgtc cgtaaatgaactatgaaagatatcgatcagtttatgatcattgacatgtgatttcaaaaca cagtgttcttttaaaaatctataatatgtcaaaatacaagttttttttttttacatcgttttagta agttaatttcatttatttactttggagctatatttccacttagaaaaactaaggtaattttaca atatatgctgagattaaaaaccaaggtaaaaatgatcaaacatatatgaaattgagtctt agatttaatgaatttcactcgaaaataaatgatcagaagaattttcatctaaggcataga gtggcgaaatttttgtaaatgctcgcagttagcatctaactaaaacaatacagtatgactt tatttaggagaaggctttttatttagaaaattattttttcatttttacagtgtatcaactgtatc cattttcctcacctggatagtcaatgttatctgagcagttcaaggagtaaccaaggcaa ccttatgtaataactttccattctttatccatacaaactctttcagtgccctagattctaatgt tataaacgtcaaacatcactgcccaacataaataagactcgagacttattaacataaat aagtatcttgccttcttgaatgctagttaaatgcttagatttacctaactgcctaatgaatc aggttatttgttaataagattatttttcaaattatttaagacctttatgccccttccaattactt gtgatttgtaggcctgtaggattgttgcatctaatctgactggcaacagaaaatgtcatc aaatactataatatccattttttttcttttgcactaatacaacagaacatatcatttttgtttta aacaatggttaatatattaatagggtttgttccacacttactatttatagtttttataatcaag cattgggtattaaaagagaatcctttcaacccttcatcttcgtatgcttatacaataaattg cagtgagtgt (SEQ ID NO: 613) Entpd1 agggaagaagggagaaagagagagagatttgaatatacattgcttcaaggatgcaa NM_001776 NM_009848 aaaattacaacctggaaaaggcttcgagtaactttaggaaaatgagctgctggactcc tcagtcaatctgtcctttctagtcaatgaaaaagacagggtttgaggttccttccgaaac ggggccggctaatttagcccctcccacgagcccaagggtctgttatatctctgtttcctt gaggacctctctcacggagacggaccacagcaagcagaggctgggggggggaaa gacgaggaaagaggaggaaaacaaaagctgctacttatggaagatacaaaggagt ctaacgtgaagacattttgctccaagaatatcctagccatccttggcttctcctctatcat agctgtgatagctttgcttgctgtggggttgacccagaacaaagcattgccagaaaac gttaagtatgggattgtgctggatgcgggttcttctcacacaagtttatacatctataagt ggccagcagaaaaggagaatgacacaggcgtggtgcatcaagtagaagaatgcag ggttaaaggtcctggaatctcaaaatttgttcagaaagtaaatgaaataggcatttacct gactgattgcatggaaagagctagggaagtgattccaaggtcccagcaccaagaga cacccgtttacctgggagccacggcaggcatgcggttgctcaggatggaaagtgaa gagttggcagacagggttctggatgtggtggagaggagcctcagcaactaccccttt gacttccagggtgccaggatcattactggccaagaggaaggtgcctatggctggatt actatcaactatctgctgggcaaattcagtcagaaaacaaggtggttcagcatagtccc atatgaaaccaataatcaggaaacctttggagctttggaccttgggggagcctctaca caagtcacttttgtaccccaaaaccagactatcgagtccccagataatgctctgcaattt cgcctctatggcaaggactacaatgtctacacacatagcttcttgtgctatgggaagga tcaggcactctggcagaaactggccaaggacattcaggttgcaagtaatgaaattctc agggacccatgctttcatcctggatataagaaggtagtgaacgtaagtgacctttacaa gaccccctgcaccaagagatttgagatgactcttccattccagcagtttgaaatccagg gtattggaaactatcaacaatgccatcaaagcatcctggagctcttcaacaccagttac tgcccttactcccagtgtgccttcaatgggattttcttgccaccactccagggggattttg gggcattttcagctttttactttgtgatgaagtttttaaacttgacatcgagaaagtctctca ggaaaaggtgactgagatgatgaaaaagttctgtgctcagccttgggaggagataaa aacatcttacgctggagtaaaggagaagtacctgagtgaatactgcttttctggtacct acattctctccctccttctgcaaggctatcatttcacagctgattcctgggagcacatcc atttcattggcaagatccagggcagcgacgccggctggactttgggctacatgctga acctgaccaacatgatcccagctgagcaaccattgtccacacctctctcccactccac ctatgtcttcctcatggttctattctccctggtccttttcacagtggccatcataggcttgct tatctttcacaagccttcatatttctggaaagatatggtatagcaaaagcagctgaaatat gctggctggagtgaggaaaaaaatcgtccagggagcattttcctccatcgcagtgttc aaggccatccttccctgtctgccagggccagtcttgacgagtgtgaagcttccttggct tttactgaagcctttcttttggaggtattcaatatcctttgcctcaaggacttcggcagata ctgtctctttcatgagtttttcccagctacacctttctcctttgtactttgtgcttgtataggttt taaagacctgacacctttcataatctttgctttataaaagaacaatattgactttgtctaga agaactgagagtcttgagtcctgtgataggaggctgagctggctgaaagaagaatct caggaactggttcagttgtactctttaagaacccctttctctctcctgtttgccatccatta agaaagccatatgatgcctttggagaaggcagacacacattccattcccagcctgctc tgtgggtaggagaattttctacagtaggcaaatatgtgctaaagccaaagagttttataa ggaaatatatgtgctcatgcagtcaatacagttctcaatcccacccaaagcaggtatgt caataaatcacatattcctaggtgatacccaaatgctacagagtggaacactcagacct gagatttgcaaaaagcagatgtaaatatatgcattcaaacatcagggcttactatgagg taggtggtatatacatgtcacaaataaaaatacagttacaactcagggtcacaaaaaat gcatcttccaatgcatatttttattatggtaaaatatacataaatataattcaccattttaaca tttaattcatattaaatacgtacaaatcagtgacatttagtacattcacagtgttgtgccac catcaccactatttagttccagaacatttgcatcatcaatacattgtctagagacaagact atcctgggtaggcagaaaccatagatcttttgtgtttacagctatggaaaccaactgtac cataaagatagttcactgagttttaaagccaagccacatcttatttttccaaggtttaattt agtgagagggcagcattagtgtggagtggcatgcttttgccctatcgtggaatttacac atcagaatgtgcaggatccaagtctgaaagtgttgccacccgtcacacaacatgggct ttgtttgcttattccatgaagcagcagctatagaccttaccatggaaacatgaagagac cctgcacccctttccttaaggattgctgcaagagttacctgttgagcaggattgactggt gatgtttcattctgaccttgtcccaagctctccatctctagatctggggactgactgttga gctgatggggaaagaaaagctctcacacaaaccggaagccaaatgtcccctatctct tgaatgatcaagtcacttttgacaacatccaggtgaatataaaaacttaataaagctgtg gaaaggaactcttaatcttcttttctgctacttaggttaaattcactagatcttgattaggaa tcaaaattcgaattgggacatgttcaaattctttcttgtggtagttgcctatactgtcatcg ctgctgttggttgagcatttgtggtgtaccacgctgtgtgctcaagggtattacattcatc ttctcatttaatcctcacaacaatctgaagaaggtaggtattacaattcccacttcataga aacagaaactgaggttcagagaggttaagtcatttgcccaaatggctgagccaaagc ctaccatgtacctaacctttattttctttcccgaacataccaggctgtctcctcataacttc caagcatgcacttaaaactccacatgaatacaaggttcatgggacttggtattcataga aagggaggcagaaagctggtctgttcctgataggcttgtaatttaatatcattctgttcat gtgctttggatggaagcacatctggcatatgatgctaatcagtggttcccatacccctg gcttcctaattttaatgtttgctcacagcatagtagattgacatcaaatagtggccgatga tgatgaaaataaaggtcaaataagttgagccaataacagccgcttttttccttctgtctgc gtatacaaagcactgtcatgcacacaatctattctgaccctcacaacaacccataagg gtgtaaatagtatttccattttacaaatgaggatcacacaaactactacatggcagagca gatactccaactcatgtcttctggttgaagcctattgctttttcttttctaaacactttccctc agcaagttggaattagacttcacaagtctccttcagagaacacaaatcttttcttattcca ttcctgtttggttgcctacgtccaatctccccctccccagagatgccaaaaaaaaaatc ctttaaggtatttgggagccaaactcaacttgttaaaatctcaaattatggagacaatca gcagacacaacctaaccccaattattttggcaggaaggttggtttagaggcagatcca gcaatctgctttgggccactctgggtggggtaggtgaaataagattggtcactgttaac taattttaatattggattggccattggttatcactgattaccattctcccctggattttcacc caggactcaaaacttggttctgctaaccctgttcctttatgaggaaccttttaaagattcc tttataaggtgggagttttttttctatgaacctataggggagaaaaaagatcagcagaag tcattacttttttttttttttttttttttttttgagagagagtctcactccattgcccaggctggag tgcagtggtgctatctcggctcactgcaacctccgcctcctgggttcaagcaattctcct gcctcagcctcccgagtagctgggattgcaggtgcccaccaccacacccggctaatt tttgtatttttagtaaagacagggtttcaccatgttggccaggctggtctccaactcccaa tctcaggtgatcctattgcctcgggctcccaaagtgctgggattacaggagtgagcca ccatgcctggccagaagtggttacttctgtagacaaaagaataatgctacttaatcagg ctttctgtgtgacaagaaagagaaagaaaataaagaagtttcaattcatccaattcttaa taagaaatatgtaaataaaattttttaaaattacacttcattttaatgttgtatcagtcaaggt ccctgcaagagatggatggtatggtacactcaaactgggtaacacaggagagttttca gaaagcaactaaatccaaaatactatcaaggaatcaatataaaaattgttaatatttttct catactaaattttcaaaatattttgtgtctattacatttacagcacatcttaattaggactag ctgtgtgttcacctcacatgtggcttgtagctaccatactggacagcacatgtccaaaa aaatacacgtaaagttaaagtttaaaagacacaggaactaagccctcattgtctttccct tgggaggtagtttaaagagctatagatgctgtaacattcttgctattatttattatatatgac attattcctaaaaaagcttttgagatcctaggttgtattcctcaggttttgttgccttcccat gaagatgtgaaggcagggatgcctgttattcagtccaagatgcatgacaagagacctt gggaaagtttcatctggatttaaagattaattcttgatgcttacattccatactcaaaatgt aaatttgaatattaaaataaagatgattttttttttggagctagtcttgctctgttgcccagg ctggaatgcagtggcatgatcatggctcactgcagcctcgacctcccaagctcaagc aaggctacaggtgtgcacctaagtagctaggactacaggtgtgcaccaccatgtcta gctatttttttttctgtagagacagggttttcctatgttgtccaggctggtctcgaactcctg ccctcaagcaatcctcctgccttggcctcccaaagtgttgagattacaggcgtaagcc actgcacctggccaagatgaatattttaatagctcacagaacaaagtttgccacataat gataaaattactatgaaaatatattccctttattgtcagtttaaaagatgaactgagtttca cccaaactggtctggcccctctctgattcaaataccaatagttgctctgattcaaattcca actgttagaacatgacagctgctcataactagctttgcttactaaccatgtttctttccattt gtattaggtcctttactttttataacagcctcaaagtttcatgaattgctgcagtaaacattg attttcatgtttgtgagtctgcaagccagctgggcagctctacttcaggtggtaagggtg gatcagacctattccatatacctcttgttctccttgtccagtggtttctagggatatgttctc atgatgaaccccgcagaggctcgtgaaagtgagaggaaactaggatgcctcttaag gtcttggtcaggatggggtctcctgtcacttctgtcacaggctattgtaagtcatatgag caagctcaataaaatataaacaagtcagataaacagtgggaggaatggcaaagtcat atggccaaggccatgagtgattaattttaacacaggaaaaaagtaaagcattaaatgc gattatttaatatacaatgtcttattaactgaaatataaaatgtgtttactgtaaaatataatc tgtttatctcaccaaagaaatattatctttaaaaaatgtcattacttctaagacatcatcagt ctgcaacttctttccatagccttaatcaggatgctgtggcagctcccacattagcctcgc attctaaactggtagatgtcctaggaaaccatacatctatgtatttttcttattttatacgttt aggacaatgtatagctaattacccaactttttatttgcatacaaatctaatacaactgaac acaatcagttttatcacaggtataatggatttttcaatagtgaggaggtgcctccatgag ccttctctttagaaaagtggcattcaagactcttcatttgaagtgaagattgctatgtctttt gcattgctctattttacataaattaagttataaattgacactataatcaactgacaccatga tcagtgatgatgatcaccctcatcagcactagagttgacttgtttttataacccctttgcat gtatgttgaatagcaaagttcatcagagaacatgtattagtcaatggtaagtaagatact ctcatctaagaaataacatcacctcttctaatgaagttctaagaagagagggaagaaa aagtcttgggagctagtcagggaatagtgtgtatttgcaattacctaaactgaactctac cattactcctaacccagttcctcctcctgtgttttacatgattaatgccacccctgcctcaa tgaaccaagatcagctccatcactgggacctccccattctgcctgtgcaatattttttttt ttatttctccttctaatattactgttattgctccagtaaagagctgtaatatattttacctgga ctgataccaggaatggtggtgttgcttccaatctgttgctgctagattaatctttgcaaag cacaggcttaatttcattgctgctcaactaaaaccactggtggctttccattgcctacaa aataaagtcaacctccccatcagacattcaaggctttcaatgatccatggccgccagct ctctccaggctcatatcccactccactcctctgatgtttcctacactacactacactatac tacactacagccaggtagaatgactgttcacccaacaccactcaggttgtcttctcaac ttggaatactcttgcaccttcaaagctcatttcaaatgccccttcatttgtgaagccttctc caaatttccaagtcagaatgtctcttccttgtgctaccacaaccctttaactgagcctcca ttagtgcactgagaccattctgttcagtgtctgggtgaagcttcctggtgaaaaatatgtt acctatttctttctgaaaagttggattcagggatattatcacggacctaaggtaatagttct agccaacctccctgtccactgccaggccgactacaaacccttctgttgctggcgagct ggtccgcaccactagttctgcttcactctatttatctcttgatgtaaccatcttctttctcca ggttttaagaaccagcccaactcctggttccctgatgaagcttttattcccctagccaca tggaacttttcctttttggaacatgcctttagtttctgtgtagtttgccatgcagcacttcatt gtacacattattaaaacagaattttaaggattagaatgaaccttaaaagatcatgcatctc aaaatttaatgtacatacaaattacccagggattttgttgaaataaaaattatttaattttaa ttaatataaataattcagtaggtctggggtgaggcctgaggttttacatttccaacaagct gccaggtaaagccaatacatctgtccaggaatcacactttgcgtatcaaaggtctagat gacattatcattccaaagagtttcttttacaggctctcagatcagtgttcatccactacctg actactgtcattcacaggcattctgttccacagcaggccagctaacgtggtatttacaa agctcactcctcttatacaacaatccaagtgtttcttttgtcagttgtctgtgccccagga gatccctctctgccttgccttgccctctgcctttggagaccagcacctcatactcagtga aggcctggagtgcttaagagggatttcttccagctctcttgccctggtcttcagtgtatta gatgtattacctccatgctctcagtagaggcccataggaaagagtaggtaggttatgc cagctcacacgcatcctttaaaaatggtttagaagtttagctggtttcttattactcctgtct atggatgtttccttctgtcactctactagggatgaaacagctaatcatgttcaatagttac atttagattggtttttaaaaactatgattgtattagttcgtttccatgctgctgataaagacat atctgagactggaaacaaaaagggtttaattggacttacagttccacatggctgggga ggcctcaaaatcaggtgggaggcaaaaggtacttcttacgtggtggcatcaagagca aaatgaggaagaagcaaaagcagaaactcttcataaacccaccagatcttgtgggac ttattatcacgagaatagcacagaaaagactggcctccatgattcaattacctcccact gcgtccctcccacaacatgtgggaattctgggagatacaattcaagttgagatttgggt ggggacacagccaaaccatatcattcctccctgggctcctccaaatttcataatcctca catttcaaaaccaatcattccttcccaacagttccccaaagtcttaactcatttcagcatta acccaaaagtccacagtccaaagtctcatctgagacaaggcaagtcccttccacttac aagcctgtaaaagcaagctagttacctcctagatacaatggggggtacaggtattggg taaatacagctgttccaaatgagagaaattggccaaaacaaaggggttacagggtcc atgcaagtctgaaatccagtggggcagtcaaattttaaagctccataatgatctcctttg actccatgtctcacattcaggtcatgctgatgcaagagataggttcccatggtcttgtgc agctccgcccctgtggctttgcagagtacagcctccctcctggctgctttctcaggctg atgttgagtgtctgtagcttttccaggcacaagatgcaagttggtggttgatctaccattc tggggtctaccattctggggtctaccgttctgggactgtggccttcttctcacagctcca ctaggcagtgccccaacagggactctgtgtgggggctctgccccacatttcccttcca cactgccctaggagaggttccccatgagggctctgcccctgcagcaaacttttgcctg gacatccaggtgtttccatatatattctgaaatctaggcagaggttcccaaatctcaattc ttgacatctctgcacccacaggctcaacatcacatggaagctgccaatgcttggggcc tctaccctctgaagccacagcccaagctctatgttggctcctttcagccatggctggag cagctgggacacagggcaccaagtccctaggctgcacacagcacagagaccctgg gcccagcccacaaaaccactttttcctcctgggcctctgggcctgtgatgggagggg ctgccatgaaggtctctgacatgacctggagacattttccccatggtcttggggattaa cattaggctccttgctgcttatgcaaatttctgcagccagcttgaatttctccttaaaaaaa atgggtttttcttttctactgcatcatcaggctgcagattttccacatttatgctcttgtttcc cttttaaaacagaatgtttttaacagcacccaagtcaccttttgaatgctttgctgcttaga aatttattccaccagataccctaagtcatctctctcaagctctaagttccacaaatctcta gggcaagggtgaaatgctgccagtctccttgctaaaacataacaagggtcacctttac ttcagttcccaacaaggtcttcatctccatctgagaccacctcagcctggaccttattgtt catatcactatcagtatttttgtcaatgccattcacagtctctaggaggttccaaactttcc tacattttcctatcttcttctgagccctccagattatttcaacacccagttccaaagttgctt ccacattttcgggtatcttttcagcaatgccccactctactggtactattagtccattttcat gctgctgataaagacatacctgagactgggaacaaaaagaggtttaattggacttata gttccacctggctggggaggcctcagaatcatggcaggaggtgaaaggcatttctta cacggcagcagcaagagaaaaatgaagaagcagcaaaagcagaaacccctgata aaaccatcagatctcgtgagacttattcactatcacaagaatagcatgggaaagacca gcccccttgattcaattacctccccctgggtcctgtgggaattctggaaggtacaattca agttgagatttgggtggggacacagccaaaccatatcaatgattttgtactttaaccag ctgaatggaagtacaatctcttgctatatgacacaataattatttgcaaaatgagtaaac atatcataaggaaattatttttacaaggtttgaaacctgaaatgcagtctattatcatacat aactaaaaatagagcctcaataaacagattcccagttttgaaaatgcaacatttgtactc cacattgtcagttttcttaggtatatttataaatactcctataaaaatgtaaagaaacacat aatgtagattgctaattttataataacacaagttgattttgacatccaacttattaattatga aatgacttttggcctagtaacaatgaaaatgggggcaaatacagataaatggtaattctt agaatgaactactcagcaccaattctaagtttttcttgatggtaaatcataatgttcccttt ctcctcggttctgcaatctataggcataccataattgtaatcaatagcttaaaaatatgtct ctctgtcctattctgtatctgtatctcttggatttttacctttgcaatagtcaactgaaccatc ttcttggagtactcatgaagatggaagtctacatggagaatacaggatgaatccactct gtctcctgcagtgaagtctgtttgaaggatgtatttggctgtcttctggacaggccattct aataacagaaacaaacaagttattttaaaacttattggaatattcaaatattaaccaaagt agaaaaatataatacacatccatgtgcccatcacagaacttcactgattatcatcattta gccagtcttgaagaagcaagtgctaattacaatcacaaatgaaacaagattcagactt catgaagagcactgcgctataataaaagaagaaatgagcacatacattcttttactgac agtcaaatggtgaaggtgggcagaatcattatgtgatgcaacatggcaaaagtataca gacagtgcatccagaggaaggcaccttgctgaatgactagaatggaagtaggagac attttgcaggcccccttcatcctgcagggagaaccagaaccacagcagctctatttgc ctattcctctttaaattacaaagttaaaatttgggagtagtagaaaatcaattggttatctta tagagtctcctagaatatttcattggcattgagaaggtggaaaatgcaaattatatacttt aaaatgtaatttttgcttttcacatatgcttaaagcctaaaacctcttaataaacttcttctga aatata (SEQ ID NO: 614) Dgkz ggagagtgtctctaaggtgacactcgggtgcgcggcagcagcggcggttgcagga NM_201532 NM_138306 gctcgctctccgcccgggctccggctccgctccagccgtccggggggcgccgcgg cgcgcagagcgcagcaccccgactccagccaggagcccccgcccccccggagc gcaggaggaccccggcccgcctctcccaggcgcagcgcccagcatctcgctgctc ctgtcgtctaagcgtcggcgtcgctagggacctgcggaacccggcgctcccctccct ccccgcctcgcgtccccggcccgggcggactggagactcgaacttgagcgggtgc ccgaaaggccgcaggagccgcgggcggaaggggccgcacgatggccgaggg gcagggcggcggagggcagcgctgggactgggctggcggcggccgggcagcc gaggaggaggtggtgcggcggcgatgccggcgcggggaggaggcccaggtcgc gcagccctggcccgagggttcccggggcacggccgctgggcccccggtggagga gcgtttccgccagctgcacctacgaaagcaggtgtcttacaggaaagccatcaccaa gtcgggcctccagcacctggccccccctccgcccacccctggggccccgtgcagc gagtcagagcggcagatccggagtacagtggactggagcgagtcagcgacatatg gggagcacatctggttcgagaccaacgtgtccggggacttctgctacgttggggagc agtactgtgtagccaggatgctgaagtcagtgtctcgaagaaagtgcgcagcctgca agattgtggtgcacacgccctgcatcgagcagctggagaagataaatttccgctgtaa gccgtccttccgtgaatcaggctccaggaatgtccgcgagccaacctttgtacggca ccactgggtacacagacgacgccaggacggcaagtgtcggcactgtgggaaggg attccagcagaagttcaccttccacagcaaggagattgtggccatcagctgctcgtgg tgcaagcaggcataccacagcaaggtgtcctgcttcatgctgcagcagatcgagga gccgtgctcgctgggggtccacgcagccgtggtcatcccgcccacctggatcctcc gcgcccggaggccccagaatactctgaaagcaagcaagaagaagaagagggcat ccttcaagaggaagtccagcaagaaagggcctgaggagggccgctggagaccctt catcatcaggcccaccccctccccgctcatgaagcccctgctggtgtttgtgaacccc aagagtgggggcaaccagggtgcaaagatcatccagtctttcctctggtatctcaatc cccgacaagtcttcgacctgagccagggagggcccaaggaggcgctggagatgta ccgcaaagtgcacaacctgcggatcctggcgtgcgggggcgacggcacggtggg ctggatcctctccaccctggaccagctacgcctgaagccgccaccccctgttgccatc ctgcccctgggtactggcaacgacttggcccgaaccctcaactggggtgggggcta cacagatgagcctgtgtccaagatcctctcccacgtggaggaggggaacgtggtac agctggaccgctgggacctccacgctgagcccaaccccgaggcagggcctgagg accgagatgaaggcgccaccgaccggttgcccctggatgtcttcaacaactacttca gcctgggctttgacgcccacgtcaccctggagttccacgagtctcgagaggccaacc cagagaaattcaacagccgctttcggaataagatgttctacgccgggacagctttctct gacttcctgatgggcagctccaaggacctggccaagcacatccgagtggtgtgtgat ggaatggacttgactcccaagatccaggacctgaaaccccagtgtgttgttttcctgaa catccccaggtactgtgcgggcaccatgccctggggccaccctggggagcaccac gactttgagccccagcggcatgacgacggctacctcgaggtcattggcttcaccatg acgtcgttggccgcgctgcaggtgggcggacacggcgagcggctgacgcagtgtc gcgaggtggtgctcaccacatccaaggccatcccggtgcaggtggatggcgagcc ctgcaagcttgcagcctcacgcatccgcatcgccctgcgcaaccaggccaccatggt gcagaaggccaagcggcggagcgccgcccccctgcacagcgaccagcagccgg tgccagagcagttgcgcatccaggtgagtcgcgtcagcatgcacgactatgaggcc ctgcactacgacaaggagcagctcaaggaggcctctgtgccgctgggcactgtggt ggtcccaggagacagtgacctagagctctgccgtgcccacattgagagactccagc aggagcccgatggtgctggagccaagtccccgacatgccagaaactgtcccccaa gtggtgcttcctggacgccaccactgccagccgcttctacaggatcgaccgagccca ggagcacctcaactatgtgactgagatcgcacaggatgagatttatatcctggaccct gagctgctgggggcatcggcccggcctgacctcccaacccccacttcccctctcccc acctcaccctgctcacccacgccccggtcactgcaaggggatgctgcaccccctca aggtgaagagctgattgaggctgccaagaggaacgacttctgtaagctccaggagct gcaccgagctgggggcgacctcatgcaccgagacgagcagagtcgcacgctcctg caccacgcagtcagcactggcagcaaggatgtggtccgctacctgctggaccacgc ccccccagagatccttgatgcggtggaggaaaacggggagacctgtttgcaccaag cagcggccctgggccagcgcaccatctgccactacatcgtggaggccggggcctc gctcatgaagacagaccagcagggcgacactccccggcagcgggctgagaaggc tcaggacaccgagctggccgcctacctggagaaccggcagcactaccagatgatcc agcgggaggaccaggagacggctgtgtagcgggccgcccacgggcagcaggag ggacaatgcggccaggggacgagcgccttccttgcccacctcactgccacattcca gtgggacggccacggggggacctaggccccagggaaagagccccatgccgccc cctaaggagccgcccagacctagggctggactcaggagctgggggggcctcacct gttcccctgaggaccccgccggacccggaggctcacagggaacaagacacggct gggttggatatgcctttgccggggttctggggcagggcgctccctggccgcagcag atgccctcccaggagtggaggggctggagagggggaggccttcgggaagaggctt cctgggccccctggtcttcggccgggtccccagcccccgctcctgccccaccccac ctcctccgggcttcctcccggaaactcagcgcctgctgcacttgcctgccctgccttg cttggcacccgctccggcgaccctccccgctcccctgtcatttcatcgcggactgtgc ggcctggggggggggggggactctcacggtgacatgtttacagctgggtgtgac tcagtaaagtggatttttttttctttaaaaaaaa (SEQ ID NO: 615) Vamp7 attggaggagcgctcccactcccaagaggccacgcgtagacggggcgcttcatgc NM_005638 NM_011515 ggaagtcagcggcgtccggtcccagcctcctctgggagcgggcagttggcgaccct gcactgacccgcgtccctccgtcccgagcccgcgcgccctcagagggtgcccgga cagactgaagccatggcgattctttttgctgttgttgccagggggaccactatccttgcc aaacatgcttggtgtggaggaaacttcctggaggtgacagagcagattctggctaag ataccttctgaaaataacaaactaacgtactcacatggcaattatttgtttcattacatctg ccaagacaggattgtatatctttgtatcactgatgatgattttgaacgttcccgagccttta attttctgaatgagataaagaagaggttccagactacttacggttcaagagcacagac agcacttccatatgccatgaatagcgagttctcaagtgtcttagctgcacagctgaagc atcactctgagaataagggcctagacaaagtgatggagactcaagcccaagtggatg aactgaaaggaatcatggtcagaaacatagatctggtagctcagcgaggagaaagat tggaattattgattgacaaaacagaaaatcttgtggattcttctgtcaccttcaaaactac cagcagaaatcttgctcgagccatgtgtatgaagaacctcaagctcactattatcatcat catcgtatcaattgtgttcatctatatcattgtttcacctctctgtggtggatttacatggcc aagctgtgtgaagaaataggaaagaagaagttaccattaaccaaggatatgagagaa caaggagttaaaagcaatccatgtgactcaagcctttcacatactgacagatggtatct gccagtctcttcaaccctcttctcactttttaaaatcttgttccatgcctccaggtttatcttt gtcttatctaccagtttattcctgtgaacttcagattgaaccattcattgcagcagtagcct taaaaaggcttttgtttatttctttggtttgttaactagtgtcatctatttagagaaacattttt gtttttaattgctcaaagctgtcgccgctagtcttatgagctatctactaaaactatggag aaactttgtatgtgcacacaaaagtattcaagagacagtattgctaacatctcatcttaat gtcttttgttattgagaagttttaggtgcttcaaaacaatataaatggataatagttgttattt ggggaattgtaatgatgttggtgctgcttccttctaagagctcagacaagtaaagtatg aaacattcttatttcagttagatggggaacattttgctagcccattagaagcacacagaa ttatccttgtcctcctaatattgactttcaggaataaagttcagtgtgctgatcattcacaat acagtggatagcttgatatcttctgttttcccattgcagttgatttgagaagatgaaggttt aaatattgttgaaagttgcagttttttaaatgtgttcctttttcttctgtgaatatttagggcaa tcgtgtcgctaatagaatatgtagtagagggggggggaggtaaattcctctgacttgc caaagaaaaagaagggaaccacagtggatatgctagcattttagctgtgcaaaggga ggtagtgtgggaaaagtgtttccattctgggaaaagcccaaaccgaatacggtcagc agtcaactccagggtttgggcttgattcctgttgaataatagttttgagcattctttgtggtt aaataaattcttaaatctgcctagttttgatgaattcttttgtgaaacttgaaagagaatag acagtatgacatatagaattaatacaaaacagtttaacaaccatttaactgcagtgtaag aaaattggactgtaatcatatcgctactggcatctgttatctagtatgcatttctggtgtgt atctgaaaggaagacattttctaccctagatccaattgcatttatttatcaataagtgccat taaattgaaattatattacattttacactttctcaatgaatgaacaaattagtctgtagaatc tagccacctgtttagcctagtcatgtgccttgaacatatatgtgtcccataatctggctca tggtacctgttcttctatccaaacctttcaattcatgctacctgattcatttatttgacataga tcttaggcccacttgaactcttttcttgtttatctagcatagcacaaacgtttttccagtcttc tttatcaacactaatgcctcttaattgcatcagtatttcctattggaaaatacatctgttcca gaaaaacatttggcattcctgaataatttccaaatgtttttaatccaaagaaaaaggttta aagcttatttccctttcttatacacacctgaataaaattgatgtgcatgttttagggatcaat tacctaactgttccttggtctatttatgtataagaatgctttttaaagcacatgtctcatttta aatgacgcacaaactgaagatgttaataaaatttaagagtaatacaatgaaaaaa (SEQ ID NO: 616) Hipk1 gcagagtctgcagtgcggaggggggggaagtccaggccccgcactcgatccac NM_198268 NM_010432 gctggctccctacggaggcccacctactcgaggcccaccgactcctactgcaatcag tactatgcgatcgtcctagagagtccattcagctgcacttccgcctcagtatggcatca cagctgcaagtgttttcgcccccatcagtgtcgtcgagtgccttctgcagtgcgaaga aactgaaaatagagccctctggctgggatgtttcaggacagagtagcaacgacaaat attatacccacagcaaaaccctcccagccacacaagggcaagccaactcctctcacc aggtagcaaatttcaacatccctgcttacgaccagggcctcctcctcccagctcctgc agtggagcatattgttgtaacagccgctgatagctcgggcagtgctgctacatcaacc ttccaaagcagccagaccctgactcacagaagcaacgtttctttgcttgagccatatca aaaatgtggattgaaacgaaaaagtgaggaagttgacagcaacggtagtgtgcagat catagaagaacatccccctctcatgctgcaaaacaggactgtggtgggtgctgctgc cacaaccaccactgtgaccacaaagagtagcagttccagcggagaaggggattacc agctggtccagcatgagatcctttgctctatgaccaatagctatgaagtcttggagttcc taggccgggggacatttggacaggtggctaagtgctggaagaggagcaccaagga aattgtggctattaaaatcttgaagaaccacccctcctatgccagacaaggacagattg aagtgagcatcctttcccgcctaagcagtgaaaatgctgatgagtataattttgtccgtt catacgagtgctttcagcataagaatcacacctgccttgtttttgaaatgttggagcaga acttatatgattttctaaagcaaaacaaatttagcccactgccactcaagtacatcagac caatcttgcagcaggtggccacagccttgatgaagctcaagagtcttggtctgatcca cgctgaccttaagcctgaaaacatcatgctggttgatccagttcgccagccctaccga gtgaaggtcattgactttggttctgctagtcacgtttccaaagctgtgtgctcaacctact tacagtcacgttactacagagctcctgaaattattcttgggttaccattttgtgaagctatt gatatgtggtcactgggctgtgtgatagctgagctgttcctgggatggcctctttatcct ggtgcttcagaatatgatcagattcgttatatttcacaaacacaaggcttgccagctgaa tatcttctcagtgccggaacaaaaacaaccaggtttttcaacagagatcctaatttggg gtacccactgtggaggcttaagacacctgaagaacatgaactggagactggaataaa atcaaaagaagctcggaagtacatttttaattgcttagatgacatggctcaggtgaatat gtctacagacctggagggaacagacatgttggcagagaaggcagaccgaagagaa tacattgatctgttaaagaaaatgctcacaattgatgcagataagagaattacccctcta aaaactcttaaccatcagtttgtgacaatgactcaccttttggattttccacatagcaatc atgttaagtcttgttttcagaacatggagatctgcaagcggagggttcacatgtatgata cagtgagtcagatcaagagtcccttcactacacatgttgccccaaatacaagcacaaa tctaaccatgagcttcagcaatcagctcaatacagtgcacaatcaggccagtgttctag cttccagttctactgcagcagctgctactctttctctggctaattcagatgtctcactacta aactaccagtcagctttgtacccatcatctgctgcaccagttcctggagttgcccagca gggtgtttccttgcagcctggaaccacccagatttgcactcagacagatccattccaac agacatttatagtatgtccacctgcgtttcaaactggactacaagcaacaacaaagcat tctggattccctgtgaggatggataatgctgtaccgattgtaccccaggcaccagctg ctcagccactacagattcagtcaggagttctcacgcagggaagctgtacaccactaat ggtagcaactctccaccctcaagtagccaccatcacaccgcagtatgcggtgcccttt actctgagctgcgcagccggccggccggcgctggttgaacagactgccgctgtact gcaggcgtggcctggagggactcagcaaattctcctgccttcaacttggcaacagttg cctggggtagctctacacaactctgtccagcccacagcaatgattccagaggccatg gggagtggacagcagctagctgactggaggaatgcccactctcatggcaaccagta cagcactatcatgcagcagccatccttgctgactaaccatgtgacattggccactgctc agcctctgaatgttggtgttgcccatgttgtcagacaacaacaatccagttccctccctt cgaagaagaataagcagtcagctccagtctcttccaagtcctctctagatgttctgcctt cccaagtctattctctggttgggagcagtcccctccgcaccacatcttcttataattcctt ggtccctgtccaagatcagcatcagcccatcatcattccagatactcccagccctcctg tgagtgtcatcactatccgaagtgacactgatgaggaagaggacaacaaatacaagc ccagtagctctggactgaagccaaggtctaatgtcatcagttatgtcactgtcaatgatt ctccagactctgactcttctttgagcagcccttattccactgataccctgagtgctctccg aggcaatagtggatccgttttggaggggcctggcagagttgtggcagatggcactgg cacccgcactatcattgtgcctccactgaaaactcagcttggtgactgcactgtagcaa cccaggcctcaggtctcctgagcaataagactaagccagtcgcttcagtgagtgggc agtcatctggatgctgtatcacccccacagggtatcgagctcaacgcggggggacc agtgcagcacaaccactcaatcttagccagaaccagcagtcatcggcggctccaac ctcacaggagagaagcagcaacccagccccccgcaggcagcaggcgtttgtggcc cctctctcccaagccccctacaccttccagcatggcagcccgctacactcgacaggg cacccacaccttgccccggcccctgctcacctgccaagccaggctcatctgtatacgt atgctgccccgacttctgctgctgcactgggctcaaccagctccattgctcatcttttctc cccacagggttcctcaaggcatgctgcagcctataccactcaccctagcactttggtg caccaggtccctgtcagtgttgggcccagcctcctcacttctgccagcgtggcccctg ctcagtaccaacaccagtttgccacccaatcctacattgggtcttcccgaggctcaaca atttacactggatacccgctgagtcctaccaagatcagccagtattcctacttatagttg gtgagcatgagggaggaggaatcatggctaccttctcctggccctgcgttcttaatatt gggctatggagagatcctcctttaccctcttgaaatttcttagccagcaacttgttctgca ggggcccactgaagcagaaggtttttctctgggggaacctgtctcagtgttgactgca ttgttgtagtcttcccaaagtttgccctatttttaaattcattatttttgtgacagtaattttggt acttggaagagttcagatgcccatcttctgcagttaccaaggaagagagattgttctga agttaccctctgaaaaatattttgtctctctgacttgatttctataaatgcttttaaaaacaa gtgaagcccctctttatttcattttgtgttattgtgattgctggtcaggaaaaatgctgata gaaggagttgaaatctgatgacaaaaaaagaaaaattactttttgtttgtttataaactca gacttgcctattttattttaaaagcggcttacacaatctcccttttgtttattggacatttaaa cttacagagtttcagttttgttttaatgtcatattatacttaatgggcaattgttatttttgcaa aactggttacgtattactctgtgttactattgagattctctcaattgctcctgtgtttgttata aagtagtgtttaaaaggcagctcaccatttgctggtaacttaatgtgagagaatccatat ctgcgtgaaaacaccaagtattctttttaaatgaagcaccatgaattcttttttaaattatttt ttaaaagtctttctctctctgattcagcttaaatttttttatcgaaaaagccattaaggtggtt attattacatggtggtggtggttttattatatgcaaaatctctgtctattatgagatactggc attgatgagctttgcctaaagattagtatgaattttcagtaatacacctctgttttgctcatc tctcccttctgttttatgtgatttgtttggggagaaagctaaaaaaacctgaaaccagata agaacatttcttgtgtatagcttttatacttcaaagtagcttcctttgtatgccagcagcaa attgaatgctctcttattaagacttatataataagtgcatgtaggaattgcaaaaaatatttt aaaaatttattactgaatttaaaaatattttagaagttttgtaatggtggtgttttaatatttta cataattaaatatgtacatattgattagaaaaatataacaagcaatttttcctgctaaccca aaatgttatttgtaatcaaatgtgtagtgattacacttgaattgtgtacttagtgtgtatgtg atcctccagtgttatcccggagatggattgatgtctccattgtatttaaaccaaaatgaac tgatacttgttggaatgtatgtgaactaattgcaattatattagagcatattactgtagtgct gaatgagcaggggcattgcctgcaaggagaggagacccttggaattgttttgcacag gtgtgtctggtgaggagtttttcagtgtgtgtctcttccttccctttcttcctccttcccttatt gtagtgccttatatgataatgtagtggttaatagagtttacagtgagcttgccttaggatg gaccagcaagcccccgtggaccctaagttgttcaccgggatttatcagaacaggatta gtagctgtattgtgtaatgcattgttctcagtttccctgccaacattgaaaaataaaaaca gcagcttttctcctttaccaccacctctacccctttccattttggattctcggctgagttctc acagaagcattttccccatgtggctctctcactgtgcgttgctaccttgcttctgtgagaa ttcaggaagcaggtgagaggagtcaagccaatattaaatatgcattcttttaaagtatgt gcaatcacttttagaatgaatttttttttccttttcccatgtggcagtccttcctgcacatagt tgacattcctagtaaaatatttgcttgttgaaaaaaacatgttaacagatgtgtttatacca aagagcctgttgtattgcttaccatgtccccatactatgaggagaagttttgtggtgccg ctggtgacaaggaactcacagaaaggtttcttagctggtgaagaatatagagaagga accaaagcctgttgagtcattgaggcttttgaggtttcttttttaacagcttgtatagtcttg gggcccttcaagctgtgaaattgtccttgtactctcagctcctgcatggatctgggtcaa gtagaaggtactggggatggggacattcctgcccataaaggatttggggaaagaag attaatcctaaaatacaggtgtgttccatctgaattgaaaatgatatatttgagatataattt taggactggttctgtgtagatagagatggtgtcaaggaggtgcaggatggagatggg agatttcatggagcctggtcagccagctctgtaccaggttgaacaccgaggagctgtc aaagtatttggagtttcttcattgtaaggagtaagggcttccaagatggggcaggtagt ccgtacagcctaccaggaacatgttgtgttttctttattttttaaaatcattatattgagttgt gttttcagcactatattggtcaagatagccaagcagtttgtataatttctgtcactagtgtc atacagttttctggtcaacatgtgtgatctttgtgtctcctttttgccaagcacattctgattt tcttgttggaacacaggtctagtttctaaaggacaaattttttgttccttgtcttttttctgtaa gggacaagatttgttgtttttgtaagaaatgagatgcaggaaagaaaaccaaatcccat tcctgcaccccagtccaataagcagataccacttaagataggagtctaaactccacag aaaaggataataccaagagcttgtattgttaccttagtcacttgcctagcagtgtgtggc tttaaaaactagagatttttcagtcttagtctgcaaactggcatttccgattttccagcata aaaatccacctgtgtctgctgaatgtgtatgtatgtgctcactgtggctttagattctgtcc ctggggttagccctgttggccctgacaggaagggaggaagcctggtgaatttagtga gcagctggcctgggtcacagtgacctgacctcaaaccagcttaaggctttaagtcctc tctcagaacttggcatttccaacttcttcctttccgggtgagagaagaagcggagaag ggttcagtgtagccactctgggctcatagggacacttggtcactccagagtttttaatag ctcccaggaggtgatattattttcagtgctcagctgaaataccaaccccaggaataaga actccatttcaaacagttctggccattctgagcctgcttttgtgattgctcatccattgtcct ccactagaggggctaagcttgactgcccttagccaggcaagcacagtaatgtgtgttt tgttcagcattattatgcaaaaattcactagttgagatggtttgttttaggataggaaatga aattgcctctcagtgacaggagtggcccgagcctgcttcctattttgattttttttttttttaa ctgatagatggtgcagcatgtctacatggttgtttgttgctaaactttatataatgtgtggtt tcaattcagcttgaaaaataatctcactacatgtagcagtacattatatgtacattatatgt aatgttagtatttctgctttgaatccttgatattgcaatggaattcctactttattaaatgtatt tgatatgctagttattgtgtgcgatttaaactttttttgctttctccctttttttggttgtgcgctt tcttttacaacaagcctctagaaacagatagtttctgagaattactgagctatgtttgtaat gcagatgtacttagggagtatgtaaaataatcattttaacaaaagaaatagatatttaaa atttaatactaactatgggaaaagggtccattgtgtaaaacatagtttatctttggattcaa tgtttgtctttggttttacaaagtagcttgtattttcagtattttctacataatatggtaaaatg tagagcaattgcaatgcatcaataaaatgggtaaattttctgacttatgtggctgtttttga cttctgttataggatataaaggggatcaataaatgacatctttgaaagtgaaaa (SEQ ID NO: 617) Nuak2 gtgctttactgcgcgctctggtactgctgtggctccccgtcctggtgcgggacctgtgc NM_030952 NM_ cccgcgcttcagccctccccgcacagcctactgattcccctgccgcccttgctcacct 001195025 cctgctcgccatggagtcgctggttttcgcgcggcgctccggccccactccctcggc cgcagagctagcccggccgctggcggaagggctgatcaagtcgcccaagccccta atgaagaagcaggcggtgaagcggcaccaccacaagcacaacctgcggcaccgc tacgagttcctggagaccctgggcaaaggcacctacgggaaggtgaagaaggcgc gggagagctcggggcgcctggtggccatcaagtcaatccggaaggacaaaatcaa agatgagcaagatctgatgcacatacggagggagattgagatcatgtcatcactcaa ccaccctcacatcattgccatccatgaagtgtttgagaacagcagcaagatcgtgatc gtcatggagtatgccagccggggcgacctttatgactacatcagcgagcggcagca gctcagtgagcgcgaagctaggcatttcttccggcagatcgtctctgccgtgcactatt gccatcagaacagagttgtccaccgagatctcaagctggagaacatcctcttggatgc caatgggaatatcaagattgctgacttcggcctctccaacctctaccatcaaggcaagt tcctgcagacattctgtgggagccccctctatgcctcgccagagattgtcaatgggaa gccctacacaggcccagaggtggacagctggtccctgggtgttctcctctacatcctg gtgcatggcaccatgccctttgatgggcatgaccataagatcctagtgaaacagatca gcaacggggcctaccgggagccacctaaaccctctgatgcctgtggcctgatccgg tggctgttgatggtgaaccccacccgccgggccaccctggaggatgtggccagtca ctggtgggtcaactggggctacgccacccgagtgggagagcaggaggctccgcat gagggtgggcaccctggcagtgactctgcccgcgcctccatggctgactggctccg gcgttcctcccgccccctcctggagaatggggccaaggtgtgcagcttcttcaagca gcatgcacctggtgggggaagcaccacccctggcctggagcgccagcattcgctca agaagtcccgcaaggagaatgacatggcccagtctctccacagtgacacggctgat gacactgcccatcgccctggcaagagcaacctcaagctgccaaagggcattctcaa gaagaaggtgtcagcctctgcagaaggggtacaggaggaccctccggagctcagc ccaatccctgcgagcccagggcaggctgccccgctgctccccaagaagggcattct caagaagccccgacagcgcgagtctggctactactcctctcccgagcccagtgaatc tggggagctcttggacgcaggcgacgtgtttgtgagtggggatcccaaggagcaga agcctccgcaagcttcagggctgctcctccatcgcaaaggcatcctcaaactcaatg gcaagttctcccagacagccttggagctcgcggcccccaccaccttcggctccctgg atgaactcgccccacctcgccccctggcccgggccagccgaccctcaggggctgt gagcgaggacagcatcctgtcctctgagtcctttgaccagctggacttgcctgaacgg ctcccagagcccccactgcggggctgtgtgtctgtggacaacctcacggggcttgag gagcccccctcagagggccctggaagctgcctgaggcgctggcggcaggatccttt gggggacagctgcttttccctgacagactgccaggaggtgacagcgacctaccgac aggcactgagggtctgctcaaagctcacctgagtggagtaggcattgccccagccc ggtcaggctctcagatgcagctggttgcaccccgaggggagatgccttctcccccac ctcccaggacctgcatcccagctcagaaggctgagagggtttgcagtggagccctg agcagggctggatatgggaagtaggcaaatgaaatgcgccaagggttcagtgtctgt cttcagccctgctgaacgaagaggatactaaagagaggggaacgggaatgcccgc gacagagtccacattgcctgtttcttgtgtacatgggggggccacagagacctggaa agagaactctcccagggcccatctcctgcatcccatgaatactctgtacacatggtgc cttctaaggacagctccttccctactcattccctgcccaagtggggccagacctctttac acacacattcccgttcctaccaaccaccagaactggatggtggcacccctaatgtgca tgaggcatcctgggaatggtctggagtaacgcttcgttatttttatttttatttttatttatttat ttatttttttgagacggagtttcgctcttggtgcccaggctagagtgcaatggcgcgatc tcagctcacctcaacctccgcctcccgggttcaagcgattctcctgcctcagcctccct agtagctgggattacaggcgcccgccaccatgcccggctaattttgtatttttagtaga gacagggtttctccatgttggtcaggctggtctcaaactcccgacctcaggtgatccac ccacctcggcctcccaaagtgctgggattacaggcgtgagccaccgcgccccacct aacccttccttatttagcctaggagtaagagaacacaatctctgtttcttcaatggttctct tcccttttccatcctccaaacctggcctgagcctcctgaagttgctgctgtgaatctgaa agacttgaaaagcctccgcctgctgtgtggacttcatctcaaggggcccagcctcctc tggactccaccttggacctcagtgactcagaacttctgcctctaagctgctctaaagtc cagactatggatgtgttctctaggccttcaggactctagaatgtccatatttatttttatgtt cttggctttgtgttttaggaaaagtgaatcttgctgttttcaataatgtgaatgctatgttct gggaaaatccactatgacatctaagttttgtgtacagagagatatttttgcaactatttcc acctcctcccacaaccccccacactccactccacactcttgagtctctttacctaatggt ctctacctaatggacctccgtggccaaaaagtaccattaaaaccagaaaggtgattgg aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa (SEQ ID NO: 618) Alk agctgcaagtggcgggcgcccaggcagatgcgatccagcggctctgggggcggc NM_004304 NM_007439 agcggtggtagcagctggtacctcccgccgcctctgttcggagggtcgcggggcac cgaggtgctttccggccgccctctggtcggccacccaaagccgcgggcgctgatga tgggtgaggagggggcggcaagatttcgggcgcccctgccctgaacgccctcagc tgctgccgccggggccgctccagtgcctgcgaactctgaggagccgaggcgccgg tgagagcaaggacgctgcaaacttgcgcagcgcgggggctgggattcacgcccag aagttcagcaggcagacagtccgaagccttcccgcagcggagagatagcttgagg gtgcgcaagacggcagcctccgccctcggttcccgcccagaccgggcagaagag cttggaggagccaaaaggaacgcaaaaggcggccaggacagcgtgcagcagctg ggagccgccgttctcagccttaaaagttgcagagattggaggctgccccgagaggg gacagaccccagctccgactgcggggggcaggagaggacggtacccaactgcca cctcccttcaaccatagtagttcctctgtaccgagcgcagcgagctacagacggggg cgcggcactcggcgcggagagcgggaggctcaaggtcccagccagtgagcccag tgtgcttgagtgtctctggactcgcccctgagcttccaggtctgtttcatttagactcctg ctcgcctccgtgcagttgggggaaagcaagagacttgcgcgcacgcacagtcctct ggagatcaggtggaaggagccgctgggtaccaaggactgttcagagcctcttcccat ctcggggagagcgaagggtgaggctgggcccggagagcagtgtaaacggcctcc tccggcgggatgggagccatcgggctcctgtggctcctgccgctgctgctttccacg gcagctgtgggctccgggatggggaccggccagcgcgcgggctccccagctgcg gggccgccgctgcagccccgggagccactcagctactcgcgcctgcagaggaag agtctggcagttgacttcgtggtgccctcgctcttccgtgtctacgcccgggacctact gctgccaccatcctcctcggagctgaaggctggcaggcccgaggcccgcggctcg ctagctctggactgcgccccgctgctcaggttgctggggccggcgccgggggtctc ctggaccgccggttcaccagccccggcagaggcccggacgctgtccagggtgctg aagggcggctccgtgcgcaagctccggcgtgccaagcagttggtgctggagctgg gcgaggaggcgatcttggagggttgcgtcgggccccccggggaggcggctgtgg ggctgctccagttcaatctcagcgagctgttcagttggtggattcgccaaggcgaagg gcgactgaggatccgcctgatgcccgagaagaaggcgtcggaagtgggcagaga gggaaggctgtccgcggcaattcgcgcctcccagccccgccttctcttccagatcttc gggactggtcatagctccttggaatcaccaacaaacatgccttctccttctcctgattatt ttacatggaatctcacctggataatgaaagactccttccctttcctgtctcatcgcagcc gatatggtctggagtgcagctttgacttcccctgtgagctggagtattcccctccactgc atgacctcaggaaccagagctggtcctggcgccgcatcccctccgaggaggcctcc cagatggacttgctggatgggcctggggcagagcgttctaaggagatgcccagagg ctcctttctccttctcaacacctcagctgactccaagcacaccatcctgagtccgtggat gaggagcagcagtgagcactgcacactggccgtctcggtgcacaggcacctgcag ccctctggaaggtacattgcccagctgctgccccacaacgaggctgcaagagagat cctcctgatgcccactccagggaagcatggttggacagtgctccagggaagaatcg ggcgtccagacaacccatttcgagtggccctggaatacatctccagtggaaaccgca gcttgtctgcagtggacttctttgccctgaagaactgcagtgaaggaacatccccagg ctccaagatggccctgcagagctccttcacttgttggaatgggacagtcctccagcttg ggcaggcctgtgacttccaccaggactgtgcccagggagaagatgagagccagat gtgccggaaactgcctgtgggtttttactgcaactttgaagatggcttctgtggctggac ccaaggcacactgtcaccccacactcctcaatggcaggtcaggaccctaaaggatg cccggttccaggaccaccaagaccatgctctattgctcagtaccactgatgtccccgc ttctgaaagtgctacagtgaccagtgctacgtttcctgcaccgatcaagagctctccat gtgagctccgaatgtcctggctcattcgtggagtcttgaggggaaacgtgtccttggtg ctagtggagaacaaaaccgggaaggagcaaggcaggatggtctggcatgtcgccg cctatgaaggcttgagcctgtggcagtggatggtgttgcctctcctcgatgtgtctgac aggttctggctgcagatggtcgcatggtggggacaaggatccagagccatcgtggct tttgacaatatctccatcagcctggactgctacctcaccattagcggagaggacaagat cctgcagaatacagcacccaaatcaagaaacctgtttgagagaaacccaaacaagg agctgaaacccggggaaaattcaccaagacagacccccatctttgaccctacagttc attggctgttcaccacatgtggggccagcgggccccatggccccacccaggcacag tgcaacaacgcctaccagaactccaacctgagcgtggaggtggggagcgagggcc ccctgaaaggcatccagatctggaaggtgccagccaccgacacctacagcatctcg ggctacggagctgctgggggaaaggcgggaagaacaccatgatgcggtcccac ggcgtgtctgtgctgggcatcttcaacctggagaaggatgacatgctgtacatcctgg ttgggcagcagggagaggacgcctgccccagtacaaaccagttaatccagaaagtc tgcattggagagaacaatgtgatagaagaagaaatccgtgtgaacagaagcgtgcat gagtgggcaggaggcggaggaggagggggtggagccacctacgtatttaagatga aggatggagtgccggtgcccctgatcattgcagccggaggtggtggcagggcctac ggggccaagacagacacgttccacccagagagactggagaataactcctcggttct agggctaaacggcaattccggagccgcaggtggtggaggtggctggaatgataac acttccttgctctgggccggaaaatctttgcaggagggtgccaccggaggacattcct gcccccaggccatgaagaagtggggggggagacaagagggggtttcggagggg gtggaggggggtgctcctcaggtggaggaggcggaggatatataggcggcaatgc agcctcaaacaatgaccccgaaatggatggggaagatggggtttccttcatcagtcc actgggcatcctgtacaccccagctttaaaagtgatggaaggccacggggaagtga atattaagcattatctaaactgcagtcactgtgaggtagacgaatgtcacatggaccct gaaagccacaaggtcatctgcttctgtgaccacgggacggtgctggctgaggatgg cgtctcctgcattgtgtcacccaccccggagccacacctgccactctcgctgatcctct ctgtggtgacctctgccctcgtggccgccctggtcctggctttctccggcatcatgatt gtgtaccgccggaagcaccaggagctgcaagccatgcagatggagctgcagagcc ctgagtacaagctgagcaagctccgcacctcgaccatcatgaccgactacaacccca actactgctttgctggcaagacctcctccatcagtgacctgaaggaggtgccgcgga aaaacatcaccctcattcggggtctgggccatggcgcctttggggaggtgtatgaag gccaggtgtccggaatgcccaacgacccaagccccctgcaagtggctgtgaagac gctgcctgaagtgtgctctgaacaggacgaactggatttcctcatggaagccctgatc atcagcaaattcaaccaccagaacattgttcgctgcattggggtgagcctgcaatccct gccccggttcatcctgctggagctcatggggggggagacctcaagtccttcctccg agagacccgccctcgcccgagccagccctcctccctggccatgctggaccttctgca cgtggctcgggacattgcctgtggctgtcagtatttggaggaaaaccacttcatccac cgagacattgctgccagaaactgcctcttgacctgtccaggccctggaagagtggcc aagattggagacttcgggatggcccgagacatctacagggcgagctactatagaaa gggaggctgtgccatgctgccagttaagtggatgcccccagaggccttcatggaag gaatattcacttctaaaacagacacatggtcctttggagtgctgctatgggaaatcttttc tcttggatatatgccataccccagcaaaagcaaccaggaagttctggagtttgtcacca gtggaggccggatggacccacccaagaactgccctgggcctgtataccggataatg actcagtgctggcaacatcagcctgaagacaggcccaactttgccatcattttggaga ggattgaatactgcacccaggacccggatgtaatcaacaccgctttgccgatagaata tggtccacttgtggaagaggaagagaaagtgcctgtgaggcccaaggaccctgagg gggttcctcctctcctggtctctcaacaggcaaaacgggaggaggagcgcagccca gctgccccaccacctctgcctaccacctcctctggcaaggctgcaaagaaacccaca gctgcagagatctctgttcgagtccctagagggccggccgtggaagggggacacgt gaatatggcattctctcagtccaaccctccttcggagttgcacaaggtccacggatcca gaaacaagcccaccagcttgtggaacccaacgtacggctcctggtttacagagaaac ccaccaaaaagaataatcctatagcaaagaaggagccacacgacaggggtaacctg gggctggagggaagctgtactgtcccacctaacgttgcaactgggagacttccggg ggcctcactgctcctagagccctcttcgctgactgccaatatgaaggaggtacctctgt tcaggctacgtcacttcccttgtgggaatgtcaattacggctaccagcaacagggcttg cccttagaagccgctactgcccctggagctggtcattacgaggataccattctgaaaa gcaagaatagcatgaaccagcctgggccctgagctcggtcgcacactcacttctcttc cttgggatccctaagaccgtggaggagagagaggcaatggctccttcacaaaccag agaccaaatgtcacgttttgttttgtgccaacctattttgaagtaccaccaaaaaagctgt attttgaaaatgctttagaaaggttttgagcatgggttcatcctattctttcgaaagaaga aaatatcataaaaatgagtgataaatacaaggcccagatgtggttgcataaggtttttat gcatgtttgttgtatacttccttatgcttctttcaaattgtgtgtgctctgcttcaatgtagtca gaattagctgcttctatgtttcatagttggggtcatagatgtttccttgccttgttgatgtgg acatgagccatttgaggggagagggaacggaaataaaggagttatttgtaatgacta aaa (SEQ ID NO: 619) Pdzklip1 gcccgtcttcgtgtctcctccctccctcgccttcctccttcctagctcctctcctccaggg NM_005764 NM_ ccagactgagcccaggttgatttcaggcggacaccaatagactccacagcagctcca 001164557 ggagcccagacaccggcggccagaagcaaggctaggagctgctgcagccatgtc ggccctcagcctcctcattctgggcctgctcacggcagtgccacctgccagctgtca gcaaggcctggggaaccttcagccctggatgcagggccttatcgcggtggccgtgtt cctggtcctcgttgcaatcgcctttgcagtcaaccacttctggtgccaggaggagccg gagcctgcacacatgatcctgaccgtcggaaacaaggcagatggagtcctggtggg aacagatggaaggtactcttcgatggcggccagtttcaggtccagtgagcatgagaa tgcctatgagaatgtgcccgaggaggaaggcaaggtccgcagcaccccgatgtaac cttctctgtggctccaaccccaagactcccaggcacatgggatggatgtccagtgcta ccacccaagccccctccttctttgtgtggaatctgcaatagtgggctgactccctccag ccccatgccggccctacccgcccttgaagtatagccagccaaggttggagctcaga ccgtgtctaggttggggctcggctgtggccctggggtctcctgctcagctcagaaga gccttctggagaggacagtcagctgagcacctcccatcctgctcacacgtccttcccc ataactatggaaatggccctaatttctgtgaaataaagactttttgtatttctggggctga ggctcagcaacagcccctcaggcttccagtga (SEQ ID NO: 620) Inpp5b aaatgtagtcactgtcccggaacctggggcagcggagtcccgtgcgccctgtggtg NM_005540 NM_008385 acagctcaggagggtgtgtgcgctcagcaggggccagcatggaccagtctgtggc aatccaggagacgctggctgagggggaatactgcgtcatcgcggtgcaaggtgtgc tgtgtgagggggacagccggcagagccgcctcctgggactcgtgcgctaccgcct ggagcacggcggccaggaacacgctctcttcctctatacgcaccggaggatggcca ttaccggggacgatgtctctctggaccagatagtgccagtctcgcgggattttacgctg gaagaagtgtccccagatggtgaactctacatccttggctcagatgtgaccgtccagc tggacacagcagagcttagcctcgtattccaactgccctttggttcacaaaccaggat gttcctccacgaagttgccagggcctgtccaggcttcgattctgcgacccgggatcct gaattcctgtggctgtctcggtataggtgcgcagagctggagctggagatgccaacg ccgcgcggttgtaactcggccctagttacctggccagggtacgcgacaattggcgga ggtggttctaactttgatggtttgagaccaaatgggaagggagtgcctatggaccaaa gctccaggggtcaagataaaccagaaagcttgcaaccaagacagaataaatccaag tccgaaattactgacatggttcgctcctccactatcacagtgtcggacaaggctcatatt ttatccatgcagaagtttggactgcgagatacaattgtgaaatcacatctactacagaa agaagaggattacacctatatccagaacttcaggttttttgcgggaacatacaatgtaa atgggcagtcccccaaagaatgcctccggctgtggctgagcaatggtatccaggcc ccagatgtctattgtgtagggttccaggagcttgatctgagtaaggaagcttttttctttc acgataccccaaaggaggaagagtggttcaaagctgtgtcagagggtcttcatccag atgccaaatatgcaaaggtgaagcttatccgactggttgggattatgctgctgttatatg tcaaacaggagcatgcagcttatatctcagaagtggaagccgagactgtggggaca ggaatcatggggaggatgggcaacaagggaggcgtggcgatcaggttccagttcc acaacaccagcatctgcgttgtgaattctcacttggcagcccacattgaagagtatga gaggaggaaccaggactataaggacatttgttctcgaatgcagttttgtcagcctgac ccaagccttccccctctcaccatcagcaaccatgatgtgatcttgtggctgggggacc tcaactacaggatagaagagctggatgtggaaaaagtgaaaaagctcatcgaagag aaggactttcaaatgctgtatgcatatgatcagctgaaaattcaggtggccgcaaaga ctgtctttgaaggcttcacagagggtgagctcacattccagcctacttacaagtatgata cgggctctgacgactgggataccagtgagaagtgccgtgctcctgcctggtgtgatc ggattctctggaaagggaagaacatcactcagctgagttaccagagccacatggccc tgaagaccagtgaccacaagcctgtcagctcagtgtttgacatcggggtgagggtcg taaatgacgagctttaccggaagacactggaggaaattgttcgctccctggataagat ggaaaatgccaacattccttctgtgtccctgtccaagcgagagttctgttttcagaatgt gaagtacatgcaattgaaagtagaatcctttacaattcataatggacaagtaccctgtca ttttgaattcatcaacaagcctgatgaagagtcttactgtaagcagtggctgaatgccaa ccccagcagaggcttcctcctgccagattctgatgttgagattgacttggagctcttcgt aaataagatgacagctacaaagctcaactcgggtgaagacaaaattgaggacattct ggttctgcacttggacaggggaaaggattactttttgtctgtgtctgggaactacctgcc cagctgttttgggtctcccattcatacactgtgttacatgagagagccaatcttggacct accacttgaaaccattagtgagctgactctgatgccagtatggactggagatgatggg agccagttggatagccccatggaaatccccaaagagctctggatgatggttgattacc tgtaccgaaatgctgtccagcaggaagatctgtttcagcaaccaggcctgaggtcag aatttgaacatatcagggactgcttggatactggaatgattgataacctctctgccagca atcattctgtagccgaagccctgctgcttttcctggagagccttccagagcctgtcatct gttacagcacctaccataactgcttggagtgttctggcaactacacagcaagcaaaca ggtcatttctactctccccatattccacaaaaatgtcttccactacttgatggcgtttttgc gagaactgctgaaaaattcagcaaaaaatcatttggatgagaatattctagctagcata tttggcagcttattgcttcgaaacccagctggtcaccaaaagcttgatatgacagagaa gaagaaggctcaagaatttattcaccagttcctctgcaacccactctgagcctctctctc ctcctattttacttgaggctgccaattaccagccccacctgtttcagctcaagagatgcc ttaagataattatgtgaggccacttggtagcaagaatggcagctatttcctgagcctagt accccaattaagcccaccattggttagcacactcagcgctgtgagtcgtgaagacac gggagaaaatccaccataataaaactgacattcaattttcaactttagttatttaacacag atttttttattttttatttttttttattttgagacggagttttgctctgtcgcgcagggtggagtg cggtggcacgatctcggctcactgcaacctctgcctcctgggtgcaagcaattatcct gcctcagcctcccgagtagctgggactgcaggcacacactgccacgcccagctaat tttttgcattttagtagagacggggtttcaccgtgttgcccaggctgttctaaaactcctg aactcaggtaatctgcctgcctcggcctccccaagtgctaggattacagatgtgagcc accacgcccggccttttttttttttttttcttttttgagatggagtttcactcttgttgcccagg ctggagtgcgttggcgtggtcttggctcactgcaacctctgcctccttggttcaagcaa ttctcctgcctcagcctctcgagtagctgggattataggcgtccgccaccatgcctggc taatttttttgtgtgtttttagtatagacacggtttcaccatgttggccaggctggtctcgaa tgcctggcctcaggtgatccacctgccttggcctcccaaagtgctgggattacaggca tgaaccaccacgcctggcctaaaatgtttttaaataactgtacttgtactcactcacccta cctccagggcatagtcagtctgggctgagatccccatgatcagatatttgatggaaag tcctgaaaggccaatgagttggatggcaagaatgcaggcagaagctgctggataaa ataggctacagccacctcagatgctttcagtgctctgtctgaggatgtgtatatgcatat gcaaactcgacccccgttcctgcccagataatggctcaataactctgaggctggttgc tcagcctctgagggcaatacaggcatttaaaaaattaaaatgaccaggcacagtggct cacgcctgtaatctcggcactttgggagactgaggtgggagcatcacttgagaccag gagtttgggaccaggctgggcaacacagggagaccccctctctacaaaaacattttta aaaaattagctgggtgtggtgatgcatgcctgtggtcccagttacttgggaggctgac gtgggtggctcacttgagcacaggagtttgaggctgcagtgacctatgaccacatca ctgtacgccagcccgggtgagagagggagaccccgtctctaaaaataaaatgtaaa atcactgaaaaaatgagtgttcggtgaaacaagtgggattttctgggccagcaagtctt ccaaactgtatatgatgcatcctgtctccatgtgtaatatattttaatgataaatgtattttta acagtgaaaaaaaaaaaaaaa (SEQ ID NO: 653) Socs1 ggcagctgcacggctcctggccccggagcatgcgcgagagccgccccggagcgc NM_003745 NM_ cccggagccccccgccgtcccgcccgcggcgtcccgcgccccgccgccagcgca 001271603 cccccggacgctatggcccacccctccggctggccccttctgtaggatggtagcaca caaccaggtggcagccgacaatgcagtctccacagcagcagagccccgacggcg gccagaaccttcctcctcttcctcctcctcgcccgcggcccccgcgcgcccgcggcc gtgccccgcggtcccggccccggcccccggcgacacgcacttccgcacattccgtt cgcacgccgattaccggcgcatcacgcgcgccagcgcgctcctggacgcctgcgg attctactgggggcccctgagcgtgcacggggcgcacgagcggctgcgcgccgag cccgtgggcaccttcctggtgcgcgacagccgccagcggaactgctttttcgccctta gcgtgaagatggcctcgggacccacgagcatccgcgtgcactttcaggccggccg ctttcacctggatggcagccgcgagagcttcgactgcctcttcgagctgctggagcac tacgtggcggcgccgcgccgcatgctgggggccccgctgcgccagcgccgcgtg cggccgctgcaggagctgtgccgccagcgcatcgtggccaccgtgggccgcgag aacctggctcgcatccccctcaaccccgtcctccgcgactacctgagctccttcccctt ccagatttgaccggcagcgcccgccgtgcacgcagcattaactgggatgccgtgtta ttttgttattacttgcctggaaccatgtgggtaccctccccggcctgggttggagggag cggatgggtgtaggggcgaggcgcctcccgccctcggctggagacgaggccgca gaccccttctcacctcttgagggggtcctccccctcctggtgctccctctgggtccccc tggttgttgtagcagcttaactgtatctggagccaggacctgaactcgcacctcctacc tcttcatgtttacatatacccagtatctttgcacaaaccaggggttgggggagggtctct ggctttatttttctgctgtgcagaatcctattttatattttttaaagtcagtttaggtaataaac tttattatgaaagtttttttttt (SEQ ID NO: 654) Jun gacatcatgggctatttttaggggttgactggtagcagataagtgttgagctcgggctg NM_002228 NM_010591 gataagggctcagagttgcactgagtgtggctgaagcagcgaggcgggagtggag gtgcgcggagtcaggcagacagacagacacagccagccagccaggtcggcagta tagtccgaactgcaaatcttattttcttttcaccttctctctaactgcccagagctagcgcc tgtggctcccgggctggtgtttcgggagtgtccagagagcctggtctccagccgccc ccgggaggagagccctgctgcccaggcgctgttgacagcggcggaaagcagcgg tacccacgcgcccgccgggggaagtcggcgagcggctgcagcagcaaagaacttt cccggctgggaggaccggagacaagtggcagagtcccggagcgaacttttgcaag cctttcctgcgtcttaggcttctccacggcggtaaagaccagaaggcggcggagagc cacgcaagagaagaaggacgtgcgctcagcttcgctcgcaccggttgttgaacttgg gcgagcgcgagccgcggctgccgggcgccccctccccctagcagcggaggagg ggacaagtcgtcggagtccgggcggccaagacccgccgccggccggccactgca gggtccgcactgatccgctccgcggggagagccgctgctctgggaagtgagttcgc ctgcggactccgaggaaccgctgcgcccgaagagcgctcagtgagtgaccgcgac ttttcaaagccgggtagcgcgcgcgagtcgacaagtaagagtgcgggaggcatctt aattaaccctgcgctccctggagcgagctggtgaggagggcgcagcggggacgac agccagcgggtgcgtgcgctcttagagaaactttccctgtcaaaggctccgggggg cgcgggtgtcccccgcttgccagagccctgttgcggccccgaaacttgtgcgcgca gcccaaactaacctcacgtgaagtgacggactgttctatgactgcaaagatggaaac gaccttctatgacgatgccctcaacgcctcgttcctcccgtccgagagcggaccttat ggctacagtaaccccaagatcctgaaacagagcatgaccctgaacctggccgaccc agtgggagcctgaagccgcacctccgcgccaagaactcggacctcctcacctcgcc cgacgtggggctgctcaagctggcgtcgcccgagctggagcgcctgataatccagt ccagcaacgggcacatcaccaccacgccgacccccacccagttcctgtgccccaa gaacgtgacagatgagcaggagggcttcgccgagggcttcgtgcgcgccctggcc gaactgcacagccagaacacgctgcccagcgtcacgtcggcggcgcagccggtca acggggcaggcatggtggctcccgcggtagcctcggtggcagggggcagcggca gcggcggcttcagcgccagcctgcacagcgagccgccggtctacgcaaacctcag caacttcaacccaggcgcgctgagcagcggggggggcgccctcctacggcgc ggccggcctggcctttcccgcgcaaccccagcagcagcagcagccgccgcacca cctgccccagcagatgcccgtgcagcacccgcggctgcaggccctgaaggagga gcctcagacagtgcccgagatgcccggcgagacaccgcccctgtcccccatcgac atggagtcccaggagcggatcaaggggagaggaagcgcatgaggaaccgcatc gctgcctccaagtgccgaaaaaggaagctggagagaatcgcccggctggaggaaa aagtgaaaaccttgaaagctcagaactcggagctggcgtccacggccaacatgctc agggaacaggtggcacagcttaaacagaaagtcatgaaccacgttaacagtgggtg ccaactcatgctaacgcagcagttgcaaacattttgaagagagaccgtcgggggctg aggggcaacgaagaaaaaaaataacacagagagacagacttgagaacttgacaag ttgcgacggagagaaaaaagaagtgtccgagaactaaagccaagggtatccaagtt ggactgggttgcgtcctgacggcgcccccagtgtgcacgagtgggaaggacttggc gcgccctcccttggcgtggagccagggagcggccgcctgcgggctgccccgcttt gcggacgggctgtccccgcgcgaacggaacgttggacttttcgttaacattgaccaa gaactgcatggacctaacattcgatctcattcagtattaaaggggggagggggaggg ggttacaaactgcaatagagactgtagattgcttctgtagtactccttaagaacacaaa gcggggggagggttggggaggggcggcaggagggaggtttgtgagagcgaggc tgagcctacagatgaactctttctggcctgccttcgttaactgtgtatgtacatatatatat tttttaatttgatgaaagctgattactgtcaataaacagcttcatgcctttgtaagttatttctt gtttgtttgtttgggtatcctgcccagtgttgtttgtaaataagagatttggagcactctga gtttaccatttgtaataaagtatataatttttttatgttttgtttctgaaaattccagaaaggat atttaagaaaatacaataaactattggaaagtactcccctaacctcttttctgcatcatctg tagatactagctatctaggtggagttgaaagagttaagaatgtcgattaaaatcactctc agtgcttcttactattaagcagtaaaaactgttctctattagactttagaaataaatgtacc tgatgtacctgatgctatggtcaggttatactcctcctcccccagctatctatatggaatt gcttaccaaaggatagtgcgatgtttcaggaggctggaggaaggggggttgcagtg gagagggacagcccactgagaagtcaaacatttcaaagtttggattgtatcaagtggc atgtgctgtgaccatttataatgttagtagaaattttacaataggtgcttattctcaaagca ggaattggtggcagattttacaaaagatgtatccttccaatttggaatcttctctttgacaa ttcctagataaaaagatggcctttgcttatgaatatttataacagcattcttgtcacaataa atgtattcaaataccaaaaaaaaaaaaaaaaa (SEQ ID NO: 655) Nptxr cggccgcggcgacagctccagctccggctccggctccggctccggctccggctcc NM_014293 NM_030689 cgcgcctgccccgctcggcccagcgcgcccgggctccgcgccccgaccccgccg ccgcgcctgccgggggcctcgggcgcccccgccgcccgcctcacgctgaagttcc tggccgtgctgctggccgcgggcatgctggcgttcctcggtgccgtcatctgcatcat cgccagcgtgcccctggcggccagcccggcgcgggcgctgcccggcggcgccg acaatgcttcggtcgcctcgggcgccgccgcgtccccgggcccgcagcggagcct gagcgcgctgcacggcgcgggcggttcagccgggccccccgcgctgcccgggg cacccgcggccagcgcgcacccgctgccgcccgggcccctgttcagccgcttcct gtgcacgccgctggctgctgcctgcccgtcgggggcccagcagggggacgcggc gggcgctgcgccgggcgagcgcgaagagctgctgctgctgcagagcacggccga gcagctgcgccagacggcgctgcagcaggaggcgcgcatccgcgccgaccagg acaccatccgtgagctcaccggcaagctgggccgctgcgagagcggcctgccgcg cggcctccagggcgccgggccccgccgcgacaccatggccgacgggccctggg actcgcctgcgctcattctggagctggaggacgccgtgcgcgccctgcgggaccgc atcgaccgcctggagcaggagcttccagcccgtgtgaacctctcagctgccccagc cccagtctctgctgtgcccaccggcctacactccaagatggaccagctggaggggc agctgctggcccaggtgctggcactggagaaggagcgtgtggccctcagccacag cagccgccggcagaggcaggaagtggaaaaggagttggacgtcctgcagggtcgt gtggctgagctggagcacgggtcctcagcctacagtcctccagatgccttcaagatc agcatccccatccgtaacaactacatgtacgcccgcgtgcggaaggctctgcccga gctctacgcattcaccgcctgcatgtggctgcggtccaggtccagcggcaccggcc agggcacccccttctcctactcagtgcccgggcaggccaacgagattgtactgctag aggcgggccatgagcccatggagctgctgatcaacgacaaggtggcccagctgcc cctgagcctgaaggacaatggctggcaccacatctgcatcgcctggaccacaaggg atggcctatggtctgcctaccaggacggggagctgcagggctccggtgagaacctg gctgcctggcaccccatcaagcctcatgggatccttatcttgggccaggagcaggat accctgggtggccggtttgatgccacccaggcctttgtcggtgacattgcccagtttaa cctgtgggaccacgccctgacaccagcccaggtcctgggcattgccaactgcactg cgccactgctgggcaacgtccttccctgggaagacaagttggtggaggcctttgggg gtgcaacaaaggctgccttcgatgtctgcaaggggagggccaaggcatgaggggc cacctcatccagggcccctcccttgcctgccactttggggacttgaggggggtcatat tccctcctcagcctgcccacgcactggccttccctcctgccccactcctggctgtgcct cccatttcccctcacctgtacccacacctccagaatgccctgccctgcgagtgtgtccc ctgtccccacctgagtggggaggagcgtctcaagtgaacagtgggagcctgcccac ctggcactgcactggagttgtctcttaccccaccctccctgcccatcaactgtatctgat ttcactaattttgacagcacccccagtagggtaggattgtgtatgagggggaccccac tatctcagtggtgggggtggccgcccgcccccttgtcccccatgcaacaggcccagt ggcttccccttcagggccacaacaggctgtagaaggggatgacgaggacatcaga ggttagacttaccctcctccctctttccaccagctgccagtcaagggcagtgggatctc gatggagcctccccccccccccacccatgcctccctcttcctcctctttcctcctctcttt gtgtgtagcggtttgaatgttggttccatgcctggcccagccccacctcagtctccagg acattcctttcccagctccagcctggagggaaggggacaaagaccccaggaggcc aaagggctgcagtcaccccttgtgctcacccatagtgatggccactggtatagtcatc gctctccctccatgccaaggacaggacttggaccgcttcagcctgggctgggagca gccctaaggtagaggcctcatggcccaggagaccccacctctggcagagccacatt acctaccctgtgcatggtcctggggcagcaaggaagaagctcagagggtggggag aagcatgaagcagtgagcagagcactgggtgagagggagaagaccttggttcctag ccagccctgctaatgtgctgtgtggccttctgtaagtccctgccctctctgggcctggc cttcctcattcgtgagctgaggccctcgctttggtcatttgctctccagattgggtgtgag cttctctgtgattccaggtggatatgtggggaaagctctggtgaccctgggcttcgcag gggtagatcccaggactcggcagtggatgggatgcagccagtcatgggttagggtc agcagagactcagagtccagggcaaggttcaaggcagactaacctcatgcatggatt gtaaaaaaccagctccctttggatcaacccagcctggcacccttgcctgtctgagagt gtctcaaagggctgatggcttcctggtccccttgagtcatcaccagcttccccaagag agtgtcagaatcttaagagctgagaggccgggcacggtggctcacgcctgtaatccc agcactttgggaggctgagacaggcagatcacttgaggtcaggagttcgaagtcag cctggccaacgtggtgaaaccccatcttcactaaaaatacaaaacttagctggttaggt ggtgcatgcctgtagtcccagctactcgggaggccgaggcagaagaatctcttgaac tgaggaggtggaggttgcagtgagccgagatcacgccattgcactccagcctgggc aacagagcaagactccatctcaaaaaaataataataatcttaaagatgagaaaagcca ccccatctggcaccacagctgcatcttgcttgtgagaaatggggaagagttcaggga ggacacgtgacctgcacaggatcacagagcatggggcagagccaggactagagct cagggcatctgactccctcttcagtgttcttccccctccatgttgcctgcccctgaagac ctttgagttcagtctacacctaagcaggtagacatccgcgaggtcagatgctttccaac atgacacctgaacatcttcctttatgcaacacccaaacatcttggcatccccaccccag gaagtgcggggaggaggttatgatccctgggcgcttcggcagaatggagagctga ggtgtccctcccctgctagtcacctaccaggtgtctgagcagctgcatgctccctggct caagtgggcactgtaccttttgcctgcctttttgttccctatctccactccctgaggccac ttagcctgagacatgatgcaagagctgcaggccggggggctcagtgccatggaagc tactccaagttgcattgcctcccgcgcccagatcctgctttccatttcgagaacataaat agattgcccagcccctccagtacaatcccactggaagaaaaggcaatggcgggctt cagccagacctgctgagacctaggttgccacggtaacagccaaagacatcaaccca agtgctgggtcaagtgtctcatcatactggcactgttgctggggtgacggcagaattc agaacttcaatttcagtgacgccaagcttgatgtgtttctgttattgttttgaagaaggtag ctcttgtggaggacttgggagaaggatggggtcttaggaaggaggtgacagcacttg catggtcacttgagcccacacacacgctcaaccccaagtcctttatgctttgtcacagt gaagatgagacctctgacgtccaagccttgttcctgtgctgcatcacccactcagcctt ccaaagggaacaggaacaaatttccccagcaccactgtttgggtcccgcttttcctatc ttctgctgcccctgagcacatccaagcagacagggaaagaggagtcagacatggcc cagtcacatcctgagctgctcctggctgataaccacgatggagcccgtgtttgtcctgc catctggcactgcactgagtgtggcacaggcaccgtcctgttgatctcacaacacagt tctaagttaggacgttcttggctccgttagacaggtgaggaaactggggcacagaga ggtgatgtcatctgcctggtgtcaatcagctagcaagtgatggagcccagatttcaaa ccaaagggggttacgtccaggggctgagttcccactcacctgtgtagagtgccatct gggcaccattgctccagacgtgttccgacccctttcccagcccacagggcttgaagt gaaggaacagaggcaggggggggccagccccagggccagggtccccttggtga agccgtgccagggggctcagctgcttcagggaatgtgtccctcccaccatgggcca gagcttcagcccttctttagctcagctagagttcacaggagagccaaaaaagaaaag gaagctgagcatctcccgagtcctgggcagggaaggggagggaaattgctgcttct ccaactcttgcttggggccaagccctgcaccagttgcttcccagctgttatctgccaga tcttcccatcttgtggcatgtggtgcccccaccaacatcccaaggggaccaatcccctt gccaccactttgcatcacctgggaccacagatttggacaggaagggctctgagaaga ggccaaagccctcattttacagatgaggaagctgaagcccggggggggagcgac cctcaaggccacccagctggacacgggagacttgagcccagccttctgactgcattc agccctctctaggacgcagcagcctctccccagcactgagtcccccctcctttgtgtgt cccagcacccttggcctgagtaaacttggaaaggggctccctcccagagaagggac tactctcttcacccctttattccagctgcctgccaccccagacccccacctcccaccct gacccccgacccctgggtggggaaggggctcacatgggcccaggctgagtgtgag tgagcatgtcaagttgtctgacactgtgacattagtgcaccctactgacaacccctccc cagccttgcccctttctcctctccctgttttgtacataaattgacatgagctgcaacatgt gtgcgtgtgtgtgcgtgtgtgtgtgtgtgtatgtgtgtgtgatctgtgtcatggttttgttac ctttttgtttttgtaaacttgaatgttcaaaataaacatgctgtttactctgagaaaaaaaaa aaaaaaa (SEQ ID NO: 656) Socs3 gcggctccgacttggactccctgctccgctgctgccgcttcggccccgcacgcagcc NM_003955 NM_007707 agccgccagccgcccgcccggcccagctcccgccgcggccccttgccgcggtcc ctctcctggtcccctcccggttggtccgggggtgcgcagggggcagggcgggcgc ccaggggaagctcgagggacgcgcgcgcgaaggctcctttgtggacttcacggcc gccaacatctgggcgcagcgcgggccaccgctggccgtctcgccgccgcgtcgcc ttggggacccgagggggctcagccccaaggacggagacttcgattcgggaccagc cccccgggatgcggtagcggccgctgtgcggaggccgcgaagcagctgcagccg ccgccgcgcagatccacgctggctccgtgcgccatggtcacccacagcaagtttcc cgccgccgggatgagccgccccctggacaccagcctgcgcctcaagaccttcagct ccaagagcgagtaccagctggtggtgaacgcagtgcgcaagctgcaggagagcg gcttctactggagcgcagtgaccggggcgaggcgaacctgctgctcagtgccgag cccgccggcacctttctgatccgcgacagctcggaccagcgccacttcttcacgctc agcgtcaagacccagtctgggaccaagaacctgcgcatccagtgtgaggggggca gcttctctctgcagagcgatccccggagcacgcagcccgtgccccgcttcgactgcg tgctcaagctggtgcaccactacatgccgccccctggagccccctccttcccctcgcc acctactgaaccctcctccgaggtgcccgagcagccgtctgcccagccactccctgg gagtccccccagaagagcctattacatctactccgggggcgagaagatccccctggt gttgagccggcccctctcctccaacgtggccactcttcagcatctctgtcggaagacc gtcaacggccacctggactcctatgagaaagtcacccagctgccggggcccattcg ggagttcctggaccagtacgatgccccgctttaaggggtaaagggcgcaaagggca tgggtcgggagaggggacgcaggcccctctcctccgtggcacatggcacaagcac aagaagccaaccaggagagagtcctgtagctctggggggaaagagggcggacag gcccctccctctgccctctccctgcagaatgtggcaggcggacctggaatgtgttgga gggaagggggagtaccacctgagtctccagcttctccggaggagccagctgtcctg gtgggacgatagcaaccacaagtggattctccttcaattcctcagcttcccctctgcct ccaaacaggggacacttcgggaatgctgaactaatgagaactgccagggaatcttca aactttccaacggaacttgtttgctctttgatttggtttaaacctgagctggttgtggagcc tgggaaaggtggaagagagagaggtcctgagggccccagggctgcgggctggcg aaggaaatggtcacaccccccgcccaccccaggcgaggatcctggtgacatgctcc tctccctggctccggggagaagggcttggggtgacctgaagggaaccatcctggta ccccacatcctctcctccgggacagtcaccgaaaacacaggttccaaagtctacctg gtgcctgagagcccagggcccttcctccgttttaagggggaagcaacatttggaggg gatggatgggctggtcagctggtctccttttcctactcatactataccttcctgtacctgg gtggatggagcgggaggatggaggagacgggacatctttcacctcaggctcctggt agagaagacaggggattctactctgtgcctcctgactatgtctggctaagagattcgc cttaaatgctccctgtcccatggagagggacccagcataggaaagccacatactcag cctggatgggtggagaggctgagggactcactggagggcaccaagccagcccac agccagggaagtggggagggggggcggaaacccatgcctcccagctgagcactg ggaatgtcagcccagtaagtattggccagtcaggcgcctcgtggtcagagcagagc caccaggtcccactgccccgagccctgcacagccctccctcctgcctgggggggg aggctggaggtcattggagaggctggactgctgccaccccgggtgctcccgctctg ccatagcactgatcagtgacaatttacaggaatgtagcagcgatggaattacctggaa cagttttttgtttttgtttttgtttttgtttttgtgggggggggcaactaaacaaacacaaagt attctgtgtcaggtattgggctggacagggcagttgtgtgttggggtggtttttttctctat ttttttgtttgtttcttgttttttaataatgtttacaatctgcctcaatcactctgtcttttataaag attccacctccagtcctctctcctcccccctactcaggcccttgaggctattaggagatg cttgaagaactcaacaaaatcccaatccaagtcaaactttgcacatatttatatttatattc agaaaagaaacatttcagtaatttataataaagagcactattttttaatgaaaaac (SEQ ID NO: 657) F11r gaggcagctcctgtggggaaaggcgccagtgcgccgaggcggggagtggcggc NM_016946 NM_172647 ggggtaacacctggccgaggtgactcgttctgaagagcagcggttccttacaccaat cggaacgtgcaggggggggagctggccaatcaggcgcggagggcggggccgg gcggggttccacctggcggctggctctcagtcccctcgctgtagtcgcggagctgtg tctgttcccaggagtccttcggcggctgttgtgtcgggagcctgatcgcgatggggac aaaggcgcaagtcgagaggaaactgttgtgcctcttcatattggcgatcctgttgtgct ccctggcattgggcagtgttacagtgcactcttctgaacctgaagtcagaattcctgag aataatcctgtgaagttgtcctgtgcctactcgggcttttcttctccccgtgtggagtgga agtttgaccaaggagacaccaccagactcgtttgctataataacaagatcacagcttc ctatgaggaccgggtgaccttcttgccaactggtatcaccttcaagtccgtgacacgg gaagacactgggacatacacttgtatggtctctgaggaaggcggcaacagctatggg gaggtcaaggtcaagctcatcgtgcttgtgcctccatccaagcctacagttaacatccc ctcctctgccaccattgggaaccgggcagtgctgacatgctcagaacaagatggttc cccaccttctgaatacacctggttcaaagatgggatagtgatgcctacgaatcccaaa agcacccgtgccttcagcaactcttcctatgtcctgaatcccacaacaggagagctgg tctttgatcccctgtcagcctctgatactggagaatacagctgtgaggcacggaatgg gtatgggacacccatgacttcaaatgctgtgcgcatggaagctgtggagcggaatgt gggggtcatcgtggcagccgtccttgtaaccctgattctcctgggaatcttggtttttgg catctggtttgcctatagccgaggccactttgacagaacaaagaaagggacttcgagt aagaaggtgatttacagccagcctagtgcccgaagtgaaggagaattcaaacagac ctcgtcattcctggtgtgagcctggtcggctcaccgcctatcatctgcatttgccttactc aggtgctaccggactctggcccctgatgtctgtagtttcacaggatgccttatttgtcttc tacaccccacagggccccctacttcttcggatgtgtttttaataatgtcagctatgtgccc catcctccttcatgccctccctccctttcctaccactgctgagtggcctggaacttgttta aagtgtttattccccatttctttgagggatcaggaaggaatcctgggtatgccattgactt cccttctaagtagacagcaaaaatggcgggggtcgcaggaatctgcactcaactgcc cacctggctggcagggatctttgaataggtatcttgagcttggttctgggctctttccttg tgtactgacgaccagggccagctgttctagagcgggaattagaggctagagcggct gaaatggttgtttggtgatgacactggggtccttccatctctggggcccactctcttctgt cttcccatgggaagtgccactgggatccctctgccctgtcctcctgaatacaagctga ctgacattgactgtgtctgtggaaaatgggagctcttgttgtggagagcatagtaaattt tcagagaacttgaagccaaaaggatttaaaaccgctgctctaaagaaaagaaaactg gaggctgggcgcagtggctcacgcctataatcccagaggctgaggcaggcggatc acctgaggtcaggagttcaagatcagcctgaccaacatggagaaaccctactaaaaa tacaaagttagccaggcatagtggtgcatgcctgtaatcccagctgctcaggagcctg gcaacaagagcaaaactccagctcaaaaaaaaaaagaaagaaaagaaagctggag ctggtggcttaggccatcacccttcccttggctggaactactggacagacccttttgag atgtgcctgtggtgctgtggagatgtgtgtagtggtcttagctctttgttgagcttgtgtgt gtgttgtgtagtcttagctgtatgctgaaattgggcgtgtgttggagggcttcttagctctt tggtgagattgtatttctatgtgtttgtatcagctgaatgttgctggaaataaaaccttggtt tgtcaaggctcttttttgtgggaagtaagtaggggaaaaggtctttgagggttcctagg ctcctttgtacaacaggaaaatgcctcaaagccttgcttcccagcaacctggggctgg ttcccagtgcctggtcctgccccttcctggttcttatctcaaggcagagcttctgaatttc aggccttcattccagagccctcttgtggccaggccttcctttgctggaggaaggtaca cagggtgaagctgatgctgtacttgggggatctccttggcctgttccaccaagtgaga gaaggtacttactcttgtacctcctgttcagccaggtgcattaacagacctccctacag ctgtaggaactactgtcccagagctgaggcaaggggatttctcaggtcatttggagaa caagtgctttagtagtagtttaaagtagtaactgctactgtatttagtggggtggaattca gaagaaatttgaagaccagatcatgggtggtctgcatgtgaatgaacaggaatgagc cggacagcctggctgtcattgctttcttcctccccatttggacccttctctgcccttacatt tttgtttctccatctaccaccatccaccagtctatttattaacttagcaagaggacaagta aagggccctcttggcttgattttgcttctttctttctgtggaggatatactaagtgcgacttt gccctatcctatttggaaatccctaacagaattgagttttctattaaggatccaaaaaga aaaacaaaatgctaatgaagccatcagtcaagggtcacatgccaataaacaataaatt ttccagaagaaatgaaatccaactagacaaataaagtagagcttatgaaatggttcagt aaagatgagtttgttgttttttgttttgttttgttttgtttttttaaagacggagtctcgctctgt cacccaggctggagtgcagtggtatgatcttggctcactgtaacctccgcctcccggg ttcaagccattctcctgcctcagtctcctgagtagctgggattacgggtgcgtgccacc atgcctggctaatttttgtgtttttagtagagacagggtttcaccatgttggtcgggctgg tctcaaactcctgacctcttgatccgcctgccttggcctcccaaagtgatgggattaca gatgtgagccaccgtgcctagccaaggatgagatttttaaagtatgtttcagttctgtgt catggttggaagacagagtaggaaggatatggaaaaggtcatggggaagcagagg tgattcatggctctgtgaatttgaggtgaatggttccttattgtctaggccacttgtgaag aatatgagtcagttattgccagccttggaatttacttctctagcttacaatggaccttttga actggaaaacaccttgtctgcattcactttaaaatgtcaaaactaatttttataataaatgtt tattttcacattgagtttgtttaaatcctgaagttcttaccttaagagaattgggactcctag agtgattggacattcaaaatattcctgatagtcttgttaattaagagattaggatatctttc cattaccttgataattacgttttaatttagcttttttcattggcctgtgtttaaatgcaaataac cccacaatggacatttcctatgttaaagtgacatttaggggataaaaaatgagagcagt tccatggattttggtgtttcccctgagacatgaactcagcataatctgggataaaatgatt gagtgttaaggatgtgtttgttgttcctgtcgtttttttattttcttcaaagtatacaacatggt ttgatatgcacatacatttgtgtaatgattgccatggtcaattaacacatcaccatttttgtg tgtgtgtgtgtgtgtgtgtgtgagggagtcttgctccgttgccaggctggagtgcaatg gtacaaccttggctcactgcaacctccacctcctgggttcaagcaattctcttgcctcag cctcctaagtagctgggactataggcgtgtgccaccatgcccagctaatttttgtattttt agtagagacggggtttcaccatgttggccaggatgatctcgatcccttgacctcatgat ccgcccacctcggcctcccaaagtgctgggattacaggcgtgagtcactgcacccg gccacatcacctcccatgttctatcttacgtattcagaacttgttcatcttgtaactgaaag cgtgtaccctttgaccaacactgtttttcctgtcttaacaggatctacagatcaaggaca ggggaggggatagtggaggaaaacggagttagtctgtttctaaatgaggggacagt atgtttcttggggcctgaggacagcttaataaagtagacaaatgaagaaaaacaacaa tttgcattaaaaaatatccaattcttta (SEQ ID NO: 658) Fyn agagcatcagcaagagtagcagcgagcagccgcgctggtggcggcggcgcgtcg NM_002037 NM_ ttgcagttgcgccatctgtcaggagcggagccggcgaggagggggctgccgcggg 001122892 cgaggaggaggggtcgccgcgagccgaaggccttcgagacccgcccgccgccc ggcggcgagagtagaggcgaggttgttgtgcgagcggcgcgtcctctcccgcccg ggcgcgccgcgcttctcccagcgcaccgaggaccgcccgggcgcacacaaagcc gccgcccgcgccgcaccgcccggcggccgccgcccgcgccagggagggattcg gccgccgggccggggacaccccggcgccgccccctcggtgctctcggaaggccc accggctcccgggcccgccggggaccccccggagccgcctcggccgcgccgga ggagggcggggagaggaccatgtgagtgggctccggagcctcagcgccgcgca gtttttttgaagaagcaggatgctgatctaaacgtggaaaaagaccagtcctgcctctg ttgtagaagacatgtggtgtatataaagtttgtgatcgttggcggacattttggaatttag ataatgggctgtgtgcaatgtaaggataaagaagcaacaaaactgacggaggagag ggacggcagcctgaaccagagctctgggtaccgctatggcacagaccccacccctc agcactaccccagcttcggtgtgacctccatccccaactacaacaacttccacgcagc cgggggccaaggactcaccgtctttggaggtgtgaactcttcgtctcatacggggac cttgcgtacgagaggaggaacaggagtgacactctttgtggccctttatgactatgaa gcacggacagaagatgacctgagttttcacaaaggagaaaaatttcaaatattgaaca gctcggaaggagattggtgggaagcccgctccttgacaactggagagacaggttac attcccagcaattatgtggctccagttgactctatccaggcagaagagtggtactttgg aaaacttggccgaaaagatgctgagcgacagctattgtcctttggaaacccaagagg tacctttcttatccgcgagagtgaaaccaccaaaggtgcctattcactttctatccgtgat tgggatgatatgaaaggagaccatgtcaaacattataaaattcgcaaacttgacaatg gtggatactacattaccacccgggcccagtttgaaacacttcagcagcttgtacaacat tactcagagagagctgcaggtctctgctgccgcctagtagttccctgtcacaaaggga tgccaaggcttaccgatctgtctgtcaaaaccaaagatgtctgggaaatccctcgaga atccctgcagttgatcaagagactgggaaatgggcagtttggggaagtatggatggg tacctggaatggaaacacaaaagtagccataaagactcttaaaccaggcacaatgtc ccccgaatcattccttgaggaagcgcagatcatgaagaagctgaagcacgacaagc tggtccagctctatgcagtggtgtctgaggagcccatctacatcgtcaccgagtatatg aacaaaggaagtttactggatttcttaaaagatggagaaggaagagctctgaaattac caaatcttgtggacatggcagcacaggtggctgcaggaatggcttacatcgagcgca tgaattatatccatagagatctgcgatcagcaaacattctagtggggaatggactcatat gcaagattgctgacttcggattggcccgattgatagaagacaatgagtacacagcaa gacaaggtgcaaagttccccatcaagtggacggcccccgaggcagccctgtacgg gaggttcacaatcaagtctgacgtgtggtcttttggaatcttactcacagagctggtcac caaaggaagagtgccatacccaggcatgaacaaccgggaggtgctggagcaggtg gagcgaggctacaggatgccctgcccgcaggactgccccatctctctgcatgagctc atgatccactgctggaaaaaggaccctgaagaacgccccacttttgagtacttgcaga gcttcctggaagactactttaccgcgacagagccccagtaccaacctggtgaaaacc tgtaaggcccgggtctgcggagagaggccttgtcccagaggctgccccacccctcc ccattagctttcaattccgtagccagctgctccccagcagcggaaccgcccaggatc agattgcatgtgactctgaagctgacgaacttccatggccctcattaatgacacttgtcc ccaaatccgaacctcctctgtgaagcattcgagacagaaccttgttatttctcagacttt ggaaaatgcattgtatcgatgttatgtaaaaggccaaacctctgttcagtgtaaatagtt actccagtgccaacaatcctagtgctttccttttttaaaaatgcaaatcctatgtgattttaa ctctgtcttcacctgattcaactaaaaaaaaaaaagtattattttccaaaagtggcctcttt gtctaaaacaataaaattttttttcatgttttaacaaaaaccaatcaggacaggtgtttgttt ttgttttcttttttataaatatgaatatatataatatatatgtccctgtacatatacaatgtggg tgctaatgtggagactgtggccggcctgagccaccaagctgcgggacccagaggg aggattttactgcaagtcagcatcaaagcaccggtgttattctgaaaacaccagtggc ctcatttttggcttttgcaaagcatgaattttttcatttggattgcactttcctggttcatgact gtacctgtaggtggttgttactttgactcttttcaggaaccaccccccaagctgaatttac aagttctgttagcactatttgcttcaacttactgcgatttgttctcaaaacttaaaaataag caagcaaatggctgatactaccaagagaactggaagatggataccacacaaacttctt gtataaaaatatgaatgctgaaatgtttcagacatttttaatttaataaacctgtaaccaca tttaagtgatctaaaacccatagcattgtagtcatggcaacccgctaaactttctcatgc aactaaaatttctgggggaaatgaggggggggttgtacatttcccattgtaaaataag tgttttaaatgtcctgtactgctaacgaatgactttctatatgtccaggagttctccagtgg aataactatgcactactttacatttcatggggatgcacaaaaacaaaaaagtattacattt ttagttgctgtttgtaccaaccttaaattacatatgtttaacaacaacaaatcaaaaatcct atttctattgagtttttaatactgactagcaactctgaagtcttaattccttttttgttatgattt atttgtgagtttacatttttaaattgtttaactttcttaatttagtaattaaaaagagagcatttt acatttgaa (SEQ ID NO: 659) Ype12 gccgcggcggtggcggagactgtggctttaagagcgtgccgggagcccgagccc NM_001005404 NM_ cagccgggccgcgcttcgccgctgcgcaccccagcggagccaagccccacgctg 001005341 gccggacagggccgcctgtcgccgggctgctgagaactagccctagacctctgcgt gagggttcttctgccgaagacatcaccagtgtgtggagcctgccacacccacccgct gccaaaccacggcctttacctgtgtcttccggtgtttcccgtgcgacccatcctgtggg agtgcctcgtgggctgccccagagttcaccccacactcagcagcaccaatggtgaa gatgacaagatcgaagactttccaggcatatctgccctcctgccaccggacctacag ctgcattcactgcagagctcacttggccaatcatgatgaactaatttccaagtcattcca aggaagtcaaggacgagcatacctctttaactcagtagttaatgtgggctgtgggcct gcagaagagcgagtgttgctaacaggactgcatgcagtcgcagacatttactgtgaa aactgcaaaaccactctgggctggaaatacgaacatgcttttgaaagcagccagaaa tataaagaaggcaaatacatcattgaactagcacacatgatcaaggacaatggctgg gactgattggacagcatctacccaacccagtgtccacgtgaacgccattcaaccgaa cattcttcccaagcgtgagagagtgactgacacttggttccatccatttaggggccttg ccatccggggcatcctcccaccctgacgccatctttctggtgaccggcctctaaatcg ctgtctctctgtctctttgctttgtatctgtttgtgagttgatcctggcttctctctctgttctag ttttggctgaaaacaaaacaacaaaaggaacagatccttgaccgcatggcggcagcc caccttggtaagggccccagggcccatgcgagagctgcctgatggcctcttgtcagg agagcagtggcacgggggcgtgaggaagagggaaaggggaaactctaagggtcc tggcgcggggaaggggtggaagggtggaggtaggaacaaaattgcgccgctcctg gagacctgataacttaggcttgaaataattgacttgtctaaaaggacaaagagaaaaa aaaaatacctcatgactgcattctctctgactagaagcttctgttcctgacaccaaatgt gccaggttagcaaatgagcacaagatgtggccctgattctagttggtggggcaaggg cctggttctcctgggctgagtgggggagtgtcctggcagcagcgagtgacctgggc agtggccaggtgggtgcgatgactctgatgcctcactcagtctctgggcaatcatcat ctttgcctctagccaccgtagataaggtgtgaagggactgctgtttgcaatgggcttac catccaaatatcccaaaggctttgaccagcaaccaagtaaaatcagtaattgaggaga gcagggcacaaaggggctgcagtttgggagctcctgaagaaatggctcagatattg agtcagagaaataaaaagtaggatcagttagcaattctaactgcccttccttctgaccc ctcataagaggagtgtggtgagggaggggactgggtaggggtcatcccaggagga ggggtttacattggaaccagttcaggttcggtgcatctttcctcttcggttttacagtggc ttccgtgggatcgtcaatttcttgttcttagagtttcgggtgtttttctccagtcttgttactgt agactgtagaaagcacgggccccaggctctgagcttagtaataacctggctggtaga ttcctcatgcccctaattgtcccacttaggcctgaatgtcttgcatggagagaaatctcct gtcagtgtggtccagcagcagggaggagttctgcccaaattccgatatcaccccttcc cccatccaagcatccttcgattagggaagtggagagcacatccctgtaaggcccata agagaaagaggagtttgttacatttaatcaacactgtgaagtctgttctacagcaattca gccattacacagtatatgactgaaactcatttaactgggttaatttcatttcttagactgaa tatattattgttaagatacgtgtgcgtgttaggtaattctcagcatctcctccaagtaggc cgaccttctcggaaaattcaccctaaaagtctcacaaaagaatgagttcatggggaga ttctgtaaagtgatgaactgagatgaaagcagccaacagcccaggagcttttcagaat agcgtctgcagcagaaccagtttccattcagagcgcgtccttggtggaaatgcttttttg tgtgtctccacgcgctgatggtggaatgggagccccaagacgtgtgggcttagaaat caacttttgttccccaaggcttcttgtccagatctttccagtgctttcatagccctgggag atcaagttgttctccccactttactgcaaggtagactgaagttcagaagaaatactgaat ttctgctcccagaagaatagtttctctggctcacaggcccaagttctcaatgaaatcgttt tttaactttcacattcctaagctggcttcccggcacagaagccatggatttcccctctctc ccttccccctcctcaaggaaatagtcttcctttatggattttcattggactctttcctcagc gattgtcctggctgtttattgatagtccttcccataagaaaatggggttaaacatggggt aggtattttgtctttcaaactacaaatggaatgtggtgacataaactagacatggggtgc cctcaagtttccaaggggaccaatgtgccactgttcttccttggggatgaggcctttga ctgttggatggatcagagcaggctccagtcagaccctggttctgaatgttttttttttcgg tgactatccagtgagccttcagtgggtgcaaggcgccatacttgctgtgagagagctg agtagagtgttggtttttccataactacagggggaaaaaaagtcattaggctttcccttt gtgtcagtgaaaccaaaagtgcttcttacaacgttcgctctgttcatgggttgtctatcta acattgagcagcattggagaggccacagctgagctatggagatgctaaattaactcat ggcctcagtcagttcattctttaatttcctcaccaaattattgacttagagcataaccaaa gacctcattcattcaccccaggtgggttggggtaattggagtttgttggtgaagtttggg ggcggggtgttgggagtagagacagggtaaggggacgtgagaaaggaaaaggca tgaagttctatacctcagccagcagctgccttcgtttggaactgaagtccagccagca gactctctagctccatctcccctgtgccaccctaggtcatatgaccttggccaccttgg agtagacccagacccctcgggacccgggacattagtctcaggctgctgatggattga tttgacatgaaccaaacacagccaaactcgatacccacaagctgtcagctgaacctg actgagtgttcttcctgagttcacgaggataggctagagtgcatttttactggtggatca gtgtgtgcgaaagagatgaccctttataaagagattttcaagtggatatatataaaaga aacagttgcttgtaaaatatacttttgtaaataatatttaattttttaaataatatatttggtgct gttttctcagatcccctgagagcactttttattttccttttaaattctatggtttcctttgcattt cttgaagtatattttaagggaaacagtgatcaccaatacatgttttcagttttttttttttttaa ggtctctatcactttaatctggatcaaggctttgaagcaatgcctctctgcattttttcccc agtggaacagactctgcagtacattaatcaggttgagaattgaaatattttcttgcatca gtattggctagaaaagaaaataaataaaaccaagttaatttagtagtaacaacttacagt gattcttcctgttggaagaatttccaacaaatcagaatcacgtttttagttgtgcgtgtgc gcgcacacgtgtgtaaaaagcactttcgattgtgcctcctgttttctcgagtggggaca ctttaactacagtttacacctcgggcgcataaagtttttcttctctttctctctggttgtttct gtttctgagtggaccaacagcagaacccacgaggatttgttttgagtatggagctgttg cgggtttgctcctttttcttgctttgcgtgctcagtttttacagactgtaaaggagatgtgtt gtttgtgaagatggagcagagtcaaatctgtgcttctaactgagatgagagtgtattaat cacgtatcgcagggctccagctgttttagaagccacatcatgttaaacattaactggttt ggattaaaagaacattaatattataatacacatatcttagtggtaaacagctttttttttttaa ggtcagattgcctcaggtttagaaagaggctgagaaatcaaatcttgaacacaatcaa cttacatattttaaaggaatctgcctcaaatgagaaaatatgctagttatctagatagagg aaagagatatttacttttttaaaaattaaaatagttatgaaatctggcagaaaaggtaaag cctagaagaaactatgaaagctattctcatgttaccaaattctatctgcgcatatgtttttg tataacatttcggtgacagtgggagtcggttccctttcccaacctgcagagactatcttc caatacagaatctgtctatttatgcttgtgtttacaaactgtatttgttgggtttgggtttttgt tttctttggtggcatttttcaggtcactttgcttctataacaaaggtaattgttttcaaataatt tgtcttcaccttttcctgtatttgtacatagtgattcagtattagagaaaagtgcattgtttct gtcatatttccaatctgtgttggtgctcatttgagaaaataaaagttttcaaatattaactct taaaaaaaaaa (SEQ ID NO: 660) Pkd1 ccctcccctcccgatcctcatccccttgccctcccccagcccagggacttttccggaa NM_002742 NM_008858 agtttttattttccgtctgggctctcggagaaagaagctcctggctcagcggctgcaaa actttcctgctgccgcgccgccagcccccgccctccgctgcccggccctgcgcccc gccgagcgatgagcgcccctccggtcctgcggccgcccagtccgctgctgcccgt ggcggcggcagctgccgcagcggccgccgcactggtcccagggtccgggcccg ggcccgcgccgttcttggctcctgtcgcggccccggtcgggggcatctcgttccatct gcagatcggcctgagccgtgagccggtgctgctgctgcaggactcgtccggggact acagcctggcgcacgtccgcgagatggcttgctccattgtcgaccagaagttccctg aatgtggtttctacggaatgtatgataagatcctgctttttcgccatgaccctacctctga aaacatccttcagctggtgaaagcggccagtgatatccaggaaggcgatcttattgaa gtggtcttgtcagcttccgccacctttgaagactttcagattcgtccccacgctctctttgt tcattcatacagagctccagctttctgtgatcactgtggagaaatgctgtgggggctgg tacgtcaaggtcttaaatgtgaagggtgtggtctgaattaccataagagatgtgcattta aaatacccaacaattgcagcggtgtgaggcggagaaggctctcaaacgtttccctca ctggggtcagcaccatccgcacatcatctgctgaactctctacaagtgcccctgatga gccccttctgcaaaaatcaccatcagagtcgtttattggtcgagagaagaggtcaaatt ctcaatcatacattggacgaccaattcaccttgacaagattttgatgtctaaagttaaagt gccgcacacatttgtcatccactcctacacccggcccacagtgtgccagtactgcaag aagcttctgaaggggcttttcaggcagggcttgcagtgcaaagattgcagattcaact gccataaacgttgtgcaccgaaagtaccaaacaactgccttggcgaagtgaccatta atggagatttgcttagccctggggcagagtctgatgtggtcatggaagaagggagtg atgacaatgatagtgaaaggaacagtgggctcatggatgatatggaagaagcaatgg tccaagatgcagagatggcaatggcagagtgccagaacgacagtggcgagatgca agatccagacccagaccacgaggacgccaacagaaccatcagtccatcaacaagc aacaatatcccactcatgagggtagtgcagtctgtcaaacacacgaagaggaaaagc agcacagtcatgaaagaaggatggatggtccactacaccagcaaggacacgctgc ggaaacggcactattggagattggatagcaaatgtattaccctctttcagaatgacaca ggaagcaggtactacaaggaaattcctttatctgaaattttgtctctggaaccagtaaaa acttcagctttaattcctaatggggccaatcctcattgtttcgaaatcactacggcaaatg tagtgtattatgtgggagaaaatgtggtcaatccttccagcccatcaccaaataacagt gttctcaccagtggcgttggtgcagatgtggccaggatgtgggagatagccatccag catgcccttatgcccgtcattcccaagggctcctccgtgggtacaggaaccaacttgc acagagatatctctgtgagtatttcagtatcaaattgccagattcaagaaaatgtggaca tcagcacagtatatcagatttttcctgatgaagtactgggttctggacagtttggaattgtt tatggaggaaaacatcgtaaaacaggaagagatgtagctattaaaatcattgacaaatt acgatttccaacaaaacaagaaagccagcttcgtaatgaggttgcaattctacagaac cttcatcaccctggtgttgtaaatttggagtgtatgtttgagacgcctgaaagagtgtttg ttgttatggaaaaactccatggagacatgctggaaatgatcttgtcaagtgaaaaggg caggttgccagagcacataacgaagtttttaattactcagatactcgtggctttgcggc accttcattttaaaaatatcgttcactgtgacctcaaaccagaaaatgtgttgctagcctc agctgatccttttcctcaggtgaaactttgtgattttggttttgcccggatcattggagag aagtctttccggaggtcagtggtgggtacccccgcttacctggctcctgaggtcctaa ggaacaagggctacaatcgctctctagacatgtggtctgttggggtcatcatctatgta agcctaagcggcacattcccatttaatgaagatgaagacatacacgaccaaattcaga atgcagctttcatgtatccaccaaatccctggaaggaaatatctcatgaagccattgatc ttatcaacaatttgctgcaagtaaaaatgagaaagcgctacagtgtggataagaccttg agccacccttggctacaggactatcagacctggttagatttgcgagagctggaatgca aaatcggggagcgctacatcacccatgaaagtgatgacctgaggtgggagaagtat gcaggcgagcaggggctgcagtaccccacacacctgatcaatccaagtgctagcca cagtgacactcctgagactgaagaaacagaaatgaaagccctcggtgagcgtgtca gcatcctctgagttccatctcctataatctgtcaaaacactgtggaactaataaatacata cggtcaggtttaacatttgccttgcagaactgccattattttctgtcagatgagaacaaa gctgttaaactgttagcactgttgatgtatctgagttgccaagacaaatcaacagaagc atttgtattttgtgtgaccaactgtgttgtattaacaaaagttccctgaaacacgaaacttg ttattgtgaatgattcatgttatatttaatgcattaaacctgtctccactgtgcctttgcaaat cagtgtttttcttactggagcttcattttggtaagagacagaatgtatctgtgaagtagttc tgtttggtgtgtcccattggtgttgtcattgtaaacaaactcttgaagagtcgattatttcc agtgttctatgaacaactccaaaacccatgtgggaaaaaaatgaatgaggagggtag ggaataaaatcctaagacacaaatgcatgaacaagttttaatgtatagttttgaatccttt gcctgcctggtgtgcctcagtatatttaaactcaagacaatgcacctagctgtgcaaga cctagtgctcttaagcctaaatgccttagaaatgtaaactgccatatataacagatacatt tccctctttcttataatactctgttgtactatggaaaatcagctgctcagcaacctttcacct ttgtgtatttttcaataataaaaaatattcttgtcaaaa (SEQ ID NO: 661) Ptpn2 gctcgggcgccgagtctgcgcgctgacgtccgacgctccaggtactttccccacgg NM_002828 NM_008977 ccgacagggcttggcgtgggggcggggcgcggcgcgcagcgcgcatgcgccgc agcgccagcgctctccccggatcgtgcggggcctgagcctctccgccggcgcagg ctctgctcgcgccagctcgctcccgcagccatgcccaccaccatcgagcgggagtt cgaagagttggatactcagcgtcgctggcagccgctgtacttggaaattcgaaatga gtcccatgactatcctcatagagtggccaagtttccagaaaacagaaatcgaaacaga tacagagatgtaagcccatatgatcacagtcgtgttaaactgcaaaatgctgagaatg attatattaatgccagtttagttgacatagaagaggcacaaaggagttacatcttaacac agggtccacttcctaacacatgctgccatttctggcttatggtttggcagcagaagacc aaagcagttgtcatgctgaaccgcattgtggagaaagaatcggttaaatgtgcacagt actggccaacagatgaccaagagatgctgtttaaagaaacaggattcagtgtgaagc tcttgtcagaagatgtgaagtcgtattatacagtacatctactacaattagaaaatatcaa tagtggtgaaaccagaacaatatctcactttcattatactacctggccagattttggagtc cctgaatcaccagcttcatttctcaatttcttgtttaaagtgagagaatctggctccttgaa ccctgaccatgggcctgcggtgatccactgtagtgcaggcattgggcgctctggcac cttctctctggtagacacttgtcttgttttgatggaaaaaggagatgatattaacataaaa caagtgttactgaacatgagaaaataccgaatgggtcttattcagaccccagatcaact gagattctcatacatggctataatagaaggagcaaaatgtataaagggagattctagta tacagaaacgatggaaagaactttctaaggaagacttatctcctgcctttgatcattcac caaacaaaataatgactgaaaaatacaatgggaacagaataggtctagaagaagaa aaactgacaggtgaccgatgtacaggactttcctctaaaatgcaagatacaatggagg agaacagtgagagtgctctacggaaacgtattcgagaggacagaaaggccaccac agctcagaaggtgcagcagatgaaacagaggctaaatgagaatgaacgaaaaaga aaaaggtggttatattggcaacctattctcactaagatggggtttatgtcagtcattttggt tggcgcttttgttggctggacactgttttttcagcaaaatgccctataaacaattaattttg cccagcaagcttctgcactagtaactgacagtgctacattaatcataggggtttgtctgc agcaaacgcctcatatcccaaaaacggtgcagtagaatagacatcaaccagataagt gatatttacagtcacaagcccaacatctcaggactcttgactgcaggttcctctgaacc ccaaactgtaaatggctgtctaaaataaagacattcatgtttgttaaaaactggtaaatttt gcaactgtattcatacatgtcaaacacagtatttcacctgaccaacattgagatatccttt atcacaggatttgtttttggaggctatctggattttaacctgcacttgatataagcaataaa tattgtggttttatctacgttattggaaagaaaatgacatttaaataatgtgtgtaatgtata atgtactattgacatgggcatcaacacttttattcttaagcatttcagggtaaatatatttta taagtatctatttaatcttttgtagttaactgtactttttaagagctcaatttgaaaaatctgtt actaaaaaaataaattgtatgtcgattgaattgtactggatacattttccatttttctaaaga gaagtttgatatgagcagttagaagttggaataagcaatttctactatatattgcatttcttt tatgttttacagttttccccattttaaaaagaaaagcaaacaaagaaacaaaagtttttcct aaaaatatctttgaaggaaaattctccttactgggatagtcaggtaaacagttggtcaag actttgtaaagaaattggtttctgtaaatcccattattgatatgtttatttttcatgaaaatttc aatgtagttggggtagattatgatttaggaagcaaaagtaagaagcagcattttatgatt cataatttcagtttactagactgaagttttgaagtaaacacttttcagtttctttctacttcaa taaatagtatgattatatgcaaaccttacattgtcattttaacttaatgaatattttttaaagc aaactgtttaatgaatttaactgctcatttgaatgctagctttcctcagatttcaacattcca ttcagtgtttaatttgtcttacttaaacttgaaattgttgttacaaatttaattgctaggaggc atggatagcatacattattatggatagcataccttatttcagtggttttcaaactatgctcat tggatgtccaggtgggtcaagaggttactttcaaccacagcatctctgccttgtctcttta tatgccacataagatttctgcataaggcttaagtattttaaagggggcagttatcatttaa aaacagtttggtcgggcgcggtggctcatgcctgtaatcccagcactttgggaggctg aagtgggcagatcacctgaggtcaggagttcaagaccagcctggccaacgtggtga aacaccatctctactaaaaatgcaaaaattagctgggcatggtggagggcacctgtaa tctcagctactcaggaggctgaggtaggagaattgcttgaacccaggagatggaggt tgcagtgagctgagatcacgtcactgcactccagccagggcgacagagcgagactc catctcaaaagaaacaaacaaaaaaaacagtttgggccgggtgtggtggctcacgct tgtaatcccagcacttcggaaggccaagggggcggatcacgaggtcaagagatg gagactgtcctggccaacatggtgaaatcccttctttactaaaaatacaaaaattatctg ggcgtggtggtgcatgcctgtagtcccagctccttgggaggctaaggcaggagaatc acttgaacccgggaggcagaggttgcagtgagccgagattgcaccactgcactcca gcctggcaacagagcaagacttcgtctc (SEQ ID NO: 662) Grk6 cggctggctgcggcggccggggaggccggggaggccgcggcgcggtcactgcg NM_001004106 NM_ agccgagccgagccgcgccgagccgcgccgatcgccatccggcctcggcactcg 001038018 cgcgcgatcccggccggcggcgcggcccgggggccaggcggcgccacagcc catggagctcgagaacatcgtagcgaacacggtgctactcaaggcccgggaaggt ggcggtggaaatcgcaaaggcaaaagcaagaaatggcggcagatgctccagttcc ctcacatcagccagtgcgaagagctgcggctcagcctcgagcgtgactatcacagc ctgtgcgagcggcagcccattgggcgcctgctgttccgagagttctgtgccacgagg ccggagctgagccgctgcgtcgccttcctggatggggtggccgagtatgaagtgac cccggatgacaagcggaaggcatgtgggcggcagctaacgcagaattttctgagcc acacgggtcctgacctcatccctgaggtcccccggcagctggtgacgaactgcacc cagcggctggagcagggtccctgcaaagaccttttccaggaactcacccggctgac ccacgagtacctgagcgtggccccttttgccgactacctcgacagcatctacttcaac cgtttcctgcagtggaagtggctggaaaggcagccagtgaccaaaaacaccttcag gcaataccgagtcctgggcaaaggtggctttggggaggtgtgcgcctgccaggtgc gggccacaggtaagatgtatgcctgcaagaagctagagaaaaagcggatcaagaa gcggaaaggggaggccatggcgctgaacgagaagcagatcctggagaaagtgaa cagtaggtttgtagtgagcttggcctacgcctatgagaccaaggacgcgctgtgcctg gtgctgacactgatgaacgggggcgacctcaagttccacatctaccacatgggccag gctggcttccccgaagcgcgggccgtcttctacgccgccgagatctgctgtggcctg gaggacctgcaccgggagcgcatcgtgtacagggacctgaagcccgagaacatctt gctggatgaccacggccacatccgcatctctgacctgggactagctgtgcatgtgcc cgagggccagaccatcaaagggcgtgtgggcaccgtgggttacatggctccggag gtggtgaagaatgaacggtacacgttcagccctgactggtgggcgctcggctgcctc ctgtacgagatgatcgcaggccagtcgcccttccagcagaggaagaagaagatcaa gcgggaggaggtggagcggctggtgaaggaggtccccgaggagtattccgagcg cttttccccgcaggcccgctcactttgctcacagctcctctgcaaggaccctgccgaa cgcctggggtgtcgtgggggcagtgcccgcgaggtgaaggagcaccccctctttaa gaagctgaacttcaagcggctgggagctggcatgctggagccgccgttcaagcctg acccccaggccatttactgcaaggatgttctggacattgaacagttctctacggtcaag ggcgtggagctggagcctaccgaccaggacttctaccagaagtttgccacaggcag tgtgcccatcccctggcagaacgagatggtggagaccgagtgcttccaagagctga atgtctttgggctggatggctcagttcccccagacctggactggaagggccagccac ctgcacctcctaaaaagggactgctgcagagactcttcagtcgccaagattgctgtgg aaactgcagcgacagcgaggaagagctccccacccgcctctagcccccagcccga ggcccccaccagcagttggcggtagcagctactccgagcgccgtttacagttttgca cagtgatcttccccattgtccactcaagtcgtggcctggggaacacagacggagctgt ccccagtgtcctccgtccctcagcccctggcctggctgagtttggcagggcctgggc catccctgggacaaaggtgcgtcccttcagctcttctccgtggagctcggggctttctg tatttatgtatttgtacgaatgtatatagcgaccagagcattcttaattcccgccgcagac ctggcgcccccgccttggctcctgggggcagccagccctggctgggagagcggga gctggcagaggagccactgccaaactcaaggctcctctggcccagcttggatggct gagggtggtcacacccctgagccttcagcactgtgctggccaccccggcctctgagt aagactcgtgcctccccctgctgccctgggctcaggctgctaccctctggggcccaa agctgtcccttctcagtgcttgtcagcgctgggtctggggcctctgtatgccctaggcc tgtgccaaagtggccagagattgggctgcctgtgatacccatcagcccactgccccg gccggcccagataggtctgcctctgccttccagctcccacagcctggtccctgatact gggctctgtcctgcagacacctctttcagaaacgcccaagcccagcccctaggagg gggtggggcatccctggtcaaccctcaaacattccggactcccctcataacaataga cacatgtgcccagcaataatccgccccttcctgtgtgcgcctgtggggtgcgtgcgc gcgcgtgtgtacctgtgtgggtgaaggggatagggcgaggctgtgcctgtgcccca ggtcccagccctggcccttcccagactgtgatggccatcctggtcccagtgttagggt agcatgggattacagggccctgttttttccatatttaaagccaatttttattactcgttttgtc caacgtaa (SEQ ID NO: 663) Cdkn2a cgagggctgcttccggctggtgcccccgggggagacccaacctggggcgacttca NM_000077 NM_ ggggtgccacattcgctaagtgctcggagttaatagcacctcctccgagcactcgctc 001040654 acggcgtccccttgcctggaaagataccgcggtccctccagaggatttgagggaca gggtcggagggggctcttccgccagcaccggaggaagaaagaggaggggctgg ctggtcaccagagggtggggcggaccgcgtgcgctcggcggctgcggagagggg gagagcaggcagcgggcggcggggagcagcatggagccggcggggggagca gcatggagccttcggctgactggctggccacggccgcggcccggggtcgggtaga ggaggtgcgggcgctgctggaggcgggggcgctgcccaacgcaccgaatagtta cggtcggaggccgatccaggtcatgatgatgggcagcgcccgagtggcggagctg ctgctgctccacggcgcggagcccaactgcgccgaccccgccactctcacccgac ccgtgcacgacgctgcccgggagggcttcctggacacgctggtggtgctgcaccg ggccggggcgcggctggacgtgcgcgatgcctggggccgtctgcccgtggacctg gctgaggagctgggccatcgcgatgtcgcacggtacctgcgcgcggctgcggggg gcaccagaggcagtaaccatgcccgcatagatgccgcggaaggtccctcagacatc cccgattgaaagaaccagagaggctctgagaaacctcgggaaacttagatcatcagt caccgaaggtcctacagggccacaactgcccccgccacaacccaccccgctttcgt agttttcatttagaaaatagagcttttaaaaatgtcctgccttttaacgtagatatatgcctt cccccactaccgtaaatgtccatttatatcattttttatatattcttataaaaatgtaaaaaa gaaaaacaccgcttctgccttttcactgtgttggagttttctggagtgagcactcacgcc ctaagcgcacattcatgtgggcatttcttgcgagcctcgcagcctccggaagctgtcg acttcatgacaagcattttgtgaactagggaagctcaggggggttactggcttctcttg agtcacactgctagcaaatggcagaaccaaagctcaaataaaaataaaataattttcat tcattcactcaaaaaaaaaaaaaa (SEQ ID NO: 664) Sbf1 gggcgggccggctggctgggaagatggcggcgggaacctgggccgccgccgcc NM_002972 NM_ gccgccgccgccgccgcggagcgaaccaggggtgtccggggtgcgcggtccag 001170561 ggccggggccgggccatgagcgcgccgtcctcgagtccccgagccgcggagccc gcccgcgcccctcgggccgccccgcgtccctcgccatggcgcggctcgcggacta cttcgtgctggtggcgttcgggccgcacccgcgcgggagtggggaaggccagggc cagattctgcagcgcttcccagagaaggactgggaggacaacccattcccccaggg catcgagctgttttgccagcccagcgggtggcagctgtgtcccgagaggaatccacc gaccttctttgttgctgtcctcaccgacatcaactccgagcgccactactgcgcctgctt gaccttctgggagccagcggagccttcacaggaaacgacgcgcgtggaggatgcc acagagagggaggaagagggggatgagggaggccagacccacctgtctcccaca gcacctgccccatctgcccagctgtttgcaccgaagacgctggtactggtgtcgcga ctcgaccacacggaggtgttcaggaacagccttggcctcatctatgccatccacgtg gagggcctgaatgtgtgcctggagaacgtgattgggaacctgctgacgtgcactgtg cccctggctgggggctcgcagaggacgatctctttgggggctggtgaccggcaggt catccagactccactggccgactcgctgcccgtcagccgctgcagcgtggccctgct cttccgccagctaggcatcaccaacgtgctgtctttgttctgtgccgccctcacggagc acaaggttctcttcctgtcccggagctaccagcggctcgccgatgcctgtaggggcct cctggcactgctgtttcctctcagatacagcttcacctatgtgcccatcctgccggctca gctgctggaggtcctcagcacacccacgcccttcatcattggggtcaacgcggcctt ccaggcagagacccaggagctgctcgatgtgattgttgctgatctggatggagggac ggtcaccattcctgagtgtgtgcacattccacccttgccagagccactgcagagtcag acgcacagtgtgctgagcatggtcctggacccggagctggagttggctgacctcgc cttccctccgcccacgacatccacctcctccctgaagatgcaggacaaggagctgcg cgcggtcttcctgcggctgttcgctcagctgctgcagggctatcgctggtgcctgcac gtcgtgcgcatccacccggagcctgtcatccgcttccataaggcagccttcctgggc cagcgtgggctggtagaggacgatttcctgatgaaggtgctggagggcatggccttt gctggctttgtgtcagagcgtggggtcccataccgccctacggacctgttcgatgagc tggtggcccacgaggtggcaaggatgcgggcggatgagaaccacccccagcgtgt cctgcgtcacgtccaggaactggcagagcagctctacaagaacgagaacccgtacc cagccgtggcgatgcacaaggtacagaggcccggtgagagcagccacctgcgac gggtgccccgacccttcccccggctggatgagggcaccgtgcagtggatcgtggac caggctgcagccaagatgcagggtgcacccccagctgtgaaggccgagaggagg accaccgtgccctcagggccccccatgactgccatactggagcggtgcagtgggct gcatgtcaacagcgcccggcggctggaggttgtgcgcaactgcatctcctacgtgttt gaggggaaaatgcttgaggccaagaagctgctcccagccgtgttgagggccctgaa ggggcgagctgcccgccgctgcctcgcccaggagctgcacctgcatgtgcagcag aaccgtgcggtcctggaccaccagcagtttgactttgtcgtccgtatgatgaactgctg cctgcaggactgcacttctctggacgagcatggcattgcggcggctctgctgcctctg gtcacagccttctgccggaagctgagcccgggggtgacgcagtttgcatacagctgt gtgcaggagcacgtggtgtggagcacgccacagttctgggaggccatgttctatgg ggatgtgcagactcacatccgggccctctacctggagcccacggaggacctggccc ccgcccaggaggttggggaggcaccttcccaggaggacgagcgctctgccctaga cgtggcttctgagcagcggcgcttgtggccaactctgagtcgtgagaagcagcagg agctggtgcagaaggaggagagcacggtgttcagccaggccatccactatgccaac cgcatgagctacctcctcctgcccctggacagcagcaagagccgcctacttcggga gcgtgccgggctgggcgacctggagagcgccagcaacagcctggtcaccaacag catggctggcagtgtggccgagagctatgacacggagagcggcttcgaggatgca gagacctgcgacgtagctggggctgtggtccgcttcatcaaccgctttgtggacaag gtctgcacggagagtggggtcaccagcgaccacctcaaggggctgcatgtcatggt gccagacattgtccagatgcacatcgagaccctggaggccgtgcagcgggagagc cggaggctgccgcccatccagaagcccaagctgctgcggccgcgcctgctgccgg gtgaggagtgtgtgctggacggcctgcgcgtctacctgctgccggatgggcgtgag gagggcgcggggggcagtgctgggggaccagcattgctcccagctgagggcgcc gtcttcctcaccacgtaccgggtcatcttcacggggatgcccacggaccccctggttg gggagcaggtggtggtccgctccttcccggtggctgcgctgaccaaggagaagcg catcagcgtccagacccctgtggaccagctcctgcaggacgggctccagctgcgct cctgcacattccagctgctgaaaatggcctttgacgaggaggtggggtctgacagcg ccgagctcttccgtaagcagctgcataagctgcggtacccgccggacatcagggcc acctttgcgttcaccttgggctctgcccacacacctggccggccaccgcgagtcacc aaggacaagggtccttccctcagaaccctgtcccggaacctggtcaagaacgccaa gaagaccatcgggcggcagcatgtcactcgcaagaagtacaacccccccagctgg gagcaccggggccagccgccccctgaggaccaggaggacgagatctcagtgtcg gaggagctggagcccagcacgctgaccccgtcctcagccctgaagccctccgacc gcatgaccatgagcagcctggtggaaagggcttgctgtcgcgactaccagcgcctc ggtctgggcaccctgagcagcagcctgagccgggccaagtctgagcccttccgcat ttctccggtcaaccgcatgtatgccatctgccgcagctacccagggctgctgatcgtg ccccagagtgtccaggacaacgccctgcagcgcgtgtcccgctgctaccgccagaa ccgcttccccgtggtctgctggcgcagcgggcggtccaaggcggtgctgctgcgct ctggaggcctgcatggcaaaggtgtcgtcggcctcttcaaggcccagaacgcacctt ctccaggccagtcccaggcggactcgagtagcctggagcaggagaagtacctgca ggctgtggtcagctccatgccccgctacgccgacgcgtcgggacgcaacacgctta gcggcttctcctcagcccacatgggcagtcacgttcccagccccagagccagggtc accacgctgtccaaccccatggcggcctcggcctccagacggaccgcaccccgag gtaagtggggcagtgtccggaccagtggacgcagcagtggccttggcaccgatgtg ggctcccggctagctggcagagacgcgctggccccaccccaggccaacgggggc cctcccgacccgggcttcctgcgtccgcagcgagcagccctctatatccttggggac aaagcccagctcaagggtgtgcggtcagaccccctgcagcagtgggagctggtgc ccattgaggtattcgaggcacggcaggtgaaggctagcttcaagaagctgctgaaag catgtgtcccaggctgccccgctgctgagcccagcccagcctccttcctgcgctcact ggaggactcagagtggctgatccagatccacaagctgctgcaggtgtctgtgctggt ggtggagctcctggattcaggctcctccgtgctggtgggcctggaggatggctggga catcaccacccaggtggtatccttggtgcagctgctctcagaccccttctaccgcacg ctggagggctttcgcctgctggtggagaaggagtggctgtccttcggccatcgcttca gccaccgtggagctcacaccctggccgggcagagcagcggcttcacacccgtcttc ctgcagttcctggactgcgtacaccaggtccacctgcagttccccatggagtttgagtt cagccagttctacctcaagttcctcggctaccaccatgtgtcccgccgtttccggacct tcctgctcgactctgactatgagcgcattgagctggggctgctgtatgaggagaagg gggaacgcaggggccaggtgccgtgcaggtctgtgtgggagtatgtggaccggct gagcaagaggacgcctgtgttccacaattacatgtatgcgcccgaggacgcagagg tcctgcggccctacagcaacgtgtccaacctgaaggtgtgggacttctacactgagg agacgctggccgagggccctccctatgactgggaactggcccaggggccccctga acccccagaggaagaacggtctgatggaggcgctccccagagcaggcgccgcgt ggtgtggccctgttacgacagctgcccggggcccagcctgacgccatctcacgcc tgctggaggagctgcagaggctggagacagagttgggccaacccgctgagcgctg gaaggacacctgggaccgggtgaaggctgcacagcgcctcgagggccggccaga cggccgtggcacccctagctccctccttgtgtccaccgcaccccaccaccgtcgctc gctgggtgtgtacctgcaggaggggcccgtgggctccaccctgagcctcagcctgg acagcgaccagagtagtggctcaaccacatccggctcccgtcaggctgcccgccgc agcaccagcaccctgtacagccagttccagacagcagagagtgagaacaggtccta cgagggcactctgtacaagaagggggccttcatgaagccttggaaggcccgctggt tcgtgctggacaagaccaagcaccagctgcgctactacgaccaccgtgtggacaca gagtgcaagggtgtcatcgacttggcggaggtggaggctgtggcacctggcacgcc cactatgggtgcccctaagactgtggacgagaaggccttctttgacgtgaagacaac gcgtcgcgtttacaacttctgtgcccaggacgtgccctcggcccagcagtgggtgga ccggatccagagctgcctgtcggacgcctgagcctcccagccctgcccggctgctct gcttccggtcgttaccgaccactaggggtgggcagggccgccccggccatgtttaca gccccggccctcgacagtattgaggccccgagcccccagcacttgtgtgtacagcc cccgtccccgccccgccccgcccggccggccctaacttattttggcgtcacagctga gcaccgtgccgggaggtggccaaggtacagcccgcaatgggcctgtaaatagtcc ggccccgtcagcgtgtgctggtccagccagcggctgcaggcgagtttctagaacca gagtctatataaagagagaactaacgccacgctcctgtgcctgccttccccactcccc ggctgcctgctctcggcctacccagagggtcccatctgcccctatccaggcccacct ggcgggaggttggcatctttctcgtgagcctctcctggtgcctgggtccacccagctc ggcctgcatgtccctgggagtgactttgctctgggggcggatcgagcaggaggcttc actggggacttgcttgattccctccacgcctcagggctggtctaggggccggcacgg ctggagaggaagcccccatccctacccaggggatgcagaagctgacctcacagag gcttgggggtgaaagggtgggtggtcatttgaccccagaaggctgttgcaggtccag aggacacttgaggtggacgtcagtttctggctagacccgagctgaagggatggagg ccggaggcgggggggggggggggacagtgggctcccaggggaatgcaggttga ccacatctggctcctgccaggcaacgagcagcatctggcagagtaaggggccaac gcccatgggggatggaccctctcagttcttgggaattctgccccaaaagtcctttccct ggggtctcagagggcccccgtccttcccttcttggtgtcactgtggcccctcactgctc ttttcctattcaaacctgagtcccaccaggcccagggcttcacctgctgagctgttgtgt ccttgcctgtgacgaggcctggccaggggtgcaggagcagaaggtggggagggtt atagacgctgcaaaggccaagagaacatctgagagtggcagctggtgacctggcca gaggggctggtgaggggcagagaacctggctagaggctgggtccctcaggtggtc ctctcaggtgggaggcgagcagcaggtgtgggtgaggggaaggttctgatgacag ctgcagaggcagggcccagtgctggcaggtggggggccaagaccctcccctggtg ggacgttgaagccaaggatggccttggaccctgtcaggcccagcatggtcccgcca cctcccccaccccacaggtggtgttgggacacctgggcgagatgtgagggtgggct cacttgagccactgaaaccagccaggtcttccctcaggccggacagatggcgcctg accgaagttcctggcacctggaaaacccacaggtcagagtaaggggagaaaggac cctgccctccctgttccacgtctgtggggggagaggacaaatgccaggcacagggt aggcggcgagaacaaggcactcaatgtgtagctggggcagagactcggcctctgg ggagctgagcgggttccctccacccccaaccgtggtggaaagacaagctcgctgg ggcgggggggggtctggtctccacctgcccctcccactcagccactgaggacaag gtggggcccaggcttctgggagggggagctggcacaaaaggaagtcctggggttg atgtgtttgagcgttaggcgaagtggttccccccatcccccaaacggaaaaatgtcag tatttgctaagctgtagagacctgatgccgtgatgtggcctgttccgcctccacccatta cacggggataacgctggggggtggcgggcccacaaaagaggtgctggaggagac tctcccacccctggccgggccggggctttggggccggaaggttcacagtacgcggt ttgtccgaacgtcacggcttttattgggagttgggggtttggggtgccctgtcaggtga tcagaacattaaaaatggactcaacgtaaaaaaaaaaaaaaaaaa (SEQ ID NO: 665) Lpmk gccgtcagggccccagggagcgcggggcgccgctgctgctgttcttcggctcggtt NM_152230 NM_027184 ctgtctaccgggcagcgccggggccggcggctgcggcggcagaggaacaggag ccgggagccgcgttccgccgagagttgggcagaggagcgcccgcgccccggcg gcgtcatgggccccctccccgcgcttcagagggcaccagccgcgggaacccccg ggcctcctcgcgcccgagcctgagcgaccctgggttctccggcgccccctccctc gccctattttttttcctactctcgctgccgttaccgcttctgctctccgttatggcaacaga gccaccatcccccctccgggtcgaggcgccgggccccccagaaatgcggacctca ccggcgatcgagtccacccctgagggcaccccgcagccgggggcggcagactc cgcttcctcaacggctgcgtgcccctctcgcatcaggtggccgggcacatgtacggg aaggacaaagtgggtatactgcaacatccagatggcacagttttgaaacagttacaac cacctccaaggggcccaagagagctggaattctataatatggtttatgctgctgactgt tttgatggtgttcttctagagctacgaaaatatttgccaaaatattatggcatctggtcacc tcccactgcaccaaacgatttatacctaaaactggaagatgtgacccataaatttaataa gccctgtataatggatgtaaagatagggcaaaaaagctatgatccttttgcctcatctga gaagattcagcaacaggtcagcaagtacccattaatggaagagattgggttcttggtg cttggcatgagggtttatcatgttcattccgatagctatgagacagaaaaccagcattac ggaagaagcttaacaaaagaaactataaaggatggagtctccagattttttcataatgg gtactgcttaagaaaagatgctgttgctgccagtattcagaagattgagaaaattctgc agtggtttgaaaaccagaagcagcttaatttttacgcaagttcattactctttgtttatgaa ggttcatctcagccaaccactacaaaattgaatgacagaactttggcagaaaagttttt gtccaaaggacaactgtcagacacagaagtactagagtacaataataactttcatgtgt taagttccacagctaatggaaaaatagagtcttcagtgggcaaaagcttgtccaagat gtatgcgcgtcacaggaaaatatatacaaaaaagcatcacagtcagacttcattgaaa gttgaaaatctggagcaagacaatgggggaaaagcatgtcacaggaacatttaaat ggaaatgtactttcccaactggaaaaagttttctaccatcttcccactggttgccaagag attgctgaagtagaagtgcgaatgatagattttgctcatgtgttccctagcaacacaata gatgagggatatgtttatgggctaaagcatttaatttctgtacttcgaagtattttagacaa ttgaatcctctgttgcagtctttttaaggggtgggccaatcataatgaagaggggcagt caatatctgcacctttaatgctatgtaaaaaatttgtattatgagtcgacattttatttgtcttt atacttttggaagaatggttaacttttttataatcttactcaggaaaactaactatttgttcat tagaaaactatgaagaataaagaaacttaggaatgttaagcagggaatgtggtggtac atggcttaaacatcttttttggctcaagcaaaatgcaaaccattattcagtcattaagagtt tagttagctttctgtagccaattcatgaaatctctgtccacccagccttgacaatgagcc atatctaaaatattacattattagaacacctaccaaaatctcgaaagcacaggttgatgt ccttagtattgctatgtatgaagttactaaaactggagaaaattctacttcagaaataagt actgtttaggttttatattaaaagttcagaccagcatatcaaagggtgctccttagtgaaa tgatttagaattgttgcattccaaaagcaggttttctctttaatttttacatctctctctcaaa atattatacttcatgaaaaagacaattgatgtggatgacaacaacaaagtcttgaaatta agggcacactaattgtccttactggggttaggggaagagagatattattttcaaggaac aaaatattttcctttacaatctttcattcatgagaaaattggaatataaatttattacattgtg aaagtatcataaaccatatacctttgtatctaaatgcagcttcaaaaaagtaaataattga agttttatttctcctctaaataacttgaatttttttctttaaaaatttatgtatttatatgtcccca tttagttaagtggtagtgtaaatgtatgttgttaaaaacagtttctcagaattatagtaagc aatgaaagacaatatctaattaggttgttatcaaaaatactgtgtgtaaattagtccgtaa tatagggtttggtgcgtatctatattcatgcttctatttcactcttcctcaaaacagttttatat tatgttgaccagtgaaattgtaacttaatttcatggggacaggggcagtgctacagttcc tggaaaaattagatttgtattatctttgtttcacacccaccaccttaaaaaaaaatcaacta gttatttgtcatttaaaacatttaaaactttgagtcttcaaatacatttgatgttaatgctgcc attacttgcacttccattcactaataacatttctaggtagttatcagttttgtcatattcctgg aaaatattttggggttgtaaattctttctcctctttttcttctggagttacaaattgaatttttaa atccgagcacctttattgtggtgtggagaaaattatcacaattttatgtttattttaccttctc agccttctctgagggcactttgcaaatacctgagtccaaacagaagtaccaactaaat gctctatgaactctatccttagtaaatctattaaacctgaataatttaaaagatcatgttcat tttgtaatagcaaaatttgattttaattttttatttagaattggtgtatttatcatagggacttcc aatttttcttcactttttgaatggatattggctatagttttatgttttaacgggaatgaatttca agtcataataatcagaatttttagttttacttttttcttttacaatatggattttgttgttatttgg atagtggttcaataaatcttaagctcagataattaaacactattttgaatcttaacaagata ctgaggctttttttgtatgggatgatatcaacctatgtacaatgaatttaataaacttaagt attgtcagattttttgcacattttagctcaataaaatcttaatgttcaagatttttttatctgcat ttggaaatacaattttgtaaaatcaatgtcttacctttttgatacaatagatcatgttttgtttt taataaagcaagaagcccttttatctgttgtttttcagggaagggattaacatttaattctg tttgtttacatttgttatcattgttatccaatgctcattttatgttgctttataagtaggcttagg tataacagaataagtatctgtttatctaatctacatgtgactatcttagtctctctcggtcac ttaatattatgctgaaatttaccactgtggggatgaatgatcgctattcaccaagtatattt gaacatgtaaatgcttaagaaataagcataatgcggatatagtttgggttaataggattc tcatagttttttttcccctatgaaacataagtaatgattttagtgtatttcttatggaatacact catttaaaaaggactttaagaaattgtggatgtgaataatacctttctctaataaaaattta aattgtataatagttttataatatttacattaattgatattttaatatggatagacattgcatag attcaaataaattaaaatcaatgataaatgctaaatattttatctaaatagtttttcaagaaa cagttatggaaatgtgtatattaaatggctctaatgtggagcttgtggtatttcaactcagt attcattattagttgtgtgtctggaaagattgtacttacttttcctctttacactacagtttgct cttatggggctctaaactgtttaactgaagaaccttcgtctgtattttgattgagcataattt agtattttatgatttccaagatgatgttcttatgtctatcaagtctatgtatcaaatttataac atcatttaagaaaaaggaatttccacagatacttcagttgcaattttttgtttcatgctactg aaaatacatttgtttctaggggttggaatattatagaagatgtaggatgaaagaaaacg atagaacaacgaaagaattctgtttatgaaattacaggaattgtgtccactatggtaaag cattgtcattttagtacattttctcttagtagtttggcattttatactttaaaacttgttttgcttt aaaaattgtttataatgcttaccttctttctccagtgcctttagtcttgatttgatatgtttgta ccctcagttaccctttctattacatgtttttgatgttttcatagcctaggaaacatcgattcct ttttaataattgtcaatctgattatttaaagaggtaacaattatctgttaatgctttggaaaa acaagtagggttgcctttggaggccaggcttcttagttcattcaaaaatattccttggatt tatgccatgtattaagcatttttagcccccagtattacaactgtgaaccaaacggataag gccctaaccattttcagcattctctttggatggggtgggattggggacttaattaaaata gagatatagaaaaataggcatctaaataagataataagtgtggggttgaaatgaagca tctaacaatagttgaagttagaagtaatattttacagtattgtaacctctatttaagtttggg tattagttacagatagcataaaaaagccttaatttttcactttccttgctggcaaaggtaca tttatttagactgtccatttaaagtaatgtttaacataaacattactgtgaaaaacattccat tacatattcccaagcaaatgagctgcatcttctttactgtattttacaatttagtacaacagt tttaggcctcaatcttaacatcactggtattttaaatttggcaatgaatatgaaattactttt gacttacagattgattatattattactttgaaaatgcattaatttcttagaaaagtttggagc ctctatctttttttgagttaatacttaaattctcattacttatattaatagcctgtactaagtga aaatattatttatgcaagtaaacaagtcactataggcttttaagacttttctttaattttagat tttgtcatcaaagtttaaattttttacctactgtccacttaaatataatttaacagtttgtaaag tgaaatagttttaagtatgatgtatgatgcacctgcatataaatgaaaatggcgtgcaca aagacactttactatgggaactgtactggaagatttatgaaagcatgtgaaattgcacct aaaattgtgttattagtgactataagcagcaatgctaaatttattgtacttgatgaatgaat gtatttagtcacagttactttggtttaaatgtataaatgtctttagggtttttttttaaatgtgtt tgtaatttgtactattgtgggggtatacttggactgcaggggttattgtcaatgtgtgattt gtgtttttattttatagaatcatctaatgtgatataccaatttttataagtgatatttacataatt ctaataactgtatatttgacaacctattaaaatgttttgcattggaa (SEQ ID NO: 666) Rock1 gctggttccccttccgagcgtccgcgccccgcatgcgcagtctgccccggcggtctc NM_005406 NM_009071 cgtttgtttgaacaggaaggcggacatattagtccctctcagcccccctcgccccacc ccccaggcattcgccgccgcgactcgccctttccccggctgggaccgcagcccctc ccagaagctcccccatcagcagccgccgggacccaactatcgtcttcctcttcgccc gctctccagcctttcctctgctaagtctccatcgggcatcgacctcgccctgccccacc ggacaccgtagcagcagccccagcagcgacgggacaaaatgggagagtgaggct gtcctgcgtggaccagctcgtggccgagactgatcggtgcgtcgggccgggccga gtagagccggggacgcggggctagaccgtctacagcgcctctgagcggagcggg cccggcccgtggcccgagcggcggccgcagctggcacagctcctcacccgccctt tgctttcgcctttcctcttctccctcccttgttgcccggagggagtctccaccctgcttctc tttctctacccgctcctgcccatctcgggacggggacccctccatggcgacggggc cggggcccgctagactgaagcacctcgccggagcgacgaggctggtggcgacgg cgctgtcggctgtcgtgaggggctgccgggtgggatgcgactttgggcgtccgagc ggctgtgggtcgctgttgcccccggcccggggtctggagagcggaggtcccctcag tgaggggaagacgggggaaccgggcgcacctggtgaccctgaggttccggctcct ccgccccgcggctgcgaacccaccgcggaggaagttggttgaaattgctttccgctg ctggtgctggtaagagggcattgtcacagcagcagcaacatgtcgactggggacag ttttgagactcgatttgaaaaaatggacaacctgctgcgggatcccaaatcggaagtg aattcggattgtttgctggatggattggatgctttggtatatgatttggattttcctgcctta agaaaaaacaaaaatattgacaactttttaagcagatataaagacacaataaataaaat cagagatttacgaatgaaagctgaagattatgaagtagtgaaggtgattggtagaggt gcatttggagaagttcaattggtaaggcataaatccaccaggaaggtatatgctatgaa gcttctcagcaaatttgaaatgataaagagatctgattctgcttttttctgggaagaaagg gacatcatggcttttgccaacagtccttgggttgttcagcttttttatgcattccaagatga tcgttatctctacatggtgatggaatacatgcctggtggagatcttgtaaacttaatgag caactatgatgtgcctgaaaaatgggcacgattctatactgcagaagtagttcttgcatt ggatgcaatccattccatgggttttattcacagagatgtgaagcctgataacatgctgct ggataaatctggacatttgaagttagcagattttggtacttgtatgaagatgaataagga aggcatggtacgatgtgatacagcggttggaacacctgattatatttcccctgaagtatt aaaatcccaaggtggtgatggttattatggaagagaatgtgactggtggtcggttggg gtatttttatacgaaatgcttgtaggtgatacacctttttatgcagattctttggttggaactt acagtaaaattatgaaccataaaaattcacttacctttcctgatgataatgacatatcaaa agaagcaaaaaaccttatttgtgccttccttactgacagggaagtgaggttagggcga aatggtgtagaagaaatcaaacgacatctcttcttcaaaaatgaccagtgggcttggg aaacgctccgagacactgtagcaccagttgtacccgatttaagtagtgacattgatact agtaattttgatgacttggaagaagataaaggagaggaagaaacattccctattcctaa agctttcgttggcaatcaactaccttttgtaggatttacatattatagcaatcgtagatactt atcttcagcaaatcctaatgataacagaactagctccaatgcagataaaagcttgcag gaaagtttgcaaaaaacaatctataagctggaagaacagctgcataatgaaatgcagt taaaagatgaaatggagcagaagtgcagaacctcaaacataaaactagacaagata atgaaagaattggatgaagagggaaatcaaagaagaaatctagaatctacagtgtctc agattgagaaggagaaaatgttgctacagcatagaattaatgagtaccaaagaaaag ctgaacaggaaaatgagaagagaagaaatgtagaaaatgaagtttctacattaaagg atcagttggaagacttaaagaaagtcagtcagaattcacagcttgctaatgagaagct gtcccagttacaaaagcagctagaagaagccaatgacttacttaggacagaatcgga cacagctgtaagattgaggaagagtcacacagagatgagcaagtcaattagtcagtt agagtccctgaacagagagttgcaagagagaaatcgaattttagagaattctaagtca caaacagacaaagattattaccagctgcaagctatattagaagctgaacgaagagac agaggtcatgattctgagatgattggagaccttcaagctcgaattacatctttacaaga ggaggtgaagcatctcaaacataatctcgaaaaagtggaaggagaaagaaaagag gctcaagacatgcttaatcactcagaaaaggaaaagaataatttagagatagatttaaa ctacaaacttaaatcattacaacaacggttagaacaagaggtaaatgaacacaaagta accaaagctcgtttaactgacaaacatcaatctattgaagaggcaaagtctgtggcaat gtgtgagatggaaaaaaagctgaaagaagaaagagaagctcgagagaaggctgaa aatcgggttgttcagattgagaaacagtgttccatgctagacgttgatctgaagcaatct cagcagaaactagaacatttgactggaaataaagaaaggatggaggatgaagttaag aatctaaccctgcaactggagcaggaatcaaataagcggctgttgttacaaaatgaatt gaagactcaagcatttgaggcagacaatttaaaaggtttagaaaagcagatgaaaca ggaaataaatactttattggaagcaaagagattattagaatttgagttagctcagcttac gaaacagtatagaggaaatgaaggacagatgcgggagctacaagatcagcttgaag ctgagcaatatttctcgacactttataaaacccaggtaaaggaacttaaagaagaaatt gaagaaaaaaacagagaaaatttaaagaaaatacaggaactacaaaatgaaaaaga aactcttgctactcagttggatctagcagaaacaaaagctgagtctgagcagttggcg cgaggccttctggaagaacagtattttgaattgacgcaagaaagcaagaaagctgctt caagaaatagacaagagattacagataaagatcacactgttagtcggcttgaagaag caaacagcatgctaaccaaagatattgaaatattaagaagagagaatgaagagctaa cagagaaaatgaagaaggcagaggaagaatataaactggagaaggaggaggaga tcagtaatcttaaggctgcctttgaaaagaatatcaacactgaacgaacccttaaaaca caggctgttaacaaattggcagaaataatgaatcgaaaagattttaaaattgatagaaa gaaagctaatacacaagatttgagaaagaaagaaaaggaaaatcgaaagctgcaac tggaactcaaccaagaaagagagaaattcaaccagatggtagtgaaacatcagaag gaactgaatgacatgcaagcgcaattggtagaagaatgtgcacataggaatgagctt cagatgcagttggccagcaaagagagtgatattgagcaattgcgtgctaaacttttgg acctctcggattctacaagtgttgctagttttcctagtgctgatgaaactgatggtaacct cccagagtcaagaattgaaggttggctttcagtaccaaatagaggaaatatcaaacga tatggctggaagaaacagtatgttgtggtaagcagcaaaaaaattttgttctataatgac gaacaagataaggagcaatccaatccatctatggtattggacatagataaactgtttca cgttagacctgtaacccaaggagatgtgtatagagctgaaactgaagaaattcctaaa atattccagatactatatgcaaatgaaggtgaatgtagaaaagatgtagagatggaac cagtacaacaagctgaaaaaactaatttccaaaatcacaaaggccatgagtttattcct acactctaccactttcctgccaattgtgatgcctgtgccaaacctctctggcatgtttttaa gccaccccctgccctagagtgtcgaagatgccatgttaagtgccacagagatcactta gataagaaagaggacttaatttgtccatgtaaagtaagttatgatgtaacatcagcaag agatatgctgctgttagcatgttctcaggatgaacaaaaaaaatgggtaactcatttagt aaagaaaatccctaagaatccaccatctggttttgttcgtgcttcccctcgaacgctttct acaagatccactgcaaatcagtctttccggaaagtggtcaaaaatacatctggaaaaa ctagttaaccatgtgactgagtgccctgtggaatcgtgtgggatgctacctgataaacc aggcttctttaaccatgcagagcagacaggctgtttctttgacacaaatatcacaggctt cagggttaagattgctgtttttctgtccttgctttggcacaacacactgagggttttttttatt gcgggtttgcctacaggtagattagattaattattactatgtaatgcaagtacagttggg ggaaagcttaggtagatatattttttttaaaaggtgctgcctttttggatttataagaaaat gcctgtcagtcgtgatagaacagagttttcctcatatgagtaagaggaagggactttca ctttcaagtggaacagccatcactatcaagatcagctcatggaaggagtaaagaaaat atctcaaaatgagacaaactgaagttttgttttttttttaatgacttaagtttttgtgctcttgc aagactatacaaaactattttaagaaagcagtgatatcacttgaacttcagtgccctcac tgtagaatttaaaagccttactgttgattgcccatgttggacttgatggagaaattaaata tctttcattatgctttacaaaatactgtatatgtttcagcaagtttggggaatgggagagg acaaaaaaaagttacatttaatctatgcatttttgccaagccatattgagttattttactact agagacattaggaaactaactgtacaaaagaaccaagtttaaaagcattttgtggggt acatcatttctataattgtataatgtatttctttgtggttttaaatgataaagacattaagttaa caaacatataagaaatgtatgcactgtttgaaatgtaaattattcttagaacactttcaatg ggggttgcattgtccttttagtgccttaatttgagataattattttactgccatgagtaagta tagaaatttcaaaaaatgtattttcaaaaaattatgtgtgtcagtgagtttttcattgataatt ggtttaatttaaaatatttagaggtttgttggactttcataaattgagtacaatctttgcatca aactacctgctacaataatgactttataaaactgcaaaaaatgtagaaggttgcaccaa cataaaaaggaaatatggcaatacatccatgatgttttccagttaacataggaattacca gataaatactgttaaactcttgtccagtaacaagagttgattcatatggacagtatgattt attgtttatttttttaaccaaatacctcctcagtaatttataatggctttgcagtaatgtgtatc agataagaagcactggaaaaccgatcgtctctaggatgatatgcatgtttcaagtggta ttgaaagccgcactgatggatatgtaataataaacatatctgttattaatatactaatgact ctgtgctcatttaatgagaaataaaagtaatttatggatgggtatctttaatttttactgcaa tgtgttttctcatggctgaaatgaatggaaaacatacttcaaattagtctctgattgtatat aaatgtttgtgaaattccatggttagattaaagtgtatttttaaaagataaaa (SEQ ID NO: 667) Stk17b gaacggcgatgccccagacgcggctgcagttttcaaaccgcgactgcaagcttcgg NM_004226 NM_133810 tagtcctctccgctgctgtcgccaggagtcacttcacgagaagccaggtcacaaccgt cggcccttgtctggaaaagtaaaagtggatcctgccacgttcggagctccctggcgc ctcgcccggctggagctagagaactcgtcctgtggcggcccccggcgtggggcgg gacagcggccccctggagggggcagtcccgggagaacctgcggcggccggagc ggtaaaaataagtgactaaagaagcagacctgggaatcacctaacatgtcgaggag gagatttgattgccgaagtatttcaggcctactaactacaactcctcaaattccaataaa aatggaaaactttaataatttctatatacttacatctaaagagctagggagaggaaaattt gctgtggttagacaatgtatatcaaaatctactggccaagaatatgctgcaaaatttcta aaaaagagaagaagaggacaggattgtcgagcagaaattttacacgagattgctgtg cttgaattggcaaagtcttgtccccgtgttattaatcttcatgaggtctatgaaaatacaa gtgaaatcattttgatattggaatatgctgcaggtggagaaattttcagcctgtgtttacct gagttggctgaaatggtttctgaaaatgatgttatcagactcattaaacaaatacttgaa ggagtttattatctacatcagaataacattgtacaccttgatttaaagccacagaatatatt actgagcagcatataccctctcggggacattaaaatagtagattttggaatgtctcgaa aaatagggcatgcgtgtgaacttcgggaaatcatgggaacaccagaatatttagctcc agaaatcctgaactatgatcccattaccacagcaacagatatgtggaatattggtataat agcatatatgttgttaactcacacatcaccatttgtgggagaagataatcaagaaacata cctcaatatttctcaagttaatgtagattattcggaagaaactttttcatcagtttcacagct ggccacagactttattcagagccttttagtaaaaaatccagagaaaagaccaacagca gagatatgcctttctcattcttggctacagcagtgggactttgaaaacttgtttcaccctg aagaaacttccagttcctctcaaactcaggatcattctgtaaggtcctctgaagacaag acttctaaatcctcctgtaatggaacctgtggtgatagagaagacaaagagaatatccc agaggatagcagcatggtttccaaaagatttcgtttcgatgactcattacccaatcccc atgaacttgtttcagatttgctctgttagcacttttttctttgactcatttggactgaatttgaa attttatatccactccagtgagattatgatttgtagcttcatatatgacatgtttatattgtaa atgcacttttccatggaataatttagggaagtgttttaatgttaaattactagttgctagcat gttatgatttcatatcctgagatagctctgcagataagaaaatatttaaatatatgacaaa aagtaaaattgtacatgtgagtttacatgttaatgaaataattcaacttcaaatgaacttac cagaatgttttgcatatcaacaaaaaaagtggcttgagttttattatagttggtgtaaact gaacacagtgaagacattggaatttaataggttctctctctaaggtgactcttataccat gcctctatcaacataatttgtttaggaaagcagtatgaagtttaagccaaaataatttcta ctttatagatgctcaagagacattttacaattgaaaatgtctttcaattacaaatattttgaa acttcgtaagattttcattctctgtggtctgttatatgagagagatcctttaactagagcaa agagggagttagaaacctgatcagggatattctttacaagttggagcagaggaaaga gtagcatgccttcgtattttaacgcaaatgtctttttcctcctcccaacctacttgagatct gataaggtctggaagatggagatatttggtatgcaagtgtagagttttttaatcctccag aatttctagagtagaagatacttaggtatagttaaatattctgtatttttagtcaaacatattt attaattgaatatagaagaaaatgttgacacactcagacagcttactgaattttagatgtc ttctgcatcttagaatacaagccagtcattcagagttctaaaagtatgcataaaaaattac agcaccggtaggtctattaacacagtgcccgagtcagcggtagcaagactgatgtga tcataaaacatgacatcaggctcgtctgaagttcttgtgtgaaattcctagtgagtgagg aggctcagcttaaagccatctgcagagtggcccctcattgtggtcttttgctgggacca atgcaagagactagggagagcaaaatgtttgcttatggctagagactatatccagccc taatgatggggaaagttagtccttttcgggtaatcttttatgaattttcacctgatgaccgt tatattggtctgttatcatgttacgataactgtgatctcatgaccatgttgctgtatcagaa gaaatagtttgacaaatggtaacaacaacctgatgttccccctttagacctttaacttctc aaaattttggtaagtttccaaattctttaataataacttaaaactttttgaataactatcaggt cactttatttgaccacatggtgaattcctttaatgtcttcagcatttgttaaggaaaagtttt ctctacttgtgtgtgtatgtgtgcacatgtgtgtatgtacaggtgtatgtatatatctataga tagatacaatacattctttagacacttttcaagattctttgctgtggtatattgtgctcaact caggtgccaaaggagctttttttttttttttttttttttgagatggagttttgctctgtctctcag gctggagtgcagtggcatgatctcagctcacggcaacctctgcctcccgggttcaag caattctcctgtctcagcctcctgagtagttgggattacaggcgcatgccaccgtgccc agctaatttttgtatttttagtagagacggggtttcaccatgttggccaggctggtcacaa actcctgacttcaagtgatccacccgcctcggcctcccaaagtgctgggattacaggc gtgagccactgcgcccccgcccaggagctcttttcttatgacatataaattatgacattt atattctttatatgactttatgttctcttcttatgacatttaaattctttaagtagtttgttggtcc aataaactagacgttgtataatctaaattgagcccttgtatatctaaaactgatgagttgtt tctaaattgttgattgtccatttacttgcctttggtattaagataatgcaagtaaagtttagta agtcattggataatgaaatgattatgtttctgaagaccatattatatttttaatttttagagga atcatgccatcccccaaaaaatcaagaaatatttgaattttaaattataagttcatttgtta aaagacatttttacaaatgtctgaaaatcttaaaatactttacatctacctttaagtagtag aatacagagctgtaaatttccatgccttttttcctgatattaagttttatagtaaaaaagca actagtgattgcacaaagaatataaaaatccactctttttacaaaggtgtgaatttaaata acgttattgattggaatatgaaaatagaccaatcatttaagagctttttagcaaatgattc aattcttactctttttctcccaagattgaaaagcataatgtatttctctaaagtaggaatcta gagagcccctgtgagtggacaaatgtcagtaacacttgaacacatgagaagataagt gttatgttgtgataatttaaagttaaatttgctttttgggtaggatccctaaatagatgggat ttttaaatagatgatatatagatgacaattgcaattgtcattttaattattttccctacagtaa agaacctagctctgagcagtgaaattgtaatggcactttaaaggaagtaagccgttaa ctgttctctagtggagcgatctccaactgttttggcactagggacgggttttgtggaaga aaatttttccacaggactgggggtttagggggatggtttcaggatgattcaagtacatta catttatcattagattctcataaggagcatgcaacctagatctcttgcacgtgtggttcac agcaggattcgagctcctttgagaatctaatgccatggctgatctaacaggaaactga gctcaggcagtaatgcttggcaccgccccccaccttctatgcagcccggtcgtggcc tggggactggggacccctgctctagtcagtaataaggtacttgtgccagaatataaat caacacattgcttcctttatcaaagaagtcttgttatttaaaaaaagtcaactgagccagt atgattagtgatgtaattgattttcattctggcacaagcctctttcattctggacagctcac aaatagttaatggaccatgctttgaatagccttcctctaagcaacatttataaatactgat attttagaactgtttacatttcttctgtttatttttgaattttcagtttgatatcttgtccttattcat tgttgtataaacaactgtactttaatttcaagtagtattaaaagtatttcacttcagtttggg gggattattatcaatttataattttataaaagtattttaaagaataattgtaaattttccataaa ttacaacttcctgccatattttattaaataataatcttgcttaaggcatatagacagacatta ttatgagtattccagtaaaaaaaatctacatcaacttgaccattctggctaaaaattaaaa agcacttttttatatctgtggttgtcatttgtttcaaagcatttctaaatttattgttcttaaaag tatgtctgcatgttctagcctttgacctaggtcatctatgaaccctctttgtgtctaataaac atatctgtaaaggcaaaaaaaaaaaaaaaaaa (SEQ ID NO: 668) Mast2 taggcaggcggctgagccggcggcgggtggcctgcccaacgtgtgctgggtggg NM_015112 NM_ agaaggcgaggcgtcagcgatgctgtctcttccgtgaggagcgcagaggaggtcg 001042743 cggcgccggaggccccagaaggctcgaaggcgccgcgggctggggtcggtggc ttagggagcccgtccggccatggtggccgcgggtggtggttggcgcggctgcgctg cggcccggggcagtgcggagccgggacagtcgcggcgctgacgcccgcgggcc ccagctgcagatatgaagcggagccgctgccgcgaccgaccgcagccgccgccg cccgaccgccgggaggatggagttcagcgggcagcggagctgtctcagtctttgcc gccgcgccggcgagcgccgcccgggaggcagcggctggaggagcggacgggc cccgcggggcccgagggcaaggagcaggatgtagtaactggagttagtcccctgct cttcaggaaactcagtaatcctgacatattttcatccactggaaaagttaaacttcagcg acaactgagtcaggatgattgtaagttatggagaggaaacctggccagctctctatcg ggtaagcagctgctccctttgtccagcagtgtacatagcagtgtgggacaggtgactt ggcagtcgtcaggagaagcatcaaacctggttcgaatgagaaaccagtcccttggac agtctgcaccttctcttactgctggcctgaaggagttgagccttccaagaagaggcag cttttgtcggacaagtaaccgcaagagcttgattgtgacctctagcacatcacctacac taccacggccacactcaccactccatggccacacaggtaacagtcctttggacagcc cccggaatttctctccaaatgcacctgctcacttttcttttgttcctgcccgtaggactgat gggcggcgctggtctttggcctctttgccctcttcaggatatggaactaacactcctag ctccactgtctcatcatcatgctcctcacaggaaaagctgcatcagttgcctttccagcc tacagctgatgagctgcactttttgacgaagcatttcagcacagagagcgtaccagat gaggaaggacggcagtccccagccatgcggcctcgctcccggagcctcagtcccg gacgatccccagtatcctttgacagtgaaataataatgatgaatcatgtttacaaagaaa gattcccaaaggccaccgcacaaatggaagagcgactagcagagtttatttcctcca acactccagacagcgtgctgcccttggcagatggagccctgagctttattcatcatca ggtgattgagatggcccgagactgcctggataaatctcggagtggcctcattacatca caatacttctacgaacttcaagataatttggagaaacttttacaagatgctcatgagcgc tcagagagctcagaagtggcttttgtgatgcagctggtgaaaaagctgatgattatcat tgcccgcccagcacgtctcctggaatgcctggagtttgaccctgaagagttctaccac cttttagaagcagctgagggccacgccaaagagggacaagggattaaatgtgacatt ccccgctacatcgttagccagctgggcctcacccgggatcccctagaagaaatggc ccagttgagcagctgtgacagtcctgacactccagagacagatgattctattgagggc catggggcatctctgccatctaaaaagacaccctctgaagaggacttcgagaccatta agctcatcagcaatggcgcctatggggctgtatttctggtgcggcacaagtccacccg gcagcgctttgccatgaagaagatcaacaagcagaacctgatcctacggaaccagat ccagcaggccttcgtggagcgtgacatactgactttcgctgagaacccctttgtggtc agcatgttctgctcctttgataccaagcgccacttgtgcatggtgatggagtacgttgaa gggggagactgtgccactctgctgaagaatattggggccctgcctgtggacatggtg cgtctatactttgcggaaactgtgctggccctggagtacttacacaactatggcatcgt gcaccgtgacctcaagcctgacaacctcctaattacatccatggggcacatcaagctc acggactttggactgtccaaaattggcctcatgagtctgacaacgaacttgtatgagg gtcatattgaaaaggatgcccgggaattcctggacaagcaggtatgcgggacccca gaatacattgcgcctgaggtgatcctgcgccagggctatgggaagccagtggactg gtgggccatgggcattatcctgtatgagttcctggtgggctgcgtccctttttttggagat actccggaggagctctttgggcaggtgatcagtgatgagattgtgtggcctgagggt gatgaggcactgcccccagacgcccaggacctcacctccaaactgctccaccagaa ccctctggagagacttggcacaggcagtgcctatgaggtgaagcagcacccattcttt actggtctggactggacaggacttctccgccagaaggctgaatttattcctcagttgga gtcagaggatgatactagctattttgacacccgctcagagcgataccaccacatggac tcggaggatgaggaagaagtgagtgaggatggctgccttgagatccgccagttctct tcctgctctccaaggttcaacaaggtgtacagcagcatggagcggctctcactgctcg aggagcgccggacaccacccccgaccaagcgcagcctgagtgaggagaaggag gaccattcagatggcctggcagggctcaaaggccgagaccggagctgggtgattg gctcccctgagatattacggaagcggctgtcggtgtctgagtcatcccacacagaga gtgactcaagccctccaatgacagtgcgacgccgctgctcaggcctcctggatgcgc ctcggttcccggagggccctgaggaggccagcagcaccctcaggaggcaaccac aggagggtatatgggtcctgacacccccatctggagagggggtatctgggcctgtca ctgaacactcaggggagcagcggccaaagctggatgaggaagctgttggccggag cagtggttccagtccagctatggagacccgaggccgtgggacctcacagctggctg agggagccacagccaaggccatcagtgacctggctgtgcgtagggcccgccaccg gctgctctctggggactcaacagagaagcgcactgctcgccctgtcaacaaagtgat caagtccgcctcagccacagccctctcactcctcattccttcggaacaccacacctgc tccccgttggccagccccatgtccccacattctcagtcgtccaacccatcatcccggg actcttctccaagcagggacttcttgccagcccttggcagcatgaggcctcccatcatc atccaccgagctggcaagaagtatggcttcaccctgcgggccattcgcgtctacatg ggtgactccgatgtctacaccgtgcaccatatggtgtggcacgtggaggatggaggt ccggccagtgaggcagggcttcgtcaaggtgacctcatcacccatgtcaatgggga acctgtgcatggcctggtgcacacggaggtggtagagctgatcctgaagagtggaa acaaggtggccatttcaacaactcccctggagaacacatccattaaagtggggccag ctcggaagggcagctacaaggccaagatggcccgaaggagcaagaggagccgc ggcaaggatgggcaagaaagcagaaaaaggagctccctgttccgcaagatcacca agcaagcatccctgctccacaccagccgcagcctttcttcccttaaccgctccttgtca tcaggggagagtgggccaggctctcccacacacagccacagcctttccccccgatc tcccactcaaggctaccgggtgacccccgatgctgtgcattcagtgggagggaattc atcacagagcagctcccccagctccagcgtgcccagttccccagccggctctgggc acacacggcccagctccctccacggtctggcacccaagctccaacgccagtaccgc tctccacggcgcaagtcagcaggcagcatcccactgtcaccactggcccacacccc ttctcccccacccccaacagcttcacctcagcggtccccatcgcccctgtctggccat gtagcccaggcctttcccacaaagcttcacttgtcacctcccctgggcaggcaactct cacggcccaagagtgcggagccaccccgttcaccactactcaagagggtgcagtc ggctgagaaactggcagcagcacttgccgcctctgagaagaagctagccacttctcg caagcacagccttgacctgccccactctgaactaaagaaggaactgccgcccaggg aagtgagccctctggaggtagttggagccaggagtgtgctgtctggcaagggggcc ctgccagggaagggggtgctgcagcctgctccctcacgggccctaggcaccctcc ggcaggaccgagccgaacgacgggagtcgctgcagaagcaagaagccattcgtg aggtggactcctcagaggacgacaccgaggaagggcctgagaacagccagggtg cacaggagctgagcttggcacctcacccagaagtgagccagagtgtggcccctaaa ggagcaggagagagtggggaagaggatcctttcccgtccagagaccctaggagcc tgggcccaatggtcccaagcctattgacagggatcacactggggcctcccagaatg gaaagtcccagtggtccccacaggaggctcgggagcccacaagccattgaggagg ctgccagctcctcctcagcaggccccaacctaggtcagtctggagccacagacccc atccctcctgaaggttgctggaaggcccagcacctccacacccaggcactaacagc actttctcccagcacttcgggactcacccccaccagcagttgctctcctcccagctcca cctctgggaagctgagcatgtggtcctggaaatcccttattgagggcccagacaggg catccccaagcagaaaggcaaccatggcaggtgggctagccaacctccaggatttg gaaaacacaactccagcccagcctaagaacctgtctcccagggagcaggggaaga cacagccacctagtgcccccagactggcccatccatcttatgaggatcccagccagg gctggctatgggagtctgagtgtgcacaagcagtgaaagaggatccagccctgagc atcacccaagtgcctgatgcctcaggtgacagaaggcaggacgttccatgccgagg ctgccccctcacccagaagtctgagcccagcctcaggaggggccaagaaccaggg ggccatcaaaagcatcgggatttggcattggttccagatgagcttttaaagcaaacata gcagttgtttgccatttcttgcactcagacctgtgtaatatatgctcctggaaaccatcaa aaaaaaaaaaaaaaaa (SEQ ID NO: 669) Pdp1 agagtgggcaggccgggggtgagggctcgcgctccgggagctgcacggggctgc NM_001161779 NM_ gtggaaagagcgccgagcggtggcgtcgttgtcgccccctcctcgtcgggaagaat 001098231 cgtttggtctcctgccgtgcccggttcgtattccctactccctgccacgagccgccccg tccgggatcctccacccgtccaaagttgtgagggggcgccgggcgtgctcgcggat cggcggccgcgggcgtgcggagggctggacgagccctggagcgccaggagaat gtgtgtgtgtcccgggcccagacgaattggaatcccagtcagaagttccagcctgcc actgttctctgatgccatgccagcaccaactcaactgttttttcctctcatccgtaactgtg aactgagcaggatctatggcactgcatgttactgccaccacaaacatctctgttgttcct catcgtacattcctcagagtcgactgagatacacacctcatccagcatatgctacctttt gcaggccaaaggagaactggtggcagtacacccaaggaaggagatatgcttccac accacagaaattttacctcacacctccacaagtcaatagcatccttaaagctaatgaat acagtttcaaagtgccagaatttgacggcaaaaatgtcagttctatccttggatttgaca gcaatcagctgcctgcaaatgcacccattgaggaccggagaagtgcagcaacctgc ttgcagaccagagggatgcttttgggggtttttgatggccatgcaggttgtgcttgttcc caggcagtcagtgaaagactcttttattatattgctgtctctttgttaccccatgagacttt gctagagattgaaaatgcagtggagagcggccgggcactgctacccattctccagtg gcacaagcaccccaatgattactttagtaaggaggcatccaaattgtactttaacagctt gaggacttactggcaagagcttatagacctcaacactggtgagtcgactgatattgat gttaaggaggctctaattaatgccttcaagaggcttgataatgacatctccttggaggc gcaagttggtgatcctaattcttttctcaactacctggtgcttcgagtggcattttctggag ccactgcttgtgtggcccatgtggatggtgttgaccttcatgtggccaatactggcgat agcagagccatgctgggtgtgcaggaagaggacggctcatggtcagcagtcacgct gtctaatgaccacaatgctcaaaatgaaagagaactagaacggctgaaattggaaca tccaaagagtgaggccaagagtgtcgtgaaacaggatcggctgcttggcttgctgat gccatttagggcatttggagatgtaaagttcaaatggagcattgaccttcaaaagaga gtgatagaatctggcccagaccagttgaatgacaatgaatataccaagtttattcctcct aattatcacacacctccttatctcactgctgagccagaggtaacttaccaccgattaag gccacaggataagtttctggtgttggctactgatgggttgtgggagactatgcataggc aggatgtggttaggattgtgggtgagtacctaactggcatgcatcaccaacagccaat agctgttggtggctacaaggtgactctgggacagatgcatggccttttaacagaaagg agaaccaaaatgtcctcggtatttgaggatcagaacgcagcaacccatctcattcgcc acgctgtgggcaacaacgagtttgggactgttgatcatgagcgcctctctaaaatgctt agtcttcctgaagagcttgctcgaatgtacagagatgacattacaatcattgtagttcag ttcaattctcatgttgtaggggcgtatcaaaaccaagaatagtgagtggctctttcactg gcaattctcaaatgatatacatttaaagggcagattttttaaaaagatactactataataa acatttccagttggtcattctaagcatttacccttttgatactctagctagtcaggtactcc aaattgactttgcagcagggtggcagggtcaggagagtctggtcctgcctagctcag atttcatggcacctgcacttgaagcaagtcacttctttatcacaggtgtcttgaaacatta gcttcttttaccaacctgagaaaattaggatgacctggcaaataagatcttgaataggc caaaagcaagtatcttgctgtgtgtagtctcttggttaaagtgaagaaacagtactgttc acacctttcttcactgagattccagtgtacatgagaacatatatttattgcatgattttctag atacacagtctatgcattattcatatacatttattttagcctaaagtggttttcaaatccagtt cttcaagccataaatgaccaagatccaagcaatctgaatttgtttttgtgattatttgactg gaatgcttcttaagtggaataactatactccgttatccacccgatttcctaatgtaattgaa agattttctattttgccacacacttggagacaataagggtttttagttttatctactcttctatt gaagttaaagaaagaaaaaaagatttttttatttgtattaatgaaaagctttagtttaaaat aaggagatccagaataaaaagaagagactgatctcttcaattattgtcatctgtagcca ccagcacatcactcttatgtaatccccaaaggcttggcatgccgtaagtgtgtggtgg gtagactgctgccggggaatcgtacttcttatttagtaatgataagacttttcattatttttg gaattttaaagatgacataaataagtttaaatatcaatttggggagtaaggtttaatattgc catcgggtattgagacaggaggaagtttctgtttttctccatttagacataggtcaattaa aatatttgggtttaaaatgactaaatgctttaaacatattgtagcttaagatatatgtgttaa gatatatacatgagaaactttaaaaggtaactactgtgcatgcctgatgcttaatagaat acttagtggcatcaaatgtttgcagcagtctccataattatattcagtcccttctaatactg tatcaatgtaaatgaaataaatatattcaaattggctttttgatatgcatcaagtggcatttt gttcctgtgtttaatagtgatctgtatacagctgtgcacatattgtcatcacttattctagca tcactgttaaggctgtgattatgtttgatattcacctggattttaatacaagccaatatcag cttcccattgtgtaataacttgggtgtttaggagtcttttcacattttttggggatatgaact agatgttcaagaactccttctggactgtggatactgaatcagtgtactattggctgcaga atttgtttcaattgaaaatagactcaggaagattgctgctcagaatatcatataatgtttatt ttttgaggtgtttttgtttttatttgtgtgtttttttttttttaagtcagcttggaacttttttcctgg gtagtatttgggagagggaaaggctgtactatatatttatttctaaatgttttgactgggc atttttcttttaatgaaatatgtggactgctctagcaaaccctattttcagctactatttgaat attcttgaacaccaccactgaagagtttcatatacaccaaataatgtctcatctctatagt acagggaatataaaattggtttcctgtggtcatgatcaagatagtagtattattacacaa gaaacttggtctgcagtctggaagcttgtctgctctatagaaatgaaaatgcagcatga agttgacattgtggaaatgaaagtaattgggtattagaaatctgaaagtactgtcatcta aaagcaattgtgattttattgtaattggttgtcactgttgtacggtgtctagaattaaagaa tacatgtaaactttcatggtatttagcctttcttaaatttttttaaaatttaaactttctaaccta tgtattcaacttctgtatttatatttaatcagtggttcatgttatataatacacccttaactagt taaatggaatgttggtatggtacagagtaccatattgctaagaaaactgtcttataaaag atgtatatgtgtgaagacatgaaagtttaatgtacagaatggttggagaaatgcctatg gtgaattaaagcttcatatctgctttctgaaaaaaaaaaaaaaa (SEQ ID NO: 670) Yes1 ggaggaggtggagagtgaggccgaggcgtggggagcccgggaactccctcctcc NM_005433 NM_009535 tgaagtaacgcgtcccgggccggctctgccgtcgttgctgccgccgggcgccccgg gacgaggaggtggaggagggagagggcccgcgggcctcgcctccgccctccgc cacctcgagctgcggtagcagcgactcatgagagcgcggccggaggacagatttg ataatgggctgcattaaaagtaaagaaaacaaaagtccagccattaaatacagacctg aaaatactccagagcctgtcagtacaagtgtgagccattatggagcagaacccacta cagtgtcaccatgtccgtcatcttcagcaaagggaacagcagttaatttcagcagtcttt ccatgacaccatttggaggatcctcaggggtaacgccttttggaggtgcatcttcctca ttttcagtggtgccaagttcatatcctgctggtttaacaggtggtgttactatatttgtggc cttatatgattatgaagctagaactacagaagacctttcatttaagaagggtgaaagatt tcaaataattaacaatacggaaggagattggtgggaagcaagatcaatcgctacagg aaagaatggttatatcccgagcaattatgtagcgcctgcagattccattcaggcagaa gaatggtattttggcaaaatggggagaaaagatgctgaaagattacttttgaatcctgg aaatcaacgaggtattttcttagtaagagagagtgaaacaactaaaggtgcttattccct ttctattcgtgattgggatgagataaggggtgacaatgtgaaacactacaaaattagga aacttgacaatggtggatactatatcacaaccagagcacaatttgatactctgcagaaa ttggtgaaacactacacagaacatgctgatggtttatgccacaagttgacaactgtgtg tccaactgtgaaacctcagactcaaggtctagcaaaagatgcttgggaaatccctcga gaatctttgcgactagaggttaaactaggacaaggatgtttcggcgaagtgtggatgg gaacatggaatggaaccacgaaagtagcaatcaaaacactaaaaccaggtacaatg atgccagaagctttccttcaagaagctcagataatgaaaaaattaagacatgataaact tgttccactatatgctgttgtttctgaagaaccaatttacattgtcactgaatttatgtcaaa aggaagcttattagatttccttaaggaaggagatggaaagtatttgaagcttccacagc tggttgatatggctgctcagattgctgatggtatggcatatattgaaagaatgaactatat tcaccgagatcttcgggctgctaatattcttgtaggagaaaatcttgtgtgcaaaatagc agactttggtttagcaaggttaattgaagacaatgaatacacagcaagacaaggtgca aaatttccaatcaaatggacagctcctgaagctgcactgtatggtcggtttacaataaa gtctgatgtctggtcatttggaattctgcaaacagaactagtaacaaagggccgagtg ccatatccaggtatggtgaaccgtgaagtactagaacaagtggagcgaggatacag gatgccgtgccctcagggctgtccagaatccctccatgaattgatgaatctgtgttgga agaaggaccctgatgaaagaccaacatttgaatatattcagtccttcttggaagactac ttcactgctacagagccacagtaccagccaggagaaaatttataattcaagtagcctat tttatatgcacaaatctgccaaaatataaagaacttgtgtagattttctacaggaatcaaa agaagaaaatcttctttactctgcatgtttttaatggtaaactggaatcccagatatggttg cacaaaaccacttttttttccccaagtattaaactctaatgtaccaatgatgaatttatcag cgtatttcagggtccaaacaaaatagagctaagatactgatgacagtgtgggtgacag catggtaatgaaggacagtgaggctcctgcttatttataaatcatttcctttctttttttccc caaagtcagaattgctcaaagaaaattatttattgttacagataaaacttgagagataaa aagctataccataataaaatctaaaattaaggaatatcatgggaccaaataattccattc cagttttttaaagtttcttgcatttattattctcaaaagttttttctaagttaaacagtcagtat gcaatcttaatatatgctttcttttgcatggacatgggccaggtttttcaaaaggaatataa acaggatctcaaacttgattaaatgttagaccacagaagtggaatttgaaagtataatg cagtacattaatattcatgttcatggaactgaaagaataagaactttttcacttcagtcctt ttctgaagagtttgacttagaataatgaaggtaactagaaagtgagttaatcttgtatga ggttgcattgattttttaaggcaatatataattgaaactactgtccaatcaaaggggaaat gttttgatctttagatagcatgcaaagtaagacccagcattttaaaagccctttttaaaaa ctagacttcgtactgtgagtattgcttatatgtccttatggggatgggtgccacaaatag aaaatatgaccagatcagggacttgaatgcacttttgctcatggtgaatatagatgaac agagaggaaaatgtatttaaaagaaatacgagaaaagaaagtgaaagttttacaagtt agagggatggaaggtaatgtttaatgttgatgtcatggagtgacagaatggctttgctg gcactcagagctcctcacttagctatattctgagactttgaagagttataaagtataacta taaaactaatttttcttacacactaaatgggtatttgttcaaaataatgaagttatggcttca cattcattgcagtgggatatggtttttatgtaaaacatttttagaactccagttttcaaatca tgtttgaatctacattcacttttttttgttttcttttttgagacggagtctcgctctgtcgccca ggctggagtgcagtggcgcgatctcggctcactgcaagctctgcctcccaggttcac accattctcctgcctcagcctcccgagtagctgggactacaggtgcccaccaccacg cctggctagttttttgtatttttagtagagacgcagtttcaccgtgttagccaggatggtct cgatctcctgaccttgtgatctgcccgcctcggcctcccaaagtgctgggattacagg cgtgagccaccgcgcccagcctacattcacttctaaagtctatgtaatggtggtcatttt ttcccttttagaatacattaaatggttgatttggggaggaaaacttattctgaatattaacg gtggtgaaaaggggacagtttttaccctaaagtgcaaaagtgaaacatacaaaataag actaatttttaagagtaactcagtaatttcaaaatacagatttgaatagcagcattagtgg tttgagtgtctagcaaaggaaaaattgatgaataaaatgaaggtctggtgtatatgtttta aaatactctcatatagtcacactttaaattaagccttatattaggcccctctattttcaggat ataattcttaactatcattatttacctgattttaatcatcagattcgaaattctgtgccatggc atatatgttcaaattcaaaccatttttaaaatgtgaagatggacttcatgcaagttggcag tggttctggtactaaaaattgtggttgttttttctgtttacgtaacctgcttagtattgacact ctctaccaagagggtcttcctaagaagagtgctgtcattatttcctcttatcaacaacttg tgacatgagattttttaagggctttatgtgaactatgatattgtaatttttctaagcatattca aaagggtgacaaaattacgtttatgtactaaatctaatcaggaaagtaaggcaggaaa agttgatggtattcattaggttttaactgaatggagcagttccttatataataacaattgtat agtagggataaaacactaacttaatgtgtattcattttaaattgttctgtatttttaaattgcc aagaaaaacaactttgtaaatttggagatattttccaacagcttttcgtcttcagtgtctta atgtggaagttaacccttaccaaaaaaggaagttggcaaaaacagccttctagcacac ttttttaaatgaataatggtagcctaaacttaatatttttataaagtattgtaatattgttttgtg gataattgaaataaaaagttctcattgaatgcacctattaatcgttttagttgctattcatatt ctcattcgttttttaaaaactgatatattctgaatttattcttccattgagaaaaaaatgttca gttacttgtaactactgagcagaatttaatcaatcctttattaaattcagaacattattgaa (SEQ ID NO: 671) Met gccctcgccgcccgcggcgccccgagcgctttgtgagcagatgcggagccgagtg NM_001127500 NM_008591 gagggcgcgagccagatgcggggcgacagctgacttgctgagaggaggcgggg aggcgcggagcgcgcgtgtggtccttgcgccgctgacttctccactggttcctgggc accgaaagataaacctctcataatgaaggcccccgctgtgcttgcacctggcatcctc gtgctcctgtttaccttggtgcagaggagcaatggggagtgtaaagaggcactagca aagtccgagatgaatgtgaatatgaagtatcagcttcccaacttcaccgcggaaacac ccatccagaatgtcattctacatgagcatcacattttccttggtgccactaactacatttat gttttaaatgaggaagaccttcagaaggttgctgagtacaagactgggcctgtgctgg aacacccagattgtttcccatgtcaggactgcagcagcaaagccaatttatcaggagg tgtttggaaagataacatcaacatggctctagttgtcgacacctactatgatgatcaact cattagctgtggcagcgtcaacagagggacctgccagcgacatgtctttccccacaat catactgctgacatacagtcggaggttcactgcatattctccccacagatagaagagc ccagccagtgtcctgactgtgtggtgagcgccctgggagccaaagtcctttcatctgt aaaggaccggttcatcaacttctttgtaggcaataccataaattcttcttatttcccagatc atccattgcattcgatatcagtgagaaggctaaaggaaacgaaagatggttttatgttttt gacggaccagtcctacattgatgttttacctgagttcagagattcttaccccattaagtat gtccatgcctttgaaagcaacaattttatttacttcttgacggtccaaagggaaactctag atgctcagacttttcacacaagaataatcaggttctgttccataaactctggattgcattc ctacatggaaatgcctctggagtgtattctcacagaaaagagaaaaaagagatccac aaagaaggaagtgtttaatatacttcaggctgcgtatgtcagcaagcctggggcccag cttgctagacaaataggagccagcctgaatgatgacattcttttcggggtgttcgcaca aagcaagccagattctgccgaaccaatggatcgatctgccatgtgtgcattccctatca aatatgtcaacgacttcttcaacaagatcgtcaacaaaaacaatgtgagatgtctccag catttttacggacccaatcatgagcactgctttaataggacacttctgagaaattcatca ggctgtgaagcgcgccgtgatgaatatcgaacagagtttaccacagctttgcagcgc gttgacttattcatgggtcaattcagcgaagtcctcttaacatctatatccaccttcattaa aggagacctcaccatagctaatcttgggacatcagagggtcgcttcatgcaggttgtg gtttctcgatcaggaccatcaacccctcatgtgaattttctcctggactcccatccagtgt ctccagaagtgattgtggagcatacattaaaccaaaatggctacacactggttatcact gggaagaagatcacgaagatcccattgaatggcttgggctgcagacatttccagtcct gcagtcaatgcctctctgccccaccctttgttcagtgtggctggtgccacgacaaatgt gtgcgatcggaggaatgcctgagcgggacatggactcaacagatctgtctgcctgca atctacaaggttttcccaaatagtgcaccccttgaaggagggacaaggctgaccatat gtggctgggactttggatttcgg aggaataataaatttgatttaaagaaaactagagttctccttggaaatgagagctgcac cttgactttaagtgagagcacgatgaatacattgaaatgcacagttggtcctgccatga ataagcatttcaatatgtccataattatttcaaatggccacgggacaacacaatacagta cattctcctatgtggatcctgtaataacaagtatttcgccgaaatacggtcctatggctg gtggcactttacttactttaactggaaattacctaaacagtgggaattctagacacatttc aattggtggaaaaacatgtactttaaaaagtgtgtcaaacagtattcttgaatgttatacc ccagcccaaaccatttcaactgagtttgctgttaaattgaaaattgacttagccaaccga gagacaagcatcttcagttaccgtgaagatcccattgtctatgaaattcatccaaccaa atcttttattagtacttggtggaaagaacctctcaacattgtcagttttctattttgctttgcc agtggtgggagcacaataacaggtgttgggaaaaacctgaattcagttagtgtcccg agaatggtcataaatgtgcatgaagcaggaaggaactttacagtggcatgtcaacatc gctctaattcagagataatctgttgtaccactccttccctgcaacagctgaatctgcaac tccccctgaaaaccaaagcctttttcatgttagatgggatcctttccaaatactttgatctc atttatgtacataatcctgtgtttaagccttttgaaaagccagtgatgatctcaatgggca atgaaaatgtactggaaattaagggaaatgatattgaccctgaagcagttaaaggtga agtgttaaaagttggaaataagagctgtgagaatatacacttacattctgaagccgtttt atgcacggtccccaatgacctgctgaaattgaacagcgagctaaatatagagtggaa gcaagcaatttcttcaaccgtccttggaaaagtaatagttcaaccagatcagaatttcac aggattgattgctggtgttgtctcaatatcaacagcactgttattactacttgggtttttcct gtggctgaaaaagagaaagcaaattaaagatctgggcagtgaattagttcgctacgat gcaagagtacacactcctcatttggataggcttgtaagtgcccgaagtgtaagcccaa ctacagaaatggtttcaaatgaatctgtagactaccgagctacttttccagaagatcagt ttcctaattcatctcagaacggttcatgccgacaagtgcagtatcctctgacagacatgt cccccatcctaactagtggggactctgatatatccagtccattactgcaaaatactgtcc acattgacctcagtgctctaaatccagagctggtccaggcagtgcagcatgtagtgatt gggcccagtagcctgattgtgcatttcaatgaagtcataggaagagggcattttggttg tgtatatcatgggactttgttggacaatgatggcaagaaaattcactgtgctgtgaaatc cttgaacagaatcactgacataggagaagtttcccaatttctgaccgagggaatcatca tgaaagattttagtcatcccaatgtcctctcgctcctgggaatctgcctgcgaagtgaa gggtctccgctggtggtcctaccatacatgaaacatggagatcttcgaaatttcattcg aaatgagactcataatccaactgtaaaagatcttattggctttggtcttcaagtagccaa aggcatgaaatatcttgcaagcaaaaagtttgtccacagagacttggctgcaagaaac tgtatgctggatgaaaaattcacagtcaaggttgctgattttggtcttgccagagacatg tatgataaagaatactatagtgtacacaacaaaacaggtgcaaagctgccagtgaagt ggatggctttggaaagtctgcaaactcaaaagtttaccaccaagtcagatgtgtggtcc tttggcgtgctcctctgggagctgatgacaagaggagccccaccttatcctgacgtaa acacctttgatataactgtttacttgttgcaagggagaagactcctacaacccgaatact gcccagaccccttatatgaagtaatgctaaaatgctggcaccctaaagccgaaatgc gcccatccttttctgaactggtgtcccggatatcagcgatcttctctactttcattgggga gcactatgtccatgtgaacgctacttatgtgaacgtaaaatgtgtcgctccgtatccttct ctgttgtcatcagaagataacgctgatgatgaggtggacacacgaccagcctccttct gggagacatcatagtgctagtactatgtcaaagcaacagtccacactttgtccaatggt tttttcactgcctgacctttaaaaggccatcgatattctttgctcttgccaaaattgcactat tataggacttgtattgttatttaaattactggattctaaggaatttcttatctgacagagcat cagaaccagaggcttggtcccacaggccacggaccaatggcctgcagccgtgaca acactcctgtcatattggagtccaaaacttgaattctgggttgaattttttaaaaatcaggt accacttgatttcatatgggaaattgaagcaggaaatattgagggcttcttgatcacag aaaactcagaagagatagtaatgctcaggacaggagcggcagccccagaacaggc cactcatttagaattctagtgtttcaaaacacttttgtgtgttgtatggtcaataacatttttc attactgatggtgtcattcacccattaggtaaacattcccttttaaatgtttgtttgttttttga gacaggatctcactctgttgccagggctgtagtgcagtggtgtgatcatagctcactgc aacctccacctcccaggctcaagcctcccgaatagctgggactacaggcgcacacc accatccccggctaatttttgtattttttgtagagacggggttttgccatgttgccaaggct ggtttcaaactcctggactcaagaaatccacccacctcagcctcccaaagtgctagga ttacaggcatgagccactgcgcccagcccttataaatttttgtatagacattcctttggtt ggaagaatatttataggcaatacagtcaaagtttcaaaatagcatcacacaaaacatgt ttataaatgaacaggatgtaatgtacatagatgacattaagaaaatttgtatgaaataatt tagtcatcatgaaatatttagttgtcatataaaaacccactgtttgagaatgatgctactct gatctaatgaatgtgaacatgtagatgttttgtgtgtatttttttaaatgaaaactcaaaata agacaagtaatttgttgataaatatttttaaagataactcagcatgtttgtaaagcaggat acattttactaaaaggttcattggttccaatcacagctcataggtagagcaaagaaagg gtggatggattgaaaagattagcctctgtctcggtggcaggttcccacctcgcaagca attggaaacaaaacttttggggagttttattttgcattagggtgtgttttatgttaagcaaa acatactttagaaacaaatgaaaaaggcaattgaaaatcccagctatttcacctagatg gaatagccaccctgagcagaactttgtgatgcttcattctgtggaattttgtgcttgctac tgtatagtgcatgtggtgtaggttactctaactggttttgtcgacgtaaacatttaaagtgt tatattttttataaaaatgtttatttttaatgatatgagaaaaattttgttaggccacaaaaac actgcactgtgaacattttagaaaaggtatgtcagactgggattaatgacagcatgattt tcaatgactgtaaattgcgataaggaaatgtactgattgccaatacaccccaccctcatt acatcatcaggacttgaagccaagggttaacccagcaagctacaaagagggtgtgtc acactgaaactcaatagttgagtttggctgttgttgcaggaaaatgattataactaaaag ctctctgatagtgcagagacttaccagaagacacaaggaattgtactgaagagctatt acaatccaaatattgccgtttcataaatgtaataagtaatactaattcacagagtattgta aatggtggatgacaaaagaaaatctgctctgtggaaagaaagaactgtctctaccag ggtcaagagcatgaacgcatcaatagaaagaactcggggaaacatcccatcaacag gactacacacttgtatatacattcttgagaacactgcaatgtgaaaatcacgtttgctattt ataaacttgtccttagattaatgtgtctggacagattgtgggagtaagtgattcttctaag aattagatacttgtcactgcctatacctgcagctgaactgaatggtacttcgtatgttaat agttgttctgataaatcatgcaattaaagtaaagtgatgcaacatcttgtaaaaaaaaaa aaaaaaaaaa (SEQ ID NO: 672) Ppm1g agttgctaaggaaatgactgcccgcagcgcctggccccgccgcgcaggccgggcg NM_177983 NM_008014 gggtctggagcggcgccgtttccgcttccgctccctcacagctcccgtcccgttaccg cctcctggccggcctcgcgcctttcaccggcaccttgcgtcggtcgcgccgcgggg cctgctcctgccgcgcgcacccccggggcttcggctccggcacgggtcgcgccca gctttcctgcacctgaggccgccggccagccgccgccatgggtgcctacctctccca gcccaacacggtgaagtgctccggggacggggtcggcgccccgcgcctgccgct gccctacggcttctccgccatgcaaggctggcgcgtctccatggaggatgctcacaa ctgtattcctgagctggacagtgagacagccatgttttctgtctacgatggacatggag gggaggaagttgccttgtactgtgccaaatatcttcctgatatcatcaaagatcagaag gcctacaaggaaggcaagctacagaaggctttagaagatgccttcttggctattgacg ccaaattgaccactgaagaagtcattaaagagctggcacagattgcagggcgaccc actgaggatgaagatgaaaaagaaaaagtagctgatgaagatgatgtggacaatga ggaggctgcactgctgcatgaagaggctaccatgactattgaagagctgctgacacg ctacgggcagaactgtcacaagggccctccccacagcaaatctggaggtgggaca ggcgaggaaccagggtcccagggcctcaatggggaggcaggacctgaggactca actagggaaactccttcacaagaaaatggccccacagccaaggcctacacaggcttt tcctccaactcggaacgtgggactgaggcaggccaagttggtgagcctggcattccc actggtgaggctgggccttcctgctcttcagcctctgacaagctgcctcgagttgctaa gtccaagttctttgaggacagtgaggatgagtcagatgaggcggaggaagaagagg aagacagtgaggaatgcagcgaggaagaggatggctacagcagtgaggaggcag agaatgaggaagatgaggatgacaccgaggaggctgaagaggacgatgaagaag aagaagaagagatgatggtgccagggatggaaggcaaagaggagcctggctctga cagtggtacaacagcggtggtggccctgatacgagggaagcagttgattgtagcca acgcaggagactctcgctgtgtggtatctgaggctggcaaagctttagacatgtcctat gatcacaaaccagaggatgaagtagaactagcacgcatcaagaatgctggtggcaa ggtcaccatggatgggcgagtcaacgggggcctcaacctctccagagccattgggg accacttctataagagaaacaagaacctgccacctgaggaacagatgatttcagccct tcctgacatcaaggtgctgactctcactgacgaccatgaattcatggtcattgcctgtga tggcatctggaatgtgatgagcagccaggaagttgtagatttcattcaatcaaagatca gccagcgtgatgaaaatggggagcttcggttattgtcatccattgtggaagagctgct ggatcagtgcctggcaccagacacttctggggatggtacagggtgtgacaacatgac ctgcatcatcatttgcttcaagccccgaaacacagcagagctccagccagagagtgg caagcgaaaactagaggaggtgctctctactgagggggctgaagaaaatggcaaca gcgacaagaagaagaaggccaagcgagactagcagtcatccagacccctgcccac ctagactgttttctgagccctccggacctgagactgagttttgtctttttcctttagccttag cagtgggtatgaggtgtgcagggggagctgggtggcttcactccgcccattccaaag agggctctccctccacactgcagccgggagcctctgctgtccttcccagccgcctctg ctcctcgggctcatcaccggttctgtgcctgtgctctgttgtgttggagggaaggactg gcggttctggtttttactctgtgaactttatttaaggacattcttttttattggcggctccatg gccctcggccgcttgcacccgctctctgttgtacactttcaatcaacactttttcagacta aaggccaaaacctaa (SEQ ID NO: 673) Blvrb Ggcgtggcccttcgagccagctccgccccgttgttcctggcttgagtagggcagag NM_000713 NM_144923 agcaccgcccagcagccagtgggttcccgcgcgtgccgagactctgaggccttgca cccccacgatcccgtacgatggccgtcaagaagatcgcgatcttcggcgccactgg ccagaccgggctcaccaccctggcgcaggcggtgcaagcaggttacgaagtgaca gtgctggtgcgggactcctccaggctgccatcagaggggccccggccggcccacg tggtagtgggagatgttctgcaggcagccgatgtggacaagaccgtggctgggcag gacgctgtcatcgtgctgctgggcacccgcaatgacctcagtcccacgacagtgatg tccgagggcgcccggaacattgtggcagccatgaaggctcatggtgtggacaaggt cgtggcctgcacctcggctttcctgctctgggaccctaccaaggtgcccccacgact gcaggctgtgactgatgaccacatccggatgcacaaggtgctgcgggaatcaggcc tgaagtacgtggctgtgatgccgccacacataggagaccagccactaactggggcg tacacagtgaccctggatggacgagggccctcaagggtcatctccaaacatgacctg ggccatttcatgctgcgctgcctcaccaccgatgagtacgacggacacagcacctac ccctcccaccagtaccagtagcactctgtccccatctgggagggtggcattctggga catgaggagcaaaggaagggggcaataaatgttgagccaagagcttcaaattactct agagaaaccgacaaaaaaaaaaaaaaaaaa (SEQ ID NO: 674) Tnk1 ggaactcggggtgcggccctcgccggccccgggccagcggccaggtccccgccc NM_001251902 NM_031880 tccgcgggatttactcctgtcccgcctcctcggatttagcccaggcagcctgggaggt tccgcagtcgccgcttccgccttgaccaggtggagctggagacctggtctctctagg gcctaccctgagctcaccatctgaaggagagtgccatcatccttaggaactccttctcc agacatgcttcctgaggctggctccctgtggctactgaagctgctccgggacatccag ttggcccagttttactggcccatccttgaggagcttaatgtcactcggccagagcactt cgactttgtaaagcctgaggacctggacggcattggcatgggccggcctgcccagc gcagactgtccgaagctctgaaaaggctacgttctgggcctaagtctaagaactgggt ctacaagatccttggaggttttgcccctgagcacaaggagcccaccctgccctcgga cagcccacggcacctccctgagccagaggggggcctcaagtgtctgatcccagag ggtgctgtttgcagaggggagctgctgggttcaggctgcttcggtgtggtgcaccga gggctgtggacgctgcccagtggcaagagtgtcccagtggctgtcaagtccctccg ggtaggtcccgaaggcccgatgggcacagaactgggggacttcctgcgagaggta tcggtcatgatgaacttggagcacccacacgtgctgcgtctgcacggccttgtactgg gccagcctctgcagatggtgatggagctggcgccactgggctccctgcacgcgcgc ctaacggccccggccccgacacccccgctgctcgtggccctgctctgcctcttcctg cggcagctggcgggagccatggcgtacctgggggcccgcgggctggtgcaccga gacctcgctacgcgcaacctactgctggcgtcgccgcgcaccatcaaggtggctga cttcgggctggtgcggcctctgggcggtgcccggggccgctacgtcatgggcggg ccccgccctatcccctacgcctggtgtgccccagagagcctgcgccacggagcctt ctcgtctgcctcggacgtgtggatgtttggggtgacgctgtgggagatgttctccggg ggcgaggaaccctgggccggggtcccaccgtacctcatcctgcagcggctggagg acagagcccggctgcctaggcctcccctctgctccagggccctctactccctcgcctt gcgctgctgggccccccaccctgccgaccggcctagcttttcccacctggaggggc tgctgcaagaggccgggccttcggaagcatgttgtgtgagggatgtcacagaacca ggcgccctgaggatggagactggtgaccccatcacagtcatcgagggcagctcctc tttccacagccccgactccacaatctggaagggccagaatggtcgcaccttcaaagt gggcagcttcccagcctcggcagtgacgctggcagatgcggggggcttgccagcc acccgtccagtccacagaggcacccctgcccggggagatcaacacccaggaagca tagatggagacagaaagaaggcaaatctttgggatgcgcccccagcacggggcca gaggaggaacatgcccctggagaggatgaaaggcatttccaggagtctggagtcag ttctgtccctcggtcctcgtcccacagggggtggttcaagcccccctgaaattcgaca agccagagctgtgccccagggacctccaggcctgcctccacgcccacctttatcctc tagctctcctcagcccagccagccctctagggagaggcttccctggcccaaaagaaa acccccacacaatcaccccatgggaatgcctggagcccgtaaagccgctgccctct ctggaggcctcttgtccgatcctgagttgcagaggaagattatggaggtggagctga gtgtgcatggggtcacccaccaggagtgccagacagcactaggagccactggggg agatgtggtttctgccatccggaacctcaaggtagatcagctcttccacctgagtagcc ggtccagagctgactgctggcgcatcctggagcattaccagtgggacctctcagctg ccagccgctatgtcctggccaggccctgagctcagcttctgcgggcacagacacca gcatgaaaagcctaggcccctgagggcctggccacatgggaccaagcggaacca gaacaaggtcccgacaggggtagacgttccacctggggagatcccacctgccgtag gcacatggaggaggagcccagagttgggcactggcaaatgtctcctccctcccatg ctccttggcttctgaaggctgaagctcctttggctgggccaagaaggatctagtctgcc cactacattctcaaacaagaggacttggaggaaaagagctgctatacatcatatgcag aggaagcttctacgcgctagagaggatcaaggggccacactggaccatgtgaacag ccatcctgaactgccatcagctaccacactggactctgcagggcagccatcctggat gatggaagccaccatattgacttggggtataggcccaaactgccttcgtttggtccag ggccatcgtgggtgatgacgattgctctcttgcactcaaggacatttgatgctggtagt atggattatgagatggactagcccctgccccagcccagctctcacattcccctttgttttt tcccataccaactgcttctaccctcccctattacatacatctttcaatgtccaaaaagttac aaagtttatatgaatgtaacatataaaaaaa (SEQ ID NO: 675) Prkab2 actgggcggactccgcgccgccggccttgtagccattttaggaggaatcgctggtcg NM_005399 NM_182997 ccagcgaggggtgcggcttcaatttcaataactttattggtggcctgatctgcagaaca gccatcacatcagtggcccttggaggagggagcgcatcgcccgaggtggtccccg acgagctgcagccatgggaaacaccaccagcgaccgggtgtccggggagcgcca cggcgccaaggctgcacgctccgagggcgcaggcggccatgccccggggaagg agcacaagatcatggtggggagtacggacgaccccagcgtgttcagcctccctgac tccaagctccctggggacaaagagtttgtatcatggcagcaggatttggaggactcc gtaaagcccacacagcaggcccggcccactgttatccgctggtctgaaggaggcaa ggaggtcttcatctctgggtccttcaacaattggagcaccaagattccactgattaaga gccataatgactttgttgccatcctggacctccctgagggagagcaccaatacaagtt ctttgtggatggacagtgggttcatgatccatcagagcctgtggttaccagtcagcttg gcacaattaacaatttgatccatgtcaagaaatctgattttgaggtgttcgatgctttaaa gttagattctatggaaagttctgagacatcttgtagagacctttccagctcacccccagg gccttatggtcaagaaatgtatgcgtttcgatctgaggaaagattcaaatccccaccca tccttcctcctcatctacttcaagttattcttaacaaagacactaatatttcttgtgacccag ccttactccctgagcccaaccatgttatgctgaaccatctctatgcattgtccattaagg acagtgtgatggtccttagcgcaacccatcgctacaagaagaagtatgttactactctg ctatacaagcccatttgaagggatcccttcttgcctctaaggattcaggagaagcatct cccttgcatttctggactgaaccagtcttacctgagactggaaggctgatttgctttgag gctgatatgtgtgtttcagagcctctgagtaggatgctctgcttttgcatttgattgcagat gagagctttatgagttcacggaatttattttaagaaaaaaaaatatacatatgagaagaa ggtaaatggaagcctcctagccccagctagaagtattgtttctgcctgtgggttttcacc aagacctgtttgggggcgctgcaggaataactatataggaagatttttcctaaaatgaa agaacagcaaactcttaggatccttgttgggtggagattctatcactgctaccttggctc tccaaggaatgggcttgtgctagaccgctgccctacttaacagctgcctcattgcaag ggcagtttttcttgcatgggttctctatattcccagagtatgtggcacaatctgtgttgttta tatgataccagatgccccacaagaacccttattcctctcatttcacattcttcctttaatag cctccttcagatcccatacctgacccctctctaacacaaaacttattgggtaagtgacttt gaaaagttttgtggcacctgacccaccccagacactagggctatcagaaggtctcctt tttagcccagcacaggcccaggccactttgtcgtgtttgttttaacttctaaagaaaatat gtttcagcattataagaaaggcagaatgcagaacacctacatttttgttttagtttggtgc caaggctcaggctgtattggcaaattcccgaaagttttcccactttgcctggccctgctt ctgtcttttctttctcagtaaacagttctgaaggcaggagtggaacccgggagtattttc atgtctttcatccttgaaagatttttatgtgcctgcattttttttttaattaaaaaatgccttttc attggtcttaagagaccgcattggagaatttcaggcttttgataaatgcttcttcaaagag attttcttctctagtctagccttccacattcttagattaatatggccaaccctgtacacatca ctacactaaacactgctctagataaactgctcaagttcatttaactcatttgatgcaccta aaggggttcctcattttaaagatttgttaggccaagaagcaagagagtattcctagtatt cccaaccatgaaaagtatcattctttgcaccaaatgttaacaaaatcattttgttctcctgc ctcttctttttaaaggtgtttgatgattaagtggggtcactgaattccatttgtggactgaa aagtattcaatccacttttggggttcagagataaaacattttttcccaagtagctggggct cttccattttgcagataagtcaaataatcaacactaaaggaggctaaactgttgatgaat gagagactccctgactgctcagatgaccctagccacactgaaagggcacctacagg tcagtttagctacctcctgtctttcccatgcaaagctgataacacagttgtctttggacttg tagacctcttggattccaggtgtgatggagtaaagtgtgggattgttgttttgctgggat gcaaataactaaatgctttggtggttaattgctaagagtaaatactactttagccatccaa ggccaccttctgcagcaaaaggcttttgtggagaaccttttatgttcccaaccactttttg aatggtgtgccatttaaaaatccaggccagatcctattataaccaactctcaggatttac agccttcagttgtactagaattttgtttttatccaatactcattaaataagtgggccacttag gaagattcaaaatcttggttattacatgaagtttgttatatttcttgtcaacagtattgaaat gtaatatgtatgtgttcatgtatgaaaatttttactccacacaggtgtttcagtagagtggg gcaggaaaagagatctcttcgatttctttcaggcctgaggcttttgtgaaatgcgtcagc cccctgtgacagtaggttttgatgctagtgatcttcagatctttctctctggaaatgtgca gagagtgtcagtttcccaagttctgaggtaactctcagcccagatgtgaaatgggagc ctaccagctggtatagaagggaatgggtaggaggcactgggtgctgactcattcagc actgtcccttttctatactgctgatacatcccatggttctgagaagccttatctcagtctatt tggaagagagggaggaagagaaggaagtaacccaaagtactactcatttatcattgt atattgattagttaaagggataattaatttaatgctgaggagagtttgacagattttgaaa atgagtaaaggcaaaaaaaatttttttagcctttattttgcttttgggaattttacagagtca aagtaggcagaataagaaaatagttcttcaggagggccgacctttaaagaacttcaac atagtttcggaattgtggggaagagaagagtgactgagctgagaagtaataatagaat aaagggttgagtaacttacaactgaaaatgatctcttttaaaaagaaattaaatcagaca ccacatggtggtgtccttggatctcactgtacagaattagcagtgtataaccatcttctct tttcatcttgttccaattctctcctctttcctttccattctgctttaagctcatgtgtcaggcag actttaccagagtgtcagacattacctaaaacacatacgttagccatgctgctggtatg gagaaattccacaccatgattattagcctcctttaagctgaatgggatttaaccattctag gcaacacccctgaagggcatacctaacctcaatagtgttggcttttaaaacgtatgtttg tatggtagagaaactttgtaaaagaagaatccaagagaagtttgtgaggatcctacaa acccaggcccactcactttgctctaattctttctagtatcttgtagatctaatgggtctggg ataaaaactttgaaaagtgtcaatattccatgtatgctgctgaaatgaagttaagtttgga aagaagtgatacctctagactgggtttatattaatctgggatataaatgaagaagacata ctaatagaactccttgcttttaattggggaaatagggctttaataattttgacctcaactaa aaatgatatgcaatagtctctgtgtgtgtttgaaatacattgtgttctcagagatttctacat tctcacgttctagtgatttggggcatgggcttaatagcagatgtacagtgtattcctgcat tattgtgattccccttaaagcccagttcttgctgtcttctaccaggggctgctgactccag ttacccatggaatgcaggacctgggaggggtagccattagggtctttcaaaactctttg gatctaagcatttgtctctccttaagtgccaatcacaattggatatggaaggactgtgatt tctgcaatgaacccaaacttttagagtaaaaagccaaatttaaattataagaaagaagg gaaaaaagagaaaaactcaagtctattacttgtagagtccaattcttagcaatggaatc gctctaggattctagtttgggctttgtctggatttgcttttctcagttgtgctttgaagtgaat aagctttgttacaaattaattttttattagttccaatattagttggagttaacttgaattgattg tatgtagcacagcacttttgcagtaagattggtgtgaaatactaaacactatggattttgt aggtgtcaggttaaatggtcaagggatacctacattaagtcatatattaggtattgatga tcttacttcttttctgttcccctgtacaaaacacttacctaacccagcttgtggttttaggac agccaaagctcactgttgttggttagtcctaatcactacacgggtctcataaatgagact tgtttgaattttggtacattggagcatgttggttggtattacacggcagcatttcgaatga gtgcagctctgtgtctgtcagaaaggagagataagactactttgaagggaattaaatat gtgagtcctctttttaatggtgctttttgtaacctttaatgctgaggtacagagctgcttttc aatatttcataaaggagtggcagacaagagtggattttaaagctgttcttcaaacgtaat ttgtcactggactctgacacacctggaaattatatgatatgatacatacagaaatgttgt gggttttttccataaaactttaataaaagtattatacagcaataaaaaaaaaaaaaaa (SEQ ID NO: 676) Trpm7 gcgccgctcacgtggtccgtccccagccccgtcgccggcggaggcgggcgcggg NM_017672 NM_021450 cgcgtccctgtggccagtcacccggaggagttggtcgcacaattatgaaagactcgg cttctgctgctagcgccggagctgagttagttctgagaaggtttccctgggcgttccttg tccggcggcctctgctgccgcctccggagacgcttcccgatagatggctacaggcc gcggaggaggaggaggtggagttgctgcccttccggagtccgccccgtgaggaga atgtcccagaaatcctggatagaaagcactttgaccaagagggaatgtgtatatattat accaagttccaaggaccctcacagatgccttccaggatgtcaaatttgtcagcaactc gtcaggtgtttttgtggtcgcttggtcaagcaacatgcttgttttactgcaagtcttgccat gaaatactcagatgtgaaattgggtgaccattttaatcaggcaatagaagaatggtctg tggaaaagcatacagaacagagcccaacggatgcttatggagtcataaattttcaagg gggttctcattcctacagagctaagtatgtgaggctatcatatgacaccaaacctgaag tcattctgcaacttctgcttaaagaatggcaaatggagttacccaaacttgttatctctgt acatgggggcatgcagaaatttgagcttcacccacgaatcaagcagttgcttggaaa aggtcttattaaagctgcagttacaactggagcctggattttaactggaggagtaaaca caggtgtggcaaaacatgttggagatgccctcaaagaacatgcttccagatcatctcg aaagatttgcactatcggaatagctccatggggagtgattgaaaacagaaatgatcttg ttgggagagatgtggttgctccttatcaaaccttattgaaccccctgagcaaattgaatg ttttgaataatctgcattcccatttcatattggtggatgatggcactgttggaaagtatgg ggcggaagtcagactgagaagagaacttgaaaaaactattaatcagcaaagaattca tgctaggattggccagggtgtccctgtggtggcacttatatttgagggtgggccaaat gttatcctcacagttcttgaataccttcaggaaagcccccctgttccagtagttgtgtgtg aaggaacaggcagagctgcagatctgctagcgtatattcataaacaaacagaagaa ggagggaatcttcctgatgcagcagagcccgatattatttccactatcaaaaaaacatt taactttggccagaatgaagcacttcatttatttcaaacactgatggagtgcatgaaaag aaaggagcttatcactgttttccatattgggtcagatgaacatcaagatatagatgtagc aatacttactgcactgctaaaaggtactaatgcatctgcatttgaccagcttatccttaca ttggcatgggatagagttgacattgccaaaaatcatgtatttgtttatggacagcagtgg ctggttggatccttggaacaagctatgcttgatgctcttgtaatggatagagttgcatttg taaaacttcttattgaaaatggagtaagcatgcataaattccttaccattccgagactgg aagaactttacaacactaaacaaggtccaactaatccaatgctgtttcatcttgttcgag acgtcaaacagggaaatcttcctccaggatataagatcactctgattgatataggactt gttattgaatatctcatgggaggaacctacagatgcacctatactaggaaacgttttcga ttaatatataatagtcttggtggaaataatcggaggtctggccgaaatacctccagcag cactcctcagttgcgaaagagtcatgaatcttttggcaatagggcagataaaaaggaa aaaatgaggcataaccatttcattaagacagcacagccctaccgaccaaagattgata cagttatggaagaaggaaagaagaaaagaaccaaagatgaaattgtagacattgatg atccagaaaccaagcgctttccttatccacttaatgaacttttaatttgggcttgccttatg aagaggcaggtcatggcccgttttttatggcaacatggtgaagaatcaatggctaaag cattagttgcctgtaagatctatcgttcaatggcatatgaagcaaagcagagtgacctg gtagatgatacttcagaagaactaaaacagtattccaatgattttggtcagttggccgtt gaattattagaacagtccttcagacaagatgaaaccatggctatgaaattgctcacttat gaactgaagaactggagtaattcaacctgccttaagttagcagtttcttcaagacttaga ccttttgtagctcacacctgtacacaaatgttgttatctgatatgtggatgggaaggctg aatatgaggaaaaattcctggtacaaggtcatactaagcattttagttccacctgccata ttgctgttagagtataaaactaaggctgaaatgtcccatatcccacaatctcaagatgct catcagatgacaatggatgacagcgaaaacaactttcagaacataacagaagagatc cccatggaagtgtttaaagaagtacggattttggatagtaatgaaggaaagaatgaga tggagatacaaatgaaatcaaaaaagcttccaattacgcgaaagttttatgccttttatc atgcaccaattgtaaaattctggtttaacacgttggcatatttaggatttctgatgctttata catttgtggttcttgtacaaatggaacagttaccttcagttcaagaatggattgttattgctt atatttttacttatgccattgagaaagtccgtgagatctttatgtctgaagctgggaaagt aaaccagaagattaaagtatggtttagtgattacttcaacatcagtgatacaattgccat aatttctttcttcattggatttggactaagatttggagcaaaatggaactttgcaaatgcat atgataatcatgtttttgtggctggaagattaatttactgtcttaacataatattttggtatgt gcgtttgctagattttctagctgtaaatcaacaggcaggaccttatgtaatgatgattgg aaaaatggtggccaatatgttctacattgtagtgattatggctcttgtattacttagttttgg tgttcccagaaaggcaatactttatcctcatgaagcaccatcttggactcttgctaaaga tatagtttttcacccatactggatgatttttggtgaagtttatgcatacgaaattgatgtgtg tgcaaatgattctgttatccctcaaatctgtggtcctgggacgtggttgactccatttcttc aagcagtctacctctttgtacagtatatcattatggttaatcttcttattgcatttttcaacaa tgtgtatttacaagtgaaggcaatttccaatattgtatggaagtaccagcgttatcatttta ttatggcttatcatgagaaaccagttctgcctcctccacttatcattcttagccatatagttt ctctgttttgctgcatatgtaagagaagaaagaaagataagacttccgatggaccaaa acttttcttaacagaagaagatcaaaagaaacttcatgattttgaagagcagtgtgttga aatgtatttcaatgaaaaagatgacaaatttcattctgggagtgaagagagaattcgtgt cacttttgaaagagtggaacagatgtgcattcagattaaagaagttggagatcgtgtca actacataaaaagatcattacaatcattagattctcaaattggccatttgcaagatctttca gccctgacggtagatacattaaaaacactcactgcccagaaagcgtcggaagctagc aaagttcataatgaaatcacacgagaactgagcatttccaaacacttggctcaaaacct tattgatgatggtcctgtaagaccttctgtatggaaaaagcatggtgttgtaaatacactt agctcctctcttcctcaaggtgatcttgaaagtaataatccttttcattgtaatattttaatga aagatgacaaagatccccagtgtaatatatttggtcaagacttacctgcagtaccccag agaaaagaatttaattttccagaggctggttcctcttctggtgccttattcccaagtgctg tttcccctccagaactgcgacagagactacatggggtagaactcttaaaaatatttaata aaaatcaaaaattaggcagttcatctactagcataccacatctgtcatccccaccaacc aaattttttgttagtacaccatctcagccaagttgcaaaagccacttggaaactggaacc aaagatcaagaaactgtttgctctaaagctacagaaggagataatacagaatttggag catttgtaggacacagagatagcatggatttacagaggtttaaagaaacatcaaacaa gataaaaatactatccaataacaatacttctgaaaacactttgaaacgagtgagttctctt gctggatttactgactgtcacagaacttccattcctgttcattcaaaacaagcagaaaaa atcagtagaaggccatctaccgaagacactcatgaagtagattccaaagcagctttaa taccggattggttacaagatagaccatcaaacagagaaatgccatctgaagaaggaa cattaaatggtctcacttctccatttaagccagctatggatacaaattactattattcagct gtggaaagaaataacttgatgaggttatcacagagcattccatttacacctgtgcctcc aagaggggagcctgtcacagtgtatcgtttggaagagagttcacccaacatactaaat aacagcatgtcttcttggtcacaactaggcctctgtgccaaaatagagtttttaagcaaa gaggagatgggaggaggtttacgaagagctgtcaaagtacagtgtacctggtcaga acatgatatcctcaaatcagggcatctttatattatcaaatcttttcttccagaggtggtta atacatggtcaagtatttacaaagaagatacagttctgcatctctgtctgagagaaattc aacaacagagagcagcacaaaagcttacgtttgcctttaatcaaatgaaacccaaatc cataccatattctccaaggttccttgaagttttcctgctgtattgccattcagcaggacag tggtttgctgtggaagaatgtatgactggagaatttagaaaatacaacaataataatgg agatgagattattccaactaatactctggaagagatcatgctagcctttagccactgga cttacgaatatacaagaggggagttactggtacttgatttgcaaggtgttggtgaaaatt tgactgacccatctgtgataaaagcagaagaaaagagatcctgtgatatggtttttggc ccagcaaatctaggagaagatgcaattaaaaacttcagagcaaaacatcactgtaatt cttgctgtagaaagcttaaacttccagatctgaagaggaatgattatacgcctgataaa attatatttcctcaggatgagccttcagatttgaatcttcagcctggaaattccaccaaag aatcagaatcaactaattctgttcgtctgatgttataatattaatattactgaatcattggttt tgcctgcacctcacagaaatgttactgtgtcacttttccctcgggaggaaattgtttggta atatagaaaggtgtatgcaagttgaatttgctgactccagcacagttaaaaggtcaatat tcttttgacctgattaatcagtcagaaagtccctataggatagagctggcagctgagaa attttaaaggtaattgataattagtatttataactttttaaagggctctttgtatagcagagg atctcatttgactttgttttgatgagggtgatgctctctcttatgtggtacaataccattaac caaaggtaggtgtccatgcagattttattggcagctgttttattgccattcaactaggga aatgaagaaatcacgcagccttttggttaaatggcagtcaaaattttcctcagtgtattta gtgtgttcagtgatgatatcactggttcccaactagatgcttgttggccacgggaaggg aaatgacttgttctaattctaggttcacagaggtatgagaagcctgaactgaagaccatt ttcaagagggacggtatttatgaatcagggttaggctccatatttaaagatagagccag tttttttttttaaatagaacccaaattgtgtaaaaatgttaattgggttttttaaacattgttttat caagtcactgttaagtagaagaaagccatggtaaactgatacataacctaaattataaa agcagaaacctaactcactcgtcaagggaagttaccttttgaggaaagttaaagtactt ttttccctatctgtatctatagcaacaacccagaacttacaaacttctccaaagattttatt gattgttatatcaaatcagaatgtaaacatgaactcttgcatatatttaaaattgtgttgga acatttgaacatgaatgctgtttgtggtacttaagaaattaattcagttggattatcattatg tgatactggcagattgcagtgcaaccttatgccaataaaatgtaatttaacagccccag atattgttgaatattcaacaataacaagaaaagcttttcatctaagttttatgctttaatttttt ttctttttttttctttttcttttgtttccttggtactaattttaatttttatttggaagggagcagtat aaagcttatttgtatttagtagtgtatctcatagatacagacaaggcaagagatgataag ctgtttaaatagtgtttaatattgattgggggggggagaaagaaaaagtgtattacttaa agatactatatacgttttgtatatcattaaatctttaaaagaaatgaaataaatttattgttta cagatgtttagtgagtttaatcattctgaaaaattatctgacattttcagggtgtcaatttga gtatcagtttttttaaatgaaccatttgtatacctgtgcttttgatctcctgtcctgtacaatg tttaaattaatactgatttcttactgtcttcttagaaatctgttttttgttaggccaaaaaagg gcaatatgggctgtctgttgatttttaattttatattgattattttcacaggattataatagtag ctatacttttttttttttttttttttttgagacggagtctcgctctgttgcttgggctggagtgca gtggtgcgatctcagctcaccacaaccgccgccttccgggtttaagtgattctcctgcc tcagcctcccgagtagctgggactacaggcacacgccaccatgcccagctaattttta tatttttagtagagacagggtttcactatgttggccagtgtggtcacaaactcctgacctt gtgagccaccgcacctggctgctaacacttatttagtgcctactgtgtaccagacatta ctctaagtatttcacatatattaacctacttaatccttataacaatgttataaagaaataggt gttattatcctgttttgcagatttgaaagtcaaggtgctagagaggtaaagtaacgtcca taagattcttacgtttatttaataataagtagcaacggtaggatttgaacccaggctggct gcctttcatctatactgtttttgttttgttttgttttgttttgttttgttttgtttgtcttggtggggc atggtggctcatgcctgtaatcccagcacttcgggaggccaaggcaggtggatcact tgggctcaggagtttgagaccagcctgggcaacatggcaaaatcctatctctgctaaa aaaaaaaatacaaaaattaggccaggtgcagtggctcatgcctgtaatcccagcactt tgggaggccaaggtgggcggatcacaaggtcaggagttcgagaccagcctgacca acatagtgaaaccccgtctctactaaaaatacaaaaaattagctgggcatggcggtga gtgcctgtaatcccagctactcaggagtctgaggcaggagaattgcttgaacctggg aggtggaggttgcagtgagctgagatcgtgccattgcgctccagcctgggcaacagt gcgagactccgtcaaaaaaaaaaaaataactggatgtgatggtgtgcacctgtagttc cagctacttgggagactgaggtgggaggatcacttgagcctgggagactgaggcag cagtgagctgagatcatgccactgctttccaacctgggcaacagagtgagatcctgtc tcagaaagaaaaaaaaaaaaaagacaacctcttgctctgttgcccaggctggagtgt agtagcgtgatcatagctcactgcagccgtaaactcctgggctcaagcaatcctcctg ccactgcctcttgattaggtggaaccacaggcatgcaccaccacacgtacctaatttta tatatatatttttttatttttcatttttatttatttttgtttttttgagttgaagtctcactctgttgcc caggccggagtacagtggcacaatcttggctcactgcaacctctgcctcccaagatc aagcaattctcgtgcttcagcctccaaagtagctgagattacaggtacccaccataatg cctggctgatttttgtatttttcgtagagacaaggtttcaccttgttggccaggctgatctc aaactcctgacctcaagtgatccacctcccccggctacccaaagtactgggattatag gtgtgagccaccatgcctgggtaacacccaactaattttaaatatatattttgtagagat ggggtctagccttgttgcccacgctggtctcaaattcctgggctcaagtgatcctctcg cctgagcttcccaaagtggtagaattgcaggcatgaattgctgcacccagcctcatct gtgctgtgaattatgtgctgtattgactctcaagcatgatgaccattggtggtttctgtac catttcctgttactttactgaaacacacctactccattaacttcttgggttaagtctagaaa gtaacagtttacttgtaaaccacatttcttatccccaataagtatttttttaagattattaaag ttcattattactaccctatgatgtgaaagtgtcatttgcttaatctttttaattttttattctcaa cctcatcttactgaagagaataaaactcttttaccatattcttaaaatgtggaattctcggc caggtgcagtggctcacgcctgtaattccatcactttgggaggccaaggtgggtggat catctgaggtcaggagttcaagaccagcctggccaacatggtgaaaccccgtctcta ctaaaaatacaaaaattatctgggtgtggtggcgcgtgcctgtaggcccagctactca ggaggctgaggcaggagaattgcttgaacccaagaggtggaggttgcagtgagcct agattgctgccactgcactccagcctgggtgacagcagaactctgtctcaaaaaaaa gatgtggaattcttttctgcaaatgttctctaatagtataccttcttcagtctgtcgatatatg tatgctattattttacaagtaatacatgttgattgtattggaaattatagaaaagattatattg gattgtttagaaaatatttttaaatgtgaagaaaaatataaaaattactcccttgttccactt tccccactctcaagtcagactatgttgttttcatagttagtagctagcagtctaccccact agattatatgcttcacagagggaagggaccctcaagacttcactggattgagtagcac ccaataccttgcttgctgcctggtttgtgatgggcatactgtaagaaaaaaaaatctgaa tgacaaaatgtttttccataataccagacttcctcttgaagagatgggtcgtaatgttgta gtcttacatgcttacgtagacaatcaaagcaagaatactcaataaatggctatttaccac ttgaaagaaa (SEQ ID NO: 677) Ppp3cc aaggcggaagggtggggagggcggcgctcggggcgggaggcccggccgggtc NM_001243974 NM_008915 cgctaggacagcggggccgctgggaagttgtgagagcggcgctcgggggcgcgc ttgcgtgcacgagggcccgggccgcgagcagccgcggccgtcccggtcgccacc cttagcagcggtcgcggtcggtgccgaagcggtgttccccgccttagccgctggcg cctcccaagagagcggccggtgggccctcgtcctgtcagtggcgtcggaggccgg cgctgcggtggccgcgcccttctggtgctcggacaccgctgaggagccggggccg ggcacggctggctgacggctccgggcagctaaggctgcccgaggagaaggcggc ggccgcggcgtaggcgcacgtccggcgggctcctggagcctggaggaggccga ggggaccatgtccgggaggcgcttccacctctccaccaccgaccgcgtcatcaaag ctgtcccctttcctccaacccaacggcttactttcaaggaagtatttgagaatgggaaa cctaaagttgatgttttaaaaaaccatttggtaaaggaaggacgactggaagaggaag tagccttaaagataatcaatgatggggctgccatcctgaggcaagagaagactatgat agaagtagatgctccaatcacagtatgtggtgatattcatggacaattctttgacctaat gaagttatttgaagttggaggatcacctagtaacacacgctacctctttctgggtgacta tgtggacagaggctatttcagtatagagtgtgtgctgtatttatggagtttaaagattaat catcccaaaacattgtttctgcttcggggaaatcatgaatgcaggcatcttacagactat ttcaccttcaaacaggaatgtcgaatcaaatattcggaacaggtgtatgatgcctgtatg gagacatttgactgtcttcctcttgctgccctcttaaaccagcagtttctctgtgtacatgg aggaatgtcacctgaaattacttctttagatgacattaggaaattagacaggtttacgga acctcccgcctttggacctgtgtgtgacctgctttggtctgatccctcagaggattatgg caatgagaagaccttggagcactatacccacaacactgtccgagggtgctcttatttct acagttaccctgcagtttgtgaatttttgcagaacaataatttactatcaattatcagagcc catgaagcccaagatgctgggtatcgaatgtacaggaagagccaagccacaggcttt ccatcacttattacaattttctctgcccccaattacctagatgtctataacaataaagctgc tgtgttgaaatatgaaaacaatgtcatgaatatcaggcagtttaactgttctccacaccc ctactggcttccaaactttatggatgttttcacatggtctttgccttttgttggggaaaaag tcacagagatgctggtaaatgtgctcaacatatgctctgatgacgaactgatttctgatg atgaagcagaagatcactacattccaagctatcagaaaggaagcactacagttcgtaa ggagatcatcaggaataagatcagagccattgggaagatggcacgggtcttttcaatt cttcggcaagaaagtgagagtgtgctgactctcaagggcctgactcccacaggcaca ctccctctgggcgtcctctcaggaggcaagcagactatcgagacagccacagtaga agcggtagaggcccgggaagccatcagagggttctcgcttcagcacaagatccgg agttttgaagaagcgcgaggtctggaccgaattaatgagcgaatgccaccccgaaa ggatagcatacacgctggtgggccaatgaaatctgtaacctcagcacactcacatgct gcgcacaggagcgaccaagggaagaaagcccattcatgacttagagtcctgccgtg gctcaggtggatctaaaactcaagaacaaattctatttatttattattggaaaatgaaaag caactcaaaacaacttcaacgtggaggtgcatttataattcagtctgcatttattctgtaa aaaggtggctgttttataaattcttttaatttatgttcaatatatataaaaagtgcatctgtttt gtttttcccttttttctccataattttaagaaatgaatctgattgttgtcaacacatttgtgaag tcttgtgctataaaggggaacttcccctaataaaagggccttggaaacctcaaacctg ggtttctgacttgaaaaaaaaaaaaaaa (SEQ ID NO: 678) - In some aspects, the nucleic acids of the compositions encode the shRNA sequences targeting the sequences provided in Table 2. Table 2 further demonstrates enrichment in tumor versus spleen for the selected shRNA based on deep sequencing analysis (“Enrich Fold”)
-
TABLE 2 Mouse Mouse SEQ Human Gene Gene shRNA shRNA ID Enrich Gene Human Symbol ID Clone ID Target Sequence NO: Fold Symbol Gene ID Akap8l 54194 ND000290 CGAAACCGCAGGCTTATGATG 1 0.5 AKAP8L 26993 Akap8l 54194 ND000285 CAGACTGCTCAGACAACAGTG 2 0.7 AKAP8L 26993 Akap8l 54194 TRCN0000288034 CCACAAGGAACACTTCAAATA 3 1.0 AKAP8L 26993 Akap81 54194 ND000291 AGACCTCTACCGGTCAAGCTA 4 1.1 AKAP8L 26993 Akap8l 54194 ND000286 ATAGAGGCTACGAGAACTATG 5 1.4 AKAP8L 26993 Akap8l 54194 TRCN0000288033 CCAGAACATCATACCCGAGTA 6 1.6 AKAP8L 26993 Akap81 54194 ND000289 TTAGATATGATGCCGCACTTG 7 1.7 AKAP8L 26993 Akap81 54194 TRCN0000088483 CCCACCTGTGATTATGGATAT 8 1.8 AKAP8L 26993 Akap81 54194 ND000288 GGCGAGAATCCTTTCACTGAC 9 1.9 AKAP8L 26993 Akap8l 54194 TRCN0000088486 CGAGAACTATGGTTATGGCTA 10 2.1 AKAP8L 26993 Akap8l 54194 ND000292 CAAATACCGGACCTTCTATGA 11 2.8 AKAP8L 26993 Akap81 54194 TRCN0000307538 GATATCTGAAGGGCGAGAATC 12 3.8 AKAP8L 26993 Akap8l 54194 TRCN0000307539 ACCGGTCAAGCTATGACTATG 13 4.4 AKAP8L 26993 Akap8l 54194 ND000287 TTGGATTTGGCAATGGCATGA 14 7.1 AKAP8L 26993 Akap81 54194 TRCN0000088487 CCGAAACCACTTTGCAGTCTA 15 11.8 AKAP8L 26993 Alk 11682 TRCN0000361004 ACCTAGAGGAGAATCACTTTA 16 0.2 ALK 238 Alk 11682 TRCN0000023725 GCCTTCATGGAAGGGATATTT 17 0.4 ALK 238 Alk 11682 TRCN0000361067 CGGGCCTGTATACCGGATAAT 18 0.7 ALK 238 Alk 11682 TRCN0000361003 GTGGAGCCACCTACGTGTTTA 19 0.9 ALK 238 Alk 11682 ND000299 GGAATCTGACCTGGACGATGA 20 1.0 ALK 238 Alk 11682 ND000293 CTTCGTTGTACCCTCGCTCTT 21 1.1 ALK 238 Alk 11682 ND000298 GAAGGGATATTTACCTCTAAA 22 1.3 ALK 238 Alk 11682 TRCN0000023728 CCGGGATATTGCTGCTAGAAA 23 1.7 ALK 238 Alk 11682 TRCN0000023724 GCATCGCATTGGAGGCTATAA 24 2.1 ALK 238 Alk 11682 ND000297 GGGCCTGTATACCGGATAATG 25 2.4 ALK 238 Alk 11682 TRCN0000023726 CGGAGGATATATAGGTGGCAA 26 2.9 ALK 238 Alk 11682 ND000300 ATCGAATACGGTCCAGTAGTA 27 3.4 ALK 238 Alk 11682 ND000296 TGCTTCCGCGTAGTCAGAAAT 28 3.8 ALK 238 Alk 11682 ND000294 CCTGCGGCAATGTCAACTATG 29 9.4 ALK 238 Alk 11682 TRCN0000023727 CCCGAACGTCAACTATGGTTA 30 9.5 ALK 238 Alk 11682 ND000295 GGCGAGGAGACGATTCTTGAA 31 13.5 ALK 238 Arhgap5 11855 TRCN0000321111 TGGTACATATCCTCGTAAATT 32 0.5 ARHGAP5 394 Arhgap5 11855 TRCN0000360350 ATTGCAATCAGTATATCATTC 33 0.8 ARHGAP5 394 Arhgap5 11855 TRCN0000360421 GATCATGAACGTAACCATAAA 34 1.2 ARHGAP5 394 Arhgap5 11855 TRCN0000360349 TGATAATAGCAGCAACTAAAT 35 1.3 ARHGAP5 394 Arhgap5 11855 TRCN0000321112 AGCATGACTGGAGAGGTTTAA 36 1.4 ARHGAP5 394 Arhgap5 11855 TRCN0000321110 TGATAGTCAGAATCGAATTAT 37 1.4 ARHGAP5 394 Arhgap5 11855 TRCN0000321109 GAACTGGTTCATGGGTATATA 38 1.5 ARHGAP5 394 Arhgap5 11855 TRCN0000012706 GCAAGCTCTAAGAGGAGTATT 39 3.6 ARHGAP5 394 Arhgap5 11855 TRCN0000012707 CCTGATCCTTTGATTCCATAT 40 6.0 ARHGAP5 394 Arhgap5 11855 TRCN0000321181 ACAGATCCTCTTGGTATTATA 41 8.3 ARHGAP5 394 Arhgap5 11855 TRCN0000012703 GCACGATTTAATGTCAACATT 42 15.7 ARHGAP5 394 Blvrb 233016 ND000310 CTCAGTCCCACTACAGTAATG 43 0.8 BLVRB 645 Blvrb 233016 ND000308 TGACCACATCCGGATGCATAA 44 1.0 BLVRB 645 Blvrb 233016 ND000306 GCCTCACCACCAATGAGTATG 45 1.2 BLVRB 645 Blvrb 233016 ND000309 TGAGAAATGACACAAATAGAG 46 1.2 BLVRB 645 Blvrb 233016 ND000303 TGCAAGAGTCAGGGCTGAAAT 47 1.3 BLVRB 645 Blvrb 233016 ND000301 GGAAGCTGTCATCGTGCTACT 48 1.5 BLVRB 645 Blvrb 233016 ND000304 GCATAAGATTCTGCAAGAGTC 49 1.9 BLVRB 645 Blvrb 233016 TRCN0000042385 CCTCAGTCCCACTACAGTAAT 50 2.2 BLVRB 645 Blvrb 233016 ND000302 TCGAGGGTCATATCCAAGCAT 51 2.4 BLVRB 645 Blvrb 233016 TRCN0000324726 GAACATCGTGACAGCCATGAA 52 3.0 BLVRB 645 Blvrb 233016 TRCN0000042384 CCAATGAGTATGACGGACACA 53 3.1 BLVRB 645 Blvrb 233016 ND000307 GAGGGTCATGCATCCTGAGAA 54 3.1 BLVRB 645 Blvrb 233016 ND000305 TAGGAGACCAACCACTAACTG 55 5.3 BLVRB 645 Blvrb 233016 TRCN0000324662 GCTGAAATACGTGGCAGTGAT 56 5.3 BLVRB 645 Blvrb 233016 TRCN0000042386 CGGATGCATAAGATTCTGCAA 57 8.0 BLVRB 645 Cblb 208650 ND000027 TCTACATCGATAGTCTCATGA 58 0.7 CBLB 868 Cblb 208650 TRCN0000244603 CTACACCTCACGATCATATAA 59 0.9 CBLB 868 Cblb 208650 TRCN0000244605 TGAGCGAGAATGAGTACTTTA 60 0.9 CBLB 868 Cblb 208650 ND000026 ATCGAACATCCCAGATTTAGG 61 1.0 CBLB 868 Cblb 208650 ND000029 TAAAGTGTACTGGTCCATTAG 62 1.4 CBLB 868 Cblb 208650 TRCN0000244607 CTTGTACTCCAGTACCATAAT 63 1.5 CBLB 868 Cblb 208650 ND000028 GTATGAGACAGAAGGACTGAG 64 1.5 CBLB 868 Cblb 208650 TRCN0000244604 CCAGATTTAGGCATCTATTTG 65 1.6 CBLB 868 Cblb 208650 ND000031 TCAGCACTTGAGACTTATATT 66 1.7 CBLB 868 Cblb 208650 ND000024 TACACCTCACGATCATATAAA 67 2.1 CBLB 868 Cblb 208650 ND000033 AACACAGACGCCATGATTTGC 68 5.1 CBLB 868 Cblb 208650 ND000032 AAGATGTCAAGATTGAGCCTT 69 5.3 CBLB 868 Cblb 208650 TRCN0000244606 CCCTGATTTAACCGGATTATG 70 6.1 CBLB 868 Cblb 208650 ND000030 AGCCAGGTCCAATTCCATTTC 71 10.0 CBLB 868 Cblb 208650 ND000025 CGAGCGATCCGGCTCTTTAAA 72 10.8 CBLB 868 Cdkn2a 12578 ND000317 CTTGGTGAAGTTCGTGCGATC 73 0.6 CDKN2A 1029 Cdkn2a 12578 TRCN0000257162 CGCTCTGGCTTTCGTGAACAT 74 0.8 CDKN2A 1029 Cdkn2a 12578 TRCN0000362594 GATGATGATGGGCAACGTTCA 75 0.9 CDKN2A 1029 Cdkn2a 12578 TRCN0000231228 TCCCAAGAGCAGAGCTAAATC 76 0.9 CDKN2A 1029 Cdkn2a 12578 TRCN0000362666 TCTTGGTGAAGTTCGTGCGAT 77 1.0 CDKN2A 1029 Cdkn2a 12578 TRCN0000362596 ACGGGCATAGCTTCAGCTCAA 78 1.1 CDKN2A 1029 Cdkn2a 12578 TRCN0000222730 GCTCGGCTGGATGTGCGCGAT 79 1.1 CDKN2A 1029 Cdkn2a 12578 TRCN0000231225 TTGAGGCTAGAGAGGATCTTG 80 1.2 CDKN2A 1029 Cdkn2a 12578 TRCN0000222731 CATCAAGACATCGTGCGATAT 81 2.1 CDKN2A 1029 Cdkn2a 12578 TRCN0000077815 GTGAACATGTTGTTGAGGCTA 82 2.3 CDKN2A 1029 Cdkn2a 12578 TRCN0000077816 GTCTTTGTGTACCGCTGGGAA 83 3.3 CDKN2A 1029 Cdkn2a 12578 TRCN0000362595 CTAGCGATGCTAGCGTGTCTA 84 4.1 CDKN2A 1029 Cdkn2a 12578 TRCN0000222729 GTGATGATGATGGGCAACGTT 85 5.6 CDKN2A 1029 Cdkn2a 12578 TRCN0000231226 GCTCAACTACGGTGCAGATTC 86 6.9 CDKN2A 1029 Cdkn2a 12578 TRCN0000231227 TCAAGACATCGTGCGATATTT 87 7.2 CDKN2A 1029 Dgka 13139 TRCN0000024825 GAGCTAAGTAAGGTGGTATAT 88 0.7 DGKA 1606 Dgka 13139 TRCN0000368765 GCGATGTACTGAAGGTCTTTG 89 0.7 DGKA 1606 Dgka 13139 ND000059 TCAGTGATGTGTACTGCTACT 90 0.8 DGKA 1606 Dgka 13139 ND000054 GTATATCTCGACCGATGGTTC 91 1.0 DGKA 1606 Dgka 13139 TRCN0000378505 TGATGCGAGTGGCCGAATATC 92 1.1 DGKA 1606 Dgka 13139 TRCN0000024828 CCTAGGATTTGAACAATTCAT 93 1.2 DGKA 1606 Dgka 13139 ND000058 AAAGATTCTCAAGGATATAGA 94 1.6 DGKA 1606 Dgka 13139 ND000056 GAGGGATGTTCCATCACCTTC 95 1.9 DGKA 1606 Dgka 13139 ND000053 TACAGACATCCTTACACAACC 96 2.0 DGKA 1606 Dgka 13139 TRCN0000024824 GCCGAATATCTAGACTGGGAT 97 3.4 DGKA 1606 Dgka 13139 TRCN0000024827 CGGCTGGAAGTGGTAGGAATA 98 3.5 DGKA 1606 Dgka 13139 ND000055 GTTCCTCAGTTCCGGATATTG 99 5.0 DGKA 1606 Dgka 13139 TRCN0000024826 CCTGAGCTGTAACTTCTGTAA 100 6.8 DGKA 1606 Dgka 13139 ND000057 TGCGAACAGAGCATTAGCCTT 101 7.8 DGKA 1606 Dgka 13139 TRCN0000361167 TGTTCCTCAGTTCCGGATATT 102 10.2 DGKA 1606 Dgkz 104418 ND000063 CACCTTCCACAGCAAGGAGAT 103 0.4 DGKZ 8525 Dgkz 104418 ND000061 ATCGTGGTGCATACCCAATGC 104 0.4 DGKZ 8525 Dgkz 104418 TRCN0000278613 CCTGGATGTCTTTAACAACTA 105 0.7 DGKZ 8525 Dgkz 104418 ND000060 CGAGTAGTGTGTGACGGAATG 106 0.9 DGKZ 8525 Dgkz 104418 ND000065 CACATCTGGTTTGAGACCAAC 107 1.4 DGKZ 8525 Dgkz 104418 TRCN0000278690 GAGAAGTTCAACAGCCGCTTT 108 1.6 DGKZ 8525 Dgkz 104418 ND000069 ACTGTGCAGGCACCATGCCCT 109 2.0 DGKZ 8525 Dgkz 104418 ND000068 AGAAGCTGTTCAGATCTAGGG 110 2.8 DGKZ 8525 Dgkz 104418 TRCN0000297512 GTGGACTTCAAAGAATTCATT 111 3.6 DGKZ 8525 Dgkz 104418 ND000064 ACTACGAGGCTCTACATTATG 112 5.2 DGKZ 8525 Dgkz 104418 ND000067 AGTACATAATTTGAGGATTCT 113 5.5 DGKZ 8525 Dgkz 104418 TRCN0000278682 CGAGGCTCTACATTATGACAA 114 6.0 DGKZ 8525 Dgkz 104418 TRCN0000278614 CCTGTAAGATCGTGGTGCATA 115 6.4 DGKZ 8525 Dgkz 104418 ND000062 GAAACCGCAGTGCATCGTCTT 116 7.7 DGKZ 8525 Dgkz 104418 ND000066 CAGCATCACGGATTCGAATTG 117 14.0 DGKZ 8525 Egr2 13654 TRCN0000218224 AGGATCCTTCAGCATTCTTAT 118 0.4 EGR2 1959 Egr2 13654 ND000075 AGCTCTGGCTGACACACCAG 119 0.6 EGR2 1959 Egr2 13654 TRCN0000081682 CCAGGATCCTTCAGCATTCTT 120 0.6 EGR2 1959 Egr2 13654 TRCN0000081678 GCTGTATATTTCTGCCTATTA 121 1.3 EGR2 1959 Egr2 13654 TRCN0000235777 ACTATTGTGGCCGCAAGTTTG 122 1.3 EGR2 1959 Egr2 13654 TRCN0000235775 AGCGGGTACTACCGTTTATTT 123 1.6 EGR2 1959 Egr2 13654 TRCN0000235778 CTGTATATTTCTGCCTATTAA 124 2.4 EGR2 1959 Egr2 13654 ND000073 GTGACCACCTTACTACTCACA 125 3.2 EGR2 1959 Egr2 13654 ND000074 GTTTGCCAGGAGTGACGAAAG 126 3.9 EGR2 1959 Egr2 13654 TRCN0000081681 CCTTCACCTACATGGGCAAAT 127 4.0 EGR2 1959 Egr2 13654 TRCN0000081680 CCAGAAGGTATCATCAATATT 128 5.1 EGR2 1959 Egr2 13654 TRCN0000081679 CCACTCTCTACCATCCGTAAT 129 5.2 EGR2 1959 Egr2 13654 ND000072 CCGTGCCAGAGAGATCCACAC 130 5.6 EGR2 1959 Egr2 13654 ND000071 CAATAGGTTGGGAGTTGCTGA 131 8.6 EGR2 1959 Egr2 13654 TRCN0000235776 ACTCTCTACCATCCGTAATTT 132 10.2 EGR2 1959 Eif2ak3 13666 TRCN0000321872 CCATGAGTTCATCTGGAACAA 133 0.4 EIF2AK3 9451 Eif2ak3 13666 ND000328 CATAGCTCCTTCTCCTGAAAG 134 0.9 EIF2AK3 9451 Eif2ak3 13666 ND000332 GATGACTGCAATTACGCTATC 135 1.1 EIF2AK3 9451 Eif2ak3 13666 ND000325 GTCGCCATTTATGTCGGTAGT 136 1.1 EIF2AK3 9451 Eif2ak3 13666 ND000326 TGGAAACAACTACTCCCATAA 137 1.1 EIF2AK3 9451 Eif2ak3 13666 TRCN0000321873 GTGACCCATCTGCACTAATTT 138 1.3 EIF2AK3 9451 Eif2ak3 13666 ND000329 GCATGATGGCAACCATTATGT 139 1.3 EIF2AK3 9451 Eif2ak3 13666 ND000330 ATCCCGATATCTAACAGATTT 140 1.6 EIF2AK3 9451 Eif2ak3 13666 ND000333 TGTCGCCGATGGGATAGTGAT 141 1.9 EIF2AK3 9451 Eif2ak3 13666 TRCN0000321805 GCCACTTTGAACTTCGGTATA 142 2.0 EIF2AK3 9451 Eif2ak3 13666 TRCN0000028759 CCATACGATAACGGTTACTAT 143 4.8 EIF2AK3 9451 Eif2ak3 13666 TRCN0000321806 CCTCTACTGTTCACTCAGAAA 144 5.8 EIF2AK3 9451 Eif2ak3 13666 ND000327 CATACGATAACGGTTACTATC 145 5.9 EIF2AK3 9451 Eif2ak3 13666 ND000331 CGTGACCCATCTGCACTAATT 146 7.3 EIF2AK3 9451 Eif2ak3 13666 TRCN0000028799 GCCTGTTTGATGATACAAGTT 147 13.4 EIF2AK3 9451 Entpd1 12495 ND000082 GAATGTAAGTGAGCTCTATGG 148 0.3 ENTPD1 953 Entpd1 12495 TRCN0000222348 CCGAACTGATACCAACATCCA 149 0.4 ENTPD1 953 Entpd1 12495 TRCN0000222346 CCCATGCTTTAACCCAGGATA 150 0.4 ENTPD1 953 Entpd1 12495 TRCN0000222345 CCTTGGTTTCACCTCTATCTT 151 0.8 ENTPD1 953 Entpd1 12495 TRCN0000222344 CCAAGGACATTCAGGTTTCAA 152 0.9 ENTPD1 953 Entpd1 12495 ND000085 CAGGAACAGAGTTGGCTAAGC 153 1.0 ENTPD1 953 Entpd1 12495 ND000078 TTAACCCAGGATACGAGAAGG 154 1.1 ENTPD1 953 Entpd1 12495 ND000081 ACTATCTCAGCCATGGCTTTG 155 1.2 ENTPD1 953 Entpd1 12495 ND000077 TTCAAGTGGTGGCGTCCTTAA 156 1.3 ENTPD1 953 Entpd1 12495 ND000076 GACTTTGGGCTACATGCTGAA 157 1.4 ENTPD1 953 Entpd1 12495 ND000080 GGCATGCGCTTGCTTAGAATG 158 1.9 ENTPD1 953 Entpd1 12495 ND000084 GCACTGGAGACTACGAACAGT 159 1.9 ENTPD1 953 Entpd1 12495 ND000083 GTGGATTACTATTAACTATCT 160 6.5 ENTPD1 953 Entpd1 12495 TRCN0000222347 GCTCCTGGGAACAGATTCATT 161 7.3 ENTPD1 953 Entpd1 12495 ND000079 ACCATTTGATCAGTTTCGAAT 162 13.3 ENTPD1 953 F11r 16456 TRCN0000284518 GCTGATTCCCAGGACTATATT 163 0.6 F11R 50848 F11r 16456 TRCN0000124868 GTATCGCTGTATAACTATGTA 164 0.6 F11R 50848 F11r 16456 ND000093 ATTGACCTGCACCTACTCT 165 0.6 F11R 50848 F11r 16456 ND000094 GCCGGGAGGAAACTGTTGT 166 0.6 F11R 50848 F11r 16456 TRCN0000271840 CCTGGTTCAAGGACGGGATAT 167 0.7 F11R 50848 F11r 16456 TRCN0000271841 TTCGGTGTACACTGCTCAATC 168 0.7 F11R 50848 F11r 16456 TRCN0000271792 CACCGGGTAAGAAGGTCATTT 169 0.9 F11R 50848 F11r 16456 ND000088 ACTTGCATGGTCTCCGAGGAA 170 0.9 F11R 50848 F11r 16456 ND000086 GTAACACTGATTCTCCTTGGA 171 1.0 F11R 50848 F11r 16456 ND000090 GTTATAACAGCCAGATCACAG 172 1.1 F11R 50848 F11r 16456 ND000092 TAGCTGCACAGGATGCCTTCA 173 1.3 F11R 50848 F11r 16456 ND000087 GGTTTGCCTATAGCCGTGGAT 174 1.9 F11R 50848 F11r 16456 TRCN0000271794 CCTATAGCCGTGGATACTTTG 175 4.3 F11R 50848 F11r 16456 ND000091 CTCCGTTGTCCATTTGCCTTA 176 4.6 F11R 50848 F11r 16456 ND000089 CCACCCTCTGAATATTCCTGG 177 6.8 F11R 50849 Fyn 14360 TRCN0000023383 CATCCCGAACTACAACAACTT 178 0.7 FYN 2534 Fyn 14360 TRCN0000023381 CCTTTGGAAACCCAAGAGGTA 179 0.9 FYN 2534 Fyn 14360 TRCN0000361148 TCTGAGACAGAAGCGTGTTAT 180 1.4 FYN 2534 Fyn 14360 TRCN0000023379 GCTCGGTTGATTGAAGACAAT 181 1.4 FYN 2534 Fyn 14360 TRCN0000361213 TTGACAATGGTGGATACTATA 182 1.9 FYN 2534 Fyn 14360 TRCN0000361149 TCTTCACCTGATTCAACTAAA 183 1.9 FYN 2534 Fyn 14360 TRCN0000023382 GCTCTGAAGTTGCCAAACCTT 184 2.0 FYN 2534 Fyn 14360 TRCN0000361212 CACTGTTTGTGGCGCTTTATG 185 2.3 FYN 2534 Fyn 14360 TRCN0000361152 CATCGAGCGCATGAATTATAT 186 2.9 FYN 2534 Fyn 14360 TRCN0000023380 CCTGTATGGAAGGTTCACAAT 187 6.5 FYN 2534 Fyn 14360 ND000111 TCGATGTTATGTCAAAGGCC 188 0.5 FYN 2534 Fyn 14360 ND000112 ACCACACAAACTTCCTGTAT 189 0.7 FYN 2534 Fyn 14360 ND000115 ACAGCTCCTGTCCTTTGGAAA 190 1.0 FYN 2534 Fyn 14360 ND000113 GCAGCGAAACTGACAGAGGAG 191 4.1 FYN 2534 Fyn 14360 ND000114 ACACTGTTTGTGGCGCTTTAT 192 4.4 FYN 2534 Grk6 26385 ND000356 TGACTACCACAGCCTATGTGA 193 0.5 GRK6 2870 Grk6 26385 TRCN0000022851 CGAGAAACAGATCTTGGAGAA 194 0.6 GRK6 2870 Grk6 26385 ND000355 CTAACCTTGCTTAGCAACTGT 195 0.6 GRK6 2870 Grk6 26385 ND000359 AGGAATGAGCGCTACACGTTC 196 1.0 GRK6 2870 Grk6 26385 TRCN0000022853 TCTTGGAGAAAGTGAACAGTA 197 1.1 GRK6 2870 Grk6 26385 TRCN0000022850 GCGCCTGTTATTTCGTGAGTT 198 1.1 GRK6 2870 Grk6 26385 TRCN0000361581 GAACAGTTCTCTACAGTTAAA 199 1.1 GRK6 2870 Grk6 26385 ND000354 CAGGCTATTTATTGCAAGGAT 200 1.2 GRK6 2870 Grk6 26385 ND000357 GAGCTTAGCCTACGCCTATGA 201 1.3 GRK6 2870 Grk6 26385 TRCN0000022852 GCAAAGGCAAGAGCAAGAAAT 202 1.3 GRK6 2870 Grk6 26385 TRCN0000361580 CCATGGCTCTCAACGAGAAAC 203 2.7 GRK6 2870 Grk6 26385 ND000358 TCTATGCTGCTGAGATCTGCT 204 4.2 GRK6 2870 Grk6 26385 TRCN0000361508 GCCGACTAATGCAGAACTTTC 205 4.5 GRK6 2870 Grk6 26385 ND000360 CGCCTGTTATTTCGTGAGTTC 206 5.8 GRK6 2870 Grk6 26385 TRCN0000022849 CGCCGACTAATGCAGAACTTT 207 11.0 GRK6 2870 Hipk1 15257 ND000371 CTACCTGCAATCACGCTACTA 208 0.3 HIPK1 204851 Hipk1 15257 ND000374 AGCGGAGGGTTCACATGTATG 209 0.4 HIPK1 204851 Hipk1 15257 TRCN0000361231 CAACCAGTACAGCACTATTAT 210 0.4 HIPK1 204851 Hipk1 15257 TRCN0000361237 TACCCTTTCTCTGGCTAATTC 211 0.7 HIPK1 204851 Hipk1 15257 TRCN0000368011 AGCCTGAAGGCGAGGTCTAAT 212 1.1 HIPK1 204851 Hipk1 15257 ND000376 CATTGGCACCCGTACTATCAT 213 1.1 HIPK1 204851 Hipk1 15257 TRCN0000023157 GCTTCAGAATACGATCAGATT 214 1.2 HIPK1 204851 Hipk1 15257 ND000375 GAAGACTCTTAACCACCAATT 215 1.8 HIPK1 204851 Hipk1 15257 TRCN0000361233 ATACGATCAGATTCGCTATAT 216 1.9 HIPK1 204851 Hipk1 15257 ND000372 CTGTCATACATTTGGTCTCTT 217 2.7 HIPK1 204851 Hipk1 15257 ND000377 GCTACTAGCCCTGAGTTCTTA 218 3.4 HIPK1 204851 Hipk1 15257 TRCN0000361232 TATAACTTTGTCCGTTCTTAT 219 4.5 HIPK1 204851 Hipk1 15257 ND000373 CTCGCTGCTAAACTACCAATC 220 6.3 HIPK1 204851 Hipk1 15257 ND000378 GCCAATCATCATTCCAGATAC 221 6.7 HIPK1 204851 Hipk1 15257 TRCN0000023154 CGCTCCAAATACAAGCACAAA 222 12.3 HIPK1 204851 Inpp5b 16330 TRCN0000080903 GCTTAGAGGTTCCTGGATAAA 223 0.5 INPP5B 3633 Inpp5b 16330 TRCN0000080906 CCTTTGGTTCACACACCAGAA 224 0.7 INPP5B 3633 Inpp5b 16330 ND000130 CTGTTAGTGACCTGACGTTGA 225 0.8 INPP5B 3633 Inpp5b 16330 TRCN0000305895 ATATTCTAGCTAGCATATTTG 226 0.8 INPP5B 3633 Inpp5b 16330 TRCN0000311434 GGCCAGAGTTTGACCATATAA 227 1.4 INPP5B 3633 Inpp5b 16330 ND000131 GAGTCCTTCACGATTCATAAT 228 1.4 INPP5B 3633 Inpp5b 16330 TRCN0000080905 CGGATCTCCTATCCATACATT 229 1.5 INPP5B 3633 Inpp5b 16330 ND000128 GTATCGGACAAGGCTCACATT 230 1.6 INPP5B 3633 Inpp5b 16330 ND000129 TTCGAGACACAATCGTGAGAT 231 1.9 INPP5B 3633 Inpp5b 16330 ND000127 CTGTCCAAGCCGCAAACATGT 232 3.1 INPP5B 3633 Inpp5b 16330 ND000133 CTCAAGCTTGTATTCCAACTT 233 4.3 INPP5B 3633 Inpp5b 16330 ND000132 ATATAAGGGACTGTCTAGATA 234 4.6 INPP5B 3633 Inpp5b 16330 TRCN0000080904 CGAGTCCTTCACGATTCATAA 235 6.2 INPP5B 3633 Inpp5b 16330 TRCN0000080907 CCGAGTCCTTCACGATTCATA 236 8.1 INPP5B 3633 Inpp5b 16330 ND000134 CGTCCGACTGGTTGGGATTAT 237 9.5 INPP5B 3633 Ipmk 69718 TRCN0000024840 CCCAGATGGTACAGTTCTGAA 238 0.5 IPMK 253430 Ipmk 69718 ND000384 CGAGGCTCTGTGGGTTCTATA 239 0.5 IPMK 253430 Ipmk 69718 TRCN0000360733 TTGCCGTGCTTCGGAGTATTT 240 0.6 IPMK 253430 Ipmk 69718 TRCN0000360808 GATGCGATTGCCGCCAGTATT 241 0.7 IPMK 253430 Ipmk 69718 TRCN0000024839 CCTAACGAAAGAGACCCTGAA 242 0.8 IPMK 253430 Ipmk 69718 ND000383 ATTGCCGTGCTTCGGAGTATT 243 1.1 IPMK 253430 Ipmk 69718 ND000380 AGCGGAAGTACGGATGATAGA 244 1.3 IPMK 253430 Ipmk 69718 TRCN0000360807 GAGGCTCTGTGGGTTCTATAT 245 1.4 IPMK 253430 Ipmk 69718 ND000379 TGCCCAAATACTACGGCGTCT 246 1.7 IPMK 253430 Ipmk 69718 TRCN0000024843 CGGCAAGGACAAAGTGGGCAT 247 2.9 IPMK 253430 Ipmk 69718 ND000381 CTAGCAACACAGTCGATGAGG 248 3.2 IPMK 253430 Ipmk 69718 TRCN0000360732 ACCAAACGATGTGTACCTAAA 249 4.0 IPMK 253430 lpmk 69718 TRCN0000024841 ACCCTGTATAATGGACGTGAA 250 4.1 IPMK 253430 Ipmk 69718 ND000382 CCTGTATAATGGACGTGAAGA 251 4.7 IPMK 253430 Ipmk 69718 TRCN0000024842 CACCAAACGATGTGTACCTAA 252 6.9 IPMK 253430 Jun 16476 TRCN0000229526 GAACAGGTGGCACAGCTTAAG 253 0.5 JUN 3725 Jun 16476 TRCN0000042693 CGGCTACAGTAACCCTAAGAT 254 0.5 JUN 3725 Jun 16476 TRCN0000055205 CTACGCCAACCTCAGCAACTT 255 0.7 JUN 3725 Jun 16476 TRCN0000055206 CGGTGCCTACGGCTACAGTAA 256 0.8 JUN 3725 Jun 16476 TRCN0000042695 GCTTAAGCAGAAAGTCATGAA 257 0.9 JUN 3725 Jun 16476 TRCN0000360499 AGCGCATGAGGAACCGCATTG 258 0.9 JUN 3725 Jun 16476 TRCN0000360498 CCTATCGACATGGAGTCTCAG 259 0.9 JUN 3725 Jun 16476 TRCN0000042697 GAAGCGCATGAGGAACCGCAT 260 1.0 JUN 3725 Jun 16476 TRCN0000360511 ATTCGATCTCATTCAGTATTA 261 1.1 JUN 3725 Jun 16476 TRCN0000360572 GGATCGCTCGGCTAGAGGAAA 262 1.2 JUN 3725 Jun 16476 TRCN0000055207 GCGGATCAAGGCAGAGAGGAA 263 3.1 JUN 3725 Jun 16476 TRCN0000229528 GGCATGTGCTGTGATCATTTA 264 3.2 JUN 3725 Jun 16476 TRCN0000042694 ACGCAGCAGTTGCAAACGTTT 265 3.3 JUN 3725 Jun 16476 TRCN0000055203 GCGGGCTAACTGCAATAAGAT 266 5.2 JUN 3725 Jun 16476 TRCN0000229525 CAGTAACCCTAAGATCCTAAA 267 5.5 JUN 3725 Jun 16476 TRCN0000229527 GCTAACGCAGCAGTTGCAAAC 268 5.8 JUN 3725 Jun 16476 TRCN0000218856 GAAAGTCATGAACCACGTTAA 269 6.4 JUN 3725 Mast2 17776 TRCN0000225743 AGCAACAACAGGAAGGTATAT 270 0.4 MAST2 23139 Mast2 17776 TRCN0000022896 GCATCCACGAACAAGACCATA 271 0.7 MAST2 23139 Mast2 17776 TRCN0000225741 TTGAGACCAAGCGTCACTTAT 272 1.0 MAST2 23139 Mast2 17776 ND000396 CCGCAAGAGCTTGATTGTAAC 273 1.2 MAST2 23139 Mast2 17776 TRCN0000022898 GCTGGTTCTGAAGAGTGGAAA 274 1.2 MAST2 23139 Mast2 17776 ND000392 GATATTACGGAAGCGGTTATC 275 1.3 MAST2 23139 Mast2 17776 ND000393 ACGAATACCACGGTCCCAAAT 276 1.4 MAST2 23139 Mast2 17776 TRCN0000218393 GTGGAAACAAGGTATCAATTT 277 1.5 MAST2 23139 Mast2 17776 ND000397 GAAGTGTGCTATCCGGGAAAG 278 1.6 MAST2 23139 Mast2 17776 ND000395 GCCTCATTACGTCACACTATT 279 1.6 MAST2 23139 Mast2 17776 TRCN0000022895 CCTCATTACGTCACACTATTT 280 1.9 MAST2 23139 Mast2 17776 TRCN0000225742 ACTTGTATGAGGGTCATATTG 281 4.1 MAST2 23139 Mast2 17776 TRCN0000022897 CGAATGAGAAACCAATCCCTT 282 4.2 MAST2 23139 Mast2 17776 ND000394 GCATCAAACCTGGTTCGAATG 283 4.3 MAST2 23139 Mast2 17776 TRCN0000022894 CCCTGTCAACAAAGTAATCAA 284 5.1 MAST2 23139 Mdfic 16543 TRCN0000237997 GGAGGAAACAGGCAAGATAAA 285 0.2 MDFIC 29969 Mdfic 16543 TRCN0000237994 TGATGCGGGACCAGTCCATTT 286 0.4 MDFIC 29969 Mdfic 16543 ND000148 TGTAATGAGGACAATACGGAG 287 0.4 MDFIC 29969 Mdfic 16543 TRCN0000362432 TCCTGACCCTCTGCAACATTG 288 0.6 MDFIC 29969 Mdfic 16543 TRCN0000237996 TGACATGGACTGCGGCATCAT 289 0.8 MDFIC 29969 Mdfic 16543 TRCN0000095981 CGAAGCATGTAATGAGGACAA 290 1.0 MDFIC 29969 Mdfic 16543 TRCN0000095982 GACATCAGTAAGAAGAGTAAA 291 1.1 MDFIC 29969 Mdfic 16543 TRCN0000237998 TGCCAAGTGACAGGTTATAAA 292 1.1 MDFIC 29969 Mdfic 16543 TRCN0000095983 TGCAACATTGTCCTGGGACAA 293 1.5 MDFIC 29969 Mdfic 16543 TRCN0000237995 ATCGTCAGACTGTCTAGAAAT 294 1.6 MDFIC 29969 Mdfic 16543 TRCN0000095980 CCGTGGAGAATCACAAGATAT 295 2.6 MDFIC 29969 Mdfic 16543 TRCN0000362509 GTTTATCTATTGGAGGTTAAA 296 4.4 MDFIC 29969 Mdfic 16543 ND000147 GAAGAGTAAAGTAAATGCTGT 297 5.1 MDFIC 29969 Mdfic 16543 TRCN0000095979 CGCCGGATGTATGTGGTTTAA 298 7.2 MDFIC 29969 Mdfic 16543 TRCN0000362431 GCCGGATGTATGTGGTTTAAT 299 10.0 MDFIC 29969 Nptxr 73340 TRCN0000219475 CTTGGTCTCTCCCATCATATA 300 0.5 NPTXR 23467 Nptxr 73340 ND000150 ACAGCAACTGGCACCATATCT 301 0.8 NPTXR 23467 Nptxr 73340 TRCN0000219474 GATACCTTGGGAGGCCGATTT 302 0.8 NPTXR 23467 Nptxr 73340 ND000155 GGCCAATGAGATCGTGCTTCT 303 1.0 NPTXR 23467 Nptxr 73340 ND000154 GTAGCCTTTGACCCTCAAATC 304 1.0 NPTXR 23467 Nptxr 73340 ND000152 CAATGGAGCTGCTGATCAACG 305 1.0 NPTXR 23467 Nptxr 73340 TRCN0000219472 GACAGCAACTGGCACCATATC 306 1.1 NPTXR 23467 Nptxr 73340 ND000158 TTGGTCTCTCCCATCATATAC 307 1.3 NPTXR 23467 Nptxr 73340 ND000159 ATACCTTGGGAGGCCGATTTG 308 1.3 NPTXR 23467 Nptxr 73340 ND000153 CCTGTCAGTTTCAGGACTTTG 309 2.0 NPTXR 23467 Nptxr 73340 ND000156 TCCGCAACAACTACATGTACG 310 2.1 NPTXR 23467 Nptxr 73340 ND000157 ATAAGCTGGTAGAGGCCTTTG 311 3.9 NPTXR 23467 Nptxr 73340 ND000149 CGGTGCCGTCATCTGCATCAT 312 6.6 NPTXR 23467 Nptxr 73340 TRCN0000219473 CAAGCCACACGGCATCCTTAT 313 7.0 NPTXR 23467 Nptxr 73340 ND000151 TCAAGCCACACGGCATCCTTA 314 7.2 NPTXR 23467 Nuak2 74137 ND000434 TTGGACTTGCCTGAACGTCTT 315 0.2 NUAK2 81788 Nuak2 74137 TRCN0000361872 TTTGACGGGCAGGATCATAAA 316 0.4 NUAK2 81788 Nuak2 74137 TRCN0000024271 GCCAATGGAAACATCAAGATT 317 0.7 NUAK2 81788 Nuak2 74137 TRCN0000361873 GTGTAGTGACTGCCATTATTT 318 0.7 NUAK2 81788 Nuak2 74137 ND000436 CCAAGGTGTGCAGCTTCTTCA 319 1.6 NUAK2 81788 Nuak2 74137 ND000431 CCTGATCCGGTGGCTGTTAAT 320 1.7 NUAK2 81788 Nuak2 74137 TRCN0000378457 GGGCTCATCAAGTCGCCTAAA 321 1.8 NUAK2 81788 Nuak2 74137 TRCN0000024270 CCGAAAGGCATTCTCAAGAAA 322 2.1 NUAK2 81788 Nuak2 74137 TRCN0000024273 GTCGCCTAAACCTCTGATGAA 323 2.1 NUAK2 81788 Nuak2 74137 TRCN0000024272 CCGAGGCGATCTGTATGATTA 324 2.1 NUAK2 81788 Nuak2 74137 TRCN0000378409 GAAGTCTCGACAGCGTGAATC 325 2.8 NUAK2 81788 Nuak2 74137 ND000435 TCGGACCGCTGTTTGACTTCA 326 2.8 NUAK2 81788 Nuak2 74137 ND000433 TAGCAGCAAGATTGTGATTGT 327 4.5 NUAK2 81788 Nuak2 74137 ND000432 AGTCTCGACAGCGTGAATCTG 328 5.4 NUAK2 81788 Nuak2 74137 TRCN0000024269 CCCAAGGAAAGGCATCCTTAA 329 13.1 NUAK2 81788 Pdzklip1 67182 TRCN0000244507 GATGGCAGATACTCCTCAATG 330 0.4 PDZK1IP1 10158 Pdzklip1 67182 ND000172 GGGAATGGATGGCAGATACTC 331 0.5 PDZK1IP1 10158 Pdzklip1 67182 ND000176 CTCCCTCACCTCTCTAGAATC 332 0.6 PDZK1IP1 10158 Pdzklip1 67182 ND000170 TGCAATCGTCTTCGCCGTCAA 333 0.8 PDZK1IP1 10158 Pdzklip1 67182 ND000173 CATTGCTGTCGCTGTGTTCTT 334 1.2 PDZK1IP1 10158 Pdzklip1 67182 TRCN0000244505 ACAAGAATGCCTACGAGAATG 335 1.7 PDZK1IP1 10158 Pdzklip1 67182 ND000174 TTCTTGGTCCTTGTTGCAATC 336 2.0 PDZK1IP1 10158 Pdzklip1 67182 TRCN0000244509 GGAGCACAGTGATGATCATTG 337 2.5 PDZK1IP1 10158 Pdzklip1 67182 ND000171 ACTGCTCTACAGGAATCTACT 338 2.5 PDZK1IP1 10158 Pdzklip1 67182 ND000175 CTGTCAACAAGGTCTAGGAAA 339 4.8 PDZK1IP1 10158 Pdzklip1 67182 TRCN0000244508 CCTCATTGCTGTCGCTGTGTT 340 6.3 PDZK1IP1 10158 Pdzklip1 67182 TRCN0000244506 TCTACAGGAATCTACTGAAAC 341 12.9 PDZK1IP1 10158 Pkd1 18763 ND000445 CAAGTCCTATGACCCTAATTT 342 0.5 PKD1 5310 Pkd1 18763 TRCN0000304664 GGTGGACACCACTCAGTATTA 343 0.8 PKD1 5310 Pkd1 18763 TRCN0000072086 CCAACTCAACATCACCGTAAA 344 0.8 PKD1 5310 Pkd1 18763 TRCN0000304612 ACACAATACCACGCATATTTA 345 0.9 PKD1 5310 Pkd1 18763 ND000447 GGCCGCTTCAAATATGAAATA 346 1.2 PKD1 5310 Pkd1 18763 ND000444 TTCACTAGGAGTGGCATATTC 347 1.3 PKD1 5310 Pkd1 18763 ND000442 CATCTATAAGGGTAGTCTTTC 348 1.4 PKD1 5310 Pkd1 18763 ND000441 GTTATTACCTCTCTTGTTTCT 349 1.8 PKD1 5310 Pkd1 18763 ND000446 GTAGTCTACCCTGTCTATTTG 350 2.9 PKD1 5310 Pkd1 18763 TRCN0000072084 GCCCTGTACCTTTCAACCAAT 351 4.9 PKD1 5310 Pkd1 18763 ND000443 CATGTCATCGAGTACTCTTTA 352 6.2 PKD1 5310 Pkd1 18763 TRCN0000304611 CAACTGATGGTGTCCTATATA 353 7.7 PKD1 5310 Pkd1 18763 TRCN0000072085 CCATCATTGAAGGTGGCTCAT 354 8.9 PKD1 5310 Pkd1 18763 TRCN0000072087 GCTTCACTACTCTTCCTGCTT 355 9.9 PKD1 5310 Pkd1 18763 TRCN0000331808 CGCTCGCACTTTCAGCAATAA 356 47.6 PKD1 5310 Ppm1g 14208 TRCN0000326875 GAGGATGATAAAGACAAAGTA 357 0.3 PPM1G 5496 Ppm1g 14208 TRCN0000326874 GCTTTCCTCAGCCCATTACAA 358 0.5 PPM1G 5496 Ppm1g 14208 ND000458 GAGATGATGGTCCCTGGAATG 359 0.8 PPM1G 5496 Ppm1g 14208 TRCN0000375841 TGACCACAGAGGAAGTCATTA 360 1.1 PPM1G 5496 Ppm1g 14208 TRCN0000081212 GATGCCTTCTTGGCTATTGAT 361 1.1 PPM1G 5496 Ppm1g 14208 TRCN0000306418 CCATGGATGGACGAGTCAATG 362 1.2 PPM1G 5496 Ppm1g 14208 ND000460 TGACGCGATATGGGCAGAACT 363 1.2 PPM1G 5496 Ppm1g 14208 ND000464 GCTACCATGACTATTGAAGAG 364 1.3 PPM1G 5496 Ppm1g 14208 ND000462 TGGCAAAGCTTTAGATATGTC 365 2.1 PPM1G 5496 Ppm1g 14208 ND000465 CATGGATGGACGAGTCAATGG 366 2.9 PPM1G 5496 Ppm1g 14208 TRCN0000081210 CTTCGGTTATTGTCATCCATT 367 3.0 PPM1G 5496 Ppm1g 14208 ND000459 TGCCTGTGCTCTGTTGTGTTG 368 3.6 PPM1G 5496 Ppm1g 14208 ND000461 CAAATTAGTGAGCCCGGTACT 369 6.2 PPM1G 5496 Ppm1g 14208 TRCN0000081209 GCCTTGTACTGTGCCAAATAT 370 7.1 PPM1G 5496 Ppm1g 14208 ND000463 CATGACGTGCATCATCATTTG 371 8.5 PPM1G 5496 Ppp2r2d 52432 ND000490 ACTTCGAGACCCATTTAGAAT 372 0.7 PPP2R2D 55844 Ppp2r2d 52432 ND000488 CAGAAGATCCCAGCAGTAGAT 373 0.9 PPP2R2D 55844 Ppp2r2d 52432 TRCN0000080899 GCCACCAATAACTTGTATATA 374 1.0 PPP2R2D 55844 Ppp2r2d 52432 TRCN0000430828 ATAGTGATCATGAAACATATC 375 1.3 PPP2R2D 55844 Ppp2r2d 52432 ND000487 ATATGTACGCCGGTCAATTAG 376 1.4 PPP2R2D 55844 Ppp2r2d 52432 TRCN0000425449 ATGCTCATACATATCACATAA 377 1.5 PPP2R2D 55844 Ppp2r2d 52432 TRCN0000427220 TCATCTCCACCGTTGAGTTTA 378 1.6 PPP2R2D 55844 Ppp2r2d 52432 ND000491 GATCTGAGAATTAACCTATGG 379 1.7 PPP2R2D 55844 Ppp2r2d 52432 TRCN0000080901 CCATTTAGAATTACGGCACTA 380 1.9 PPP2R2D 55844 Ppp2r2d 52432 TRCN0000080902 CGGTTCAGACAGTGCCATTAT 381 2.0 PPP2R2D 55844 Ppp2r2d 52432 ND000489 CACCGTTGAGTTTAACTACTC 382 4.0 PPP2R2D 55844 Ppp2r2d 52432 ND000486 GCTCAATAAAGGCCATTACTC 383 4.9 PPP2R2D 55844 Ppp2r2d 52432 TRCN0000431278 GAGAATTAACCTATGGCATTT 384 8.3 PPP2R2D 55844 Ppp2r2d 52432 ND000492 CCACAGTGGTCGATACATGAT 385 16.3 PPP2R2D 55844 Ppp2r2d 52432 TRCN0000080900 CCCACATCAGTGCAATGTATT 386 17.2 PPP2R2D 55844 Ppp3cc 19057 ND000512 CCCGAGGTCTAGACCGAATTA 387 0.1 PPP3CC 5533 Ppp3cc 19057 ND000510 TCACAGTGTGTGGTGATGTTC 388 0.4 PPP3CC 5533 Ppp3cc 19057 TRCN0000012695 GCTGTATCTATGGAGCTTAAA 389 0.4 PPP3CC 5533 Ppp3cc 19057 TRCN0000012693 CCTATGAGCAAATCACATTTA 390 0.4 PPP3CC 5533 Ppp3cc 19057 ND000511 AGGAATGTCGGATCAAGTATT 391 0.7 PPP3CC 5533 Ppp3cc 19057 TRCN0000012694 CGGCTAACTTTGAAGGAAGTT 392 0.9 PPP3CC 5533 Ppp3cc 19057 TRCN0000012696 CGGATGAAGAAATGAACGTAA 393 1.2 PPP3CC 5533 Ppp3cc 19057 ND000508 ACCTAGTAATACTCGCTACCT 394 1.4 PPP3CC 5533 Ppp3cc 19057 ND000513 CTGTATCTATGGAGCTTAAAG 395 1.6 PPP3CC 5533 Ppp3cc 19057 ND000515 AGAAATGAACGTAACCGATGA 396 1.8 PPP3CC 5533 Ppp3cc 19057 ND000514 CAAACAACTTAAACTTGGAGG 397 2.4 PPP3CC 5533 Ppp3cc 19057 ND000507 TGTAATTCAGTCGCATTTATT 398 2.6 PPP3CC 5533 Ppp3cc 19057 ND000506 GGACAATTCTTTGACCTGATG 399 4.2 PPP3CC 5533 Ppp3cc 19057 TRCN0000012697 CGAGGTCTAGACCGAATTAAT 400 4.3 PPP3CC 5533 Ppp3cc 19057 ND000509 TTCCGTCACTTATTACGATTT 401 4.4 PPP3CC 5533 Prkab2 108097 ND000529 CTGTGGTTACCAGTCAGCTTG 402 0.2 PRKAB2 5565 Prkab2 108097 TRCN0000025112 GTATGTCACCACGCTGCTGTA 403 0.4 PRKAB2 5565 Prkab2 108097 ND000527 CCCTCACCTACTCCAAGTTAT 404 0.7 PRKAB2 5565 Prkab2 108097 TRCN0000361908 TATGAGTTCACGGAGTTTATT 405 0.7 PRKAB2 5565 Prkab2 108097 TRCN0000025111 CGCAACCCATCGCTACAAGAA 406 0.8 PRKAB2 5565 Prkab2 108097 TRCN0000025109 CATCGCTACAAGAAGAAGTAT 407 0.9 PRKAB2 5565 Prkab2 108097 ND000528 CAATTGGAGCACCAAGATCCC 408 1.1 PRKAB2 5565 Prkab2 108097 ND000530 AGTGGGTTCATGATCCGTCAG 409 1.1 PRKAB2 5565 Prkab2 108097 ND000526 ACCGTTATCCGCTGGTCTGAA 410 1.8 PRKAB2 5565 Prkab2 108097 TRCN0000361952 GATCTGAGGAGAGATTCAAAT 411 2.0 PRKAB2 5565 Prkab2 108097 TRCN0000361953 CTTAACAAGGACACGAATATT 412 2.3 PRKAB2 5565 Prkab2 108097 TRCN0000361910 CTCTGATAAAGAGTCATAATG 413 2.6 PRKAB2 5565 Prkab2 108097 TRCN0000025110 CGCTGCTGTATAAGCCCATCT 414 4.1 PRKAB2 5565 Prkab2 108097 ND000525 CTTACGGTCAAGAAATGTATG 415 4.8 PRKAB2 5565 Prkab2 108097 TRCN0000025113 CATTAAGGACAGTGTGATGGT 416 7.0 PRKAB2 5565 Ptpn2 19255 ND000532 TCCGAACACATGCTGCCATTT 417 0.5 PTPN2 5771 Ptpn2 19255 TRCN0000029891 GCCAAGATTGACAGACACCTA 418 1.0 PTPN2 5771 Ptpn2 19255 TRCN0000279253 AGACTATTCTGCAGCTATAAA 419 1.0 PTPN2 5771 Ptpn2 19255 TRCN0000029893 CCGTTATACTTGGAAATTCGA 420 1.0 PTPN2 5771 Ptpn2 19255 TRCN0000279254 AGTATCGAATGGGACTTATTC 421 1.2 PTPN2 5771 Ptpn2 19255 ND000534 TTATATTAATGCCAGCTTAGT 422 1.4 PTPN2 5771 Ptpn2 19255 ND000531 ATGTTCATGACTTGAGACTAT 423 1.7 PTPN2 5771 Ptpn2 19255 TRCN0000279329 ATATGATCACAGTCGTGTTAA 424 2.2 PTPN2 5771 Ptpn2 19255 TRCN0000279252 CGGTGGAAAGAACTTTCTAAA 425 2.2 PTPN2 5771 Ptpn2 19255 ND000533 CCATATCTCACTTCCATTATA 426 4.7 PTPN2 5771 Ptpn2 19255 TRCN0000279330 TCTCCTACATGGCCATAATAG 427 5.0 PTPN2 5771 Ptpn2 19255 TRCN0000029890 CGGTGGAAAGAACTTTCTAAA 428 5.1 PTPN2 5771 Ptpn2 19255 ND000535 TATCGAATGGGACTTATTCAG 429 5.5 PTPN2 5771 Ptpn2 19255 TRCN0000029892 CCTGTCTTGTTCTGATGGAAA 430 7.4 PTPN2 5771 Rbks 71336 ND000536 TCGCTGCAGTCAGTGTACAGG 431 0.4 RBKS 611132 Rbks 71336 ND000543 GGCCTTCTACCTGGCTTACTA 432 0.6 RBKS 611132 Rbks 71336 ND000537 CTGCAATGATTCTCCTAGAAC 433 0.9 RBKS 611132 Rbks 71336 ND000544 AGTGGTGGGTTCCTGCATGAC 434 0.9 RBKS 611132 Rbks 71336 ND000539 ATATGCCAGCTAGAAATAAGC 435 1.1 RBKS 611132 Rbks 71336 TRCN0000078936 GTGATGATATGCCAGCTAGAA 436 1.2 RBKS 611132 Rbks 71336 ND000538 CATATTTCTACAGAGTTTACA 437 1.7 RBKS 611132 Rbks 71336 TRCN0000078934 TCAATAATGAAGGCCAGAATA 438 1.9 RBKS 611132 Rbks 71336 ND000545 GCTGCCAGGTTGTGGTCATCA 439 2.7 RBKS 611132 Rbks 71336 TRCN0000078937 TGATGATATGCCAGCTAGAAA 440 4.0 RBKS 611132 Rbks 71336 ND000541 CAAGGTTGGCAACGATTCTTT 441 4.1 RBKS 611132 Rbks 71336 ND000542 GAGCCTGTTCCAAAGCACATT 442 5.0 RBKS 611132 Rbks 71336 TRCN0000078935 CCAAAGCACATTCCCACTGAA 443 5.7 RBKS 611132 Rbks 71336 ND000540 CATTAGCCGAGCCAAAGTGAT 444 12.8 RBKS 611132 Rbks 71336 TRCN0000078933 GCCTCCATAATTGTCAATAAT 445 13.9 RBKS 611132 Rock1 19877 ND000568 CATACTGTTAGTCGGCTTGAA 446 0.6 ROCK1 6093 Rock1 19877 ND000567 ATGACATGCAAGCGCAATTGG 447 0.7 ROCK1 6093 Rock1 19877 ND000565 GCCTACAGGTAGATTAGATTA 448 0.9 ROCK1 6093 Rock1 19877 ND000569 AGTTCAATTGGTGAGGCATAA 449 1.0 ROCK1 6093 Rock1 19877 TRCN0000361452 CTAGCAAAGAGAGTGATATTG 450 1.2 ROCK1 6093 Rock1 19877 TRCN0000022901 CCTGGTTTATGATTTGGATTT 451 1.6 ROCK1 6093 Rock1 19877 TRCN0000022900 CGGGAGTTACAAGATCAACTT 452 1.7 ROCK1 6093 Rock1 19877 TRCN0000022902 CCGTGCAAAGTAAGTTACGAT 453 1.8 ROCK1 6093 Rock1 19877 TRCN0000022899 GCAGAAATAATGAATCGCAAA 454 2.0 ROCK1 6093 Rock1 19877 ND000566 ATCAAGATCAGATCGTGGAAG 455 2.2 ROCK1 6093 Rock1 19877 TRCN0000361453 TTCAATTGGTGAGGCATAAAT 456 2.3 ROCK1 6093 Rock1 19877 TRCN0000022903 GCAGTGTCTCAAATTGAGAAA 457 4.1 ROCK1 6093 Rock1 19877 TRCN0000361455 TGTGGGATGCTACCTGATAAA 458 4.4 ROCK1 6093 Rock1 19877 TRCN0000361522 CTACAGGTAGATTAGATTAAT 459 5.6 ROCK1 6093 Rock1 19877 TRCN0000361521 CAACTTTCTAAGCAGATATAA 460 6.5 ROCK1 6093 Sbf1 77980 ND000571 CAGTATGTTACTCGTAAGAAG 461 0.2 SBF1 6305 Sbf1 77980 TRCN0000081099 GCAGTATGTTACTCGTAAGAA 462 0.4 SBF1 6305 Sbf1 77980 ND000575 TGCTAAGTIGTTTCTAGAACC 463 0.8 SBF1 6305 Sbf1 77980 ND000570 CGATACTATGACCACCGAATG 464 0.8 SBF1 6305 Sbf1 77980 TRCN0000081101 CGAGAGGAATCCACCAACTTT 465 0.9 SBF1 6305 Sbf1 77980 TRCN0000081102 GCGATACTATGACCACCGAAT 466 1.5 SBF1 6305 Sbf1 77980 ND000578 CTAACTTATTGTGGTGTCATG 467 1.5 SBF1 6305 Sbf1 77980 ND000574 TCTTGCTGGACTCTGATTATG 468 1.6 SBF1 6305 Sbf1 77980 ND000572 GGCTAGATGAGGGCACAATTC 469 2.2 SBF1 6305 Sbf1 77980 ND000573 GAAGACAACACGTCGCGTTTA 470 3.1 SBF1 6305 Sbf1 77980 ND000577 TACGGAATTGCATCTCCTATG 471 3.2 SBF1 6305 Sbf1 77980 TRCN0000081098 CACGCGGACATCTATGACAAA 472 4.8 SBF1 6305 Sbf1 77980 ND000579 TTACCACATACCGCGTCATCT 473 5.6 SBF1 6305 Sbf1 77980 TRCN0000081100 CCCTACAGCAATGTGTCCAAT 474 6.0 SBF1 6305 Sbf1 77980 ND000576 GACTTTGTCGTCCGCATGATG 475 6.9 SBF1 6305 Smad2 17126 ND000208 AGATCAGTGGGACACAACAGG 476 0.4 SMAD2 4087 Smad2 17126 TRCN0000089336 TGGTGTTCAATCGCATACTAT 477 1.0 SMAD2 4087 Smad2 17126 ND000205 GTAATTACATCCCAGAAACAC 478 1.1 SMAD2 4087 Smad2 17126 TRCN0000089334 CGGTTAGATGAGCTTGAGAAA 479 1.2 SMAD2 4087 Smad2 17126 TRCN0000089333 CCAGTAGTAGTGCCTGAAGTA 480 1.2 SMAD2 4087 Smad2 17126 ND000207 TAACCCGAATGTGCACCATAA 481 1.2 SMAD2 4087 Smad2 17126 ND000199 CCCAACTGTAACCAGAGATAC 482 1.4 SMAD2 4087 Smad2 17126 TRCN0000089335 CCACTGTAGAAATGACAAGAA 483 1.5 SMAD2 4087 Smad2 17126 ND000200 CCTCCGTCGTAGTATTCATGT 484 1.9 SMAD2 4087 Smad2 17126 ND000201 GCCAGTGGTGAAGAGACTTCT 485 1.9 SMAD2 4087 Smad2 17126 ND000203 CTCGGCACACGGAGATTCTAA 486 6.7 SMAD2 4087 Smad2 17126 ND000204 GACAGTATCCCAAAGGTTATT 487 7.1 SMAD2 4087 Smad2 17126 ND000202 GAGTGCGCTTGTATTACATAG 488 7.1 SMAD2 4087 Smad2 17126 TRCN0000089337 CTAAGTGATAGTGCAATCTTT 489 19.3 SMAD2 4087 Smad2 17126 ND000206 TGCCTAAGTGATAGTGCAATC 490 30.3 SMAD2 4087 Socs1 12703 ND000214 TTTCGAGCTGCTGGAGCACTA 491 0.6 SOCS1 8651 Socs1 12703 ND000219 TCGAGCTGCTGGAGCACTACG 492 1.2 SOCS1 8651 Socs1 12703 TRCN0000231240 TCGCCAACGGAACTGCTTCTT 493 1.4 SOCS1 8651 Socs1 12703 ND000218 ACTTCTGGCTGGAGACCTCAT 494 1.5 SOCS1 8651 Socs1 12703 TRCN0000067420 GCGAGACCTTCGACTGCCTTT 495 1.7 SOCS1 8651 Socs1 12703 TRCN0000067418 CGACACTCACTTCCGCACCTT 496 1.8 SOCS1 8651 Socs1 12703 ND000220 CTACCTGAGTTCCTTCCCCTT 497 1.8 SOCS1 8651 Socs1 12703 TRCN0000231238 TTCCGCTCCCACTCCGATTAC 498 1.8 SOCS1 8651 Socs1 12703 TRCN0000231241 TAACCCGGTACTCCGTGACTA 499 1.9 SOCS1 8651 Socs1 12703 ND000216 TACTCCGTGACTACCTGAGTT 500 2.4 SOCS1 8651 Socs1 12703 ND000211 CTTCCGCTCCCACTCCGATTA 501 2.6 SOCS1 8651 Socs1 12703 TRCN0000067422 GCGCGACAGTCGCCAACGGAA 502 2.7 SOCS1 8651 Socs1 12703 TRCN0000231239 TGGACGCCTGCGGCTTCTATT 503 2.9 SOCS1 8651 Socs1 12703 TRCN0000067419 CGCATCCCTCTTAACCCGGTA 504 3.4 SOCS1 8651 Socs1 12703 ND000212 TACATATTCCCAGTATCTTTG 505 3.6 SOCS1 8651 Socs1 12703 TRCN0000231242 GCGCCTTATTATTTCTTATTA 506 4.1 SOCS1 8651 Socs1 12703 TRCN0000067421 CCGTGACTACCTGAGTTCCTT 507 5.8 SOCS1 8651 Socs1 12703 ND000215 GGAGGGTCTCTGGCTTCATTT 508 7.8 SOCS1 8651 Socs1 12703 ND000213 TTCGCGCTCAGCGTGAAGATG 509 8.4 SOCS1 8651 Socs1 12703 ND000217 ATCCCTCTTAACCCGGTACTC 510 8.5 SOCS1 8651 Socs3 12702 ND000222 CGAGAAGATTCCGCTGGTACT 511 0.3 SOCS3 9021 Socs3 12702 TRCN0000067472 GCTGCAGGAGAGCGGATTCTA 512 0.4 SOCS3 9021 Socs3 12702 TRCN0000231180 GGCTAGGAGACTCGCCTTAAA 513 0.7 SOCS3 9021 Socs3 12702 TRCN0000067468 GCTAGGAGACTCGCCTTAAAT 514 0.8 SOCS3 9021 Socs3 12702 ND000227 GAGAGCTTACTACATCTATTC 515 0.9 SOCS3 9021 Socs3 12702 ND000221 GGGAGTTCCTGGATCAGTATG 516 1.0 SOCS3 9021 Socs3 12702 TRCN0000067470 CAAGAGAGCTTACTACATCTA 517 1.1 SOCS3 9021 Socs3 12702 TRCN0000231179 CAGTATGATGCTCCACTTTAA 518 1.2 SOCS3 9021 Socs3 12702 ND000223 CAAGCTGGTGCACCACTACAT 519 1.3 SOCS3 9021 Socs3 12702 ND000224 ACCTGGACTCCTATGAGAAAG 520 1.4 SOCS3 9021 Socs3 12702 TRCN0000067471 CTTCTTCACGTTGAGCGTCAA 521 1.6 SOCS3 9021 Socs3 12702 ND000228 TCGGGAGTTCCTGGATCAGTA 522 1.7 SOCS3 9021 Socs3 12702 ND000226 TGCAGGAGAGCGGATTCTACT 523 1.9 SOCS3 9021 Socs3 12702 ND000225 CCTGGTGGGACAATACCTTTG 524 3.3 SOCS3 9021 Socs3 12702 TRCN0000067469 GATCAGTATGATGCTCCACTT 525 4.6 SOCS3 9021 Socs3 12702 TRCN0000231176 TCTTCACGTTGAGCGTCAAGA 526 4.7 SOCS3 9021 Socs3 12702 TRCN0000231177 CGCTTCGACTGTGTACTCAAG 527 4.9 SOCS3 9021 Socs3 12702 ND000229 GGAGCAAAAGGGTCAGAGGGG 528 5.3 SOCS3 9021 Stk17b 98267 ND000590 AGTGGGACTTTGGAAGCTTGT 529 0.3 STK17B 9262 Stk17b 98267 ND000597 CATCTGGACTGACTCGGAAAT 530 0.5 STK17B 9262 Stk17b 98267 ND000596 ATGCTGCGGGTGGAGAAATTT 531 0.6 STK17B 9262 Stk17b 98267 ND000588 TATCTGAATATTTCTCAAGTG 532 0.6 STK17B 9262 Stk17b 98267 ND000593 TTTACCTGAGTTAGCCGAAAT 533 0.7 STK17B 9262 Stk17b 98267 ND000589 GTTAACTCATACATCACCATT 534 1.1 STK17B 9262 Stk17b 98267 ND000594 CCTATACCATAACTCTATTAC 535 1.3 STK17B 9262 Stk17b 98267 ND000592 CTCAACTATGATCCCATTACC 536 1.3 STK17B 9262 Stk17b 98267 ND000591 AGACCTCCAAGTCCTCCTGTA 537 1.4 STK17B 9262 Stk17b 98267 TRCN0000024255 GCTGTGGTTAGACAATGTATA 538 1.6 STK17B 9262 Stk17b 98267 ND000595 TATTGGCATAATAGCGTATAT 539 3.6 STK17B 9262 Stk17b 98267 TRCN0000024256 GCTTGTTTCATCCTGAGGAAA 540 4.0 STK17B 9262 Stk17b 98267 TRCN0000024258 TCCTCAACTATGATCCCATTA 541 4.2 STK17B 9262 Stk17b 98267 TRCN0000024254 GCAGAAGCTAAGGACGAATTT 542 4.4 STK17B 9262 Stk17b 98267 TRCN0000024257 CAGAATAACATTGTTCACCTT 543 6.4 STK17B 9262 Tnk1 83813 ND000599 TGCCCAGCGCAGACTTAATGA 544 0.3 TNK1 8711 Tnk1 83813 TRCN0000023704 CGTGACACTCTGGGAAATGTT 545 0.6 TNK1 8711 Tnk1 83813 ND000602 GTGTCCCACCATATCTCATCC 546 0.7 TNK1 8711 Tnk1 83813 ND000600 AGTAGCAATACCGGATCACTG 547 0.7 TNK1 8711 Tnk1 83813 TRCN0000023706 GCGGGAAGTATCTGTCATGAT 548 0.8 TNK1 8711 Tnk1 83813 ND000603 AGAGGATGCGAGGCATTTCCA 549 1.1 TNK1 8711 Tnk1 83813 ND000601 GGACAGAGAGAAGGCAACGTT 550 1.1 TNK1 8711 Tnk1 83813 TRCN0000361891 AGAATTGGGTGTACAAGATAC 551 1.3 TNK1 8711 Tnk1 83813 TRCN0000023707 CCACCTATTATCTGCAACTCT 552 1.6 TNK1 8711 Tnk1 83813 TRCN0000023705 GCCTCTGATGTGTGGATGTTT 553 1.7 TNK1 8711 Tnk1 83813 TRCN0000361890 TGCAGAGGATGCGAGGCATTT 554 1.8 TNK1 8711 Tnk1 83813 TRCN0000361889 TGGCGTGACACTCTGGGAAAT 555 2.0 TNK1 8711 Tnk1 83813 TRCN0000023708 CAGACTTAATGAAGCCCTGAA 556 5.2 TNK1 8711 Tnk1 83813 TRCN0000361892 GTGTTGTACATCGAGGGTTAT 557 5.2 TNK1 8711 Tnk1 83813 ND000598 CCAGAACTTCGGCGTACAAGA 558 7.6 TNK1 8711 Trpm7 58800 ND000607 GAAGTATCAGCGGTATCATTT 559 0.4 TRPM7 54822 Trpm7 58800 TRCN0000274774 ATGGATTGTTATCGCTTATAT 560 0.7 TRPM7 54822 Trpm7 58800 ND000606 GCTTGGAAAGGGTCTTATTAA 561 0.9 TRPM7 54822 Trpm7 58800 ND000608 ATTGAATCCCTTGAGCAAATT 562 0.9 TRPM7 54822 Trpm7 58800 TRCN0000274712 CCTTATCAAACCCTATTGAAT 563 1.1 TRPM7 54822 Trpm7 58800 TRCN0000274773 CCAAAGATCAAGAACCCATTT 564 1.2 TRPM7 54822 Trpm7 58800 ND000604 TAGAGGTAATGTTCTCATTGA 565 1.2 TRPM7 54822 Trpm7 58800 ND000610 ACCGGATTGGTTACGAGATAG 566 1.5 TRPM7 54822 Trpm7 58800 TRCN0000274772 ACCTGGTGCAGGACCATTAAC 567 1.7 TRPM7 54822 Trpm7 58800 ND000605 TAGACTTTCTAGCCGTAAATC 568 2.9 TRPM7 54822 Trpm7 58800 TRCN0000274711 CTAGACTTTCTAGCCGTAAAT 569 3.1 TRPM7 54822 Trpm7 58800 TRCN0000023957 CCTCAGGATGAGTCATCAGAT 570 3.5 TRPM7 54822 Trpm7 58800 TRCN0000023956 CCTGGTATAAGGTCATATTAA 571 4.9 TRPM7 54822 Trpm7 58800 TRCN0000023955 GCTCAGAATCTTATTGATGAT 572 5.3 TRPM7 54822 Trpm7 58800 ND000609 GCCCTAACAGTAGATACATTG 573 5.9 TRPM7 54822 Vamp7 20955 TRCN0000115068 CTTACTCACATGGCAATTATT 574 0.6 VAMP7 6845 Vamp7 20955 TRCN0000380436 GCACAACTGAAGCATCACTCT 575 0.8 VAMP7 6845 Vamp7 20955 TRCN0000336075 GCACAAGTGGATGAACTGAAA 576 0.9 VAMP7 6845 Vamp7 20955 TRCN0000336077 TTACGGTTCAAGAGCACAAAC 577 1.0 VAMP7 6845 Vamp7 20955 TRCN0000380733 TAAGAGCCTAGACAAAGTGAT 578 1.0 VAMP7 6845 Vamp7 20955 ND000255 AGCCATGTGTATGAAGAATAT 579 1.2 VAMP7 6845 Vamp7 20955 ND000258 TCCAGGAGCCCATACAAGTAA 580 1.4 VAMP7 6845 Vamp7 20955 ND000256 ATAAACTAACTTACTCACATG 581 1.5 VAMP7 6845 Vamp7 20955 TRCN0000336014 GCCGCCACATTTCGTTGTAAA 582 1.8 VAMP7 6845 Vamp7 20955 TRCN0000353419 GCACTTCCTTATGCTATGAAT 583 1.9 VAMP7 6845 Vamp7 20955 TRCN0000115066 GCCTTAAGATATGCAATGTTA 584 2.2 VAMP7 6845 Vamp7 20955 ND000257 CTGAAAGGAATAATGGTCAGA 585 4.0 VAMP7 6845 Vamp7 20955 ND000259 CTCCTTGTAAATGATACACAA 586 9.8 VAMP7 6845 Vamp7 20955 TRCN0000353291 CTTTGCCTGTCATATAGTTTG 587 10.5 VAMP7 6845 Vamp7 20955 TRCN0000115069 TCGAGCCATGTGTATGAAGAA 588 11.3 VAMP7 6845 Yes1 22612 ND000617 ATCCCTAGCAATTACGTAGTG 589 0.5 YES1 7525 Yes1 22612 TRCN0000339152 TGGTTATATCCCTAGCAATTA 590 0.5 YES1 7525 Yes1 22612 ND000614 TATGCTTCACTCGGCATGTTT 591 0.6 YES1 7525 Yes1 22612 ND000616 ATTCCAGATACGGTTACTCAA 592 0.6 YES1 7525 Yes1 22612 ND000613 TTTAAGAAGGGTGAACGATTT 593 0.7 YES1 7525 Yes1 22612 ND000612 CACGACCAGAGCTCAGTTTGA 594 0.8 YES1 7525 Yes1 22612 ND000615 CAGGTATGGTAAACCGTGAAG 595 0.8 YES1 7525 Yes1 22612 ND000611 GGAGTGGAACATGCTACAGTT 596 1.0 YES1 7525 Yes1 22612 ND000618 CCTCATTCTCAGTGGTGTCAA 597 2.6 YES1 7525 Yes1 22612 ND000619 TCGAGAATCATTGCGACTAGA 598 2.8 YES1 7525 Yes1 22612 TRCN0000339083 CCAGGTACAATGATGCCAGAA 599 2.8 YES1 7525 Yes1 22612 TRCN0000339150 GCGGAAAGATTACTTCTGAAT 600 3.9 YES1 7525 Yes1 22612 TRCN0000023616 GCTGCTCTGTATGGTCGATTT 601 4.1 YES1 7525 Yes1 22612 TRCN0000023618 CCTTGTATGATTATGAAGCTA 602 5.4 YES1 7525 Yes1 22612 TRCN0000023617 GCCAGTCATTATGGAGTGGAA 603 9.7 YES1 7525 - shRNAs demonstrating an at least ≥3 shRNAs fold enrichment in tumor relative to spleen indicate a more active target sequence region.
- In some aspects, the nucleic acids of the compositions encode the shRNA sequences targeting the human Ppp2r2d and Cb1b sequences provided in Table 2a.
-
TABLE 2a # Gene Human shRNA Target Sequence 1 Ppp2r2d CCCGCACCAGTGCAACGTGTT (SEQ ID NO: 636) 2 Ppp2r2d TCATAGTGGGCGGTACATGAT (SEQ ID NO: 637) 3 Ppp2r2d GAGAATTAATTTATGGCACTT (SEQ ID NO: 638) 4 Ppp2r2d CCATTTAGGATCACGGCGCTA (SEQ ID NO: 639) 5 Ppp2r2d ATAGTGATCATGAAACATATC (SEQ ID NO: 375) 6 Ppp2r2d GCCACCAATAACTTGTACATA (SEQ ID NO: 640) 7 Ppp2r2d CGGTTCGGATAGCGCCATCAT (SEQ ID NO: 641) 8 Ppp2r2d TCATTTCCACCGTTGAGTTTA (SEQ ID NO: 642) 9 Ppp2r2d ATGCTCACACATATCATATAA (SEQ ID NO: 643) 1 Cblb CGGGCAATAAGACTCTTTAA (SEQ ID NO: 644) 2 Cblb TGCCCAGGTCCAGTTCCATTTC (SEQ ID NO: 645) 3 Cblb TCCTGATTTAACTGGATTATG (SEQ ID NO: 646) 4 Cblb ATCAAACATCCCTGACTTAAG (SEQ ID NO: 647) 5 Cblb CTACACCTCATGACCATATAA (SEQ ID NO: 648) 6 Cblb TACACCTCATGACCATATAAA (SEQ ID NO: 649) 7 Cblb TCAGTGAGAATGAGTACTTTA (SEQ ID NO: 650) 8 Cblb CCTGACTTAAGCATATATTTA (SEQ ID NO: 651) 9 Cblb TCTACATTGATAGCCTTATGA (SEQ ID NO: 652) - In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Ppp2r2d target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 372, 373, 374, 375, 376, 377, 378, 378, 379, 380, 381, 382, 383, 384, 385, or 386.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Pp2r2d sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 372, 373, 374, 375, 376, 377, 378, 378, 379, 380, 381, 382, 383, 384, 385, or 386.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Eif2ak3 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146 or 147.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Eif2ak3 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146 or 147.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Arhgap5 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or 42.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Arhgap5 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or 42.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Smad2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, or 490.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Smad2 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, or 490.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Akap81 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Akap81 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Rbks target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, or 445.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Rbks sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, or 445.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Egr2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, or 132.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Egr2 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, or 132.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Dgka target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116 or 117.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Dgka sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116 or 117.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Cb1b target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, or 72.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Cb1b sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, or 72.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Mdfic target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, or 299.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Mdfic sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, or 299.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Entpdl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, or 162.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Entpdl sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, or 162.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Vamp7 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, or 587.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Vamp7sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, or 587.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Hipkl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, or 222.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Hipkl sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, or 222.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Nuak2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, or 329.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Nuak2 sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, or 329.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Alk target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or 31.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Alk sequence that corresponds to a murine target sequence set forth in SEQ ID NO: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or 31.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Pdzklipltarget sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, or 341.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Pdzkliplsequence that corresponds to a murine target sequence set forth in SEQ ID NO: 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, or 341.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Blvrb target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 52, 53, 54, 55, 56 or 57.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Blvrb that corresponds to a murine target sequence set forth in SEQ ID NO: 52, 53, 54, 55, 56 or 57.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Cdkn2a target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 83, 84, 85, 86 or 87.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Cdkn2a that corresponds to a murine target sequence set forth in SEQ ID NO: 83, 84, 85, 86 or 87.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Fllr target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 175, 176 or 177.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human F11r that corresponds to a murine target sequence set forth in SEQ ID NO: 175, 176 or 177.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Fyn target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 187, 191 or 192.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Fyn that corresponds to a murine target sequence set forth in SEQ ID NO: 187, 191 or 192.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Grk6 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 204, 205, 206 or 207.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Grk6 that corresponds to a murine target sequence set forth in SEQ ID NO: 204, 205, 206 or 207.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Inpp5b target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 232, 234, 235, 236 or 237.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Inpp5b that corresponds to a murine target sequence set forth in SEQ ID NO: 232, 234, 235, 236 or 237.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to an Impk target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 248, 249, 250, 251 or 252.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Impk that corresponds to a murine target sequence set forth in SEQ ID NO: 248, 249, 250, 251 or 252.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Jun target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 263, 264, 265, 266, 267, 268 or 269.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Jun that corresponds to a murine target sequence set forth in SEQ ID NO: 263, 264, 265, 266, 267, 268 or 269.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Mast2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 281, 282, 283 or 284.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Mast2 that corresponds to a murine target sequence set forth in SEQ ID NO: 281, 282, 283 or 284.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Nptxr target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 311, 312, 313 or 314.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Nptxr that corresponds to a murine target sequence set forth in SEQ ID NO: 311, 312, 313 or 314.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Pkdl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 351, 352, 353, 354, 355 or 356.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Pkdl that corresponds to a murine target sequence set forth in SEQ ID NO: 351, 352, 353, 354, 355 or 356.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Ppm1g target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 367, 368, 369, 370 or 371.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Ppm1g that corresponds to a murine target sequence set forth in SEQ ID NO: 367, 368, 369, 370 or 371.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Ppp3cc target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 399, 400 or 401.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Ppp3cc that corresponds to a murine target sequence set forth in SEQ ID NO: 399, 400 or 401.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Prkab2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 414, 415 or 416.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Prkab2 that corresponds to a murine target sequence set forth in SEQ ID NO: 414, 415 or 416.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Ptpn2 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 426, 427, 428, 429 or 430.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Ptpn2 that corresponds to a murine target sequence set forth in SEQ ID NO: 426, 427, 428, 429 or 430.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Rockl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 457, 458, 459 or 460.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Rockl that corresponds to a murine target sequence set forth in SEQ ID NO: 457, 458, 459 or 460.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Sbfl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 470, 471, 472, 473, 474 or 475.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Sbfl that corresponds to a murine target sequence set forth in SEQ ID NO: 470, 471, 472, 473, 474 or 475.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Socsl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 504, 505, 506, 507, 508, 509 or 510.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Socsl that corresponds to a murine target sequence set forth in SEQ ID NO: 504, 505, 506, 507, 508, 509 or 510.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Socs3 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 524, 525, 526, 527 or 528.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Socs3 that corresponds to a murine target sequence set forth in SEQ ID NO: 524, 525, 526, 527 or 528.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Stk17b target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 539, 540, 541, 542 or 543.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Stk17b that corresponds to a murine target sequence set forth in SEQ ID NO: 539, 540, 541, 542 or 543.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Tnkl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 556, 557 or 558.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Tnkl that corresponds to a murine target sequence set forth in SEQ ID NO: 556, 557 or 558.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Trpm7 target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 569, 570, 571, 572 or 573.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Trpm7 that corresponds to a murine target sequence set forth in SEQ ID NO: 569, 570, 571, 572 or 573.
- In other embodiments, the disclosure provides isolated nucleic acids encoding shRNA sequences complementary to a Yesl target sequence identical to at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides set forth in SEQ ID NO: 600, 601, 602 or 603.
- In other embodiments, the disclosure provides isolated nucleic acids encoding a shRNA comprising a sequence complementary to a human Yesl that corresponds to a murine target sequence set forth in SEQ ID NO: 600, 601, 602 or 603.
- In any embodiment, a human sequence that corresponds to a murine target sequence is a sequence which perfectly corresponds to the human gene sequence, and for example, can have none, 1, 2, 3 or 4 nucleotide mismatches with the at least 12, at least 15, at least 20, or at least 25 contiguous nucleotides of the selected murine target sequence.
- An isolated nucleic acid can be, for example, a DNA molecule, provided one of the nucleic acid sequences normally found immediately flanking that DNA molecule in a naturally-occurring genome is removed or absent. Thus, an isolated nucleic acid includes, without limitation, a DNA molecule that exists as a separate molecule (e.g., a chemically synthesized nucleic acid, cDNA, or genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of other sequences as well as DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a retrovirus, lentivirus, adenovirus, adeno-associated virus, or herpes virus), or into the genomic DNA of a prokaryote or eukaryote. In addition, an isolated nucleic acid can include an engineered nucleic acid such as a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid. A nucleic acid existing among hundreds to millions of other nucleic acids within, for example, cDNA libraries or genomic libraries, or gel slices containing a genomic DNA restriction digest, is not to be considered an isolated nucleic acid.
- In calculating percent sequence identity, two sequences are aligned and the number of identical matches of nucleotides or amino acid residues between the two sequences is determined. The number of identical matches is divided by the length of the aligned region (i.e., the number of aligned nucleotides or amino acid residues) and multiplied by 100 to arrive at a percent sequence identity value. It will be appreciated that the length of the aligned region can be a portion of one or both sequences up to the full-length size of the shortest sequence. It also will be appreciated that a single sequence can align with more than one other sequence and hence, can have different percent sequence identity values over each aligned region. It is noted that the percent identity value is usually rounded to the nearest integer. For example, 78.1%, 78.2%, 78.3%, and 78.4% are rounded down to 78%, while 78.5%, 78.6%, 78.7%, 78.8%, and 78.9% are rounded up to 79%. It is also noted that the length of the aligned region is always an integer.
- As used herein, the term “percent sequence identity” refers to the degree of identity between any given query sequence and a subject sequence. A percent identity for any query nucleic acid or amino acid sequence, e.g., a transcription factor, relative to another subject nucleic acid or amino acid sequence can be determined as follows.
- As used herein, the term “complementary nucleotide sequence,” also known as an “antisense sequence,” refers to a sequence of a nucleic acid that is completely complementary to the sequence of a “sense” nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). Herein, nucleic acid molecules are provided that comprise a sequence complementary to at least about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides or an entire gene coding strand, or to only a portion thereof.
- As used herein, the term “correspond to a nucleotide sequence” refers to a nucleotide sequence of a nucleic acid encoding an identical sequence. In some instances, when antisense nucleotides (nucleic acids) or siRNA's (small inhibitory RNA) hybridize to a target sequence a particular antisense or small inhibitory RNA (siRNA) sequence is substantially complementary to the target sequence, and thus will specifically bind to a portion of an mRNA encoding polypeptide. As such, typically the sequences of those nucleic acids will be highly complementary to the mRNA target sequence, and will have no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 base mismatches throughout the sequence. In many instances, it may be desirable for the sequences of the nucleic acids to be exact matches, i.e. be completely complementary to the sequence to which the oligonucleotide specifically binds, and therefore have zero mismatches along the complementary stretch. Highly complementary sequences will typically bind quite specifically to the target sequence region of the mRNA and will therefore be highly efficient in reducing, and/or even inhibiting the translation of the target mRNA sequence into polypeptide product.
- As used herein, the term “vector” refers to any viral or non-viral vector, as well as any plasmid, cosmid, phage or binary vector in double or single stranded linear or circular form that may or may not be self transmissible or mobilizable, and that can transform prokaryotic or eukaryotic host cells either by integration into the cellular genome or which can exist extrachromosomally (e.g., autonomous replicating plasmid with an origin of replication). Any vector known in the art is envisioned for use in the practice of this invention.
- Vectors can be viral vectors or non-viral vectors. Should viral vectors be used, it is preferred the viral vectors are replication defective, which can be achieved for example by removing all viral nucleic acids that encode for replication. A replication defective viral vector will still retain its infective properties and enters the cells in a similar manner as a replicating adenoviral vector, however once admitted to the cell a replication defective viral vector does not reproduce or multiply. Vectors also encompass liposomes and nanoparticles and other means to deliver DNA molecule to a cell.
- The term “viral vectors” refers to the use of viruses, or virus-associated vectors as carriers of a nucleic acid construct into a cell. Constructs may be integrated and packaged into non-replicating, defective viral genomes like Adenovirus, Adeno-associated virus (AAV), or Herpes simplex virus (HSV) or others, including retroviral and lentiviral vectors, for infection or transduction into cells. The vector may or may not be incorporated into the cell's genome.
- “Encoding” refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom, Thus, a gene encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system, Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA.
- The term “expression” as used herein is defined as the transcription and/or translation of a particular nucleotide sequence driven by its promoter.
- Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors”. Thus, an “Expression vector” is a specialized vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system. Expression vectors include all those known in the art, such as cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.
- In some aspects, the disclosure provides modified cells that harbor vectors capable of expressing the shRNA described herein and further modified to express a CAR. In one aspect the shRNA and the CAR are expressed on the same vector. In another aspect, the shRNA and the CAR are expressed on separate vectors.
- In some embodiments, the modified cells described herein are immunoresponsive cells. In some aspects, the immunoresponsive cells express at least one of an antigen-recognizing receptor. In any aspect, the immunoresponsive cells express at least one of an tumor specific antigen-recognizing receptor. In some aspects, tumor cell antigen specific T cells, NKT cells, TIL, CTL cells or other immunoresponsive cells are used. Non-limiting examples of immunoresponsive cells include T cells, such as, for example, αβ-TCR+ T cells (e.g., CD8+ T cells or CD4+ T cells) γδ-TCR+ T cells, tumor-infiltrating lymphocytes (TIL), Natural Killer T cells (NKT), a cytotoxic T lymphocytes (CTL), and a CD4 T cells.
- Compositions comprising the immunoresponsive cells of the invention (e.g., T cells, NKT cells, TILs, CTL cells, or their progenitors) can be provided systemically or directly to a subject for the treatment of a cancer. In one embodiment, cells of the invention are directly injected into an organ of interest (e.g., an organ affected by a cancer). Alternatively, compositions comprising genetically modified immunoresponsive cells are provided indirectly to the organ of interest, for example, by administration into the circulatory system (e.g., the tumor vasculature). Expansion and differentiation agents can be provided prior to, during or after administration of the cells to increase production of T cells, NKT cells, TILs, CTL cells in vitro or in vivo.
- The modified immunoresponsive cells can be administered in any physiologically acceptable vehicle, normally intravascularly, although they may also be introduced into bone or other convenient site where the cells may find an appropriate site for regeneration and differentiation (e.g., thymus). Usually, at least 1×105 cells will be administered, eventually reaching 1×1010, or more. Immunoresponsive cells of the invention can comprise a purified population of cells. Those skilled in the art can readily determine the percentage of genetically modified immunoresponsive cells in a population using various well-known methods, such as fluorescence activated cell sorting (FACS). Preferable ranges of purity in populations comprising genetically modified immunoresponsive cells are about 50 to about 55%, about 55 to about 60%, and about 65 to about 70%. More preferably the purity is about 70 to about 75%, about 75 to about 80%, about 80 to about 85%; and still more preferably the purity is about 85 to about 90%, about 90 to about 95%, and about 95 to about 100%. Dosages can be readily adjusted by those skilled in the art (e.g., a decrease in purity may require an increase in dosage).
- The cells can be introduced by injection, catheter, or the like. If desired, factors can also be included, including, but not limited to, interleukins, e.g. IL-2, IL-3, IL-6, and IL-11, as well as the other interleukins, the colony stimulating factors, such as G-, M- and GM-CSF, interferons, e.g. .gamma.-interferon and erythropoietin.
- Compositions of the invention include pharmaceutical compositions comprising the immunoresponsive cells of the invention or their progenitors and a pharmaceutically acceptable carrier. Administration can be autologous or heterologous. For example, immunoresponsive cells, or progenitors can be obtained from one subject, and administered to the same subject or a different, compatible subject.
- Chimeric Antigen Receptors
- In some instances, the invention provides chimeric antigen receptors (CARs) comprising an antigen binding domain directed to a tumor cell antigen. A CAR is an artificially constructed hybrid protein or polypeptide containing an extracellular portion that recognizes a tumor cell antigen (e.g., the antigen binding domains of an antibody (scFv) and a cytoplasmic signaling domain derived from the T cell receptor and costimulatory domain. (Kalos M, et al., Sci Transl Med. 2011 Aug. 10; 3(95)) Kalos et al. describes the generation of CART cells that target CD19 and demonstrates the CAR modified T-cells mediated potent antitumor effect in chronic lymphocytic leukemia patients. Characteristics of CARs include their ability to redirect T-cell specificity and reactivity toward a selected target in a non-MHC—restricted manner, exploiting the antigen-binding properties of monoclonal antibodies. The CAR-modified T-cells have the potential to replicate in vivo and long term persistence allows for sustained tumor control and obviate the need for repeated infusions of antibody. (Kalos M, et al., Sci Transl Med. 2011 Aug. 10; 3(95)) The non-MHC-restricted antigen recognition gives T cells expressing CARs the ability to recognize antigen independent of antigen processing, thus bypassing a major mechanism of tumor escape. Moreover, when expressed in T-cells, CARs advantageously do not dimerize with endogenous T cell receptor (TCR) alpha and beta chains. CAR-modified T cells are described in detail in WO2012/079000 and WO2012/09999 and in Milone et al. 2009 Mol. Ther. 17:1453.
- A CAR combines the binding site of a molecule that recognizes an antigen being targeted (i.e., an “antigen binding domain”) with one or more domains of conventional immune receptors responsible for initiating signal transduction that leads to lymphocyte activation (e.g., the “stimulatory domain” or “signaling domain”).
- In some embodiments, the binding portion used is derived from the structure of the Fab (antigen binding) fragment of a monoclonal antibody (mAb) that has high affinity for the tumor antigen being targeted. Because the Fab is the product of two genes, the corresponding sequences are usually combined via a short linker fragment that allows the heavy-chain to fold over the light-chain derived peptides into their native configuration, creating a single-chain fragment variable (scFv) region.
- Fv or (scFv) antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Generally the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains, which enables the scFv to form the desired structure for antigen binding.
- In some embodiments, the binding portion used is derived from a cytoplasmic signaling domain derived from T cell receptor and costimulatory molecules.
- In some embodiments, the signaling portion of CARs contains usually the intracellular domains of the zeta (ζ) chain of the TCR/CD3 complex25 or, less commonly, of the gamma (γ) chain of the immunoglobulin receptor FccRI26, 27 or the CD3-epsilon (ε) chain,28 with the transmembrane region being derived from the same molecule.
- In some aspects, the CARs comprise an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain. Further embodiments of the invention provide related nucleic acids, recombinant expression vectors, host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions relating to the CARs of the invention.
- In one aspect, the antigen binding domain binds to a tumor cell antigen. The term “tumor cell antigen” or “tumor antigen” as used herein refers to any polypeptide expressed by a tumor that is capable of inducing an immune response. Non-limiting examples of tumor antigens include, for example, prostate-specific membrane antigen (PSMA), Carcinoembryonic Antigen (CEA), CD19, CD20, CD22, ROR1, mesothelin, CD333/IL3Ra, c-Met, Glycolipid F77, EGFRvIII, GD-2, NY-ESO-1 TCR, ERBB2, BIRC5, CEACAM5, WDR46, BAGE, CSAG2, DCT, MAGED4, GAGE1, GAGE2, GAGE3, GAGE4, GAGE5, GAGE6, GAGE7, GAGE5, IL13RA2, MAGEA1, MAGEA2, MAGEA3, MAGEA4, MAGEA6, MAGEA9, MAGEA10, MAGEA12, MAGEB1, MAGEB2, MAGEC2, TP53, TYR, TYRP1, SAGE1, SYCP1, SSX2, SSX4, KRAS, PRAME, NRAS, ACTN4, CTNNB1, CASP8, CDC27, CDK4, EEF2, FN1, HSPA1B, LPGAT1, ME1, HHAT, TRAPPC1, MUM3, MYO1B, PAPOLG, PTPRK, TPI1, ADFP, AFP, AIM2, ANXA2, ART4, CLCA2, CPSF1, PPIB, EPHA2, EPHA3, FGF5, CA9, TERT, MGAT5, CEL, F4.2, CAN, ETV6, BIRC7, CSF1, OGT, MUC1, MUC2, MUM1, CTAG1A, CTAG2, CTAG, MRPL28, FOLH1, RAGE, SFMBT1, KAAG1, SART1, TSPYL1, SART3, SOX10, TRG, WT1, TACSTD1, SILV, SCGB2A2, MC1R, MLANA, GPR143, OCA2, KLK3, SUPT7L, ARTC1, BRAF, CASP5, CDKN2A, UBXD5, EFTUD2, GPNMB, NFYC, PRDX5, ZUBR1, SIRT2, SNRPD1, HERV-K-MEL, CXorf61, CCDCl10, VENTXP1, SPA17, KLK4, ANKRD30A, RAB38, CCND1, CYP1B1, MDM2, MMP2, ZNF395, RNF43, SCRN1, STEAP1, 707-AP, TGFBR2, PXDNL, AKAP13, PRTN3, PSCA, RHAMM, ACPP, ACRBP, LCK, RCVRN, RPS2, RPL10A, SLC45A3, BCL2L1, DKK1, ENAH, CSPG4, RGS5, BCR, BCR-ABL, ABL-BCR, DEK, DEK-CAN, ETV6-AML1, LDLR-FUT, NPM1-ALK1, PML-RARA, SYT-SSX1, SYT-SSX2, FLT3, ABL1, AML1, LDLR, FUT1, NPM1, ALK, PML1, RARA, SYT, SSX1, MSLN, UBE2V1, HNRPL, WHSC2, EIF4EBP1, WNK2, OAS3, BCL-2, MCL1, CTSH, ABCC3, BST2, MFGE8, TPBG, FMOD, XAGE1, RPSA, COTL1, CALR3, PA2G4, EZH2, FMNL1, HPSE, APC, UBE2A, BCAP31, TOP2A, TOP2B, ITGB8, RPA1, ABI2, CCNI, CDC2, SEPT2, STAT1, LRP1, ADAM17, JUP, DDR1, ITPR2, HMOX1, TPM4, BAAT, DNAJC8, TAPBP, LGALS3BP, PAGE4, PAK2, CDKN1A, PTHLH, SOX2, SOX11, TRPM8, TYMS, ATIC, PGK1, SOX4, TOR3A, TRGC2, BTBD2, SLBP, EGFR, IER3, TTK, LY6K, IGF2BP3, GPC3, SLC35A4, HSMD, H3F3A, ALDH1A1, MFI2, MMP14, SDCBP, PARP12, MET, CCNB1, PAX3-FKHR, PAX3, FOXO1, XBP1, SYND1, ETV5, HSPA1A, HMHA1, TRIM68 and any combination thereof.
- The present invention relates generally to the use of T cells genetically modified to stably express a shRNA of the invention and a desired CAR. T cells expressing a CAR are generally referred to as CAR T cells. T cells expressing a CAR are referred to herein as CAR T cells or CAR modified T cells. Preferably, the cell can be genetically modified to stably express an antibody binding domain on its surface, conferring novel antigen specificity that is WIC independent. In some instances, the T cell is genetically modified to stably express a CAR that combines an antigen recognition domain of a specific antibody with an intracellular stimulatory domain (e.g., signaling domain). Thus, in addition to an antigen binding domain the CAR can include the intracellular domains of the zeta (ζ) chain of the TCR/CD3 complex, the gamma (γ) chain of the immunoglobulin receptor FccRI26, 27 or the CD3-epsilon (ε) chain. The CAR can also include a transmembrane region being from the same molecules or other type I transmembrane proteins such as CD4, CD8 and CD28.
- In one embodiment, the CAR of the invention comprises an extracellular domain having an antigen recognition domain, a transmembrane domain, and a cytoplasmic domain.
- In one embodiment, the transmembrane domain that naturally is associated with one of the domains in the CAR is used. In another embodiment, the cytoplasmic domain can be designed to comprise a stimulatory domain and a costimulatory domain.
- A CAR can include intracytoplasmatic portion of co-stimulatory molecules, such as CD28, CD134/0X40, CD137/4-1BB, Lck, ICOS or DAP10.
- The disclosure also relates to a strategy of Adoptive cell therapy (ACT). ACT is a procedure in which therapeutic lymphocytes are administered to patients in order to treat cancer. This approach entails the ex vivo generation of tumor specific T cell lymphocytes and infusing them to patients. In addition to the lymphocyte infusion the host may be manipulated in other ways which support the take of the T cells and their immune response, for example, preconditioning the host (with radiation or chemotherapy) and administration of lymphocyte growth factors (such as IL-2). One method for generating such tumor specific lymphocytes involves the expansion of antigen specific T cells.
- In one embodiment, the invention provides generating T cells expressing a shRNA of the invention and a desired CAR directed to a tumor antigen. The modified T cells can be generated by introducing a vector (e.g., plasmid, lentiviral vector, retroviral vector, adenoviral vector, adeno-associated viral vector) encoding both 1) an shRNA capable of reducing expression of a target gene described herein and 2) a desired CAR into the cells. The modified T cells of the invention are able to replicate in vivo resulting in long term persistence that can lead to tumor control.
- In one aspect, the disclosure provides methods of treating cancer comprising administering a composition capable of silencing genes that inhibit T cell function. In one embodiment, the methods relate to administering T cell expressing a shRNA of the invention and a desired CAR directed to a tumor antigen. In one aspect the T cell to be administered comprises a vector encoding a shRNA of the invention and a desired CAR directed to a tumor antigen.
- In some instances, therapeutic compositions disclosed herein can include, in addition to the tumor targeting T cells, compounds, drugs, and/or agents used for the treatment of cancer. Such compounds, drugs, and/or agents can include, for example, chemotherapy drugs, small molecule drugs or antibodies that stimulate the immune response to a given cancer. In other instances, therapeutic compositions can include, for example, one or more small molecule inhibitors that silence, reduces, eliminates, knocks down, knocks out, or decreases the expression and/or activity of genes selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, F11r, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm1g, Blvrb, Tnkl, Prkab2, Trpm7 and Ppp3cc. Accordingly, the invention provides one or more inhibitors of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm1g, Blvrb, Tnkl, Prkab2, Trpm7 or Ppp3cc.
- In one aspect, the invention provides one or more inhibitors of Ppp2r2d.
- In another aspect, the invention provides one or more inhibitors of Eif2ak3.
- In another aspect, the invention provides one or more inhibitors of Arhgap5.
- In another aspect, the invention provides one or more inhibitors of Smad2.
- In another aspect, the invention provides one or more inhibitors of Akap81.
- In another aspect, the invention provides one or more inhibitors of Rbks.
- In another aspect, the invention provides one or more inhibitors of Egr2.
- In another aspect, the invention provides one or more inhibitors of Dgka.
- In another aspect, the invention provides one or more inhibitors of Cb1b.
- In another aspect, the invention provides one or more inhibitors of Map3k3.
- In another aspect, the invention provides one or more inhibitors vMdfic.
- In another aspect, the invention provides one or more inhibitors of Entpdl.
- In another aspect, the invention provides one or more inhibitors of Dgkz.
- In another aspect, the invention provides one or more inhibitors of Vamp7.
- In another aspect, the invention provides one or more inhibitors of Nuak2.
- In another aspect, the invention provides one or more inhibitors of Hipkl.
- In another aspect, the invention provides one or more inhibitors of Alk. In one embodiment, the inhibitor of Alk includes, for example, for example CH5424802 (Hoffmann-La Roche), LDK378 (Novartis), Crizotinib and PF-02341066 (Pfizer) or AP26113 (Ariad Pharmaceuticals).
- In another aspect, the invention provides one or more inhibitors of Pdzklipl.
- In some instances, therapeutic compositions can include, for example, cytokines, chemokines and other biologic signaling molecules, tumor specific vaccines, cellular cancer vaccines (e.g., GM-CSF transduced cancer cells), tumor specific monoclonal antibodies, autologous and allogeneic stem cell rescue (e.g., to augment graft versus tumor effects), other therapeutic antibodies, molecular targeted therapies, anti-angiogenic therapy, infectious agents with therapeutic intent (such as tumor localizing bacteria) and gene therapy.
- In some instances, therapeutic compositions disclosed herein can be formulated for use as or in pharmaceutical compositions. Such compositions can be formulated or adapted for administration to a subject via any route, e.g., any route approved by the Food and Drug Administration (FDA). Exemplary methods are described in the FDA's CDER Data Standards Manual, version number 004 (which is available at fda.give/cder/dsm/DRG/drg00301.htm).
- In some instances, pharmaceutical compositions can include an effective amount of one or more peptides. The terms “effective amount” and “effective to treat,” as used herein, refer to an amount or a concentration of one or more peptides for a period of time (including acute or chronic administration and periodic or continuous administration) that is effective within the context of its administration for causing an intended effect or physiological outcome.
- The pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form.
- In some instances, methods can include selection of a human subject who has or had a condition or disease (e.g., cancer). In some instances, suitable subjects include, for example, subjects who have or had a condition or disease but that resolved the disease or an aspect thereof, present reduced symptoms of disease (e.g., relative to other subjects (e.g., the majority of subjects) with the same condition or disease), and/or that survive for extended periods of time with the condition or disease (e.g., relative to other subjects (e.g., the majority of subjects) with the same condition or disease), e.g., in an asymptomatic state (e.g., relative to other subjects (e.g., the majority of subjects) with the same condition or disease).
- The term “subject,” as used herein, refers to any animal. In some instances, the subject is a mammal. In some instances, the term “subject”, as used herein, refers to a human (e.g., a man, a woman, or a child). Samples for use in the methods can include serum samples, e.g., obtained from the selected subject.
- In some instances, subject selection can include obtaining a sample from a subject (e.g., a candidate subject) and testing the sample for an indication that the subject is suitable for selection. In some instances, the subject can be confirmed or identified, e.g. by a health care professional, as having had or having a condition or disease. In some instances, exhibition of a positive immune response towards a condition or disease can be made from patient records, family history, and/or detecting an indication of a positive immune response. In some instances multiple parties can be included in subject selection. For example, a first party can obtain a sample from a candidate subject and a second party can test the sample. In some instances, subjects can be selected and/or referred by a medical practitioner (e.g., a general practitioner). In some instances, subject selection can include obtaining a sample from a selected subject and storing the sample and/or using the in the methods disclosed herein. Samples can include, for example, cells or populations of cells.
- In some embodiments, the disclosure provides methods for increasing the immune response in a subject in need thereof. The disclosure provides therapies that are particularly useful for the treatment of subjects having cancer. In some instances, the disclosure provides methods of treatment that include administering to a subject a composition disclosed herein.
- Provided herein are methods for treating and/or preventing cancer or symptoms of cancer in a subject comprising administering to the subject a therapeutically effective amount of a composition capable of silencing genes that inhibit T cell function (e.g., an immunoresponsive T cell expressing a shRNA of the invention and a desired CAR directed to a tumor antigen). In some cases the T cell is derived from the patient to be treated and has been modified to express the CAR and an shRNA that reduces expression of a target gene described herein.
- In some embodiments, the cancer is a carcinoma, sarcomas, adenocarcinoma, lymphoma, leukemia, etc., including solid and lymphoid cancers, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer, including hepatocarcinoma, lymphoma, including B-acute lymphoblastic lymphoma, non-Hodgkin's lymphomas (e.g., Burkitt's, Small Cell, and Large Cell lymphomas) and Hodgkin's lymphoma, leukemia (including AML, ALL, and CML), and multiple myeloma. In some embodiments, the cancer is melanoma. In some embodiments, the cancer is a plasma cell malignancy, for example, multiple myeloma (MM) or pre-malignant condition of plasma cells. In some embodiments the subject has been diagnosed as having a cancer or as being predisposed to cancer.
- As used herein, “cancer” refers to human cancers and carcinomas, sarcomas, adenocarcinomas, lymphomas, leukemias, etc., including solid and lymphoid cancers, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer, including hepatocarcinoma, lymphoma, including B-acute lymphoblastic lymphoma, non-Hodgkin's lymphomas (e.g., Burkitt's, Small Cell, and Large Cell lymphomas) and Hodgkin's lymphoma, leukemia (including AML, ALL, and CML), and multiple myeloma.
- The term “anti-tumor effect” as used herein, refers to a biological effect which can be manifested by a decrease in tumor volume, a decrease in the number of tumor cells, a decrease in the number of metastases, an increase in life expectancy, or amelioration of various physiological symptoms associated with the cancerous condition. An “anti-tumor effect” can also be manifested by the ability of the peptides, polynucleotides, cells and antibodies of the invention in prevention of the occurrence of tumor in the first place.
- The terms “treat” or “treating,” as used herein, refers to partially or completely alleviating, inhibiting, ameliorating, and/or relieving the disease or condition from which the subject is suffering. In some instances, treatment can result in the continued absence of the disease or condition from which the subject is suffering.
- In general, methods include selecting a subject at risk for or with a condition or disease. In some instances, the subject's condition or disease can be treated with a pharmaceutical composition disclosed herein. For example, in some instances, methods include selecting a subject with cancer, e.g., wherein the subject's cancer can be treated by increasing T cell accumulation and infiltration within the tumor.
- In some instances, treatments methods can include a single administration, multiple administrations, and repeating administration as required for the prophylaxis or treatment of the disease or condition from which the subject is suffering. In some instances treatment methods can include assessing a level of disease in the subject prior to treatment, during treatment, and/or after treatment. In some instances, treatment can continue until a decrease in the level of disease in the subject is detected.
- Following administration, the subject can be evaluated to detect, assess, or determine their level of disease. In some instances, treatment can continue until a change (e.g., reduction) in the level of disease in the subject is detected.
- Upon improvement of a patient's condition (e.g., a change (e.g., decrease) in the level of disease in the subject), a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.
- It is also within the scope of the present invention to combine any of the methods and any of the compositions disclosed herein with one or more therapeutic agents. A therapeutic agent includes, but is not limited to, small molecules, peptides, antibodies, ribozymes, antisense oligonucleotides, chemotherapeutic agents and radiation.
- It is also within the scope of the present invention to combine any of the methods and any of the compositions disclosed herein with conventional cancer therapies and various drugs in order to enhance the efficacy of such therapies through either reducing the doses/toxicity of conventional therapies and/or to increase the sensitivity of conventional therapies. One conventional therapy is the use of radiation therapy. Another conventional therapy is the use of chemotherapeutic drugs that can be divided into: alkylating agents, antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, and antitumour agents. All of these drugs affect cell division or DNA synthesis and function in some way. Other conventional cancer therapies are agents that do not directly interfere with DNA. Examples of such agents for which to combine with the present invention may include for example “small-molecule” drugs that block specific enzymes involved in cancer cell growth. Monoclonal antibodies, cancer vaccines, angiogenesis inhibitors, and gene therapy are targeted therapies that can also be combined with the compositions and methods disclosed herein because they also interfere with the growth of cancer cells.
- Included herein are methods for screening test compounds, e.g., polypeptides, polynucleotides, inorganic or organic large or small molecule test compounds, to identify agents useful in the treatment of cancer e.g., test compounds that silence, reduces, eliminates, knocks down, knocks out, modulates, or decreases the expression and/or activity of genes selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm1g, Blvrb, Tnkl, Prkab2, Trpm7 and Ppp3cc.
- As used herein, “small molecules” refers to small organic or inorganic molecules of molecular weight below about 3,000 Daltons. In general, small molecules useful for the invention have a molecular weight of less than 3,000 Daltons (Da). The small molecules can be, e.g., from at least about 100 Da to about 3,000 Da (e.g., between about 100 to about 3,000 Da, about 100 to about 2500 Da, about 100 to about 2,000 Da, about 100 to about 1,750 Da, about 100 to about 1,500 Da, about 100 to about 1,250 Da, about 100 to about 1,000 Da, about 100 to about 750 Da, about 100 to about 500 Da, about 200 to about 1500, about 500 to about 1000, about 300 to about 1000 Da, or about 100 to about 250 Da).
- The test compounds can be, e.g., natural products or members of a combinatorial chemistry library. A set of diverse molecules should be used to cover a variety of functions such as charge, aromaticity, hydrogen bonding, flexibility, size, length of side chain, hydrophobicity, and rigidity. Combinatorial techniques suitable for synthesizing small molecules are known in the art, e.g., as exemplified by Obrecht and Villalgordo, Solid-Supported Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compound Libraries, Pergamon-Elsevier Science Limited (1998), and include those such as the “split and pool” or “parallel” synthesis techniques, solid-phase and solution-phase techniques, and encoding techniques (see, for example, Czarnik, Curr. Opin. Chem. Bio. 1:60-6 (1997)). In addition, a number of small molecule libraries are commercially available. A number of suitable small molecule test compounds are listed in U.S. Pat. No. 6,503,713, incorporated herein by reference in its entirety.
- Libraries screened using the methods of the present invention can comprise a variety of types of test compounds. A given library can comprise a set of structurally related or unrelated test compounds. In some embodiments, the test compounds are peptide or peptidomimetic molecules. In some embodiments, the test compounds are nucleic acids.
- In some embodiments, the test compounds and libraries thereof can be obtained by systematically altering the structure of a first test compound, e.g., a first test compound that is structurally similar to a known natural binding partner of the target polypeptide, or a first small molecule identified as capable of binding the target polypeptide, e.g., using methods known in the art or the methods described herein, and correlating that structure to a resulting biological activity, e.g., a structure-activity relationship study. As one of skill in the art will appreciate, there are a variety of standard methods for creating such a structure-activity relationship. Thus, in some instances, the work may be largely empirical, and in others, the three-dimensional structure of an endogenous polypeptide or portion thereof can be used as a starting point for the rational design of a small molecule compound or compounds. For example, in one embodiment, a general library of small molecules is screened, e.g., using the methods described herein.
- In some embodiments, a test compound is applied to a test sample, e.g., a cell or living tissue or organ, e.g., an eye, and one or more effects of the test compound is evaluated. In a cultured or primary cell for example, the ability of the test compound to silence, reduces, eliminates, knocks down, knocks out, modulates, or decreases the expression and/or activity of genes selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm1g, Blvrb, Tnkl, Prkab2, Trpm7 and Ppp3cc.
- In some embodiments, the test sample is, or is derived from (e.g., a sample taken from) an in vivo model of a disorder as described herein. For example, an animal model, e.g., a rodent such as a rat, can be used.
- Methods for evaluating each of these effects are known in the art. For example, ability to modulate expression of a protein can be evaluated at the gene or protein level, e.g., using quantitative PCR or immunoassay methods. In some embodiments, high throughput methods, e.g., protein or gene chips as are known in the art (see, e.g., Ch. 12, Genomics, in Griffiths et al., Eds. Modern genetic Analysis, 1999,W. H. Freeman and Company; Ekins and Chu, Trends in Biotechnology, 1999, 17:217-218; MacBeath and Schreiber,
Science 2000, 289(5485):1760-1763; Simpson, Proteins and Proteomics: A Laboratory Manual, Cold Spring Harbor Laboratory Press; 2002; Hardiman, Microarrays Methods and Applications: Nuts & Bolts, DNA Press, 2003), can be used to detect an effect on Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm1g, Blvrb, Tnkl, Prkab2, Trpm7 and Ppp3cc activity or gene expression. - A test compound that has been screened by a method described herein and determined to silence, reduces, eliminates, knocks down, knocks out, or decreases the expression and/or activity of genes selected from the group consisting of Ppp2r2d, Eif2ak3, Arhgap5, Smad2, Akap81, Rbks, Egr2, Dgka, Cb1b, Mdfic, Entpdl, Dgkz, Vamp7, Hipkl, Nuak2, Alk, Pdzklipl, Inpp5b, Socsl, Jun, Nptxr, Socs3, Fllr, Fyn, Ype12, Pkdl, Grk6, Cdkn2a, Sbfl, Ipmk, Rockl, Stk17b, Mast2, Pdpl, Yesl, Met, Ppm1g, Blvrb, Tnkl, Prkab2, Trpm7 and Ppp3cc, can be considered a candidate compound. A candidate compound that has been screened, e.g., in an in vivo model of a disorder, e.g., cancer, and determined to have a desirable effect on the disorder, e.g., on one or more symptoms of the disorder, can be considered a candidate therapeutic agent. Candidate therapeutic agents, once screened in a clinical setting, are therapeutic agents. Candidate compounds, candidate therapeutic agents, and therapeutic agents can be optionally optimized and/or derivatized, and formulated with physiologically acceptable excipients to form pharmaceutical compositions.
- Thus, test compounds identified as “hits” (e.g., test compounds that inhibiting immunosuppressive pathways used by tumor cells to inactivate and/or suppress immune cells) in a first screen can be selected and systematically altered, e.g., using rational design, to optimize binding affinity, avidity, specificity, or other parameter. Such optimization can also be screened for using the methods described herein. Thus, in one embodiment, the invention includes screening a first library of compounds using a method known in the art and/or described herein, identifying one or more hits in that library, subjecting those hits to systematic structural alteration to create a second library of compounds structurally related to the hit, and screening the second library using the methods described herein.
- The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.
- Recent work has shown that cytotoxic T cells play a central role in immune-mediated control of cancers1-3, and monoclonal antibodies that target inhibitory receptors on T cells can induce significant clinical benefit in patients with advanced disease 4-6. However, many of the regulatory mechanisms that result in loss of T cell function within immunosuppressive tumors remain unknown. In the following examples, the inventors demonstrate that such regulatory mechanisms can be systematically discovered in vivo in the tumor microenvironment. The inventors postulated that shRNAs targeting key inhibitors would enable robust T cell infiltration and accumulation in tumors, despite multiple inhibitory signals. Using a pool shRNA screening approach aimed at identifying genes that block the function of tumor-infiltrating CD8 T cells, candidate shRNA were discovered by transfer of shRNA-transduced T cells into tumor-bearing mice, followed by deep sequencing to quantify the representation of all hairpins in tumors and lymphoid organs. The majority of shRNAs induced T cell accumulation in tumors but not the spleen, demonstrating feasibility of discovering shRNAs with differential action across tissues. One of the targets was Ppp2r2d, a regulatory subunit of the PP2A phosphatase7. Control shRNA-transduced T cells underwent apoptosis upon recognition of melanoma cells, while Ppp2r2d shRNA-transduced T cells accumulated in tumors due to enhanced proliferation and resistance to apoptosis. Ppp2r2d shRNA-expressing T cells also significantly delayed tumor growth. This in vivo approach has wide-spread applications to dissect complex immune functions in relevant tissue microenvironments.
- Immune cells perform complex surveillance functions throughout the body and interact with many different types of cells in distinct tissue microenvironments. Therapeutic targets for modulating immune responses are typically identified in vitro and tested in animal models at a late stage of the process. Here the inventors have addressed the challenge of how targets for immune modulation can be systematically discovered in vivo. This is a central issue in oncology because strong infiltration by CD8 T cells—which have cytotoxic function against tumor cells—is associated with a favorable prognosis in multiple types of human cancer1..3.8. Unfortunately, this natural defense mechanism is severely blunted in the majority of patients by multiple inhibitory signals emanating from the tumor, its stroma, regulatory T cells and myeloid cell populations.9-11
- Pooled shRNA libraries have been shown to be powerful discovery tools12-14. The inventors reasoned that shRNAs capable of restoring CD8 T cell function can be systematically discovered in vivo by taking advantage of the extensive proliferative capacity of T cells following triggering of the T cell receptor by a tumor-associated antigen. When introduced into T cells, only a small subset of shRNAs from a pool will restore T cell proliferation resulting in their enrichment within tumors. Over-representation of active shRNAs within each pool can be quantified by deep sequencing of the shRNA cassette from tumors and secondary lymphoid organs (
FIG. 1 ). - Experimental animals. C57BL/6 mice, TRP-1 mice (transgenic mice expressing T-cell receptor (TCR) specific for tyrosinase-related protein 1)23, pmel-1 mice (transgenic mice expressing TCR specific for gp100)18, and b2m-1-mice24 were purchased from The Jackson Laboratory. The Rag1−/− OT-
I mice 16 were purchased from Taconic Farms, Inc. Mice were bred at the Dana-Farber Cancer Institute animal facility. All experimental procedures were approved by the Dana-Farber Cancer Institute Animal Care and Use Committee. - Cell lines. B16 melanomas, an aggressive tumor that is difficult to treat, express the surrogate tumor antigen Ovalbumin (Ova), which is recognized by CD8 T cells from OT-I T cell receptor transgenic mice16, 17. EL4 thymoma38 and B16-F10 melanoma15 cells were maintained in RPMI 1640 supplemented with 10% FBS, 2 mM L-glutamine, 10011 g/ml streptomycin and 10011 g/ml penicillin. Ovalbumin-expressing B16 tumor cells (B16-Ova) were maintained in the same media with addition of 600 m/mL G418 (Invitrogen).
- Vectors and shRNA Sequences. shRNAs were selected for 255 genes over-expressed in dysfunctional T cells (anergic or exhausted state). pLKO.3G vector was obtained from The RNAi Consortium. pLKO-Thy1.1, pLKO-Ametrine, pLKO-RFP, pLKO-TFP vectors were modified from pLKO.3G vector by replacing GFP with the corresponding reporter gene. Murine Ppp2r2d and Cb1b sequences targeted by 10 selected shRNAs are provided in Table 3 (listed in order of shRNA activity (highest to lowest)). The LacZ target sequence targeted by a control shRNA is also listed. All other target sequences can be found in Table 2.
-
TABLE 3 # Gene Clone ID Murine shRNA Target Sequence LacZ TRCN0000072227 GCGCTAATCACGACGCGCTGT (SEQ ID NO: 621) 1 Ppp2r2d TRCN0000080900 CCCACATCAGTGCAATGTATT (SEQ ID NO: 386) 2 Ppp2r2d ND000492 CCACAGTGGTCGATACATGAT (SEQ ID NO: 385) 3 Ppp2r2d TRCN0000431278 GAGAATTAACCTATGGCATTT (SEQ ID NO: 384) 4 Ppp2r2d ND000486 GCTCAATAAAGGCCATTACTC (SEQ ID NO: 383) 5 Ppp2r2d TRCN0000080901 CCATTTAGAATTACGGCACTA (SEQ ID NO: 380) 6 Ppp2r2d TRCN0000430828 ATAGTGATCATGAAACATATC (SEQ ID NO: 375) 7 Ppp2r2d TRCN0000080899 GCCACCAATAACTTGTATATA (SEQ ID NO: 374) 8 Ppp2r2d TRCN0000080902 CGGTTCAGACAGTGCCATTAT (SEQ ID NO: 381) 9 Ppp2r2d TRCN0000427220 TCATCTCCACCGTTGAGTTTA (SEQ ID NO: 378) 10 Ppp2r2d TRCN0000425449 ATGCTCATACATATCACATAA (SEQ ID NO: 377) 1 Cblb ND000025 CGAGCGATCCGGCTCTTTAAA (SEQ ID NO: 72) 2 Cblb ND000030 AGCCAGGTCCAATTCCATTTC (SEQ ID NO: 71) 3 Cblb TRCN0000244606 CCCTGATTTAACCGGATTATG (SEQ ID NO: 70) 4 Cblb ND000026 ATCGAACATCCCAGATTTAGG (SEQ ID NO: 61) 5 Cblb TRCN0000244603 CTACACCTCACGATCATATAA (SEQ ID NO: 59) 6 Cblb ND000024 TACACCTCACGATCATATAAA (SEQ ID NO: 67) 7 Cblb TRCN0000244605 TGAGCGAGAATGAGTACTTTA (SEQ ID NO: 60) 8 Cblb TRCN0000244604 CCAGATTTAGGCATCTATTTG (SEQ ID NO: 65) 9 Cblb TRCN0000244607 CTTGTACTCCAGTACCATAAT (SEQ ID NO: 63) 10 Cblb ND000027 TCTACATCGATAGTCTCATGA (SEQ ID NO: 58) - Antibodies and flow cytometry. Single-cell suspensions were stained in PBS, 2% FBS with labeled antibodies at 4° C. for 20 minutes, followed by two washes with ice-cold PBS, 2% FBS. Cells were analyzed/sorted using a FACSAria (BD Biosciences) and FlowJo software (TriStar). Antibodies used were specific for CD4, CD8, Va2, Vβ5.1/5.2, Thy1.1, CD25, CD44, CD62L, CD69, CD122, CD127, IFNγ, TNFα (BioLegend), PD-1, TIM-3, LAG-3, granzyme B, and H-2Kb (BioLegend),Va3.2 (eBioscience), Vβ13, Vβ14 (BD Biosciences), phospho-Akt (Ser473) and phospho-Bad (Ser112) (Cell Signaling). Apoptotic cells were detected by labeling with annexin V (BioLegend) or activated caspase-3 antibody (Cell Signaling). Mouse anti-CD3/CD28 beads were purchased from Invitrogen.
- T cell isolation from tumors. B16-Ova melanomas were cut into small pieces in petri dishes containing 5 mL of PBS, 2% FBS and washed with PBS. Tumors were resuspended in 15 mL RPMI supplemented with 2% FBS, 50U/mL Collagenase Type IV (Invitrogen), 20U/mL DNase (Roche), samples incubated at 37° C. for 2 hours and tissue further dissociated using a gentleMACS Dissociator (Miltenyi Biotech). Suspensions were washed three times with PBS and passed through a 70 μM strainer. Lymphocytes were isolated by density gradient centrifugation and then either analyzed or sorted by flow cytometry using a FACSAria (BD Biosciences). T cell apoptosis. Cytokine pre-treated OT-I cells were transduced with LacZ or Ppp2r2d shRNAs and injected into
mice bearing day 14 B16-Ova tumors. After 7 days, intracellular staining was performed using an activated caspase-3 antibody (Cell Signaling) and CD8/Thy1.1 double-positive T cells were gated in the FACS analysis. - Immunofluorescence and immunohistochemistry. B16-Ova tumors from mice treated with OT-I T cells expressing LacZ or Ppp2r2d shRNAs (GFP-expressing vector) were cryopreserved in optimal cutting temperature (O.C.T.) compound (Tissue-Tek). 10 μm-sections from cryopreserved tumors were were permeabilized with 0.2% Triton X-100, fixed in 4% paraformaldehyde and stained with a GFP antibody (Molecular Probes) in combination with DAPI. For TUNEL detection, sections were stained with
TACS 2 TdT Blue Label (Trevigen) based on manufacturer's directions. Samples were visualized using a laser-scanning confocal microscope (Leica SP5X) and analyzed with ImageJ software (NIH). qRT-PCR assay. Total RNA was extracted using TRIzol reagent (Invitrogen). RNA was reverse transcribed with the High Capacity cDNA Reverse Transcription kit (Applied Biosystems). Real time quantitative PCR reactions were performed as triplicates using an ABI 7900HT instrument with SYBR green (ABI). Rp123 levels were used for normalization. The following primers were used: Ppp2r2d forward GGAAGCCGACATCATCTCCAC (SEQ ID NO: 622), Ppp2r2d reverse GTGAGCGCGGCCTTTATTCT (SEQ ID NO: 623); Cb1b forward GGTCGCATTTTGGGGATTATTGA (SEQ ID NO: 624), Cb1b reverse TTTGGCACAGTCTTACCACTTT (SEQ ID NO: 625); Rp123 forward CTGTGAAGGGAATCAAGGGA (SEQ ID NO: 626) and Rp123 reverse TGTCGAATTACCACTGCTGG (SEQ ID NO: 627). - Microarray Analysis. IL-7/IL-15 cultured OT-I T cells were transduced with one of five experimental shRNAs (Ppp2r2d, Arhgap5, Alk, Egr2, Ptpn2) or a LacZ control shRNA. Infected cells were sorted to purity using GFP encoded by the vector as a reporter. T cells (5×106) were injected i.v. into
mice bearing day 14 B16-Ova tumors. Seven days later, shRNA-expressing OT-I T cells (CD8+GFP+) were isolated from tumors and spleens. Cells were sorted twice to high purity and total RNA was extracted using TRIzol reagent (Invitrogen) for Affymetrix gene expression profiling (Mouse Genome 430 2.0 Arrays). Arrays for each shRNA were done in triplicate (6 mice per group). - Materials. Antibodies used for T cell activation were anti-mouse CD3 and anti-mouse CD28 (Biolegend). Antibodies used to capture secreted cytokines were anti-mouse IFNγ (Biolegend), anti-mouse IL-2 (Biolegend), anti-mouse TNFα (Biolegend) and anti-mouse GM-CSF (Biolegend). Detection antibodies were anti-mouse IFNγ (Biolegend), anti-mouse IL-2 (Biolegend), anti-mouse TNFα (Biolegend) and anti-mouse GM-CSF (Biolegend), and they were fluorescently labeled with appropriate Alexa Fluor dyes (Invitrogen) following manufacturer's instructions. The lipids used to prepare supported bilayers were: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotinyl Cap PE) (Avanti Polar Lipids).
- Fabrication of PDMS arrays of nanowells and preparation of supported lipid bilayers. The array of nanowells was manufactured by injecting polydimethylsiloxane (PDMS, Dow Corning) prepared at a 10:1 base/catalyst weight ratio into a custom-built mold encasing a micropatterned silicon master. Arrays of nanowells were cured at 70° C. for 4-16 h. Each array comprised 72×24 blocks, each containing a 7×7 (50 μm×50 μm×50 μm) subarray of nanowells (total of 84,672 wells). The PDMS arrays adhered directly to a 3″×1″ glass slide forming a 1 mm thick layer. Supported lipid bilayers were prepared as described previously14. Bilayers were generated by applying DOPC liposomes containing 2 mol % biotin-Cap-PE lipids on the PDMS array of nanowells. The surfaces were rinsed with deionized water to remove excess liposomes. Before use, the lipid bilayer was blocked with BSA in PBS (100 μg/mL) for 45 minutes. The bilayer was then incubated with 1 μg/mL of streptavidin in a solution of 100 μg/mL BSA in PBS, followed by incubation with biotinylated CD3 and CD28 antibodies. The device was rinsed extensively with PBS before adding the cells.
- Microengraving. Capture antibodies were diluted in borate buffer (50 mM sodium borate, 8 mM sucrose, and 50 mM NaCl, pH 9.0) to a final concentration of 10 μg/mL and deposited on the surface of epoxy-modified slides for 1 h at room temperature. Slides were blocked with 3% non-fat milk in PB ST (PBS with 0.05% (v/v) Tween 20) for 30 min at room temperature and washed with PBS before placing them into contact with the PDMS array of nanowells. A suspension of T cells was dispensed onto the surface of the nanowells, modified with a supported lipid bilayer in media and allowed to settle into the wells. The density of suspended cells applied to the array was optimized empirically to maximize well occupancy by single cells (typically ˜30% of wells). After incubation of the cell-loaded wells, a glass slide coated with capture antibodies was then placed onto the loaded array for cytokine capture. The microarray and glass slide were held together by compression in a hybridization chamber (Agilent Technologies, G2534A) and incubated for 1 h at 37° C. with 5
% CO 2. The glass slide was then separated from the array and placed in PBS. After microengraving, slides were incubated for 30 min with blocking buffer (PBS, 10 mg/mL BSA, 0.05% (v/v) Tween-20, 2% mouse serum and 2 mM sodium azide), washed with PBST (PBS+0.05% v/v Tween-20), and then incubated with fluorescence detection antibodies at 1 μg/mL for 45 min at 25° C. The slides were washed with PBST and PBS, rinsed briefly with water, and dried with a N2 stream. Reference slides were generated at the end of each experiment with the same detection antibodies used on the printed slides. For reference slides, antibodies were diluted in water, spotted onto blank poly-L-lysine slides (1 μL/spot), and the reference slides were dried under vacuum. Slides were scanned using a Genepix 4200AL microarray scanner (Molecular Devices). The median fluorescence intensity of each spot was extracted using Genepix Pro. - On-chip image-based cytometry. Before imaging, T cells were stained with CellMask™ Plasma Membrane Stain (Invitrogen, Life Technologies) and SYTOX green (for detection of dead cells, Life Technologies). The cell-loaded arrays of nanowells were mounted face-up on the microscope with a coverslip placed on top of the array. Images were acquired on an automated inverted epifluorescence microscope (Carl Zeiss). Transmitted light and epifluoresence micrographs were collected block-by-block (7×7 microwells per block). The resulting collection of images was analyzed using a custom program to determine the number of cells present in each well and the mean fluorescence intensity of each label. Only viable T cells were considered for the analysis. Although the cells expressed GFP, the fluorescence intensity of GFP was negligible under the utilized microscope acquisition setting compared to SYTOX green, enabling identification of dead cells.
- Data analysis. Data extracted from both on-chip cytometry and printed cytokines were matched in Microsoft Excel using unique identifiers assigned to each well within the array. The dataset was filtered to include wells containing only single cells. To compensate from signal bleed-through and convert the measured fluorescence intensity for the captured cytokines from a given cell into a rate of secretion, the data from standard calibration curves (from reference slides) prepared with known amounts of detection antibodies was used to convert measured intensities to a number of molecules, as described previously (Han, Q., et.al., Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving.
Lab Chip 10, 1391-1400, doi:10.1039/b926849a (2010). - Two large primary screens were performed, with the first focusing on genes over-expressed in dysfunctional T cells (T cell anergy or exhaustion; 255 genes, 1,275 shRNAs divided into two pools), and the second on kinases/phosphatases (1,307 genes, 6,535 shRNAs divided into seven pools) (Table 4). In these primary screens, each gene was represented by ˜5 shRNAs.
-
TABLE 4 T cell Kinase/ shRNA Dysfunction Phosphatase Enrichment 1st Genes 255 1307 4-10x: 123 Screen shRNAs 1275 6535 10-20x: 17 Candidate 32 82 >20x: 1 Genes 2nd Genes 32 43 4-10x: 191 Screen shRNAs 480 645 10-20x: 27 Candidate 17 26 >20x: 1 Genes - shRNAs targeting 255 genes over-expressed in dysfunctional T cells (anergic or exhausted state)31-37 and 1,307 kinase/phosphatase genes (˜5 shRNAs per gene) were obtained from The RNAi Consortium (TRC; Broad Institute, Cambridge, MA, USA). Nine pools were created and shRNAs subcloned into the pLKO-Thy1.1 lentiviral vector. Each pool also contained 85 negative-control shRNAs (number of shRNAs: GFP, 24; LacZ, 20;
luciferase 25; RFP 16). OT-I T cells isolated by negative selection (Stemcell Technologies) were cultured with IL-7 (5 ng/mL, Peprotech) and IL-15 (100 ng/mL, Peprotech) in complete RPMI media (RPMI 1640, 10% FBS, 20 mM HEPES, 1 mM sodium pyruvate, 0.05 mM 2-mercaptoethonal, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 μg/ml penicillin). Onday 2, OT-I T cells were spin-infected with lentiviral pools (nine lentiviral shRNA pools and a LacZ control shRNA lentiviral vector control) supplemented with protamine sulfate (5 μg/mL) in 24-well plates coated with retronectin (5 μg/mL) at a multiplicity of infection (MOI) of 15. Typically, ˜5×106 OT-1 T cells were infected for each pool. - Following infection, OT-I cells were cultured with IL-7 (2.5 ng/mL), IL-15 (50 ng/mL) and IL-2 (2 ng/mL) in complete RPMI media. On
day 5, live shRNA-transduced T were enriched using a dead cell removal kit (Miltenyi), and infected cells were positively selected based on Thy1.1 marker (Stemcell Technologies) to 50-60% Thy1.1 positivity. Successful transduction was monitored by surface expression of the Thy1.1 reporter (FIG. 2 ). T cells (5×106) were injected i.v. into C57BL/6mice bearing day 14 B16-Ova tumors (15 mice per shRNA pool)(number of animals chosen to provide sufficient cells for T cell isolation and PCR). Genomic DNA was isolated from 5×106 enriched OT-I cells as the start population for deep sequencing. Seven days later, shRNA-expressing T cells (CD8+Va2+V(35+Thy1.1+) were isolated by flow cytometry from tumors, spleens, tumor-draining lymph nodes and irrelevant lymph nodes for isolation of genomic DNA, followed by PCR amplification of the shRNA cassette. (FIG. 3 ) Genomic DNA was isolated (Qiagen) and deep-sequencing templates were generated by PCR of the shRNA cassette. Representation of shRNAs in each pool was analyzed by deep sequencing using anIllumina Genome Analyzer 30. Data were normalized using the average reads of control shRNAs in each pool. Kinase/phosphatase genes were selected for the secondary screen based on expression levels in T cells. - For certain genes, shRNAs were over-represented in all tested tissues compared to the starting T cell population (e.g. SHP-1), indicative of enhanced proliferation independent of TCR recognition of a tumor antigen. For other genes, there was a selective loss of shRNAs within tumors (e.g. ZAP-70, a critical kinase in the T cell activation pathway). We focused our analysis on genes whose shRNAs showed substantial over-representation in tumor but not spleen, a secondary lymphoid organ. Substantial T cell accumulation in tumors was observed for a number of shRNAs, despite the immunosuppressive environment. For secondary screens, we created focused pools in which each candidate gene was represented by ˜15 shRNAs.
- Primary data from this analysis are shown for three genes in
FIG. 4 : LacZ (negative control), Cb1b (an E3 ubiquitin ligase that induces T cell receptor internalization)19 and Ppp2r2d (not previously studied in T cells). For both Ppp2r2d and Cb1b, five shRNAs were substantially increased in tumors (red) compared to spleen, while no enrichment was observed for LacZ shRNAs. Overall, 43 genes met the following criteria: ≥_4-fold enrichment for 3 or more shRNAs in tumors compared to spleen (Table 5,FIG. 4 ,FIG. 5 ). The set included gene products previously identified as inhibitors of T cell receptor signaling (including Cb1b, Dgka, Dgkz, Ptpn2) as well as other well-known inhibitors of T cell function (e.g. Smad2, Socsl, Socs3, Egr2), validating our approach (Table 5, Table 6).20-22 Table 5 describes the functional classification of candidate genes from the secondary screen. -
TABLE 5 Function Genes Inhibition of TCR signaling Cbib, Dgka, Dgkz, Fyn, Inpp5b, Ppp3cc, Ptpn2, Stk17b, Tnk1 Phosphoinositol metabolism Dgka, Dgkz, Impk, Inpp5b, Sbf1 Inhibitory cytokine signaling Smad2, Socs1, Socs 3pathways AMP signaling, inhibition of Entpd1, Prkab2, Nuak mTOR Cell cycle Cdkn2a, Pkd1, Ppp2r2d Actin and microtubules Arhgap5, Mast2, Rock 1Potential nuclear functions Blvrb, Egr2, Impk, Jun, Ppm1g Role in cancel cells Alk, Arhgap5, Eif2ak3, Hipk1, Met, Nuak, Pdzk1ip, Rock1, Yes1 - Secondary screens were performed focusing on genes whose shRNAs showed substantial over-representation in tumor but not spleen, a secondary lymphoid organ. Substantial T cell accumulation in tumors was observed for a number of shRNAs, despite the immunosuppressive environment. For these secondary screens, ˜10 additional shRNAs were synthesized for each gene (IDT) for a total of ˜15 shRNAs per gene. These focused pools contained 85 negative-control shRNAs. Two control shRNAs (one for RFP, one for luciferase) showed some enrichment in tumors relative to spleen (4.0 and 5.1-fold, respectively). Cut-off in the secondary screen was defined as ≥3 shRNAs with ≥4 fold enrichment in tumor relative to spleen. Screening results were validated at a cellular level by introducing individual shRNAs into T cells, along with a reporter protein (GFP, TFP, RFP or Ametrine fluorescent proteins, Thy1.1). This approach enabled simultaneous testing of five shRNAs in an animal (three mice per group). Proliferation of shRNA-transduced T cells was visualized based on CFSE dilution after 24 hours as well as 3, 5 and 7 days. In addition, intracellular staining was performed on
days -
TABLE 6 Total # Enrichment Symbol shRNAs (fold) Function Dgkz 6 5.2-14.0 Phosphorylates and thereby inactivates DAG Egr2 6 4.0-10.2 Transcription factor involved in T cell unresponsiveness, expression of Cblb Smad2 5 6.7-30.3 TGF beta signaling pathway Cblb 5 4.1-10.8 E3 ubiquitin ligase (degradation of TCR and signaling molecules; ko mice reject tumors) Inpp5b 5 4.3-9.5 Inositol polyphosphate-5-phosphatase, hydrolyzes PIP2 Socs1 5 4.1-8.5 Inhibitor of cytokine signaling Jun 5 5.2-6.4 Persistent AP-1 activation in tumor-infiltrating T cells leads to upregulated PD-1 Entpd1 4 6.5-13.3 Extracellular degradation of ATP to AMP (an inhibitory signal through AMP kinase) Vamp7 4 4.0-11.3 Vesicle associated transmembrane protein Dgka 4 5.0-10.2 Phosphorylates and thereby inactivates DAG Mdfic 4 4.4-10.0 Inhibits viral gene expression, interacts with cyclin T1 and T2 Nptxr 4 4.0-7.2 Pentraxin Receptor F11r 4 4.6-6.8 Cell migration Socs3 4 4.6-6.3 Inhibitor of cytokine signaling Pdzk1ip1 3 4.8-12.9 Pdzk1 interacting protein, expression correlates with tumor progression Fyn 3 4.1-6.5 Inhibits activation of resting T cells (through Csk) Ypel2 3 4.6-5.1 Function unknown -
TABLE 7 Total # Enrichment Symbol shRNAs (fold) Function Rbks 6 4.0-12.8 Ribokinase carbohydrate metabolism Pkd1 6 4.9-9.9 Cell cycle arrest (activates JAK/STAT pathway) Ppp2r2d 5 4.0-17.2 Regulatory subunit of PP2A phosphatase Eif2ak3 5 4.8-13.4 ER stress sensor, resistance of cancer cells to chemotherapy Ptpn2 5 4.7-7.4 Inhibitor of T cell and cytokine signaling Hipk1 4 4.5-12.3 Interacts with p53 and c-myb, knockout mice develop fewer carcinogen-induced tumors Grk6 4 4.2-11 Regulator of particular G-protein coupled receptors Cdkn2a 4 4.1-7.2 G1 cell cycle arrest and apoptosis in T cells Sbf1 4 4.8-6.9 Activates MTMR2, which dephosphorylates PI(3)P and PI(3,5)P2 Ipmk 4 4.0-6.9 Inositol polyphosphate kinase, nuclear functions such as chromatin remodeling Rock1 4 4 4.1-6.5 Rho kinase, inhibitors have shown activity in mouse models of cancer Stk17b 4 4.0-6.4 Inhibitor of T cell signaling forms complex with protein kinase D Mast2 4 4.1-5.1 Microtubule-associated serine/threonine kinase Arhgap5 3 6.0-15.7 Negative regulator of Rho GTPases, inhibition can reduce cancer cell invasion Alk 3 9.6-13.5 Anaplastic lymphoma kinase (translocation of nucleophosmin and ALK in ALCL) Nuak 3 4.5-13.1 Member of AMP-activated protein kinase-related kinase family, oncogene in melanoma Akap81 3 4.4-11.8 A-kinase anchoring protein, recruits cAMP-dependent protein kinase (PKA) to chromatin Pdp1 3 4.1-9.8 Pyruvate dehydrogenase phosphatase 1, regulation of glucose metabolism Yes1 3 5.4-9.7 Src family kinase, oncogene in several tumors Met 3 4.1-8.9 Receptor tyrosine kinase, involved in hepatocellular and other cancers Ppm1g 3 6.2-8.2 Dephosphorylates spliceosome substrates and histones H2A-H2B Blvrb 3 5.3-8.0 Biliverdin reductase, also transcription factor, arrest of cell cycle Tnk1 3 5.2-7.6 Downregulates Ras pathway (phosphorylation of Grb2), inhibition of NF-KB pathway Prkab2 3 4.1-7.0 Subunit of AMP kinase, inhibits fatty acid synthesis and mTOR pathway Trpm7 3 4.9-5.9 Ion channel and serine-threonine kinase Ppp3cc 3 4.2-4.4 Regulatory subunit of calcineurin (phosphatase in T cell receptor signaling) - Positive shRNAs from deep sequencing analysis were cloned into lentiviral vectors encoding five different reporter proteins (GFP, TFP, RFP or Ametrine fluorescent proteins, Thy1.1). Cytokine-pretreated OT-I T cells were transduced with lentiviral vectors driving expression of a single shRNA and a reporter protein; 1×106 T cells of each population were mixed and co-injected i.v. into C57BL/6
mice bearing day 14 B16-Ova tumors. After seven days T cells were isolated from tumors, spleens and lymph nodes, and the percentage of reporter-positive CD8+Va2+Vf35+ T cells was determined by flow cytometry based on co-introduced reporters. Fold-enrichment in tumors compared to spleen was calculated based on the percentage of OT-I T cells in each organ expressing a particular reporter. When the control LacZ shRNA was expressed in CD8 OT-I T cells, the frequency of shRNA-expressing CD8 OT-I T cells was lower in tumors compared to spleen (˜2-fold). In contrast, experimental shRNAs induced accumulation of CD8 OT-I T cells in tumors but not the spleen (FIG. 6 ,FIG. 7 ). For seven of these shRNAs (e.g., Ppp2r2D, Eif2ak3, Arhgap5, Smad2, Akap8I, Rbks and Egr2), T cell accumulation in tumors was >10-fold relative to spleen. The strongest phenotype was observed with shRNAs targeting Ppp2r2d, a regulatory subunit of the PP2A phosphatase7. - CD8+OT-I or CD4+ TRP-1 T cells expressing Ppp2r2d or LacZ shRNAs were injected into
mice bearing day 14 B16-Ova tumors. shRNA-expressing T cells were identified in tumors and spleens using Thy1.1 reporter (FIG. 8 , % Thy1.1+CD8 T cells, left panels). Total numbers of LacZ or Ppp2r2d shRNA-expressing T cells were determined in tumors andspleens 7 days following transfer of 2×106 shRNA-expressing cells (FIG. 8 , right panels). Fold-enrichment of Ppp2r2d versus LacZ shRNA-expressing T cells in tumors is indicated. Ppp2r2d shRNA not only induced accumulation of OT-I CD8 T cells, but also CD4 T cells (from TRP-1 TCR transgenic mice)23, with T cell numbers in tumors being significantly higher when Ppp2r2d rather than LacZ shRNA was expressed (36.3-fold for CD8; 16.2-fold for CD4 T cells) (FIG. 8 ). - T cell enrichment in tumors compared to spleen for cells expressing a panel of Ppp2r2d or Cb1b shRNAs (
FIG. 17 , upper panels) Ppp2r2d and Cb1b mRNA levels were also measured by qPCR prior to T cell transfer (FIG. 17 , lower panels). The strongest T cell enrichment in tumors was observed for shRNAs with >80% knock-down efficiency at the mRNA level (shRNAs # FIG. 17 ). - Ppp2r2d knockdown was also confirmed at the protein level using a quantitative mass spectrometry approach (
FIG. 18 ). A previously reported approach for absolute quantification (AQUA) of proteins from cell lysates by mass spectrometry was used to measure the effect of Ppp2r2d shRNA expression at the protein level (Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W. & Gygi, S. P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. PNAS, 100, 6940-6945 (2003). This strategy is based on a ‘selective reaction monitoring’ approach in which a synthetic peptide with incorporated stable isotopes is used as an internal standard for mass spectrometry analysis.OT-I cells expressing LacZ or Ppp2r2d shRNAs were sorted to purity using FACS. Cells (1×106) were lysed in 1 ml of MPER extraction reagent (Pierce) containing a Protease Inhibitor Cocktail (Sigma), 1 mM EDTA and 1 mM PMSF for 15 minutes on ice with occasional vortexing. Cell debris was removed by centrifugation and the protein supernatant was filtered (0.2 μm SpinX centrifuge filter, Costar). Protein concentration was determined by Bradford assay (Biorad) and UV280 nm analysis (Nanodrop instrument); 0.1 mg of cellular protein was separated by SDS-PAGE and stained with Coomassie blue reagent (Pierce). Gel bands corresponding to a MW range of 45-60 kDa were excised followed by in-gel digestion of proteins with trypsin. Eluted peptides were spiked with 300 fmol of isotopically labeled Ppp2r2d (FFEEPEDPSS[13C-15N-R]-OH)(SEQ ID NO: 628) and Actin B (GYSFTTTAE[13C-15N-R]-OH) (SEQ ID NO: 629) peptides (21st Century Biochemicals) for quantification by LC MS/MS (LTQ XL Orbitrap, Thermo Scientific). The Ppp2r2d peptide was chosen from a region of the protein that differs from other regulatory subunits of PP2A. Initially, a LC-MS/MS run of a LacZ shRNA sample was analyzed to localize the Ppp2r2d and Actin B peptides that were being monitored. The absolute quantification AQUA peptides co-eluted with the corresponding endogenous peptides from the reverse-phase column, yet their higher MW (10 Da) enabled the ratio of peak intensity for endogenous and AQUA peptides to be determined using abundant peptide fragment ions. Triplicate samples were analyzed by SDS-PAGE—LC-MS/MS and statistical significance was determined using Graphpad Prism 6.0 software using a two-sided Student t-test (F test, * p=0.0062). - The specificity of Ppp2r2d shRNA was determined. Ppp2r2d shRNA activity was specific because the phenotype was reversed when a mutated Ppp2r2d cDNA (with wild-type protein sequence, but mutated DNA sequence at the shRNA binding site) was co-introduced with the Ppp2r2d shRNA (
FIG. 9, 10 a-c). Furthermore, OT-I CD8 T cells over-expressed Ppp2r2d in tumors compared to spleen (in the absence of any shRNA expression), suggesting that it is an intrinsic component of the signaling network inhibiting T cell function in tumors (FIG. 19 ). - OT-I T cells transduced with lentiviral vectors driving expression of LacZ shRNA, Ppp2r2d shRNA, Ppp2r2d shRNA. Mutant Ppp2r2d cDNA with preserved protein sequence but disrupted shRNA binding site were generated. Wild-type Ppp2r2d cDNA was isolated by RT-PCR using forward primer GGATCCATGGCAGGAGCTGGAGGC (SEQ ID NO: 630) and reverse primer: GCTAGCATTAATTTTGTCCTGGAATATATACAAGTTATTGGTGG (SEQ ID NO: 631). The target sequence of Ppp2r2d shRNA, CCCACATCAGTGCAATGTATT (SEQ ID NO: 632) was mutated to TCCCCACCAATGTAACGTGTT (SEQ ID NO: 633) by overlapping PCR (which conserves protein coding sequence) using forward primer: TCCATCCCCACCAATGTAACGTGTTTGTTTACAGCAGCAGCAAGG (SEQ ID NO: 634) and reverse primer: AAACAAACACGTTACATTGGTGGGGATGGAACTCTGCGGCAGTGA (SEQ ID NO: 635). (
FIG. 10 a ) Both wild-type and mutant Ppp2r2d cDNAs were cloned into a modified pLKO.3 vector with a 2A ribosomal skip peptide-GFP sequence (resulting in stoichiometric Ppp2r2d and GFP expression in cells). Constructs were introduced into EL4 thymoma cells. GFP-expressing EL4 cells were sorted to purity and then transduced with LacZ or Ppp2r2d shRNA lentiviral vectors driving expression of a Thy1.1 reporter. shRNA-transduced (Thy1.1+) cells were analyzed by flow cytometry for GFP expression. The Ppp2r2d shRNA reduced GFP levels when wild-type Ppp2r2d. The Ppp2r2d shRNA was not able to reduce expression of the GFP reporter in cells expressing the mutant Ppp2r2d cDNA, demonstrating that the shRNA binding site had been successfully mutated. (FIG. 10 a ) - Expression of Ppp2r2d mutant cDNA also prevents phenotype induced by Ppp2r2d shRNA. (
FIG. 10 b ) Ppp2r2d shRNA was cloned into the mutant Ppp2r2d cDNA-2A-GFP construct which resulted in co-expression of Ppp2r2d shRNA and mutated Ppp2r2d cDNA in one vector. OT-I T cells were separately infected with lentiviruses encoding LacZ shRNA (Thy1.1), Ppp2r2d shRNA (Ametrine) or Ppp2r2d shRNA plus mutant Ppp2r2d cDNA (GFP). (FIG. 10 b ) These three populations there then mixed at the same ratio and injected intomice bearing day 14 B16-Ova tumors. Onday 7, each T cell population was quantified in tumors and spleens by gating on OT-I (CD8+Va2+V(35+)-T cells followed by analysis of populations marked by Thy1.1, Ametrine or GFP expression. The percentage of each T cell population in tumors and spleens was quantified by gating on Va2+Vf35+T cells; transduced cells were detected based on expression of Thy1.1 or Ametrine/GFP fluorescent reporters and the results are shown inFIG. 10 b . (representative data from 2 independent experiments, n=3 mice per experiment). -
FIG. 10 c provides real-time PCR analysis for Ppp2r2d expression in OT-I T cells transduced with LacZ shRNA, Ppp2r2d shRNA, and Ppp2r2d shRNA plus Ppp2r2d mutant cDNA. Also, the Ppp2r2d shRNA with the highest in vivo activity was associated with the lowest levels of Ppp2r2d mRNA (FIG. 11 ). - Microarray analysis of tumor-infiltrating T cells expressing experimental or control shRNAs showed that each shRNA induced a distinct set of gene expression changes, with some overlap between particular shRNAs (
FIG. 12 a-c ). Two genes (Egr2 and Ptpn2) have known functions in T cells. Enrichment in tumor versus spleen was calculated based on deep sequencing results from the secondary screen. (FIG. 12 a ) Clustering of mean expression levels for mRNAs found to be significantly regulated by T cells in spleens or tumors expressing the LacZ control shRNA or one of five experimental shRNAs. (FIG. 12 b ) Significant expression differences were defined as an Anova p value <0.01 between T cells expressing LacZ control shRNA or one of five experimental shRNAs (Alk, Arhgap5, Egr2, Ptpn2 or Ppp2r2d) (JMP-Genomics 6.0, SAS Institute Inc.). mRNAs significantly regulated in one or more treatment groups are shown after clustering (Fast Ward).FIG. 12 c is a Venn diagram showing overlaps between expression signatures by tumor-infiltrating T cells transduced with one of the five experimental shRNAs (signatures defined as an Anova p<0.01 as described above). Indicated are the numbers of overlapping probe IDs for any combination of the 5 signatures, as indicated by the overlapping ovals. The significance of the overlaps versus that expected by random chance (Fishers Exact Test) is shown in the accompanying table. - For this example, the cellular mechanisms driving T cell accumulation by a Ppp2r2d shRNA in tumors—specifically T cell infiltration, accumulation and apoptosis were examined. T cell infiltration into tumors was assessed by transfer of OT-I CD8 T cells labeled with a cytosolic dye, CFSE. OT-I T cells expressing Ppp2r2d or LacZ shRNAs were labeled with CFSE and injected into B16-Ova tumor-bearing mice. Twenty-four hours later transduced T cells were isolated from tumors and spleens and quantified by flow cytometry. OT-I T cells expressing LacZ or Ppp2r2d shRNAs were purified using the Thy1.1 reporter and cultured in complete RPMI media without added cytokines for 24 hours. Live cells isolated by Ficoll density gradient centrifugation (Sigma) were labeled with CFSE (carboxyfluorescein diacetate, succinimidyl ester, Invitrogen), and 2×106 labeled cells were injected into
mice bearing day 14 B16-Ova tumors. CFSE dilution was quantified by flow cytometry at 24 hours anddays days day 1, arguing against a substantial effect on T cell infiltration (FIG. 13 a ). However, analysis of later time points (days 3 and 5) demonstrated a higher degree of proliferation (based on CFSE dilution) by Ppp2r2d compared to LacZ shRNA-transduced T cells (FIG. 13 b ,FIG. 20 a ). Ppp2r2d shRNA-transduced T cells also produced higher levels of interferon-γ, a cytokine critical for anti-tumor immunity (FIG. 13 e ). The action of Ppp2r2d was downstream of T cell receptor activation because T cell accumulation was enhanced in tumors and to a lesser extent in tumor-draining lymph nodes. In contrast, no accumulation was observed in irrelevant lymph nodes or the spleen where the relevant antigen is not presented to T cells (FIG. 15 ).A substantial degree of T cell accumulation was even observed for LacZ shRNA-transduced T cells (complete dilution of CFSE dye by day 7), despite the presence of small numbers of such cells in tumors. This suggested that LacZ shRNA-transduced T cells were lost by apoptosis. Indeed, a larger percentage of tumor-infiltrating T cells were labeled with an antibody specific for active caspase-3 when the LacZ control shRNA (rather than Ppp2r2d shRNA) was expressed (FIG. 13 g ,FIG. 20 b ). Furthermore, co-culture of CD8 T cells with B16-Ova tumor cells showed that the majority of LacZ shRNA expressing T cells became apoptotic (65.7%) while most Ppp2r2d shRNA-transduced T cells were viable (89.5%,FIG. 13 c ). - OT-I T cells expressing LacZ or Ppp2r2d shRNAs were purified based on Thy1.1 expression and labeled with CFSE, as described above. CFSE labeled OT-I T cells (1×105) were co-cultured with 5×104 B16-Ova cells per well in a 96-well plate for 72 h. Prior to the assay, B16-Ova cells were exposed to 1 ng/mL IFNγ for 48 hours (to induce MHC class I, which is not expressed in vitro) and washed three times. Apoptosis of OT-I T cells was detected by annexin V labeling of CD8+ cells. (
FIG. 13 c ) Intracellular staining of phospho-AKT (Ser473), phopsho-B ad (Ser 112), Bc1-2 and isotype control was performed at 48 hours using a BD intracellular staining kit. Co-culture of CD8 T cells with B16-Ova tumor cells indeed showed that the majority of LacZ shRNA expressing T cells were apoptotic (65.7%) while the majority of Ppp2r2d shRNA-transduced T cells were viable (89.5%,FIG. 13 c ). A similar phenotype was observed when Ppp2r2d and LacZ shRNA-expressing T cells were stimulated with immobilized CD3 antibody in the absence of CD28 costimulation (FIG. 14 ). Specifically, B16-Ova cells (2×105) were injected s.c. into female C57BL/6 mice (10 weeks of age). Onday 12, mice bearing tumors of similar size were divided into 7 groups (7-8 mice/group). Anti-CD3/CD28 bead activated CD4 TRP-1 or/and CD8 OT-I T cells infected with Ppp2r2d or LacZ shRNA vectors (2×106 T cells each) were injected i.v. ondays 12 and day 17. For the treatment of B16 tumors, mice were treated atday 10 with anti-CD3/CD28 bead activated CD4 TRP-1 and CD8 pmel-1 T cells expressing Ppp2r2d or LacZ shRNAs (3×106 T cells each). Tumor size was measured every three days following transfer and calculated as length×width. Mice with tumors ≥20 mm on the longest axis were sacrificed. - These results suggested the possibility that Ppp2r2d shRNA-transduced CD8 T cells may be able to proliferate and survive even when they recognize their antigen directly presented by B16-Ova tumor cells. This idea was tested by implantation of tumor cells into b2m−/− mice which are deficient in expression of MHC class I proteins. In such mice, only tumor cells but not professional antigen presenting cells of the host could present tumor antigens to T cells. Indeed, Ppp2r2d shRNA-transduced OT-I CD8 T cells showed massive accumulation within B16-Ova tumors in b2m−/− mice (
FIG. 120 while there were very small numbers of T cells in contralateral B16 tumors that lacked expression of the Ova antigen. T cells expressing a Ppp2r2d shRNA could thus effectively proliferate and survive in response to tumor cells, despite a lack of suitable co-stimulatory signals and an inhibitory microenvironment. - Ex vivo analysis of tumor-infiltrating T cells at a single-cell level using a nanowell device also demonstrated that Ppp2r2d silencing increased cytokine production by T cells (
FIG. 21 a-c ). T cells were activated for 3 hours by CD3/CD28 antibodies on lipid bilayers, followed by 1 hour cytokine capture on antibody-coated slides. CD8 T cells showed a higher secretion rate for IFNγ, IL-2 and GM-CSF, and a larger fraction of T cells more than one cytokine (FIG. 21 b, c ). The presence of larger numbers of IFNγ-producing T cells was confirmed by intracellular cytokine staining (FIG. 21 d ,FIG. 20 ). - PP2A phosphatase is composed of a catalytic and scaffolding subunit, and its substrate specificity is determined by one of many
regulatory subunits 7. Ppp2r2d directs PP2A to Cdk1 substrates during interphase and anaphase; it thereby inhibits entry into mitosis and induces exit from mitosis25. PP2A plays a gatekeeper role for BAD-mediated apoptosis. Phosphorylated BAD is sequestered in its inactive form in the cytosol by 14-3-3, while dephosphorylated BAD is targeted to mitochondria where it causes cell death by binding Bc1-X L and Bc1-2 26. PP2A phosphatases have also been shown to interact with the cytoplasmic domains of CD28 and CTLA-4 as well as Carma1 (upstream of the NF-KB pathway), but it is not known which regulatory subunits are required for these activities; Ppp2r2d antibodies suitable for the required biochemical studies are currently not available. - The ability of a Ppp2r2d shRNA to enhance the efficacy of adoptive T cell therapy was assessed. B16-Ova tumor cells (2×105) were injected subcutaneously into female C57BL/6 mice (10 weeks of age). On
day 12, mice bearing tumors of similar size were divided into seven groups (7-8 mice/group), either receiving no T cells, 2×106 shRNA-transduced TRP-1 CD4 T cells, 2×106 shRNA infected OT-I CD8 T cells, or both CD4 and CD8 T cells (days 12 and day 17). According to group, anti-CD3/CD28 bead activated CD4 TRP-1 or/and CD8 OT-I T cells infected with Ppp2r2d or LacZ shRNA vectors (2×106 T cells each) were injected i.v. ondays 12 and day 17. For the treatment of B16 tumors, mice were treated atday 10 with anti-CD3/CD28 bead activated CD4 TRP-1 and CD8 pmel-1 T cells expressing Ppp2r2d or LacZ shRNAs (3×106 T cells each). Tumor size was measured every three days following transfer and calculated as length×width. Mice with tumors ≥20 mm on the longest axis were sacrificed. Ppp2r2d-silencing improved the therapeutic activity of CD4 and CD8 T cells, and a synergistic effect was observed when Ppp2r2d shRNA-transduced CD4 and CD8 T cells were co-administered (FIG. 16 a, b ). A Ppp2r2d shRNA also enhanced anti-tumor responses when introduced into T cells specific for endogenous tumor antigens (pmel-1 CD8 T cells and TRP-1 CD4 T cells) (FIG. 16 c ). - Ppp2r2d-silenced T cells acquired an effector phenotype in tumors (
FIG. 22 a ) and >30% of the cells expressed granzyme B (FIG. 23 a ). Consistent with greatly increased numbers of such effector T cells in tumors (FIG. 23 b ), TUNEL staining demonstrated increased apoptosis in tumors when Ppp2r2d rather than LacZ shRNA expressing T cells were present (FIG. 23 c ). B16 melanomas are highly aggressive tumors in part because MHC class I expression is very low. Interestingly, Ppp2r2d but not LacZ shRNA-expressing T cells significantly increased MHC class I expression (H-2Kb) by tumor cells (FIG. 23 d ), possibly due to the observed increase in IFNγ secretion by T cells (FIG. 21 a-c ,FIG. 13 e ). A Ppp2r2d shRNA did not reduce expression of inhibitory PD-1 or LAG-3 receptors on tumor-infiltrating T cells, demonstrating that its mechanism of action is distinct from these known negative regulators of T cell function (FIG. 22 b ). This finding suggests combination approaches targeting these intracellular and cell surface molecules. - These results establish the feasibility of in vivo discovery of novel targets for immunotherapy in complex tissue microenvironments. The inventors have shown that it is possible to discover genes with differential action across tissues, as exemplified by T cell accumulation in tumors compared to secondary lymphoid organs. For genes with tissue-selective action, T cell accumulation and survival are likely to be under the control of the T cell receptor and therefore do not occur in tissues lacking presentation of a relevant antigen. Many variations of the approach presented here can be envisioned to investigate control of particular immune cell functions in vivo. For example, fluorescent reporters for expression of cytokines or cytotoxic molecules (granzyme B, perforin) could be integrated into our approach to discover genes that control critical T cell effector functions in tumors.
- Targeting of key regulatory switches may offer new approaches to modify the activity of T cells in cancer and other pathologies. The efficacy of such T cell-based therapies could be enhanced by shRNA-mediated silencing of genes that inhibit T cell function in the tumor microenvironment.
- It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
-
- 1. Galon, J., et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960-1964 (2006).
- 2. Hamanishi, J., et al.
Programmed cell death 1ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proceedings of the National Academy of Sciences of the United States ofAmerica 104, 3360-3365 (2007). - 3. Mahmoud, S. M., et al. Tumor-Infiltrating CD8+Lymphocytes Predict Clinical Outcome in Breast Cancer.
J Clin Oncol 29, 1949-1955 (2011). - 4. Topalian, S. L., et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England journal of medicine 366, 2443-2454 (2012).
- 5. Brahmer, J. R., et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. The New England journal of medicine 366, 2455-2465 (2012).
- 6. Hodi, F. S., et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N Engl J Med (2011).
- 7. Barr, F. A., Elliott, P. R. & Gruneberg, U. Protein phosphatases and the regulation of mitosis.
J Cell Sci 124, 2323-2334 (2011). - 8. Pages, F., et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer.
J Clin Oncol 27, 5944-5951 (2009). - 9. Shiao, S. L., Ganesan, A. P., Rugo, H. S. & Coussens, L. M. Immune microenvironments in solid tumors: new targets for therapy.
Genes Dev 25, 2559-2572 (2011). - 10. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system.
Nat Rev Immunol 9, 162-174 (2009). - 11. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Current opinion in
immunology 24, 207-212 (2012). - 12. Westbrook, T. F., et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837-848 (2005).
- 13. Luo, B., et al. Highly parallel identification of essential genes in cancer cells. Proceedings of the National Academy of Sciences of the United States of
America 105, 20380-20385 (2008). - 14. Zender, L., et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852-864 (2008).
- 15. Fidler, I. J. Biological behavior of malignant melanoma cells correlated to their survival in vivo.
Cancer research 35, 218-224 (1975). - 16. Hogquist, K. A., et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17-27 (1994).
- 17. Bellone, M., et al. Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma. Journal of immunology 165, 2651-2656 (2000).
- 18. Overwijk, W. W., et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. The Journal of experimental medicine 198, 569-580 (2003).
- 19. Paolino, M. & Penninger, J. M. Cb1-b in T-cell activation. Semin Immunopathol 32, 137-148 (2010).
- 20. Zheng, Y., Zha, Y. & Gajewski, T. F. Molecular regulation of T-cell anergy.
EMBO Rep 9, 50-55 (2008). - 21. Doody, K. M., Bourdeau, A. & Tremblay, M. L. T-cell protein tyrosine phosphatase is a key regulator in immune cell signaling: lessons from the knockout mouse model and implications in human disease. Immunological reviews 228, 325-341 (2009).
- 22. Tamiya, T., Kashiwagi, I., Takahashi, R., Yasukawa, H. & Yoshimura, A. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler
Thromb Vasc Biol 31, 980-985 (2011). - 23. Muranski, P., et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112, 362-373 (2008).
- 24. Koller, B. H., Marrack, P., Kappler, J. W. & Smithies, O. Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227-1230 (1990).
- 25. Mochida, S., Maslen, S. L., Skehel, M. & Hunt, T. Greatwall phosphorylates an inhibitor of
protein phosphatase 2A that is essential for mitosis. Science 330, 1670-1673 (2010). - 26. Chiang, C. W., et al.
Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis.Mol Cell Biol 23, 6350-6362 (2003). - 27. Turtle, C. J., Hudecek, M., Jensen, M. C. & Riddell, S. R. Engineered T cells for anti-cancer therapy. Current opinion in
immunology 24, 633-639 (2012). - 28. Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nature reviews.
Immunology 12, 269-281 (2012). - 29. Bollard, C. M., Rooney, C. M. & Heslop, H. E. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat
Rev Clin Oncol 9, 510-519 (2012). - 30. Ashton, J. M., et al. Gene sets identified with oncogene cooperativity analysis regulate in vivo growth and survival of leukemia stem cells.
Cell Stem Cell 11, 359-372 (2012). - 31. Wherry, E. J., et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection.
Immunity 27, 670-684 (2007). - 32. Parish, I. A., et al. The molecular signature of CD8+ T cells undergoing deletional tolerance. Blood 113, 4575-4585 (2009).
- 33. Macian, F., et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719-731 (2002).
- 34. Zha, Y., et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha.
Nat Immunol 7, 1166-1173 (2006). - 35. Lopes, A. R., et al. Bim-mediated deletion of antigen-specific CD8 T cells in patients unable to control HBV infection. The Journal of clinical investigation 118, 1835-1845 (2008).
- 36. Kurella, S., et al. Transcriptional modulation of TCR, Notch and Wnt signaling pathways in SEB-anergized CD4+ T cells.
Genes Immun 6, 596-608 (2005). - 37. Xu, T., et al. Microarray analysis reveals differences in gene expression of circulating CD8(+) T cells in melanoma patients and healthy donors. Cancer research 64, 3661-3667 (2004).
- 38. Gorer, P. A. Studies in antibody response of mice to tumour inoculation.
Br J Cancer 4, 372-379 (1950).
Claims (20)
1. An isolated nucleic acid encoding a chimeric antigen receptor (CAR) and a sequence encoding an shRNA,
the shRNA comprises 15 contiguous nucleotides complementary a nucleic acid sequence of SEQ ID NO: 612, and
wherein the CAR comprising an antigen binding domain, a transmembrane domain, a stimulatory domain, and a co-stimulatory domain.
2. The isolated nucleic acid of claim 1 , wherein the shRNA sequence reduces expression of Cb1b.
3. The isolated nucleic acid of claim 1 , wherein the antigen binding domain is an antigen-binding fragment of an antibody.
4. The isolated nucleic acid of claim 3 , wherein the antigen-binding fragment is a Fab or scFv.
5. The isolated nucleic acid of claim 1 , wherein the antigen-binding domain binds tumor antigen.
6. The isolated nucleic acid of claim 5 , wherein the tumor antigen is associated with a melanoma, carcinoma, sarcomas, adenocarcinoma, lymphoma, leukemia, kidney, breast, lung, bladder, colon, ovarian, prostate, pancreas, stomach, brain, head and neck, skin, uterine, testicular, glioma, esophagus, and liver cancer.
7. The isolated nucleic acid of claim 5 , wherein the tumor antigen is associated with a solid tumor or lymphoid tumor.
8. A vector comprising the nucleic acid of claim 1 .
9. An immunoresponsive cell comprising the nucleic acid of claim 1 .
10. The immunoresponsive cell of claim 9 , wherein the immunoresponsive cell is tumor specific.
11. The immunoresponsive cell of claim 10 , wherein the immunoresponsive cell is selected from the group consisting of a tumorinfiltrating lymphocyte (TIL), a Natural Killer T cell (NKT), a cytotoxic T lymphocyte (CTL), and a CD4 T cell.
12. The immunoresponsive cell of claim 9 , wherein the CAR is directed to a tumor antigen comprising prostate-specific membrane antigen (PSMA).
13. A human T cell harboring the nucleic acid molecule of claim 1 .
14. A method for preparing an immunoresponsive cell having tumor specificity and increased resistance to immunosuppression, comprising:
providing an immunoresponsive cell having tumor specificity; and
introducing into the cell a vector comprising a sequence encoding a shRNA,
wherein the shRNA comprises 15 contiguous nucleotides complementary a nucleic acid sequence of SEQ ID NO: 612.
15. The method of claim 14 , wherein the immunoresponsive cell is selected from the group consisting of a tumor-infiltrating lymphocyte (TIL), a Natural Killer T cell (NKT), a cytotoxic T lymphocyte (CTL), and a CD4T cell.
16. The method of claim 14 , wherein the immunoresponsive cell expresses a tumor-specific T-cell receptor.
17. The method of claim 14 , wherein the immunoresponsive cell comprises a vector encoding a chimeric antigen receptor (CAR), wherein the CAR comprises an antigen binding domain, a transmembrane domain, and a stimulatory domain.
18. The method of claim 17 , wherein the CAR is directed to a tumor antigen comprising prostate-specific membrane antigen (PSMA).
19. The method of claim 14 , wherein the shRNA sequence reduces expression of Cb1b.
20. The isolated nucleic acid molecule of claim 1 , wherein the sequence encoding the shRNA comprises a first sequence comprising 15-25 nucleotides complementary to SEQ ID NO: 612 and a second sequence that is the reverse complement of the first sequence with one or no mismatches, and a third sequence of 5-9 nucleotides positioned between the first and second sequences.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/149,520 US20230383298A1 (en) | 2013-06-10 | 2023-01-03 | Methods and Compositions for Reducing Immunosupression by Tumor Cells |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361833298P | 2013-06-10 | 2013-06-10 | |
US201361921303P | 2013-12-27 | 2013-12-27 | |
US201461929821P | 2014-01-21 | 2014-01-21 | |
PCT/US2014/041739 WO2014201021A2 (en) | 2013-06-10 | 2014-06-10 | Methods and compositions for reducing immunosupression by tumor cells |
US201514897210A | 2015-12-09 | 2015-12-09 | |
US15/944,330 US10876120B2 (en) | 2013-06-10 | 2018-04-03 | Methods and compositions for reducing immunosupression by tumor cells |
US17/102,787 US11597934B2 (en) | 2013-06-10 | 2020-11-24 | Methods and compositions for reducing immunosuppression by tumor cells |
US18/149,520 US20230383298A1 (en) | 2013-06-10 | 2023-01-03 | Methods and Compositions for Reducing Immunosupression by Tumor Cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/102,787 Continuation US11597934B2 (en) | 2013-06-10 | 2020-11-24 | Methods and compositions for reducing immunosuppression by tumor cells |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230383298A1 true US20230383298A1 (en) | 2023-11-30 |
Family
ID=51063858
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/897,210 Active US9944931B2 (en) | 2013-06-10 | 2014-06-10 | Methods and compositions for reducing immunosupression by tumor cells |
US15/944,330 Active 2034-10-21 US10876120B2 (en) | 2013-06-10 | 2018-04-03 | Methods and compositions for reducing immunosupression by tumor cells |
US17/102,787 Active 2034-09-16 US11597934B2 (en) | 2013-06-10 | 2020-11-24 | Methods and compositions for reducing immunosuppression by tumor cells |
US18/149,520 Pending US20230383298A1 (en) | 2013-06-10 | 2023-01-03 | Methods and Compositions for Reducing Immunosupression by Tumor Cells |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/897,210 Active US9944931B2 (en) | 2013-06-10 | 2014-06-10 | Methods and compositions for reducing immunosupression by tumor cells |
US15/944,330 Active 2034-10-21 US10876120B2 (en) | 2013-06-10 | 2018-04-03 | Methods and compositions for reducing immunosupression by tumor cells |
US17/102,787 Active 2034-09-16 US11597934B2 (en) | 2013-06-10 | 2020-11-24 | Methods and compositions for reducing immunosuppression by tumor cells |
Country Status (11)
Country | Link |
---|---|
US (4) | US9944931B2 (en) |
EP (2) | EP3008173B1 (en) |
JP (3) | JP6546160B2 (en) |
KR (3) | KR20230005422A (en) |
CN (1) | CN105431524B (en) |
AU (2) | AU2014278323B2 (en) |
CA (2) | CA2912389C (en) |
EA (1) | EA035475B1 (en) |
ES (1) | ES2897579T3 (en) |
MX (2) | MX2015016963A (en) |
WO (1) | WO2014201021A2 (en) |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201505858VA (en) | 2013-01-28 | 2015-09-29 | St Jude Childrens Res Hospital | A chimeric receptor with nkg2d specificity for use in cell therapy against cancer and infectious disease |
AU2014278323B2 (en) * | 2013-06-10 | 2020-05-28 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for reducing immunosupression by tumor cells |
AU2015259877B2 (en) | 2014-05-15 | 2021-02-25 | National University Of Singapore | Modified natural killer cells and uses thereof |
EP3154555A4 (en) * | 2014-06-10 | 2018-02-28 | Monash University | Method of producing leukocytes using ptpn2 inhibition for adoptive cell transfer |
TW201617368A (en) | 2014-09-05 | 2016-05-16 | 史坦森特瑞斯公司 | Novel anti-MFI2 antibodies and methods of use |
AU2016212158B2 (en) * | 2015-01-26 | 2021-06-03 | Allogene Therapeutics, Inc. | mAb-driven chimeric antigen receptor systems for sorting/depleting engineered immune cells |
US11497767B2 (en) | 2015-02-18 | 2022-11-15 | Enlivex Therapeutics R&D Ltd | Combination immune therapy and cytokine control therapy for cancer treatment |
IL303543A (en) | 2015-02-18 | 2023-08-01 | Enlivex Therapeutics Rdo Ltd | Combination immune therapy and cytokine control therapy for cancer treatment |
US11000548B2 (en) | 2015-02-18 | 2021-05-11 | Enlivex Therapeutics Ltd | Combination immune therapy and cytokine control therapy for cancer treatment |
US11304976B2 (en) | 2015-02-18 | 2022-04-19 | Enlivex Therapeutics Ltd | Combination immune therapy and cytokine control therapy for cancer treatment |
US11318163B2 (en) | 2015-02-18 | 2022-05-03 | Enlivex Therapeutics Ltd | Combination immune therapy and cytokine control therapy for cancer treatment |
US11596652B2 (en) | 2015-02-18 | 2023-03-07 | Enlivex Therapeutics R&D Ltd | Early apoptotic cells for use in treating sepsis |
EP4140492A1 (en) | 2015-04-21 | 2023-03-01 | Enlivex Therapeutics Rdo Ltd | Therapeutic pooled blood apoptotic cell preparations and uses thereof |
US20200390811A1 (en) * | 2015-04-23 | 2020-12-17 | The Trustees Of The University Of Pennsylvania | Compositions to disrupt protein kinase a anchoring and uses thereof |
EP3603651B1 (en) * | 2015-05-22 | 2021-07-21 | STCube & Co., Inc. | Screening methods for targets for cancer therapy |
WO2017082562A1 (en) * | 2015-11-09 | 2017-05-18 | 사회복지법인 삼성생명공익재단 | Stem cell with suppressed socs and improved immunosuppressive ability and use thereof |
KR20170054262A (en) | 2015-11-09 | 2017-05-17 | 사회복지법인 삼성생명공익재단 | SOCS suppressed stem cell with increased immunosuppression and use thereof |
CN106967685B (en) * | 2016-01-13 | 2020-06-02 | 北京马力喏生物科技有限公司 | Transgenic lymphocytes co-expressing anti-EGFRvIII chimeric antigen receptor and immune checkpoint inhibitory molecules and uses thereof |
CN106967681B (en) * | 2016-01-13 | 2020-06-05 | 北京马力喏生物科技有限公司 | Therapeutic composition for treating glioblastoma |
CN107034193B (en) * | 2016-02-03 | 2020-06-05 | 北京马力喏生物科技有限公司 | Therapeutic compositions for the treatment of B-cell leukemia and B-cell lymphoma |
CN109069539A (en) | 2016-02-18 | 2018-12-21 | 恩立夫克治疗有限责任公司 | Combined immunization therapy use for cancer treatment and cell factor control therapy |
US12128102B2 (en) | 2016-03-08 | 2024-10-29 | Takeda Pharmaceutical Company Limited | Constrained conditionally activated binding proteins |
CN109071667A (en) * | 2016-03-08 | 2018-12-21 | 马弗里克治疗公司 | Inducibility binding protein and application method |
AU2017248121B2 (en) * | 2016-04-08 | 2022-07-21 | Adaptimmune Limited | T cell receptors |
WO2017174822A1 (en) | 2016-04-08 | 2017-10-12 | Adaptimmune Limited | T cell receptors |
KR20180134419A (en) * | 2016-04-22 | 2018-12-18 | 카르스젠 테라퓨틱스 컴퍼니, 리미티드 | Compositions and methods for cellular immunotherapy |
BR112019002035A2 (en) * | 2016-08-01 | 2019-05-14 | Novartis Ag | cancer treatment using a chimeric antigen receptor in combination with an inhibitor of a m2 pro-macrophage molecule |
CA3033736C (en) * | 2016-08-12 | 2023-10-24 | Toolgen Incorporated | Manipulated immunoregulatory element and immunity altered thereby |
US11959083B2 (en) | 2016-10-07 | 2024-04-16 | Secarna Pharmaceuticals Gmbh & Co. Kg | Immunosuppression-reverting oligonucleotides inhibiting the expression of CD39 |
CN107936109B (en) * | 2016-10-12 | 2022-02-08 | 香雪生命科学技术(广东)有限公司 | Tumor antigen short peptide derived from SAGE1 |
CN107987155A (en) * | 2016-10-27 | 2018-05-04 | 中国科学院广州生物医药与健康研究院 | Identify the φt cell receptor of SAGE1 antigen small peptides |
CN107987156B (en) * | 2016-10-27 | 2022-10-21 | 中国科学院广州生物医药与健康研究院 | TCR for recognizing SAGE1 antigen short peptide |
US11332713B2 (en) | 2016-11-16 | 2022-05-17 | KSQ Therapeutics, Inc. | Gene-regulating compositions and methods for improved immunotherapy |
WO2018106972A1 (en) * | 2016-12-07 | 2018-06-14 | La Jolla Institute For Allergy And Immunology | Compositions for cancer treatment and methods and uses for cancer treatment and prognosis |
KR20240007775A (en) | 2016-12-08 | 2024-01-16 | 이매틱스 바이오테크놀로지스 게엠베하 | Novel t cell receptors and immune therapy using the same |
DE102016123847B3 (en) * | 2016-12-08 | 2018-04-05 | Immatics Biotechnologies Gmbh | New T cell receptors and their use in immunotherapy |
AU2017386790A1 (en) * | 2016-12-30 | 2019-07-18 | Celularity Inc. | Genetically modified natural killer cells |
KR101793474B1 (en) * | 2017-01-04 | 2017-11-07 | 한국과학기술원 | Pharmaceutical composition for preventing or treating inflammatory diseases comprising inositol polyphosphate multikinase inhibitor as an active ingredient |
CN108342363B (en) * | 2017-01-25 | 2021-02-12 | 北京马力喏生物科技有限公司 | Transgenic lymphocytes co-expressing anti-MSLN chimeric antigen receptor and immune checkpoint inhibitory molecules and uses thereof |
US20190374578A1 (en) * | 2017-02-23 | 2019-12-12 | Board Of Regents Of The University Of Nebraska | Compositions and methods for treating cancer |
AU2018245749A1 (en) | 2017-03-27 | 2019-10-03 | National University Of Singapore | Stimulatory cell lines for ex vivo expansion and activation of natural killer cells |
SG11201908492PA (en) | 2017-03-27 | 2019-10-30 | Nat Univ Singapore | Truncated nkg2d chimeric receptors and uses thereof in natural killer cell immunotherapy |
CN107058232B (en) * | 2017-04-12 | 2018-03-30 | 上海优卡迪生物医药科技有限公司 | Cholesterol turns repressed CAR T cells of lipase SOAT1 and its preparation method and application |
CA3060443A1 (en) | 2017-04-19 | 2018-10-25 | Board Of Regents, The University Of Texas System | Immune cells expressing engineered antigen receptors |
US20210147798A1 (en) * | 2017-05-08 | 2021-05-20 | Toolgen Incorporated | Artificially Manipulated Immune Cell |
WO2018210279A1 (en) * | 2017-05-16 | 2018-11-22 | 科济生物医药(上海)有限公司 | Use of toll-like receptor agonist combined with immune effector cell |
KR101970764B1 (en) * | 2017-05-19 | 2019-04-22 | 아주대학교산학협력단 | COTL1 Protein Involved in Maintaining Homeostasis of Hematopoietic Stem Cells and Use Thereof |
CN109251980A (en) * | 2017-07-14 | 2019-01-22 | 中国人民解放军第八医院 | Bladder Cancer T cell spectrum model and its construction method and building system |
CN111356700A (en) | 2017-09-08 | 2020-06-30 | 马弗里克治疗公司 | Constrained conditionally activated binding proteins |
KR102327512B1 (en) * | 2018-01-12 | 2021-11-17 | 주식회사 큐로셀 | Enhanced immune cell using binary SHRNA and composition comprising same |
CN108424932B (en) * | 2018-03-13 | 2021-01-05 | 北京多赢时代转化医学研究院 | Recombinant oncolytic adenovirus, recombinant oncolytic adenovirus vector for preparing recombinant oncolytic adenovirus, and construction method and application thereof |
EP3765094A4 (en) | 2018-03-15 | 2021-12-22 | KSQ Therapeutics, Inc. | Gene-regulating compositions and methods for improved immunotherapy |
AU2019234926A1 (en) | 2018-03-15 | 2020-10-08 | KSQ Therapeutics, Inc. | Gene-regulating compositions and methods for improved immunotherapy |
US20210236548A1 (en) * | 2018-04-20 | 2021-08-05 | The Regents Of The University Of California | Treatment of prostate cancer using chimeric antigen receptors |
CN112823011A (en) * | 2018-07-09 | 2021-05-18 | 加利福尼亚大学董事会 | Gene targets for T cell-based immunotherapy |
CR20210091A (en) * | 2018-07-18 | 2021-03-24 | Amgen Inc | Chimeric receptors to steap1 and methods of use thereof |
US20210325369A1 (en) * | 2018-07-27 | 2021-10-21 | Human Vaccines Project | Predictive biomarkers for an immune response |
WO2020047306A1 (en) * | 2018-08-30 | 2020-03-05 | Innovative Cellular Therapeutics CO., LTD. | Chimeric antigen receptor cells for treating solid tumor |
CA3129415A1 (en) * | 2019-02-08 | 2020-08-13 | H. Lee Moffitt Cancer Center And Research Institute Inc. | Sirt2-ablated chimeric t cells |
SG11202109057XA (en) | 2019-03-05 | 2021-09-29 | Nkarta Inc | Cd19-directed chimeric antigen receptors and uses thereof in immunotherapy |
EP3934762A1 (en) | 2019-03-05 | 2022-01-12 | Takeda Pharmaceutical Company Limited | Constrained conditionally activated binding proteins |
CN110101863A (en) * | 2019-04-04 | 2019-08-09 | 上海大学 | Inhibit the application of HIPK1 gene expression |
EP3962953A4 (en) * | 2019-04-30 | 2023-08-23 | Target Discovery Merger Sub II, LLC | Cancer associated antibody compositions and methods of use |
CN114450030A (en) * | 2019-05-07 | 2022-05-06 | 得克萨斯州大学系统董事会 | Targeting OTUB1 in immunotherapy |
US20230107770A1 (en) * | 2020-02-20 | 2023-04-06 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Method of enhancing immunotherapy using er stress pathway inhibitors |
JP2023525720A (en) * | 2020-05-11 | 2023-06-19 | アビタス バイオ インコーポレイティッド | Vectors and methods for in vivo transduction |
CN113827727A (en) * | 2020-06-24 | 2021-12-24 | 上海交通大学医学院附属瑞金医院 | Application of PTPN2 inhibitor in KRAS mutant tumor |
JP2023532278A (en) * | 2020-06-25 | 2023-07-27 | ザ・メソジスト・ホスピタル | Antigen-specific T cell receptors and chimeric antigen receptors and methods of use in immune signaling modulation for cancer immunotherapy |
IL301045A (en) * | 2020-09-01 | 2023-05-01 | Nat Inst Biotechnology Negev Ltd | Immune system restoration by cell therapy |
CN112080527A (en) * | 2020-09-16 | 2020-12-15 | 南京市第一医院 | Recombinant expression vector, chimeric antigen receptor T cell with reduced exhaustion and application thereof |
JP2023550148A (en) | 2020-11-20 | 2023-11-30 | シンシア・イノベーション・インコーポレイテッド | Armed dual CAR-T compositions and methods used in cancer immunotherapy |
KR20230145129A (en) | 2021-03-12 | 2023-10-17 | 후지필름 가부시키가이샤 | Manufacturing method of arthrosis treatment and arthrosis treatment |
WO2022204487A1 (en) * | 2021-03-26 | 2022-09-29 | Duke University | Systems and methods for exosome delivery of micrornas for cellular reprogramming |
WO2022226091A1 (en) * | 2021-04-23 | 2022-10-27 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Smad2 inhibition in beta cells for type 2 diabetes therapy |
CN113736742B (en) * | 2021-09-08 | 2023-07-21 | 河南省医药科学研究院 | Application of PRTN3 gene as target for activating cytotoxic immune cells in tumor immunotherapy |
PE20241173A1 (en) | 2021-10-14 | 2024-05-28 | Arsenal Biosciences Inc | IMMUNE CELLS THAT HAVE CO-EXPRESSED HCRNA AND LOGIC GATE SYSTEMS |
CN114774364B (en) * | 2022-04-26 | 2024-04-26 | 深圳市体内生物医药科技有限公司 | Chimeric antigen receptor T cell and preparation method and application thereof |
CN116004623B (en) * | 2022-10-19 | 2023-09-01 | 威海市立医院 | shRNA sequence for targeted silencing of LRP1 gene expression, preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11597934B2 (en) * | 2013-06-10 | 2023-03-07 | Dana Farber Cancer Institute, Inc. | Methods and compositions for reducing immunosuppression by tumor cells |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1226115A4 (en) | 1999-10-04 | 2006-03-15 | Univ New Jersey Med | Novel carbamates and ureas |
EP1283889A1 (en) | 2000-05-23 | 2003-02-19 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Mutated eukariotic translation initiation factor 2 alpha kinase 3, eif2ak3, in patients with neonatal insulin-dependent diabetes and multiple epiphyseal dysplasia (wolcott-rallison syndrome) |
US20100061984A1 (en) | 2006-01-20 | 2010-03-11 | The Trustees Of The University Of Pennsylvania | Compositions and methods for modulation of suppressor t cell activation |
DK2069381T3 (en) * | 2006-09-13 | 2016-03-14 | Univ Columbia | Anti-tumor immune response triggering agents and methods |
WO2009062199A1 (en) | 2007-11-09 | 2009-05-14 | Fox Chase Cancer Center | EGFR/NEDD9/TGF-β LNTERACTOME AND METHODS OF USE THEREOF FOR THE IDENTIFICATION OF AGENTS HAVING EFFICACY IN THE TREATMENT OF HYPERPROLIFERATIVE DISORDERS |
AT506041A1 (en) | 2007-12-10 | 2009-05-15 | Univ Innsbruck | PROCESS FOR INCREASING IMMUNOACTIVITY |
CN201789682U (en) | 2010-07-23 | 2011-04-06 | 中兴通讯股份有限公司 | Four-layered through-hole printed circuit board and mobile terminal employing same |
WO2012038918A1 (en) * | 2010-09-23 | 2012-03-29 | Centre National De La Recherche Scientifique (Cnrs) | Therapeutic product inhibitor of the cell proliferation and biological applications thereof |
MA34813B1 (en) | 2010-12-09 | 2014-01-02 | Univ Pennsylvania | USE OF CHIMERIC CHIMERIC RECEPTOR-MODIFIED T-CELLS FOR TREATING CANCER |
WO2013121042A1 (en) | 2012-02-16 | 2013-08-22 | Vib Vzw | PP2A SUBUNITS IN DNA REPAIR, THE PP2A B55α SUBUNIT AS NOVEL PHD2 INTERACTING PROTEIN, AND IMPLICATIONS FOR CANCER |
CN103113470B (en) * | 2013-02-27 | 2015-04-22 | 四川大学 | Genetically engineered lymphocyte targeting Human EGFR (Epidermal Growth Factor Receptor), preparation method and application of genetically engineered lymphocyte |
-
2014
- 2014-06-10 AU AU2014278323A patent/AU2014278323B2/en active Active
- 2014-06-10 KR KR1020227045046A patent/KR20230005422A/en not_active Application Discontinuation
- 2014-06-10 KR KR1020217028677A patent/KR20210115051A/en active Application Filing
- 2014-06-10 EP EP14735794.1A patent/EP3008173B1/en active Active
- 2014-06-10 JP JP2016519595A patent/JP6546160B2/en active Active
- 2014-06-10 EP EP21160675.1A patent/EP3892293A1/en active Pending
- 2014-06-10 CA CA2912389A patent/CA2912389C/en active Active
- 2014-06-10 CA CA3051222A patent/CA3051222C/en active Active
- 2014-06-10 KR KR1020157034717A patent/KR102301464B1/en active IP Right Grant
- 2014-06-10 EA EA201592269A patent/EA035475B1/en unknown
- 2014-06-10 MX MX2015016963A patent/MX2015016963A/en active IP Right Grant
- 2014-06-10 WO PCT/US2014/041739 patent/WO2014201021A2/en active Application Filing
- 2014-06-10 US US14/897,210 patent/US9944931B2/en active Active
- 2014-06-10 ES ES14735794T patent/ES2897579T3/en active Active
- 2014-06-10 CN CN201480033025.XA patent/CN105431524B/en active Active
-
2015
- 2015-12-09 MX MX2020001450A patent/MX2020001450A/en unknown
-
2018
- 2018-04-03 US US15/944,330 patent/US10876120B2/en active Active
-
2019
- 2019-06-19 JP JP2019113315A patent/JP2019176868A/en active Pending
-
2020
- 2020-08-28 AU AU2020223762A patent/AU2020223762A1/en not_active Abandoned
- 2020-11-24 US US17/102,787 patent/US11597934B2/en active Active
- 2020-11-26 JP JP2020195684A patent/JP7219254B2/en active Active
-
2023
- 2023-01-03 US US18/149,520 patent/US20230383298A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11597934B2 (en) * | 2013-06-10 | 2023-03-07 | Dana Farber Cancer Institute, Inc. | Methods and compositions for reducing immunosuppression by tumor cells |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11597934B2 (en) | Methods and compositions for reducing immunosuppression by tumor cells | |
Lu et al. | DNA sensing in mismatch repair-deficient tumor cells is essential for anti-tumor immunity | |
Mandula et al. | Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses | |
González-Martín et al. | Maximal T cell–mediated antitumor responses rely upon CCR5 expression in both CD4+ and CD8+ T cells | |
Serrels et al. | Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity | |
US11584787B2 (en) | Soluble CD33 for treating myelodysplastic syndromes (MDS) | |
CN111148518A (en) | Methods of modulating regulatory T cells and immune responses using CDK4/6 inhibitors | |
US20220316014A1 (en) | Methods for diagnosing the effectiveness of anti-tumor treatment | |
Eschweiler et al. | JAML immunotherapy targets recently activated tumor-infiltrating CD8+ T cells | |
AU2016355586A1 (en) | Compositions and methods of treating cancer | |
Qi et al. | Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by sequential intermittent anti-PI3Kα/β/δ and anti-PD-1 treatment | |
BR112015030822B1 (en) | VECTOR, ISOLATED NUCLEIC ACID, COMPOSITION, METHOD FOR PREPARING A T CELL AND ISOLATED NUCLEIC ACID MOLECULE | |
Choi et al. | Prostate cancer therapy using immune checkpoint molecules to target recombinant dendritic cells | |
Huang | Exploring Novel Strategies to Sensitize Melanoma to Immunotherapy and Targeted Therapies | |
Tan et al. | Aberrant cytoplasmic expression of UHRF1 restrains the MHC-I-mediated anti-tumor immune response | |
Han et al. | Propionyl-CoA carboxylase subunit B regulates anti-tumor T cells in a pancreatic cancer mouse model | |
Zhang | Targeted therapy of DC-CIK cells in renal cell carcinoma | |
WO2023021113A1 (en) | Hybrid tumor/cancer therapy based on targeting the resolution of or inducing transcription-replication conflicts (trcs) | |
Vadakekolathu | Characterisation of high and low avidity peptide specific CD8+ T cells using immunologic, transcriptomic and proteomic tools | |
Gonçalves | The role of NRARP in the regulation of Wnt signaling pathway in T-cell acute lymphoblastic leukemia | |
JP2022513082A (en) | Use of IRE1α-XBP1 signaling pathway biomarkers to regulate immune response | |
Barish et al. | IMMUNOLOGY RESEARCH | |
BRAIN | 2013 WFNO-SNO Abstracts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |