Nothing Special   »   [go: up one dir, main page]

US20230218398A1 - Guided advancement of an implant - Google Patents

Guided advancement of an implant Download PDF

Info

Publication number
US20230218398A1
US20230218398A1 US18/180,786 US202318180786A US2023218398A1 US 20230218398 A1 US20230218398 A1 US 20230218398A1 US 202318180786 A US202318180786 A US 202318180786A US 2023218398 A1 US2023218398 A1 US 2023218398A1
Authority
US
United States
Prior art keywords
tissue
engaging element
elongate implant
heart
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/180,786
Inventor
Tal Reich
Eran Miller
Tal Sheps
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Lifesciences Innovation Israel Ltd
Original Assignee
Edwards Lifesciences Innovation Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/608,316 external-priority patent/US8277502B2/en
Priority claimed from US12/795,192 external-priority patent/US8690939B2/en
Priority claimed from PCT/IL2011/000446 external-priority patent/WO2011154942A2/en
Application filed by Edwards Lifesciences Innovation Israel Ltd filed Critical Edwards Lifesciences Innovation Israel Ltd
Priority to US18/180,786 priority Critical patent/US20230218398A1/en
Publication of US20230218398A1 publication Critical patent/US20230218398A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2454Means for preventing inversion of the valve leaflets, e.g. chordae tendineae prostheses
    • A61F2/2457Chordae tendineae prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • A61F2/2487Devices within the heart chamber, e.g. splints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2466Delivery devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00778Operations on blood vessels
    • A61B2017/00783Valvuloplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/044Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors with a threaded shaft, e.g. screws
    • A61B2017/0441Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors with a threaded shaft, e.g. screws the shaft being a rigid coil or spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • A61B2017/0448Additional elements on or within the anchor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0464Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors for soft tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B2017/0496Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials for tensioning sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • A61F2250/0007Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting length

Definitions

  • the present invention relates in general to valve and chordeae tendineae repair. More specifically, the present invention relates to repair of an atrioventricular valve and associated chordeae tendineae of a patient.
  • Ischemic heart disease causes mitral regurgitation by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the left ventricle that is present in ischemic heart disease, with the subsequent displacement of the papillary muscles and the dilatation of the mitral valve annulus.
  • Mitral regurgitation of blood from the left ventricle into the left atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the left ventricle secondary to a volume overload and a pressure overload of the left atrium.
  • Chronic or acute left ventricular dilatation can lead to papillary muscle displacement with increased leaflet tethering due to tension on chordae tendineae, as well as annular dilatation.
  • apparatus comprising an implant comprising one or more primary adjustable repair chords and an adjustment mechanism that is configured to adjust a tension of the one or more adjustable repair chords and that is slidable along a guide wire toward an implantation site.
  • the apparatus comprises a first tissue-engaging element (e.g., a tissue anchor) that comprises one or more docking stations.
  • a method is provided for implanting such apparatus.
  • a respective guide wire is reversibly coupled to each one of the docking stations.
  • the adjustment mechanism is slidable along the guide wire toward one of the one or more docking stations, and is coupled to the tissue-engaging element via the docking station.
  • the docking station is a coupling element that provides coupling between two other elements (in this case, between adjustment mechanism and the tissue-engaging element.)
  • the repair chord comprises a flexible, longitudinal member (e.g., sutures or wires).
  • the repair chord is coupled at a distal portion thereof to the adjustment mechanism.
  • the repair chord functions as artificial chordae tendineae.
  • the repair chord is used to adjust a distance between two portions of the ventricular wall.
  • the repair chord is coupled at a proximal portion thereof to a second tissue-engaging element (e.g., a tissue anchor which penetrates or clips a portion of tissue).
  • the repair chord comprises a cord that is disposed within at least a portion of an annuloplasty ring structure (e.g., a full annuloplasty ring or a partial annuloplasty ring).
  • the annuloplasty ring structure comprises the adjustment mechanism that is coupled to the repair cord.
  • the annuloplasty ring structure is slidable along the guide wire toward one of the one or more docking stations, and is coupled to the tissue-engaging element via the docking station.
  • the annuloplasty ring structure may be provided independently of the adjustment mechanism and the repair chord.
  • the annuloplasty ring structure is slidable along the guide wire toward one of the one or more docking stations, and is coupled to the tissue-engaging element via the docking station.
  • a prosthetic heart valve and/or a support for the prosthetic heart valve is slidable along the guide wire toward one of the one or more docking stations, and is coupled to the tissue-engaging element via the docking station.
  • tissue-engaging element and the docking station are used to facilitate implantation of an implant such as cardiac valve implants, namely annuloplasty ring structures, prosthetic valves, and/or apparatus for receiving a prosthetic valve (e.g., a docking station or a support for receiving the prosthetic valve).
  • an implant such as cardiac valve implants, namely annuloplasty ring structures, prosthetic valves, and/or apparatus for receiving a prosthetic valve (e.g., a docking station or a support for receiving the prosthetic valve).
  • the first tissue-engaging element is coupled to a first portion of tissue at a first implantation site in a heart of a patient.
  • the adjustment mechanism is then slid along the guide wire and toward the first tissue-engaging element at the first implantation site.
  • the proximal portion of the repair chord is then coupled via the second tissue-engaging element to a second portion of tissue at a second implantation site.
  • the adjustment mechanism is further slid distally toward the first tissue-engaging element and is then coupled to the first tissue-engaging element via the one or more docking stations on the first tissue-engaging element.
  • a length and tension of the repair chord is then adjusted in order to adjust a distance between the first and second implantation sites.
  • the adjustment of the length and tension of the repair chord draws the leaflets together, and/or pulls the leaflet down toward the first implantation site to repair the valve.
  • the adjustment mechanism comprises a spool assembly which adjusts a degree of tension of the repair chord.
  • the spool assembly comprises a housing, which houses a spool to which a distal portion of the repair chord is coupled.
  • the two portions are drawn together, thereby restoring the dimensions of the heart wall to physiological dimensions, and drawing the leaflets toward one another.
  • the adjustment mechanism comprises a reversible locking mechanism which facilitates bidirectional rotation of the spool in order to effect both tensioning and relaxing of the repair chord. That is, the spool is wound in one direction in order to tighten the repair chord, and in an opposite direction in order to slacken the repair chord.
  • the spool adjustment mechanism facilitates bidirectional adjustment of the repair chord.
  • the adjustable repair chord is implanted during an open-heart or minimally-invasive procedure.
  • the delivery tool comprises a handle and a multilumen shaft that is coupled at a distal end thereof to the adjustment mechanism.
  • the delivery tool functions to advance the adjustment mechanism to the first portion of tissue, implant the adjustment mechanism at the first portion of tissue, and effect adjustment of the repair chord by effecting rotation of the spool.
  • the repair chord functions as an artificial chordea tendinea
  • the distal portion of the delivery tool and the adjustment mechanism coupled thereto are advanced between the leaflets of the atrioventricular valve and into the ventricle toward the first portion of tissue.
  • the incision made in the heart is then closed around the delivery tool and the heart resumes its normal function during the adjustment of the length of the artificial chordea tendinea.
  • apparatus and method described herein may be used for providing artificial chordae tendineae in a left ventricle of the heart and effecting adjustment thereof. In some applications, apparatuses and methods described herein may be used for providing artificial chordae tendineae in a right ventricle of the heart and effecting adjustment thereof. In some applications, apparatus and method described herein may be used for providing a system to adjust a length between two portions of the heart wall. For other applications apparatuses and methods described herein may be used for providing a docking station for an annuloplasty ring or for a prosthetic valve.
  • apparatus including:
  • a tissue-adjustment mechanism having:
  • At least one repair chord coupled at a first portion thereof to the tissue-adjustment mechanism and having at least a first end that is configured to be coupled to a portion of tissue of a patient, the repair chord being configured to adjust a distance between the portion of tissue and the tissue-adjustment mechanism, in response to adjustment of the repair chord by the tissue-adjustment mechanism.
  • apparatus for use with tissue of a heart of a subject including:
  • At least one docking assembly having:
  • annuloplasty ring selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring, the selected annuloplasty ring being:
  • the second coupling is lockable to the first coupling by being pushed against the first coupling.
  • the annuloplasty ring is configured to be locked to the docking station suturelessly.
  • the docking assembly is percutaneously deliverable to the heart of the subject, and the annuloplasty ring is percutaneously lockable to the docking station.
  • the at least one docking assembly includes a plurality of docking assemblies
  • the at least one guide member includes a respective plurality of guide members, each of the guide members being reversibly coupled to a respective docking station of a respective docking assembly,
  • the selected annuloplasty ring is shaped to define a respective plurality of second couplings, and is slidable along the plurality of guide members toward the plurality of docking assemblies, and
  • each of the second couplings is lockable to a respective first coupling of a respective docking assembly.
  • the selected annuloplasty ring includes an adjustable annuloplasty ring, including a rotatable structure that is:
  • the guide member being disposable in the channel
  • the selected annuloplasty ring is slidable along the guide member by the rotatable structure being slidable along the guide member.
  • the selected annuloplasty ring includes:
  • the rotatable structure is:
  • the apparatus further includes a rotatable structure locking mechanism displaceable with respect to the rotatable structure, so as to release the rotatable structure during rotation of the rotatable structure, and lock in place the rotatable structure following rotation of the rotatable structure.
  • the apparatus further includes a release rod:
  • the guide member being disposable within the lumen of the release rod
  • apparatus including:
  • an adjustable annuloplasty ring selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring, the selected annuloplasty ring:
  • the apparatus further includes a rotatable structure locking mechanism displaceable with respect to the rotatable structure, so as to release the rotatable structure during rotation of the rotatable structure, and lock in place the rotatable structure following rotation of the rotatable structure.
  • the apparatus further includes a release rod:
  • the guide member being disposable within the lumen of the release rod
  • a method for use with tissue of a heart of a subject including:
  • the docking station assembly including (1) a distal portion including a tissue anchor that is configured to engage a portion of the tissue, and (2) a proximal portion, fixedly coupled to the distal portion, and including at least one docking station that includes a first coupling;
  • annuloplasty ring selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring, the selected annuloplasty ring being shaped to define a second coupling;
  • apparatus for use with at least one implant including:
  • tissue-engaging element having (a) a distal portion configured to engage at least a first portion of tissue of a patient, and (b) a proximal portion;
  • At least one docking station coupled to the proximal portion of the tissue-engaging element, the at least one docking station:
  • At least one guide member reversibly coupled to the at least one docking station, the at least one guide member being configured for facilitating slidable advancement of the at least one implant toward the docking station.
  • the at least one docking station includes two or more docking stations
  • the at least one guide member includes two or more guide members, each guide member being reversibly coupled to a respective docking station.
  • the implant includes at least one implant selected from the group consisting of: a prosthetic cardiac valve and a support for receiving a prosthetic cardiac valve, and the at least one docking station is configured to receive and be coupled to the selected implant.
  • the implant includes a tissue-adjustment device selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring, and the at least one docking station is configured to receive and be coupled to the selected tissue-adjustment device.
  • the apparatus further includes the implant.
  • the implant has:
  • a channel extending between the first and second openings, the channel facilitating advancement of the implant along the guide member.
  • the implant includes a first coupling
  • the locking mechanism includes a second coupling configured to be coupled to the first coupling
  • the second coupling includes at least one depressed portion
  • the first coupling includes at least one moveable baffle which is configured to engage the at least one depressed portion of the second coupling.
  • the apparatus further includes at least one flexible longitudinal member coupled at a first portion thereof to the implant, a second portion of the flexible longitudinal member is configured to be coupled to a second portion of tissue of the patient, and the implant is configured to adjust a length of the longitudinal member between the first and second portions of tissue.
  • the first portion of tissue includes a first portion of cardiac tissue at a first intraventricular site
  • the second portion of tissue includes at least one leaflet of an atrioventricular valve of the patient
  • the flexible longitudinal member includes at least one artificial chordea tendinea.
  • the implant includes a rotatable structure
  • the at least one flexible longitudinal member is coupled at the first portion to the rotatable structure
  • the rotatable structure is bidirectionally rotatable to adjust the degree of tension of the at least one flexible longitudinal member.
  • the rotatable structure is configured such that:
  • the apparatus further includes a rotatable structure locking mechanism displaceable with respect to the rotatable structure, so as to:
  • the rotatable structure includes a spool, and the at least one flexible longitudinal member is configured to be wound around the spool during the rotation of the spool in a first rotational direction.
  • the implant includes a rotatable structure, coupled to a flexible longitudinal member,
  • the rotatable structure is bidirectionally rotatable to adjust a degree of tension of the flexible longitudinal member
  • the at least one docking station is configured to receive and be coupled to the rotatable structure.
  • apparatus for use with at least one implant including:
  • tissue-engaging element having (a) a distal portion configured to engage at least a first portion of tissue of a patient, and (b) a proximal portion;
  • At least one docking station coupled to the proximal portion of the tissue-engaging element, the at least one docking station:
  • At least one guide member reversibly coupled to the at least one docking station, the at least one guide member being configured for facilitating slidable advancement of the at least one implant toward the tissue-engaging element.
  • the guide member is looped around a portion of the docking station.
  • the at least one docking station includes two or more docking stations
  • the at least one guide member includes two or more guide members, each guide member being reversibly coupled to a respective docking station.
  • the implant includes a prosthetic cardiac valve.
  • the implant includes a support for receiving a prosthetic cardiac valve.
  • the implant includes a tissue-adjustment device.
  • the tissue-adjustment device includes an annuloplasty ring structure selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring.
  • the apparatus further includes the implant, and the implant has:
  • the implant includes a prosthetic cardiac valve.
  • the implant includes a support for receiving a prosthetic cardiac valve.
  • the implant includes a tissue-adjustment device.
  • the tissue-adjustment device includes an annuloplasty ring structure selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring.
  • the implant includes a first coupling
  • the locking mechanism includes a second coupling configured to be coupled to the first coupling
  • the second coupling includes at least one depressed portion
  • the first coupling includes at least one moveable baffle which is configured to engage the at least one depressed portion of the second coupling.
  • the apparatus further includes at least one flexible longitudinal member coupled at a first portion thereof to the implant, a second portion of the flexible longitudinal member is configured to be coupled to a second portion of tissue of the patient, and the implant is configured to adjust a length of the longitudinal member between the first and second portions of tissue.
  • the first portion of tissue includes a first portion of cardiac tissue at a first intraventricular site
  • the second portion of tissue includes at least one leaflet of an atrioventricular valve of the patient
  • the flexible longitudinal member includes at least one artificial chordea tendinea.
  • the implant includes a rotatable structure
  • the at least one flexible longitudinal member is coupled at the first portion to the rotatable structure
  • the rotatable structure is bidirectionally rotatable to adjust the degree of tension of the at least one flexible longitudinal member.
  • successive portions of the flexible longitudinal member advance in a first advancement direction with respect to the rotatable structure and contact the rotatable structure, to pull the second portion of the flexible member toward the rotatable structure, and to draw the first and second portions of tissue toward each other.
  • the apparatus further includes a rotatable structure locking mechanism displaceable with respect to the rotatable structure, so as to:
  • the rotatable structure includes a spool, and the at least one flexible longitudinal member is configured to be wound around the spool during the rotation of the spool in a first rotational direction.
  • the first portion of the at least one flexible longitudinal member is looped through a portion of the spool.
  • the first portion of the at least one flexible longitudinal member is wound around a portion of the spool, and the first portion of the at least one flexible longitudinal member is configured to be unwound from around the portion of the spool following the coupling of the second portion of the flexible longitudinal member to the second portion of tissue of the patient.
  • apparatus including:
  • tissue-engaging element having a distal portion configured to engage at least a first portion of tissue of a patient, and having a proximal portion;
  • At least one docking station coupled to the proximal portion of the tissue-engaging element, the at least one docking station being configured to be coupled to the at least one tissue-adjustment device;
  • an implant including:
  • At least one guide member reversibly coupled to the at least one docking station, the at least one guide member being configured for facilitating slidable advancement of the at least one implant toward the tissue-engaging element.
  • the guide member is looped around a portion of the docking station.
  • the at least one docking station includes two or more docking stations
  • the at least one guide member includes two or more guide members, each guide member being reversibly coupled to a respective docking station.
  • the implant includes a support for receiving a prosthetic cardiac valve.
  • the implant includes a tissue-adjustment device.
  • the tissue-adjustment device includes an annuloplasty ring structure selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring.
  • the implant has:
  • the implant includes a first coupling
  • the docking station includes a second coupling configured to be coupled to the first coupling
  • the second coupling includes at least one depressed portion
  • the first coupling includes at least one moveable baffle which is configured to engage the at least one depressed portion of the second coupling.
  • the second coupling includes a locking mechanism configured to lock the implant to the tissue-engaging element.
  • the first portion of tissue includes a first portion of cardiac tissue at a first intraventricular site
  • the second portion of tissue includes at least one leaflet of an atrioventricular valve of the patient
  • the flexible longitudinal member includes at least one artificial chordea tendinea.
  • the rotatable structure is rotatable in a first rotational direction to apply tension to the flexible longitudinal member, and in a second rotational direction that is opposite the first rotational direction to slacken the flexible longitudinal member.
  • successive portions of the flexible longitudinal member advance in a first advancement direction with respect to the rotatable structure and contact the rotatable structure, responsively, to pull the second portion of the flexible longitudinal member toward the rotatable structure.
  • the apparatus further includes a rotatable structure locking mechanism, displaceable with respect to the rotatable structure so as to:
  • the rotatable structure includes a spool, and the at least one flexible longitudinal member is configured to be wound around the spool during the rotation of the spool in the first rotational direction.
  • the first portion of the flexible longitudinal member is looped through a portion of the spool.
  • the first portion of the flexible longitudinal member is wound around a portion of the spool, and the first portion of the flexible longitudinal member is configured to be unwound from around the portion of the spool following the coupling of the second portion of the flexible longitudinal member to the second portion of tissue of the patient.
  • apparatus including:
  • a tissue-adjustment mechanism having:
  • At least one repair chord coupled at a first portion thereof to the tissue-adjustment mechanism and having at least a first end that is configured to be coupled to a portion of tissue of a patient, the repair chord being configured to adjust a distance between the portion of tissue and the tissue-adjustment mechanism, in response to adjustment of the repair chord by the tissue-adjustment mechanism.
  • FIGS. 1 - 2 are schematic illustrations of apparatus comprising a tissue-engaging element comprising a docking station coupled to a guide wire, in accordance with some applications of the present invention
  • FIG. 3 is a schematic illustration of advancement of an adjustment mechanism along the guide wire toward the docking station of FIGS. 1 and 2 , in accordance with some applications of the present invention
  • FIGS. 4 - 5 are schematic illustrations of engaging a leaflet with a leaflet engaging element, in accordance with some applications of the present invention.
  • FIG. 6 is a schematic illustration of coupling of the adjustment mechanism of FIG. 3 to the docking station, in accordance with some applications of the present invention
  • FIGS. 7 - 9 are schematic illustrations of adjusting by the adjustment mechanism a length of a repair chord coupled to the adjustment mechanism, in accordance with some applications of the present invention.
  • FIG. 10 is a schematic illustration of the adjustment mechanism and the repair chord, in accordance with some other applications of the present invention.
  • FIGS. 11 - 15 are schematic illustrations of a plurality of docking stations and a plurality of adjustment mechanisms, in accordance with some applications of the present invention.
  • FIG. 16 is a schematic illustration of wall-to-wall adjustment using the docking station, adjustment mechanism, and repair chord, in accordance with some applications of the present invention.
  • FIG. 17 is a schematic illustration of wall-to-wall adjustment and leaflet adjustment using the plurality of docking stations, the plurality of adjustment mechanisms, and the plurality of repair chords, in accordance with some applications of the present invention
  • FIG. 18 is a schematic illustration of wall-to-wall adjustment using the docking station, adjustment mechanism, and repair chord, in accordance with some other applications of the present invention.
  • FIGS. 19 - 20 are schematic illustrations of adjustment of a valve of a patient from a middle portion of the valve, in accordance with some applications of the present invention.
  • FIG. 21 is a schematic illustration of the tissue-engaging element and the docking station of FIGS. 1 and 2 being used to facilitate implantation of an implant at a cardiac valve, in accordance with some applications of the present invention.
  • FIG. 22 is a schematic illustration of the tissue-engaging element and the docking station of FIGS. 1 and 2 being used to facilitate implantation of an annuloplasty ring at a cardiac valve, in accordance with some applications of the invention.
  • FIGS. 1 - 2 are schematic illustrations of a system 20 comprising a docking assembly 150 for implantation at a first implantation site 5 of a patient, in accordance with some applications of the present invention.
  • docking assembly 150 comprises a tissue-engaging element having (1) a distal portion comprising a tissue anchor 50 (e.g., a helical tissue anchor as shown by way of illustration and not limitation), and (2) a proximal portion comprising a docking platform 54 , and at least one docking station 56 .
  • tissue anchor 50 e.g., a helical tissue anchor as shown by way of illustration and not limitation
  • docking assembly 150 comprises (a) the distal portion which engages the tissue of the patient (i.e., the tissue-engaging element), and (b) the proximal portion which is coupled to docking station 56 . It is to be noted that the distal portion and the proximal portion are fixedly coupled to each other (e.g., immovable with respect to each other), and thereby docking station 56 and tissue anchor 50 are fixedly coupled to each other (e.g., immovable with respect to each other). Docking assembly 150 is thereby an integrated unit that comprises the docking station and tissue anchor. At least one guide member, (e.g., a guide wire 40 , shown in FIG.
  • first and second portions 40 a and 40 a ′ are reversibly coupled to docking assembly 150 (e.g., by being looped around, or otherwise coupled to, a portion of assembly 150 ) so as to define first and second portions 40 a and 40 a ′ that extend away from assembly 150 .
  • Tissue anchor 50 is typically implanted within cardiac tissue in a manner in which a distal portion of anchor 50 does not extend beyond an epicardium of heart 2 of the patient.
  • anchor 50 is implanted at an intracardiac site such that the implant, (e.g., the adjustment mechanism or an implant comprising the adjustment mechanism) that is eventually coupled thereto (as described hereinbelow) is implanted at the intracardiac site such that no portions of the adjustment mechanism extend beyond the epicardium of the heart.
  • Docking assembly 150 and guide wire 40 are advanced toward implantation site typically during a transcatheter procedure, as shown.
  • the scope of the present invention includes the advancement of assembly 150 and guide wire 40 during a minimally-invasive or open-heart procedure.
  • the procedure is typically performed with the aid of imaging, such as fluoroscopy, transesophageal echo, and/or echocardiography.
  • the transcatheter procedure typically begins with the advancing of a semi-rigid guide wire into a right atrium of the patient.
  • the semi-rigid guide wire provides a guide for the subsequent advancement of a sheath 28 therealong and into the right atrium. Once sheath 28 has entered the right atrium, the semi-rigid guide wire is retracted from the patient's body.
  • Sheath 28 typically comprises a 13-20 F sheath, although the size may be selected as appropriate for a given patient.
  • Sheath 28 is advanced through vasculature into the right atrium using a suitable point of origin typically determined for a given patient. For example:
  • sheath 28 may be introduced into the femoral vein of the patient, through an inferior vena cava, into the right atrium, and into the left atrium transseptally, typically through the fossa ovalis;
  • sheath 28 may be introduced into the basilic vein, through the subclavian vein to the superior vena cava, into the right atrium, and into the left atrium transseptally, typically through the fossa ovalis; or
  • sheath 28 may be introduced into the external jugular vein, through the subclavian vein to the superior vena cava, into the right atrium, and into the left atrium transseptally, typically through the fossa ovalis.
  • sheath 28 is advanced through the inferior vena cava of the patient (as shown) and into the right atrium using a suitable point of origin typically determined for a given patient.
  • Sheath 28 is advanced distally until the sheath reaches the interatrial septum.
  • a resilient needle and a dilator (not shown) are advanced through sheath 28 and into the heart.
  • the dilator In order to advance sheath 28 transseptally into the left atrium, the dilator is advanced to the septum, and the needle is pushed from within the dilator and is allowed to puncture the septum to create an opening that facilitates passage of the dilator and subsequently sheath 28 therethrough and into the left atrium.
  • the dilator is passed through the hole in the septum created by the needle.
  • the dilator is shaped to define a hollow shaft for passage along the needle, and the hollow shaft is shaped to define a tapered distal end. This tapered distal end is first advanced through the hole created by the needle. The hole is enlarged when the gradually increasing diameter of the distal end of the dilator is pushed through the hole in the septum.
  • a docking-assembly delivery tool 30 is advanced through sheath 28 .
  • Tool 30 is typically advanced within a lumen of an advancement sheath 22 having a distal end 24 .
  • Advancement sheath 22 is advanced within sheath 28 .
  • Delivery tool 30 is coupled at a distal end thereof to a manipulator 32 which is reversibly coupled to docking station 56 and docking platform 54 of docking assembly 150 .
  • Manipulator 32 has (1) lateral arms which cup platform 54 , and (2) a docking-station-coupler 34 , as shown in FIG. 1 .
  • Coupler 34 is biased to move radially-inward, as shown in FIG. 1 .
  • Docking station 56 is ribbed, such that coupler 34 , when moved radially inward, engages at least one rib of docking station 56 , thereby coupling assembly 150 to delivery tool 30 .
  • Delivery tool 30 and manipulator 32 are shaped so as to define a lumen for passage therethrough of guide wire 40 .
  • Site 5 typically comprises a portion of tissue at an intraventricular site in heart 2 of the patient. As shown, site 5 includes a papillary muscle 4 , by way of illustration and not limitation. It is to be noted that site 5 includes any portion of cardiac tissue, e.g., a portion of a free wall of the ventricle, a portion of the septum facing the ventricle, a portion of tissue at a base of the papillary muscle, or a portion of the wall at the apex of the ventricle.
  • a portion of tissue of a ventricle includes any portion of cardiac tissue, e.g., a portion of a free wall of the ventricle, a portion of the septum facing the ventricle, a portion of tissue at a base of the papillary muscle, or a portion of the wall at the apex of the ventricle.
  • tool 30 is disengaged from assembly 150 when the physician pulls on tool 30 .
  • This pulling pulls on manipulator 32 such that coupler 34 is actively moved radially outward against the ribs of docking station 56 , and is thereby decoupled from station 56 .
  • tissue at implantation site 5 pulls on assembly 150 (in the direction opposite the direction of pulling by the physician) so as to help disengage tool 30 from assembly 150 .
  • tool 30 is pulled proximally along guide wire 40 and is extracted from the body of the patient together with advancement sheath 22 , leaving behind assembly 150 and guide wire 40 .
  • FIG. 3 shows advancement of an implant (e.g., a spool assembly 36 comprising an adjustment mechanism 43 ) along guide wire 40 by an adjustment-mechanism delivery tool 64 , in accordance with some applications of the present invention.
  • Tool 64 is surrounded by and slidable within an advancement sheath 60 having a distal end 62 .
  • Spool assembly 36 is surrounded by a braided fabric mesh, e.g., a polyester mesh, which promotes fibrosis around assembly 36 and facilitates coupling of assembly 36 to tissue of heart 2 .
  • Assembly 36 houses a rotatable structure (e.g., a spool as shown hereinbelow) that is surrounded by a housing 49 .
  • Housing 49 is coupled to a distal cap 44 which facilitates coupling of assembly 36 to docking station 56 of docking assembly 150 .
  • cap 44 is shaped so as to define a plurality of baffles 47 that are disposed angularly with respect to a distal end of cap 44 .
  • Baffles 47 are coupled to the distal end of cap 44 along respective coupling joints which facilitate movement of each baffle 47 .
  • the ribbed portion of docking station 56 pushes inwardly baffles 47 of cap 44 , as is described hereinbelow.
  • Baffles 47 then expand and engage an area of docking station 56 between the ribs of the ribbed portion so as to dock and lock assembly 36 to docking station 56 .
  • cap 44 is shaped so as to define a central opening therethrough which facilitates passage therethrough of guide wire 40 .
  • spool assembly 36 and the components thereof are shaped so as to define a central opening (i.e., an opening having the same axis as guide wire 40 ). That is, spool 46 has a central opening, and housing 49 has a central opening which facilitates passage of spool 46 and housing 49 along guide wire 40 .
  • chord 74 comprises a flexible longitudinal member.
  • chord 74 functions as an artificial chordea tendinea.
  • a proximal portion of chord 74 is coupled to a leaflet-engaging element 72 (e.g., a clip, as shown).
  • Leaflet-engaging element 72 is disposed within a holder 70 that is coupled to delivery tool 64 .
  • Chord 74 a superelastic, biocompatible material (e.g., nitinol, ePTFE, PTFE, polyester, stainless steel, or cobalt chrome).
  • chord 74 comprises an artificial chordea tendinea.
  • FIGS. 4 - 5 are schematic illustrations of the engaging of leaflet-engaging element 72 to at least one leaflet 14 of a mitral valve of the patient, in accordance with some applications of the present invention. As shown in FIG. 4 , the clip is opened from a remote location outside the body of the patient.
  • the clip typically is shaped so as to define at least one coupling protrusion 73 .
  • the clip has a tendency to close, and is initially held open by a cord (not shown) that is coupled to a surface of the clip, extends through delivery tool 64 , and is held taught outside of the heart. Once the clip has been advanced to the desired location on the leaflet, the cord is relaxed, allowing the clip to close. The cord is removed, typically by releasing one end thereof and pulling the other end.
  • the positioning of holder 70 between the leaflets helps ensure that the clip engages exactly one of the leaflets. It is noted that in FIG. 5 the clip is shown engaging only a single leaflet (leaflet 14 ).
  • the clip typically engages the leaflet by clamping the leaflet such that the clip engages atrial and ventricular surfaces of the leaflet.
  • the clip may puncture the leaflet, or may merely press firmly against the leaflet.
  • the scope of the present invention includes the clipping together of both leaflets 12 and 14 .
  • the clip may clip any one, two, or all three leaflets together.
  • Holder 70 is shaped to define a groove which houses the clip during the advancement of tool 64 toward the ventricle.
  • the groove functions as a track to facilitate slidable detachment of the clip from holder 70 following the engaging of the clip to leaflet 14 .
  • the clip has a tendency to open.
  • a cord is provided. A distal-most portion of the cord is looped around the clip.
  • portions 74 a and 74 b extend from leaflet-engaging element 72 toward adjustment mechanism 43 .
  • Portions 74 a and 74 b define portions of a single chord 74 that is looped through a portion of mechanism 43 .
  • portions 74 a and 74 b represent two distinct chords which are coupled at their distal ends to adjustment mechanism 43 and at their proximal ends to leaflet-engaging element 72 .
  • leaflet-engaging element 72 engages leaflet 14 prior to coupling spool assembly 36 to docking station 56 .
  • FIG. 6 shows spool assembly 36 being coupled to docking station 56 , in accordance with some applications of the present invention.
  • spool assembly 36 is pushed distally toward docking station 56 .
  • Spool assembly 36 is coupled to an advancement shaft 80 which pushes assembly 36 .
  • Shaft 80 slides within a lumen of delivery tool 64 and within a lumen of holder 70 so as to advance spool assembly 36 , while leaflet-engaging element 72 remains engaged with leaflet 14 .
  • Advancement shaft 80 functions to advance distally spool assembly 36 and functions to facilitate engagement between spool assembly 36 and docking station 56 .
  • docking station 56 has one or more locking mechanisms (e.g., one or more ribs 57 , shown in the enlarged cross-sectional image of FIG. 6 ) which project laterally such that rib 57 defines a shelf and a depressed area underneath the shelf (i.e., the cross-sectional diameter at rib 57 is larger than the cross-sectional diameter at the area underneath the shelf).
  • cap 44 of assembly 36 is shaped so as to define a plurality of baffles 47 . As cap 44 engages docking station 56 , baffles 47 are pushed inward and upward angularly as each baffle slides against rib 57 .
  • Rib 57 comprises a locking mechanism so as to lock implant 42 (e.g., adjustment mechanism 43 ) to tissue anchor 50 .
  • spool 46 is rotated in a first rotational direction in order to advance with respect to spool 46 and contact with spool 46 successive portions of chord 74 .
  • first rotational direction For example, when the successive portions of chord 74 are advanced with respect to spool 46 , the successive portions of chord 74 are looped around spool 46 .
  • the rotating of spool 46 in the first rotational direction pulls tight and adjusts a length of chord 74 between leaflet 14 and spool 46 , in order to adjust a distance between leaflet 14 and implantation site 5 and to facilitate coaptation between leaflets 12 and 14 , as is described hereinbelow.
  • Housing 49 is shaped so as to provide openings 41 a and 41 b for passage therethrough of portions 74 a and 74 b , respectively, of chord 74 into housing 49 .
  • portions 74 a and 74 b define portions of a single chord 74 that is looped through spool 46 .
  • portions 74 a and 74 b define discrete chords which are each coupled at respective distal ends thereof to spool 46 .
  • Spool 46 defines an upper surface 150 , a lower surface 152 , and a cylindrical body portion disposed vertically between surfaces 150 and 152 .
  • Spool 46 is shaped to provide a driving interface, e.g., a channel, which extends from an opening provided by upper surface 150 to an opening provided by lower surface 152 .
  • a proximal portion of the driving interface is shaped to define a threaded portion 146 which may or may not be tapered. Threaded portion 146 of spool 46 is engageable by a threaded portion of a screwdriver head 92 of a screwdriver 90 .
  • Screwdriver 90 is coupled to a distal end of shaft 80 .
  • shaft 80 rotates screwdriver 90 .
  • shaft 80 is shaped so as to define a lumen for advancement therethrough of a screwdriver-rotation tool that facilitates rotation of screwdriver 90 .
  • Rotation of screwdriver 90 and screwdriver head 92 rotates spool 46 , as the respective threaded portions of spool 46 and screwdriver head 92 engage.
  • the cylindrical body portion of spool 46 is shaped to define one or more holes which function as respective coupling sites for coupling (e.g., looping through the one or more holes, or welding to spool 46 in the vicinity of the one or more holes) of any number of chords 74 to spool 46 .
  • Lower surface 152 of spool 46 is shaped to define one or more (e.g., a plurality, as shown) recesses 154 which define structural barrier portions 155 of lower surface 152 . It is to be noted that any suitable number of recesses 154 may be provided, e.g., between 1 and 10 recesses, circumferentially or otherwise, with respect to lower surface 152 of spool 46 .
  • a locking mechanism 45 is disposed in communication with lower surface 152 of spool 46 and disposed in communication with at least in part to a lower surface of housing 49 .
  • a cap 44 maintains locking mechanism 45 in place with respect to lower surface 152 of spool 46 and lower surface of housing 49 .
  • locking mechanism 45 is coupled, e.g., welded, to the lower surface of housing 49 .
  • locking mechanism 45 defines a mechanical element having a planar surface that defines slits. It is to be noted that the surface of locking mechanism 45 may also be curved, and not planar. Locking mechanism 45 is shaped to provide a protrusion 156 which projects out of a plane defined by the planar surface of the mechanical element.
  • the slits of mechanism 45 define a depressible portion 128 that is disposed in communication with and extends toward protrusion 156 .
  • Depressible portion 128 is moveable in response to a force applied thereto typically by an elongate locking mechanism release rod 94 which slides through a lumen of screwdriver 90 and a torque-delivering tool that is coupled thereto.
  • planar, mechanical element of locking mechanism 45 is shown by way of illustration and not limitation and that any suitable mechanical element having or lacking a planar surface but shaped to define at least one protrusion may be used together with locking mechanism 45 .
  • Cap 44 is provided that is shaped to define a planar surface and an annular wall having an upper surface thereof.
  • the upper surface of the annular wall is coupled to, e.g., welded to, a lower surface provided by housing 49 .
  • the annular wall of cap 44 is shaped to define a recessed portion 144 of cap 44 that is in alignment with a recessed portion 142 of spool housing 49 .
  • a distal end 96 of locking mechanism release rod 94 pushes distally on depressible portion 128 in order to unlock locking mechanism 45 from spool 46 .
  • Pushing depressible portion 128 by locking mechanism release rod 94 pushes distally protrusion 156 within recessed portion 142 of housing 49 and within recessed portion 144 of cap 44 , which frees protrusion 156 from recesses 154 of spool 46 .
  • protrusion 156 is released from recesses 154 of spool 46 , the physician is able to rotate spool 46 bidirectionally in order to adjust a tension of chord 74 .
  • chord 74 is pulled tight, and leaflet 14 is drawn toward adjustment mechanism 43 and toward anterior leaflet 12 of mitral valve 8 .
  • chord 74 In the resting state (i.e., prior to the rotation of spool 46 in order to adjust chord 74 , following coupling of leaflet-engaging element 72 to leaflet 14 ) chord 74 is wrapped around spool 46 a few times (e.g., three times, by way of illustration and not limitation). This winding provides excess slack to chord 74 (in case portions 74 a and 74 b are coupled too tightly to leaflet 14 ).
  • the physician If the physician wishes to provide slack to member 74 or to any one of portion 74 a or 74 b , the physician unwinds a bit of the wrapped portion of member 74 from around spool 46 (e.g., by unwinding chord 74 a few times from around spool 46 , or by unwinding chord 74 entirely from around spool 46 so that chord 74 slides freely through spool 46 within a channel provided therein). In order to accomplish such unwinding, the physician rotates spool 46 in a rotational direction in which it unwinds the wrapped portion of chord 74 .
  • chord 74 is looped through spool 46 in the channel provided therein, when chord 74 is unwound from spool 46 , the physician can pull on one or both portions 74 a and 74 b so as to adjust, make even, or further slacken any one of or both portions 74 a and 74 b that extend from spool 46 .
  • FIG. 7 shows spool assembly 36 following the adjustment of chord 74 by rotating screwdriver 90 in the direction as indicated by the arrow, and the partial removal of screwdriver 90 , in accordance with some applications of the present invention.
  • successive portions of chord 74 are wrapped around spool 46 . That is, chord 74 is wrapped more times around spool 46 following adjustment (e.g., an additional 4 times, as shown in FIG. 7 ), than prior to adjustment ( FIG. 6 ). This pulls chord 74 from a slackened state ( FIG. 6 ) to a taut state ( FIG.
  • chord 74 is adjusted while heart 2 is beating.
  • rod 94 is shaped so as to define a central lumen and a distal opening for passage therethrough of guide wire 40 .
  • depressible portion 128 is shaped so as to provide an opening for passage of guide wire 40 therethrough.
  • Guide wire 40 is looped around a distal looping element 55 of docking platform 54 of docking assembly 150 .
  • screwdriver 90 is decoupled from spool 46 (e.g., by being unscrewed from threaded portion 146 of spool 46 ) and is advanced proximally together with rod 94 away from spool assembly 36 , as shown in the enlarged, cross-sectional image of FIG. 7 .
  • guide wire 40 remains coupled to docking platform 54 and docking assembly 150 .
  • Guide wire 40 then facilitates subsequent advancement of screwdriver 90 or any other tool to access spool assembly 36 and/or to facilitate further adjustment of chord 74 beyond the initial adjustment.
  • Guide wire 40 may remain chronically coupled to docking assembly 150 and may be accessible at a subcutaneous location of the patient, e.g., a port.
  • guide wire 40 is removed from docking assembly 150 when the physician determines that further adjustment of chord 74 is not needed.
  • the physician removes guide wire 40 by pulling, from outside the body of the patient, one end of guide wire 40 so that guide wire 40 slides around element 55 and is unlooped therefrom. The physician continues to pull on the end of guide wire 40 until the second end of wire 40 is exposed and removed from the patient.
  • depressible portion 128 is no longer depressed by distal end 96 of rod 94 , and protrusion 156 returns within a recess 154 of spool 46 so as to lock spool 46 in place and restriction rotation thereof in either direction ( FIG. 7 ).
  • spool assembly 36 is only coupled to docking assembly 150 following the coupling of leaflet-engaging element 72 to leaflet 14 . This is done in order to reduce the strain on implantation site 5 . Should spool assembly 36 be implanted at implantation site 5 prior to engaging leaflet 14 with leaflet-engaging element 72 , more strain would be applied to implantation site 5 than if spool assembly 36 had been implanted following the coupling of leaflet-engaging element 72 to leaflet 14 , as described herein. That is, the pulling force is applied in a downward direction from leaflet 14 toward implantation site 5 instead of from implantation site 5 upward toward leaflet 14 .
  • FIG. 8 shows system 20 following the removal of the tool used to rotate spool 46 of spool assembly 36 , in accordance with some applications of the present invention.
  • chord 74 is pulled tight such that its length and tension are adjusted, and leaflet 14 is pulled and adjusted commensurate with the adjustment of chord 74 .
  • Guide wire 40 remains coupled to spool assembly 36 and to docking assembly 150 , as shown, such that portions 40 a and 40 a ′ extend from spool assembly 36 .
  • Guide wire 40 facilitates the reintroduction of the tool used to rotate spool 46 , or of any other tool.
  • FIG. 9 shows system 20 following the removal of guide wire 40 from heart 2 , in accordance with some applications of the present invention. As shown, the adjustment of chord 74 draws leaflets 12 and 14 together. It is to be noted that although leaflet-engaging element 72 is shown as engaging only leaflet 14 , the scope of the present invention includes the engaging of both leaflets 12 and 14 by leaflet-engaging element 72 .
  • FIG. 10 shows a system 220 , as described hereinabove with reference to system 20 , with the exception that implantation site 5 includes tissue of the wall of the ventricle at the base of papillary muscle 4 in a vicinity of the apex of the heart, in accordance with some applications of the present invention.
  • Implantation site 5 is shown by way of illustration and not limitation, and as described hereinabove, site 5 may include any portion of tissue of heart 2 .
  • leaflet-engaging element 72 is shown as engaging only leaflet 14 , the scope of the present invention includes the engaging of both leaflets 12 and 14 by leaflet-engaging element 72 .
  • FIGS. 11 - 15 are schematic illustrations of a system 320 comprising a multiple-docking-station assembly 350 comprising a plurality of docking stations 56 , in accordance with some applications of the present invention.
  • Multiple-docking-station assembly 350 comprises a tissue anchor 50 and a docking platform 322 which supports two or more docking stations 56 .
  • Platform 322 supports three docking stations 56 a , 56 b , and 56 c , by way of illustration and not limitation. It is to be noted that platform 322 may support any number of docking stations 56 .
  • each docking station 56 a , 56 b , and 56 c is reversibly coupled to a respective guide wire 40 a , 40 b , and 40 c , in a manner as described hereinabove.
  • Each docking station 56 a , 56 b , and 56 c facilitates coupling thereto of a respective spool assembly 36 a , 36 b , and 36 c , or any other tool or device which may be coupled to docking stations 56 a , 56 b , and 56 c.
  • first and second spool assemblies 36 a and 36 b are coupled via respective guide wires 40 a and 40 b to respective docking stations 56 a and 56 b .
  • Each spool assembly 36 a and 36 b has a respective chord 74 aa and 74 bb extending therefrom ( FIG. 13 ).
  • the chord extending from spool assembly 36 a has portions 74 aa and 74 aa ′ extending from spool assembly 36 a .
  • Each chord 74 is coupled to a respective leaflet-engaging element 72 . That is, chord 74 aa is coupled to leaflet-engaging element 72 a , and chord 74 bb is coupled to leaflet-engaging element 72 b ( FIG. 13 ).
  • Each leaflet-engaging element 72 a and 72 b is coupled to leaflets 12 and 14 , respectively, and then each spool assembly 36 a and 36 b is coupled to respective docking stations 56 a and 56 b , in a manner as described hereinabove.
  • Chords 74 aa and 74 bb are then adjusted, as described hereinabove.
  • Each chord 74 aa and 74 bb may be adjusted sequentially or simultaneously.
  • FIG. 13 shows chords 74 aa and 74 bb following their adjustment.
  • the relative dispositions of leaflets 12 and 14 are adjusted in conjunction with the adjusting of chords 74 aa and 74 bb .
  • leaflets 12 and 14 are drawn together to repair the heart valve.
  • a third spool assembly 36 c may be coupled to docking station 56 c .
  • Chord 74 c coupled thereto may be coupled to a third implantation site in heart 2 and subsequently adjusted.
  • FIG. 15 shows third spool assembly 36 c coupled to docking station 56 c without the presence of the other spool assemblies 36 a and 36 b , by way of illustration and not limitation.
  • FIG. 16 shows a system 600 for repairing malpositioning of the wall of the ventricle of the patient, in accordance with respective applications of the present invention.
  • System 600 treats a weakened state of heart 2 in which the wall of the left ventricle is malpositioned and weakened.
  • leaflets 12 and 14 of mitral valve 8 are malpositioned and are distanced from one another (not shown).
  • spool assembly 36 is implanted at a first portion 420 of heart tissue which faces and surrounds the left ventricle of heart 2 .
  • First implantation site 5 thus comprises first portion 420 of heart tissue.
  • first implantation site 5 is at the base of the papillary muscle by way of illustration and not limitation, and that first implantation site 5 may be at a portion of the wall of the heart in a vicinity of the apex of the heart, or at papillary muscle 4 .
  • docking assembly 350 and spool assembly 36 are implanted externally to the ventricle, and chord 74 extends through cardiac tissue and into the ventricle toward implantation site 7 .
  • Spool assembly 36 is implanted via docking assembly 150 at site 5 in a manner as described hereinabove with reference to FIGS. 3 - 6 .
  • the free ends of chord 74 are coupled to a second portion 422 of heart tissue which faces and surrounds the left ventricle of heart 2 .
  • Second implantation site 7 thus comprises second portion 422 of heart tissue, e.g., at the septum, by way of illustration and not limitation.
  • the free ends of longitudinal chord 74 are coupled to the heart tissue using any suitable attachment means 602 , e.g., sutures, knotting, or tissue anchors such as helical anchors.
  • Spool 46 of adjustment mechanism 43 is rotated, as described hereinabove, thereby pulling tight chord 74 and thereby reducing a length of chord 74 between first and second implantation sites 5 and 7 .
  • first and second portions 420 and 422 of the heart tissue are pulled toward one another, and a length of chord 74 is adjusted. Consequently, the dimensions of the heart wall are restored to physiological dimensions, and leaflets 12 and 14 are drawn toward one another.
  • FIG. 17 shows a system 610 for adjusting both malpositioning of a heart wall of heart 2 , and a relative disposition of leaflet 12 , in accordance with some applications of the present invention.
  • Multiple-docking-station assembly 350 is implanted at implantation site 5 , i.e., a portion of tissue of a heart wall of heart 2 in a vicinity of the apex of heart 2 .
  • implantation site 5 may include any portion of tissue of heart 2 , e.g., a portion of tissue at the base of papillary muscle 4 , a portion of tissue of papillary muscle 4 , or a portion of the free wall of the ventricle.
  • first spool assembly 36 a is coupled to docking station 56 a and adjusts a length of chord 74 aa in order to adjust a distance between implantation sites 5 and 7 .
  • Second spool assembly 36 b is coupled to docking station 56 b and adjusts a length of chord 74 bb in order to adjust a distance between implantation site 5 a third implantation site 9 (e.g., leaflet 12 , as shown).
  • chords 74 aa and 74 bb may be adjusted simultaneously or sequentially. Following the adjusting, implantation sites 7 and 9 are drawn toward multiple-docking-station assembly 350 at implantation site 5 .
  • leaflet-engaging element 72 is shown as engaging only leaflet 12 , the scope of the present invention includes the engaging of both leaflets 12 and 14 by leaflet-engaging element 72 .
  • chord 74 c may be coupled to a different portion of cardiac tissue, e.g., leaflet 14 .
  • FIG. 18 is a schematic illustration of a system 800 for adjusting a distance between two portions of a heart wall of the left ventricle of the patient, in accordance with some applications of the present invention.
  • System 800 comprises a tensioning device 802 coupled at a first end thereof to spool assembly 36 at docking assembly 150 .
  • spool assembly 36 is implanted at first implantation site 5 in a first portion of tissue of the heart wall that faces and surrounds the ventricular lumen.
  • the free end of tensioning device 802 is attached at second implantation site 7 to a second portion of tissue of the heart wall that faces and surrounds the ventricular lumen.
  • tensioning device 802 is implanted in heart tissue using a helical anchor by way of illustration and not limitation.
  • the free end of tensioning device 802 may be coupled to second implantation site 7 using sutures, knots, or any tissue anchor known in the art.
  • Tensioning device 802 comprises a flexible material, e.g., ePTFE or nitinol, and is shaped to define a coiled portion 806 that has a length of between 20 mm and 50 mm and a diameter of between 0.5 mm and 3.0 mm.
  • Tensioning device 802 comprises respective wire/suture portions 804 on either side of coiled portion 806 .
  • the suture portion 804 that is between spool assembly 36 and coiled portion 806 comprises portions 74 a and 74 b of chord 74 .
  • spool 46 of adjustment mechanism 43 is rotated in order to adjust a distance between first and second implantation sites 5 and 7 .
  • spool 46 is rotated in a first direction thereof, successive portions of chord 74 of suture portion 804 that is disposed adjacently to spool assembly 36 are wrapped around spool 46 .
  • Tensioning device 802 is tightened and shortened in response to the wrapping of portion 804 around spool 46 .
  • a force is applied to coiled portion 806 of tensioning device 802 .
  • Coiled portion 806 applies a supplemental puling force to help pull the opposing first and second portions of the ventricle wall toward one another. Consequently, the dimensions of the heart wall are restored to physiological dimensions, and leaflets 12 and 14 are drawn toward one another.
  • first and second implantation sites 5 and 7 may be on the same side, e.g., the septum, of the wall of the heart.
  • FIG. 19 is a schematic illustration of a system 960 for drawing together leaflets 12 and 14 of mitral valve 8 of the patient, in accordance with some applications of the present invention.
  • Spool assembly 36 is implanted via docking assembly 150 in first implantation site 5 at papillary muscle 4 of the left ventricle by way of illustration and not limitation.
  • spool assembly 36 may be implanted in a portion of the heart wall of the ventricle, e.g., the base of the papillary muscle.
  • First and second portions 74 a and 74 b of chord 74 are coupled (e.g., sutured, anchored, clipped, or locked in place with a crimping bead 918 , as shown) to leaflet 12 at an implantation site 902 . It is to be noted that portions 74 a and 74 b may be coupled to leaflets 12 and 14 , respectively, using leaflet-engaging elements 72 as described hereinabove.
  • spool 46 of adjustment mechanism 43 is rotated in order to adjust a length of portions 74 a and 74 b of chord 74 .
  • Portions 74 a and 74 b are pulled tight in response to rotation of spool 46 in a first direction thereof.
  • leaflets 12 and 14 are pulled toward one another in order to restore coaptation to valve 8 .
  • system 960 may be used on the tricuspid valve.
  • System 960 further comprises at least one bead 940 that is threaded over portions 74 a and 74 b of chord 74 .
  • the surgeon adjusts the position of the bead along the portions 74 a and 74 b in order to set the degree to which portions 74 a and 74 b are free to move with respect to one another.
  • portions 74 a and 74 b are more constrained in their motion with respect to one another, and leaflets 12 and 14 are drawn closer together.
  • bead 940 comprises a fixation mechanism (e.g., a crimping mechanism), which is configured to fix the bead to portions 74 a and 74 b of chord 74 once bead 940 has been positioned at a desire location along portions 74 a and 74 b.
  • a fixation mechanism e.g., a crimping mechanism
  • FIG. 20 shows a system 980 that is similar to system 960 as described with reference to FIG. 19 , with the exception that bead 940 is pulled by the operating physician to the ventricular surface of a middle portion of valve 8 , in accordance with some applications of the present invention.
  • Such pulling of bead 940 to the ventricular surface creates a bridge between leaflets 12 and 14 , e.g., as an Alfieri stitch, or edge-to-edge repair.
  • Portions 74 a and 74 b are then adjusted in order to pull together the middle portion of mitral valve 8 , as shown in Section A-A.
  • leaflets 12 and 14 prevents prolapsing of leaflets 12 and 14 , facilitates coaptation of leaflets 12 and 14 , and creates orifices 962 and 964 (section A-A) in mitral valve 8 so as to facilitate blood flow from the atrium to the ventricle. Additionally, the adjusting of portions 74 a and 74 b of chord 74 draws downward leaflets 12 and 14 and adjusts chord 74 such that it functions as an artificial chordea tendinea.
  • FIGS. 19 and 20 It is to be noted that although docking assembly 150 is shown, multiple-docking-station assembly 350 as described hereinabove, may be implanted at implantation site 5 .
  • two or more spool assemblies 36 may be coupled to multiple-docking-station assembly 350 , and any number of chords 74 extending from each spool assembly 36 may be coupled to leaflets 12 and 14 at any suitable location thereof. The lengths of chords 74 are then adjusted by spool assemblies 36 in order to pull leaflets 12 and 14 together.
  • FIG. 21 is a schematic illustration of a system 1000 comprising docking assembly 150 for implantation at an implantation site 5 a that includes an annulus 1100 of a cardiac valve of the patient, in accordance with some applications of the present invention.
  • the mitral valve is shown by way of illustration and not limitation, and that system 1000 can be used on any other cardiac valve of the patient, e.g., the tricuspid valve, the pulmonary valve, and the aortic valve.
  • System 1000 comprises docking assembly 150 and the guide member coupled thereto (e.g., guide wire 40 ), as described hereinabove with reference to FIGS. 1 - 2 .
  • implant 42 configured to be coupled to docking assembly 150 comprises an annuloplasty ring structure (e.g., a full annuloplasty ring or a partial annuloplasty ring).
  • the annuloplasty ring structure comprises adjustment mechanism 43 .
  • the annuloplasty ring structure configured to be coupled to docking assembly 150 may be provided independently of adjustment mechanism 43 . That is, any suitable annuloplasty ring structure may be coupled to docking assembly 150 .
  • the annuloplasty ring structure is slid along guide wire 40 toward docking assembly 150 .
  • implant 42 configured to be coupled to docking assembly 150 comprises a prosthetic valve or a support structure for coupling a prosthetic valve thereto.
  • the support structure comprises adjustment mechanism 43 . It is to be noted, however, that the support structure configured to be coupled to docking assembly 150 may be provided independently of adjustment mechanism 43 . That is, any suitable support structure or prosthetic valve may be coupled to docking assembly 150 . For such applications, the support structure or prosthetic valve is slid along guide wire 40 toward docking assembly 150 .
  • FIG. 22 is a schematic illustration of system 1000 being used to facilitate implantation of implant 42 , comprising an annuloplasty ring 1120 , at annulus 1100 of a cardiac valve, in accordance with some applications of the invention.
  • the mitral valve is shown by way of illustration and not limitation, and that system 1000 can be used on any other cardiac valve of the patient, e.g., the tricuspid valve, the pulmonary valve, and the aortic valve.
  • annuloplasty ring 1120 is shown as a partial annuloplasty ring by way of illustration and not limitation, and that annuloplasty ring 1120 may comprise a full annuloplasty ring.
  • Docking assembly 150 is advanced to the annulus, and tissue anchor 50 is anchored to tissue in the vicinity of the annulus (e.g., to tissue of the annulus).
  • tissue anchor 50 comprises a helical tissue anchor
  • the anchor is typically coupled to the tissue by rotating the entire docking assembly 150 (e.g., using a delivery tool, such as delivery tool 30 , described hereinabove with reference to FIGS. 1 - 2 , mutatis mutandis).
  • a guide member e.g., guide wire 40
  • docking assembly 150 e.g., to docking station 56 thereof.
  • annuloplasty ring 1120 is advanced along guide wire 40 toward annulus 1100 and docking assembly 150 .
  • annuloplasty ring 1120 is shaped to define a channel therethrough (e.g., between an upper surface and a lower surface of the annuloplasty ring), within which guide wire 40 is configured to be disposed, and the annuloplasty ring is slid over the guide wire.
  • annuloplasty ring 1120 comprises an adjustable annuloplasty ring that comprises an adjustment mechanism 1143 , configured to adjust the annuloplasty ring (e.g., as described hereinbelow).
  • adjustment mechanism 1143 is shaped to define the channel within which guide wire 40 is configured to be disposed.
  • adjustment mechanism 1143 comprises adjustment mechanism 43 and/or spool assembly 36 , described hereinabove.
  • annuloplasty ring 1120 comprises a sleeve 1126 that defines a lumen therethrough, and a flexible longitudinal member 1130 , disposed at least in part within the lumen of the sleeve, and adjustment mechanism 1143 is configured to adjust the length of the sleeve (e.g., the diameter of the annuloplasty ring) by adjusting the length of the flexible longitudinal member.
  • flexible longitudinal member 1130 is coupled to and adjusted by adjustment mechanism 1143 , in a similar manner to that in which chord 74 is coupled to and adjusted by adjustment mechanism 43 , described hereinabove.
  • annuloplasty ring 1120 reaches docking assembly 150 , the annuloplasty ring is locked to the docking assembly as described hereinabove (e.g., with reference to FIG. 6 ), mutatis mutandis. That is, a coupling defined by the annuloplasty ring is locked to a coupling defined by the docking assembly, typically by the couplings being pushed toward and/or into each other.
  • annuloplasty ring 1120 may comprise a partial annuloplasty ring that comprises sleeve 1126 , and successive portions of sleeve 1126 may be placed on annulus 1100 , and anchored to the annulus using a plurality of successive anchors 1140 , deployed using a deployment manipulator 1142 , from within the lumen of the sleeve, through the wall of the sleeve, and into the annulus.
  • docking assembly 150 is used to guide and anchor a first portion of the annuloplasty ring to a first anchoring site of the annulus, and successive anchors 1140 are subsequently used to anchor other portions of the annuloplasty ring.
  • annuloplasty ring comprises a plurality of adjustment mechanisms 1143 disposed around the length of sleeve 1126 (e.g., to adjust the length of different portions of the sleeve), and each of the adjustment mechanisms is advanced over a respective guide wire 40 and locked to a respective docking station of a respective docking assembly.
  • annuloplasty ring 1120 is locked to docking assembly 150 suturelessly.
  • systems 20 , 220 , 320 , 600 , 610 , 800 , 960 , 980 , and 1000 are used to treat an atrioventricular valve other than the mitral valve, i.e., the tricuspid valve.
  • systems 20 , 220 , 320 , 600 , 610 , 800 , 960 , 980 , and 1000 described hereinabove as being placed in the left ventricle are instead placed in the right ventricle.
  • the scope of the present invention includes the use of systems 20 , 220 , 320 , 600 , 610 , 800 , 960 , 980 , and 1000 on other cardiac valves, such as the pulmonary valve or the aortic valve.
  • scope of the present invention includes the use of systems 20 , 220 , 320 , 600 , 610 , 800 , 960 , 980 , and 1000 on other tissue other than cardiac tissue, e.g., gastric tissue or any other suitable tissue or organ.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Surgery (AREA)
  • Rheumatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Prostheses (AREA)

Abstract

A tissue-engaging element is advanced to a heart, while coupled to a guide member. The tissue-engaging element is then coupled to tissue of the heart. An elongate implant is subsequently slid distally along the guide member toward the tissue-engaging element, and the elongate implant is subsequently locked to the tissue-engaging element. Other embodiments are also described.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • The present application is a Continuation of Ser. No. 17/001,566 to Reich et al., which published as US 2020/0383787, which is a Continuation of U.S. Ser. No. 15/970,743 to Reich et al., now U.S. Pat. No. 10,751,184, which is a Divisional of U.S. Ser. No. 14/937,233 to Reich et al., now U.S. Pat. No. 9,968,454, which is a continuation of U.S. Ser. No. 13/707,013 to Reich et al., now U.S. Pat. No. 9,180,007, which is a continuation-in-part of:
  • a. International Application PCT/IL2011/000446 to Miller et al., entitled “Apparatus and method for guide-wire based advancement of a rotation assembly,” filed on Jun. 6, 2011 (which published as WO/2011/154942);
  • b. U.S. patent application Ser. No. 12/795,192 to Miller et al., entitled “A method for guide-wire based advancement of a rotation assembly,” filed on Jun. 7, 2010 (which published as US 2011/0301698) (now U.S. Pat. No. 8,690,939); and
  • c. U.S. patent application Ser. No. 12/795,026 to Miller et al., entitled “Apparatus for guide-wire based advancement of a rotation assembly,” filed on Jun. 7, 2010 (which published as US 2011/0106245, now U.S. Pat. No. 8,940,042), which is a continuation-in-part of U.S. patent application Ser. No. 12/608,316 to Miller et al., entitled, “Tissue anchor for annuloplasty device,” filed on Oct. 29, 2009 (now U.S. Pat. No. 8,277,502).
  • All of these applications are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates in general to valve and chordeae tendineae repair. More specifically, the present invention relates to repair of an atrioventricular valve and associated chordeae tendineae of a patient.
  • BACKGROUND
  • Ischemic heart disease causes mitral regurgitation by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the left ventricle that is present in ischemic heart disease, with the subsequent displacement of the papillary muscles and the dilatation of the mitral valve annulus.
  • Dilation of the annulus of the mitral valve prevents the valve leaflets from fully coapting when the valve is closed. Mitral regurgitation of blood from the left ventricle into the left atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the left ventricle secondary to a volume overload and a pressure overload of the left atrium.
  • Chronic or acute left ventricular dilatation can lead to papillary muscle displacement with increased leaflet tethering due to tension on chordae tendineae, as well as annular dilatation.
  • SUMMARY OF THE INVENTION
  • In some applications of the present invention, apparatus is provided comprising an implant comprising one or more primary adjustable repair chords and an adjustment mechanism that is configured to adjust a tension of the one or more adjustable repair chords and that is slidable along a guide wire toward an implantation site. Additionally, the apparatus comprises a first tissue-engaging element (e.g., a tissue anchor) that comprises one or more docking stations. Further additionally, in accordance with some applications of the present invention, a method is provided for implanting such apparatus. A respective guide wire is reversibly coupled to each one of the docking stations. The adjustment mechanism is slidable along the guide wire toward one of the one or more docking stations, and is coupled to the tissue-engaging element via the docking station. Thus, the docking station is a coupling element that provides coupling between two other elements (in this case, between adjustment mechanism and the tissue-engaging element.)
  • The repair chord comprises a flexible, longitudinal member (e.g., sutures or wires). The repair chord is coupled at a distal portion thereof to the adjustment mechanism. In some applications, the repair chord functions as artificial chordae tendineae. In other applications, the repair chord is used to adjust a distance between two portions of the ventricular wall. For some applications, the repair chord is coupled at a proximal portion thereof to a second tissue-engaging element (e.g., a tissue anchor which penetrates or clips a portion of tissue).
  • For other applications, the repair chord comprises a cord that is disposed within at least a portion of an annuloplasty ring structure (e.g., a full annuloplasty ring or a partial annuloplasty ring). For such applications, the annuloplasty ring structure comprises the adjustment mechanism that is coupled to the repair cord. The annuloplasty ring structure is slidable along the guide wire toward one of the one or more docking stations, and is coupled to the tissue-engaging element via the docking station. It is to be noted that the annuloplasty ring structure may be provided independently of the adjustment mechanism and the repair chord. For such applications, the annuloplasty ring structure is slidable along the guide wire toward one of the one or more docking stations, and is coupled to the tissue-engaging element via the docking station.
  • For yet other applications, a prosthetic heart valve and/or a support for the prosthetic heart valve is slidable along the guide wire toward one of the one or more docking stations, and is coupled to the tissue-engaging element via the docking station.
  • Thus, the tissue-engaging element and the docking station are used to facilitate implantation of an implant such as cardiac valve implants, namely annuloplasty ring structures, prosthetic valves, and/or apparatus for receiving a prosthetic valve (e.g., a docking station or a support for receiving the prosthetic valve).
  • Typically, during a transcatheter procedure, the first tissue-engaging element is coupled to a first portion of tissue at a first implantation site in a heart of a patient. The adjustment mechanism is then slid along the guide wire and toward the first tissue-engaging element at the first implantation site. The proximal portion of the repair chord is then coupled via the second tissue-engaging element to a second portion of tissue at a second implantation site. Following the coupling of the second tissue-engaging element to the second implantation site, the adjustment mechanism is further slid distally toward the first tissue-engaging element and is then coupled to the first tissue-engaging element via the one or more docking stations on the first tissue-engaging element. Following the coupling of the adjustment mechanism to the second tissue-engaging element, a length and tension of the repair chord is then adjusted in order to adjust a distance between the first and second implantation sites. For applications in which the repair chord functions as an artificial chordea tendinea, the adjustment of the length and tension of the repair chord draws the leaflets together, and/or pulls the leaflet down toward the first implantation site to repair the valve.
  • In some applications of the present invention, the adjustment mechanism comprises a spool assembly which adjusts a degree of tension of the repair chord. The spool assembly comprises a housing, which houses a spool to which a distal portion of the repair chord is coupled.
  • For applications in which the repair chord is coupled to two respective portions of the ventricular wall, the two portions are drawn together, thereby restoring the dimensions of the heart wall to physiological dimensions, and drawing the leaflets toward one another.
  • In some applications of the present invention, the adjustment mechanism comprises a reversible locking mechanism which facilitates bidirectional rotation of the spool in order to effect both tensioning and relaxing of the repair chord. That is, the spool is wound in one direction in order to tighten the repair chord, and in an opposite direction in order to slacken the repair chord. Thus, the spool adjustment mechanism facilitates bidirectional adjustment of the repair chord.
  • In some applications of the present invention, the adjustable repair chord is implanted during an open-heart or minimally-invasive procedure. In these applications, the delivery tool comprises a handle and a multilumen shaft that is coupled at a distal end thereof to the adjustment mechanism. The delivery tool functions to advance the adjustment mechanism to the first portion of tissue, implant the adjustment mechanism at the first portion of tissue, and effect adjustment of the repair chord by effecting rotation of the spool. For applications in which the repair chord functions as an artificial chordea tendinea, prior to implantation of the adjustment mechanism, the distal portion of the delivery tool and the adjustment mechanism coupled thereto are advanced between the leaflets of the atrioventricular valve and into the ventricle toward the first portion of tissue. The incision made in the heart is then closed around the delivery tool and the heart resumes its normal function during the adjustment of the length of the artificial chordea tendinea.
  • In some applications of the present invention, apparatus and method described herein may be used for providing artificial chordae tendineae in a left ventricle of the heart and effecting adjustment thereof. In some applications, apparatuses and methods described herein may be used for providing artificial chordae tendineae in a right ventricle of the heart and effecting adjustment thereof. In some applications, apparatus and method described herein may be used for providing a system to adjust a length between two portions of the heart wall. For other applications apparatuses and methods described herein may be used for providing a docking station for an annuloplasty ring or for a prosthetic valve.
  • There is therefore provided, in accordance with an application of the present invention, apparatus, including:
  • a guide member;
  • a tissue-adjustment mechanism having:
      • an upper surface and a lower surface,
      • at least one first opening at the upper surface,
      • at least one second opening at the lower surface, and
      • a channel extending between the first and second openings, the channel facilitating advancement of the tissue-adjustment mechanism along the guide member; and
  • at least one repair chord coupled at a first portion thereof to the tissue-adjustment mechanism and having at least a first end that is configured to be coupled to a portion of tissue of a patient, the repair chord being configured to adjust a distance between the portion of tissue and the tissue-adjustment mechanism, in response to adjustment of the repair chord by the tissue-adjustment mechanism.
  • There is further provided, in accordance with an application of the present invention, a method, including:
  • coupling a guide member to a portion of tissue of a patient; and
  • advancing a tissue-adjustment mechanism toward the portion of tissue by:
      • threading a portion of the guide member through at least one channel extending between a first opening in an upper surface of the tissue-adjustment mechanism and a second opening in a lower surface of the tissue-adjustment mechanism; and
      • advancing the tissue-adjustment mechanism along the guide member and toward the portion of tissue.
  • There is further provided, in accordance with an application of the present invention, apparatus for use with tissue of a heart of a subject, the apparatus including:
  • at least one docking assembly, having:
      • a distal portion including a tissue anchor that is configured to engage a portion of the tissue,
      • a proximal portion, fixedly coupled to the distal portion, and including at least one docking station that includes a first coupling;
  • at least one guide member, reversibly coupled to the at least one docking station; and
  • an annuloplasty ring selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring, the selected annuloplasty ring being:
      • shaped to define a second coupling, and
      • slidable along the guide member toward the docking station, and
      • configured to be locked to the docking station by the second coupling being lockable to the first coupling.
  • In an application, the second coupling is lockable to the first coupling by being pushed against the first coupling.
  • In an application, the annuloplasty ring is configured to be locked to the docking station suturelessly.
  • In an application, the docking assembly is percutaneously deliverable to the heart of the subject, and the annuloplasty ring is percutaneously lockable to the docking station.
  • In an application:
  • the at least one docking assembly includes a plurality of docking assemblies,
  • the at least one guide member includes a respective plurality of guide members, each of the guide members being reversibly coupled to a respective docking station of a respective docking assembly,
  • the selected annuloplasty ring is shaped to define a respective plurality of second couplings, and is slidable along the plurality of guide members toward the plurality of docking assemblies, and
  • the each of the second couplings is lockable to a respective first coupling of a respective docking assembly.
  • In an application, the selected annuloplasty ring includes an adjustable annuloplasty ring, including a rotatable structure that is:
  • bidirectionally rotatable to adjust the selected annuloplasty ring,
  • shaped to define a channel between an upper surface thereof and a lower surface thereof, the guide member being disposable in the channel, and
  • shaped to define the second coupling, and
  • the selected annuloplasty ring is slidable along the guide member by the rotatable structure being slidable along the guide member.
  • In an application:
  • the selected annuloplasty ring includes:
      • a sleeve, having a longitudinal length from a first end thereof to a second end thereof, and defining lumen therebetween,
      • a flexible longitudinal member, at least part of which is disposed in at least part of the lumen, and
      • the rotatable structure, and
  • the rotatable structure is:
  • coupled to a first end portion of the flexible longitudinal member, and
  • bidirectionally rotatable to adjust the longitudinal length of the sleeve by adjusting a degree of tension of the flexible longitudinal member.
  • In an application, the apparatus further includes a rotatable structure locking mechanism displaceable with respect to the rotatable structure, so as to release the rotatable structure during rotation of the rotatable structure, and lock in place the rotatable structure following rotation of the rotatable structure.
  • In an application, the apparatus further includes a release rod:
  • shaped to define a lumen therethrough, the guide member being disposable within the lumen of the release rod, and
  • configured to unlock the rotatable structure locking mechanism by being slid over the guide member.
  • There is further provided, in accordance with an application of the present invention, apparatus, including:
  • a docking assembly:
      • having a distal portion including a tissue anchor that is configured to engage cardiac tissue of a subject,
      • having a proximal portion including at least one docking station that includes a first coupling;
  • a guide member reversibly coupled to the at least one docking station; and
  • an adjustable annuloplasty ring selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring, the selected annuloplasty ring:
      • a. including:
        • a sleeve, having a longitudinal length from a first end thereof to a second end thereof, and defining lumen therebetween,
        • a flexible longitudinal member, at least part of which is disposed in at least part of the lumen, and
        • a rotatable structure:
          • coupled to a first end portion of the flexible longitudinal member,
          • bidirectionally rotatable to adjust the longitudinal length of the sleeve by adjusting a degree of tension of the flexible longitudinal member,
          • shaped to define (1) a channel between an upper surface thereof and a lower surface thereof, the guide member being disposable in the channel, and (2) a second coupling, and
      • b. being slidable along the guide member toward the docking assembly, and configured to lock the selected annuloplasty ring to the docking assembly by the second coupling being lockable to the first coupling.
  • In an application, the apparatus further includes a rotatable structure locking mechanism displaceable with respect to the rotatable structure, so as to release the rotatable structure during rotation of the rotatable structure, and lock in place the rotatable structure following rotation of the rotatable structure.
  • In an application, the apparatus further includes a release rod:
  • shaped to define a lumen therethrough, the guide member being disposable within the lumen of the release rod, and
  • configured to unlock the rotatable structure locking mechanism by being slid over the guide member.
  • There is further provided, in accordance with an application of the present invention, a method for use with tissue of a heart of a subject, the method including:
  • advancing a docking station assembly to the tissue, the docking station assembly including (1) a distal portion including a tissue anchor that is configured to engage a portion of the tissue, and (2) a proximal portion, fixedly coupled to the distal portion, and including at least one docking station that includes a first coupling;
  • advancing, along a guide member that is reversibly coupled to the docking station, an annuloplasty ring selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring, the selected annuloplasty ring being shaped to define a second coupling; and
  • locking the selected annuloplasty ring to the docking station by locking the second coupling to the first coupling.
  • There is further provided, in accordance with an application of the present invention, apparatus for use with at least one implant, including:
  • a tissue-engaging element having (a) a distal portion configured to engage at least a first portion of tissue of a patient, and (b) a proximal portion;
  • at least one docking station coupled to the proximal portion of the tissue-engaging element, the at least one docking station:
      • being configured to receive and be coupled to the at least one implant, and
      • including a locking mechanism configured to lock the implant to the docking station; and
  • at least one guide member reversibly coupled to the at least one docking station, the at least one guide member being configured for facilitating slidable advancement of the at least one implant toward the docking station.
  • In an application, the at least one docking station includes two or more docking stations, and the at least one guide member includes two or more guide members, each guide member being reversibly coupled to a respective docking station.
  • In an application, the implant includes at least one implant selected from the group consisting of: a prosthetic cardiac valve and a support for receiving a prosthetic cardiac valve, and the at least one docking station is configured to receive and be coupled to the selected implant.
  • In an application, the implant includes a tissue-adjustment device selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring, and the at least one docking station is configured to receive and be coupled to the selected tissue-adjustment device.
  • In an application, the apparatus further includes the implant.
  • In an application, the implant has:
  • an upper surface and a lower surface,
  • at least one first opening at the upper surface,
  • at least one second opening at the lower surface, and
  • a channel extending between the first and second openings, the channel facilitating advancement of the implant along the guide member.
  • In an application, the implant includes a first coupling, and the locking mechanism includes a second coupling configured to be coupled to the first coupling.
  • In an application, the second coupling includes at least one depressed portion, and the first coupling includes at least one moveable baffle which is configured to engage the at least one depressed portion of the second coupling.
  • In an application, the apparatus further includes at least one flexible longitudinal member coupled at a first portion thereof to the implant, a second portion of the flexible longitudinal member is configured to be coupled to a second portion of tissue of the patient, and the implant is configured to adjust a length of the longitudinal member between the first and second portions of tissue.
  • In an application:
  • the first portion of tissue includes a first portion of cardiac tissue at a first intraventricular site,
  • the second portion of tissue includes at least one leaflet of an atrioventricular valve of the patient, and
  • the flexible longitudinal member includes at least one artificial chordea tendinea.
  • In an application:
  • the implant includes a rotatable structure,
  • the at least one flexible longitudinal member is coupled at the first portion to the rotatable structure, and
  • the rotatable structure is bidirectionally rotatable to adjust the degree of tension of the at least one flexible longitudinal member.
  • In an application, the rotatable structure is configured such that:
  • rotation of the rotatable structure in a first rotational direction applies tension to the flexible longitudinal member, and
  • rotation of the rotatable structure in a second rotational direction that is opposite the first rotational direction slackens the flexible longitudinal member.
  • In an application, the apparatus further includes a rotatable structure locking mechanism displaceable with respect to the rotatable structure, so as to:
  • release the rotatable structure during rotation of the rotatable structure, and
  • lock in place the rotatable structure following rotation of the rotatable structure.
  • In an application, the rotatable structure includes a spool, and the at least one flexible longitudinal member is configured to be wound around the spool during the rotation of the spool in a first rotational direction.
  • In an application:
  • the implant includes a rotatable structure, coupled to a flexible longitudinal member,
  • the rotatable structure is bidirectionally rotatable to adjust a degree of tension of the flexible longitudinal member, and
  • the at least one docking station is configured to receive and be coupled to the rotatable structure.
  • There is further provided, in accordance with an application of the present invention, apparatus for use with at least one implant, including:
  • a tissue-engaging element having (a) a distal portion configured to engage at least a first portion of tissue of a patient, and (b) a proximal portion;
  • at least one docking station coupled to the proximal portion of the tissue-engaging element, the at least one docking station:
      • being configured to receive and be coupled to the at least one implant, and
      • including a locking mechanism configured to lock the implant to the tissue-engaging element; and
  • at least one guide member reversibly coupled to the at least one docking station, the at least one guide member being configured for facilitating slidable advancement of the at least one implant toward the tissue-engaging element.
  • In an application, the guide member is looped around a portion of the docking station.
  • In an application, the at least one docking station includes two or more docking stations, and the at least one guide member includes two or more guide members, each guide member being reversibly coupled to a respective docking station.
  • In an application, the implant includes a prosthetic cardiac valve.
  • In an application, the implant includes a support for receiving a prosthetic cardiac valve.
  • In an application, the implant includes a tissue-adjustment device.
  • In an application, the tissue-adjustment device includes an annuloplasty ring structure selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring.
  • In an application, the apparatus further includes the implant, and the implant has:
      • an upper surface and a lower surface,
      • at least one first opening at the upper surface,
      • at least one second opening at the lower surface, and
      • a channel extending between the first and second opening, the channel facilitating advancement of the implant along the guide member.
  • In an application, the implant includes a prosthetic cardiac valve.
  • In an application, the implant includes a support for receiving a prosthetic cardiac valve.
  • In an application, the implant includes a tissue-adjustment device.
  • In an application, the tissue-adjustment device includes an annuloplasty ring structure selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring.
  • In an application, the implant includes a first coupling, and the locking mechanism includes a second coupling configured to be coupled to the first coupling.
  • In an application, the second coupling includes at least one depressed portion, and the first coupling includes at least one moveable baffle which is configured to engage the at least one depressed portion of the second coupling.
  • In an application, the apparatus further includes at least one flexible longitudinal member coupled at a first portion thereof to the implant, a second portion of the flexible longitudinal member is configured to be coupled to a second portion of tissue of the patient, and the implant is configured to adjust a length of the longitudinal member between the first and second portions of tissue.
  • In an application:
  • the first portion of tissue includes a first portion of cardiac tissue at a first intraventricular site,
  • the second portion of tissue includes at least one leaflet of an atrioventricular valve of the patient, and
  • the flexible longitudinal member includes at least one artificial chordea tendinea.
  • In an application:
  • the implant includes a rotatable structure,
  • the at least one flexible longitudinal member is coupled at the first portion to the rotatable structure, and
  • the rotatable structure is bidirectionally rotatable to adjust the degree of tension of the at least one flexible longitudinal member.
  • In an application, during rotation of the rotatable structure in a first rotational direction, successive portions of the flexible longitudinal member advance in a first advancement direction with respect to the rotatable structure and contact the rotatable structure, to pull the second portion of the flexible member toward the rotatable structure, and to draw the first and second portions of tissue toward each other.
  • In an application, the apparatus further includes a rotatable structure locking mechanism displaceable with respect to the rotatable structure, so as to:
  • release the rotatable structure during rotation of the rotatable structure, and
  • lock in place the rotatable structure following rotation of the rotatable structure.
  • In an application, the rotatable structure includes a spool, and the at least one flexible longitudinal member is configured to be wound around the spool during the rotation of the spool in a first rotational direction.
  • In an application, the first portion of the at least one flexible longitudinal member is looped through a portion of the spool.
  • In an application, the first portion of the at least one flexible longitudinal member is wound around a portion of the spool, and the first portion of the at least one flexible longitudinal member is configured to be unwound from around the portion of the spool following the coupling of the second portion of the flexible longitudinal member to the second portion of tissue of the patient.
  • There is further provided, in accordance with an application of the present invention, apparatus, including:
  • a tissue-engaging element having a distal portion configured to engage at least a first portion of tissue of a patient, and having a proximal portion;
  • at least one docking station coupled to the proximal portion of the tissue-engaging element, the at least one docking station being configured to be coupled to the at least one tissue-adjustment device;
  • an implant including:
      • a rotatable structure; and
      • at least one flexible longitudinal member having a first portion thereof that is in contact with the rotatable structure, and a second portion thereof that is configured to be coupled to a second portion of tissue of the patient,
      • and during rotation of the rotatable structure in a first rotational direction, successive portions of the flexible longitudinal member advance in a first advancement direction with respect to the rotatable structure and contact the rotatable structure, and, pull the second portion of the flexible longitudinal member toward the implant, and responsively, to draw the first and second portions of tissue toward each other; and
  • at least one guide member reversibly coupled to the at least one docking station, the at least one guide member being configured for facilitating slidable advancement of the at least one implant toward the tissue-engaging element.
  • In an application, the guide member is looped around a portion of the docking station.
  • In an application, the at least one docking station includes two or more docking stations, and the at least one guide member includes two or more guide members, each guide member being reversibly coupled to a respective docking station.
  • In an application, the implant includes a support for receiving a prosthetic cardiac valve.
  • In an application, the implant includes a tissue-adjustment device.
  • In an application, the tissue-adjustment device includes an annuloplasty ring structure selected from the group consisting of: a partial annuloplasty ring and a full annuloplasty ring.
  • In an application, the implant has:
      • an upper surface and a lower surface,
      • at least one first opening at the upper surface,
      • at least one second opening at the lower surface, and
      • a channel extending between the first and second opening, the channel facilitating advancement of the implant along the guide member.
  • In an application, the implant includes a first coupling, and the docking station includes a second coupling configured to be coupled to the first coupling.
  • In an application, the second coupling includes at least one depressed portion, and the first coupling includes at least one moveable baffle which is configured to engage the at least one depressed portion of the second coupling.
  • In an application, the second coupling includes a locking mechanism configured to lock the implant to the tissue-engaging element.
  • In an application:
  • the first portion of tissue includes a first portion of cardiac tissue at a first intraventricular site,
  • the second portion of tissue includes at least one leaflet of an atrioventricular valve of the patient, and
  • the flexible longitudinal member includes at least one artificial chordea tendinea.
  • In an application, the rotatable structure is rotatable in a first rotational direction to apply tension to the flexible longitudinal member, and in a second rotational direction that is opposite the first rotational direction to slacken the flexible longitudinal member.
  • In an application, during rotation of the rotatable structure in a first rotational direction thereof, successive portions of the flexible longitudinal member advance in a first advancement direction with respect to the rotatable structure and contact the rotatable structure, responsively, to pull the second portion of the flexible longitudinal member toward the rotatable structure.
  • In an application, the apparatus further includes a rotatable structure locking mechanism, displaceable with respect to the rotatable structure so as to:
  • release the rotatable structure during rotation of the rotatable structure, and
  • lock in place the rotatable structure following rotation of the rotatable structure.
  • In an application, the rotatable structure includes a spool, and the at least one flexible longitudinal member is configured to be wound around the spool during the rotation of the spool in the first rotational direction.
  • In an application, the first portion of the flexible longitudinal member is looped through a portion of the spool.
  • In an application, the first portion of the flexible longitudinal member is wound around a portion of the spool, and the first portion of the flexible longitudinal member is configured to be unwound from around the portion of the spool following the coupling of the second portion of the flexible longitudinal member to the second portion of tissue of the patient.
  • There is further provided, in accordance with an application of the present invention, apparatus, including:
  • a guide member;
  • a tissue-adjustment mechanism having:
      • an upper surface and a lower surface,
      • at least one first opening at the upper surface,
      • at least one second opening at the lower surface, and
      • a channel extending between the first and second openings, the channel facilitating advancement of the tissue-adjustment mechanism along the guide member; and
  • at least one repair chord coupled at a first portion thereof to the tissue-adjustment mechanism and having at least a first end that is configured to be coupled to a portion of tissue of a patient, the repair chord being configured to adjust a distance between the portion of tissue and the tissue-adjustment mechanism, in response to adjustment of the repair chord by the tissue-adjustment mechanism.
  • The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1-2 are schematic illustrations of apparatus comprising a tissue-engaging element comprising a docking station coupled to a guide wire, in accordance with some applications of the present invention;
  • FIG. 3 is a schematic illustration of advancement of an adjustment mechanism along the guide wire toward the docking station of FIGS. 1 and 2 , in accordance with some applications of the present invention;
  • FIGS. 4-5 are schematic illustrations of engaging a leaflet with a leaflet engaging element, in accordance with some applications of the present invention;
  • FIG. 6 is a schematic illustration of coupling of the adjustment mechanism of FIG. 3 to the docking station, in accordance with some applications of the present invention;
  • FIGS. 7-9 are schematic illustrations of adjusting by the adjustment mechanism a length of a repair chord coupled to the adjustment mechanism, in accordance with some applications of the present invention;
  • FIG. 10 is a schematic illustration of the adjustment mechanism and the repair chord, in accordance with some other applications of the present invention;
  • FIGS. 11-15 are schematic illustrations of a plurality of docking stations and a plurality of adjustment mechanisms, in accordance with some applications of the present invention;
  • FIG. 16 is a schematic illustration of wall-to-wall adjustment using the docking station, adjustment mechanism, and repair chord, in accordance with some applications of the present invention;
  • FIG. 17 is a schematic illustration of wall-to-wall adjustment and leaflet adjustment using the plurality of docking stations, the plurality of adjustment mechanisms, and the plurality of repair chords, in accordance with some applications of the present invention;
  • FIG. 18 is a schematic illustration of wall-to-wall adjustment using the docking station, adjustment mechanism, and repair chord, in accordance with some other applications of the present invention;
  • FIGS. 19-20 are schematic illustrations of adjustment of a valve of a patient from a middle portion of the valve, in accordance with some applications of the present invention;
  • FIG. 21 is a schematic illustration of the tissue-engaging element and the docking station of FIGS. 1 and 2 being used to facilitate implantation of an implant at a cardiac valve, in accordance with some applications of the present invention; and
  • FIG. 22 is a schematic illustration of the tissue-engaging element and the docking station of FIGS. 1 and 2 being used to facilitate implantation of an annuloplasty ring at a cardiac valve, in accordance with some applications of the invention.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • Reference is now made to FIGS. 1-2 , which are schematic illustrations of a system 20 comprising a docking assembly 150 for implantation at a first implantation site 5 of a patient, in accordance with some applications of the present invention. As shown in FIG. 2 , docking assembly 150 comprises a tissue-engaging element having (1) a distal portion comprising a tissue anchor 50 (e.g., a helical tissue anchor as shown by way of illustration and not limitation), and (2) a proximal portion comprising a docking platform 54, and at least one docking station 56. Thus, docking assembly 150 comprises (a) the distal portion which engages the tissue of the patient (i.e., the tissue-engaging element), and (b) the proximal portion which is coupled to docking station 56. It is to be noted that the distal portion and the proximal portion are fixedly coupled to each other (e.g., immovable with respect to each other), and thereby docking station 56 and tissue anchor 50 are fixedly coupled to each other (e.g., immovable with respect to each other). Docking assembly 150 is thereby an integrated unit that comprises the docking station and tissue anchor. At least one guide member, (e.g., a guide wire 40, shown in FIG. 2 ) is reversibly coupled to docking assembly 150 (e.g., by being looped around, or otherwise coupled to, a portion of assembly 150) so as to define first and second portions 40 a and 40 a′ that extend away from assembly 150.
  • Tissue anchor 50 is typically implanted within cardiac tissue in a manner in which a distal portion of anchor 50 does not extend beyond an epicardium of heart 2 of the patient. Thus, anchor 50 is implanted at an intracardiac site such that the implant, (e.g., the adjustment mechanism or an implant comprising the adjustment mechanism) that is eventually coupled thereto (as described hereinbelow) is implanted at the intracardiac site such that no portions of the adjustment mechanism extend beyond the epicardium of the heart.
  • Docking assembly 150 and guide wire 40 are advanced toward implantation site typically during a transcatheter procedure, as shown. However, it is to be noted that the scope of the present invention includes the advancement of assembly 150 and guide wire 40 during a minimally-invasive or open-heart procedure. The procedure is typically performed with the aid of imaging, such as fluoroscopy, transesophageal echo, and/or echocardiography.
  • The transcatheter procedure typically begins with the advancing of a semi-rigid guide wire into a right atrium of the patient. The semi-rigid guide wire provides a guide for the subsequent advancement of a sheath 28 therealong and into the right atrium. Once sheath 28 has entered the right atrium, the semi-rigid guide wire is retracted from the patient's body. Sheath 28 typically comprises a 13-20 F sheath, although the size may be selected as appropriate for a given patient. Sheath 28 is advanced through vasculature into the right atrium using a suitable point of origin typically determined for a given patient. For example:
  • sheath 28 may be introduced into the femoral vein of the patient, through an inferior vena cava, into the right atrium, and into the left atrium transseptally, typically through the fossa ovalis;
  • sheath 28 may be introduced into the basilic vein, through the subclavian vein to the superior vena cava, into the right atrium, and into the left atrium transseptally, typically through the fossa ovalis; or
  • sheath 28 may be introduced into the external jugular vein, through the subclavian vein to the superior vena cava, into the right atrium, and into the left atrium transseptally, typically through the fossa ovalis.
  • In some applications of the present invention, sheath 28 is advanced through the inferior vena cava of the patient (as shown) and into the right atrium using a suitable point of origin typically determined for a given patient.
  • Sheath 28 is advanced distally until the sheath reaches the interatrial septum. For some applications, a resilient needle and a dilator (not shown) are advanced through sheath 28 and into the heart. In order to advance sheath 28 transseptally into the left atrium, the dilator is advanced to the septum, and the needle is pushed from within the dilator and is allowed to puncture the septum to create an opening that facilitates passage of the dilator and subsequently sheath 28 therethrough and into the left atrium. The dilator is passed through the hole in the septum created by the needle. Typically, the dilator is shaped to define a hollow shaft for passage along the needle, and the hollow shaft is shaped to define a tapered distal end. This tapered distal end is first advanced through the hole created by the needle. The hole is enlarged when the gradually increasing diameter of the distal end of the dilator is pushed through the hole in the septum.
  • The advancement of sheath 28 through the septum and into the left atrium is followed by the extraction of the dilator and the needle from within sheath 28. Subsequently, a docking-assembly delivery tool 30 is advanced through sheath 28. Tool 30 is typically advanced within a lumen of an advancement sheath 22 having a distal end 24. Advancement sheath 22 is advanced within sheath 28. Delivery tool 30 is coupled at a distal end thereof to a manipulator 32 which is reversibly coupled to docking station 56 and docking platform 54 of docking assembly 150. Manipulator 32 has (1) lateral arms which cup platform 54, and (2) a docking-station-coupler 34, as shown in FIG. 1 . Coupler 34 is biased to move radially-inward, as shown in FIG. 1 . Docking station 56 is ribbed, such that coupler 34, when moved radially inward, engages at least one rib of docking station 56, thereby coupling assembly 150 to delivery tool 30.
  • Delivery tool 30 and manipulator 32 are shaped so as to define a lumen for passage therethrough of guide wire 40.
  • Docking assembly 150 is implanted in implantation site 5 by rotating tool 30 in order to rotate anchor 50 and corkscrew anchor 50 into tissue of site 5. Site 5 typically comprises a portion of tissue at an intraventricular site in heart 2 of the patient. As shown, site 5 includes a papillary muscle 4, by way of illustration and not limitation. It is to be noted that site 5 includes any portion of cardiac tissue, e.g., a portion of a free wall of the ventricle, a portion of the septum facing the ventricle, a portion of tissue at a base of the papillary muscle, or a portion of the wall at the apex of the ventricle. (For the purposes of the claims, “a portion of tissue of a ventricle” includes any portion of cardiac tissue, e.g., a portion of a free wall of the ventricle, a portion of the septum facing the ventricle, a portion of tissue at a base of the papillary muscle, or a portion of the wall at the apex of the ventricle.)
  • Following the implantation of assembly 150 at site 5, tool 30 is disengaged from assembly 150 when the physician pulls on tool 30. This pulling pulls on manipulator 32 such that coupler 34 is actively moved radially outward against the ribs of docking station 56, and is thereby decoupled from station 56. At the time of pulling, tissue at implantation site 5 pulls on assembly 150 (in the direction opposite the direction of pulling by the physician) so as to help disengage tool 30 from assembly 150.
  • As shown in FIG. 2 , following the decoupling of tool 30 from assembly 150, tool 30 is pulled proximally along guide wire 40 and is extracted from the body of the patient together with advancement sheath 22, leaving behind assembly 150 and guide wire 40.
  • FIG. 3 shows advancement of an implant (e.g., a spool assembly 36 comprising an adjustment mechanism 43) along guide wire 40 by an adjustment-mechanism delivery tool 64, in accordance with some applications of the present invention. Tool 64 is surrounded by and slidable within an advancement sheath 60 having a distal end 62.
  • Spool assembly 36 is surrounded by a braided fabric mesh, e.g., a polyester mesh, which promotes fibrosis around assembly 36 and facilitates coupling of assembly 36 to tissue of heart 2. Assembly 36 houses a rotatable structure (e.g., a spool as shown hereinbelow) that is surrounded by a housing 49. Housing 49 is coupled to a distal cap 44 which facilitates coupling of assembly 36 to docking station 56 of docking assembly 150. As shown, cap 44 is shaped so as to define a plurality of baffles 47 that are disposed angularly with respect to a distal end of cap 44. Baffles 47 are coupled to the distal end of cap 44 along respective coupling joints which facilitate movement of each baffle 47. During the coupling of spool assembly 36 to docking station 56, the ribbed portion of docking station 56 pushes inwardly baffles 47 of cap 44, as is described hereinbelow. Baffles 47 then expand and engage an area of docking station 56 between the ribs of the ribbed portion so as to dock and lock assembly 36 to docking station 56.
  • Additionally, cap 44 is shaped so as to define a central opening therethrough which facilitates passage therethrough of guide wire 40. Additionally, spool assembly 36 and the components thereof are shaped so as to define a central opening (i.e., an opening having the same axis as guide wire 40). That is, spool 46 has a central opening, and housing 49 has a central opening which facilitates passage of spool 46 and housing 49 along guide wire 40.
  • As shown, adjustment mechanism 43 is coupled to a distal portion of a repair chord 74 (e.g., repair chord 74 is looped through or otherwise coupled to a portion of adjustment mechanism 43). Chord 74 comprises a flexible longitudinal member. For some applications, and as is described hereinbelow, chord 74 functions as an artificial chordea tendinea. A proximal portion of chord 74 is coupled to a leaflet-engaging element 72 (e.g., a clip, as shown). Leaflet-engaging element 72 is disposed within a holder 70 that is coupled to delivery tool 64. Chord 74 a superelastic, biocompatible material (e.g., nitinol, ePTFE, PTFE, polyester, stainless steel, or cobalt chrome). Typically, chord 74 comprises an artificial chordea tendinea.
  • FIGS. 4-5 are schematic illustrations of the engaging of leaflet-engaging element 72 to at least one leaflet 14 of a mitral valve of the patient, in accordance with some applications of the present invention. As shown in FIG. 4 , the clip is opened from a remote location outside the body of the patient.
  • For some applications, the clip typically is shaped so as to define at least one coupling protrusion 73. The clip has a tendency to close, and is initially held open by a cord (not shown) that is coupled to a surface of the clip, extends through delivery tool 64, and is held taught outside of the heart. Once the clip has been advanced to the desired location on the leaflet, the cord is relaxed, allowing the clip to close. The cord is removed, typically by releasing one end thereof and pulling the other end. The positioning of holder 70 between the leaflets (FIG. 5 ) helps ensure that the clip engages exactly one of the leaflets. It is noted that in FIG. 5 the clip is shown engaging only a single leaflet (leaflet 14). The clip typically engages the leaflet by clamping the leaflet such that the clip engages atrial and ventricular surfaces of the leaflet. The clip may puncture the leaflet, or may merely press firmly against the leaflet.
  • It is to be noted that the scope of the present invention includes the clipping together of both leaflets 12 and 14. For applications in which system 20 is used to repair a tricuspid valve of the patient, the clip may clip any one, two, or all three leaflets together.
  • Holder 70 is shaped to define a groove which houses the clip during the advancement of tool 64 toward the ventricle. The groove functions as a track to facilitate slidable detachment of the clip from holder 70 following the engaging of the clip to leaflet 14.
  • Alternatively, the clip has a tendency to open. In order to close the clip, a cord is provided. A distal-most portion of the cord is looped around the clip. Once the clip has been advanced to the desired location on the leaflet, as shown in FIG. 5 , the surgeon pulls on both ends of the cord, thereby causing the clip to become locked closed. The cord is removed, typically by releasing one end thereof and pulling the other end.
  • It is to be noted that the scope of the present invention includes any leaflet-engaging element known in the art.
  • As shown in FIG. 5 , portions 74 a and 74 b extend from leaflet-engaging element 72 toward adjustment mechanism 43. Portions 74 a and 74 b define portions of a single chord 74 that is looped through a portion of mechanism 43. Alternatively, portions 74 a and 74 b represent two distinct chords which are coupled at their distal ends to adjustment mechanism 43 and at their proximal ends to leaflet-engaging element 72.
  • As shown, leaflet-engaging element 72 engages leaflet 14 prior to coupling spool assembly 36 to docking station 56.
  • FIG. 6 shows spool assembly 36 being coupled to docking station 56, in accordance with some applications of the present invention. Following the coupling of leaflet-engaging element 72 to leaflet 14, spool assembly 36 is pushed distally toward docking station 56. Spool assembly 36 is coupled to an advancement shaft 80 which pushes assembly 36. Shaft 80 slides within a lumen of delivery tool 64 and within a lumen of holder 70 so as to advance spool assembly 36, while leaflet-engaging element 72 remains engaged with leaflet 14. Advancement shaft 80 functions to advance distally spool assembly 36 and functions to facilitate engagement between spool assembly 36 and docking station 56.
  • As described hereinabove, docking station 56 has one or more locking mechanisms (e.g., one or more ribs 57, shown in the enlarged cross-sectional image of FIG. 6 ) which project laterally such that rib 57 defines a shelf and a depressed area underneath the shelf (i.e., the cross-sectional diameter at rib 57 is larger than the cross-sectional diameter at the area underneath the shelf). As described hereinabove, cap 44 of assembly 36 is shaped so as to define a plurality of baffles 47. As cap 44 engages docking station 56, baffles 47 are pushed inward and upward angularly as each baffle slides against rib 57. After each baffle 47 passes the shelf of rib 57, the baffle engages the depressed area underneath the shelf of rib 57, as shown in the enlarged cross-sectional image of FIG. 6 . The shelf of rib 57 prevents upward movement of baffles 47 and thereby locks in place baffles 47 and cap 44 with respect to docking station 56. Rib 57, therefore, comprises a locking mechanism so as to lock implant 42 (e.g., adjustment mechanism 43) to tissue anchor 50.
  • Following the coupling of assembly 36 to docking station 56, spool 46 is rotated in a first rotational direction in order to advance with respect to spool 46 and contact with spool 46 successive portions of chord 74. For example, when the successive portions of chord 74 are advanced with respect to spool 46, the successive portions of chord 74 are looped around spool 46. The rotating of spool 46 in the first rotational direction pulls tight and adjusts a length of chord 74 between leaflet 14 and spool 46, in order to adjust a distance between leaflet 14 and implantation site 5 and to facilitate coaptation between leaflets 12 and 14, as is described hereinbelow.
  • Housing 49 is shaped so as to provide openings 41 a and 41 b for passage therethrough of portions 74 a and 74 b, respectively, of chord 74 into housing 49. For some applications of the present invention, portions 74 a and 74 b define portions of a single chord 74 that is looped through spool 46. For other applications, portions 74 a and 74 b define discrete chords which are each coupled at respective distal ends thereof to spool 46.
  • The enlarged, cross-sectional image of FIG. 6 shows spool 46 within housing 49. Spool 46 defines an upper surface 150, a lower surface 152, and a cylindrical body portion disposed vertically between surfaces 150 and 152. Spool 46 is shaped to provide a driving interface, e.g., a channel, which extends from an opening provided by upper surface 150 to an opening provided by lower surface 152. A proximal portion of the driving interface is shaped to define a threaded portion 146 which may or may not be tapered. Threaded portion 146 of spool 46 is engageable by a threaded portion of a screwdriver head 92 of a screwdriver 90. Screwdriver 90 is coupled to a distal end of shaft 80. For some applications, shaft 80 rotates screwdriver 90. For other applications, shaft 80 is shaped so as to define a lumen for advancement therethrough of a screwdriver-rotation tool that facilitates rotation of screwdriver 90. Rotation of screwdriver 90 and screwdriver head 92 rotates spool 46, as the respective threaded portions of spool 46 and screwdriver head 92 engage. The cylindrical body portion of spool 46 is shaped to define one or more holes which function as respective coupling sites for coupling (e.g., looping through the one or more holes, or welding to spool 46 in the vicinity of the one or more holes) of any number of chords 74 to spool 46.
  • Lower surface 152 of spool 46 is shaped to define one or more (e.g., a plurality, as shown) recesses 154 which define structural barrier portions 155 of lower surface 152. It is to be noted that any suitable number of recesses 154 may be provided, e.g., between 1 and 10 recesses, circumferentially or otherwise, with respect to lower surface 152 of spool 46.
  • As shown, a locking mechanism 45 is disposed in communication with lower surface 152 of spool 46 and disposed in communication with at least in part to a lower surface of housing 49. Typically, a cap 44 maintains locking mechanism 45 in place with respect to lower surface 152 of spool 46 and lower surface of housing 49. For some applications, locking mechanism 45 is coupled, e.g., welded, to the lower surface of housing 49. Typically, locking mechanism 45 defines a mechanical element having a planar surface that defines slits. It is to be noted that the surface of locking mechanism 45 may also be curved, and not planar. Locking mechanism 45 is shaped to provide a protrusion 156 which projects out of a plane defined by the planar surface of the mechanical element. The slits of mechanism 45 define a depressible portion 128 that is disposed in communication with and extends toward protrusion 156. Depressible portion 128 is moveable in response to a force applied thereto typically by an elongate locking mechanism release rod 94 which slides through a lumen of screwdriver 90 and a torque-delivering tool that is coupled thereto.
  • It is to be noted that the planar, mechanical element of locking mechanism 45 is shown by way of illustration and not limitation and that any suitable mechanical element having or lacking a planar surface but shaped to define at least one protrusion may be used together with locking mechanism 45.
  • Cap 44 is provided that is shaped to define a planar surface and an annular wall having an upper surface thereof. The upper surface of the annular wall is coupled to, e.g., welded to, a lower surface provided by housing 49. The annular wall of cap 44 is shaped to define a recessed portion 144 of cap 44 that is in alignment with a recessed portion 142 of spool housing 49.
  • As shown, a distal end 96 of locking mechanism release rod 94 pushes distally on depressible portion 128 in order to unlock locking mechanism 45 from spool 46. Pushing depressible portion 128 by locking mechanism release rod 94 pushes distally protrusion 156 within recessed portion 142 of housing 49 and within recessed portion 144 of cap 44, which frees protrusion 156 from recesses 154 of spool 46. Once protrusion 156 is released from recesses 154 of spool 46, the physician is able to rotate spool 46 bidirectionally in order to adjust a tension of chord 74.
  • When the physician rotates spool 46 in the first rotational direction, chord 74 is pulled tight, and leaflet 14 is drawn toward adjustment mechanism 43 and toward anterior leaflet 12 of mitral valve 8.
  • In the resting state (i.e., prior to the rotation of spool 46 in order to adjust chord 74, following coupling of leaflet-engaging element 72 to leaflet 14) chord 74 is wrapped around spool 46 a few times (e.g., three times, by way of illustration and not limitation). This winding provides excess slack to chord 74 (in case portions 74 a and 74 b are coupled too tightly to leaflet 14). If the physician wishes to provide slack to member 74 or to any one of portion 74 a or 74 b, the physician unwinds a bit of the wrapped portion of member 74 from around spool 46 (e.g., by unwinding chord 74 a few times from around spool 46, or by unwinding chord 74 entirely from around spool 46 so that chord 74 slides freely through spool 46 within a channel provided therein). In order to accomplish such unwinding, the physician rotates spool 46 in a rotational direction in which it unwinds the wrapped portion of chord 74. Since chord 74 is looped through spool 46 in the channel provided therein, when chord 74 is unwound from spool 46, the physician can pull on one or both portions 74 a and 74 b so as to adjust, make even, or further slacken any one of or both portions 74 a and 74 b that extend from spool 46.
  • When the physician desires to pull tight chord 74, he or she effects rotation of spool 46 in a first rotational direction, i.e., the direction opposite the second rotational direction in which spool 46 is rotated during the unwinding of chord 74 from spool 46. Rotation of spool 46 in the first rotational direction winds chord 74 around spool 46, while rotation of spool 46 in a second rotational direction that is opposite the first rotational direction, unwinds the portion of longitudinal chord 74 from around spool 46.
  • FIG. 7 shows spool assembly 36 following the adjustment of chord 74 by rotating screwdriver 90 in the direction as indicated by the arrow, and the partial removal of screwdriver 90, in accordance with some applications of the present invention. As shown in the enlarged cross-sectional image of FIG. 7 , successive portions of chord 74 are wrapped around spool 46. That is, chord 74 is wrapped more times around spool 46 following adjustment (e.g., an additional 4 times, as shown in FIG. 7 ), than prior to adjustment (FIG. 6 ). This pulls chord 74 from a slackened state (FIG. 6 ) to a taut state (FIG. 7 ) in order to adjust a length of chord 74 between adjustment mechanism 43 and the proximal end of chord 74 that is coupled to leaflet-engaging element 72. Additionally, this applying of tension to chord 74 adjusts a length between first and second implantation sites 5 and 7. Typically, chord 74 is adjusted while heart 2 is beating.
  • As shown, rod 94 is shaped so as to define a central lumen and a distal opening for passage therethrough of guide wire 40. Additionally, depressible portion 128 is shaped so as to provide an opening for passage of guide wire 40 therethrough. Guide wire 40 is looped around a distal looping element 55 of docking platform 54 of docking assembly 150. Following the adjusting of the tension and length of chord 74, screwdriver 90 is decoupled from spool 46 (e.g., by being unscrewed from threaded portion 146 of spool 46) and is advanced proximally together with rod 94 away from spool assembly 36, as shown in the enlarged, cross-sectional image of FIG. 7 .
  • Following the decoupling of screwdriver 90 from spool 46 and the removal of screwdriver 90, guide wire 40 remains coupled to docking platform 54 and docking assembly 150. Guide wire 40 then facilitates subsequent advancement of screwdriver 90 or any other tool to access spool assembly 36 and/or to facilitate further adjustment of chord 74 beyond the initial adjustment. Guide wire 40 may remain chronically coupled to docking assembly 150 and may be accessible at a subcutaneous location of the patient, e.g., a port. For other applications, guide wire 40 is removed from docking assembly 150 when the physician determines that further adjustment of chord 74 is not needed. The physician removes guide wire 40 by pulling, from outside the body of the patient, one end of guide wire 40 so that guide wire 40 slides around element 55 and is unlooped therefrom. The physician continues to pull on the end of guide wire 40 until the second end of wire 40 is exposed and removed from the patient.
  • Following the removal of locking-mechanism release rod 94, depressible portion 128 is no longer depressed by distal end 96 of rod 94, and protrusion 156 returns within a recess 154 of spool 46 so as to lock spool 46 in place and restriction rotation thereof in either direction (FIG. 7 ).
  • Reference is now made to FIGS. 3-7 . It is to be noted that spool assembly 36 is only coupled to docking assembly 150 following the coupling of leaflet-engaging element 72 to leaflet 14. This is done in order to reduce the strain on implantation site 5. Should spool assembly 36 be implanted at implantation site 5 prior to engaging leaflet 14 with leaflet-engaging element 72, more strain would be applied to implantation site 5 than if spool assembly 36 had been implanted following the coupling of leaflet-engaging element 72 to leaflet 14, as described herein. That is, the pulling force is applied in a downward direction from leaflet 14 toward implantation site 5 instead of from implantation site 5 upward toward leaflet 14.
  • FIG. 8 shows system 20 following the removal of the tool used to rotate spool 46 of spool assembly 36, in accordance with some applications of the present invention. As shown, chord 74 is pulled tight such that its length and tension are adjusted, and leaflet 14 is pulled and adjusted commensurate with the adjustment of chord 74. Guide wire 40 remains coupled to spool assembly 36 and to docking assembly 150, as shown, such that portions 40 a and 40 a′ extend from spool assembly 36. Guide wire 40 facilitates the reintroduction of the tool used to rotate spool 46, or of any other tool.
  • FIG. 9 shows system 20 following the removal of guide wire 40 from heart 2, in accordance with some applications of the present invention. As shown, the adjustment of chord 74 draws leaflets 12 and 14 together. It is to be noted that although leaflet-engaging element 72 is shown as engaging only leaflet 14, the scope of the present invention includes the engaging of both leaflets 12 and 14 by leaflet-engaging element 72.
  • FIG. 10 shows a system 220, as described hereinabove with reference to system 20, with the exception that implantation site 5 includes tissue of the wall of the ventricle at the base of papillary muscle 4 in a vicinity of the apex of the heart, in accordance with some applications of the present invention. Implantation site 5 is shown by way of illustration and not limitation, and as described hereinabove, site 5 may include any portion of tissue of heart 2. It is to be noted that although leaflet-engaging element 72 is shown as engaging only leaflet 14, the scope of the present invention includes the engaging of both leaflets 12 and 14 by leaflet-engaging element 72.
  • FIGS. 11-15 are schematic illustrations of a system 320 comprising a multiple-docking-station assembly 350 comprising a plurality of docking stations 56, in accordance with some applications of the present invention. Multiple-docking-station assembly 350 comprises a tissue anchor 50 and a docking platform 322 which supports two or more docking stations 56. Platform 322, as shown, supports three docking stations 56 a, 56 b, and 56 c, by way of illustration and not limitation. It is to be noted that platform 322 may support any number of docking stations 56. As shown, each docking station 56 a, 56 b, and 56 c is reversibly coupled to a respective guide wire 40 a, 40 b, and 40 c, in a manner as described hereinabove. Each docking station 56 a, 56 b, and 56 c facilitates coupling thereto of a respective spool assembly 36 a, 36 b, and 36 c, or any other tool or device which may be coupled to docking stations 56 a, 56 b, and 56 c.
  • As shown in FIGS. 11-13 , first and second spool assemblies 36 a and 36 b are coupled via respective guide wires 40 a and 40 b to respective docking stations 56 a and 56 b. Each spool assembly 36 a and 36 b has a respective chord 74 aa and 74 bb extending therefrom (FIG. 13 ). For example (as shown in FIG. 12 ), the chord extending from spool assembly 36 a has portions 74 aa and 74 aa′ extending from spool assembly 36 a. Each chord 74 is coupled to a respective leaflet-engaging element 72. That is, chord 74 aa is coupled to leaflet-engaging element 72 a, and chord 74 bb is coupled to leaflet-engaging element 72 b (FIG. 13 ).
  • Each leaflet-engaging element 72 a and 72 b is coupled to leaflets 12 and 14, respectively, and then each spool assembly 36 a and 36 b is coupled to respective docking stations 56 a and 56 b, in a manner as described hereinabove. Chords 74 aa and 74 bb are then adjusted, as described hereinabove. Each chord 74 aa and 74 bb may be adjusted sequentially or simultaneously.
  • FIG. 13 shows chords 74 aa and 74 bb following their adjustment. The relative dispositions of leaflets 12 and 14 are adjusted in conjunction with the adjusting of chords 74 aa and 74 bb. Typically, leaflets 12 and 14 are drawn together to repair the heart valve.
  • As shown in FIG. 15 , a third spool assembly 36 c may be coupled to docking station 56 c. Chord 74 c coupled thereto may be coupled to a third implantation site in heart 2 and subsequently adjusted. FIG. 15 shows third spool assembly 36 c coupled to docking station 56 c without the presence of the other spool assemblies 36 a and 36 b, by way of illustration and not limitation.
  • FIG. 16 shows a system 600 for repairing malpositioning of the wall of the ventricle of the patient, in accordance with respective applications of the present invention. System 600 treats a weakened state of heart 2 in which the wall of the left ventricle is malpositioned and weakened. As a result of the malpositioning of the wall of the heart, leaflets 12 and 14 of mitral valve 8 are malpositioned and are distanced from one another (not shown). In order to treat the malpositioning of the heart wall and thereby of leaflets 12 and 14, spool assembly 36 is implanted at a first portion 420 of heart tissue which faces and surrounds the left ventricle of heart 2. First implantation site 5 thus comprises first portion 420 of heart tissue. It is to be noted that first implantation site 5 is at the base of the papillary muscle by way of illustration and not limitation, and that first implantation site 5 may be at a portion of the wall of the heart in a vicinity of the apex of the heart, or at papillary muscle 4. For some applications in which system 600 treats malpositioning of the heart, docking assembly 350 and spool assembly 36 are implanted externally to the ventricle, and chord 74 extends through cardiac tissue and into the ventricle toward implantation site 7.
  • Spool assembly 36 is implanted via docking assembly 150 at site 5 in a manner as described hereinabove with reference to FIGS. 3-6 . As shown, the free ends of chord 74 are coupled to a second portion 422 of heart tissue which faces and surrounds the left ventricle of heart 2. Second implantation site 7 thus comprises second portion 422 of heart tissue, e.g., at the septum, by way of illustration and not limitation. The free ends of longitudinal chord 74 are coupled to the heart tissue using any suitable attachment means 602, e.g., sutures, knotting, or tissue anchors such as helical anchors. Spool 46 of adjustment mechanism 43 is rotated, as described hereinabove, thereby pulling tight chord 74 and thereby reducing a length of chord 74 between first and second implantation sites 5 and 7. In response to the pulling of chord 74, first and second portions 420 and 422 of the heart tissue are pulled toward one another, and a length of chord 74 is adjusted. Consequently, the dimensions of the heart wall are restored to physiological dimensions, and leaflets 12 and 14 are drawn toward one another.
  • FIG. 17 shows a system 610 for adjusting both malpositioning of a heart wall of heart 2, and a relative disposition of leaflet 12, in accordance with some applications of the present invention. Multiple-docking-station assembly 350 is implanted at implantation site 5, i.e., a portion of tissue of a heart wall of heart 2 in a vicinity of the apex of heart 2. It is to be noted that implantation site 5 may include any portion of tissue of heart 2, e.g., a portion of tissue at the base of papillary muscle 4, a portion of tissue of papillary muscle 4, or a portion of the free wall of the ventricle. As described hereinabove, first spool assembly 36 a is coupled to docking station 56 a and adjusts a length of chord 74 aa in order to adjust a distance between implantation sites 5 and 7. Second spool assembly 36 b is coupled to docking station 56 b and adjusts a length of chord 74 bb in order to adjust a distance between implantation site 5 a third implantation site 9 (e.g., leaflet 12, as shown). As described hereinabove, chords 74 aa and 74 bb may be adjusted simultaneously or sequentially. Following the adjusting, implantation sites 7 and 9 are drawn toward multiple-docking-station assembly 350 at implantation site 5. Consequently, the dimensions of the heart wall are restored to physiological dimensions, and leaflets 12 and 14 are drawn toward one another. It is to be noted that although leaflet-engaging element 72 is shown as engaging only leaflet 12, the scope of the present invention includes the engaging of both leaflets 12 and 14 by leaflet-engaging element 72.
  • It is to be further noted that the scope of the present invention includes the coupling of a third spool assembly to docking station 56 c coupled to chord 74 c. For such applications, the free end of chord 74 c may be coupled to a different portion of cardiac tissue, e.g., leaflet 14.
  • FIG. 18 is a schematic illustration of a system 800 for adjusting a distance between two portions of a heart wall of the left ventricle of the patient, in accordance with some applications of the present invention. System 800 comprises a tensioning device 802 coupled at a first end thereof to spool assembly 36 at docking assembly 150. In a manner as described hereinabove, spool assembly 36 is implanted at first implantation site 5 in a first portion of tissue of the heart wall that faces and surrounds the ventricular lumen. The free end of tensioning device 802 is attached at second implantation site 7 to a second portion of tissue of the heart wall that faces and surrounds the ventricular lumen. The free end of tensioning device 802 is implanted in heart tissue using a helical anchor by way of illustration and not limitation. For example, the free end of tensioning device 802 may be coupled to second implantation site 7 using sutures, knots, or any tissue anchor known in the art.
  • Tensioning device 802 comprises a flexible material, e.g., ePTFE or nitinol, and is shaped to define a coiled portion 806 that has a length of between 20 mm and 50 mm and a diameter of between 0.5 mm and 3.0 mm. Tensioning device 802 comprises respective wire/suture portions 804 on either side of coiled portion 806. For such an application, the suture portion 804 that is between spool assembly 36 and coiled portion 806 comprises portions 74 a and 74 b of chord 74.
  • As described hereinabove, spool 46 of adjustment mechanism 43 is rotated in order to adjust a distance between first and second implantation sites 5 and 7. As spool 46 is rotated in a first direction thereof, successive portions of chord 74 of suture portion 804 that is disposed adjacently to spool assembly 36 are wrapped around spool 46. Tensioning device 802 is tightened and shortened in response to the wrapping of portion 804 around spool 46. As device 802 is tightened, a force is applied to coiled portion 806 of tensioning device 802. Coiled portion 806 applies a supplemental puling force to help pull the opposing first and second portions of the ventricle wall toward one another. Consequently, the dimensions of the heart wall are restored to physiological dimensions, and leaflets 12 and 14 are drawn toward one another.
  • Reference is made to FIGS. 16-18 . It is to be noted that the scope of the present invention includes the use of systems 600, 610, and 800 for adjusting a distance between any two portions of the heart and not just opposing portions, as described hereinabove. For example, first and second implantation sites 5 and 7 may be on the same side, e.g., the septum, of the wall of the heart.
  • Reference is now made to FIG. 19 , which is a schematic illustration of a system 960 for drawing together leaflets 12 and 14 of mitral valve 8 of the patient, in accordance with some applications of the present invention. Spool assembly 36 is implanted via docking assembly 150 in first implantation site 5 at papillary muscle 4 of the left ventricle by way of illustration and not limitation. For example, spool assembly 36 may be implanted in a portion of the heart wall of the ventricle, e.g., the base of the papillary muscle. First and second portions 74 a and 74 b of chord 74 are coupled (e.g., sutured, anchored, clipped, or locked in place with a crimping bead 918, as shown) to leaflet 12 at an implantation site 902. It is to be noted that portions 74 a and 74 b may be coupled to leaflets 12 and 14, respectively, using leaflet-engaging elements 72 as described hereinabove.
  • As described hereinabove, spool 46 of adjustment mechanism 43 is rotated in order to adjust a length of portions 74 a and 74 b of chord 74. Portions 74 a and 74 b are pulled tight in response to rotation of spool 46 in a first direction thereof. In response to the pulling of portions 74 a and 74 b, leaflets 12 and 14 are pulled toward one another in order to restore coaptation to valve 8.
  • It is to be noted that system 960 may be used on the tricuspid valve.
  • System 960 further comprises at least one bead 940 that is threaded over portions 74 a and 74 b of chord 74. The surgeon adjusts the position of the bead along the portions 74 a and 74 b in order to set the degree to which portions 74 a and 74 b are free to move with respect to one another. In general, as bead 940 is positioned closer to valve 8, portions 74 a and 74 b are more constrained in their motion with respect to one another, and leaflets 12 and 14 are drawn closer together. For some applications of the present invention, bead 940 comprises a fixation mechanism (e.g., a crimping mechanism), which is configured to fix the bead to portions 74 a and 74 b of chord 74 once bead 940 has been positioned at a desire location along portions 74 a and 74 b.
  • FIG. 20 shows a system 980 that is similar to system 960 as described with reference to FIG. 19 , with the exception that bead 940 is pulled by the operating physician to the ventricular surface of a middle portion of valve 8, in accordance with some applications of the present invention. Such pulling of bead 940 to the ventricular surface creates a bridge between leaflets 12 and 14, e.g., as an Alfieri stitch, or edge-to-edge repair. Portions 74 a and 74 b are then adjusted in order to pull together the middle portion of mitral valve 8, as shown in Section A-A. The firm coupling of leaflets 12 and 14 prevents prolapsing of leaflets 12 and 14, facilitates coaptation of leaflets 12 and 14, and creates orifices 962 and 964 (section A-A) in mitral valve 8 so as to facilitate blood flow from the atrium to the ventricle. Additionally, the adjusting of portions 74 a and 74 b of chord 74 draws downward leaflets 12 and 14 and adjusts chord 74 such that it functions as an artificial chordea tendinea.
  • Reference is now made to FIGS. 19 and 20 . It is to be noted that although docking assembly 150 is shown, multiple-docking-station assembly 350 as described hereinabove, may be implanted at implantation site 5. For such an application, two or more spool assemblies 36 may be coupled to multiple-docking-station assembly 350, and any number of chords 74 extending from each spool assembly 36 may be coupled to leaflets 12 and 14 at any suitable location thereof. The lengths of chords 74 are then adjusted by spool assemblies 36 in order to pull leaflets 12 and 14 together.
  • Reference is now made to FIG. 21 , which is a schematic illustration of a system 1000 comprising docking assembly 150 for implantation at an implantation site 5 a that includes an annulus 1100 of a cardiac valve of the patient, in accordance with some applications of the present invention. It is to be noted that the mitral valve is shown by way of illustration and not limitation, and that system 1000 can be used on any other cardiac valve of the patient, e.g., the tricuspid valve, the pulmonary valve, and the aortic valve. System 1000 comprises docking assembly 150 and the guide member coupled thereto (e.g., guide wire 40), as described hereinabove with reference to FIGS. 1-2 .
  • For some applications in which docking assembly 150 is implanted at the annulus of the cardiac valve, implant 42 configured to be coupled to docking assembly 150 comprises an annuloplasty ring structure (e.g., a full annuloplasty ring or a partial annuloplasty ring). Typically, the annuloplasty ring structure comprises adjustment mechanism 43. It is to be noted, however, that the annuloplasty ring structure configured to be coupled to docking assembly 150 may be provided independently of adjustment mechanism 43. That is, any suitable annuloplasty ring structure may be coupled to docking assembly 150. For such applications, the annuloplasty ring structure is slid along guide wire 40 toward docking assembly 150.
  • For other applications in which docking assembly 150 is implanted at the annulus of the cardiac valve, implant 42 configured to be coupled to docking assembly 150 comprises a prosthetic valve or a support structure for coupling a prosthetic valve thereto. For some applications, the support structure comprises adjustment mechanism 43. It is to be noted, however, that the support structure configured to be coupled to docking assembly 150 may be provided independently of adjustment mechanism 43. That is, any suitable support structure or prosthetic valve may be coupled to docking assembly 150. For such applications, the support structure or prosthetic valve is slid along guide wire 40 toward docking assembly 150.
  • Reference is made to FIG. 22 , which is a schematic illustration of system 1000 being used to facilitate implantation of implant 42, comprising an annuloplasty ring 1120, at annulus 1100 of a cardiac valve, in accordance with some applications of the invention. It is to be noted that the mitral valve is shown by way of illustration and not limitation, and that system 1000 can be used on any other cardiac valve of the patient, e.g., the tricuspid valve, the pulmonary valve, and the aortic valve. It is to be noted that annuloplasty ring 1120 is shown as a partial annuloplasty ring by way of illustration and not limitation, and that annuloplasty ring 1120 may comprise a full annuloplasty ring. Docking assembly 150 is advanced to the annulus, and tissue anchor 50 is anchored to tissue in the vicinity of the annulus (e.g., to tissue of the annulus). For applications in which tissue anchor 50 comprises a helical tissue anchor, the anchor is typically coupled to the tissue by rotating the entire docking assembly 150 (e.g., using a delivery tool, such as delivery tool 30, described hereinabove with reference to FIGS. 1-2 , mutatis mutandis). As described hereinabove (e.g., with reference to FIG. 2 ), a guide member (e.g., guide wire 40) is left behind, coupled to docking assembly 150 (e.g., to docking station 56 thereof).
  • Subsequently, and as shown in FIG. 22 , annuloplasty ring 1120 is advanced along guide wire 40 toward annulus 1100 and docking assembly 150. Typically, annuloplasty ring 1120 is shaped to define a channel therethrough (e.g., between an upper surface and a lower surface of the annuloplasty ring), within which guide wire 40 is configured to be disposed, and the annuloplasty ring is slid over the guide wire. For some applications, and as shown in FIG. 22 , annuloplasty ring 1120 comprises an adjustable annuloplasty ring that comprises an adjustment mechanism 1143, configured to adjust the annuloplasty ring (e.g., as described hereinbelow). For some such applications, adjustment mechanism 1143 is shaped to define the channel within which guide wire 40 is configured to be disposed.
  • Typically, adjustment mechanism 1143 comprises adjustment mechanism 43 and/or spool assembly 36, described hereinabove. Further typically, annuloplasty ring 1120 comprises a sleeve 1126 that defines a lumen therethrough, and a flexible longitudinal member 1130, disposed at least in part within the lumen of the sleeve, and adjustment mechanism 1143 is configured to adjust the length of the sleeve (e.g., the diameter of the annuloplasty ring) by adjusting the length of the flexible longitudinal member. For some applications, flexible longitudinal member 1130 is coupled to and adjusted by adjustment mechanism 1143, in a similar manner to that in which chord 74 is coupled to and adjusted by adjustment mechanism 43, described hereinabove.
  • Once annuloplasty ring 1120 reaches docking assembly 150, the annuloplasty ring is locked to the docking assembly as described hereinabove (e.g., with reference to FIG. 6 ), mutatis mutandis. That is, a coupling defined by the annuloplasty ring is locked to a coupling defined by the docking assembly, typically by the couplings being pushed toward and/or into each other.
  • For some applications, additional anchors are subsequently used to couple other portions of annuloplasty ring 1120 to other portions of tissue in the vicinity of annulus 1100. For example, and as shown in FIG. 22 , annuloplasty ring 1120 may comprise a partial annuloplasty ring that comprises sleeve 1126, and successive portions of sleeve 1126 may be placed on annulus 1100, and anchored to the annulus using a plurality of successive anchors 1140, deployed using a deployment manipulator 1142, from within the lumen of the sleeve, through the wall of the sleeve, and into the annulus. For some such applications, docking assembly 150 is used to guide and anchor a first portion of the annuloplasty ring to a first anchoring site of the annulus, and successive anchors 1140 are subsequently used to anchor other portions of the annuloplasty ring.
  • For some applications, a plurality of docking assemblies 150 and a plurality of guide wires 40 are used to advance and lock a plurality of portions of annuloplasty ring 1120 to the tissue. For some such applications, annuloplasty ring comprises a plurality of adjustment mechanisms 1143 disposed around the length of sleeve 1126 (e.g., to adjust the length of different portions of the sleeve), and each of the adjustment mechanisms is advanced over a respective guide wire 40 and locked to a respective docking station of a respective docking assembly.
  • It is to be noted that the locking of annuloplasty ring 1120 to docking assembly 150 is performed suturelessly.
  • For some applications of the present invention, systems 20, 220, 320, 600, 610, 800, 960, 980, and 1000 are used to treat an atrioventricular valve other than the mitral valve, i.e., the tricuspid valve. For these applications, systems 20, 220, 320, 600, 610, 800, 960, 980, and 1000 described hereinabove as being placed in the left ventricle are instead placed in the right ventricle.
  • It is to be noted that the scope of the present invention includes the use of systems 20, 220, 320, 600, 610, 800, 960, 980, and 1000 on other cardiac valves, such as the pulmonary valve or the aortic valve.
  • It is to be further noted that the scope of the present invention includes the use of systems 20, 220, 320, 600, 610, 800, 960, 980, and 1000 on other tissue other than cardiac tissue, e.g., gastric tissue or any other suitable tissue or organ.
  • For some applications, techniques described herein are practiced in combination with techniques described in one or more of the references cited in the Background section of the present patent application.
  • Additionally, the scope of the present invention includes applications described in the following applications, which are incorporated herein by reference. In an application, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:
      • PCT Publication WO 2006/097931 to Gross et al., entitled, “Mitral Valve treatment techniques,” filed Mar. 15, 2006;
      • U.S. Provisional Patent Application 60/873,075 to Gross et al., entitled, “Mitral valve closure techniques,” filed Dec. 5, 2006;
      • U.S. Provisional Patent Application 60/902,146 to Gross et al., entitled, “Mitral valve closure techniques,” filed on Feb. 16, 2007;
      • U.S. Provisional Patent Application 61/001,013 to Gross et al., entitled, “Segmented ring placement,” filed Oct. 29, 2007;
      • PCT Patent Application PCT/IL07/001503 to Gross et al., entitled, “Segmented ring placement,” filed on Dec. 5, 2007, which published as WO
      • U.S. patent application Ser. No. 11/950,930 to Gross et al., entitled, “Segmented ring placement,” filed on Dec. 5, 2007, which published as US Patent Application Publication 2008/0262609 (now U.S. Pat. No. 8,926,695);
      • U.S. Provisional Patent Application 61/132,295 to Gross et al., entitled, “Annuloplasty devices and methods of delivery therefor,” filed on Jun. 16, 2008;
      • U.S. patent application Ser. No. 12/341,960 to Cabiri, entitled, “Adjustable partial annuloplasty ring and mechanism therefor,” filed on Dec. 22, 2008, which published as 2010/0161047 (now U.S. Pat. No. 8,241,351);
      • U.S. Provisional Patent Application 61/207,908 to Miller et al., entitled, “Actively-engageable movement-restriction mechanism for use with an annuloplasty structure,” filed on Feb. 17, 2009;
      • U.S. patent application Ser. No. 12/435,291 to Maisano et al., entitled, “Adjustable repair chords and spool mechanism therefor,” filed on May 4, 2009, which published as 2010/0161041 (now U.S. Pat. No. 8,147,542);
      • U.S. patent application Ser. No. 12/437,103 to Zipory et al., entitled, “Annuloplasty ring with intra-ring anchoring,” filed on May 7, 2009, which published as 2010/0286767 (now U.S. Pat. No. 8,715,342);
      • PCT Patent Application PCT/IL2009/000593 to Gross et al., entitled, “Annuloplasty devices and methods of delivery therefor,” filed on Jun. 15, 2009, which published as WO 2010/004546;
      • U.S. patent application Ser. No. 12/548,991 to Maisano et al., entitled, “Implantation of repair chords in the heart,” filed on Aug. 27, 2009, which published as 2010/0161042 (now U.S. Pat. No. 8,808,368);
      • U.S. patent application Ser. No. 12/608,316 to Miller et al., entitled, “Tissue anchor for annuloplasty ring,” filed on Oct. 29, 2009, which published as 2011/0106247 (now U.S. Pat. No. 8,277,502);
      • PCT Patent Application PCT/IL2009/001209 to Cabiri et al., entitled, “Adjustable annuloplasty devices and mechanisms therefor,” filed on Dec. 22, 2009, which published as WO 2010/073246;
      • U.S. patent application Ser. No. 12/689,635 to Zipory et al., entitled, “Over-wire rotation tool,” filed on Jan. 19, 2010, which published as 2010/0280604 (now U.S. Pat. No. 8,545,553);
      • U.S. patent application Ser. No. 12/689,693 to Hammer et al., entitled, “Application Deployment techniques for annuloplasty ring,” filed on Jan. 19, 2010, which published as 2010/0280605 (now U.S. Pat. No. 8,911,494);
      • U.S. patent application Ser. No. 12/706,868 to Miller et al., entitled, “Actively-engageable movement-restriction mechanism for use with an annuloplasty structure,” filed on Feb. 17, 2010, which published as 2010/0211166 (now U.S. Pat. No. 8,353,956); and/or
      • U.S. patent application Ser. No. 12/795,026 to Miller et al., entitled, “Apparatus for guide-wire based advancement of a rotation assembly,” filed on Jun. 7, 2010, which published as 2011/0106245 (now U.S. Pat. No. 8,940,042).
  • It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims (23)

1. A method for use with a heart of a subject, the method comprising:
advancing, into the heart, a tissue-engaging element coupled to a guide member;
coupling the tissue-engaging element to tissue of the heart;
subsequently, sliding an elongate implant distally along the guide member toward the tissue-engaging element; and
subsequently, locking the elongate implant to the tissue-engaging element.
2. The method according to claim 1, wherein sliding the elongate implant comprises transluminally sliding the elongate implant to the heart.
3. The method according to claim 1, further comprising decoupling the guide member from the tissue-engaging element while the elongate implant remains locked to the tissue-engaging element.
4. The method according to claim 1, wherein the tissue is tissue of a ventricle of the heart, and wherein coupling the tissue-engaging element to the tissue of the heart comprises coupling the tissue-engaging element to the tissue of the ventricle.
5. The method according to claim 4, wherein the method further comprises coupling a proximal end of the elongate implant to a valve leaflet of the heart that is upstream of the ventricle.
6. The method according to claim 5, wherein the method further comprises, subsequently to coupling the proximal end of the elongate implant to the valve leaflet, adjusting a distance between the proximal end of the elongate implant and the tissue-engagement element.
7. The method according to claim 4, wherein the tissue is tissue of a papillary muscle of the heart, and wherein coupling the tissue-engaging element to the tissue of the heart comprises coupling the tissue-engaging element to the tissue of the papillary muscle.
8. The method according to claim 1, wherein sliding the elongate implant distally along the guide member comprises sliding a tool, while the tool is coupled to the elongate implant, distally along the guide member such that the elongate implant slides distally along the guide member towards the tissue-engaging element.
9. The method according to claim 8, wherein locking the elongate implant to the tissue-engaging element comprises locking the elongate implant to the tissue-engaging element using the tool.
10. The method according to claim 1, wherein locking the elongate implant to the tissue-engaging element comprises locking an adjustment mechanism of the elongate implant to the tissue-engaging element.
11. The method according to claim 10, the method further comprising, subsequently to locking the adjustment mechanism to the tissue-engaging element, actuating the adjustment mechanism to adjust tension in the elongate implant.
12. The method according to claim 10, the method further comprising, subsequently to locking the adjustment mechanism to the tissue-engaging element, actuating the adjustment mechanism to adjust a length of the elongate implant.
13. A system for use with a heart of a subject, the system comprising:
a tissue-engaging element anchorable to tissue of the heart;
a guide member, reversibly coupled to the tissue-engaging element;
an elongate implant; and
a tool configured to, while the tissue-engaging element is anchored to tissue of the heart and the guide member is coupled to the tissue-engaging element:
slide the elongate implant over and along the guide member toward the tissue-engaging element, and
subsequently, lock the elongate implant to the tissue-engaging element.
14. The system according to claim 13, wherein the tool is configured to transluminally slide the elongate implant over and along the guide member toward the tissue-engaging element.
15. The system according to claim 13, wherein the tool is configured to decouple the guide member from the tissue-engaging element while the elongate implant remains locked to the tissue-engaging element.
16. The system according to claim 13, wherein the tissue is tissue of a ventricle of the heart, and wherein the tool is configured to:
slide the elongate implant over and along the guide member into the ventricle, and
lock the elongate implant to the tissue-engaging element within the ventricle.
17. The system according to claim 13, wherein the tissue-engaging element is helical and is configured to be corkscrewed into the tissue.
18. The system according to claim 13, wherein the tool is configured to couple a proximal end of the elongate implant to a valve leaflet of the heart.
19. The system according to claim 18, wherein the implant comprises a leaflet-engaging element at the proximal end of the elongate implant, and wherein the tool is configured to couple the proximal end of the elongate implant to the valve leaflet by coupling the leaflet-engaging element to the leaflet.
20. The system according to claim 13, wherein the implant comprises, at a distal end of the elongate implant, an adjustment mechanism configured to adjust tension in the elongate implant upon actuation of the adjustment mechanism.
21. The system according to claim 20, wherein the tool is configured to lock the elongate implant to the tissue-engaging element by locking the adjustment mechanism to the tissue-engaging element.
22. The system according to claim 20, wherein the tool is configured to actuate the adjustment mechanism.
23. The system according to claim 20, wherein the adjustment mechanism comprises a rotatable structure disposed within a housing, actuation of the adjustment mechanism comprising rotation of the rotatable structure with respect to the housing.
US18/180,786 2009-10-29 2023-03-08 Guided advancement of an implant Pending US20230218398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/180,786 US20230218398A1 (en) 2009-10-29 2023-03-08 Guided advancement of an implant

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US12/608,316 US8277502B2 (en) 2009-10-29 2009-10-29 Tissue anchor for annuloplasty device
US12/795,192 US8690939B2 (en) 2009-10-29 2010-06-07 Method for guide-wire based advancement of a rotation assembly
US12/795,026 US8940042B2 (en) 2009-10-29 2010-06-07 Apparatus for guide-wire based advancement of a rotation assembly
PCT/IL2011/000446 WO2011154942A2 (en) 2010-06-07 2011-06-06 Apparatus and method for guide-wire based advancement of a rotation assembly
US13/707,013 US9180007B2 (en) 2009-10-29 2012-12-06 Apparatus and method for guide-wire based advancement of an adjustable implant
US14/937,233 US9968454B2 (en) 2009-10-29 2015-11-10 Techniques for guide-wire based advancement of artificial chordae
US15/970,743 US10751184B2 (en) 2009-10-29 2018-05-03 Apparatus and method for guide-wire based advancement of an adjustable implant
US17/001,566 US11617652B2 (en) 2009-10-29 2020-08-24 Apparatus and method for guide-wire based advancement of an adjustable implant
US18/180,786 US20230218398A1 (en) 2009-10-29 2023-03-08 Guided advancement of an implant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/001,566 Continuation US11617652B2 (en) 2009-10-29 2020-08-24 Apparatus and method for guide-wire based advancement of an adjustable implant

Publications (1)

Publication Number Publication Date
US20230218398A1 true US20230218398A1 (en) 2023-07-13

Family

ID=48086513

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/707,013 Active 2030-09-04 US9180007B2 (en) 2009-10-29 2012-12-06 Apparatus and method for guide-wire based advancement of an adjustable implant
US14/937,233 Active 2030-07-25 US9968454B2 (en) 2009-10-29 2015-11-10 Techniques for guide-wire based advancement of artificial chordae
US15/970,743 Active 2030-08-19 US10751184B2 (en) 2009-10-29 2018-05-03 Apparatus and method for guide-wire based advancement of an adjustable implant
US17/001,566 Active 2030-12-07 US11617652B2 (en) 2009-10-29 2020-08-24 Apparatus and method for guide-wire based advancement of an adjustable implant
US18/180,786 Pending US20230218398A1 (en) 2009-10-29 2023-03-08 Guided advancement of an implant

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US13/707,013 Active 2030-09-04 US9180007B2 (en) 2009-10-29 2012-12-06 Apparatus and method for guide-wire based advancement of an adjustable implant
US14/937,233 Active 2030-07-25 US9968454B2 (en) 2009-10-29 2015-11-10 Techniques for guide-wire based advancement of artificial chordae
US15/970,743 Active 2030-08-19 US10751184B2 (en) 2009-10-29 2018-05-03 Apparatus and method for guide-wire based advancement of an adjustable implant
US17/001,566 Active 2030-12-07 US11617652B2 (en) 2009-10-29 2020-08-24 Apparatus and method for guide-wire based advancement of an adjustable implant

Country Status (1)

Country Link
US (5) US9180007B2 (en)

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097931A2 (en) 2005-03-17 2006-09-21 Valtech Cardio, Ltd. Mitral valve treatment techniques
US8333777B2 (en) 2005-04-22 2012-12-18 Benvenue Medical, Inc. Catheter-based tissue remodeling devices and methods
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US8926695B2 (en) 2006-12-05 2015-01-06 Valtech Cardio, Ltd. Segmented ring placement
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
CA2728078A1 (en) 2008-06-16 2010-01-14 Valtech Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
WO2010073246A2 (en) 2008-12-22 2010-07-01 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
WO2010121076A2 (en) 2009-04-15 2010-10-21 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US10098737B2 (en) * 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
EP2506777B1 (en) 2009-12-02 2020-11-25 Valtech Cardio, Ltd. Combination of spool assembly coupled to a helical anchor and delivery tool for implantation thereof
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) * 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US8475525B2 (en) * 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8858623B2 (en) * 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP3656434B1 (en) 2011-11-08 2021-10-20 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
CN104203157B (en) 2011-12-12 2016-02-03 戴维·阿隆 Heart valve repair apparatus
US8961594B2 (en) 2012-05-31 2015-02-24 4Tech Inc. Heart valve repair system
CA2885354A1 (en) 2012-09-29 2014-04-03 Mitralign, Inc. Plication lock delivery system and method of use thereof
EP3517052A1 (en) 2012-10-23 2019-07-31 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
EP2943132B1 (en) 2013-01-09 2018-03-28 4Tech Inc. Soft tissue anchors
WO2014134183A1 (en) 2013-02-26 2014-09-04 Mitralign, Inc. Devices and methods for percutaneous tricuspid valve repair
US9907681B2 (en) 2013-03-14 2018-03-06 4Tech Inc. Stent with tether interface
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
WO2014152503A1 (en) 2013-03-15 2014-09-25 Mitralign, Inc. Translation catheters, systems, and methods of use thereof
US9492674B2 (en) 2013-08-16 2016-11-15 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
EP3033145B1 (en) * 2013-08-16 2021-09-22 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker and retrieval device
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
WO2015059699A2 (en) 2013-10-23 2015-04-30 Valtech Cardio, Ltd. Anchor magazine
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
US10039643B2 (en) 2013-10-30 2018-08-07 4Tech Inc. Multiple anchoring-point tension system
US9848880B2 (en) * 2013-11-20 2017-12-26 James E. Coleman Adjustable heart valve implant
US9855048B2 (en) 2013-11-20 2018-01-02 James E. Coleman Controlling a size of a pylorus
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
EP3157469B2 (en) 2014-06-18 2024-10-02 Polares Medical Inc. Mitral valve implants for the treatment of valvular regurgitation
JP6559161B2 (en) 2014-06-19 2019-08-14 4テック インコーポレイテッド Tightening heart tissue
EP3160396B1 (en) 2014-06-24 2022-03-23 Polares Medical Inc. Systems for anchoring an implant
GB2536538B (en) 2014-09-17 2018-07-18 Cardiomech As Anchor for implantation in body tissue
WO2016059639A1 (en) 2014-10-14 2016-04-21 Valtech Cardio Ltd. Leaflet-restraining techniques
JP6717820B2 (en) 2014-12-02 2020-07-08 4テック インコーポレイテッド Eccentric tissue anchor
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
WO2016174669A1 (en) 2015-04-30 2016-11-03 Valtech Cardio Ltd. Annuloplasty technologies
WO2017066889A1 (en) * 2015-10-21 2017-04-27 Coremedic Ag Medical apparatus and method for heart valve repair
EP4241698A3 (en) * 2015-10-21 2024-01-17 Coremedic AG Medical implant for heart valve repair
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
WO2017117370A2 (en) 2015-12-30 2017-07-06 Mitralign, Inc. System and method for reducing tricuspid regurgitation
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US11833034B2 (en) 2016-01-13 2023-12-05 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
US9877833B1 (en) 2016-12-30 2018-01-30 Pipeline Medical Technologies, Inc. Method and apparatus for transvascular implantation of neo chordae tendinae
US11083580B2 (en) 2016-12-30 2021-08-10 Pipeline Medical Technologies, Inc. Method of securing a leaflet anchor to a mitral valve leaflet
US11696828B2 (en) 2016-12-30 2023-07-11 Pipeline Medical Technologies, Inc. Method and apparatus for mitral valve chord repair
US10925731B2 (en) 2016-12-30 2021-02-23 Pipeline Medical Technologies, Inc. Method and apparatus for transvascular implantation of neo chordae tendinae
CN110267604A (en) 2017-02-08 2019-09-20 4科技有限公司 It is tensioned after implantation in cardiac implant
WO2018160456A1 (en) 2017-03-01 2018-09-07 4Tech Inc. Post-implantation tension adjustment in cardiac implants
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
WO2018169878A1 (en) 2017-03-13 2018-09-20 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US10842619B2 (en) 2017-05-12 2020-11-24 Edwards Lifesciences Corporation Prosthetic heart valve docking assembly
US11446023B2 (en) * 2017-07-27 2022-09-20 Kenneth F. Binmoeller Helical tissue anchor device and delivery system
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
EP3743015A1 (en) 2018-01-24 2020-12-02 Valtech Cardio, Ltd. Contraction of an annuloplasty structure
WO2019145941A1 (en) 2018-01-26 2019-08-01 Valtech Cardio, Ltd. Techniques for facilitating heart valve tethering and chord replacement
AU2019234447A1 (en) * 2018-03-12 2020-10-15 Pipeline Medical Technologies, Inc. Method and apparatus for mitral valve chord repair
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
JP7083549B2 (en) 2018-03-23 2022-06-13 ネオコード インコーポレイテッド Suture attachment device for minimally invasive heart valve repair
US11173030B2 (en) 2018-05-09 2021-11-16 Neochord, Inc. Suture length adjustment for minimally invasive heart valve repair
US20190343634A1 (en) * 2018-05-09 2019-11-14 Neochord, Inc. Radial arm tissue anchor for minimally invasive heart valve repair
US11026673B2 (en) * 2018-05-10 2021-06-08 Edwards Lifesciences Corporation Corkscrew tissue anchor
CN112384175A (en) 2018-07-12 2021-02-19 瓦尔泰克卡迪欧有限公司 Annuloplasty system and locking tool therefor
EP3860519A4 (en) 2018-10-05 2022-07-06 Shifamed Holdings, LLC Prosthetic cardiac valve devices, systems, and methods
US20200222186A1 (en) * 2019-01-16 2020-07-16 Neochord, Inc. Transcatheter methods for heart valve repair
WO2020191216A1 (en) 2019-03-19 2020-09-24 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
US11850152B2 (en) 2019-07-03 2023-12-26 Boston Scientific Scimed, Inc. Devices, systems, and methods for artificial chordae tendineae
EP4364697A3 (en) * 2019-07-03 2024-05-22 Boston Scientific Scimed, Inc. Devices and systems for artificial chordae tendineae
JP7375050B2 (en) 2019-07-03 2023-11-07 ボストン サイエンティフィック サイムド,インコーポレイテッド Devices, systems, and methods for adjustable tensioning of artificial chordae tendineae between valve leaflets and papillary muscles or cardiac wall
EP4454611A2 (en) 2019-07-03 2024-10-30 Boston Scientific Scimed, Inc. System for anchoring an artificial chordae tendineae to a papillary muscle or heart wall
CR20210640A (en) 2019-10-29 2022-05-30 Valtech Cardio Ltd Annuloplasty and tissue anchor technologies
WO2021191713A1 (en) 2020-03-23 2021-09-30 Valtech Cardio, Ltd. Self-locking winch
US11395910B2 (en) 2020-05-20 2022-07-26 Rainbow Medical Ltd. Passive pump
CN115916114A (en) 2020-05-20 2023-04-04 心脏植入物有限公司 Reducing the diameter of the annulus by independently controlling each anchor fired into the heart valve annulus
US12053371B2 (en) 2020-08-31 2024-08-06 Shifamed Holdings, Llc Prosthetic valve delivery system
WO2022072210A1 (en) * 2020-09-30 2022-04-07 Boston Scientific Scimed, Inc. Devices, systems, and methods for adjustably tensioning artificial chordae tendineae in a heart
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US11357629B1 (en) 2021-10-25 2022-06-14 Rainbow Medical Ltd. Diastolic heart failure treatment
US11484700B1 (en) 2021-10-25 2022-11-01 Yossi Gross Mechanical treatment of heart failure
CN118401198A (en) 2021-12-21 2024-07-26 爱德华兹生命科学创新(以色列)有限公司 Leaflet enhancer
WO2024121786A1 (en) 2022-12-09 2024-06-13 Edwards Lifesciences Innovation (Israel) Ltd. Leaflet augmenter

Family Cites Families (782)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL143127B (en) 1969-02-04 1974-09-16 Rhone Poulenc Sa REINFORCEMENT DEVICE FOR A DEFECTIVE HEART VALVE.
US3604488A (en) 1969-11-19 1971-09-14 Vermont American Corp Screwdriver attachment
US3840018A (en) 1973-01-31 1974-10-08 M Heifetz Clamp for occluding tubular conduits in the human body
US3881366A (en) 1973-11-19 1975-05-06 Gen Motors Corp Adjustable steering column
US3898701A (en) 1974-01-17 1975-08-12 Russa Joseph Implantable heart valve
US4042979A (en) 1976-07-12 1977-08-23 Angell William W Valvuloplasty ring and prosthetic method
US4118805A (en) 1977-02-28 1978-10-10 Codman & Shurtleff, Inc. Artificial sphincter
ES474582A1 (en) 1978-10-26 1979-11-01 Aranguren Duo Iker Process for installing mitral valves in their anatomical space by attaching cords to an artificial stent
US4214349A (en) 1978-11-30 1980-07-29 Midland-Ross Corporation Tie wrap
ES244903Y (en) 1979-07-31 1980-12-01 ADJUSTABLE CANCELLATION OF PROSTHESIS FOR CARDIAC SURGERY
GB2084468B (en) 1980-09-25 1984-06-06 South African Inventions Surgical implant
US4473928A (en) 1980-11-20 1984-10-02 Tridon Limited Hose clamps
DE3230858C2 (en) 1982-08-19 1985-01-24 Ahmadi, Ali, Dr. med., 7809 Denzlingen Ring prosthesis
US4434828A (en) 1982-12-20 1984-03-06 Richard Trincia Screwdriver with handle for storing bits
US4625727A (en) 1985-01-24 1986-12-02 Leiboff Arnold R Anastomosis device with excisable frame
US4712549A (en) 1985-07-01 1987-12-15 Edward Weck & Co. Automatic hemostatic clip applier
CA1303298C (en) 1986-08-06 1992-06-16 Alain Carpentier Flexible cardiac valvular support prosthesis
US4961738A (en) 1987-01-28 1990-10-09 Mackin Robert A Angioplasty catheter with illumination and visualization within angioplasty balloon
US4917698A (en) 1988-12-22 1990-04-17 Baxter International Inc. Multi-segmented annuloplasty ring prosthesis
CA2330419C (en) 1989-02-13 2001-11-27 Baxter International Inc. Selectively flexible annuloplasty ring
US5290300A (en) 1989-07-31 1994-03-01 Baxter International Inc. Flexible suture guide and holder
US5632746A (en) 1989-08-16 1997-05-27 Medtronic, Inc. Device or apparatus for manipulating matter
US4935027A (en) 1989-08-21 1990-06-19 Inbae Yoon Surgical suture instrument with remotely controllable suture material advancement
SE467459B (en) 1990-09-25 1992-07-20 Allset Marine Lashing Ab WIRELESS BEFORE HEARING CHARGES TO CONTAINERS
US5626609A (en) 1990-10-05 1997-05-06 United States Surgical Corporation Endoscopic surgical instrument
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
US5064431A (en) 1991-01-16 1991-11-12 St. Jude Medical Incorporated Annuloplasty ring
US5108420A (en) 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5329923A (en) 1991-02-15 1994-07-19 Lundquist Ingemar H Torquable catheter
US5346498A (en) 1991-11-06 1994-09-13 Imagyn Medical, Inc. Controller for manipulation of instruments within a catheter
ES2136095T3 (en) 1991-11-29 1999-11-16 Cook William Europ CLOSURE PROSTHESIS, FOR PLACEMENT THROUGH A CATHETER.
US5201880A (en) 1992-01-27 1993-04-13 Pioneering Technologies, Inc. Mitral and tricuspid annuloplasty rings
AU670934B2 (en) 1992-01-27 1996-08-08 Medtronic, Inc. Annuloplasty and suture rings
US5306296A (en) 1992-08-21 1994-04-26 Medtronic, Inc. Annuloplasty and suture rings
US5325845A (en) 1992-06-08 1994-07-05 Adair Edwin Lloyd Steerable sheath for use with selected removable optical catheter
US5258008A (en) 1992-07-29 1993-11-02 Wilk Peter J Surgical stapling device and associated method
US5300034A (en) 1992-07-29 1994-04-05 Minnesota Mining And Manufacturing Company Iv injection site for the reception of a blunt cannula
ES2049653B1 (en) 1992-10-05 1994-12-16 Velazquez Francisco Farrer CORRECTIVE DEVICE FOR FEMALE URINARY INCONTINENCE.
US6074417A (en) 1992-11-16 2000-06-13 St. Jude Medical, Inc. Total mitral heterologous bioprosthesis to be used in mitral or tricuspid heart replacement
US5643317A (en) 1992-11-25 1997-07-01 William Cook Europe S.A. Closure prosthesis for transcatheter placement
US5383852A (en) 1992-12-04 1995-01-24 C. R. Bard, Inc. Catheter with independent proximal and distal control
DE69322370C5 (en) 1993-02-18 2009-01-08 Ethicon Endo-Surgery, Inc., Cincinnati Laparoscopic adjustable gastric band
US5449368A (en) 1993-02-18 1995-09-12 Kuzmak; Lubomyr I. Laparoscopic adjustable gastric banding device and method for implantation and removal thereof
US6010531A (en) 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US6125852A (en) 1993-02-22 2000-10-03 Heartport, Inc. Minimally-invasive devices and methods for treatment of congestive heart failure
US5972030A (en) 1993-02-22 1999-10-26 Heartport, Inc. Less-invasive devices and methods for treatment of cardiac valves
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5372604A (en) 1993-06-18 1994-12-13 Linvatec Corporation Suture anchor for soft tissue fixation
US5715817A (en) 1993-06-29 1998-02-10 C.R. Bard, Inc. Bidirectional steering catheter
US5450860A (en) 1993-08-31 1995-09-19 W. L. Gore & Associates, Inc. Device for tissue repair and method for employing same
US5651785A (en) 1993-09-20 1997-07-29 Abela Laser Systems, Inc. Optical fiber catheter and method
US5464404A (en) 1993-09-20 1995-11-07 Abela Laser Systems, Inc. Cardiac ablation catheters and method
AU1011595A (en) 1994-01-13 1995-07-20 Ethicon Inc. Spiral surgical tack
US5843120A (en) 1994-03-17 1998-12-01 Medinol Ltd. Flexible-expandable stent
US6217610B1 (en) 1994-07-29 2001-04-17 Edwards Lifesciences Corporation Expandable annuloplasty ring
US5582616A (en) 1994-08-05 1996-12-10 Origin Medsystems, Inc. Surgical helical fastener with applicator
US5593424A (en) 1994-08-10 1997-01-14 Segmed, Inc. Apparatus and method for reducing and stabilizing the circumference of a vascular structure
AU6029696A (en) 1995-06-07 1996-12-30 St. Jude Medical Inc. Adjustable sizing apparatus for heart annulus
US5676653A (en) 1995-06-27 1997-10-14 Arrow International Investment Corp. Kink-resistant steerable catheter assembly
US5662683A (en) 1995-08-22 1997-09-02 Ortho Helix Limited Open helical organic tissue anchor and method of facilitating healing
US5749371A (en) 1995-10-06 1998-05-12 Zadini; Filiberto P. Automatic guidewire placement device for medical catheters
DE69630235T2 (en) 1995-12-01 2004-08-05 Medtronic, Inc., Minneapolis Annuloplasty prosthesis
US5730150A (en) 1996-01-16 1998-03-24 B. Braun Medical Inc. Guidewire dispenser
US5957953A (en) 1996-02-16 1999-09-28 Smith & Nephew, Inc. Expandable suture anchor
US5702397A (en) 1996-02-20 1997-12-30 Medicinelodge, Inc. Ligament bone anchor and method for its use
US5716370A (en) 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US6402780B2 (en) 1996-02-23 2002-06-11 Cardiovascular Technologies, L.L.C. Means and method of replacing a heart valve in a minimally invasive manner
US6132390A (en) 1996-02-28 2000-10-17 Eupalamus Llc Handle for manipulation of a stylet used for deflecting a tip of a lead or catheter
US5782844A (en) 1996-03-05 1998-07-21 Inbae Yoon Suture spring device applicator
US6702846B2 (en) 1996-04-09 2004-03-09 Endocare, Inc. Urological stent therapy system and method
US5885228A (en) 1996-05-08 1999-03-23 Heartport, Inc. Valve sizer and method of use
US5782862A (en) 1996-07-01 1998-07-21 Bonutti; Peter M. Suture anchor inserter assembly and method
US6569188B2 (en) 1996-08-05 2003-05-27 Arthrex, Inc. Hex drive bioabsorbable tissue anchor
US5669919A (en) 1996-08-16 1997-09-23 Medtronic, Inc. Annuloplasty system
US5752963A (en) 1996-08-19 1998-05-19 Bristol-Myers Squibb Company Suture anchor driver
US5830221A (en) 1996-09-20 1998-11-03 United States Surgical Corporation Coil fastener applier
CA2217406C (en) 1996-10-04 2006-05-30 United States Surgical Corporation Suture anchor installation system with disposable loading unit
US5716397A (en) 1996-12-06 1998-02-10 Medtronic, Inc. Annuloplasty device with removable stiffening element
US6364901B1 (en) 1996-12-20 2002-04-02 Kanji Inoue Appliance collapsible for insertion into a human organ and capable of resilient restoration
US5935098A (en) 1996-12-23 1999-08-10 Conceptus, Inc. Apparatus and method for accessing and manipulating the uterus
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US5961440A (en) 1997-01-02 1999-10-05 Myocor, Inc. Heart wall tension reduction apparatus and method
US6045497A (en) 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US6050936A (en) 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US6183411B1 (en) 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US6406420B1 (en) 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US6074401A (en) 1997-01-09 2000-06-13 Coalescent Surgical, Inc. Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US5961539A (en) 1997-01-17 1999-10-05 Segmed, Inc. Method and apparatus for sizing, stabilizing and/or reducing the circumference of an anatomical structure
US5938616A (en) 1997-01-31 1999-08-17 Acuson Corporation Steering mechanism and steering line for a catheter-mounted ultrasonic transducer
US5702398A (en) 1997-02-21 1997-12-30 Tarabishy; Sam Tension screw
US6086582A (en) 1997-03-13 2000-07-11 Altman; Peter A. Cardiac drug delivery system
US5876373A (en) 1997-04-04 1999-03-02 Eclipse Surgical Technologies, Inc. Steerable catheter
WO1998046149A1 (en) 1997-04-11 1998-10-22 Taccor, Inc. Steerable catheter with rotatable tip electrode and method of use
US20030105519A1 (en) 1997-09-04 2003-06-05 Roland Fasol Artificial chordae replacement
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US5984959A (en) 1997-09-19 1999-11-16 United States Surgical Heart valve replacement tools and procedures
US6206888B1 (en) 1997-10-01 2001-03-27 Scimed Life Systems, Inc. Stent delivery system using shape memory retraction
US6174332B1 (en) 1997-12-05 2001-01-16 St. Jude Medical, Inc. Annuloplasty ring with cut zone
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
US6251092B1 (en) 1997-12-30 2001-06-26 Medtronic, Inc. Deflectable guiding catheter
US6533807B2 (en) 1998-02-05 2003-03-18 Medtronic, Inc. Radially-expandable stent and delivery system
US20020087048A1 (en) 1998-02-24 2002-07-04 Brock David L. Flexible instrument
US6592593B1 (en) 1998-09-18 2003-07-15 United States Surgical Corporation Endovascular fastener applicator
US6074418A (en) 1998-04-20 2000-06-13 St. Jude Medical, Inc. Driver tool for heart valve prosthesis fasteners
EP2289423A1 (en) 1998-05-14 2011-03-02 David N. Krag System for bracketing tissue
US6143024A (en) 1998-06-04 2000-11-07 Sulzer Carbomedics Inc. Annuloplasty ring having flexible anterior portion
US6074341A (en) 1998-06-09 2000-06-13 Timm Medical Technologies, Inc. Vessel occlusive apparatus and method
WO2000015144A1 (en) 1998-06-10 2000-03-23 Advanced Bypass Technologies, Inc. Aortic aneurysm treatment systems
US6250308B1 (en) 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
US6106550A (en) 1998-07-10 2000-08-22 Sulzer Carbomedics Inc. Implantable attaching ring
US6165183A (en) 1998-07-15 2000-12-26 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US7569062B1 (en) 1998-07-15 2009-08-04 St. Jude Medical, Inc. Mitral and tricuspid valve repair
WO2000007510A1 (en) 1998-08-06 2000-02-17 Jordan Medical Llc Surgical screw cartridge, screw holder/magazine and pistol-type screwdriver for bone fixation
US6210347B1 (en) 1998-08-13 2001-04-03 Peter Forsell Remote control food intake restriction device
US6159240A (en) 1998-08-31 2000-12-12 Medtronic, Inc. Rigid annuloplasty device that becomes compliant after implantation
FR2783153B1 (en) 1998-09-14 2000-12-01 Jerome Dargent GASTRIC CONSTRICTION DEVICE
US6355030B1 (en) 1998-09-25 2002-03-12 Cardiothoracic Systems, Inc. Instruments and methods employing thermal energy for the repair and replacement of cardiac valves
US6102945A (en) 1998-10-16 2000-08-15 Sulzer Carbomedics, Inc. Separable annuloplasty ring
US6315784B1 (en) 1999-02-03 2001-11-13 Zarija Djurovic Surgical suturing unit
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
DE19910233A1 (en) 1999-03-09 2000-09-21 Jostra Medizintechnik Ag Anuloplasty prosthesis
US6319281B1 (en) 1999-03-22 2001-11-20 Kumar R. Patel Artificial venous valve and sizing catheter
US10327743B2 (en) 1999-04-09 2019-06-25 Evalve, Inc. Device and methods for endoscopic annuloplasty
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
WO2006116558A2 (en) 1999-04-09 2006-11-02 Evalve, Inc. Device and methods for endoscopic annuloplasty
US7563267B2 (en) 1999-04-09 2009-07-21 Evalve, Inc. Fixation device and methods for engaging tissue
US7811296B2 (en) 1999-04-09 2010-10-12 Evalve, Inc. Fixation devices for variation in engagement of tissue
ATE484241T1 (en) 1999-04-09 2010-10-15 Evalve Inc METHOD AND DEVICE FOR HEART VALVE REPAIR
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
US6231602B1 (en) 1999-04-16 2001-05-15 Edwards Lifesciences Corporation Aortic annuloplasty ring
US6183512B1 (en) 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US20050222665A1 (en) 1999-04-23 2005-10-06 Ernest Aranyi Endovascular fastener applicator
US6674993B1 (en) 1999-04-30 2004-01-06 Microvision, Inc. Method and system for identifying data locations associated with real world observations
US6187040B1 (en) 1999-05-03 2001-02-13 John T. M. Wright Mitral and tricuspid annuloplasty rings
US6964686B2 (en) 1999-05-17 2005-11-15 Vanderbilt University Intervertebral disc replacement prosthesis
US6790229B1 (en) 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
US6602289B1 (en) 1999-06-08 2003-08-05 S&A Rings, Llc Annuloplasty rings of particular use in surgery for the mitral valve
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
SE514718C2 (en) 1999-06-29 2001-04-09 Jan Otto Solem Apparatus for treating defective closure of the mitral valve apparatus
US6997951B2 (en) 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US8500795B2 (en) 1999-08-09 2013-08-06 Cardiokinetix, Inc. Retrievable devices for improving cardiac function
US6592609B1 (en) 1999-08-09 2003-07-15 Bonutti 2003 Trust-A Method and apparatus for securing tissue
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
JP3553432B2 (en) 1999-09-24 2004-08-11 本田技研工業株式会社 Riding simulation device
FR2799364B1 (en) 1999-10-12 2001-11-23 Jacques Seguin MINIMALLY INVASIVE CANCELING DEVICE
US6626930B1 (en) 1999-10-21 2003-09-30 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
AUPQ366099A0 (en) 1999-10-26 1999-11-18 Queensland University Of Technology Ortho paedic screw
AU1233301A (en) 1999-10-26 2001-05-08 H. Randall Craig Helical suture instrument
US6689150B1 (en) 1999-10-27 2004-02-10 Atritech, Inc. Filter apparatus for ostium of left atrial appendage
US6926730B1 (en) 2000-10-10 2005-08-09 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US6911032B2 (en) 1999-11-18 2005-06-28 Scimed Life Systems, Inc. Apparatus and method for compressing body tissue
US6711444B2 (en) 1999-11-22 2004-03-23 Scimed Life Systems, Inc. Methods of deploying helical diagnostic and therapeutic element supporting structures within the body
US6494908B1 (en) 1999-12-22 2002-12-17 Ethicon, Inc. Removable stent for body lumens
US7169187B2 (en) 1999-12-22 2007-01-30 Ethicon, Inc. Biodegradable stent
CN1243520C (en) 2000-01-14 2006-03-01 维亚科公司 Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
US6447443B1 (en) 2001-01-13 2002-09-10 Medtronic, Inc. Method for organ positioning and stabilization
US7296577B2 (en) 2000-01-31 2007-11-20 Edwards Lifescience Ag Transluminal mitral annuloplasty with active anchoring
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6989028B2 (en) 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US6458076B1 (en) 2000-02-01 2002-10-01 5 Star Medical Multi-lumen medical device
US20050070999A1 (en) 2000-02-02 2005-03-31 Spence Paul A. Heart valve repair apparatus and methods
US6797002B2 (en) 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
US6461336B1 (en) 2000-02-08 2002-10-08 LARRé JORGE CASADO Cardiological medical equipment
US6470892B1 (en) 2000-02-10 2002-10-29 Obtech Medical Ag Mechanical heartburn and reflux treatment
WO2001045486A2 (en) 2000-02-11 2001-06-28 Potencia Medical Ag Urinary incontinence treatment apparatus
US7993368B2 (en) 2003-03-13 2011-08-09 C.R. Bard, Inc. Suture clips, delivery devices and methods
US6569198B1 (en) 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US6689125B1 (en) 2000-04-04 2004-02-10 Spinalabs, Llc Devices and methods for the treatment of spinal disorders
US6533772B1 (en) 2000-04-07 2003-03-18 Innex Corporation Guide wire torque device
US6368348B1 (en) 2000-05-15 2002-04-09 Shlomo Gabbay Annuloplasty prosthesis for supporting an annulus of a heart valve
ES2435094T3 (en) 2000-05-19 2013-12-18 C.R. Bard, Inc. Device and method of tissue capture and suturing
AU2001214075B2 (en) 2000-05-25 2004-12-09 Bioring S.A. Device for shrinking or reinforcing the heart valvular orifices
US6406493B1 (en) 2000-06-02 2002-06-18 Hosheng Tu Expandable annuloplasty ring and methods of use
US6805711B2 (en) 2000-06-02 2004-10-19 3F Therapeutics, Inc. Expandable medical implant and percutaneous delivery
US7632303B1 (en) 2000-06-07 2009-12-15 Advanced Cardiovascular Systems, Inc. Variable stiffness medical devices
AU2001271411A1 (en) 2000-06-23 2002-01-08 Viacor Incorporated Automated annular plication for mitral valve repair
US7144414B2 (en) 2000-06-27 2006-12-05 Smith & Nephew, Inc. Surgical procedures and instruments
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US6613078B1 (en) 2000-08-02 2003-09-02 Hector Daniel Barone Multi-component endoluminal graft assembly, use thereof and method of implanting
SE0002878D0 (en) 2000-08-11 2000-08-11 Kimblad Ola Device and method of treatment of atrioventricular regurgitation
US6524338B1 (en) 2000-08-25 2003-02-25 Steven R. Gundry Method and apparatus for stapling an annuloplasty band in-situ
US6554845B1 (en) 2000-09-15 2003-04-29 PARÉ Surgical, Inc. Suturing apparatus and method
US8784482B2 (en) 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
US6893459B1 (en) 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
WO2003028558A2 (en) 2001-10-01 2003-04-10 Ample Medical Corporation Methods and devices for heart valve treatments
US7381220B2 (en) 2000-09-20 2008-06-03 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20060106278A1 (en) 2004-05-14 2006-05-18 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of an adjustable bridge implant system
US20080091264A1 (en) 2002-11-26 2008-04-17 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US20090287179A1 (en) 2003-10-01 2009-11-19 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US6602288B1 (en) 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6918917B1 (en) 2000-10-10 2005-07-19 Medtronic, Inc. Minimally invasive annuloplasty procedure and apparatus
US20020082525A1 (en) 2000-10-18 2002-06-27 Oslund John C. Rapid exchange delivery catheter
US6913608B2 (en) 2000-10-23 2005-07-05 Viacor, Inc. Automated annular plication for mitral valve repair
US6527780B1 (en) 2000-10-31 2003-03-04 Odyssey Medical, Inc. Medical implant insertion system
US7591826B2 (en) 2000-12-28 2009-09-22 Cardiac Dimensions, Inc. Device implantable in the coronary sinus to provide mitral valve therapy
US6579300B2 (en) 2001-01-18 2003-06-17 Scimed Life Systems, Inc. Steerable sphincterotome and methods for cannulation, papillotomy and sphincterotomy
US6810882B2 (en) 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
US7510576B2 (en) 2001-01-30 2009-03-31 Edwards Lifesciences Ag Transluminal mitral annuloplasty
JP4097924B2 (en) 2001-02-05 2008-06-11 オリンパス株式会社 Biological tissue clip device
WO2002062263A2 (en) 2001-02-05 2002-08-15 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
US6610080B2 (en) 2001-02-28 2003-08-26 Axya Medical, Inc. Parabolic eyelet suture anchor
US6786924B2 (en) 2001-03-15 2004-09-07 Medtronic, Inc. Annuloplasty band and method
US7186264B2 (en) 2001-03-29 2007-03-06 Viacor, Inc. Method and apparatus for improving mitral valve function
CN1318105C (en) 2001-04-02 2007-05-30 霍克研究基金会 Conformable balloonless catheter
DE10119096A1 (en) 2001-04-19 2002-10-24 Keramed Medizintechnik Gmbh New biologically functionalized coatings, useful for e.g. accelerating osteo-integration of implants, e.g. dental or joint implants, comprise resorbable calcium-phosphorus phase containing adhesion and/or signal proteins
US7037334B1 (en) 2001-04-24 2006-05-02 Mitralign, Inc. Method and apparatus for catheter-based annuloplasty using local plications
WO2002085252A1 (en) 2001-04-24 2002-10-31 Dhc Systems, Inc. Method and apparatus for catheter-based annuloplasty using local plications
US6619291B2 (en) 2001-04-24 2003-09-16 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty
US20050125011A1 (en) 2001-04-24 2005-06-09 Spence Paul A. Tissue fastening systems and methods utilizing magnetic guidance
US20060069429A1 (en) 2001-04-24 2006-03-30 Spence Paul A Tissue fastening systems and methods utilizing magnetic guidance
US8202315B2 (en) 2001-04-24 2012-06-19 Mitralign, Inc. Catheter-based annuloplasty using ventricularly positioned catheter
US6682558B2 (en) 2001-05-10 2004-01-27 3F Therapeutics, Inc. Delivery system for a stentless valve bioprosthesis
US7935145B2 (en) 2001-05-17 2011-05-03 Edwards Lifesciences Corporation Annuloplasty ring for ischemic mitral valve insuffuciency
ITMI20011012A1 (en) 2001-05-17 2002-11-17 Ottavio Alfieri ANNULAR PROSTHESIS FOR MITRAL VALVE
US6858039B2 (en) 2002-07-08 2005-02-22 Edwards Lifesciences Corporation Mitral valve annuloplasty ring having a posterior bow
FI114150B (en) 2001-05-17 2004-08-31 Inion Ltd Magazine for surgical fixation instruments and arrangement for a magazine for surgical fixation instruments
ES2230262T3 (en) 2001-06-11 2005-05-01 Sorin Biomedica Cardio S.R.L. PROTECTION OF ANULOPLASTY AND METHOD FOR THEIR PRODUCTION.
US20020188301A1 (en) 2001-06-11 2002-12-12 Dallara Mark Douglas Tissue anchor insertion system
WO2002102237A2 (en) 2001-06-15 2002-12-27 The Cleveland Clinic Foundation Tissue engineered mitral valve chrodae and methods of making and using same
US6958079B1 (en) 2001-07-03 2005-10-25 Reflux Corporation Perorally insertable/removable anti-reflux valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
US7150737B2 (en) 2001-07-13 2006-12-19 Sci/Med Life Systems, Inc. Methods and apparatuses for navigating the subarachnoid space
US6726716B2 (en) 2001-08-24 2004-04-27 Edwards Lifesciences Corporation Self-molding annuloplasty ring
US6749630B2 (en) 2001-08-28 2004-06-15 Edwards Lifesciences Corporation Tricuspid ring and template
US6908482B2 (en) 2001-08-28 2005-06-21 Edwards Lifesciences Corporation Three-dimensional annuloplasty ring and template
WO2003020179A1 (en) 2001-08-31 2003-03-13 Mitral Interventions Apparatus for valve repair
US7097659B2 (en) 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US20030050693A1 (en) 2001-09-10 2003-03-13 Quijano Rodolfo C. Minimally invasive delivery system for annuloplasty rings
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US7144363B2 (en) 2001-10-16 2006-12-05 Extensia Medical, Inc. Systems for heart treatment
US20060020336A1 (en) 2001-10-23 2006-01-26 Liddicoat John R Automated annular plication for mitral valve repair
US7052487B2 (en) 2001-10-26 2006-05-30 Cohn William E Method and apparatus for reducing mitral regurgitation
GB0125925D0 (en) 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
US7311729B2 (en) 2002-01-30 2007-12-25 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6805710B2 (en) 2001-11-13 2004-10-19 Edwards Lifesciences Corporation Mitral valve annuloplasty ring for molding left ventricle geometry
US20050177180A1 (en) 2001-11-28 2005-08-11 Aptus Endosystems, Inc. Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
US20090112302A1 (en) 2001-11-28 2009-04-30 Josh Stafford Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
EP1448117B1 (en) 2001-11-28 2013-05-22 Aptus Endosystems, Inc. Endovascular aneurysm repair system
US8231639B2 (en) 2001-11-28 2012-07-31 Aptus Endosystems, Inc. Systems and methods for attaching a prosthesis within a body lumen or hollow organ
US7147657B2 (en) 2003-10-23 2006-12-12 Aptus Endosystems, Inc. Prosthesis delivery systems and methods
US20030176914A1 (en) 2003-01-21 2003-09-18 Rabkin Dmitry J. Multi-segment modular stent and methods for manufacturing stents
EP1450732A1 (en) 2001-12-04 2004-09-01 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template system
US6908478B2 (en) 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US6976995B2 (en) 2002-01-30 2005-12-20 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US6978176B2 (en) 2001-12-08 2005-12-20 Lattouf Omar M Treatment for patient with congestive heart failure
DE10161543B4 (en) 2001-12-11 2004-02-19 REITAN, Öyvind Implant for the treatment of heart valve insufficiency
US6740107B2 (en) 2001-12-19 2004-05-25 Trimedyne, Inc. Device for treatment of atrioventricular valve regurgitation
WO2003053289A1 (en) 2001-12-21 2003-07-03 Simcha Milo Implantation system for annuloplasty rings
US8123801B2 (en) 2001-12-21 2012-02-28 QuickRing Medical Technologies, Ltd. Implantation system for annuloplasty rings
US20030120340A1 (en) 2001-12-26 2003-06-26 Jan Liska Mitral and tricuspid valve repair
EP2181669A3 (en) 2001-12-28 2011-11-23 Edwards Lifesciences AG Device for treating mitral insufficiency
SE524709C2 (en) 2002-01-11 2004-09-21 Edwards Lifesciences Ag Device for delayed reshaping of a heart vessel and a heart valve
US7033390B2 (en) 2002-01-02 2006-04-25 Medtronic, Inc. Prosthetic heart valve system
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US7717899B2 (en) 2002-01-28 2010-05-18 Cardiac Pacemakers, Inc. Inner and outer telescoping catheter delivery system
US6797001B2 (en) 2002-03-11 2004-09-28 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
US6719786B2 (en) 2002-03-18 2004-04-13 Medtronic, Inc. Flexible annuloplasty prosthesis and holder
US7118595B2 (en) 2002-03-18 2006-10-10 Medtronic, Inc. Flexible annuloplasty prosthesis and holder
EP2153799B1 (en) 2002-03-27 2011-08-03 Sorin Biomedica Cardio S.r.l. A prosthesis for annuloplasty comprising a perforated element
US20030199974A1 (en) 2002-04-18 2003-10-23 Coalescent Surgical, Inc. Annuloplasty apparatus and methods
EP1496807B1 (en) 2002-04-22 2017-01-04 Covidien LP Tack and tack applier
US6951565B2 (en) 2002-04-24 2005-10-04 Linvatec Biomaterials Ltd. Device for inserting surgical implants
US20030204193A1 (en) 2002-04-25 2003-10-30 Stefan Gabriel Suture anchor insertion tool
US6764810B2 (en) 2002-04-25 2004-07-20 Taiwan Semiconductor Manufacturing Co., Ltd Method for dual-damascene formation using a via plug
US7122039B2 (en) 2002-05-01 2006-10-17 Boston Scientific Scimed, Inc. Tying knots
US7077850B2 (en) 2002-05-01 2006-07-18 Scimed Life Systems, Inc. Tissue fastening devices and related insertion tools and methods
EP2149350A3 (en) 2002-05-10 2010-04-28 Cordis Corporation Method of making a medical device having a thin wall tubular membrane over a structural frame
AU2003247526A1 (en) 2002-06-12 2003-12-31 Mitral Interventions, Inc. Method and apparatus for tissue connection
US7588582B2 (en) 2002-06-13 2009-09-15 Guided Delivery Systems Inc. Methods for remodeling cardiac tissue
US20060241656A1 (en) 2002-06-13 2006-10-26 Starksen Niel F Delivery devices and methods for heart valve repair
US8287555B2 (en) 2003-02-06 2012-10-16 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US8641727B2 (en) 2002-06-13 2014-02-04 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US20060122633A1 (en) 2002-06-13 2006-06-08 John To Methods and devices for termination
US7753922B2 (en) 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Devices and methods for cardiac annulus stabilization and treatment
US20040243227A1 (en) 2002-06-13 2004-12-02 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US6986775B2 (en) 2002-06-13 2006-01-17 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7883538B2 (en) 2002-06-13 2011-02-08 Guided Delivery Systems Inc. Methods and devices for termination
US20050107811A1 (en) 2002-06-13 2005-05-19 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US6932834B2 (en) 2002-06-27 2005-08-23 Ethicon, Inc. Suture anchor
US7608103B2 (en) 2002-07-08 2009-10-27 Edwards Lifesciences Corporation Mitral valve annuloplasty ring having a posterior bow
US7172625B2 (en) 2002-07-16 2007-02-06 Medtronic, Inc. Suturing rings for implantable heart valve prostheses
IL150855A (en) 2002-07-22 2007-06-03 Leonid Monassevitch Intratubular anastomosis apparatus
US7993351B2 (en) 2002-07-24 2011-08-09 Pressure Products Medical Supplies, Inc. Telescopic introducer with a compound curvature for inducing alignment and method of using the same
AU2003265354A1 (en) 2002-08-01 2004-02-23 The General Hospital Corporation Cardiac devices and methods for minimally invasive repair of ischemic mitral regurgitation
US7559936B2 (en) 2002-08-13 2009-07-14 The General Hospital Corporation Cardiac devices and methods for percutaneous repair of atrioventricular valves
US8758372B2 (en) 2002-08-29 2014-06-24 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
ES2349952T3 (en) 2002-08-29 2011-01-13 St. Jude Medical, Cardiology Division, Inc. IMPLANTABLE DEVICES FOR CONTROLLING THE INTERNAL CIRCUMFERENCE OF AN ANATOMICAL ORIFICE OR LUMEN.
WO2007136783A2 (en) 2002-08-29 2007-11-29 Mitralsolutions, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
ES2291405T3 (en) 2002-09-04 2008-03-01 Endoart S.A. SURGICAL RING PROVIDED WITH A REMOTE CONTROL SYSTEM AND REVERSIBLE IN THE VARIATION OF YOUR DIAMETER.
US7666195B2 (en) 2002-09-09 2010-02-23 Brian Kelleher Device and method for endoluminal therapy
US20040059413A1 (en) 2002-09-20 2004-03-25 Claudio Argento Suture template for facilitating implantation of a prosthetic heart valve
ATE536201T1 (en) 2002-09-26 2011-12-15 Pacesetter Inc CARDIOVASCULAR ANCHORING DEVICE
CN100553590C (en) 2002-10-01 2009-10-28 安普尔医药公司 The device of finishing semilunar valve annulus
US20040068273A1 (en) 2002-10-02 2004-04-08 Ibionics Corporation Automatic laparoscopic incision closing apparatus
US7087064B1 (en) 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
US20050119735A1 (en) 2002-10-21 2005-06-02 Spence Paul A. Tissue fastening systems and methods utilizing magnetic guidance
CN1705462A (en) 2002-10-21 2005-12-07 米特拉利根公司 Method and apparatus for performing catheter-based annuloplasty using local plications
US6733536B1 (en) 2002-10-22 2004-05-11 Scimed Life Systems Male urethral stent device
US7112219B2 (en) 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US7247134B2 (en) 2002-11-12 2007-07-24 Myocor, Inc. Devices and methods for heart valve treatment
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US7335213B1 (en) 2002-11-15 2008-02-26 Abbott Cardiovascular Systems Inc. Apparatus and methods for heart valve repair
US8187324B2 (en) 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
WO2004045378A2 (en) 2002-11-15 2004-06-03 The Government Of The United States Of America As Represented By The Secretary Of Health And Human Services Method and device for catheter-based repair of cardiac valves
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US7981152B1 (en) 2004-12-10 2011-07-19 Advanced Cardiovascular Systems, Inc. Vascular delivery system for accessing and delivering devices into coronary sinus and other vascular sites
US7108710B2 (en) 2002-11-26 2006-09-19 Abbott Laboratories Multi-element biased suture clip
US7608114B2 (en) 2002-12-02 2009-10-27 Gi Dynamics, Inc. Bariatric sleeve
US7316708B2 (en) 2002-12-05 2008-01-08 Cardiac Dimensions, Inc. Medical device delivery system
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US7316710B1 (en) 2002-12-30 2008-01-08 Advanced Cardiovascular Systems, Inc. Flexible stent
US6931338B2 (en) 2003-01-07 2005-08-16 Guide Technology, Inc. System for providing a calibrated path for multi-signal cables in testing of integrated circuits
US7314485B2 (en) 2003-02-03 2008-01-01 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20040176788A1 (en) 2003-03-07 2004-09-09 Nmt Medical, Inc. Vacuum attachment system
WO2004082538A2 (en) 2003-03-18 2004-09-30 St. Jude Medical, Inc. Body tissue remodeling apparatus
US20050107871A1 (en) 2003-03-30 2005-05-19 Fidel Realyvasquez Apparatus and methods for valve repair
WO2004087017A1 (en) 2003-04-02 2004-10-14 Boston Scientific Limited Detachable and retrievable stent assembly
US7530995B2 (en) 2003-04-17 2009-05-12 3F Therapeutics, Inc. Device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US7159593B2 (en) 2003-04-17 2007-01-09 3F Therapeutics, Inc. Methods for reduction of pressure effects of cardiac tricuspid valve regurgitation
US7862584B2 (en) 2003-05-07 2011-01-04 Anpa Medical, Inc. Suture lock
US20040230208A1 (en) 2003-05-13 2004-11-18 Vafa Shayani Article for positioning mesh over tissue
ES2370246T3 (en) 2003-06-13 2011-12-13 Tyco Healthcare Group Lp INTERCONNECTION OF MULTIPLE ELEMENTS FOR SURGICAL INSTRUMENT AND ABSORBABLE SCREW HOLDER.
US7967850B2 (en) 2003-06-18 2011-06-28 Jackson Roger P Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US7316706B2 (en) 2003-06-20 2008-01-08 Medtronic Vascular, Inc. Tensioning device, system, and method for treating mitral valve regurgitation
US20040260394A1 (en) 2003-06-20 2004-12-23 Medtronic Vascular, Inc. Cardiac valve annulus compressor system
EP1648346A4 (en) 2003-06-20 2006-10-18 Medtronic Vascular Inc Valve annulus reduction system
JP2007524460A (en) 2003-06-25 2007-08-30 ジョージア テック リサーチ コーポレイション Annuloplasty chain
US8052751B2 (en) 2003-07-02 2011-11-08 Flexcor, Inc. Annuloplasty rings for repairing cardiac valves
CA2533020A1 (en) 2003-07-18 2005-03-03 Ev3 Santa Rosa, Inc. Remotely activated mitral annuloplasty system and methods
US20050016560A1 (en) 2003-07-21 2005-01-27 Dee Voughlohn Unique hair-styling system and method
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US20050049692A1 (en) 2003-09-02 2005-03-03 Numamoto Michael J. Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US20050075728A1 (en) 2003-10-06 2005-04-07 Nguyen Tuoc Tan Minimally invasive valve replacement system
US20060259137A1 (en) 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
US10219899B2 (en) 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
US7226647B2 (en) 2003-10-16 2007-06-05 Hewlett-Packard Development Company, L.P. Permanent fixation of dyes to surface-modified inorganic particulate-coated media
US7004176B2 (en) 2003-10-17 2006-02-28 Edwards Lifesciences Ag Heart valve leaflet locator
US20060184242A1 (en) 2003-10-20 2006-08-17 Samuel Lichtenstein Method and apparatus for percutaneous reduction of anterior-posterior diameter of mitral valve
ITBO20030631A1 (en) 2003-10-23 2005-04-24 Roberto Erminio Parravicini VALVULAR PROSTHETIC EQUIPMENT, IN PARTICULAR FOR HEART APPLICATIONS.
US20050090827A1 (en) 2003-10-28 2005-04-28 Tewodros Gedebou Comprehensive tissue attachment system
JP5183065B2 (en) 2003-10-31 2013-04-17 トルーデル メディカル インターナショナル System and method for operating a catheter for delivering a substance to a body cavity
WO2005046531A2 (en) 2003-11-12 2005-05-26 Medtronic Vascular, Inc. Coronary sinus approach for repair of mitral valve regurgitation
JP2007510525A (en) 2003-11-12 2007-04-26 メドトロニック ヴァスキュラー インコーポレイテッド Heart annulus reduction system
AU2004296816A1 (en) 2003-12-04 2005-06-23 The Brigham And Women's Hospital, Inc. Aortic valve annuloplasty rings
US20050177228A1 (en) 2003-12-16 2005-08-11 Solem Jan O. Device for changing the shape of the mitral annulus
US20050273138A1 (en) 2003-12-19 2005-12-08 Guided Delivery Systems, Inc. Devices and methods for anchoring tissue
US20050137686A1 (en) 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US7166127B2 (en) 2003-12-23 2007-01-23 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7288115B2 (en) 2004-01-02 2007-10-30 Zimmer Technology, Inc. Multipart component for an orthopaedic implant
US20050159728A1 (en) 2004-01-15 2005-07-21 Thomas Medical Products, Inc. Steerable sheath
US20050159810A1 (en) 2004-01-15 2005-07-21 Farzan Filsoufi Devices and methods for repairing cardiac valves
US8046050B2 (en) 2004-03-05 2011-10-25 Biosense Webster, Inc. Position sensing system for orthopedic applications
US20050187568A1 (en) 2004-02-20 2005-08-25 Klenk Alan R. Devices and methods for closing a patent foramen ovale with a coil-shaped closure device
US8206439B2 (en) 2004-02-23 2012-06-26 International Heart Institute Of Montana Foundation Internal prosthesis for reconstruction of cardiac geometry
US20050203606A1 (en) 2004-03-09 2005-09-15 Vancamp Daniel H. Stent system for preventing restenosis
US20050203549A1 (en) 2004-03-09 2005-09-15 Fidel Realyvasquez Methods and apparatus for off pump aortic valve replacement with a valve prosthesis
EP3308744B2 (en) 2004-03-11 2023-08-02 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
US7942927B2 (en) 2004-03-15 2011-05-17 Baker Medical Research Institute Treating valve failure
NL1025830C2 (en) 2004-03-26 2005-02-22 Eric Berreklouw Prosthesis e.g. heart valve secured in place by ring with shape memory material anchor, includes anchor temperature control system
US20050234481A1 (en) 2004-03-31 2005-10-20 Wilson-Cook Medical Inc. Suture cutting device
US7993397B2 (en) 2004-04-05 2011-08-09 Edwards Lifesciences Ag Remotely adjustable coronary sinus implant
GB0407908D0 (en) 2004-04-07 2004-05-12 Univ York Ionic liquids
US7645293B2 (en) 2004-04-21 2010-01-12 United States Surgical Corporation Suture anchor installation system and method
US7294148B2 (en) 2004-04-29 2007-11-13 Edwards Lifesciences Corporation Annuloplasty ring for mitral valve prolapse
US7320704B2 (en) 2004-05-05 2008-01-22 Direct Flow Medical, Inc. Nonstented temporary valve for cardiovascular therapy
US7390329B2 (en) 2004-05-07 2008-06-24 Usgi Medical, Inc. Methods for grasping and cinching tissue anchors
US20060122692A1 (en) 2004-05-10 2006-06-08 Ran Gilad Stent valve and method of using same
US20050256532A1 (en) 2004-05-12 2005-11-17 Asha Nayak Cardiovascular defect patch device and method
EP3143944B1 (en) 2004-05-14 2018-08-01 Evalve, Inc. Locking mechanisms for fixation devices
US7452376B2 (en) 2004-05-14 2008-11-18 St. Jude Medical, Inc. Flexible, non-planar annuloplasty rings
US7510577B2 (en) 2004-06-29 2009-03-31 Micardia Corporation Adjustable cardiac valve implant with ferromagnetic material
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
US8012202B2 (en) 2004-07-27 2011-09-06 Alameddine Abdallah K Mitral valve ring for treatment of mitral valve regurgitation
US9061120B2 (en) 2004-08-05 2015-06-23 Oscor Inc. Catheter control mechanism and steerable catheter
US7126289B2 (en) 2004-08-20 2006-10-24 O2 Micro Inc Protection for external electrode fluorescent lamp system
EP1796597B1 (en) 2004-09-14 2013-01-09 Edwards Lifesciences AG Device for treatment of heart valve regurgitation
US8052592B2 (en) 2005-09-27 2011-11-08 Evalve, Inc. Methods and devices for tissue grasping and assessment
US7635329B2 (en) 2004-09-27 2009-12-22 Evalve, Inc. Methods and devices for tissue grasping and assessment
JP5393980B2 (en) 2004-09-28 2014-01-22 サージカル ソリューションズ リミテッド ライアビリティ カンパニー Suture anchor
US20060085012A1 (en) 2004-09-28 2006-04-20 Medtronic Vascular, Inc. Torquing device delivered over a guidewire to rotate a medical fastener
US20070083168A1 (en) 2004-09-30 2007-04-12 Whiting James S Transmembrane access systems and methods
WO2006041877A2 (en) 2004-10-05 2006-04-20 Ample Medical, Inc. Atrioventricular valve annulus repair systems and methods including retro-chordal anchors
US7470256B2 (en) 2004-10-29 2008-12-30 Merit Medical Systems, Inc., Self-suturing anchor device for a catheter
CN100475165C (en) 2004-12-07 2009-04-08 奥林巴斯株式会社 Endo-therapy product system used for endoscope and cartridge including treatment device
EP1841383A1 (en) 2004-12-15 2007-10-10 Mednua Limited A medical device suitable for use in treatment of a valve
AU2005316431A1 (en) 2004-12-15 2006-06-22 Cook Ireland Limited Radiopaque manipulation devices
US7691095B2 (en) 2004-12-28 2010-04-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Bi-directional steerable catheter control handle
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
AU2006212750B2 (en) 2005-02-07 2011-11-17 Evalve, Inc. Methods, systems and devices for cardiac valve repair
US20100298929A1 (en) 2005-02-07 2010-11-25 Thornton Troy L Methods, systems and devices for cardiac valve repair
US8220466B2 (en) 2005-02-08 2012-07-17 Koninklijke Philips Electronics N.V. System and method for percutaneous palate remodeling
EP1850728B1 (en) 2005-02-08 2010-04-28 Koninklijke Philips Electronics N.V. System for percutaneous glossoplasty
ES2558534T3 (en) 2005-02-18 2016-02-05 The Cleveland Clinic Foundation Device to replace a heart valve
US7955385B2 (en) 2005-02-28 2011-06-07 Medtronic Vascular, Inc. Device, system, and method for aiding valve annuloplasty
US20060206203A1 (en) 2005-03-10 2006-09-14 Jun Yang Valvular support prosthesis
WO2006097931A2 (en) 2005-03-17 2006-09-21 Valtech Cardio, Ltd. Mitral valve treatment techniques
US8463404B2 (en) 2005-03-24 2013-06-11 Metacure Limited Electrode assemblies, tools, and methods for gastric wall implantation
ATE533403T1 (en) 2005-03-24 2011-12-15 Metacure Ltd WIRELESS CABLES FOR GASTROINTESTINAL APPLICATIONS
US8608726B2 (en) 2005-03-24 2013-12-17 The Cleveland Clinic Foundation Vascular guidewire control apparatus
US9492276B2 (en) 2005-03-25 2016-11-15 St. Jude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US8864823B2 (en) 2005-03-25 2014-10-21 StJude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US20090187216A1 (en) 2006-05-18 2009-07-23 Arthrex, Inc. Fenestrated swivel anchor for knotless fixation of tissue
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
WO2006113906A1 (en) 2005-04-20 2006-10-26 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
US8333777B2 (en) 2005-04-22 2012-12-18 Benvenue Medical, Inc. Catheter-based tissue remodeling devices and methods
US7758594B2 (en) 2005-05-20 2010-07-20 Neotract, Inc. Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US8974523B2 (en) 2005-05-27 2015-03-10 Hlt, Inc. Stentless support structure
US7500989B2 (en) 2005-06-03 2009-03-10 Edwards Lifesciences Corp. Devices and methods for percutaneous repair of the mitral valve via the coronary sinus
US20060287716A1 (en) 2005-06-08 2006-12-21 The Cleveland Clinic Foundation Artificial chordae
US7618413B2 (en) 2005-06-22 2009-11-17 Boston Scientific Scimed, Inc. Medical device control system
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
WO2007006057A1 (en) 2005-07-06 2007-01-11 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
US20070016288A1 (en) 2005-07-13 2007-01-18 Gurskis Donnell W Two-piece percutaneous prosthetic heart valves and methods for making and using them
DE102006017873A1 (en) 2005-07-14 2007-01-25 Qualimed Innovative Medizinprodukte Gmbh Temporary stent
US7927371B2 (en) 2005-07-15 2011-04-19 The Cleveland Clinic Foundation Apparatus and method for reducing cardiac valve regurgitation
WO2007011799A1 (en) 2005-07-15 2007-01-25 The Cleveland Clinic Foundation Apparatus and method for remodeling a cardiac valve annulus
US7875056B2 (en) 2005-07-22 2011-01-25 Anpa Medical, Inc. Wedge operated retainer device and methods
US20070027533A1 (en) 2005-07-28 2007-02-01 Medtronic Vascular, Inc. Cardiac valve annulus restraining device
US7749247B2 (en) 2005-08-04 2010-07-06 St. Jude Medical Puerto Rico, Llc Tissue puncture closure device with coiled automatic tamping system
US20070055206A1 (en) 2005-08-10 2007-03-08 Guided Delivery Systems, Inc. Methods and devices for deployment of tissue anchors
US7222559B2 (en) 2005-08-16 2007-05-29 Chun Fu Wang Screwdriver with torque setting mechanism
US9492277B2 (en) 2005-08-30 2016-11-15 Mayo Foundation For Medical Education And Research Soft body tissue remodeling methods and apparatus
US20070078297A1 (en) 2005-08-31 2007-04-05 Medtronic Vascular, Inc. Device for Treating Mitral Valve Regurgitation
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
CA2660892A1 (en) 2005-09-09 2007-03-15 Edwards Lifesciences Corporation Device and method for reshaping mitral valve annulus
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US20070083235A1 (en) 2005-10-11 2007-04-12 Jervis James E Helical retainer, tool for using the helical retainer, and methods
US7695510B2 (en) 2005-10-11 2010-04-13 Medtronic Vascular, Inc. Annuloplasty device having shape-adjusting tension filaments
CN101466316B (en) 2005-10-20 2012-06-27 阿普特斯内系统公司 Devices systems and methods for prosthesis delivery and implantation including the use of a fastener tool
US8216302B2 (en) 2005-10-26 2012-07-10 Cardiosolutions, Inc. Implant delivery and deployment system and method
WO2007053592A2 (en) 2005-10-31 2007-05-10 Cook Incorporated Composite stent graft
DE102005052628B4 (en) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
JP2009514610A (en) 2005-11-08 2009-04-09 トラスティーズ オブ ボストン ユニバーシティ Manipulator using multiple deformable elongated members
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
EP1790318B1 (en) 2005-11-16 2009-04-22 Micardia Corporation Magnetic engagement of catheter to implantable device
US20070118151A1 (en) 2005-11-21 2007-05-24 The Brigham And Women's Hospital, Inc. Percutaneous cardiac valve repair with adjustable artificial chordae
US7632308B2 (en) 2005-11-23 2009-12-15 Didier Loulmet Methods, devices, and kits for treating mitral valve prolapse
US8043368B2 (en) 2005-11-23 2011-10-25 Traves Dean Crabtree Methods and apparatus for atrioventricular valve repair
FR2894131B1 (en) 2005-12-02 2008-12-05 Perouse Soc Par Actions Simpli DEVICE FOR TREATING A BLOOD VESSEL, AND ASSOCIATED TREATMENT NECESSARY.
WO2007078772A1 (en) 2005-12-15 2007-07-12 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant valve
WO2007100408A2 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Papillary muscle position control devices, systems & methods
US20070142907A1 (en) 2005-12-16 2007-06-21 Micardia Corporation Adjustable prosthetic valve implant
DE602005015238D1 (en) 2005-12-28 2009-08-13 Sorin Biomedica Cardio Srl Denture for annuloplasty with auxetic structure
WO2008029296A2 (en) 2006-02-16 2008-03-13 Endocor Pte Ltd. Minimally invasive heart valve replacement
US7635386B1 (en) 2006-03-07 2009-12-22 University Of Maryland, Baltimore Methods and devices for performing cardiac valve repair
US7431692B2 (en) 2006-03-09 2008-10-07 Edwards Lifesciences Corporation Apparatus, system, and method for applying and adjusting a tensioning element to a hollow body organ
US20070219558A1 (en) 2006-03-15 2007-09-20 Allen Deutsch Method and apparatus for arthroscopic surgery using suture anchors
US8430894B2 (en) 2006-03-28 2013-04-30 Spatz-Fgia, Inc. Floating gastrointestinal anchor
US20090254103A1 (en) 2006-03-29 2009-10-08 Deutsch Harvey L Method and device for cavity obliteration
US7625403B2 (en) 2006-04-04 2009-12-01 Medtronic Vascular, Inc. Valved conduit designed for subsequent catheter delivered valve therapy
US20070239208A1 (en) 2006-04-05 2007-10-11 Crawford Bruce S Surgical implantation device and method
US7699892B2 (en) 2006-04-12 2010-04-20 Medtronic Vascular, Inc. Minimally invasive procedure for implanting an annuloplasty device
EP3593761A1 (en) 2006-04-12 2020-01-15 Medtronic Vascular, Inc. Annuloplasty device having a helical anchor
US20070244555A1 (en) 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US7442207B2 (en) 2006-04-21 2008-10-28 Medtronic Vascular, Inc. Device, system, and method for treating cardiac valve regurgitation
WO2007124076A1 (en) 2006-04-21 2007-11-01 Abbott Laboratories Guidewire handling device
US8551161B2 (en) 2006-04-25 2013-10-08 Medtronic Vascular, Inc. Cardiac valve annulus restraining device
US7862582B2 (en) 2006-05-02 2011-01-04 Ethicon Endo-Surgery, Inc. Suture management
WO2007136532A2 (en) 2006-05-03 2007-11-29 St. Jude Medical, Inc. Soft body tissue remodeling methods and apparatus
DE602007012691D1 (en) 2006-05-15 2011-04-07 Edwards Lifesciences Ag SYSTEM FOR CHANGING THE GEOMETRY OF THE HEART
US20080234660A2 (en) 2006-05-16 2008-09-25 Sarah Cumming Steerable Catheter Using Flat Pull Wires and Method of Making Same
US20080091169A1 (en) 2006-05-16 2008-04-17 Wayne Heideman Steerable catheter using flat pull wires and having torque transfer layer made of braided flat wires
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
US8105355B2 (en) 2006-05-18 2012-01-31 C.R. Bard, Inc. Suture lock fastening device
WO2007137228A2 (en) 2006-05-19 2007-11-29 Norman Godin Medical staple, system and methods of use
US20070276437A1 (en) 2006-05-25 2007-11-29 Mitralign, Inc. Lockers for surgical tensioning members and methods of using the same to secure surgical tensioning members
AU2007266448B2 (en) 2006-06-01 2013-07-18 Edwards Lifesciences Corporation Prosthetic insert for improving heart valve function
ITTO20060413A1 (en) 2006-06-07 2007-12-08 Arrigo Lessana REPLACEMENT DEVICE OF THE TENDONE ROPES OF AN ATRIOVENTRICULAR VALVE
EP2032016A2 (en) 2006-06-14 2009-03-11 Optivia Medical LLC Medical device introduction systems and methods
US7934506B2 (en) 2006-06-21 2011-05-03 Koninklijke Philips Electronics N.V. System and method for temporary tongue suspension
US20070295172A1 (en) 2006-06-23 2007-12-27 Darian Swartz Fastener Holding Device
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
US7955315B2 (en) 2006-07-24 2011-06-07 Ethicon, Inc. Articulating laparoscopic device and method for delivery of medical fluid
US8430926B2 (en) 2006-08-11 2013-04-30 Japd Consulting Inc. Annuloplasty with enhanced anchoring to the annulus based on tissue healing
WO2008022077A2 (en) 2006-08-14 2008-02-21 Buch Wally S Methods and apparatus for mitral valve repair
CN102247223B (en) 2006-09-08 2015-05-06 爱德华兹生命科学公司 Integrated heart valve delivery system
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8123668B2 (en) 2006-09-28 2012-02-28 Bioventrix (A Chf Technologies' Company) Signal transmitting and lesion excluding heart implants for pacing defibrillating and/or sensing of heart beat
US9211115B2 (en) 2006-09-28 2015-12-15 Bioventrix, Inc. Location, time, and/or pressure determining devices, systems, and methods for deployment of lesion-excluding heart implants for treatment of cardiac heart failure and other disease states
US7879087B2 (en) 2006-10-06 2011-02-01 Edwards Lifesciences Corporation Mitral and tricuspid annuloplasty rings
US7674276B2 (en) 2006-10-06 2010-03-09 Biomet Sports Medicine, Llc Rotational securing of a suture
US8388680B2 (en) 2006-10-18 2013-03-05 Guided Delivery Systems, Inc. Methods and devices for catheter advancement and delivery of substances therethrough
US20080103572A1 (en) 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical lead with threaded fixation
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US8926695B2 (en) 2006-12-05 2015-01-06 Valtech Cardio, Ltd. Segmented ring placement
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
WO2008085814A2 (en) 2007-01-03 2008-07-17 Mitralsolutions, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
US9192471B2 (en) 2007-01-08 2015-11-24 Millipede, Inc. Device for translumenal reshaping of a mitral valve annulus
US20100249920A1 (en) 2007-01-08 2010-09-30 Millipede Llc Reconfiguring heart features
US20080177380A1 (en) 2007-01-19 2008-07-24 Starksen Niel F Methods and devices for heart tissue repair
US20080195126A1 (en) 2007-02-14 2008-08-14 Jan Otto Solem Suture and method for repairing a heart
ATE488194T1 (en) 2007-02-15 2010-12-15 Hansen Medical Inc MEDICAL ROBOT INSTRUMENT SYSTEM
US8070802B2 (en) 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
EP2120753B1 (en) 2007-03-05 2022-09-28 Tornier, Inc. Tack anchor systems
US8911461B2 (en) 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
US20080228265A1 (en) 2007-03-13 2008-09-18 Mitralign, Inc. Tissue anchors, systems and methods, and devices
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US9387308B2 (en) 2007-04-23 2016-07-12 Cardioguidance Biomedical, Llc Guidewire with adjustable stiffness
EP2148608A4 (en) 2007-04-27 2010-04-28 Voyage Medical Inc Complex shape steerable tissue visualization and manipulation catheter
US8529620B2 (en) 2007-05-01 2013-09-10 Ottavio Alfieri Inwardly-bowed tricuspid annuloplasty ring
US7931660B2 (en) 2007-05-10 2011-04-26 Tyco Healthcare Group Lp Powered tacker instrument
EP2343024B1 (en) 2007-05-18 2018-05-02 Boston Scientific Scimed, Inc. Drive systems
EP2150183B1 (en) 2007-05-31 2013-03-20 Cook Medical Technologies LLC Suture lock
US20080300537A1 (en) 2007-06-03 2008-12-04 David Allen Bowman Method and system for steering a catheter end in multiple planes
US7771416B2 (en) 2007-06-14 2010-08-10 Ethicon Endo-Surgery, Inc. Control mechanism for flexible endoscopic device and method of use
AU2008269018B2 (en) 2007-06-26 2014-07-31 St. Jude Medical, Inc. Apparatus and methods for implanting collapsible/expandable prosthetic heart valves
US7914515B2 (en) 2007-07-18 2011-03-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter and introducer catheter having torque transfer layer and method of manufacture
WO2009015373A1 (en) 2007-07-26 2009-01-29 Sri International Selectively rigidizable and actively steerable articulatable device
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US9814611B2 (en) 2007-07-31 2017-11-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
CN101827566B (en) 2007-09-07 2013-07-24 爱德华兹生命科学公司 Active holder for annuloplasty ring delivery
JP2011500109A (en) 2007-09-20 2011-01-06 センターハート・インコーポレイテッド Remote suture management device and method
US20090088837A1 (en) 2007-09-28 2009-04-02 The Cleveland Clinic Foundation Prosthetic chordae assembly and method of use
WO2009045334A1 (en) 2007-09-28 2009-04-09 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US8454686B2 (en) 2007-09-28 2013-06-04 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US8192353B2 (en) 2007-10-05 2012-06-05 Tyco Healthcare Group Lp Visual obturator
CA2702672C (en) 2007-10-15 2016-03-15 Edwards Lifesciences Corporation Transcatheter heart valve with micro-anchors
WO2009052438A2 (en) 2007-10-19 2009-04-23 Guided Delivery Systems Inc. Devices for termination of tethers
US20090105816A1 (en) 2007-10-19 2009-04-23 Olsen Daniel H System using a helical retainer in the direct plication annuloplasty treatment of mitral valve regurgitation
EP3854315A1 (en) 2007-10-19 2021-07-28 Ancora Heart, Inc. Systems for cardiac remodeling
US8431057B2 (en) 2007-12-30 2013-04-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft and method of its manufacture
US8349002B2 (en) 2008-01-16 2013-01-08 QuickRing Medical Technologies, Ltd. Adjustable annuloplasty rings
WO2009094373A1 (en) 2008-01-22 2009-07-30 Cook Incorporated Valve frame
EP2249711B1 (en) 2008-02-06 2021-10-06 Ancora Heart, Inc. Multi-window guide tunnel
US8728097B1 (en) 2008-02-26 2014-05-20 Mitralign, Inc. Tissue plication devices and methods for their use
US8679168B2 (en) 2008-03-03 2014-03-25 Alaska Hand Research, Llc Cannulated anchor and system
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US20090248148A1 (en) 2008-03-25 2009-10-01 Ellipse Technologies, Inc. Systems and methods for adjusting an annuloplasty ring with an integrated magnetic drive
US20100121437A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Transvalvular intraannular band and chordae cutting for ischemic and dilated cardiomyopathy
US20100121435A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Percutaneous transvalvular intrannular band for mitral valve repair
US8262725B2 (en) 2008-04-16 2012-09-11 Cardiovascular Technologies, Llc Transvalvular intraannular band for valve repair
FR2930137B1 (en) 2008-04-18 2010-04-23 Corevalve Inc TREATMENT EQUIPMENT FOR A CARDIAC VALVE, IN PARTICULAR A MITRAL VALVE.
ATE549978T1 (en) 2008-04-21 2012-04-15 Quickring Medical Technologies Ltd SURGICAL CLAP SYSTEMS
EP3141219A1 (en) 2008-04-23 2017-03-15 Medtronic, Inc. Stented heart valve devices
US8152844B2 (en) 2008-05-09 2012-04-10 Edwards Lifesciences Corporation Quick-release annuloplasty ring holder
US20110071626A1 (en) 2008-05-12 2011-03-24 Wright John T M Device and Method for the Surgical Treatment of Ischemic Mitral Regurgitation
US20090287304A1 (en) 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
GB0809357D0 (en) 2008-05-22 2008-07-02 Punjabi Prakash Heart valve repair device
US8317806B2 (en) 2008-05-30 2012-11-27 Ethicon Endo-Surgery, Inc. Endoscopic suturing tension controlling and indication devices
CA2728078A1 (en) 2008-06-16 2010-01-14 Valtech Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
US8087142B2 (en) 2008-07-02 2012-01-03 Easylap Ltd. Pivoting tacker
ES2647563T3 (en) 2008-07-04 2017-12-22 Tata Steel Uk Limited Method for coating a steel substrate and coated steel substrate
US20100010538A1 (en) 2008-07-11 2010-01-14 Maquet Cardiovascular Llc Reshaping the mitral valve of a heart
AT507113B1 (en) 2008-07-17 2010-07-15 Siemens Vai Metals Tech Gmbh METHOD AND APPARATUS FOR ENERGY AND CO2 EMISSION OPTIMIZED IRON PRODUCTION
WO2010011699A2 (en) 2008-07-21 2010-01-28 White Jennifer K Repositionable endoluminal support structure and its applications
US20100023118A1 (en) 2008-07-24 2010-01-28 Edwards Lifesciences Corporation Method and apparatus for repairing or replacing chordae tendinae
BRPI0916696A2 (en) 2008-07-29 2015-11-17 St Jude Medical Cardiology Div method and system for long term adjustment of an implant device
US8337390B2 (en) 2008-07-30 2012-12-25 Cube S.R.L. Intracardiac device for restoring the functional elasticity of the cardiac structures, holding tool for the intracardiac device, and method for implantation of the intracardiac device in the heart
US8778016B2 (en) 2008-08-14 2014-07-15 Edwards Lifesciences Corporation Method and apparatus for repairing or replacing chordae tendinae
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US8777990B2 (en) 2008-09-08 2014-07-15 Howmedica Osteonics Corp. Knotless suture anchor for soft tissue repair and method of use
US9408649B2 (en) 2008-09-11 2016-08-09 Innovasis, Inc. Radiolucent screw with radiopaque marker
US8945211B2 (en) 2008-09-12 2015-02-03 Mitralign, Inc. Tissue plication device and method for its use
US8287591B2 (en) 2008-09-19 2012-10-16 Edwards Lifesciences Corporation Transformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
EP2367505B1 (en) 2008-09-29 2020-08-12 Edwards Lifesciences CardiAQ LLC Heart valve
US8795298B2 (en) 2008-10-10 2014-08-05 Guided Delivery Systems Inc. Tether tensioning devices and related methods
ES2627860T3 (en) 2008-10-10 2017-07-31 Boston Scientific Scimed, Inc. Medical devices and placement systems for placing medical devices
JP2012505048A (en) 2008-10-10 2012-03-01 ガイデッド デリバリー システムズ, インコーポレイテッド Termination device and related methods
CA2740867C (en) 2008-10-16 2018-06-12 Aptus Endosystems, Inc. Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
US8696717B2 (en) 2008-11-05 2014-04-15 K2M, Inc. Multi-planar, taper lock screw with additional lock
EP3613383B1 (en) 2008-11-21 2023-08-30 Percutaneous Cardiovascular Solutions Pty Limited Heart valve prosthesis
US8888798B2 (en) 2008-11-26 2014-11-18 Smith & Nephew, Inc. Tissue repair device
DE102008058894B3 (en) 2008-11-26 2010-06-17 Vimecon Gmbh laser applicator
US8449573B2 (en) 2008-12-05 2013-05-28 Boston Scientific Scimed, Inc. Insertion device and method for delivery of a mesh carrier
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
WO2010070788A1 (en) 2008-12-19 2010-06-24 パナソニック株式会社 Exterior component, manufacturing method thereof, and electronic equipment
WO2010073246A2 (en) 2008-12-22 2010-07-01 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8808368B2 (en) 2008-12-22 2014-08-19 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US8147542B2 (en) 2008-12-22 2012-04-03 Valtech Cardio, Ltd. Adjustable repair chords and spool mechanism therefor
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
WO2012176195A2 (en) 2011-06-23 2012-12-27 Valtech Cardio, Ltd. Closure element for use with annuloplasty structure
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US8926697B2 (en) 2011-06-23 2015-01-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
US20110011917A1 (en) 2008-12-31 2011-01-20 Hansen Medical, Inc. Methods, devices, and kits for treating valve prolapse
WO2010078121A2 (en) 2008-12-31 2010-07-08 Genesee Biomedical, Inc. Semi-rigid annuloplasty ring and band
US8998982B2 (en) 2009-01-12 2015-04-07 Valve Medical Ltd. Method and apparatus for fine adjustment of a percutaneous valve structure
US9204965B2 (en) 2009-01-14 2015-12-08 Lc Therapeutics, Inc. Synthetic chord
US20100198192A1 (en) 2009-01-20 2010-08-05 Eugene Serina Anchor deployment devices and related methods
AU2010206732A1 (en) 2009-01-22 2011-08-25 St. Jude Medical, Cardiology Division, Inc. Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring
EP2381896B1 (en) 2009-01-22 2015-10-21 St. Jude Medical, Cardiology Division, Inc. Magnetic docking system for the long term adjustment of an implantable device
EP2393449B1 (en) 2009-02-06 2016-09-07 St. Jude Medical, Inc. Support for adjustable annuloplasty ring
JP2012517300A (en) 2009-02-09 2012-08-02 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Inflatable minimally invasive system for delivering and securing an annulus graft
US8740811B2 (en) 2009-02-16 2014-06-03 Dokter Yves Fortems Bvba Biopsy device
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US8725228B2 (en) 2009-02-20 2014-05-13 Boston Scientific Scimed, Inc. Steerable catheter having intermediate stiffness transition zone
EP2401515B1 (en) 2009-02-24 2015-12-02 Flex Technology, Inc. Flexible screw
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
JP5659168B2 (en) 2009-02-27 2015-01-28 セント・ジュード・メディカル,インコーポレイテッド Foldable prosthetic heart valve stent features
EP3708123A1 (en) 2009-03-30 2020-09-16 JC Medical, Inc. Sutureless valve prostheses and devices and methods for delivery
US20100249497A1 (en) 2009-03-30 2010-09-30 Peine William J Surgical instrument
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
US8986370B2 (en) 2009-04-10 2015-03-24 Lon Sutherland ANNEST Implantable scaffolding containing an orifice for use with a prosthetic or bio-prosthetic valve
US20100262233A1 (en) 2009-04-12 2010-10-14 Texas Tech University System Mitral Valve Coaptation Plate For Mitral Valve Regurgitation
WO2010121076A2 (en) 2009-04-15 2010-10-21 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
EP2424442A4 (en) 2009-05-01 2015-05-20 Cayenne Medical Inc Meniscal repair systems and methods
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US20100286628A1 (en) 2009-05-07 2010-11-11 Rainbow Medical Ltd Gastric anchor
US8523881B2 (en) 2010-07-26 2013-09-03 Valtech Cardio, Ltd. Multiple anchor delivery tool
WO2010150178A2 (en) 2009-06-26 2010-12-29 Simcha Milo Surgical stapler and method of surgical stapling
WO2011002996A2 (en) 2009-07-02 2011-01-06 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
KR101116867B1 (en) 2009-08-28 2012-03-06 김준홍 The device for delivering optimal tension safaely and effectively in cerclage annuloplasty procedure
US8715343B2 (en) 2009-09-09 2014-05-06 The Cleveland Clinic Foundation Apparatus and method for delivering an implantable medical device to a diseased cardiac valve
EP2475328B1 (en) 2009-09-11 2014-08-27 GI Dynamics, Inc. Anchors with open heads
US8459302B2 (en) 2009-09-21 2013-06-11 Gulf Sea Ventures LLC Fluid-directing multiport rotary valve
WO2011041571A2 (en) 2009-10-01 2011-04-07 Kardium Inc. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
EP2485689B1 (en) 2009-10-09 2020-03-18 Boston Scientific Scimed, Inc. Stomach bypass
US20110093002A1 (en) 2009-10-20 2011-04-21 Wilson-Cook Medical Inc. Stent-within-stent arrangements
US8940042B2 (en) 2009-10-29 2015-01-27 Valtech Cardio, Ltd. Apparatus for guide-wire based advancement of a rotation assembly
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US8277502B2 (en) 2009-10-29 2012-10-02 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
EP2506777B1 (en) 2009-12-02 2020-11-25 Valtech Cardio, Ltd. Combination of spool assembly coupled to a helical anchor and delivery tool for implantation thereof
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US20110230961A1 (en) 2010-01-05 2011-09-22 Micardia Corporation Dynamically adjustable annuloplasty ring and papillary muscle repositioning suture
GB201001075D0 (en) 2010-01-22 2010-03-10 Cyclacel Ltd Crystalline forms
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US8961596B2 (en) 2010-01-22 2015-02-24 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
US9107749B2 (en) 2010-02-03 2015-08-18 Edwards Lifesciences Corporation Methods for treating a heart
JP5778183B2 (en) 2010-02-03 2015-09-16 メドトロニック ジービーアイ インコーポレイテッド Semi-flexible annuloplasty ring
US10433956B2 (en) 2010-02-24 2019-10-08 Medtronic Ventor Technologies Ltd. Mitral prosthesis and methods for implantation
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
WO2011111047A2 (en) 2010-03-10 2011-09-15 Mitraltech Ltd. Prosthetic mitral valve with tissue anchors
US8357195B2 (en) 2010-04-15 2013-01-22 Medtronic, Inc. Catheter based annuloplasty system and method
US9795482B2 (en) 2010-04-27 2017-10-24 Medtronic, Inc. Prosthetic heart valve devices and methods of valve repair
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US20110288435A1 (en) 2010-05-19 2011-11-24 George Michael Christy Tactile sensory testing instrument
US8790394B2 (en) 2010-05-24 2014-07-29 Valtech Cardio, Ltd. Adjustable artificial chordeae tendineae with suture loops
EP2575685B1 (en) 2010-06-07 2019-02-13 Valtech Cardio, Ltd. Apparatus for guide-wire based advancement of a rotation assembly
US20130030522A1 (en) 2010-06-16 2013-01-31 Rowe Stanton J Devices and methods for heart treatments
US9095277B2 (en) 2010-07-09 2015-08-04 Mitralign, Inc. Delivery catheter with forward-looking ultrasound imaging
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2012019052A2 (en) 2010-08-04 2012-02-09 Micardia Corporation Percutaneous transcatheter repair of heart valves
US8679159B2 (en) 2010-08-30 2014-03-25 Depuy Mitek, Llc Anchor driver with suture clutch
WO2012031204A2 (en) 2010-09-03 2012-03-08 Guided Delivery Systems Inc. Devices and methods for anchoring tissue
US10076327B2 (en) 2010-09-14 2018-09-18 Evalve, Inc. Flexible actuator mandrel for tissue apposition systems
EP2618784B1 (en) 2010-09-23 2016-05-25 Edwards Lifesciences CardiAQ LLC Replacement heart valves and delivery devices
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
US9149607B2 (en) 2010-10-08 2015-10-06 Greatbatch Ltd. Bi-directional catheter steering handle
US8968335B2 (en) 2010-10-27 2015-03-03 Mitralign, Inc. Hand operated device for controlled deployment of a tissue anchor and method of using the same
US9005279B2 (en) 2010-11-12 2015-04-14 Shlomo Gabbay Beating heart buttress and implantation method to prevent prolapse of a heart valve
JP2014502859A (en) 2010-11-18 2014-02-06 パビリオン・メディカル・イノベーションズ・リミテッド・ライアビリティ・カンパニー Tissue restraint device and method of use
US9198756B2 (en) 2010-11-18 2015-12-01 Pavilion Medical Innovations, Llc Tissue restraining devices and methods of use
US8540735B2 (en) 2010-12-16 2013-09-24 Apollo Endosurgery, Inc. Endoscopic suture cinch system
US20120158021A1 (en) 2010-12-19 2012-06-21 Mitralign, Inc. Steerable guide catheter having preformed curved shape
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US9138316B2 (en) 2011-01-31 2015-09-22 St. Jude Medical, Inc. Adjustable annuloplasty ring sizing indicator
WO2012106346A1 (en) 2011-01-31 2012-08-09 St. Jude Medical, Inc. Adjustable annuloplasty ring sizing indicator
US8932343B2 (en) 2011-02-01 2015-01-13 St. Jude Medical, Cardiology Division, Inc. Blunt ended stent for prosthetic heart valve
WO2012161769A1 (en) 2011-02-18 2012-11-29 Guided Delivery Systems Inc. Implant retrieval device
US10709449B2 (en) 2011-02-18 2020-07-14 Ancora Heart, Inc. Systems and methods for variable stiffness tethers
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US9445898B2 (en) 2011-03-01 2016-09-20 Medtronic Ventor Technologies Ltd. Mitral valve repair
EP2688516B1 (en) 2011-03-21 2022-08-17 Cephea Valve Technologies, Inc. Disk-based valve apparatus
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
EP2520250B1 (en) 2011-05-04 2014-02-19 Medtentia International Ltd Oy Medical device for a cardiac valve implant
WO2012158187A1 (en) 2011-05-17 2012-11-22 Boston Scientific Scimed, Inc. Corkscrew annuloplasty device
US20120296349A1 (en) 2011-05-17 2012-11-22 Boston Scientific Scimed, Inc. Percutaneous Mitral Annulus Mini-Plication
US8523940B2 (en) 2011-05-17 2013-09-03 Boston Scientific Scimed, Inc. Annuloplasty ring with anchors fixed by curing polymer
US9402721B2 (en) 2011-06-01 2016-08-02 Valcare, Inc. Percutaneous transcatheter repair of heart valves via trans-apical access
WO2012175483A1 (en) 2011-06-20 2012-12-27 Jacques Seguin Prosthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same
EP2723273B1 (en) 2011-06-21 2021-10-27 Twelve, Inc. Prosthetic heart valve devices
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8795357B2 (en) 2011-07-15 2014-08-05 Edwards Lifesciences Corporation Perivalvular sealing for transcatheter heart valve
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021375A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Percutaneous mitral valve replacement and sealing
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9055932B2 (en) 2011-08-26 2015-06-16 Abbott Cardiovascular Systems, Inc. Suture fastener combination device
US8900295B2 (en) 2011-09-26 2014-12-02 Edwards Lifesciences Corporation Prosthetic valve with ventricular tethers
US8764798B2 (en) 2011-10-03 2014-07-01 Smith & Nephew, Inc. Knotless suture anchor
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US20130116776A1 (en) 2011-11-04 2013-05-09 Valtech Cardio, Ltd. External aortic ring and spool mechanism therefor
EP3656434B1 (en) 2011-11-08 2021-10-20 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US20140350660A1 (en) 2011-12-01 2014-11-27 Graeme Cocks Endoluminal Prosthesis
CN104203157B (en) 2011-12-12 2016-02-03 戴维·阿隆 Heart valve repair apparatus
KR101198775B1 (en) 2012-01-18 2012-11-12 박광태 Surgical instrument, and surgical mesh and surgical retractor for the same, and surgical method using the same
US8961602B2 (en) 2012-01-27 2015-02-24 St. Jude Medical, Cardiology Division, Inc. Adjustment suture markers for adjustable annuloplasty ring
US9180008B2 (en) 2012-02-29 2015-11-10 Valcare, Inc. Methods, devices, and systems for percutaneously anchoring annuloplasty rings
EP3542758B1 (en) 2012-02-29 2022-12-14 Valcare, Inc. Percutaneous annuloplasty system with anterior-posterior adjustment
US9138214B2 (en) 2012-03-02 2015-09-22 Abbott Cardiovascular Systems, Inc. Suture securing systems, devices and methods
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9277990B2 (en) 2012-05-04 2016-03-08 St. Jude Medical, Cardiology Division, Inc. Hypotube shaft with articulation mechanism
DE102012010798A1 (en) 2012-06-01 2013-12-05 Universität Duisburg-Essen Implantable device for improving or eliminating heart valve insufficiency
US9504571B2 (en) 2012-06-07 2016-11-29 Edwards Lifesciences Corporation Systems for implanting annuloplasty rings with microanchors
US9510946B2 (en) 2012-09-06 2016-12-06 Edwards Lifesciences Corporation Heart valve sealing devices
US9039740B2 (en) 2012-09-21 2015-05-26 Boston Scientific Neuromodulation Corporation Tissue fixation delivery apparatus
CA2885354A1 (en) 2012-09-29 2014-04-03 Mitralign, Inc. Plication lock delivery system and method of use thereof
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
EP3517052A1 (en) 2012-10-23 2019-07-31 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
JP2014085548A (en) 2012-10-24 2014-05-12 Hamamatsu Photonics Kk Optical scanning device and light source device
US8628571B1 (en) 2012-11-13 2014-01-14 Mitraltech Ltd. Percutaneously-deliverable mechanical valve
EP4162902A1 (en) 2012-11-21 2023-04-12 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic heart valves
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
CN103908729B (en) 2012-12-28 2016-12-28 米特拉利根公司 Energy aid in tissue sting device and using method thereof
EP2943132B1 (en) 2013-01-09 2018-03-28 4Tech Inc. Soft tissue anchors
EP2948103B1 (en) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventricularly-anchored prosthetic valves
WO2014134183A1 (en) 2013-02-26 2014-09-04 Mitralign, Inc. Devices and methods for percutaneous tricuspid valve repair
US9579090B1 (en) 2013-02-27 2017-02-28 The Administrators Of The Tulane Educational Fund Surgical instrument with multiple instrument interchangeability
EP3505043B1 (en) 2013-03-11 2020-11-25 Boston Scientific Scimed, Inc. Deflection mechanism
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
CN105473105B (en) 2013-03-15 2019-03-22 心脏结构导航公司 Conduit guiding valve replacement device and method
WO2014152503A1 (en) 2013-03-15 2014-09-25 Mitralign, Inc. Translation catheters, systems, and methods of use thereof
EP2783624A1 (en) 2013-03-28 2014-10-01 Injeq Oy Bioimpedance sensor, mandrine, cannula and method for measuring bioimpedance
EP3003187B1 (en) 2013-05-24 2023-11-08 Valcare, Inc. Heart and peripheral vascular valve replacement in conjunction with a support ring
JP6440694B2 (en) 2013-06-06 2018-12-19 デイヴィッド・アロン Heart valve repair and replacement
US10751180B2 (en) 2013-06-14 2020-08-25 Mtex Cardio Ag Method and device for treatment of valve regurgitation
US9999507B2 (en) 2013-06-25 2018-06-19 Mitralign, Inc. Percutaneous valve repair by reshaping and resizing right ventricle
CN105592808B (en) 2013-06-26 2018-11-09 Sat集团(控股)有限公司 Orienting device for mitral valve reparation
EP3019092B1 (en) 2013-07-10 2022-08-31 Medtronic Inc. Helical coil mitral valve annuloplasty systems
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US9248018B2 (en) 2013-09-27 2016-02-02 Surendra K. Chawla Valve repair device
US20150100116A1 (en) 2013-10-07 2015-04-09 Medizinische Universitat Wien Implant and method for improving coaptation of an atrioventricular valve
WO2015059699A2 (en) 2013-10-23 2015-04-30 Valtech Cardio, Ltd. Anchor magazine
WO2015066243A2 (en) 2013-10-29 2015-05-07 Entourage Medical Technologies, Inc. System for providing surgical access
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
US9522000B2 (en) 2013-11-08 2016-12-20 Coloplast A/S System and a method for surgical suture fixation
US10111750B2 (en) 2013-12-16 2018-10-30 Jeko Metodiev Madjarov Method and apparatus for therapy of aortic valve
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US9072604B1 (en) 2014-02-11 2015-07-07 Gilberto Melnick Modular transcatheter heart valve and implantation method
CN108836414B (en) 2014-02-14 2021-06-29 爱德华兹生命科学公司 Percutaneous leaflet augmentation
JP6559161B2 (en) 2014-06-19 2019-08-14 4テック インコーポレイテッド Tightening heart tissue
US9180005B1 (en) 2014-07-17 2015-11-10 Millipede, Inc. Adjustable endolumenal mitral valve ring
WO2016059639A1 (en) 2014-10-14 2016-04-21 Valtech Cardio Ltd. Leaflet-restraining techniques
EP3212250A4 (en) 2014-10-31 2018-07-11 Thoratec Corporation Apical connectors and instruments for use in a heart wall
JP6717820B2 (en) 2014-12-02 2020-07-08 4テック インコーポレイテッド Eccentric tissue anchor
US10188833B2 (en) 2015-01-21 2019-01-29 Medtronic Vascular, Inc. Guide catheter with steering mechanisms
EP3087952A1 (en) 2015-04-29 2016-11-02 Kephalios S.A.S. An annuloplasty system and a method for monitoring the effectiveness of an annuloplasty treatment
WO2016174669A1 (en) 2015-04-30 2016-11-03 Valtech Cardio Ltd. Annuloplasty technologies
EP4241698A3 (en) 2015-10-21 2024-01-17 Coremedic AG Medical implant for heart valve repair
WO2017066889A1 (en) 2015-10-21 2017-04-27 Coremedic Ag Medical apparatus and method for heart valve repair
WO2017117560A1 (en) 2015-12-30 2017-07-06 Pipeline Medical Technologies, Inc. Mitral leaflet tethering
WO2017210434A1 (en) 2016-06-01 2017-12-07 On-X Life Technologies, Inc. Pull-through chordae tendineae system
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
WO2018080965A1 (en) 2016-10-31 2018-05-03 Cardiac Implants Llc Flexible radio-opaque protrusions for revealing the position of a constricting cord or annulus ring prior to installation onto a cardiac valve annulus
CN115137529A (en) 2016-12-21 2022-10-04 特里弗洛心血管公司 Heart valve support devices and methods for making and using the same
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10765515B2 (en) 2017-04-06 2020-09-08 University Of Maryland, Baltimore Distal anchor apparatus and methods for mitral valve repair
PL422397A1 (en) 2017-07-29 2019-02-11 Endoscope Spółka Z Ograniczoną Odpowiedzialnością System for controlling the medical probe tip, preferably the endoscope probe and the endoscope handle
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
US11376127B2 (en) 2017-12-20 2022-07-05 W. L. Gore & Associates, Inc. Artificial chordae tendineae repair devices and delivery thereof
EP3743015A1 (en) 2018-01-24 2020-12-02 Valtech Cardio, Ltd. Contraction of an annuloplasty structure
WO2019145941A1 (en) 2018-01-26 2019-08-01 Valtech Cardio, Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
JP7083549B2 (en) 2018-03-23 2022-06-13 ネオコード インコーポレイテッド Suture attachment device for minimally invasive heart valve repair
CA3092566C (en) 2018-03-23 2023-09-19 Conmed Corporation Suture anchor driver
US11173030B2 (en) 2018-05-09 2021-11-16 Neochord, Inc. Suture length adjustment for minimally invasive heart valve repair
CN112312862A (en) 2018-05-24 2021-02-02 瓦尔泰克卡迪欧有限公司 Implantable annuloplasty structures to accommodate multiple annulus sizes
CN112384175A (en) 2018-07-12 2021-02-19 瓦尔泰克卡迪欧有限公司 Annuloplasty system and locking tool therefor
JP2022534944A (en) 2019-05-29 2022-08-04 エドワーズ ライフサイエンシーズ イノベーション (イスラエル) リミテッド Tissue anchor handling system and method
CN114423356A (en) 2019-07-16 2022-04-29 心弦医疗公司 Systems and methods for tissue remodeling
JP2022542772A (en) 2019-07-23 2022-10-07 エドワーズ ライフサイエンシーズ イノベーション (イスラエル) リミテッド Contraction of annuloplasty structures
CN114258313A (en) 2019-08-28 2022-03-29 瓦尔泰克卡迪欧有限公司 Low profile steerable catheter
WO2021041639A1 (en) 2019-08-28 2021-03-04 Boston Scientific Scimed, Inc. Method and device for mitral repair including papillary muscle relocation
EP4021350A1 (en) 2019-08-30 2022-07-06 Valtech Cardio, Ltd. Anchor channel tip
CA3155254A1 (en) 2019-09-25 2021-04-01 Cardiac Implants Llc Cardiac valve annulus reduction system
CN113331995A (en) 2020-02-18 2021-09-03 杭州德晋医疗科技有限公司 Anchor with locking function, anchor component and ring-retracting system
US20220096232A1 (en) 2020-09-25 2022-03-31 Boston Scientific Scimed, Inc. Tissue anchors minimizing migration and maximizing engagement

Also Published As

Publication number Publication date
US9968454B2 (en) 2018-05-15
US10751184B2 (en) 2020-08-25
US20130096672A1 (en) 2013-04-18
US20200383787A1 (en) 2020-12-10
US20160058557A1 (en) 2016-03-03
US9180007B2 (en) 2015-11-10
US20180250133A1 (en) 2018-09-06
US11617652B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
US11617652B2 (en) Apparatus and method for guide-wire based advancement of an adjustable implant
US11583400B2 (en) Techniques for guided advancement of a tool
US8940042B2 (en) Apparatus for guide-wire based advancement of a rotation assembly
EP3441045B1 (en) Apparatus to draw first and second portions of tissue toward each other
US11766327B2 (en) Implantation of repair chords in the heart
US11197759B2 (en) Implant having multiple adjusting mechanisms
US11602434B2 (en) Systems and methods for tissue adjustment
US8147542B2 (en) Adjustable repair chords and spool mechanism therefor
US20100280603A1 (en) Implantation of repair chords in the heart
WO2011148374A2 (en) Adjustable artificial chordeae tendineae with suture loops

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED