US20230193383A1 - Flexible substrates for nucleic acid synthesis - Google Patents
Flexible substrates for nucleic acid synthesis Download PDFInfo
- Publication number
- US20230193383A1 US20230193383A1 US18/050,912 US202218050912A US2023193383A1 US 20230193383 A1 US20230193383 A1 US 20230193383A1 US 202218050912 A US202218050912 A US 202218050912A US 2023193383 A1 US2023193383 A1 US 2023193383A1
- Authority
- US
- United States
- Prior art keywords
- nucleic acid
- substrate
- instances
- acid library
- oligonucleic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title description 198
- 238000001668 nucleic acid synthesis Methods 0.000 title description 8
- 239000002253 acid Substances 0.000 claims abstract description 260
- 150000007513 acids Chemical class 0.000 claims abstract description 157
- 150000007523 nucleic acids Chemical class 0.000 claims description 59
- 108020004707 nucleic acids Proteins 0.000 claims description 45
- 102000039446 nucleic acids Human genes 0.000 claims description 45
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 15
- 230000000007 visual effect Effects 0.000 claims description 5
- 230000014509 gene expression Effects 0.000 claims description 4
- 108090000623 proteins and genes Proteins 0.000 claims description 4
- 241001465754 Metazoa Species 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 238000010422 painting Methods 0.000 claims description 2
- 230000004952 protein activity Effects 0.000 claims description 2
- 238000000338 in vitro Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 106
- 238000003786 synthesis reaction Methods 0.000 abstract description 73
- 230000015572 biosynthetic process Effects 0.000 abstract description 63
- 239000000463 material Substances 0.000 abstract description 44
- 238000003860 storage Methods 0.000 abstract description 34
- 239000000203 mixture Substances 0.000 abstract description 15
- 238000013500 data storage Methods 0.000 abstract description 7
- 230000007774 longterm Effects 0.000 abstract description 2
- 230000014759 maintenance of location Effects 0.000 abstract 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 117
- -1 nucleoside phosphoramidite Chemical class 0.000 description 64
- 238000000151 deposition Methods 0.000 description 46
- 230000008021 deposition Effects 0.000 description 42
- 239000003153 chemical reaction reagent Substances 0.000 description 41
- 239000002777 nucleoside Substances 0.000 description 39
- 150000008300 phosphoramidites Chemical class 0.000 description 22
- 239000007921 spray Substances 0.000 description 20
- 238000005859 coupling reaction Methods 0.000 description 19
- 229910000077 silane Inorganic materials 0.000 description 19
- 108091034117 Oligonucleotide Proteins 0.000 description 17
- 239000012190 activator Substances 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 17
- 230000008878 coupling Effects 0.000 description 17
- 238000010168 coupling process Methods 0.000 description 17
- 238000012545 processing Methods 0.000 description 17
- 108020004414 DNA Proteins 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- 238000007306 functionalization reaction Methods 0.000 description 16
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 15
- 230000003647 oxidation Effects 0.000 description 14
- 238000007254 oxidation reaction Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000012937 correction Methods 0.000 description 13
- 239000012815 thermoplastic material Substances 0.000 description 12
- 150000003833 nucleoside derivatives Chemical class 0.000 description 11
- 125000003835 nucleoside group Chemical group 0.000 description 11
- 238000007792 addition Methods 0.000 description 10
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000005406 washing Methods 0.000 description 10
- 238000012217 deletion Methods 0.000 description 9
- 230000037430 deletion Effects 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 239000004926 polymethyl methacrylate Substances 0.000 description 9
- 239000004800 polyvinyl chloride Substances 0.000 description 9
- 229920000915 polyvinyl chloride Polymers 0.000 description 9
- 239000011148 porous material Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 8
- 239000004677 Nylon Substances 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 239000011737 fluorine Substances 0.000 description 8
- 229910052731 fluorine Inorganic materials 0.000 description 8
- 229920001778 nylon Polymers 0.000 description 8
- 230000001590 oxidative effect Effects 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 238000012163 sequencing technique Methods 0.000 description 8
- 230000002194 synthesizing effect Effects 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 229920006260 polyaryletherketone Polymers 0.000 description 7
- 238000003752 polymerase chain reaction Methods 0.000 description 7
- 238000001308 synthesis method Methods 0.000 description 7
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 6
- WUHZCNHGBOHDKN-UHFFFAOYSA-N 11-triethoxysilylundecyl acetate Chemical compound CCO[Si](OCC)(OCC)CCCCCCCCCCCOC(C)=O WUHZCNHGBOHDKN-UHFFFAOYSA-N 0.000 description 6
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- 229920002449 FKM Polymers 0.000 description 6
- 239000004696 Poly ether ether ketone Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- BAAAEEDPKUHLID-UHFFFAOYSA-N decyl(triethoxy)silane Chemical compound CCCCCCCCCC[Si](OCC)(OCC)OCC BAAAEEDPKUHLID-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 238000002515 oligonucleotide synthesis Methods 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- 239000004417 polycarbonate Substances 0.000 description 6
- 229920000515 polycarbonate Polymers 0.000 description 6
- 229920002530 polyetherether ketone Polymers 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- QKDAMFXBOUOVMF-UHFFFAOYSA-N 4-hydroxy-n-(3-triethoxysilylpropyl)butanamide Chemical compound CCO[Si](OCC)(OCC)CCCNC(=O)CCCO QKDAMFXBOUOVMF-UHFFFAOYSA-N 0.000 description 5
- 239000004695 Polyether sulfone Substances 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000004014 plasticizer Substances 0.000 description 5
- 229920001657 poly(etheretherketoneketone) Polymers 0.000 description 5
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 5
- 229920006393 polyether sulfone Polymers 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 125000006239 protecting group Chemical group 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 5
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 4
- 239000000020 Nitrocellulose Substances 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 4
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 4
- MGWAVDBGNNKXQV-UHFFFAOYSA-N diisobutyl phthalate Chemical compound CC(C)COC(=O)C1=CC=CC=C1C(=O)OCC(C)C MGWAVDBGNNKXQV-UHFFFAOYSA-N 0.000 description 4
- 229920001973 fluoroelastomer Polymers 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 229920001220 nitrocellulos Polymers 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 150000004756 silanes Chemical class 0.000 description 4
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 3
- BLTXWCKMNMYXEA-UHFFFAOYSA-N 1,1,2-trifluoro-2-(trifluoromethoxy)ethene Chemical compound FC(F)=C(F)OC(F)(F)F BLTXWCKMNMYXEA-UHFFFAOYSA-N 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 108010042407 Endonucleases Proteins 0.000 description 3
- 102000004533 Endonucleases Human genes 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 230000027832 depurination Effects 0.000 description 3
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920001643 poly(ether ketone) Polymers 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000005987 sulfurization reaction Methods 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- JUDOLRSMWHVKGX-UHFFFAOYSA-N 1,1-dioxo-1$l^{6},2-benzodithiol-3-one Chemical compound C1=CC=C2C(=O)SS(=O)(=O)C2=C1 JUDOLRSMWHVKGX-UHFFFAOYSA-N 0.000 description 2
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Chemical compound C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 2
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 2
- SIXWIUJQBBANGK-UHFFFAOYSA-N 4-(4-fluorophenyl)-1h-pyrazol-5-amine Chemical compound N1N=CC(C=2C=CC(F)=CC=2)=C1N SIXWIUJQBBANGK-UHFFFAOYSA-N 0.000 description 2
- 230000006820 DNA synthesis Effects 0.000 description 2
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 2
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 2
- KCXZNSGUUQJJTR-UHFFFAOYSA-N Di-n-hexyl phthalate Chemical compound CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCC KCXZNSGUUQJJTR-UHFFFAOYSA-N 0.000 description 2
- ZVFDTKUVRCTHQE-UHFFFAOYSA-N Diisodecyl phthalate Chemical compound CC(C)CCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC(C)C ZVFDTKUVRCTHQE-UHFFFAOYSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical group C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 241001362551 Samba Species 0.000 description 2
- 229920006172 Tetrafluoroethylene propylene Polymers 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000002981 blocking agent Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 2
- 125000004990 dihydroxyalkyl group Chemical group 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000033607 mismatch repair Effects 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- PZJJKWKADRNWSW-UHFFFAOYSA-N trimethoxysilicon Chemical compound CO[Si](OC)OC PZJJKWKADRNWSW-UHFFFAOYSA-N 0.000 description 2
- 238000002525 ultrasonication Methods 0.000 description 2
- VOLGAXAGEUPBDM-UHFFFAOYSA-N $l^{1}-oxidanylethane Chemical compound CC[O] VOLGAXAGEUPBDM-UHFFFAOYSA-N 0.000 description 1
- GBBJBUGPGFNISJ-YDQXZVTASA-N (4as,7r,8as)-9,9-dimethyltetrahydro-4h-4a,7-methanobenzo[c][1,2]oxazireno[2,3-b]isothiazole 3,3-dioxide Chemical compound C1S(=O)(=O)N2O[C@@]32C[C@@H]2C(C)(C)[C@]13CC2 GBBJBUGPGFNISJ-YDQXZVTASA-N 0.000 description 1
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 1
- GVZJRBAUSGYWJI-UHFFFAOYSA-N 2,5-bis(3-dodecylthiophen-2-yl)thiophene Chemical compound C1=CSC(C=2SC(=CC=2)C2=C(C=CS2)CCCCCCCCCCCC)=C1CCCCCCCCCCCC GVZJRBAUSGYWJI-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- FOYWCEUVVIHJKD-UHFFFAOYSA-N 2-methyl-5-(1h-pyrazol-5-yl)pyridine Chemical compound C1=NC(C)=CC=C1C1=CC=NN1 FOYWCEUVVIHJKD-UHFFFAOYSA-N 0.000 description 1
- HXLAEGYMDGUSBD-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(OCC)CCCN HXLAEGYMDGUSBD-UHFFFAOYSA-N 0.000 description 1
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 1
- GLISOBUNKGBQCL-UHFFFAOYSA-N 3-[ethoxy(dimethyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(C)CCCN GLISOBUNKGBQCL-UHFFFAOYSA-N 0.000 description 1
- PHIYHIOQVWTXII-UHFFFAOYSA-N 3-amino-1-phenylpropan-1-ol Chemical compound NCCC(O)C1=CC=CC=C1 PHIYHIOQVWTXII-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- NILZGRNPRBIQOG-UHFFFAOYSA-N 3-iodopropyl(trimethoxy)silane Chemical group CO[Si](OC)(OC)CCCI NILZGRNPRBIQOG-UHFFFAOYSA-N 0.000 description 1
- UDNJYKOKKPNOGQ-UHFFFAOYSA-N 3-silyloxy-N-(3-silyloxypropyl)propan-1-amine Chemical compound [SiH3]OCCCNCCCO[SiH3] UDNJYKOKKPNOGQ-UHFFFAOYSA-N 0.000 description 1
- TZZGHGKTHXIOMN-UHFFFAOYSA-N 3-trimethoxysilyl-n-(3-trimethoxysilylpropyl)propan-1-amine Chemical compound CO[Si](OC)(OC)CCCNCCC[Si](OC)(OC)OC TZZGHGKTHXIOMN-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- 125000002103 4,4'-dimethoxytriphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)(C1=C([H])C([H])=C(OC([H])([H])[H])C([H])=C1[H])C1=C([H])C([H])=C(OC([H])([H])[H])C([H])=C1[H] 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 108091032955 Bacterial small RNA Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000252506 Characiformes Species 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 101710099953 DNA mismatch repair protein msh3 Proteins 0.000 description 1
- 108010082610 Deoxyribonuclease (Pyrimidine Dimer) Proteins 0.000 description 1
- 102000004099 Deoxyribonuclease (Pyrimidine Dimer) Human genes 0.000 description 1
- 108010036364 Deoxyribonuclease IV (Phage T4-Induced) Proteins 0.000 description 1
- 239000004803 Di-2ethylhexylphthalate Substances 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- 108700034637 EC 3.2.-.- Proteins 0.000 description 1
- 101710180995 Endonuclease 1 Proteins 0.000 description 1
- 101000889812 Enterobacteria phage T4 Endonuclease Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 108091027305 Heteroduplex Proteins 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 244000261422 Lysimachia clethroides Species 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 108010086093 Mung Bean Nuclease Proteins 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- NWSOKOJWKWNSAF-UHFFFAOYSA-N O=C(Sc1nnn[nH]1)c1ccccc1 Chemical compound O=C(Sc1nnn[nH]1)c1ccccc1 NWSOKOJWKWNSAF-UHFFFAOYSA-N 0.000 description 1
- 229920006169 Perfluoroelastomer Polymers 0.000 description 1
- 229920008285 Poly(ether ketone) PEK Polymers 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 101000777243 Schizosaccharomyces pombe (strain 972 / ATCC 24843) UV-damage endonuclease Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910020175 SiOH Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 241000589500 Thermus aquaticus Species 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 240000004922 Vigna radiata Species 0.000 description 1
- 235000010721 Vigna radiata var radiata Nutrition 0.000 description 1
- 235000011469 Vigna radiata var sublobata Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- HOPRXXXSABQWAV-UHFFFAOYSA-N anhydrous collidine Natural products CC1=CC=NC(C)=C1C HOPRXXXSABQWAV-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 108010041758 cleavase Proteins 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- UTBIMNXEDGNJFE-UHFFFAOYSA-N collidine Natural products CC1=CC=C(C)C(C)=N1 UTBIMNXEDGNJFE-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006642 detritylation reaction Methods 0.000 description 1
- 229960005215 dichloroacetic acid Drugs 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- HPYNZHMRTTWQTB-UHFFFAOYSA-N dimethylpyridine Natural products CC1=CC=CN=C1C HPYNZHMRTTWQTB-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000005782 double-strand break Effects 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 108010064144 endodeoxyribonuclease VII Proteins 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- HHBOIIOOTUCYQD-UHFFFAOYSA-N ethoxy-dimethyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(C)CCCOCC1CO1 HHBOIIOOTUCYQD-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- XPBBUZJBQWWFFJ-UHFFFAOYSA-N fluorosilane Chemical compound [SiH3]F XPBBUZJBQWWFFJ-UHFFFAOYSA-N 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 229920002100 high-refractive-index polymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229940059904 light mineral oil Drugs 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- CAPBXYLOGXJCFU-UHFFFAOYSA-N oxiran-2-ylmethoxysilane Chemical class [SiH3]OCC1CO1 CAPBXYLOGXJCFU-UHFFFAOYSA-N 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000003711 photoprotective effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 235000021251 pulses Nutrition 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000002444 silanisation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000005783 single-strand break Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000035892 strand transfer Effects 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical class S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- GFYHSKONPJXCDE-UHFFFAOYSA-N sym-collidine Natural products CC1=CN=C(C)C(C)=C1 GFYHSKONPJXCDE-UHFFFAOYSA-N 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- AVXLXFZNRNUCRP-UHFFFAOYSA-N trichloro(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)silane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)[Si](Cl)(Cl)Cl AVXLXFZNRNUCRP-UHFFFAOYSA-N 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- SEAZOECJMOZWTD-UHFFFAOYSA-N trimethoxy(oxiran-2-ylmethyl)silane Chemical compound CO[Si](OC)(OC)CC1CO1 SEAZOECJMOZWTD-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- XFVUECRWXACELC-UHFFFAOYSA-N trimethyl oxiran-2-ylmethyl silicate Chemical compound CO[Si](OC)(OC)OCC1CO1 XFVUECRWXACELC-UHFFFAOYSA-N 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
- C12Q1/6874—Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0046—Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00497—Features relating to the solid phase supports
- B01J2219/00513—Essentially linear supports
- B01J2219/00518—Essentially linear supports in the shape of tapes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/0061—The surface being organic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00632—Introduction of reactive groups to the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00632—Introduction of reactive groups to the surface
- B01J2219/00637—Introduction of reactive groups to the surface by coating it with another layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00722—Nucleotides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2537/00—Reactions characterised by the reaction format or use of a specific feature
- C12Q2537/10—Reactions characterised by the reaction format or use of a specific feature the purpose or use of
- C12Q2537/165—Mathematical modelling, e.g. logarithm, ratio
Definitions
- Biomolecule based information storage systems e.g., DNA-based
- methods for storing information comprising: converting an item of information in the form of at least one digital sequence to at least one nucleic acid sequence; providing a flexible structure having a surface; synthesizing a plurality of oligonucleic acids having predetermined sequences collectively encoding for the at least one nucleic acid sequence, wherein the plurality of oligonucleic acids comprises at least about 100,000 oligonucleic acids, and wherein the plurality of oligonucleic acids extends from the surface of the flexible structure; and storing the plurality of oligonucleic acids.
- synthesizing comprises: depositing nucleosides on the surface at predetermined locations; and moving least a portion of the flexible structure through a bath or emissions from a spray bar. Further provided herein are methods wherein the bath or emissions from a spray bar expose the surface of the structure to an oxidizing reagent or a deblocking reagent. Further provided herein are methods wherein synthesizing further comprises capping the nucleosides deposited on the surface. Further provided herein are methods wherein the nucleosides comprise a nucleoside phosphoramidite. Further provided herein are methods wherein the flexible structure comprises a reel-to-reel tape or a continuous tape.
- the flexible structure comprises a thermoplastic material.
- the thermoplastic material comprises a polyaryletherketone.
- the polyaryletherketone is polyetherketone, polyetherketoneketone, poly(ether ether ketone ketone), polyether ether ketone or polyetherketoneetherketoneketone.
- the flexible structure comprises nylon, nitrocellulose, polypropylene, polycarbonate, polyethylene, polyurethane, polystyrene, acetal, acrylic, acrylonitrile, butadiene styrene, polyethylene terephthalate, polymethyl methacrylate, polyvinyl chloride, transparent PVC foil, Poly(methyl methacrylate), styrenic polymer, fluorine-containing polymers, polyethersulfone or polyimide.
- each oligonucleic acid of the plurality of oligonucleic acids comprises from 50 to 500 bases in length.
- the plurality of oligonucleic acids comprises at least about 10 billion oligonucleic acids. Further provided herein are methods wherein at least about 1.75 ⁇ 10 13 nucleobases are synthesized within 24 hours. Further provided herein are methods wherein at least about 262.5 ⁇ 10 9 oligonucleic acids are synthesized within 72 hours. Further provided herein are methods wherein the item of information is text information, audio information or visual information. Further provided herein are methods wherein the nucleosides comprise nucleoside phosphoramidite.
- methods for storing information comprising: converting an item of information in the form of at least one digital sequence to at least one nucleic acid sequence; providing a structure having a surface; synthesizing a plurality of oligonucleic acids having predetermined sequences collectively encoding for the at least one nucleic acid sequence, wherein the plurality of oligonucleic acids comprises at least about 100,000 oligonucleic acids, wherein the plurality of oligonucleic acids extends from the surface of the structure, and wherein synthesizing comprises: cleaning a surface of the structure; depositing nucleosides on the surface at predetermined locations; oxidizing, deblocking, and optionally capping the nucleosides deposited on the surface; wherein the cleaning, oxidizing, deblocking, and capping comprises moving at least a portion of the flexible structure through a bath or emissions from a spray bar; and storing the plurality of oligonucleic acids.
- the nucleosides comprises at least about 100,000 oligon
- a method for storing information comprising: converting an item of information in the form of at least one digital sequence to at least one nucleic acid sequence; synthesizing a plurality of oligonucleic acids having predetermined sequences collectively encoding for the at least one nucleic acid sequence, wherein the plurality of oligonucleic acids comprises at least about 10,000 oligonucleic acids, wherein the plurality of oligonucleic acids collectively encode for a sequence that differs from the predetermined sequences by no more than 1 base in 1000, and wherein each oligonucleic acid of the plurality of oligonucleic acids comprises from 50 to 500 bases in length; and storing the at least about 10,000 oligonucleic acids.
- the plurality of oligonucleic acids comprises at least about 100,000 oligonucleic acids. Further provided herein are methods wherein the plurality of oligonucleic acids comprises at least about 1,000,000 oligonucleic acids. Further provided herein are methods wherein the plurality of oligonucleic acids comprises at least about 10 billion oligonucleic acids. Further provided herein are methods wherein greater than 90% of the oligonucleic acids encode for a sequence that does not differ from the predetermined sequence. Further provided herein are methods wherein the item of information is text information, audio information or visual information.
- the structure is rigid or flexible, and wherein the structure comprises a surface, and wherein the plurality of oligonucleic acids extend from the surface.
- the nucleosides comprise nucleoside phosphoramidite.
- a method for storing information comprising: converting an item of information in the form of at least one digital sequence to at least one nucleic acid sequence; synthesizing a plurality of oligonucleic acids having predetermined sequences collectively encoding for the at least one nucleic acid sequence, wherein the plurality of oligonucleic acids comprises at least about 10,000 oligonucleic acids, wherein each oligonucleic acid of the plurality of oligonucleic acids comprises from 50 to 500 bases in length, and where the plurality of oligonucleic acids extends from the surface of a flexible structure; and storing the plurality of oligonucleic acids.
- the flexible structure comprises a reel-to-reel tape or a continuous tape. Further provided herein are methods wherein each oligonucleic acid extends from a feature on the surface of the flexible structure, wherein the feature is about 1 um to about 500 um in diameter. Further provided herein are methods wherein the feature is about 1 um to about 50 um in diameter. Further provided herein are methods wherein the feature is about 10 um in diameter. Further provided herein are methods wherein the flexible structure comprises a thermoplastic material. Further provided herein are methods wherein the thermoplastic material comprises a polyaryletherketone.
- polyaryletherketone is polyetherketone, polyetherketoneketone, poly(ether ether ketone ketone), polyether ether ketone or polyetherketoneetherketoneketone.
- the flexible structure comprises nylon, nitrocellulose, polypropylene, polycarbonate, polyethylene, polyurethane, polystyrene, acetal, acrylic, acrylonitrile, butadiene styrene, polyethylene terephthalate, polymethyl methacrylate, polyvinyl chloride, transparent PVC foil, Poly(methyl methacrylate), styrenic polymer, fluorine-containing polymers, polyethersulfone or polyimide.
- each oligonucleic acid is about 200 bases in length. Further provided herein are methods wherein at least about 1.75 ⁇ 10 13 nucleobases are synthesized within 24 hours. Further provided herein are methods wherein at least about 262.5 ⁇ 10 9 oligonucleic acids are synthesized within 72 hours. Further provided herein are methods wherein the nucleosides comprise nucleoside phosphoramidite.
- methods for storing information comprising: encrypting at least one item of information in the form of at least one digital sequence to at least one nucleic acid sequence; synthesizing a plurality of oligonucleic acids having predetermined sequences collectively encoding for the at least one nucleic acid sequence, wherein the plurality of oligonucleic acids comprises at least about 10,000 oligonucleic acids, and wherein each oligonucleic acid of the plurality of oligonucleic acids comprises from 50 to 500 bases in length; storing the plurality of oligonucleic acids; sequencing the plurality of oligonucleic acids; decrypting the plurality of oligonucleic acids from a nucleic acid sequence to a digital sequence; and assembling the digital sequence to form the at least one digital sequence, wherein the at least one digital sequence is recovered with 100% accuracy. Further provided herein are methods further comprising releasing the plurality of oligonucleic acids. Further provided herein are methods wherein
- devices for information storage comprising: a flexible structure having a surface; and a plurality of features on the surface, wherein each feature has a width of from about 1 to about 500 um, and wherein each feature of the plurality of features is coated with a moiety that binds to the surface and comprises a hydroxyl group available for nucleoside coupling.
- the flexible structure rests in a curved position.
- the curved position comprises a curve that is greater than 30 degrees.
- the curved position comprises a curve that is greater than 180 degrees.
- the flexible structure comprises at least about 1 million features.
- the flexible structure has a total surface area of less than about 4.5 m 2 . Further provided herein are devices wherein the flexible structure comprises more than 2 billion features per m 2 . Further provided herein are devices wherein the flexible structure comprises a thermoplastic material. Further provided herein are devices wherein the thermoplastic material comprises a polyaryletherketone. Further provided herein are devices wherein the polyaryletherketone is polyetherketone, polyetherketoneketone, poly(ether ether ketone ketone), polyether ether ketone or polyetherketoneetherketoneketone.
- the flexible structure comprises nylon, nitrocellulose, polypropylene, polycarbonate, polyethylene, polyurethane, polystyrene, acetal, acrylic, acrylonitrile, butadiene styrene, polyethylene terephthalate, polymethyl methacrylate, polyvinyl chloride, transparent PVC foil, Poly(methyl methacrylate), styrenic polymer, fluorine-containing polymers, polyethersulfone or polyimide.
- the flexible structure has a thickness of less than about 10 mm.
- each feature is from about 1 um to about 50 um in width.
- each feature has a diameter of about 10 um.
- each feature comprises a channel.
- oligonucleic acid libraries for information storage comprising a plurality of oligonucleic acids, wherein the plurality of oligonucleic acids comprises at least about 10,000 oligonucleic acids, wherein the plurality of oligonucleic acids collectively encodes for a sequence that differs from an aggregate of predetermined sequences by no more than 1 base in 1000, and wherein each oligonucleic acid of the plurality of oligonucleic acids comprises: a predetermined sequence that, when decrypted, encodes for digital information; and from 50 to 500 bases in length.
- libraries wherein the plurality of oligonucleic acids comprises at least about 100,000 oligonucleic acids.
- the plurality of oligonucleic acids comprises at least about 10 billion oligonucleic acids.
- each oligonucleic acid of the plurality of oligonucleic acids is attached to a surface of a structure by a tether.
- the tether comprises a cleavable region having at least one nucleotide chemically modified to detach from the oligonucleic acid in the presence of a cleaving reagent.
- the tether comprises from about 10 to about 50 bases.
- libraries wherein greater than 90% of the oligonucleic acids encode for a sequence that does not differ from the predetermined sequences are further provided herein. Further provided herein are libraries wherein the digital information encodes for text, audio or visual information. Further provided herein are libraries wherein the library is synthesized in less than 3 days. Further provided herein are libraries wherein the library is synthesized in less than 24 hours.
- FIG. 1 illustrates an exemplary workflow for nucleic acid-based data storage.
- FIG. 2 A illustrates an exemplary continuous workflow having a tape, rolling units and a material deposition unit.
- FIG. 2 B illustrates an exemplary zoom in view of the tap in FIG. 2 A , showing discrete loci for oligonucleic acid extension.
- FIG. 3 illustrates a portion of surface having features that support oligonucleic acid synthesis.
- FIG. 4 illustrates an example of a computer system.
- FIG. 5 is a block diagram illustrating an architecture of a computer system.
- FIG. 6 is a diagram demonstrating a network configured to incorporate a plurality of computer systems, a plurality of cell phones and personal data assistants, and Network Attached Storage (NAS).
- NAS Network Attached Storage
- FIG. 7 is a block diagram of a multiprocessor computer system using a shared virtual address memory space.
- a biomolecule such as a DNA molecule provides a suitable host for information storage in-part due to its stability over time and capacity for four bit information coding, as opposed to traditional binary information coding.
- large amounts of data are encoded in the DNA in a relatively smaller amount of physical space than used by commercially available information storage devices.
- FIG. 1 An exemplary workflow is provided in FIG. 1 .
- a digital sequence encoding an item of information i.e., digital information in a binary code for processing by a computer
- An encryption 103 scheme is applied to convert the digital sequence from a binary code to a nucleic acid sequence 105 .
- a surface material for nucleic acid extension, a design for loci for nucleic acid extension (aka, arrangement spots), and reagents for nucleic acid synthesis are selected 107 .
- the surface of a structure is prepared for nucleic acid synthesis 108 . De novo oligonucleic acid synthesis is performed 109 .
- the synthesized oligonucleic acids are stored 111 and available for subsequent release 113 , in whole or in part. Once released, the oligonucleic acids, in whole or in part, are sequenced 115 , subject to decryption 117 to convert nucleic sequence back to digital sequence. The digital sequence is then assembled 119 to obtain an alignment encoding for the original item of information.
- the information is digital data.
- the biomolecules comprise DNA.
- the biomolecules comprise oligonucleic acids.
- methods are provided for the synthesis of the oligonucleic acids onto the substrate.
- the synthesized oligonucleic acids are positioned on the substrate at a high density to encode large and complex amounts of data in a small footprint.
- Exemplary substrates are flexible, allowing for the manipulation of the substrate during synthesis, storage, and/or data extraction. In some instances, the flexible substrates are configured for rolling onto a reel for long term storage.
- items of information are first encoded in a digital information form.
- Items of information include, without limitation, text, audio and visual information.
- Exemplary sources for items of information include, without limitation, books, periodicals, electronic databases, medical records, letters, forms, voice recordings, animal recordings, biological profiles, broadcasts, films, short videos, emails, bookkeeping phone logs, internet activity logs, drawings, paintings, prints, photographs, pixelated graphics, and software code.
- Exemplary biological profiles sources for items of information include, without limitation, gene libraries, genomes, gene expression data, and protein activity data.
- Exemplary formats for items of information include, without limitation, .txt, .PDF, .doc, .docx, .ppt, .pptx, .xls, .xlsx, .rtf, .jpg, .gif, .psd, .bmp, .tiff, .png, and .mpeg.
- the binary code of digital sequence is converted into a biomolecule-based (e.g., DNA-based) sequence while preserving the information that the code represents.
- the amount of individual file sizes encoding for an item of information, or a plurality of files encoding for items of information, in digital format include, without limitation, up to 1024 bytes (equal to 1 KB), 1024 KB (equal to 1 MB), 1024 MB (equal to 1 GB), 1024 GB (equal to 1 TB), 1024 TB (equal to 1PB), 1 exabyte, 1 zettabyte, 1 yottabyte, 1 xenottabyte or more.
- This converted code (digital binary code to a biomolecule code) is referred to herein as “predetermined” sequence with respect to the deposit of a biomolecule disclosed herein on a surface disclosed herein.
- a predetermined sequence comprising the converted DNA code is synthesized into one or a plurality of oligonucleic acids that are supported on a structure (aka substrate) for data storage.
- the oligonucleic acids are synthesized on the substrate using an oligonucleic acid synthesizer device that releases nucleic acid synthesis reagents in a step wise fashion such that that multiple oligonucleic acids extend, in parallel, one residue at a time from the surface of the substrate.
- Each oligonucleic acid is positioned on distinct regions, or features, of the substrate. In many cases, these regions are positioned in addressable locations of the substrate.
- two or more of the oligonucleic acids on a substrate have sequences that differ.
- two or more of the oligonucleic acids on a substrate have sequences that are the same.
- a structure described herein for oligonucleic acid extension during synthesis may be a rigid or flexible material.
- An exemplary process workflow for de novo synthesis of an oligonucleic acid on a substrate using an oligonucleic acid synthesizer is shown in FIG. 2 A and FIG. 2 B .
- an oligonucleic acid synthesis material deposition unit 201 releases reagents onto a flexible structure 205 (the substrate) comprising a surface, wherein the surface comprises a plurality of features 207 (or “loci”) for nucleic acid extension.
- the flexible 205 structure is wrapped around rollers 203 .
- a substrate that supports the synthesis and storage of oligonucleic acids encoding information comprises a flexible material.
- the flexible material is in the form of a tape.
- substrates having flexible materials are used in a reel-to-reel tape, where a first end of the substrate is attached (reversibly or irreversibly) to a first reel and a second end of the substrate is attached (reversibly or irreversibly) to a second reel. In this manner, the body of the substrate is be wrapped around the first reel, the second reel, or both.
- the reels of the system are rotatable so that the substrate is transferred between the reels while in use.
- sections of the substrate pass through various stages of the synthesis reaction in a production assembly line manner.
- a portion of the substrate passes through a stage at which a nucleobase is attached to the substrate during a nucleic acid synthesis reaction.
- a portion of the substrate passes through a wash stage of a nucleic acid synthesis reaction.
- one portion of a substrate is positioned at a different stage of a nucleic acid synthesis reaction than another portion of the substrate.
- a flexible material described herein for oligonucleic acid synthesis comprises continuous tape.
- a substrate for the synthesis and/or storage of oligonucleic acids comprises a flexible material that is rotatable around a rotating drum in a continuous conveyor belt configuration or a “continuous tape system.”
- oligonucleic acid synthesis steps are partitioned into zones and regions of the substrate are conveyed continuously through each of the zones.
- an oligonucleic acid synthesis reaction proceeds by conveying a flexible substrate from a deposition zone where droplets comprising oligonucleic acid building blocks are deposited and coupled onto the conveyed substrate surface, to one or more processing zones (e.g., capping, oxidation, washing, drying) in a continuous cycle, extending the synthesized oligonucleic acids by a single base in each cycle.
- continuous conveyance of a substrate through an oligonucleic acid synthesis reaction proceeds with more efficiency as compared to an oligonucleic acid synthesis reaction that occurs in distinct steps because multiple chemistries are performed on different regions of the substrate at the same time.
- the entire continuous tape is exposed to a single step in a reaction as the tape proceeds in a rotatable fashion. After each portion of the surface of the tape is exposed to reaction step in a single pass, the next step of the reaction occurs.
- an oligonucleic acid synthesis reaction proceeds by conveying the tape through a section of a device that releases an oxidizing reagent. After the entire tape is receives nucleoside monomer deposition, the tape is then exposed to a washing step, followed by a rounds of oxidation, washing, deblocking, washing, capping, washing and then repeating, resulting in extending the synthesized oligonucleic acids by a single base in each cycle.
- the DNA code of synthesized and stored oligonucleic acids is read either directly on the substrate, or after extraction from the substrate, by using any suitable sequencing technology. In some cases, the DNA sequence is read on the substrate or within a feature of a substrate. In some cases, the oligonucleic acids stored on the substrate are extracted is optionally assembled into longer nucleic acids and then sequenced.
- the substrate is a flexible substrate.
- at least about 10 10 , 10 11 , 10 12 , 10 13 , 10 14 , or 10 15 bases are synthesized in one day.
- at least about 10 ⁇ 10 8 , 10 ⁇ 10 9 , 10 ⁇ 10 10 , 10 ⁇ 10 11 , or 10 ⁇ 10 12 oligonucleic acids are synthesized in one day.
- each oligonucleic acid synthesized comprises at least about 20, 50, 100, 200, 300, 400 or 500 nucleobases.
- At least 10 ⁇ 10 9 , 200 base oligonucleic acids are synthesized within 3 days. In some cases, these bases are synthesized with a total average error rate of less than about 1 in 100; 200; 300; 400; 500; 1000; 2000; 5000; 10000; 15000; 20000 bases.
- a detection system comprising a device capable of sequencing stored oligonucleic acids, either directly on the substrate and/or after removal from the substrate.
- the detection system comprises a device for holding and advancing the substrate through a detection location and a detector disposed proximate the detection location for detecting a signal originated from a section of the tape when the section is at the detection location.
- the signal is indicative of a presence of an oligonucleic acid. In some instances, the signal is indicative of a sequence of an oligonucleic acid.
- detection methods for detecting and reading a biomolecule stored on a substrate In cases where the substrate is a flexible material on a reel-to-reel tape, the method comprises sequentially advancing through a fixed position the substrate for sequential detection and reading of bound biomolecules. In some instances, information encoded within oligonucleic acids on a continuous tape is read by a computer as the tape is conveyed continuously through a detector operably connected to the computer.
- a detection system comprises a computer system comprising an oligonucleic acid sequencing device, a database for storage and retrieval of data relating to oligonucleic acid sequence, software for converting DNA code of an oligonucleic acid sequence to binary code, a computer for reading the binary code, or any combination thereof.
- a cassette that comprises a housing and a tape, wherein the tape is a flexible substrate comprising a plurality of attached biomolecules.
- the tape is housed in the housing such that the tape is advanceable along a path from a first end to a second end of the tape.
- structures also referred to as substrates
- biomolecules are attached directly or indirectly to a surface of the structure.
- the biomolecules comprise nucleic acid sequences that are synthesized on features of the substrate.
- the features are closely spaced so that a small area of the structure encodes a high density of data.
- the distance between the centers of two features is from about 1 um to about 200 um, from about 1 um to about 100 um, from about 1 um to about 50 um, from about 1 um to about 25 um, from about 10 um to about 50 um, or from about 10 um to about 25.
- the distance between two features is less than about 100 um, 50 um, 40 um, 30 um, 20 um or 10 um.
- the size of each feature may range from about 0.1 um to about 100 um, from about 1 um to about 100 um, from about 1 um to about 50 um, or from about 0.1 um to about 100 um. In some cases, each feature is less than about 100 um, 50 um, 20 um, 10 um, or 5 um in diameter.
- each square meter of a structure allows for at least about 10 7 , 10 8 , 10 9 , 10 10 , 10 11 features, where each feature supports one oligonucleic acid. In some cases, the oligonucleic acids have lengths up to about 100, 200, 300, 400, 500 or more bases. In some instances, 10 9 oligonucleic acids are supported on less than about 6, 5, 4, 3, 2 or 1 m 2 of surface of the structure.
- FIG. 3 To illustrate exemplary dimensions of a structure described herein, reference is made to FIG. 3 . Reference to this figure is for example purposes only, and the numbers, dimensions and configuration of features described are not limiting.
- the region of the surface of a the structure shown in FIG. 3 illustrates four features of 10 um in diameter, at a center-to-center distance of 21 um.
- the features of FIG. 3 are arranged in rows forming a square shape, however, it is intended that the features may be arranged in any configuration, for example, without rows or in a circular or staggered shape.
- a flexible structure that allow for manipulation during biomolecule attachment, storage and/or reading.
- the term “flexible” is used herein to refer to a structure that is capable of being bent, folded or similarly manipulated without breakage.
- a flexible structures is bent 180 degrees around a roller.
- a flexible structure is bent about 30 to about 330 degrees around a roller.
- a flexible structure is bent up to about 360 degrees around a roller.
- the roller is less than about 10 cm, 5 cm, 3 cm, 2 cm or lcm in radius.
- the structures is bent and straightened repeatedly in either direction at least 100 times without failure (for example, cracking) or deformation at 20° C.
- a structure comprises rigid materials.
- a structure has a thickness that is amenable to rolling. In some cases, the thickness of the structure is less than about 500 mm, 100 mm, 50 mm, 10 mm, or 1 mm. In some cases, the thickness of the structure is less than about 1 mm, 0.5 mm, 0.1 mm, 0.05, 0.01, or thinner.
- Exemplary flexible materials described herein include, without limitation, nylon (unmodified nylon, modified nylon, clear nylon), nitrocellulose, polypropylene, polycarbonate, polyethylene, polyurethane, polystyrene, acetal, acrylic, acrylonitrile, butadiene styrene (ABS), polyester films such as polyethylene terephthalate, polymethyl methacrylate or other acrylics, polyvinyl chloride or other vinyl resin, transparent PVC foil, transparent foil for printers, Poly(methyl methacrylate) (PMMA), methacrylate copolymers, styrenic polymers, high refractive index polymers, fluorine-containing polymers, polyethersulfone, polyimides containing an alicyclic structure, rubber, fabric, metal foils, and any combination thereof.
- plasticizers and modifiers may be used with polymeric materials to achieve selected flexibility characteristics.
- the structure comprises a plastic material.
- the structure comprises a thermoplastic material.
- thermoplastic materials include acrylic, acrylonitrile butadiene styrene, nylon, polylactic acid, polybenzimidazole, polycarbonate, polyether sulfone, polyetherether ketone, polyetherimide, polyethylene, polyphenylene oxide, polyphenylene sulfide, polypropylene, polystyrene, polyvinyl chloride, and polytetrafluoroethylene.
- the structure comprises a thermoplastic material in the polyaryletherketone (PEAK) family.
- PEAK thermoplastics include polyetherketone (PEK), polyetherketoneketone (PEKK), poly(ether ether ketone ketone) (PEEKK), polyether ether ketone (PEEK), and polyetherketoneetherketoneketone (PEKEKK).
- the structure comprises a thermoplastic material compatible with toluene.
- a plasticizer is an ester-based plasticizer, such as phthalate.
- Phthalate plasticizers include bis(2-ethylhexyl) phthalate (DEHP), diisononly phthalate (DINP), di-n-butyl phthalate (DnBP, DBP), butyl benzyl phthalate (BBzP), diisodecyl phthalate (DIDP), dioctyl phthalate (DOP, DnOP), diisooctyl phthalate (DIOP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), and di-n-hexyl phthalate.
- DEHP bis(2-ethylhexyl) phthalate
- DEHP diisononly phthalate
- DnBP di-n-butyl phthalate
- BBzP butyl benzyl phthalate
- DIDP diisodecyl phthalate
- DOP, DnOP diisooctyl phthalate
- the structure comprises a fluoroelastomer.
- FKMs Materials having about 80% fluoroelastomers are designated as FKMs.
- Fluoroelastomers include perfluoro-elastomers (FFKMs) and tetrafluoroethylene/propylene rubbers (FEPM).
- FFKMs perfluoro-elastomers
- FEPM tetrafluoroethylene/propylene rubbers
- Fluoroelastomers have five known types. Type 1 FKMs are composed of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) and their fluorine content typically is around 66% by weight.
- Type 2 FKMs are composed of VDF, HFP, and tetrafluoroethylene (TFE) and typically have between about 68% and 69% fluorine.
- Type 3 FKMs are composed of VDF, TFE, and perfluoromethylvinylether (PMVE) and typically have between about 62% and 68% fluorine.
- Type 4 FKMs are composed of propylene, TFE, and VDF and typically have about 67% fluorine.
- Type 5 FKMs are composed of VDF, HFP, TFE, PMVE, and ethylene.
- a structure disclosed herein comprises a computer readable material.
- Computer readable materials include, without limitation, magnetic media, reel-to-reel tape, cartridge tape, cassette tape, flexible disk, paper media, film, microfiche, continuous tape (e.g., a belt) and any media suitable for storing electronic instructions.
- the structure comprises magnetic reel-to-reel tape or a magnetic belt.
- the structure comprises a flexible printed circuit board.
- a substrate material disclosed herein is transparent to visible and/or UV light.
- substrate materials are sufficiently conductive to form uniform electric fields across all or a portion of a substrate.
- the substrate is heat conductive or insulated.
- the materials are chemical resistant and heat resistant to support a chemical reaction such as an oligonucleic acid synthesis reaction.
- the substrate is magnetic.
- the substrate comprises a metal or a metal alloy.
- a surface comprises a rigid material.
- a rigid material includes, without limitation, glass; fused silica; silicon such as silicon dioxide or silicon nitride; metals such as gold or platinum; plastics such as polytetrafluoroethylene, polypropylene, polystyrene, polycarbonate, and any combination thereof.
- a substrate material disclosed herein comprises a flat region.
- the substrate comprises embedded pores, which are a series of individual reaction sections that capture released oligonucleic acids, facilitating direct sequencing of the oligonucleic acids within the pores of the substrate.
- a substrate material disclosed herein comprises pores.
- the pores are coated with a functionalizing agent disclosed herein where the agent couples nucleoside base to the surface of a substrate.
- the pores comprise microchannels.
- a single pore comprises at least 2 microchannels. In some cases, a single pore contains about 2 to about 200, about 100 to about 150 microchannels.
- the micropores are coated with a functionalizing agent disclosed herein where the agent couples nucleoside base to the surface of a substrate.
- a substrate material disclosed herein comprises wells.
- the wells are coated with a functionalizing agent disclosed herein where the agent couples nucleoside base to the surface of a substrate.
- deposition of a monomeric oligonucleotide in a manner described herein is into a pore, microchannel or well on the surface of a substrate.
- reading of an oligonucleic acid synthesized by methods disclosed herein occurs within a pore, microchannel, or well on the surface of the substrate.
- the substrate comprises an alignment structure or printed alignment element, such as a fiducial marking.
- the substrate comprises a detectable marker attached to a section of the substrate for identifying that section.
- the substrate comprises one or more regions for annotation.
- the substrate is labeled.
- a substrate disclosed herein comprises one or more identifiers.
- each identifier is associated with each biomolecule on a substrate, or a group of biomolecules on a substrate, by having a fixed location on the substrate in relation to a bar code from which relative location the identity of each biomolecule or group of biomolecules is determined.
- an identifier provides a means to identify biomolecule information.
- the biomolecule is an oligonucleic acid and the information is the sequence identity.
- the information is stored in a database.
- the surface of the structure comprises a material and/or is coated with a material that facilitates a coupling reaction with the biomolecule for attachment.
- surface modifications are employed that chemically and/or physically alter the substrate surface by an additive or subtractive process to change one or more chemical and/or physical properties of a substrate surface or a selected site or region of the surface.
- surface modification involves (1) changing the wetting properties of a surface, (2) functionalizing a surface, i.e., providing, modifying or substituting surface functional groups, (3) defunctionalizing a surface, i.e., removing surface functional groups, (4) otherwise altering the chemical composition of a surface, e.g., through etching, (5) increasing or decreasing surface roughness, (6) providing a coating on a surface, e.g., a coating that exhibits wetting properties that are different from the wetting properties of the surface, and/or (7) depositing particulates on a surface.
- a substrate is selectively functionalized to produce two or more distinct areas on a structure, wherein at least one area has a different surface or chemical property that another area of the same structure.
- Such properties include, without limitation, surface energy, chemical termination, surface concentration of a chemical moiety, and the like.
- the surface of the substrate is modified to comprise one or more actively functionalized surfaces configured to bind to both the surface of the substrate and a biomolecule, thereby supporting a coupling reaction to the surface.
- the surface is also functionalized with a passive material that does not efficiently bind the biomolecule, thereby preventing biomolecule attachment at sites where the passive functionalization agent is bound.
- the surface comprises an active layer only defining distinct features for biomolecule support. In some cases, the surface is not coated.
- the substrate surface is contacting with a mixture of functionalization groups which are in any different ratio.
- a mixture comprises at least 2, 3, 4, 5 or more different types of functionalization agents.
- the ratio of the at least two types of surface functionalization agents in a mixture is about 1:1, 1:2, 1:5, 1:10, 2:10, 3:10, 4:10, 5:10, 6:10, 7:10, 8:10, 9:10, or any other ratio to achieve a desired surface representation of two groups.
- desired surface tensions, wettabilities, water contact angles, and/or contact angles for other suitable solvents are achieved by providing a substrate surface with a suitable ratio of functionalization agents.
- the agents in a mixture are chosen from suitable reactive and inert moieties, thus diluting the surface density of reactive groups to a desired level for downstream reactions.
- the mixture of functionalization reagents comprises one or more reagents that bind to a biomolecule and one or more reagents that do not bind to a biomolecule. Therefore, modulation of the reagents allows for the control of the amount of biomolecule binding that occurs at a distinct area of functionalization.
- a method for substrate functionalization comprises deposition of a silane molecule onto a surface of a substrate.
- the silane molecule is deposited on a high energy surface of the substrate.
- the high surface energy region includes a passive functionalization reagent.
- the silane group binds to the surface, while the rest of the molecule provides a distance from the surface and a free hydroxyl group at the end to which a biomolecule attaches.
- the silane is an organofunctional alkoxysilane molecule.
- Non-limiting examples of organofunctional alkoxysilane molecules include dimethylchloro-octodecyl-silane, methyldichloro-octodecyl-silane, trichloro-octodecyl-silane, and trimethyl-octodecyl-silane, triethyl-octodecyl-silane.
- the silane is an amino silane.
- amino silanes include, without limitation, 11-acetoxyundecyltriethoxysilane, n-decyltriethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, glycidyloxypropyl/trimethoxysilane and N-(3-triethoxysilylpropyl)-4-hydroxybutyramide.
- the silane comprises 11-acetoxyundecyltriethoxysilane, n-decyltriethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, glycidyloxypropyl/trimethoxysilane, N-(3-triethoxysilylpropyl)-4-hydroxybutyramide, or any combination thereof.
- an active functionalization agent comprises 11-acetoxyundecyltriethoxysilane.
- an active functionalization agent comprises n-decyltriethoxysilane.
- an active functionalization agent comprises glycidyloxypropyltriethoxysilane (GOPS).
- the silane is a fluorosilane.
- the silane is a hydrocarbon silane.
- the silane is 3-iodo-propyltrimethoxysilane.
- the silane is octylchlorosilane.
- silanization is performed on a surface through self-assembly with organofunctional alkoxysilane molecules.
- the organofunctional alkoxysilanes are classified according to their organic functions.
- siloxane functionalizing reagents include hydroxyalkyl siloxanes (silylate surface, functionalizing with diborane and oxidizing the alcohol by hydrogen peroxide), diol (dihydroxyalkyl) siloxanes (silylate surface, and hydrolyzing to diol), aminoalkyl siloxanes (amines require no intermediate functionalizing step), glycidoxysilanes (3-glycidoxypropyl-dimethyl-ethoxysilane, glycidoxy-trimethoxysilane), mercaptosilanes (3-mercaptopropyl-trimethoxysilane, 3-4 epoxycyclohexyl-ethyltrimethoxysilane or 3-mercaptopropyl-methyl-dimethoxy
- Exemplary hydroxyalkyl siloxanes include allyl trichlorochlorosilane turning into 3-hydroxypropyl, or 7-oct-1-enyl trichlorochlorosilane turning into 8-hydroxyoctyl.
- the diol (dihydroxyalkyl) siloxanes include glycidyl trimethoxysilane-derived (2,3-dihydroxypropyloxy)propyl (GOPS).
- the aminoalkyl siloxanes include 3-aminopropyl trimethoxysilane turning into 3-aminopropyl (3-aminopropyl-triethoxysilane, 3-aminopropyl-diethoxy-methylsilane, 3-aminopropyl-dimethyl-ethoxysilane, or 3-aminopropyl-trimethoxysilane).
- the dimeric secondary aminoalkyl siloxanes is bis (3-trimethoxysilylpropyl) amine turning into bis(silyloxylpropyl)amine.
- active functionalization areas comprise one or more different species of silanes, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more silanes.
- one of the one or more silanes is present in the functionalization composition in an amount greater than another silane.
- a mixed silane solution having two silanes comprises a 99:1, 98:2, 97:3, 96:4, 95:5, 94:6, 93:7, 92:8, 91:9, 90:10, 89:11, 88:12, 87:13, 86:14, 85:15, 84:16, 83:17, 82:18, 81:19, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45 ratio of one silane to another silane.
- an active functionalization agent comprises 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane.
- an active functionalization agent comprises 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane in a ratio from about 20:80 to about 1:99, or about 10:90 to about 2:98, or about 5:95.
- the substrates described herein may comprise a plurality of features that allow for the attachment and synthesis of oligonucleic acids to the surface.
- droplets comprising oligonucleic acid synthesis reagents are released from oligonucleic acid synthesis material deposition unit to the substrate in a stepwise manner from a deposition device having a piezo ceramic material and electrodes to convert electrical signals into a mechanical signal for releasing the droplets.
- the droplets are release to specific locations on the surface of the substrate one nucleobase at a time to generate a plurality of synthesized oligonucleic acids having predetermined sequences that encode data.
- the synthesized oligonucleic acids are stored on the substrate.
- oligonucleic acids are cleaved from the surface. Cleavage includes gas cleavage with such gases as ammonia or methylamine.
- structures may comprise a surface that supports the synthesis of a plurality of oligonucleic acids having different predetermined sequences at addressable locations on a common support.
- a device provides support for the synthesis of more than 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more non-identical oligonucleic acids.
- the device provides support for the synthesis of more than 2,000; 5,000; 10,000; 20,000; 30,000; 50,000; 75,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more oligonucleic acids encoding for distinct sequences.
- the device provides support for the synthesis of more than 1 million, 1 billion, 10 billion or more oligonucleic acids.
- at least a portion of the oligonucleic acids have an identical sequence or are configured to be synthesized with an identical sequence.
- oligonucleic acids about 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 bases in length.
- the length of the oligonucleic acid formed is about 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, or 225 bases in length.
- An oligonucleic acid may be at least 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 bases in length.
- An oligonucleic acid may be from 10 to 225 bases in length, from 12 to 100 bases in length, from 20 to 150 bases in length, from 20 to 130 bases in length, from 25 to 1000 bases in length, from 75 to 500 bases in length, from 30 to 100 bases in length, or from 50 to 500 bases in length.
- oligonucleic acids are synthesized on distinct loci of a substrate, wherein each locus supports the synthesis of a population of oligonucleic acids. In some instances, each locus supports the synthesis of a population of oligonucleic acids having a different sequence than a population of oligonucleic acids grown on another locus. In some instances, the loci of a device are located within a plurality of clusters. In some instances, a device comprises at least 10, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 20000, 30000, 40000, 50000 or more clusters.
- a device comprises more than 2,000; 5,000; 10,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,100,000; 1,200,000; 1,300,000; 1,400,000; 1,500,000; 1,600,000; 1,700,000; 1,800,000; 1,900,000; 2,000,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; or 10,000,000 or more distinct loci. In some instances, a device comprises about 10,000 distinct loci.
- each cluster includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 150, 200, 300, 400, 500 or more loci. In some instances, each cluster includes about 50-500 loci. In some instances, each cluster includes about 100-200 loci. In some instances, each cluster includes about 100-150 loci. In some instances, each cluster includes about 109, 121, 130 or 137 loci. In some instances, each cluster includes about 19, 20, 61, 64 or more loci.
- the number of distinct oligonucleic acids synthesized on a device may be dependent on the number of distinct loci available in the substrate.
- the density of loci (or feature) within a cluster of a device is at least or about 1 locus per mm 2 , 10 loci per mm 2 , 25 loci per mm 2 , 50 loci per mm 2 , 65 loci per mm 2 , 75 loci per mm 2 , 100 loci per mm 2 , 130 loci per mm 2 , 150 loci per mm 2 , 175 loci per mm 2 , 200 loci per mm 2 , 300 loci per mm 2 , 400 loci per mm 2 , 500 loci per mm 2 , 1,000 loci per mm 2 or more.
- a device comprises from about 10 loci per mm 2 to about 500 mm 2 , from about 25 loci per mm 2 to about 400 mm 2 , from about 50 loci per mm 2 to about 500 mm 2 , from about 100 loci per mm 2 to about 500 mm 2 , from about 150 loci per mm 2 to about 500 mm 2 , from about 10 loci per mm 2 to about 250 mm 2 , from about 50 loci per mm 2 to about 250 mm 2 , from about 10 loci per mm 2 to about 200 mm 2 , or from about 50 loci per mm 2 to about 200 mm 2 .
- the distance from the centers of two adjacent loci within a cluster is from about 10 um to about 500 um, from about 10 um to about 200 um, or from about 10 um to about 100 um. In some instances, the distance from two centers of adjacent loci is greater than about 10 um, 20 um, 30 um, 40 um, 50 um, 60 um, 70 um, 80 um, 90 um or 100 um. In some instances, the distance from the centers of two adjacent loci is less than about 200 um, 150 um, 100 um, 80 um, 70 um, 60 um, 50 um, 40 um, 30 um, 20 um or 10 um.
- each locus has a width of about 0.5 um, 1 um, 2 um, 3 um, 4 um, 5 um, 6 um, 7 um, 8 um, 9 um, 10 um, 20 um, 30 um, 40 um, 50 um, 60 um, 70 um, 80 um, 90 um or 100 um. In some instances, the each locus has a width of about 0.5 um to 100 um, about 0.5 um to 50 um, about 10 um to 75 um, about 0.5 um to 50 um, or about 1 um to about 500 um.
- synthesized oligonucleic acids disclosed herein comprise a tether of 12 to 25 bases.
- the tether comprises 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more bases.
- a suitable method for oligonucleic acid synthesis on a substrate of this disclosure is a phosphoramidite method comprising the controlled addition of a phosphoramidite building block, i.e. nucleoside phosphoramidite, to a growing oligonucleic acid chain in a coupling step that forms a phosphite triester linkage between the phosphoramidite building block and a nucleoside bound to the substrate.
- the nucleoside phosphoramidite is provided to the substrate activated.
- the nucleoside phosphoramidite is provided to the substrate with an activator.
- nucleoside phosphoramidites are provided to the substrate in a 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the substrate-bound nucleosides.
- the addition of nucleoside phosphoramidite is performed in an anhydrous environment, for example, in anhydrous acetonitrile.
- the substrate is optionally washed.
- the coupling step is repeated one or more additional times, optionally with a wash step between nucleoside phosphoramidite additions to the substrate.
- an oligonucleic acid synthesis method used herein comprises 1, 2, 3 or more sequential coupling steps.
- the nucleoside bound to the substrate Prior to coupling, in many cases, is deprotected by removal of a protecting group, where the protecting group functions to prevent polymerization.
- a common protecting group is 4,4′-dimethoxytrityl (DMT).
- phosphoramidite oligonucleic acid synthesis methods optionally comprise a capping step.
- a capping step the growing oligonucleic acid is treated with a capping agent.
- a capping step generally serves to block unreacted substrate-bound 5′-OH groups after coupling from further chain elongation, preventing the formation of oligonucleic acids with internal base deletions.
- phosphoramidites activated with 1H-tetrazole often react, to a small extent, with the O6 position of guanosine. Without being bound by theory, upon oxidation with I 2 /water, this side product, possibly via O6-N7 migration, undergoes depurination.
- the apurinic sites can end up being cleaved in the course of the final deprotection of the oligonucleotide thus reducing the yield of the full-length product.
- the O6 modifications may be removed by treatment with the capping reagent prior to oxidation with I 2 /water.
- inclusion of a capping step during oligonucleic acid synthesis decreases the error rate as compared to synthesis without capping.
- the capping step comprises treating the substrate-bound oligonucleic acid with a mixture of acetic anhydride and 1-methylimidazole. Following a capping step, the substrate is optionally washed.
- the substrate bound growing nucleic acid is oxidized.
- the oxidation step comprises oxidizing the phosphite triester into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester internucleoside linkage.
- oxidation of the growing oligonucleic acid is achieved by treatment with iodine and water, optionally in the presence of a weak base such as a pyridine, lutidine, or collidine.
- Oxidation is sometimes carried out under anhydrous conditions using tert-Butyl hydroperoxide or (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO).
- CSO tert-Butyl hydroperoxide
- a capping step is performed following oxidation.
- a second capping step allows for substrate drying, as residual water from oxidation that may persist can inhibit subsequent coupling.
- the substrate and growing oligonucleic acid is optionally washed.
- the step of oxidation is substituted with a sulfurization step to obtain oligonucleotide phosphorothioates, wherein any capping steps can be performed after the sulfurization.
- reagents are capable of the efficient sulfur transfer, including, but not limited to, 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).
- DDTT 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione
- DDTT 3H-1,2-benzodithiol-3-one 1,1-dioxide
- Beaucage reagent also known as Beaucage reagent
- TETD N,N,N′N′-Tetraethylthiuram disulfide
- a protected 5′ end of the substrate bound growing oligonucleic acid must be removed so that the primary hydroxyl group can react with a next nucleoside phosphoramidite.
- the protecting group is DMT and deblocking occurs with trichloroacetic acid in dichloromethane. Conducting detritylation for an extended time or with stronger than recommended solutions of acids may lead to increased depurination of solid support-bound oligonucleotide and thus reduces the yield of the desired full-length product. Methods and compositions described herein provide for controlled deblocking conditions limiting undesired depurination reactions.
- the substrate bound oligonucleic acid is washed after deblocking. In some cases, efficient washing after deblocking contributes to synthesized oligonucleic acids having a low error rate.
- Methods for the synthesis of oligonucleic acids on the substrates described herein typically involve an iterating sequence of the following steps: application of a protected monomer to a surface of a substrate feature to link with either the surface, a linker or with a previously deprotected monomer; deprotection of the applied monomer so that it can react with a subsequently applied protected monomer; and application of another protected monomer for linking.
- One or more intermediate steps include oxidation and/or sulfurization.
- one or more wash steps precede or follow one or all of the steps.
- oligonucleic acids are synthesized with photolabile protecting groups, where the hydroxyl groups generated on the surface are blocked by photolabile-protecting groups.
- photolabile protecting groups where the hydroxyl groups generated on the surface are blocked by photolabile-protecting groups.
- a pattern of free hydroxyl groups on the surface may be generated. These hydroxyl groups can react with photoprotected nucleoside phosphoramidites, according to phosphoramidite chemistry.
- a second photolithographic mask can be applied and the surface can be exposed to UV light to generate second pattern of hydroxyl groups, followed by coupling with 5′-photoprotected nucleoside phosphoramidite.
- patterns can be generated and oligomer chains can be extended.
- the lability of a photocleavable group depends on the wavelength and polarity of a solvent employed and the rate of photocleavage may be affected by the duration of exposure and the intensity of light.
- This method can leverage a number of factors such as accuracy in alignment of the masks, efficiency of removal of photo-protecting groups, and the yields of the phosphoramidite coupling step. Further, unintended leakage of light into neighboring sites can be minimized.
- the density of synthesized oligomer per spot can be monitored by adjusting loading of the leader nucleoside on the surface of synthesis.
- the surface of the substrate that provides support for oligonucleic acid synthesis is chemically modified to allow for the synthesized oligonucleic acid chain to be cleaved from the surface.
- the oligonucleic acid chain is cleaved at the same time as the oligonucleic acid is deprotected. In some cases, the oligonucleic acid chain is cleaved after the oligonucleic acid is deprotected.
- a trialkoxysilyl amine such as (CH3CH2O)3Si—(CH2)2-NH2 is reacted with surface SiOH groups of a substrate, followed by reaction with succinic anhydride with the amine to create an amide linkage and a free OH on which the nucleic acid chain growth is supported.
- Oligonucleic acids synthesized using the methods and substrates described herein are optionally released from the surface from which they are synthesized.
- oligonucleic acids are cleaved from the surface after synthesis.
- oligonucleic acids are cleaved from the surface after storage.
- Cleavage includes gas cleavage with ammonia or methylamine.
- the application of ammonia gas simultaneous deprotects phosphates groups protected during the synthesis steps, i.e. removal of electron-withdrawing cyano group.
- oligonucleic acids are assembled into larger nucleic acids that are sequenced and decoded to extract stored information.
- each sequence fragment comprises an index that provides instructions for how to assemble it with other sequences stored with it.
- synthesized oligonucleic acids are designed to collectively span a large region of a predetermined sequence that encodes for information.
- larger oligonucleic acids are generated through ligation reactions to join the synthesized oligonucleic acids.
- a ligation reaction is polymerase chain assembly (PCA).
- PCA polymerase chain assembly
- at least of a portion of the oligonucleic acids are designed to include an appended region that is a substrate for universal primer binding.
- the presynthesized oligonucleic acids include overlaps with each other (e.g., 4, 20, 40 or more bases with overlapping sequence).
- the oligonucleic acids anneal to complementary fragments and then are filled in by polymerase. Each cycle thus increases the length of various fragments randomly depending on which oligonucleic acids find each other. Complementarity amongst the fragments allows for forming a complete large span of double-stranded DNA.
- an error correction step is conducted using mismatch repair detecting enzymes to remove mismatches in the sequence. Once larger fragments of a target sequence are generated, they can be amplified.
- a target sequence comprising 5′ and 3′ terminal adapter sequences is amplified in a polymerase chain reaction (PCR) which includes modified primers that hybridize to the adapter sequences.
- the modified primers comprise one or more uracil bases.
- the use of modified primers allows for removal of the primers through enzymatic reactions centered on targeting the modified base and/or gaps left by enzymes which cleave the modified base pair from the fragment. What remains is a double-stranded amplification product that lacks remnants of adapter sequence. In this way, multiple amplification products can be generated in parallel with the same set of primers to generate different fragments of double-stranded DNA.
- error correction is performed on synthesized oligonucleic acids and/or assembled products.
- An example strategy for error correction involves site-directed mutagenesis by overlap extension PCR to correct errors, which is optionally coupled with two or more rounds of cloning and sequencing.
- double-stranded nucleic acids with mismatches, bulges and small loops, chemically altered bases and/or other heteroduplexes are selectively removed from populations of correctly synthesized nucleic acids.
- error correction is performed using proteins/enzymes that recognize and bind to or next to mismatched or unpaired bases within double-stranded nucleic acids to create a single or double-strand break or to initiate a strand transfer transposition event.
- Non-limiting examples of proteins/enzymes for error correction include endonucleases (T7 Endonuclease I, E. coli Endonuclease V, T4 Endonuclease VII, mung bean nuclease, Cell, E. coli Endonuclease IV, UVDE), restriction enzymes, glycosylases, ribonucleases, mismatch repair enzymes, resolvases, helicases, ligases, antibodies specific for mismatches, and their variants.
- endonucleases T7 Endonuclease I, E. coli Endonuclease V, T4 Endonuclease VII, mung bean nuclease, Cell, E. coli Endonuclease IV, UVDE
- restriction enzymes glycosylases
- ribonucleases mismatch repair enzymes
- resolvases helicases
- ligases antibodies specific for mismatches, and their
- error correction enzymes examples include T4 endonuclease 7, T7 endonuclease 1, S1, mung bean endonuclease, MutY, MutS, MutH, MutL, cleavase, CELI, and HINF1.
- DNA mismatch-binding protein MutS Thermus aquaticus
- error correction is performed using the enzyme Correctase.
- error correction is performed using SURVEYOR endonuclease (Transgenomic), a mismatch-specific DNA endonuclease that scans for known and unknown mutations and polymorphisms for heteroduplex DNA.
- these error rates are for at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleic acids synthesized. In some instances, these at least 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleic acids synthesized do not differ from a predetermined sequence for which they encode. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 200. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 1,000.
- the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 2,000. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 3,000. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 5,000. Individual types of error rates include mismatches, deletions, insertions, and/or substitutions for the oligonucleic acids synthesized on the substrate. The term “error rate” refers to a comparison of the collective amount of synthesized oligonucleic acid to an aggregate of predetermined oligonucleic acid sequences.
- Average error rates for oligonucleic acids synthesized within a library using the systems and methods provided may be less than 1 in 1000, less than 1 in 1250, less than 1 in 1500, less than 1 in 2000, less than 1 in 3000 or less often. In some instances, average error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1100, 1/1200, 1/1250, 1/1300, 1/1400, 1/1500, 1/1600, 1/1700, 1/1800, 1/1900, 1/2000, 1/3000, or less. In some instances, average error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/1000.
- aggregate error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1100, 1/1200, 1/1250, 1/1300, 1/1400, 1/1500, 1/1600, 1/1700, 1/1800, 1/1900, 1/2000, 1/3000, or less compared to the predetermined sequences.
- aggregate error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/500, 1/600, 1/700, 1/800, 1/900, or 1/1000.
- aggregate error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/1000.
- an error correction enzyme may be used for oligonucleic acids synthesized within a library using the systems and methods provided can use.
- aggregate error rates for oligonucleic acids with error correction can be less than 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1100, 1/1200, 1/1300, 1/1400, 1/1500, 1/1600, 1/1700, 1/1800, 1/1900, 1/2000, 1/3000, or less compared to the predetermined sequences.
- aggregate error rates with error correction for oligonucleic acids synthesized within a library using the systems and methods provided can be less than 1/500, 1/600, 1/700, 1/800, 1/900, or 1/1000. In some instances, aggregate error rates with error correction for oligonucleic acids synthesized within a library using the systems and methods provided can be less than 1/1000.
- Libraries disclosed herein may be synthesized with base insertion, deletion, substitution, or total error rates that are under 1/300, 1/400, 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1250, 1/1500, 1/2000, 1/2500, 1/3000, 1/4000, 1/5000, 1/6000, 1/7000, 1/8000, 1/9000, 1/10000, 1/12000, 1/15000, 1/20000, 1/25000, 1/30000, 1/40000, 1/50000, 1/60000, 1/70000, 1/80000, 1/90000, 1/100000, 1/125000, 1/150000, 1/200000, 1/300000, 1/400000, 1/500000, 1/600000, 1/700000, 1/800000, 1/900000, 1/1000000, or less, across the library, or across more than 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99
- the methods and compositions of the disclosure further relate to large synthetic oligonucleotide libraries with low error rates associated with at least 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the oligonucleotides in at least a subset of the library to relate to error free sequences in comparison to a predetermined/preselected sequence.
- the error rate related to a specified locus on an oligonucleotide is optimized.
- a given locus or a plurality of selected loci of one or more oligonucleotides as part of a large library may each have an error rate that is less than 1/300, 1/400, 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1250, 1/1500, 1/2000, 1/2500, 1/3000, 1/4000, 1/5000, 1/6000, 1/7000, 1/8000, 1/9000, 1/10000, 1/12000, 1/15000, 1/20000, 1/25000, 1/30000, 1/40000, 1/50000, 1/60000, 1/70000, 1/80000, 1/90000, 1/100000, 1/125000, 1/150000, 1/200000, 1/300000, 1/400000, 1/500000, 1/600000, 1/700000, 1/800000, 1/900000, 1/1000000, or less.
- such error optimized loci may comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 30000, 50000, 75000, 100000, 500000, 1000000, 2000000, 3000000 or more loci.
- the error optimized loci may be distributed to at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 30000, 75000, 100000, 500000, 1000000, 2000000, 3000000 or more oligonucleotides.
- the error rates can be achieved with or without error correction.
- the error rates can be achieved across the library, or across more than 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the library.
- the biomolecules are oligonucleic acids that store encoded information in their sequences.
- the system comprises a substrate to support biomolecule attachment and/or a device for application of a biomolecule to the surface of the substrate.
- the device for biomolecule application is an oligonucleic acid synthesizer.
- the system comprises a device for treating the substrate with a fluid, for example, a flow cell.
- the system comprises a device for moving the substrate between the application device and the treatment device.
- the system may comprise two or more reels that allow for access of different portions of the substrate to the application and optional treatment device at different times.
- a flexible substrate comprising thermoplastic material is coated with nucleoside coupling reagent.
- the coating is patterned into features such that each feature has diameter of about 10 um, with a center-to-center distance between two adjacent features of about 21 um.
- the feature size is sufficient to accommodate a sessile drop volume of 0.2 pl during an oligonucleic acid synthesis deposition step.
- the feature density is about 2.2 billion features per m 2 (1 feature/441 ⁇ 10 ⁇ 12 m 2 ).
- a 4.5 m 2 substrate comprise about 10 billion features, each with a 10 um diameter.
- a deposition device comprises about 2,048 nozzles that each deposit about 100,000 droplets per second at 1 nucleobase per droplet. For each deposition device, at least about 1.75 ⁇ 10 13 nucleobases are deposited on the substrate per day. In some cases, 100 to 500 nucleobase oligonucleic acids are synthesized. In some cases, 200 nucleobase oligonucleic acids are synthesized. Optionally, over 3 days, at a rate of about 1.75 ⁇ 10 13 bases per day, at least about 262.5 ⁇ 10 9 oligonucleic acids are synthesized.
- an automated system for use with an oligonucleic acid synthesis method described herein that is capable of processing one or more substrates, comprising: a material deposition device for spraying a microdroplet comprising a reagent on a substrate; a scanning transport for scanning the substrate adjacent to the material deposition device to selectively deposit the microdroplet at specified sites; a flow cell for treating the substrate on which the microdroplet is deposited by exposing the substrate to one or more selected fluids; and an alignment unit for aligning the substrate correctly relative to the material deposition device for deposition.
- the system optionally comprises a treating transport for moving the substrate between the material deposition device and the flow cell for treatment in the flow cell, where the treating transport and said scanning transport are different elements. In other instances, the system does not comprise a treating transport.
- a device for application of one or more reagents to a substrate during a synthesis reaction is an oligonucleic acid synthesizer comprising a plurality of material deposition devices.
- each material deposition device is configured to deposit nucleotide monomers for phosphoramidite synthesis.
- the oligonucleic acid synthesizer deposits reagents to distinct features of a substrate.
- Reagents for oligonucleic acid synthesis include reagents for oligonucleic acid extension and wash buffers.
- the oligonucleic acid synthesizer deposits coupling reagents, capping reagents, oxidizers, de-blocking agents, acetonitrile, gases such as nitrogen gas, and any combination thereof.
- the oligonucleic acid synthesizer optionally deposits reagents for the preparation and/or maintenance of substrate integrity.
- the oligonucleic acid synthesizer deposits a drop having a diameter less than about 200 um, 100 um, or 50 um in a volume less than about 1000, 500, 100, 50, or 20 pl.
- the oligonucleic acid synthesizer deposits between about 1 and 10000, 1 and 5000, 100 and 5000, or 1000 and 5000 droplets per second. In some instances, the oligonucleic acid synthesizer uses organic solvents.
- the substrate is positioned within and/or sealed within a flow cell.
- the flow cell provides continuous or discontinuous flow of liquids such as those comprising reagents necessary for reactions within the substrate, for example, oxidizers and/or solvents.
- the flow cell provides continuous or discontinuous flow of a gas, such as nitrogen, for drying the substrate typically through enhanced evaporation of a volatile substrate.
- auxiliary devices are useful to improve drying and reduce residual moisture on the surface of the substrate. Examples of such auxiliary drying devices include, without limitation, a vacuum source, depressurizing pump and a vacuum tank.
- an oligonucleic acid synthesis system comprises one or more flow cells, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or 20 and one or more substrates, such as 2, 3, 4, 5, 6, 7, 8, 9, 10 or 20.
- a flow cell is configured to hold and provide reagents to the substrate during one or more steps in a synthesis reaction.
- a flowcell comprises a lid that slides over the top of a substrate and can be clamped into place to form a pressure tight seal around the edge of the substrate.
- An adequate seal includes, without limitation, a seal that allows for about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 atmospheres of pressure.
- the lid of the flow cell is opened to allow for access to an application device such as an oligonucleic acid synthesizer.
- an oligonucleic acid synthesizer In some cases, one or more steps of an oligonucleic acid synthesis method are performed on a substrate within a flow cell, without the transport of the substrate.
- a device for treating a substrate with a fluid comprises a spray bar.
- nucleotide monomers are applied onto a substrate surface with an application device and then a spray bar sprays the substrate surface with one or more treatment reagents using spray nozzles of the spray bar.
- the spray nozzles are sequentially ordered to correlate with different treatment steps during oligonucleic acid synthesis.
- the chemicals used in different process steps are easily changed in the spray bar to readily accommodate changes in a synthesis method or between steps of a synthesis method.
- the spray bar continuously sprays a given chemistry on a surface of a substrate as the substrate moves past the spray bar.
- the spray bar deposits over a wide area of a substrate, much like the spray bars used in lawn sprinklers.
- the spray bar nozzles are positioned to provide a uniform coat of treatment material to a given area of a substrate.
- an oligonucleic acid synthesis system comprises one or more elements useful for downstream processing of synthesized oligonucleic acids.
- the system comprises a temperature control element such as a thermal cycling device.
- the temperature control element is used with a plurality of resolved reactors to perform nucleic acid assembly such as PCA and/or nucleic acid amplification such as PCR.
- An oligonucleic acid synthesizer comprises one or more deposition devices that deposit reagents for nucleic acid synthesis onto distinct features or regions of a substrate at a high resolution.
- Examples of devices that are capable of high resolution droplet deposition include the printhead of inkjet printers and laser printers.
- the devices useful in the systems and methods described herein achieve a resolution from about 100 dots per inch (DPI) to about 50,000 DPI; from about 100 DPI to about 20,000 DPI; from about 100 DPI to about 10,000 DPI; from about 100 DPI to about 5,000 DPI; from about 1,000 DPI to about 20,000 DPI; or from about 1,000 DPI to about 10,000 DPI.
- DPI dots per inch
- the size of the droplets dispensed correlates to the resolution of the device.
- the devices deposit droplets of reagents at sizes from about 0.01 pl to about 20 pl, from about 0.01 pl to about 10 pl, from about 0.01 pl to about 1 pl, from about 0.01 pl to about 0.5 pl, from about 0.01 pl to about 0.01 pl, or from about 0.05 pl to about 1 pl.
- the droplet size is less than about 1 pl, 0.5 pl, 0.2 pl, 0.1 pl, or 0.05 pl.
- the size of droplets dispensed by the device is correlated to the diameters of deposition nozzles, wherein each nozzle is capable of depositing a reagent onto a feature of the substrate.
- nucleic acid reagents are deposited on the substrate surface in a non-continuous, or drop-on-demand method.
- examples of such methods include the electromechanical transfer method, electric thermal transfer method, and electrostatic attraction method.
- electromechanical transfer method piezoelectric elements deformed by electrical pulses cause the droplets to be ejected.
- electric thermal transfer method bubbles are generated in a chamber of the device, and the expansive force of the bubbles causes the droplets to be ejected.
- electrostatic attraction method electrostatic force of attraction is used to eject the droplets onto the substrate.
- the drop frequency is from about 5 KHz to about 500 KHz; from about 5 KHz to about 100 KHz; from about 10 KHz to about 500 KHz; from about 10 KHz to about 100 KHz; or from about 50 KHz to about 500 KHz. In some cases, the frequency is less than about 500 KHz, 200 KHz, 100 KHz, or 50 KHz.
- the number of deposition sites increases by using and rotating the same deposition device by a certain degree or saber angle.
- each nozzle is jetted with a certain amount of delay time corresponding to the saber angle. This unsynchronized jetting creates a cross talk among the nozzles. Therefore, when the droplets are jetting at a certain saber angle different from 0 degrees, the droplet volume from the nozzle could be different.
- an oligonucleic acid synthesis system allows for a continuous oligonucleic acid synthesis process that exploits the flexibility of a substrate for traveling in a reel-to-reel type process.
- This synthesis process operates in a continuous production line manner with the substrate travelling through various stages of oligonucleic acid synthesis using one or more reels to rotate the position of the substrate.
- an oligonucleic acid synthesis reaction comprises rolling a substrate: through a solvent bath, beneath a deposition device for phosphoramidite deposition, through a bath of oxidizing agent, through an acetonitrile wash bath, and through a deblock bath.
- the tape is also traversed through a capping bath.
- a reel-to-reel type process allows for the finished product of a substrate comprising synthesized oligonucleic acids to be easily gathered on a take-up reel, where it can be transported for further processing or storage.
- oligonucleic acid synthesis proceeds in a continuous process as a continuous flexible tape is conveyed along a conveyor belt system. Similar to the reel-to-reel type process, oligonucleic acid synthesis on a continuous tape operates in a production line manner, with the substrate travelling through various stages of oligonucleic acid synthesis during conveyance. However, in a conveyor belt process, the continuous tape revisits an oligonucleic acid synthesis step without rolling and unrolling of the tape, as in a reel-to-reel process. In some instances, oligonucleic acid synthesis steps are partitioned into zones and a continuous tape is conveyed through each zone one or more times in a cycle.
- an oligonucleic acid synthesis reaction comprises (1) conveying a substrate through a solvent bath, beneath a deposition device for phosphoramidite deposition, through a bath of oxidizing agent, through an acetonitrile wash bath, and through a block bath in a cycle; and then (2) repeating the cycle as necessary to achieve synthesized oligonucleic acids of a predetermined length.
- the flexible substrate is removed from the conveyor belt system and rolled, optionally around a reel, for storage.
- any of the systems described herein are operably linked to a computer and are optionally automated through a computer either locally or remotely.
- the methods and systems described herein further comprise software programs on computer systems and use thereof. Accordingly, computerized control for the synchronization of the dispense/vacuum/refill functions such as orchestrating and synchronizing the material deposition device movement, dispense action and vacuum actuation are within the bounds of the invention.
- the computer systems are programmed to interface between the user specified base sequence and the position of a material deposition device to deliver the correct reagents to specified regions of the substrate.
- the computer system 400 illustrated in FIG. 4 may be understood as a logical apparatus that can read instructions from media 411 and/or a network port 405 , which can optionally be connected to server 409 having fixed media 412 .
- the system such as shown in FIG. 4 can include a CPU 401 , disk drives 403 , optional input devices such as keyboard 415 and/or mouse 416 and optional monitor 407 .
- Data communication can be achieved through the indicated communication medium to a server at a local or a remote location.
- the communication medium can include any means of transmitting and/or receiving data.
- the communication medium can be a network connection, a wireless connection or an internet connection. Such a connection can provide for communication over the World Wide Web. It is envisioned that data relating to the present disclosure can be transmitted over such networks or connections for reception and/or review by a party 422 as illustrated in FIG. 4 .
- the north bridge and south bridge are often referred to as a processor chipset and manage data transfer between the processor, RAM, and peripheral components on the peripheral bus 518 .
- the functionality of the north bridge can be incorporated into the processor instead of using a separate north bridge chip.
- system 500 can include an accelerator card 522 attached to the peripheral bus 518 .
- the accelerator can include field programmable gate arrays (FPGAs) or other hardware for accelerating certain processing.
- FPGAs field programmable gate arrays
- an accelerator can be used for adaptive data restructuring or to evaluate algebraic expressions used in extended set processing.
- the system 500 includes an operating system for managing system resources; non-limiting examples of operating systems include: Linux, WindowsTM, MACOSTM, BlackBerry OSTM, iOSTM, and other functionally-equivalent operating systems, as well as application software running on top of the operating system for managing data storage and optimization in accordance with example embodiments of the present invention.
- system 500 also includes network interface cards (NICs) 520 and 521 connected to the peripheral bus for providing network interfaces to external storage, such as Network Attached Storage (NAS) and other computer systems that can be used for distributed parallel processing.
- NICs network interface cards
- NAS Network Attached Storage
- FIG. 6 is a diagram showing a network 600 with a plurality of computer systems 602 a , and 602 b , a plurality of cell phones and personal data assistants 602 c , and Network Attached Storage (NAS) 604 a , and 604 b .
- systems 602 a , 602 b , and 602 c can manage data storage and optimize data access for data stored in Network Attached Storage (NAS) 604 a and 604 b .
- NAS Network Attached Storage
- a mathematical model can be used for the data and be evaluated using distributed parallel processing across computer systems 602 a , and 602 b , and cell phone and personal data assistant systems 602 c .
- Computer systems 602 a , and 602 b , and cell phone and personal data assistant systems 602 c can also provide parallel processing for adaptive data restructuring of the data stored in Network Attached Storage (NAS) 604 a and 604 b .
- FIG. 6 illustrates an example only, and a wide variety of other computer architectures and systems can be used in conjunction with the various embodiments of the present invention.
- a blade server can be used to provide parallel processing.
- Processor blades can be connected through a back plane to provide parallel processing.
- Storage can also be connected to the back plane or as Network Attached Storage (NAS) through a separate network interface.
- NAS Network Attached Storage
- processors can maintain separate memory spaces and transmit data through network interfaces, back plane or other connectors for parallel processing by other processors. In other embodiments, some or all of the processors can use a shared virtual address memory space.
- FIG. 7 is a block diagram of a multiprocessor computer system 700 using a shared virtual address memory space in accordance with an example embodiment.
- the system includes a plurality of processors 702 a - f that can access a shared memory subsystem 704 .
- the system incorporates a plurality of programmable hardware memory algorithm processors (MAPs) 706 a - f in the memory subsystem 704 .
- MAPs programmable hardware memory algorithm processors
- Each MAP 706 a - f can comprise a memory 708 a - f and one or more field programmable gate arrays (FPGAs) 710 a - f .
- FPGAs field programmable gate arrays
- the MAP provides a configurable functional unit and particular algorithms or portions of algorithms can be provided to the FPGAs 710 a - f for processing in close coordination with a respective processor.
- the MAPs can be used to evaluate algebraic expressions regarding the data model and to perform adaptive data restructuring in example embodiments.
- each MAP is globally accessible by all of the processors for these purposes.
- each MAP can use Direct Memory Access (DMA) to access an associated memory 708 a - f , allowing it to execute tasks independently of, and asynchronously from, the respective microprocessor 702 a - f .
- DMA Direct Memory Access
- a MAP can feed results directly to another MAP for pipelining and parallel execution of algorithms.
- the above computer architectures and systems are examples only, and a wide variety of other computer, cell phone, and personal data assistant architectures and systems can be used in connection with example embodiments, including systems using any combination of general processors, co-processors, FPGAs and other programmable logic devices, system on chips (SOCs), application specific integrated circuits (ASICs), and other processing and logic elements.
- all or part of the computer system can be implemented in software or hardware.
- Any variety of data storage media can be used in connection with example embodiments, including random access memory, hard drives, flash memory, tape drives, disk arrays, Network Attached Storage (NAS) and other local or distributed data storage devices and systems.
- NAS Network Attached Storage
- the computer system can be implemented using software modules executing on any of the above or other computer architectures and systems.
- the functions of the system can be implemented partially or completely in firmware, programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in FIG. 7 , system on chips (SOCs), application specific integrated circuits (ASICs), or other processing and logic elements.
- FPGAs field programmable gate arrays
- SOCs system on chips
- ASICs application specific integrated circuits
- the Set Processor and Optimizer can be implemented with hardware acceleration through the use of a hardware accelerator card.
- a device was functionalized to support the attachment and synthesis of a library of oligonucleic acids.
- the device surface was first wet cleaned using a piranha solution comprising 90% H 2 SO 4 and 10% H 2 O 2 for 20 minutes.
- the device was rinsed in several beakers with DI water, held under a DI water gooseneck faucet for 5 min, and dried with N 2 .
- the device was subsequently soaked in NH 4 OH (1:100; 3 mL:300 mL) for 5 min, rinsed with DI water using a handgun, soaked in three successive beakers with DI water for 1 min each, and then rinsed again with DI water using the handgun.
- the device was then plasma cleaned by exposing the device surface to O 2 .
- a SAMCO PC-300 instrument was used to plasma etch O 2 at 250 watts for 1 min in downstream mode.
- the cleaned device surface was actively functionalized with a solution comprising N-(3-triethoxysilylpropyl)-4-hydroxybutyramide using a YES-1224P vapor deposition oven system with the following parameters: 0.5 to 1 torr, 60 min, 70° C., 135° C. vaporizer.
- the device surface was resist coated using a Brewer Science 200X spin coater. SPRTM 3612 photoresist was spin coated on the device at 2500 rpm for 40 sec. The device was pre-baked for 30 min at 90° C. on a Brewer hot plate.
- the device was subjected to photolithography using a Karl Suss MA6 mask aligner instrument. The device was exposed for 2.2 sec and developed for 1 min in MSF 26A.
- Remaining developer was rinsed with the handgun and the device soaked in water for 5 min.
- the device was baked for 30 min at 100° C. in the oven, followed by visual inspection for lithography defects using a Nikon L200.
- a descum process was used to remove residual resist using the SAMCO PC-300 instrument to O 2 plasma etch at 250 watts for 1 min.
- the device surface was passively functionalized with a 100 ⁇ L solution of perfluorooctyltrichlorosilane mixed with 10 ⁇ L light mineral oil.
- the device was placed in a chamber, pumped for 10 min, and then the valve was closed to the pump and left to stand for 10 min. The chamber was vented to air.
- the device was resist stripped by performing two soaks for 5 min in 500 mL NMP at 70° C. with ultrasonication at maximum power (9 on Crest system). The device was then soaked for 5 min in 500 mL isopropanol at room temperature with ultrasonication at maximum power.
- the device was dipped in 300 mL of 200 proof ethanol and blown dry with N 2 .
- the functionalized surface was activated to serve as a support for oligonucleic acid synthesis.
- a two dimensional oligonucleotide synthesis device was assembled into a flowcell, which was connected to a flowcell (Applied Biosystems (ABI394 DNA Synthesizer”).
- the two-dimensional oligonucleotide synthesis device was uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE (Gelest) was used to synthesize an exemplary oligonucleotide of 50 bp (“50-mer oligonucleotide”) using oligonucleotide synthesis methods described herein.
- the sequence of the 50-mer was as described in SEQ ID NO.: 1. 5′AGACAATCAACCATTTGGGGTGGACAGCCTTGACCTCTAGACTTCGGCAT##TTTTTTT TTT3′ (SEQ ID NO.: 1), where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes), which is a cleavable linker enabling the release of oligonucleic acids from the surface during deprotection.
- CLP-2244 Thymidine-succinyl hexamide CED phosphoramidite
- the synthesis was done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 1 and an ABI synthesizer.
- the phosphoramidite/activator combination was delivered similar to the delivery of bulk reagents through the flowcell. No drying steps were performed as the environment stays “wet” with reagent the entire time.
- the flow restrictor was removed from the ABI 394 synthesizer to enable faster flow. Without flow restrictor, flow rates for amidites (0.1M in ACN), Activator, (0.25M Benzoylthiotetrazole (“BTT”; 30-3070-xx from GlenResearch) in ACN), and Ox (0.02M 12 in 20% pyridine, 10% water, and 70% THF) were roughly ⁇ 100 uL/sec, for acetonitrile (“ACN”) and capping reagents (1:1 mix of CapA and CapB, wherein CapA is acetic anhydride in THF/Pyridine and CapB is 16% 1-methylimidizole in THF), roughly ⁇ 200 uL/sec, and for Deblock (3% dichloroacetic acid in toluene), roughly ⁇ 300 uL/sec (compared to ⁇ 50 uL/sec for all reagents with flow restrictor).
- ACN acetonitrile
- Deblock 3% dichloroacetic
- Example 2 The same process as described in Example 2 for the synthesis of the 50-mer sequence was used for the synthesis of a 100-mer oligonucleotide (“100-mer oligonucleotide”; 5′ CGGGATCCTTATCGTCATCGTCGTACAGATCCCGACCCATTTGCTGTCCACCAGTCATGC TAGCCATACCATGATGATGATGATGATGAGAACCCCGCAT##TTTTTTTT3′, where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes); SEQ ID NO.: 2) on two different silicon chips, the first one uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE and the second one functionalized with 5/95 mix of 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane, and the oligonucleic
- Table 3 summarizes error characteristics for the sequences obtained from the oligonucleotides samples from spots 1-10.
- Digital information was selected in the form of binary data totaling about 0.2 GB included content for the Universal Declaration of Human Rights in more than 100 languages, the top 100 books of Project Guttenberg and a seed database.
- the digital information was encrypted into a nucleic acid-based sequence and divided into strings.
- Over 10 million non-identical oligonucleic acids, each corresponding to a string, were synthesized on a rigid silicon surface in a manner similar to that described in Example 2. Each non-identical oligonucleic acid was under equal or less than 200 bases in length. The synthesized oligonucleic acids were collected and sequenced and decoded back to digital code, with 100% accuracy for the source digital information.
- Example 5 Flexible Substrate Having a High Density of Features
- a flexible structure comprising thermoplastic material is coated with a nucleoside coupling reagent.
- the coating agent is patterned for a high density of features.
- a portion of the flexible surface is illustrated in FIG. 2 B .
- Each feature has a diameter of 10 um, with a center-to-center distance between two adjacent features of 21 um.
- the feature size is sufficient to accommodate a sessile drop volume of 0.2 pl during an oligonucleic acid synthesis deposition step.
- the small feature dimensions allow for a high density of oligonucleic acids to be synthesized on the surface of the substrate.
- the feature density is 2.2 billion features/m 2 (1 feature/441 ⁇ 10 ⁇ 12 m 2 ).
- a 4.5 m 2 substrate is manufactured having 10 billion features, each with a 10 um diameter.
- the flexible structure is optionally placed in a continuous loop system, FIG. 2 A , for oligonucleic acid synthesis.
- a flexible substrate is prepared comprising a plurality of features on a thermoplastic flexible material.
- the substrate serves as a support for the synthesis of oligonucleic acids using an oligonucleic acid synthesis device comprising a deposition device.
- the flexible substrate is in the form of a flexible media much like a magnetic reel-to-reel tape.
- De novo synthesis operates in a continuous production line manner with the substrate travelling through a solvent bath and then beneath a stack of printheads where the phosphoramidites are printed on to the substrate.
- the flexible substrate with the sessile drops deposited on to the surface is rolled into a bath of oxidizing agent, then the tape emerges from the oxidizing bath and is immersed in an acetonitrile wash bath then submerged in a deblock bath.
- the tape is traversed through a capping bath.
- the flexible substrate emerges from the oxidizing bath and is sprayed with acetonitrile in a wash step.
- a spray bar is used instead of a liquid bath.
- the nucleotides are still deposited on the surface with an inkjet device but the flood steps are now done in a chamber with a spray nozzles.
- the deposition device has 2,048 nozzles that each deposit 100,000 droplets per second at 1 nucleobase per droplet.
- spray nozzles There is a sequential ordering of spray nozzles to mimic the ordering of the flood steps in standard phosphoramidite chemistry. This technique provides for easily changing the chemicals loaded in the spray bar to accommodate different process steps. Oligonucleic acids are deprotected or cleaved in the same manner as described in Example 2.
- each deposition device more than 1.75 ⁇ 10 13 nucleobases are deposited on the substrate per day (24 hours).
- a plurality of 200 nucleobase oligonucleic acids is synthesized.
- 3 days (72 hours) at a rate of 1.75 ⁇ 10 13 bases per day, 262.5 ⁇ 10 9 oligonucleic acids are synthesized.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Theoretical Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medical Informatics (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
Abstract
Description
- This application is a continuation application of U.S. patent application Ser. No. 15/272,004, filed Sep. 21, 2016, which claims the benefit of U.S. Provisional Application No. 62/222,020 filed on Sep. 22, 2015, which are incorporated herein by reference in their entirety.
- The instant application contains a Sequence Listing which has been submitted electronically in .xml format and is hereby incorporated by reference in its entirety. Said .xml copy, created on Oct. 28, 2022, is named 44854-717_301_SL.xml and is 6,000 bytes in size.
- Biomolecule based information storage systems, e.g., DNA-based, have a large storage capacity and stability over time. However, there is a need for scalable, automated, highly accurate and highly efficient systems for generating biomolecules for information storage.
- Provided herein are methods for storing information, comprising: converting an item of information in the form of at least one digital sequence to at least one nucleic acid sequence; providing a flexible structure having a surface; synthesizing a plurality of oligonucleic acids having predetermined sequences collectively encoding for the at least one nucleic acid sequence, wherein the plurality of oligonucleic acids comprises at least about 100,000 oligonucleic acids, and wherein the plurality of oligonucleic acids extends from the surface of the flexible structure; and storing the plurality of oligonucleic acids. Further provided herein are methods wherein synthesizing comprises: depositing nucleosides on the surface at predetermined locations; and moving least a portion of the flexible structure through a bath or emissions from a spray bar. Further provided herein are methods wherein the bath or emissions from a spray bar expose the surface of the structure to an oxidizing reagent or a deblocking reagent. Further provided herein are methods wherein synthesizing further comprises capping the nucleosides deposited on the surface. Further provided herein are methods wherein the nucleosides comprise a nucleoside phosphoramidite. Further provided herein are methods wherein the flexible structure comprises a reel-to-reel tape or a continuous tape. Further provided herein are methods wherein the flexible structure comprises a thermoplastic material. Further provided herein are methods wherein the thermoplastic material comprises a polyaryletherketone. Further provided herein are methods wherein the polyaryletherketone is polyetherketone, polyetherketoneketone, poly(ether ether ketone ketone), polyether ether ketone or polyetherketoneetherketoneketone. Further provided herein are methods wherein the flexible structure comprises nylon, nitrocellulose, polypropylene, polycarbonate, polyethylene, polyurethane, polystyrene, acetal, acrylic, acrylonitrile, butadiene styrene, polyethylene terephthalate, polymethyl methacrylate, polyvinyl chloride, transparent PVC foil, Poly(methyl methacrylate), styrenic polymer, fluorine-containing polymers, polyethersulfone or polyimide. Further provided herein are methods wherein each oligonucleic acid of the plurality of oligonucleic acids comprises from 50 to 500 bases in length. Further provided herein are methods wherein the plurality of oligonucleic acids comprises at least about 10 billion oligonucleic acids. Further provided herein are methods wherein at least about 1.75×1013 nucleobases are synthesized within 24 hours. Further provided herein are methods wherein at least about 262.5×109 oligonucleic acids are synthesized within 72 hours. Further provided herein are methods wherein the item of information is text information, audio information or visual information. Further provided herein are methods wherein the nucleosides comprise nucleoside phosphoramidite.
- Provided herein are methods for storing information, comprising: converting an item of information in the form of at least one digital sequence to at least one nucleic acid sequence; providing a structure having a surface; synthesizing a plurality of oligonucleic acids having predetermined sequences collectively encoding for the at least one nucleic acid sequence, wherein the plurality of oligonucleic acids comprises at least about 100,000 oligonucleic acids, wherein the plurality of oligonucleic acids extends from the surface of the structure, and wherein synthesizing comprises: cleaning a surface of the structure; depositing nucleosides on the surface at predetermined locations; oxidizing, deblocking, and optionally capping the nucleosides deposited on the surface; wherein the cleaning, oxidizing, deblocking, and capping comprises moving at least a portion of the flexible structure through a bath or emissions from a spray bar; and storing the plurality of oligonucleic acids. Further provided herein are methods wherein the nucleosides comprise nucleoside phosphoramidite.
- Provided herein are methods for storing information, comprising: converting an item of information in the form of at least one digital sequence to at least one nucleic acid sequence; synthesizing a plurality of oligonucleic acids having predetermined sequences collectively encoding for the at least one nucleic acid sequence, wherein the plurality of oligonucleic acids comprises at least about 10,000 oligonucleic acids, wherein the plurality of oligonucleic acids collectively encode for a sequence that differs from the predetermined sequences by no more than 1 base in 1000, and wherein each oligonucleic acid of the plurality of oligonucleic acids comprises from 50 to 500 bases in length; and storing the at least about 10,000 oligonucleic acids. Further provided herein are methods wherein the plurality of oligonucleic acids comprises at least about 100,000 oligonucleic acids. Further provided herein are methods wherein the plurality of oligonucleic acids comprises at least about 1,000,000 oligonucleic acids. Further provided herein are methods wherein the plurality of oligonucleic acids comprises at least about 10 billion oligonucleic acids. Further provided herein are methods wherein greater than 90% of the oligonucleic acids encode for a sequence that does not differ from the predetermined sequence. Further provided herein are methods wherein the item of information is text information, audio information or visual information. Further provided herein are methods wherein the structure is rigid or flexible, and wherein the structure comprises a surface, and wherein the plurality of oligonucleic acids extend from the surface. Further provided herein are methods wherein the nucleosides comprise nucleoside phosphoramidite.
- Provided herein are methods for storing information, comprising: converting an item of information in the form of at least one digital sequence to at least one nucleic acid sequence; synthesizing a plurality of oligonucleic acids having predetermined sequences collectively encoding for the at least one nucleic acid sequence, wherein the plurality of oligonucleic acids comprises at least about 10,000 oligonucleic acids, wherein each oligonucleic acid of the plurality of oligonucleic acids comprises from 50 to 500 bases in length, and where the plurality of oligonucleic acids extends from the surface of a flexible structure; and storing the plurality of oligonucleic acids. Further provided herein are methods wherein the flexible structure comprises a reel-to-reel tape or a continuous tape. Further provided herein are methods wherein each oligonucleic acid extends from a feature on the surface of the flexible structure, wherein the feature is about 1 um to about 500 um in diameter. Further provided herein are methods wherein the feature is about 1 um to about 50 um in diameter. Further provided herein are methods wherein the feature is about 10 um in diameter. Further provided herein are methods wherein the flexible structure comprises a thermoplastic material. Further provided herein are methods wherein the thermoplastic material comprises a polyaryletherketone. Further provided herein are methods wherein the polyaryletherketone is polyetherketone, polyetherketoneketone, poly(ether ether ketone ketone), polyether ether ketone or polyetherketoneetherketoneketone. Further provided herein are methods wherein the flexible structure comprises nylon, nitrocellulose, polypropylene, polycarbonate, polyethylene, polyurethane, polystyrene, acetal, acrylic, acrylonitrile, butadiene styrene, polyethylene terephthalate, polymethyl methacrylate, polyvinyl chloride, transparent PVC foil, Poly(methyl methacrylate), styrenic polymer, fluorine-containing polymers, polyethersulfone or polyimide. Further provided herein are methods wherein the flexible structure has a thickness of less than about 10 mm. Further provided herein are methods wherein each oligonucleic acid is about 200 bases in length. Further provided herein are methods wherein at least about 1.75×1013 nucleobases are synthesized within 24 hours. Further provided herein are methods wherein at least about 262.5×109 oligonucleic acids are synthesized within 72 hours. Further provided herein are methods wherein the nucleosides comprise nucleoside phosphoramidite.
- Provided herein are methods for storing information, the method comprising: encrypting at least one item of information in the form of at least one digital sequence to at least one nucleic acid sequence; synthesizing a plurality of oligonucleic acids having predetermined sequences collectively encoding for the at least one nucleic acid sequence, wherein the plurality of oligonucleic acids comprises at least about 10,000 oligonucleic acids, and wherein each oligonucleic acid of the plurality of oligonucleic acids comprises from 50 to 500 bases in length; storing the plurality of oligonucleic acids; sequencing the plurality of oligonucleic acids; decrypting the plurality of oligonucleic acids from a nucleic acid sequence to a digital sequence; and assembling the digital sequence to form the at least one digital sequence, wherein the at least one digital sequence is recovered with 100% accuracy. Further provided herein are methods further comprising releasing the plurality of oligonucleic acids. Further provided herein are methods wherein the nucleosides comprise nucleoside phosphoramidite.
- Provided herein are devices for information storage, comprising: a flexible structure having a surface; and a plurality of features on the surface, wherein each feature has a width of from about 1 to about 500 um, and wherein each feature of the plurality of features is coated with a moiety that binds to the surface and comprises a hydroxyl group available for nucleoside coupling. Further provided herein are devices wherein the flexible structure rests in a curved position. Further provided herein are devices wherein the curved position comprises a curve that is greater than 30 degrees. Further provided herein are devices wherein the curved position comprises a curve that is greater than 180 degrees. Further provided herein are devices wherein the flexible structure comprises at least about 1 million features. Further provided herein are devices wherein the flexible structure has a total surface area of less than about 4.5 m2. Further provided herein are devices wherein the flexible structure comprises more than 2 billion features per m2. Further provided herein are devices wherein the flexible structure comprises a thermoplastic material. Further provided herein are devices wherein the thermoplastic material comprises a polyaryletherketone. Further provided herein are devices wherein the polyaryletherketone is polyetherketone, polyetherketoneketone, poly(ether ether ketone ketone), polyether ether ketone or polyetherketoneetherketoneketone. Further provided herein are devices wherein the flexible structure comprises nylon, nitrocellulose, polypropylene, polycarbonate, polyethylene, polyurethane, polystyrene, acetal, acrylic, acrylonitrile, butadiene styrene, polyethylene terephthalate, polymethyl methacrylate, polyvinyl chloride, transparent PVC foil, Poly(methyl methacrylate), styrenic polymer, fluorine-containing polymers, polyethersulfone or polyimide. Further provided herein are devices wherein the flexible structure has a thickness of less than about 10 mm. Further provided herein are devices wherein each feature is from about 1 um to about 50 um in width. Further provided herein are devices wherein each feature has a diameter of about 10 um. Further provided herein are devices wherein the center of a first feature is about 21 um from the center of a second feature and the first feature and the second feature. Further provided herein are devices wherein the flexible structure comprises a reel-to-reel tape or a continuous tape. Further provided herein are devices wherein each feature comprises a channel.
- Provided herein are oligonucleic acid libraries for information storage, comprising a plurality of oligonucleic acids, wherein the plurality of oligonucleic acids comprises at least about 10,000 oligonucleic acids, wherein the plurality of oligonucleic acids collectively encodes for a sequence that differs from an aggregate of predetermined sequences by no more than 1 base in 1000, and wherein each oligonucleic acid of the plurality of oligonucleic acids comprises: a predetermined sequence that, when decrypted, encodes for digital information; and from 50 to 500 bases in length. Further provided herein are libraries wherein the plurality of oligonucleic acids comprises at least about 100,000 oligonucleic acids. Further provided herein are libraries wherein the plurality of oligonucleic acids comprises at least about 10 billion oligonucleic acids. Further provided herein are libraries wherein each oligonucleic acid of the plurality of oligonucleic acids is attached to a surface of a structure by a tether. Further provided herein are libraries wherein the tether comprises a cleavable region having at least one nucleotide chemically modified to detach from the oligonucleic acid in the presence of a cleaving reagent. Further provided herein are libraries wherein the tether comprises from about 10 to about 50 bases. Further provided herein are libraries wherein greater than 90% of the oligonucleic acids encode for a sequence that does not differ from the predetermined sequences. Further provided herein are libraries wherein the digital information encodes for text, audio or visual information. Further provided herein are libraries wherein the library is synthesized in less than 3 days. Further provided herein are libraries wherein the library is synthesized in less than 24 hours.
- All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
- The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
-
FIG. 1 illustrates an exemplary workflow for nucleic acid-based data storage. -
FIG. 2A illustrates an exemplary continuous workflow having a tape, rolling units and a material deposition unit. -
FIG. 2B illustrates an exemplary zoom in view of the tap inFIG. 2A , showing discrete loci for oligonucleic acid extension. -
FIG. 3 illustrates a portion of surface having features that support oligonucleic acid synthesis. -
FIG. 4 illustrates an example of a computer system. -
FIG. 5 is a block diagram illustrating an architecture of a computer system. -
FIG. 6 is a diagram demonstrating a network configured to incorporate a plurality of computer systems, a plurality of cell phones and personal data assistants, and Network Attached Storage (NAS). -
FIG. 7 is a block diagram of a multiprocessor computer system using a shared virtual address memory space. - There is a need for larger capacity storage systems as the amount of information generated and stored is increasing exponentially. Traditional storage media have a limited capacity and require specialized technology that changes with time, requiring constant transfer of data to new media, often at a great expense. A biomolecule such as a DNA molecule provides a suitable host for information storage in-part due to its stability over time and capacity for four bit information coding, as opposed to traditional binary information coding. Thus, large amounts of data are encoded in the DNA in a relatively smaller amount of physical space than used by commercially available information storage devices.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which these inventions belong.
- Throughout this disclosure, various embodiments are presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of any embodiments. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range to the tenth of the unit of the lower limit unless the context clearly dictates otherwise. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual values within that range, for example, 1.1, 2, 2.3, 5, and 5.9. This applies regardless of the breadth of the range. The upper and lower limits of these intervening ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention, unless the context clearly dictates otherwise.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of any embodiment. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
- Unless specifically stated or obvious from context, as used herein, the term “about” in reference to a number or range of numbers is understood to mean the stated number and numbers +/−10% thereof, or 10% below the lower listed limit and 10% above the higher listed limit for the values listed for a range.
- Nucleic Acid Based Information Storage
- Provided herein are devices, compositions, systems and methods for nucleic acid-based information (data) storage. An exemplary workflow is provided in
FIG. 1 . In a first step, a digital sequence encoding an item of information (i.e., digital information in a binary code for processing by a computer) is received 101. Anencryption 103 scheme is applied to convert the digital sequence from a binary code to anucleic acid sequence 105. A surface material for nucleic acid extension, a design for loci for nucleic acid extension (aka, arrangement spots), and reagents for nucleic acid synthesis are selected 107. The surface of a structure is prepared fornucleic acid synthesis 108. De novo oligonucleic acid synthesis is performed 109. The synthesized oligonucleic acids are stored 111 and available forsubsequent release 113, in whole or in part. Once released, the oligonucleic acids, in whole or in part, are sequenced 115, subject todecryption 117 to convert nucleic sequence back to digital sequence. The digital sequence is then assembled 119 to obtain an alignment encoding for the original item of information. - Information Storage
- Provided herein are methods and systems for storing information encoded by biomolecules on a substrate. In some instances, the information is digital data. In some instances, the biomolecules comprise DNA. In some cases, the biomolecules comprise oligonucleic acids. In some instances, methods are provided for the synthesis of the oligonucleic acids onto the substrate. In some instances, the synthesized oligonucleic acids are positioned on the substrate at a high density to encode large and complex amounts of data in a small footprint. Exemplary substrates are flexible, allowing for the manipulation of the substrate during synthesis, storage, and/or data extraction. In some instances, the flexible substrates are configured for rolling onto a reel for long term storage.
- To store data in a sequence of DNA, the information is converted from the 1s and 0s of binary code into the code of A, T, G, and C bases of DNA. In some instances, items of information are first encoded in a digital information form. Items of information include, without limitation, text, audio and visual information. Exemplary sources for items of information include, without limitation, books, periodicals, electronic databases, medical records, letters, forms, voice recordings, animal recordings, biological profiles, broadcasts, films, short videos, emails, bookkeeping phone logs, internet activity logs, drawings, paintings, prints, photographs, pixelated graphics, and software code. Exemplary biological profiles sources for items of information include, without limitation, gene libraries, genomes, gene expression data, and protein activity data. Exemplary formats for items of information include, without limitation, .txt, .PDF, .doc, .docx, .ppt, .pptx, .xls, .xlsx, .rtf, .jpg, .gif, .psd, .bmp, .tiff, .png, and .mpeg. In some instances, the binary code of digital sequence is converted into a biomolecule-based (e.g., DNA-based) sequence while preserving the information that the code represents. The amount of individual file sizes encoding for an item of information, or a plurality of files encoding for items of information, in digital format include, without limitation, up to 1024 bytes (equal to 1 KB), 1024 KB (equal to 1 MB), 1024 MB (equal to 1 GB), 1024 GB (equal to 1 TB), 1024 TB (equal to 1PB), 1 exabyte, 1 zettabyte, 1 yottabyte, 1 xenottabyte or more. This converted code (digital binary code to a biomolecule code) is referred to herein as “predetermined” sequence with respect to the deposit of a biomolecule disclosed herein on a surface disclosed herein.
- A predetermined sequence comprising the converted DNA code is synthesized into one or a plurality of oligonucleic acids that are supported on a structure (aka substrate) for data storage. In some instances, the oligonucleic acids are synthesized on the substrate using an oligonucleic acid synthesizer device that releases nucleic acid synthesis reagents in a step wise fashion such that that multiple oligonucleic acids extend, in parallel, one residue at a time from the surface of the substrate. Each oligonucleic acid is positioned on distinct regions, or features, of the substrate. In many cases, these regions are positioned in addressable locations of the substrate. In some instances, two or more of the oligonucleic acids on a substrate have sequences that differ. In some instances, two or more of the oligonucleic acids on a substrate have sequences that are the same.
- A structure described herein for oligonucleic acid extension during synthesis may be a rigid or flexible material. An exemplary process workflow for de novo synthesis of an oligonucleic acid on a substrate using an oligonucleic acid synthesizer is shown in
FIG. 2A andFIG. 2B . In the illustration, an oligonucleic acid synthesismaterial deposition unit 201 releases reagents onto a flexible structure 205 (the substrate) comprising a surface, wherein the surface comprises a plurality of features 207 (or “loci”) for nucleic acid extension. In the continuous belt arrangement, the flexible 205 structure is wrapped aroundrollers 203. - In some instances, a substrate that supports the synthesis and storage of oligonucleic acids encoding information comprises a flexible material. In some cases, the flexible material is in the form of a tape. In some cases, substrates having flexible materials are used in a reel-to-reel tape, where a first end of the substrate is attached (reversibly or irreversibly) to a first reel and a second end of the substrate is attached (reversibly or irreversibly) to a second reel. In this manner, the body of the substrate is be wrapped around the first reel, the second reel, or both. The reels of the system are rotatable so that the substrate is transferred between the reels while in use. During an oligonucleic acid synthesis reaction performed on a substrate of a reel-to-reel tape system, sections of the substrate pass through various stages of the synthesis reaction in a production assembly line manner. As an example, a portion of the substrate passes through a stage at which a nucleobase is attached to the substrate during a nucleic acid synthesis reaction. In another example, a portion of the substrate passes through a wash stage of a nucleic acid synthesis reaction. In some cases, one portion of a substrate is positioned at a different stage of a nucleic acid synthesis reaction than another portion of the substrate.
- In some instances, a flexible material described herein for oligonucleic acid synthesis comprises continuous tape. In some instances, a substrate for the synthesis and/or storage of oligonucleic acids comprises a flexible material that is rotatable around a rotating drum in a continuous conveyor belt configuration or a “continuous tape system.” In an exemplary continuous tape system, oligonucleic acid synthesis steps are partitioned into zones and regions of the substrate are conveyed continuously through each of the zones. As an example, an oligonucleic acid synthesis reaction proceeds by conveying a flexible substrate from a deposition zone where droplets comprising oligonucleic acid building blocks are deposited and coupled onto the conveyed substrate surface, to one or more processing zones (e.g., capping, oxidation, washing, drying) in a continuous cycle, extending the synthesized oligonucleic acids by a single base in each cycle. In some instances, continuous conveyance of a substrate through an oligonucleic acid synthesis reaction proceeds with more efficiency as compared to an oligonucleic acid synthesis reaction that occurs in distinct steps because multiple chemistries are performed on different regions of the substrate at the same time.
- In another exemplary continuous tape system, the entire continuous tape is exposed to a single step in a reaction as the tape proceeds in a rotatable fashion. After each portion of the surface of the tape is exposed to reaction step in a single pass, the next step of the reaction occurs. As an example, an oligonucleic acid synthesis reaction proceeds by conveying the tape through a section of a device that releases an oxidizing reagent. After the entire tape is receives nucleoside monomer deposition, the tape is then exposed to a washing step, followed by a rounds of oxidation, washing, deblocking, washing, capping, washing and then repeating, resulting in extending the synthesized oligonucleic acids by a single base in each cycle.
- The DNA code of synthesized and stored oligonucleic acids is read either directly on the substrate, or after extraction from the substrate, by using any suitable sequencing technology. In some cases, the DNA sequence is read on the substrate or within a feature of a substrate. In some cases, the oligonucleic acids stored on the substrate are extracted is optionally assembled into longer nucleic acids and then sequenced.
- Provided here are systems and methods configured to synthesize a high density of oligonucleic acids on a substrate in a short amount of time. In some cases, the substrate is a flexible substrate. In some instances, at least about 1010, 1011, 1012, 1013, 1014, or 1015 bases are synthesized in one day. In some instances, at least about 10×108, 10×109, 10×1010, 10×1011, or 10×1012 oligonucleic acids are synthesized in one day. In some cases, each oligonucleic acid synthesized comprises at least about 20, 50, 100, 200, 300, 400 or 500 nucleobases. In an example, at least 10×109, 200 base oligonucleic acids are synthesized within 3 days. In some cases, these bases are synthesized with a total average error rate of less than about 1 in 100; 200; 300; 400; 500; 1000; 2000; 5000; 10000; 15000; 20000 bases.
- Oligonucleic acids synthesized and stored on the substrates described herein encode data that can be interpreted by reading the sequence of the synthesized oligonucleic acids and converting the sequence into binary code (“decrypting”) readable by a computer. In a further aspect, provided is a detection system comprising a device capable of sequencing stored oligonucleic acids, either directly on the substrate and/or after removal from the substrate. In cases where the substrate is a reel-to-reel tape of flexible material, the detection system comprises a device for holding and advancing the substrate through a detection location and a detector disposed proximate the detection location for detecting a signal originated from a section of the tape when the section is at the detection location. In some instances, the signal is indicative of a presence of an oligonucleic acid. In some instances, the signal is indicative of a sequence of an oligonucleic acid. In another aspect, described herein are detection methods for detecting and reading a biomolecule stored on a substrate. In cases where the substrate is a flexible material on a reel-to-reel tape, the method comprises sequentially advancing through a fixed position the substrate for sequential detection and reading of bound biomolecules. In some instances, information encoded within oligonucleic acids on a continuous tape is read by a computer as the tape is conveyed continuously through a detector operably connected to the computer. In some instances, a detection system comprises a computer system comprising an oligonucleic acid sequencing device, a database for storage and retrieval of data relating to oligonucleic acid sequence, software for converting DNA code of an oligonucleic acid sequence to binary code, a computer for reading the binary code, or any combination thereof.
- In a further aspect of the disclosure, provided is a cassette that comprises a housing and a tape, wherein the tape is a flexible substrate comprising a plurality of attached biomolecules. The tape is housed in the housing such that the tape is advanceable along a path from a first end to a second end of the tape.
- Structures
- Provided herein are structures (also referred to as substrates) comprising a plurality of features, wherein biomolecules are attached directly or indirectly to a surface of the structure. In many cases, the biomolecules comprise nucleic acid sequences that are synthesized on features of the substrate. In some instances, the features are closely spaced so that a small area of the structure encodes a high density of data. For example, the distance between the centers of two features is from about 1 um to about 200 um, from about 1 um to about 100 um, from about 1 um to about 50 um, from about 1 um to about 25 um, from about 10 um to about 50 um, or from about 10 um to about 25. In some cases, the distance between two features is less than about 100 um, 50 um, 40 um, 30 um, 20 um or 10 um. The size of each feature may range from about 0.1 um to about 100 um, from about 1 um to about 100 um, from about 1 um to about 50 um, or from about 0.1 um to about 100 um. In some cases, each feature is less than about 100 um, 50 um, 20 um, 10 um, or 5 um in diameter. In some instances, each square meter of a structure allows for at least about 107, 108, 109, 1010, 1011 features, where each feature supports one oligonucleic acid. In some cases, the oligonucleic acids have lengths up to about 100, 200, 300, 400, 500 or more bases. In some instances, 109 oligonucleic acids are supported on less than about 6, 5, 4, 3, 2 or 1 m2 of surface of the structure.
- To illustrate exemplary dimensions of a structure described herein, reference is made to
FIG. 3 . Reference to this figure is for example purposes only, and the numbers, dimensions and configuration of features described are not limiting. The region of the surface of a the structure shown inFIG. 3 illustrates four features of 10 um in diameter, at a center-to-center distance of 21 um. The features ofFIG. 3 are arranged in rows forming a square shape, however, it is intended that the features may be arranged in any configuration, for example, without rows or in a circular or staggered shape. - Flexible Structures
- Provided herein are flexible structures that allow for manipulation during biomolecule attachment, storage and/or reading. The term “flexible” is used herein to refer to a structure that is capable of being bent, folded or similarly manipulated without breakage. In some instances, a flexible structures is bent 180 degrees around a roller. In some instances, a flexible structure is bent about 30 to about 330 degrees around a roller. In some instances, a flexible structure is bent up to about 360 degrees around a roller. In some cases, the roller is less than about 10 cm, 5 cm, 3 cm, 2 cm or lcm in radius. In some instances, the structures is bent and straightened repeatedly in either direction at least 100 times without failure (for example, cracking) or deformation at 20° C. In some instances, a structure comprises rigid materials. In some cases, a structure has a thickness that is amenable to rolling. In some cases, the thickness of the structure is less than about 500 mm, 100 mm, 50 mm, 10 mm, or 1 mm. In some cases, the thickness of the structure is less than about 1 mm, 0.5 mm, 0.1 mm, 0.05, 0.01, or thinner.
- Exemplary flexible materials described herein include, without limitation, nylon (unmodified nylon, modified nylon, clear nylon), nitrocellulose, polypropylene, polycarbonate, polyethylene, polyurethane, polystyrene, acetal, acrylic, acrylonitrile, butadiene styrene (ABS), polyester films such as polyethylene terephthalate, polymethyl methacrylate or other acrylics, polyvinyl chloride or other vinyl resin, transparent PVC foil, transparent foil for printers, Poly(methyl methacrylate) (PMMA), methacrylate copolymers, styrenic polymers, high refractive index polymers, fluorine-containing polymers, polyethersulfone, polyimides containing an alicyclic structure, rubber, fabric, metal foils, and any combination thereof. Various plasticizers and modifiers may be used with polymeric materials to achieve selected flexibility characteristics.
- In some instances, the structure comprises a plastic material. In some instances, the structure comprises a thermoplastic material. Non-limiting examples of thermoplastic materials include acrylic, acrylonitrile butadiene styrene, nylon, polylactic acid, polybenzimidazole, polycarbonate, polyether sulfone, polyetherether ketone, polyetherimide, polyethylene, polyphenylene oxide, polyphenylene sulfide, polypropylene, polystyrene, polyvinyl chloride, and polytetrafluoroethylene. In some instances, the structure comprises a thermoplastic material in the polyaryletherketone (PEAK) family. Non-limiting examples of PEAK thermoplastics include polyetherketone (PEK), polyetherketoneketone (PEKK), poly(ether ether ketone ketone) (PEEKK), polyether ether ketone (PEEK), and polyetherketoneetherketoneketone (PEKEKK). In some instances, the structure comprises a thermoplastic material compatible with toluene. In some cases, the flexibility of the plastic material is increased by the addition of a plasticizer. An example of a plasticizer is an ester-based plasticizer, such as phthalate. Phthalate plasticizers include bis(2-ethylhexyl) phthalate (DEHP), diisononly phthalate (DINP), di-n-butyl phthalate (DnBP, DBP), butyl benzyl phthalate (BBzP), diisodecyl phthalate (DIDP), dioctyl phthalate (DOP, DnOP), diisooctyl phthalate (DIOP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), and di-n-hexyl phthalate. In some instances, modification of the thermoplastic polymer through copolymerization or through the addition of non-reactive side chains to monomers before polymerization also increases flexibility.
- In some instances, the structure comprises a fluoroelastomer. Materials having about 80% fluoroelastomers are designated as FKMs. Fluoroelastomers include perfluoro-elastomers (FFKMs) and tetrafluoroethylene/propylene rubbers (FEPM). Fluoroelastomers have five known types. Type 1 FKMs are composed of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) and their fluorine content typically is around 66% by weight.
Type 2 FKMs are composed of VDF, HFP, and tetrafluoroethylene (TFE) and typically have between about 68% and 69% fluorine. Type 3 FKMs are composed of VDF, TFE, and perfluoromethylvinylether (PMVE) and typically have between about 62% and 68% fluorine. Type 4 FKMs are composed of propylene, TFE, and VDF and typically have about 67% fluorine. Type 5 FKMs are composed of VDF, HFP, TFE, PMVE, and ethylene. - In some instances, a structure disclosed herein comprises a computer readable material. Computer readable materials include, without limitation, magnetic media, reel-to-reel tape, cartridge tape, cassette tape, flexible disk, paper media, film, microfiche, continuous tape (e.g., a belt) and any media suitable for storing electronic instructions. In some cases, the structure comprises magnetic reel-to-reel tape or a magnetic belt. In some cases, the structure comprises a flexible printed circuit board.
- In some instances, a substrate material disclosed herein is transparent to visible and/or UV light. In some instances, substrate materials are sufficiently conductive to form uniform electric fields across all or a portion of a substrate. In some cases, the substrate is heat conductive or insulated. In some cases, the materials are chemical resistant and heat resistant to support a chemical reaction such as an oligonucleic acid synthesis reaction. In some instances, the substrate is magnetic. In some instances, the substrate comprises a metal or a metal alloy.
- In some instances, a surface comprises a rigid material. A rigid material includes, without limitation, glass; fused silica; silicon such as silicon dioxide or silicon nitride; metals such as gold or platinum; plastics such as polytetrafluoroethylene, polypropylene, polystyrene, polycarbonate, and any combination thereof.
- In some instances, a substrate material disclosed herein comprises a flat region. In some instances, the substrate comprises embedded pores, which are a series of individual reaction sections that capture released oligonucleic acids, facilitating direct sequencing of the oligonucleic acids within the pores of the substrate. In some cases, a substrate material disclosed herein comprises pores. In some cases the pores are coated with a functionalizing agent disclosed herein where the agent couples nucleoside base to the surface of a substrate. In some cases, the pores comprise microchannels. In some cases, a single pore comprises at least 2 microchannels. In some cases, a single pore contains about 2 to about 200, about 100 to about 150 microchannels. In some cases, the micropores are coated with a functionalizing agent disclosed herein where the agent couples nucleoside base to the surface of a substrate. In some cases, a substrate material disclosed herein comprises wells. In some cases the wells are coated with a functionalizing agent disclosed herein where the agent couples nucleoside base to the surface of a substrate. In some cases, deposition of a monomeric oligonucleotide in a manner described herein is into a pore, microchannel or well on the surface of a substrate. In some cases, reading of an oligonucleic acid synthesized by methods disclosed herein occurs within a pore, microchannel, or well on the surface of the substrate.
- In some instances, the substrate comprises an alignment structure or printed alignment element, such as a fiducial marking. In some instances, the substrate comprises a detectable marker attached to a section of the substrate for identifying that section. In some cases, the substrate comprises one or more regions for annotation. In some cases, the substrate is labeled.
- In some cases, a substrate disclosed herein comprises one or more identifiers. In some instances, each identifier is associated with each biomolecule on a substrate, or a group of biomolecules on a substrate, by having a fixed location on the substrate in relation to a bar code from which relative location the identity of each biomolecule or group of biomolecules is determined. In one aspect, an identifier provides a means to identify biomolecule information. In some cases the biomolecule is an oligonucleic acid and the information is the sequence identity. In some cases, the information is stored in a database.
- Surface Modification
- In some instances, to support the immobilization of a biomolecule on a substrate for de novo synthesis of nucleic acids, the surface of the structure comprises a material and/or is coated with a material that facilitates a coupling reaction with the biomolecule for attachment. In various instances, to prepare a substrate for biomolecule immobilization, surface modifications are employed that chemically and/or physically alter the substrate surface by an additive or subtractive process to change one or more chemical and/or physical properties of a substrate surface or a selected site or region of the surface. For example, surface modification involves (1) changing the wetting properties of a surface, (2) functionalizing a surface, i.e., providing, modifying or substituting surface functional groups, (3) defunctionalizing a surface, i.e., removing surface functional groups, (4) otherwise altering the chemical composition of a surface, e.g., through etching, (5) increasing or decreasing surface roughness, (6) providing a coating on a surface, e.g., a coating that exhibits wetting properties that are different from the wetting properties of the surface, and/or (7) depositing particulates on a surface. In some cases, a substrate is selectively functionalized to produce two or more distinct areas on a structure, wherein at least one area has a different surface or chemical property that another area of the same structure. Such properties include, without limitation, surface energy, chemical termination, surface concentration of a chemical moiety, and the like.
- In some instances, the surface of the substrate is modified to comprise one or more actively functionalized surfaces configured to bind to both the surface of the substrate and a biomolecule, thereby supporting a coupling reaction to the surface. In some cases, the surface is also functionalized with a passive material that does not efficiently bind the biomolecule, thereby preventing biomolecule attachment at sites where the passive functionalization agent is bound. In some cases, the surface comprises an active layer only defining distinct features for biomolecule support. In some cases, the surface is not coated.
- In some instances, the substrate surface is contacting with a mixture of functionalization groups which are in any different ratio. In some instances, a mixture comprises at least 2, 3, 4, 5 or more different types of functionalization agents. In some cases, the ratio of the at least two types of surface functionalization agents in a mixture is about 1:1, 1:2, 1:5, 1:10, 2:10, 3:10, 4:10, 5:10, 6:10, 7:10, 8:10, 9:10, or any other ratio to achieve a desired surface representation of two groups. In some instances, desired surface tensions, wettabilities, water contact angles, and/or contact angles for other suitable solvents are achieved by providing a substrate surface with a suitable ratio of functionalization agents. In some cases, the agents in a mixture are chosen from suitable reactive and inert moieties, thus diluting the surface density of reactive groups to a desired level for downstream reactions. In some instances, the mixture of functionalization reagents comprises one or more reagents that bind to a biomolecule and one or more reagents that do not bind to a biomolecule. Therefore, modulation of the reagents allows for the control of the amount of biomolecule binding that occurs at a distinct area of functionalization.
- In some instances, a method for substrate functionalization comprises deposition of a silane molecule onto a surface of a substrate. In some instances, the silane molecule is deposited on a high energy surface of the substrate. In some instances the high surface energy region includes a passive functionalization reagent. The silane group binds to the surface, while the rest of the molecule provides a distance from the surface and a free hydroxyl group at the end to which a biomolecule attaches. In some instances, the silane is an organofunctional alkoxysilane molecule. Non-limiting examples of organofunctional alkoxysilane molecules include dimethylchloro-octodecyl-silane, methyldichloro-octodecyl-silane, trichloro-octodecyl-silane, and trimethyl-octodecyl-silane, triethyl-octodecyl-silane. In some instances, the silane is an amino silane. Examples of amino silanes include, without limitation, 11-acetoxyundecyltriethoxysilane, n-decyltriethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, glycidyloxypropyl/trimethoxysilane and N-(3-triethoxysilylpropyl)-4-hydroxybutyramide. In some instances, the silane comprises 11-acetoxyundecyltriethoxysilane, n-decyltriethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, glycidyloxypropyl/trimethoxysilane, N-(3-triethoxysilylpropyl)-4-hydroxybutyramide, or any combination thereof. In some cases, an active functionalization agent comprises 11-acetoxyundecyltriethoxysilane. In some cases, an active functionalization agent comprises n-decyltriethoxysilane. In some cases, an active functionalization agent comprises glycidyloxypropyltriethoxysilane (GOPS). In some instances, the silane is a fluorosilane. In some instances, the silane is a hydrocarbon silane. In some cases, the silane is 3-iodo-propyltrimethoxysilane. In some cases, the silane is octylchlorosilane.
- In some instances, silanization is performed on a surface through self-assembly with organofunctional alkoxysilane molecules. The organofunctional alkoxysilanes are classified according to their organic functions. Non-limiting examples of siloxane functionalizing reagents include hydroxyalkyl siloxanes (silylate surface, functionalizing with diborane and oxidizing the alcohol by hydrogen peroxide), diol (dihydroxyalkyl) siloxanes (silylate surface, and hydrolyzing to diol), aminoalkyl siloxanes (amines require no intermediate functionalizing step), glycidoxysilanes (3-glycidoxypropyl-dimethyl-ethoxysilane, glycidoxy-trimethoxysilane), mercaptosilanes (3-mercaptopropyl-trimethoxysilane, 3-4 epoxycyclohexyl-ethyltrimethoxysilane or 3-mercaptopropyl-methyl-dimethoxysilane), bicyclohepthenyl-trichlorosilane, butyl-aldehydr-trimethoxysilane, or dimeric secondary aminoalkyl siloxanes. Exemplary hydroxyalkyl siloxanes include allyl trichlorochlorosilane turning into 3-hydroxypropyl, or 7-oct-1-enyl trichlorochlorosilane turning into 8-hydroxyoctyl. The diol (dihydroxyalkyl) siloxanes include glycidyl trimethoxysilane-derived (2,3-dihydroxypropyloxy)propyl (GOPS). The aminoalkyl siloxanes include 3-aminopropyl trimethoxysilane turning into 3-aminopropyl (3-aminopropyl-triethoxysilane, 3-aminopropyl-diethoxy-methylsilane, 3-aminopropyl-dimethyl-ethoxysilane, or 3-aminopropyl-trimethoxysilane). In some cases, the dimeric secondary aminoalkyl siloxanes is bis (3-trimethoxysilylpropyl) amine turning into bis(silyloxylpropyl)amine.
- In some instances, active functionalization areas comprise one or more different species of silanes, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more silanes. In some cases, one of the one or more silanes is present in the functionalization composition in an amount greater than another silane. For example, a mixed silane solution having two silanes comprises a 99:1, 98:2, 97:3, 96:4, 95:5, 94:6, 93:7, 92:8, 91:9, 90:10, 89:11, 88:12, 87:13, 86:14, 85:15, 84:16, 83:17, 82:18, 81:19, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45 ratio of one silane to another silane. In some instances, an active functionalization agent comprises 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane. In some instances, an active functionalization agent comprises 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane in a ratio from about 20:80 to about 1:99, or about 10:90 to about 2:98, or about 5:95.
- Synthesis on a Substrate
- The substrates described herein may comprise a plurality of features that allow for the attachment and synthesis of oligonucleic acids to the surface. In some instances, droplets comprising oligonucleic acid synthesis reagents are released from oligonucleic acid synthesis material deposition unit to the substrate in a stepwise manner from a deposition device having a piezo ceramic material and electrodes to convert electrical signals into a mechanical signal for releasing the droplets. The droplets are release to specific locations on the surface of the substrate one nucleobase at a time to generate a plurality of synthesized oligonucleic acids having predetermined sequences that encode data. In some cases, the synthesized oligonucleic acids are stored on the substrate. In some cases, oligonucleic acids are cleaved from the surface. Cleavage includes gas cleavage with such gases as ammonia or methylamine.
- Provided herein are structures that may comprise a surface that supports the synthesis of a plurality of oligonucleic acids having different predetermined sequences at addressable locations on a common support. In some instances, a device provides support for the synthesis of more than 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more non-identical oligonucleic acids. In some instances, the device provides support for the synthesis of more than 2,000; 5,000; 10,000; 20,000; 30,000; 50,000; 75,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more oligonucleic acids encoding for distinct sequences. In some instances, the device provides support for the synthesis of more than 1 million, 1 billion, 10 billion or more oligonucleic acids. In some instances, at least a portion of the oligonucleic acids have an identical sequence or are configured to be synthesized with an identical sequence.
- Provided herein are methods and devices for manufacture and growth of oligonucleic acids about 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 bases in length. In some instances, the length of the oligonucleic acid formed is about 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, or 225 bases in length. An oligonucleic acid may be at least 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 bases in length. An oligonucleic acid may be from 10 to 225 bases in length, from 12 to 100 bases in length, from 20 to 150 bases in length, from 20 to 130 bases in length, from 25 to 1000 bases in length, from 75 to 500 bases in length, from 30 to 100 bases in length, or from 50 to 500 bases in length.
- In some instances, oligonucleic acids are synthesized on distinct loci of a substrate, wherein each locus supports the synthesis of a population of oligonucleic acids. In some instances, each locus supports the synthesis of a population of oligonucleic acids having a different sequence than a population of oligonucleic acids grown on another locus. In some instances, the loci of a device are located within a plurality of clusters. In some instances, a device comprises at least 10, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 20000, 30000, 40000, 50000 or more clusters. In some instances, a device comprises more than 2,000; 5,000; 10,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,100,000; 1,200,000; 1,300,000; 1,400,000; 1,500,000; 1,600,000; 1,700,000; 1,800,000; 1,900,000; 2,000,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; or 10,000,000 or more distinct loci. In some instances, a device comprises about 10,000 distinct loci. The amount of loci within a single cluster is varied in different instances. In some instances, each cluster includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 150, 200, 300, 400, 500 or more loci. In some instances, each cluster includes about 50-500 loci. In some instances, each cluster includes about 100-200 loci. In some instances, each cluster includes about 100-150 loci. In some instances, each cluster includes about 109, 121, 130 or 137 loci. In some instances, each cluster includes about 19, 20, 61, 64 or more loci.
- The number of distinct oligonucleic acids synthesized on a device may be dependent on the number of distinct loci available in the substrate. In some instances, the density of loci (or feature) within a cluster of a device is at least or about 1 locus per mm2, 10 loci per mm2, 25 loci per mm2, 50 loci per mm2, 65 loci per mm2, 75 loci per mm2, 100 loci per mm2, 130 loci per mm2, 150 loci per mm2, 175 loci per mm2, 200 loci per mm2, 300 loci per mm2, 400 loci per mm2, 500 loci per mm2, 1,000 loci per mm2 or more. In some instances, a device comprises from about 10 loci per mm2 to about 500 mm2, from about 25 loci per mm2 to about 400 mm2, from about 50 loci per mm2 to about 500 mm2, from about 100 loci per mm2 to about 500 mm2, from about 150 loci per mm2 to about 500 mm2, from about 10 loci per mm2 to about 250 mm2, from about 50 loci per mm2 to about 250 mm2, from about 10 loci per mm2 to about 200 mm2, or from about 50 loci per mm2 to about 200 mm2. In some instances, the distance from the centers of two adjacent loci within a cluster is from about 10 um to about 500 um, from about 10 um to about 200 um, or from about 10 um to about 100 um. In some instances, the distance from two centers of adjacent loci is greater than about 10 um, 20 um, 30 um, 40 um, 50 um, 60 um, 70 um, 80 um, 90 um or 100 um. In some instances, the distance from the centers of two adjacent loci is less than about 200 um, 150 um, 100 um, 80 um, 70 um, 60 um, 50 um, 40 um, 30 um, 20 um or 10 um. In some instances, each locus has a width of about 0.5 um, 1 um, 2 um, 3 um, 4 um, 5 um, 6 um, 7 um, 8 um, 9 um, 10 um, 20 um, 30 um, 40 um, 50 um, 60 um, 70 um, 80 um, 90 um or 100 um. In some instances, the each locus has a width of about 0.5 um to 100 um, about 0.5 um to 50 um, about 10 um to 75 um, about 0.5 um to 50 um, or about 1 um to about 500 um.
- In some cases, synthesized oligonucleic acids disclosed herein comprise a tether of 12 to 25 bases. In some instances, the tether comprises 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more bases.
- A suitable method for oligonucleic acid synthesis on a substrate of this disclosure is a phosphoramidite method comprising the controlled addition of a phosphoramidite building block, i.e. nucleoside phosphoramidite, to a growing oligonucleic acid chain in a coupling step that forms a phosphite triester linkage between the phosphoramidite building block and a nucleoside bound to the substrate. In some instances, the nucleoside phosphoramidite is provided to the substrate activated. In some instances, the nucleoside phosphoramidite is provided to the substrate with an activator. In some instances, nucleoside phosphoramidites are provided to the substrate in a 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the substrate-bound nucleosides. In some instances, the addition of nucleoside phosphoramidite is performed in an anhydrous environment, for example, in anhydrous acetonitrile. Following addition and linkage of a nucleoside phosphoramidite in the coupling step, the substrate is optionally washed. In some instances, the coupling step is repeated one or more additional times, optionally with a wash step between nucleoside phosphoramidite additions to the substrate. In some instances, an oligonucleic acid synthesis method used herein comprises 1, 2, 3 or more sequential coupling steps. Prior to coupling, in many cases, the nucleoside bound to the substrate is deprotected by removal of a protecting group, where the protecting group functions to prevent polymerization. A common protecting group is 4,4′-dimethoxytrityl (DMT).
- Following coupling, phosphoramidite oligonucleic acid synthesis methods optionally comprise a capping step. In a capping step, the growing oligonucleic acid is treated with a capping agent. A capping step generally serves to block unreacted substrate-bound 5′-OH groups after coupling from further chain elongation, preventing the formation of oligonucleic acids with internal base deletions. Further, phosphoramidites activated with 1H-tetrazole often react, to a small extent, with the O6 position of guanosine. Without being bound by theory, upon oxidation with I2/water, this side product, possibly via O6-N7 migration, undergoes depurination. The apurinic sites can end up being cleaved in the course of the final deprotection of the oligonucleotide thus reducing the yield of the full-length product. The O6 modifications may be removed by treatment with the capping reagent prior to oxidation with I2/water. In some instances, inclusion of a capping step during oligonucleic acid synthesis decreases the error rate as compared to synthesis without capping. As an example, the capping step comprises treating the substrate-bound oligonucleic acid with a mixture of acetic anhydride and 1-methylimidazole. Following a capping step, the substrate is optionally washed.
- In some instances, following addition of a nucleoside phosphoramidite, and optionally after capping and one or more wash steps, the substrate bound growing nucleic acid is oxidized. The oxidation step comprises oxidizing the phosphite triester into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester internucleoside linkage. In some cases, oxidation of the growing oligonucleic acid is achieved by treatment with iodine and water, optionally in the presence of a weak base such as a pyridine, lutidine, or collidine. Oxidation is sometimes carried out under anhydrous conditions using tert-Butyl hydroperoxide or (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO). In some methods, a capping step is performed following oxidation. A second capping step allows for substrate drying, as residual water from oxidation that may persist can inhibit subsequent coupling. Following oxidation, the substrate and growing oligonucleic acid is optionally washed. In some instances, the step of oxidation is substituted with a sulfurization step to obtain oligonucleotide phosphorothioates, wherein any capping steps can be performed after the sulfurization. Many reagents are capable of the efficient sulfur transfer, including, but not limited to, 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).
- In order for a subsequent cycle of nucleoside incorporation to occur through coupling, a protected 5′ end of the substrate bound growing oligonucleic acid must be removed so that the primary hydroxyl group can react with a next nucleoside phosphoramidite. In some instances, the protecting group is DMT and deblocking occurs with trichloroacetic acid in dichloromethane. Conducting detritylation for an extended time or with stronger than recommended solutions of acids may lead to increased depurination of solid support-bound oligonucleotide and thus reduces the yield of the desired full-length product. Methods and compositions described herein provide for controlled deblocking conditions limiting undesired depurination reactions. In some cases, the substrate bound oligonucleic acid is washed after deblocking. In some cases, efficient washing after deblocking contributes to synthesized oligonucleic acids having a low error rate.
- Methods for the synthesis of oligonucleic acids on the substrates described herein typically involve an iterating sequence of the following steps: application of a protected monomer to a surface of a substrate feature to link with either the surface, a linker or with a previously deprotected monomer; deprotection of the applied monomer so that it can react with a subsequently applied protected monomer; and application of another protected monomer for linking. One or more intermediate steps include oxidation and/or sulfurization. In some cases, one or more wash steps precede or follow one or all of the steps.
- In some instances, oligonucleic acids are synthesized with photolabile protecting groups, where the hydroxyl groups generated on the surface are blocked by photolabile-protecting groups. When the surface is exposed to UV light, such as through a photolithographic mask, a pattern of free hydroxyl groups on the surface may be generated. These hydroxyl groups can react with photoprotected nucleoside phosphoramidites, according to phosphoramidite chemistry. A second photolithographic mask can be applied and the surface can be exposed to UV light to generate second pattern of hydroxyl groups, followed by coupling with 5′-photoprotected nucleoside phosphoramidite. Likewise, patterns can be generated and oligomer chains can be extended. Without being bound by theory, the lability of a photocleavable group depends on the wavelength and polarity of a solvent employed and the rate of photocleavage may be affected by the duration of exposure and the intensity of light. This method can leverage a number of factors such as accuracy in alignment of the masks, efficiency of removal of photo-protecting groups, and the yields of the phosphoramidite coupling step. Further, unintended leakage of light into neighboring sites can be minimized. The density of synthesized oligomer per spot can be monitored by adjusting loading of the leader nucleoside on the surface of synthesis.
- In some instances, the surface of the substrate that provides support for oligonucleic acid synthesis is chemically modified to allow for the synthesized oligonucleic acid chain to be cleaved from the surface. In some cases, the oligonucleic acid chain is cleaved at the same time as the oligonucleic acid is deprotected. In some cases, the oligonucleic acid chain is cleaved after the oligonucleic acid is deprotected. In an exemplary scheme, a trialkoxysilyl amine such as (CH3CH2O)3Si—(CH2)2-NH2 is reacted with surface SiOH groups of a substrate, followed by reaction with succinic anhydride with the amine to create an amide linkage and a free OH on which the nucleic acid chain growth is supported.
- Oligonucleic acids synthesized using the methods and substrates described herein are optionally released from the surface from which they are synthesized. In some cases, oligonucleic acids are cleaved from the surface after synthesis. In some cases, oligonucleic acids are cleaved from the surface after storage. Cleavage includes gas cleavage with ammonia or methylamine. In some instances, the application of ammonia gas simultaneous deprotects phosphates groups protected during the synthesis steps, i.e. removal of electron-withdrawing cyano group. In some instances, once released from the surface, oligonucleic acids are assembled into larger nucleic acids that are sequenced and decoded to extract stored information. In some cases, wherein the oligonucleic acids stored on the substrate are to be removed, each sequence fragment comprises an index that provides instructions for how to assemble it with other sequences stored with it.
- In some instances, synthesized oligonucleic acids are designed to collectively span a large region of a predetermined sequence that encodes for information. In some instances, larger oligonucleic acids are generated through ligation reactions to join the synthesized oligonucleic acids. One example of a ligation reaction is polymerase chain assembly (PCA). In some cases, at least of a portion of the oligonucleic acids are designed to include an appended region that is a substrate for universal primer binding. For PCA reactions, the presynthesized oligonucleic acids include overlaps with each other (e.g., 4, 20, 40 or more bases with overlapping sequence). During the polymerase cycles, the oligonucleic acids anneal to complementary fragments and then are filled in by polymerase. Each cycle thus increases the length of various fragments randomly depending on which oligonucleic acids find each other. Complementarity amongst the fragments allows for forming a complete large span of double-stranded DNA. In some cases, after the PCA reaction is complete, an error correction step is conducted using mismatch repair detecting enzymes to remove mismatches in the sequence. Once larger fragments of a target sequence are generated, they can be amplified. For example, in some cases, a target sequence comprising 5′ and 3′ terminal adapter sequences is amplified in a polymerase chain reaction (PCR) which includes modified primers that hybridize to the adapter sequences. In some cases, the modified primers comprise one or more uracil bases. The use of modified primers allows for removal of the primers through enzymatic reactions centered on targeting the modified base and/or gaps left by enzymes which cleave the modified base pair from the fragment. What remains is a double-stranded amplification product that lacks remnants of adapter sequence. In this way, multiple amplification products can be generated in parallel with the same set of primers to generate different fragments of double-stranded DNA.
- In some instances, error correction is performed on synthesized oligonucleic acids and/or assembled products. An example strategy for error correction involves site-directed mutagenesis by overlap extension PCR to correct errors, which is optionally coupled with two or more rounds of cloning and sequencing. In certain instances, double-stranded nucleic acids with mismatches, bulges and small loops, chemically altered bases and/or other heteroduplexes are selectively removed from populations of correctly synthesized nucleic acids. In some instances, error correction is performed using proteins/enzymes that recognize and bind to or next to mismatched or unpaired bases within double-stranded nucleic acids to create a single or double-strand break or to initiate a strand transfer transposition event. Non-limiting examples of proteins/enzymes for error correction include endonucleases (T7 Endonuclease I, E. coli Endonuclease V, T4 Endonuclease VII, mung bean nuclease, Cell, E. coli Endonuclease IV, UVDE), restriction enzymes, glycosylases, ribonucleases, mismatch repair enzymes, resolvases, helicases, ligases, antibodies specific for mismatches, and their variants. Examples of specific error correction enzymes include T4 endonuclease 7, T7 endonuclease 1, S1, mung bean endonuclease, MutY, MutS, MutH, MutL, cleavase, CELI, and HINF1. In some cases, DNA mismatch-binding protein MutS (Thermus aquaticus) is used to remove failure products from a population of synthesized products. In some instances, error correction is performed using the enzyme Correctase. In some cases, error correction is performed using SURVEYOR endonuclease (Transgenomic), a mismatch-specific DNA endonuclease that scans for known and unknown mutations and polymorphisms for heteroduplex DNA.
- Error Rate
- In some instances, these error rates are for at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleic acids synthesized. In some instances, these at least 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleic acids synthesized do not differ from a predetermined sequence for which they encode. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 200. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 1,000. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 2,000. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 3,000. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 5,000. Individual types of error rates include mismatches, deletions, insertions, and/or substitutions for the oligonucleic acids synthesized on the substrate. The term “error rate” refers to a comparison of the collective amount of synthesized oligonucleic acid to an aggregate of predetermined oligonucleic acid sequences.
- Average error rates for oligonucleic acids synthesized within a library using the systems and methods provided may be less than 1 in 1000, less than 1 in 1250, less than 1 in 1500, less than 1 in 2000, less than 1 in 3000 or less often. In some instances, average error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1100, 1/1200, 1/1250, 1/1300, 1/1400, 1/1500, 1/1600, 1/1700, 1/1800, 1/1900, 1/2000, 1/3000, or less. In some instances, average error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/1000.
- In some instances, aggregate error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1100, 1/1200, 1/1250, 1/1300, 1/1400, 1/1500, 1/1600, 1/1700, 1/1800, 1/1900, 1/2000, 1/3000, or less compared to the predetermined sequences. In some instances, aggregate error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/500, 1/600, 1/700, 1/800, 1/900, or 1/1000. In some instances, aggregate error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/1000.
- In some instances, an error correction enzyme may be used for oligonucleic acids synthesized within a library using the systems and methods provided can use. In some instances, aggregate error rates for oligonucleic acids with error correction can be less than 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1100, 1/1200, 1/1300, 1/1400, 1/1500, 1/1600, 1/1700, 1/1800, 1/1900, 1/2000, 1/3000, or less compared to the predetermined sequences. In some instances, aggregate error rates with error correction for oligonucleic acids synthesized within a library using the systems and methods provided can be less than 1/500, 1/600, 1/700, 1/800, 1/900, or 1/1000. In some instances, aggregate error rates with error correction for oligonucleic acids synthesized within a library using the systems and methods provided can be less than 1/1000.
- Libraries disclosed herein may be synthesized with base insertion, deletion, substitution, or total error rates that are under 1/300, 1/400, 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1250, 1/1500, 1/2000, 1/2500, 1/3000, 1/4000, 1/5000, 1/6000, 1/7000, 1/8000, 1/9000, 1/10000, 1/12000, 1/15000, 1/20000, 1/25000, 1/30000, 1/40000, 1/50000, 1/60000, 1/70000, 1/80000, 1/90000, 1/100000, 1/125000, 1/150000, 1/200000, 1/300000, 1/400000, 1/500000, 1/600000, 1/700000, 1/800000, 1/900000, 1/1000000, or less, across the library, or across more than 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the library. The methods and compositions of the disclosure further relate to large synthetic oligonucleotide libraries with low error rates associated with at least 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the oligonucleotides in at least a subset of the library to relate to error free sequences in comparison to a predetermined/preselected sequence. In some instances, at least 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the oligonucleotides in an isolated volume within the library have the same sequence. In some instances, at least 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of any oligonucleotides related with more than 95%, 96%, 97%, 98%, 99%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9% or more similarity or identity have the same sequence. In some instances, the error rate related to a specified locus on an oligonucleotide is optimized. Thus, a given locus or a plurality of selected loci of one or more oligonucleotides as part of a large library may each have an error rate that is less than 1/300, 1/400, 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1250, 1/1500, 1/2000, 1/2500, 1/3000, 1/4000, 1/5000, 1/6000, 1/7000, 1/8000, 1/9000, 1/10000, 1/12000, 1/15000, 1/20000, 1/25000, 1/30000, 1/40000, 1/50000, 1/60000, 1/70000, 1/80000, 1/90000, 1/100000, 1/125000, 1/150000, 1/200000, 1/300000, 1/400000, 1/500000, 1/600000, 1/700000, 1/800000, 1/900000, 1/1000000, or less. In various instances, such error optimized loci may comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 30000, 50000, 75000, 100000, 500000, 1000000, 2000000, 3000000 or more loci. The error optimized loci may be distributed to at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 30000, 75000, 100000, 500000, 1000000, 2000000, 3000000 or more oligonucleotides.
- The error rates can be achieved with or without error correction. The error rates can be achieved across the library, or across more than 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the library.
- Devices
- Provided herein are systems and devices for the deposition and storage of biomolecules on a substrate. In some instances, the biomolecules are oligonucleic acids that store encoded information in their sequences. In some instances, the system comprises a substrate to support biomolecule attachment and/or a device for application of a biomolecule to the surface of the substrate. In an example, the device for biomolecule application is an oligonucleic acid synthesizer. In some instances, the system comprises a device for treating the substrate with a fluid, for example, a flow cell. In some instances, the system comprises a device for moving the substrate between the application device and the treatment device. For instances where the substrate is a reel-to-reel tape, the system may comprise two or more reels that allow for access of different portions of the substrate to the application and optional treatment device at different times.
- In some instances, a flexible substrate comprising thermoplastic material is coated with nucleoside coupling reagent. The coating is patterned into features such that each feature has diameter of about 10 um, with a center-to-center distance between two adjacent features of about 21 um. In this case, the feature size is sufficient to accommodate a sessile drop volume of 0.2 pl during an oligonucleic acid synthesis deposition step. In some cases, the feature density is about 2.2 billion features per m2 (1 feature/441×10−12 m2). In some cases, a 4.5 m2 substrate comprise about 10 billion features, each with a 10 um diameter.
- In some instances, a deposition device comprises about 2,048 nozzles that each deposit about 100,000 droplets per second at 1 nucleobase per droplet. For each deposition device, at least about 1.75×1013 nucleobases are deposited on the substrate per day. In some cases, 100 to 500 nucleobase oligonucleic acids are synthesized. In some cases, 200 nucleobase oligonucleic acids are synthesized. Optionally, over 3 days, at a rate of about 1.75×1013 bases per day, at least about 262.5×109 oligonucleic acids are synthesized.
- In one aspect, provided is an automated system for use with an oligonucleic acid synthesis method described herein that is capable of processing one or more substrates, comprising: a material deposition device for spraying a microdroplet comprising a reagent on a substrate; a scanning transport for scanning the substrate adjacent to the material deposition device to selectively deposit the microdroplet at specified sites; a flow cell for treating the substrate on which the microdroplet is deposited by exposing the substrate to one or more selected fluids; and an alignment unit for aligning the substrate correctly relative to the material deposition device for deposition. In some instances, the system optionally comprises a treating transport for moving the substrate between the material deposition device and the flow cell for treatment in the flow cell, where the treating transport and said scanning transport are different elements. In other instances, the system does not comprise a treating transport.
- In some instances, a device for application of one or more reagents to a substrate during a synthesis reaction is an oligonucleic acid synthesizer comprising a plurality of material deposition devices. In some instances, each material deposition device is configured to deposit nucleotide monomers for phosphoramidite synthesis. In some instances, the oligonucleic acid synthesizer deposits reagents to distinct features of a substrate. Reagents for oligonucleic acid synthesis include reagents for oligonucleic acid extension and wash buffers. As non-limiting examples, the oligonucleic acid synthesizer deposits coupling reagents, capping reagents, oxidizers, de-blocking agents, acetonitrile, gases such as nitrogen gas, and any combination thereof. In addition, the oligonucleic acid synthesizer optionally deposits reagents for the preparation and/or maintenance of substrate integrity. In some instances, the oligonucleic acid synthesizer deposits a drop having a diameter less than about 200 um, 100 um, or 50 um in a volume less than about 1000, 500, 100, 50, or 20 pl. In some cases, the oligonucleic acid synthesizer deposits between about 1 and 10000, 1 and 5000, 100 and 5000, or 1000 and 5000 droplets per second. In some instances, the oligonucleic acid synthesizer uses organic solvents.
- In some instances, during oligonucleic acid synthesis, the substrate is positioned within and/or sealed within a flow cell. In some instances, the flow cell provides continuous or discontinuous flow of liquids such as those comprising reagents necessary for reactions within the substrate, for example, oxidizers and/or solvents. In some instances, the flow cell provides continuous or discontinuous flow of a gas, such as nitrogen, for drying the substrate typically through enhanced evaporation of a volatile substrate. A variety of auxiliary devices are useful to improve drying and reduce residual moisture on the surface of the substrate. Examples of such auxiliary drying devices include, without limitation, a vacuum source, depressurizing pump and a vacuum tank. In some cases, an oligonucleic acid synthesis system comprises one or more flow cells, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or 20 and one or more substrates, such as 2, 3, 4, 5, 6, 7, 8, 9, 10 or 20. In some cases, a flow cell is configured to hold and provide reagents to the substrate during one or more steps in a synthesis reaction. In some instances, a flowcell comprises a lid that slides over the top of a substrate and can be clamped into place to form a pressure tight seal around the edge of the substrate. An adequate seal includes, without limitation, a seal that allows for about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 atmospheres of pressure. In some cases, the lid of the flow cell is opened to allow for access to an application device such as an oligonucleic acid synthesizer. In some cases, one or more steps of an oligonucleic acid synthesis method are performed on a substrate within a flow cell, without the transport of the substrate.
- In some instances, a device for treating a substrate with a fluid comprises a spray bar. In an exemplary oligonucleic acid synthesis process, nucleotide monomers are applied onto a substrate surface with an application device and then a spray bar sprays the substrate surface with one or more treatment reagents using spray nozzles of the spray bar. In some instances, the spray nozzles are sequentially ordered to correlate with different treatment steps during oligonucleic acid synthesis. The chemicals used in different process steps are easily changed in the spray bar to readily accommodate changes in a synthesis method or between steps of a synthesis method. In some instances, the spray bar continuously sprays a given chemistry on a surface of a substrate as the substrate moves past the spray bar. In some cases, the spray bar deposits over a wide area of a substrate, much like the spray bars used in lawn sprinklers. In some instances, the spray bar nozzles are positioned to provide a uniform coat of treatment material to a given area of a substrate.
- In some instances, an oligonucleic acid synthesis system comprises one or more elements useful for downstream processing of synthesized oligonucleic acids. As an example, the system comprises a temperature control element such as a thermal cycling device. In some instances, the temperature control element is used with a plurality of resolved reactors to perform nucleic acid assembly such as PCA and/or nucleic acid amplification such as PCR.
- The oligonucleic acid synthesizer includes a material deposition device that moves in the X-Y direction to align with the location of the substrate. The oligonucleic acid synthesizer can also move in the Z direction to seal with the substrate, forming a resolved reactor. A resolved reactor is configured to allow for the transfer of fluid, including oligonucleic acids and/or reagents, from the substrate to a capping element and/or vice versa. Fluid may pass through either or both the substrate and the capping element and includes, without limitation, coupling reagents, capping reagents, oxidizers, de-blocking agents, acetonitrile and nitrogen gas.
- An oligonucleic acid synthesizer comprises one or more deposition devices that deposit reagents for nucleic acid synthesis onto distinct features or regions of a substrate at a high resolution. Examples of devices that are capable of high resolution droplet deposition include the printhead of inkjet printers and laser printers. The devices useful in the systems and methods described herein achieve a resolution from about 100 dots per inch (DPI) to about 50,000 DPI; from about 100 DPI to about 20,000 DPI; from about 100 DPI to about 10,000 DPI; from about 100 DPI to about 5,000 DPI; from about 1,000 DPI to about 20,000 DPI; or from about 1,000 DPI to about 10,000 DPI. In some cases, the devices have a resolution at least about 1,000; 2,000; 3,000; 4,000; 5,000; 10,000; or 20,000 DPI. The high resolution deposition performed by the device is related to the number and density of each nozzle that corresponds to a feature of the substrate.
- The size of the droplets dispensed correlates to the resolution of the device. In some instances, the devices deposit droplets of reagents at sizes from about 0.01 pl to about 20 pl, from about 0.01 pl to about 10 pl, from about 0.01 pl to about 1 pl, from about 0.01 pl to about 0.5 pl, from about 0.01 pl to about 0.01 pl, or from about 0.05 pl to about 1 pl. In some cases, the droplet size is less than about 1 pl, 0.5 pl, 0.2 pl, 0.1 pl, or 0.05 pl. The size of droplets dispensed by the device is correlated to the diameters of deposition nozzles, wherein each nozzle is capable of depositing a reagent onto a feature of the substrate. In some instances, a deposition device of an oligonucleic acid synthesizer comprises from about 100 to about 10,000 nozzles; from about 100 to about 5,000 nozzles; from about 100 to about 3,000 nozzles; from about 500 to about 10,000 nozzles; or from about 100 to about 5,000 nozzles. In some cases, the deposition device comprises greater than 1,000; 2,000; 3,000; 4,000; 5,000; or 10,000 nozzles. In some cases, each material deposition device comprises a plurality of nozzles, where each nozzle is optionally configured to correspond to a feature on a substrate. In some cases, each nozzle deposits a reagent component that is different from another nozzle. In some instances, each nozzle deposits a droplet that covers one or more features of the substrate. In some instances, one or more nozzles are angled. In some instances, multiple deposition devices are stacked side by side to achieve a fold increase in throughput. In some cases, the gain is 2×, 4×, 8× or more. An example of a deposition device is Samba Printhead (Fujifilm). A Samba Printhead may be used with the Samba Web Administration Tool (SWAT).
- In some oligonucleic acid synthesis methods, nucleic acid reagents are deposited on the substrate surface in a non-continuous, or drop-on-demand method. Examples of such methods include the electromechanical transfer method, electric thermal transfer method, and electrostatic attraction method. In the electromechanical transfer method, piezoelectric elements deformed by electrical pulses cause the droplets to be ejected. In the electric thermal transfer method, bubbles are generated in a chamber of the device, and the expansive force of the bubbles causes the droplets to be ejected. In the electrostatic attraction method, electrostatic force of attraction is used to eject the droplets onto the substrate. In some cases, the drop frequency is from about 5 KHz to about 500 KHz; from about 5 KHz to about 100 KHz; from about 10 KHz to about 500 KHz; from about 10 KHz to about 100 KHz; or from about 50 KHz to about 500 KHz. In some cases, the frequency is less than about 500 KHz, 200 KHz, 100 KHz, or 50 KHz.
- In some instances, the number of deposition sites increases by using and rotating the same deposition device by a certain degree or saber angle. By rotating the deposition device, each nozzle is jetted with a certain amount of delay time corresponding to the saber angle. This unsynchronized jetting creates a cross talk among the nozzles. Therefore, when the droplets are jetting at a certain saber angle different from 0 degrees, the droplet volume from the nozzle could be different.
- In some instances, the configuration of an oligonucleic acid synthesis system allows for a continuous oligonucleic acid synthesis process that exploits the flexibility of a substrate for traveling in a reel-to-reel type process. This synthesis process operates in a continuous production line manner with the substrate travelling through various stages of oligonucleic acid synthesis using one or more reels to rotate the position of the substrate. In some instances, an oligonucleic acid synthesis reaction comprises rolling a substrate: through a solvent bath, beneath a deposition device for phosphoramidite deposition, through a bath of oxidizing agent, through an acetonitrile wash bath, and through a deblock bath. Optionally, the tape is also traversed through a capping bath. A reel-to-reel type process allows for the finished product of a substrate comprising synthesized oligonucleic acids to be easily gathered on a take-up reel, where it can be transported for further processing or storage.
- In some instances, oligonucleic acid synthesis proceeds in a continuous process as a continuous flexible tape is conveyed along a conveyor belt system. Similar to the reel-to-reel type process, oligonucleic acid synthesis on a continuous tape operates in a production line manner, with the substrate travelling through various stages of oligonucleic acid synthesis during conveyance. However, in a conveyor belt process, the continuous tape revisits an oligonucleic acid synthesis step without rolling and unrolling of the tape, as in a reel-to-reel process. In some instances, oligonucleic acid synthesis steps are partitioned into zones and a continuous tape is conveyed through each zone one or more times in a cycle. In some instances, an oligonucleic acid synthesis reaction comprises (1) conveying a substrate through a solvent bath, beneath a deposition device for phosphoramidite deposition, through a bath of oxidizing agent, through an acetonitrile wash bath, and through a block bath in a cycle; and then (2) repeating the cycle as necessary to achieve synthesized oligonucleic acids of a predetermined length. In some cases, after oligonucleic acid synthesis, the flexible substrate is removed from the conveyor belt system and rolled, optionally around a reel, for storage.
- Computer Systems
- In various aspects, any of the systems described herein are operably linked to a computer and are optionally automated through a computer either locally or remotely. In some instances, the methods and systems described herein further comprise software programs on computer systems and use thereof. Accordingly, computerized control for the synchronization of the dispense/vacuum/refill functions such as orchestrating and synchronizing the material deposition device movement, dispense action and vacuum actuation are within the bounds of the invention. In some instances, the computer systems are programmed to interface between the user specified base sequence and the position of a material deposition device to deliver the correct reagents to specified regions of the substrate.
- The
computer system 400 illustrated inFIG. 4 may be understood as a logical apparatus that can read instructions frommedia 411 and/or anetwork port 405, which can optionally be connected toserver 409 having fixedmedia 412. The system, such as shown inFIG. 4 can include aCPU 401, disk drives 403, optional input devices such as keyboard 415 and/ormouse 416 andoptional monitor 407. Data communication can be achieved through the indicated communication medium to a server at a local or a remote location. The communication medium can include any means of transmitting and/or receiving data. For example, the communication medium can be a network connection, a wireless connection or an internet connection. Such a connection can provide for communication over the World Wide Web. It is envisioned that data relating to the present disclosure can be transmitted over such networks or connections for reception and/or review by a party 422 as illustrated inFIG. 4 . -
FIG. 5 is a block diagram illustrating a first example architecture of acomputer system 500 that can be used in connection with example embodiments of the present invention. As depicted inFIG. 5 , the example computer system can include aprocessor 502 for processing instructions. Non-limiting examples of processors include: Intel Xeon™ processor, AMD Opteron™ processor, Samsung 32-bit RISC ARM 1176JZ(F)-S v1.0™ processor, ARM Cortex-A8 Samsung S5PC100™ processor, ARM Cortex-A8 Apple A4™ processor, Marvell PXA 930™ processor, or a functionally-equivalent processor. Multiple threads of execution can be used for parallel processing. In some embodiments, multiple processors or processors with multiple cores can also be used, whether in a single computer system, in a cluster, or distributed across systems over a network comprising a plurality of computers, cell phones, and/or personal data assistant devices. - As illustrated in
FIG. 5 , ahigh speed cache 504 can be connected to, or incorporated in, theprocessor 502 to provide a high speed memory for instructions or data that have been recently, or are frequently, used byprocessor 502. Theprocessor 502 is connected to anorth bridge 506 by a processor bus 508. Thenorth bridge 506 is connected to random access memory (RAM) 510 by amemory bus 512 and manages access to the RAM 510 by theprocessor 502. Thenorth bridge 506 is also connected to asouth bridge 514 by a chipset bus 516. Thesouth bridge 514 is, in turn, connected to a peripheral bus 518. The peripheral bus can be, for example, PCI, PCI-X, PCI Express, or other peripheral bus. The north bridge and south bridge are often referred to as a processor chipset and manage data transfer between the processor, RAM, and peripheral components on the peripheral bus 518. In some alternative architectures, the functionality of the north bridge can be incorporated into the processor instead of using a separate north bridge chip. - In some embodiments,
system 500 can include anaccelerator card 522 attached to the peripheral bus 518. The accelerator can include field programmable gate arrays (FPGAs) or other hardware for accelerating certain processing. For example, an accelerator can be used for adaptive data restructuring or to evaluate algebraic expressions used in extended set processing. - Software and data are stored in
external storage 524 and can be loaded into RAM 510 and/orcache 504 for use by the processor. Thesystem 500 includes an operating system for managing system resources; non-limiting examples of operating systems include: Linux, Windows™, MACOS™, BlackBerry OS™, iOS™, and other functionally-equivalent operating systems, as well as application software running on top of the operating system for managing data storage and optimization in accordance with example embodiments of the present invention. - In this example,
system 500 also includes network interface cards (NICs) 520 and 521 connected to the peripheral bus for providing network interfaces to external storage, such as Network Attached Storage (NAS) and other computer systems that can be used for distributed parallel processing. -
FIG. 6 is a diagram showing a network 600 with a plurality ofcomputer systems 602 a, and 602 b, a plurality of cell phones andpersonal data assistants 602 c, and Network Attached Storage (NAS) 604 a, and 604 b. In example embodiments,systems computer systems 602 a, and 602 b, and cell phone and personal dataassistant systems 602 c.Computer systems 602 a, and 602 b, and cell phone and personal dataassistant systems 602 c can also provide parallel processing for adaptive data restructuring of the data stored in Network Attached Storage (NAS) 604 a and 604 b.FIG. 6 illustrates an example only, and a wide variety of other computer architectures and systems can be used in conjunction with the various embodiments of the present invention. For example, a blade server can be used to provide parallel processing. Processor blades can be connected through a back plane to provide parallel processing. Storage can also be connected to the back plane or as Network Attached Storage (NAS) through a separate network interface. - In some example embodiments, processors can maintain separate memory spaces and transmit data through network interfaces, back plane or other connectors for parallel processing by other processors. In other embodiments, some or all of the processors can use a shared virtual address memory space.
-
FIG. 7 is a block diagram of a multiprocessor computer system 700 using a shared virtual address memory space in accordance with an example embodiment. The system includes a plurality of processors 702 a-f that can access a sharedmemory subsystem 704. The system incorporates a plurality of programmable hardware memory algorithm processors (MAPs) 706 a-f in thememory subsystem 704. Each MAP 706 a-f can comprise a memory 708 a-f and one or more field programmable gate arrays (FPGAs) 710 a-f. The MAP provides a configurable functional unit and particular algorithms or portions of algorithms can be provided to the FPGAs 710 a-f for processing in close coordination with a respective processor. For example, the MAPs can be used to evaluate algebraic expressions regarding the data model and to perform adaptive data restructuring in example embodiments. In this example, each MAP is globally accessible by all of the processors for these purposes. In one configuration, each MAP can use Direct Memory Access (DMA) to access an associated memory 708 a-f, allowing it to execute tasks independently of, and asynchronously from, the respective microprocessor 702 a-f. In this configuration, a MAP can feed results directly to another MAP for pipelining and parallel execution of algorithms. - The above computer architectures and systems are examples only, and a wide variety of other computer, cell phone, and personal data assistant architectures and systems can be used in connection with example embodiments, including systems using any combination of general processors, co-processors, FPGAs and other programmable logic devices, system on chips (SOCs), application specific integrated circuits (ASICs), and other processing and logic elements. In some embodiments, all or part of the computer system can be implemented in software or hardware. Any variety of data storage media can be used in connection with example embodiments, including random access memory, hard drives, flash memory, tape drives, disk arrays, Network Attached Storage (NAS) and other local or distributed data storage devices and systems.
- In example embodiments, the computer system can be implemented using software modules executing on any of the above or other computer architectures and systems. In other embodiments, the functions of the system can be implemented partially or completely in firmware, programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in
FIG. 7 , system on chips (SOCs), application specific integrated circuits (ASICs), or other processing and logic elements. For example, the Set Processor and Optimizer can be implemented with hardware acceleration through the use of a hardware accelerator card. - The following examples are set forth to illustrate more clearly the principle and practice of embodiments disclosed herein to those skilled in the art and are not to be construed as limiting the scope of any claimed embodiments. Unless otherwise stated, all parts and percentages are on a weight basis.
- A device was functionalized to support the attachment and synthesis of a library of oligonucleic acids. The device surface was first wet cleaned using a piranha solution comprising 90% H2SO4 and 10% H2O2 for 20 minutes. The device was rinsed in several beakers with DI water, held under a DI water gooseneck faucet for 5 min, and dried with N2. The device was subsequently soaked in NH4OH (1:100; 3 mL:300 mL) for 5 min, rinsed with DI water using a handgun, soaked in three successive beakers with DI water for 1 min each, and then rinsed again with DI water using the handgun. The device was then plasma cleaned by exposing the device surface to O2. A SAMCO PC-300 instrument was used to plasma etch O2 at 250 watts for 1 min in downstream mode.
- The cleaned device surface was actively functionalized with a solution comprising N-(3-triethoxysilylpropyl)-4-hydroxybutyramide using a YES-1224P vapor deposition oven system with the following parameters: 0.5 to 1 torr, 60 min, 70° C., 135° C. vaporizer. The device surface was resist coated using a Brewer Science 200X spin coater. SPR™ 3612 photoresist was spin coated on the device at 2500 rpm for 40 sec. The device was pre-baked for 30 min at 90° C. on a Brewer hot plate. The device was subjected to photolithography using a Karl Suss MA6 mask aligner instrument. The device was exposed for 2.2 sec and developed for 1 min in MSF 26A. Remaining developer was rinsed with the handgun and the device soaked in water for 5 min. The device was baked for 30 min at 100° C. in the oven, followed by visual inspection for lithography defects using a Nikon L200. A descum process was used to remove residual resist using the SAMCO PC-300 instrument to O2 plasma etch at 250 watts for 1 min.
- The device surface was passively functionalized with a 100 μL solution of perfluorooctyltrichlorosilane mixed with 10 μL light mineral oil. The device was placed in a chamber, pumped for 10 min, and then the valve was closed to the pump and left to stand for 10 min. The chamber was vented to air. The device was resist stripped by performing two soaks for 5 min in 500 mL NMP at 70° C. with ultrasonication at maximum power (9 on Crest system). The device was then soaked for 5 min in 500 mL isopropanol at room temperature with ultrasonication at maximum power. The device was dipped in 300 mL of 200 proof ethanol and blown dry with N2. The functionalized surface was activated to serve as a support for oligonucleic acid synthesis.
- A two dimensional oligonucleotide synthesis device was assembled into a flowcell, which was connected to a flowcell (Applied Biosystems (ABI394 DNA Synthesizer”). The two-dimensional oligonucleotide synthesis device was uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE (Gelest) was used to synthesize an exemplary oligonucleotide of 50 bp (“50-mer oligonucleotide”) using oligonucleotide synthesis methods described herein.
- The sequence of the 50-mer was as described in SEQ ID NO.: 1. 5′AGACAATCAACCATTTGGGGTGGACAGCCTTGACCTCTAGACTTCGGCAT##TTTTTTT TTT3′ (SEQ ID NO.: 1), where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes), which is a cleavable linker enabling the release of oligonucleic acids from the surface during deprotection.
- The synthesis was done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 1 and an ABI synthesizer.
-
TABLE 1 General DNA Synthesis Process Name Process Step Time (sec) WASH (Acetonitrile Wash Acetonitrile System Flush 4 Flow) Acetonitrile to Flowcell 23 N2 System Flush 4 Acetonitrile System Flush 4 DNA BASE ADDITION Activator Manifold Flush 2 (Phosphoramidite + Activator to Flowcell 6 Activator Flow) Activator + 6 Phosphoramidite to Flowcell Activator to Flowcell 0.5 Activator + 5 Phosphoramidite to Flowcell Activator to Flowcell 0.5 Activator + 5 Phosphoramidite to Flowcell Activator to Flowcell 0.5 Activator + 5 Phosphoramidite to Flowcell Incubate for 25 sec 25 WASH (Acetonitrile Wash Acetonitrile System Flush 4 Flow) Acetonitrile to Flowcell 15 N2 System Flush 4 Acetonitrile System Flush 4 DNA BASE ADDITION Activator Manifold Flush 2 (Phosphoramidite + Activator to Flowcell 5 Activator Flow) Activator + 18 Phosphoramidite to Flowcell Incubate for 25 sec 25 WASH (Acetonitrile Wash Acetonitrile System Flush 4 Flow) Acetonitrile to Flowcell 15 N2 System Flush 4 Acetonitrile System Flush 4 CAPPING (CapA + B, 1:1, CapA + B to Flowcell 15 Flow) WASH (Acetonitrile Wash Acetonitrile System Flush 4 Flow) Acetonitrile to Flowcell 15 Acetonitrile System Flush 4 OXIDATION (Oxidizer Oxidizer to Flowcell 18 Flow) WASH (Acetonitrile Wash Acetonitrile System Flush 4 Flow) N2 System Flush 4 Acetonitrile System Flush 4 Acetonitrile to Flowcell 15 Acetonitrile System Flush 4 Acetonitrile to Flowcell 15 N2 System Flush 4 Acetonitrile System Flush 4 Acetonitrile to Flowcell 23 N2 System Flush 4 Acetonitrile System Flush 4 DEBLOCKING (Deblock Deblock to Flowcell 36 Flow) WASH (Acetonitrile Wash Acetonitrile System Flush 4 Flow) N2 System Flush 4 Acetonitrile System Flush 4 Acetonitrile to Flowcell 18 N2 System Flush 4.13 Acetonitrile System Flush 4.13 Acetonitrile to Flowcell 15 - The phosphoramidite/activator combination was delivered similar to the delivery of bulk reagents through the flowcell. No drying steps were performed as the environment stays “wet” with reagent the entire time.
- The flow restrictor was removed from the ABI 394 synthesizer to enable faster flow. Without flow restrictor, flow rates for amidites (0.1M in ACN), Activator, (0.25M Benzoylthiotetrazole (“BTT”; 30-3070-xx from GlenResearch) in ACN), and Ox (0.02M 12 in 20% pyridine, 10% water, and 70% THF) were roughly ˜100 uL/sec, for acetonitrile (“ACN”) and capping reagents (1:1 mix of CapA and CapB, wherein CapA is acetic anhydride in THF/Pyridine and CapB is 16% 1-methylimidizole in THF), roughly ˜200 uL/sec, and for Deblock (3% dichloroacetic acid in toluene), roughly ˜300 uL/sec (compared to ˜50 uL/sec for all reagents with flow restrictor). The time to completely push out Oxidizer was observed, the timing for chemical flow times was adjusted accordingly and an extra ACN wash was introduced between different chemicals. After oligonucleotide synthesis, the chip was deprotected in gaseous ammonia overnight at 75 psi. Five drops of water were applied to the surface to recover oligonucleic acids. The recovered oligonucleic acids were then analyzed on a BioAnalyzer small RNA chip (data not shown).
- The same process as described in Example 2 for the synthesis of the 50-mer sequence was used for the synthesis of a 100-mer oligonucleotide (“100-mer oligonucleotide”; 5′ CGGGATCCTTATCGTCATCGTCGTACAGATCCCGACCCATTTGCTGTCCACCAGTCATGC TAGCCATACCATGATGATGATGATGATGAGAACCCCGCAT##TTTTTTTTTT3′, where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes); SEQ ID NO.: 2) on two different silicon chips, the first one uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE and the second one functionalized with 5/95 mix of 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane, and the oligonucleic acids extracted from the surface were analyzed on a BioAnalyzer instrument (data not shown).
- All ten samples from the two chips were further PCR amplified using a forward (5′ATGCGGGGTTCTCATCATC3′; SEQ ID NO.: 3) and a reverse (5′CGGGATCCTTATCGTCATCG3′; SEQ ID NO.: 4) primer in a 50 uL PCR mix (25 uL NEB Q5 mastermix, 2.5
uL 10 uM Forward primer, 2.5uL 10 uM Reverse primer, luL oligonucleic acid extracted from the surface, and water up to 50 uL) using the following thermalcycling program: - 98 C, 30 sec
- 98 C, 10 sec; 63C, 10 sec; 72C, 10 sec; repeat 12 cycles
- 72C, 2 min
- The PCR products were also run on a BioAnalyzer (data not shown), demonstrating sharp peaks at the 100-mer position. Next, the PCR amplified samples were cloned, and Sanger sequenced. Table 2 summarizes the results from the Sanger sequencing for samples taken from spots 1-5 from chip 1 and for samples taken from spots 6-10 from
chip 2. -
TABLE 2 Spot Error rate Cycle efficiency 1 1/763 bp 99.87% 2 1/824 bp 99.88% 3 1/780 bp 99.87% 4 1/429 bp 99.77% 5 1/1525 bp 99.93% 6 1/1615 bp 99.94% 7 1/531 bp 99.81% 8 1/1769 bp 99.94% 9 1/854 bp 99.88% 10 1/1451 bp 99.93% - Thus, the high quality and uniformity of the synthesized oligonucleotides were repeated on two chips with different surface chemistries. Overall, 89%, corresponding to 233 out of 262 of the 100-mers that were sequenced were perfect sequences with no errors.
- Finally, Table 3 summarizes error characteristics for the sequences obtained from the oligonucleotides samples from spots 1-10.
-
TABLE 3 Sample ID/Spot no. OSA_0046/1 OSA_0047/2 OSA_0048/3 OSA_0049/4 OSA_0050/5 OSA_0051/6 Total 32 32 32 32 32 32 Sequences Sequencing 25 of 27 of 26 of 21 of 25 of 29 of Quality 28 27 30 23 26 30 Oligo 23 of 25 of 22 of 18 of 24 of 25 of Quality 25 27 26 21 25 29 ROI Match 2500 2698 2561 2122 2499 2666 Count ROI 2 2 1 3 1 0 Mutation ROI Multi 0 0 0 0 0 0 Base Deletion ROI Small 1 0 0 0 0 0 Insertion ROI Single 0 0 0 0 0 0 Base Deletion Large Deletion 0 0 1 0 0 1 Count Mutation: 2 2 1 2 1 0 G > A Mutation: 0 0 0 1 0 0 T > C ROI Error 3 2 2 3 1 1 Count ROI Error Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Err: ~1 Rate in 834 in 1350 in 1282 in 708 in 2500 in 2667 ROI Minus MP Err: ~1 MP Err: ~1 MP Err: ~1 MP Err: ~1 MP Err: ~1 MP Err: ~1 Primer in 763 in 824 in 780 in 429 in 1525 in 1615 Error Rate Sample ID/Spot no. OSA_0052/7 OSA_0053/8 OSA_0054/9 OSA_0055/10 Total 32 32 32 32 Sequences Sequencing 27 of 29 of 28 of 25 of Quality 31 31 29 28 Oligo 22 of 28 of 26 of 20 of Quality 27 29 28 25 ROI Match 2625 2899 2798 2348 Count ROI 2 1 2 1 Mutation ROI Multi 0 0 0 0 Base Deletion ROI Small 0 0 0 0 Insertion ROI Single 0 0 0 0 Base Deletion Large Deletion 1 0 0 0 Count Mutation: 2 1 2 1 G > A Mutation: 0 0 0 0 T > C ROI Error 3 1 2 1 Count ROI Error Err: ~1 Err: ~1 Err: ~1 Err: ~1 Rate in 876 in 2900 in 1400 in 2349 ROI Minus MP Err: ~1 MP Err: ~1 MP Err: ~1 MP Err: ~1 Primer in 531 in 1769 in 854 in 1451 Error Rate - Digital information was selected in the form of binary data totaling about 0.2 GB included content for the Universal Declaration of Human Rights in more than 100 languages, the top 100 books of Project Guttenberg and a seed database. The digital information was encrypted into a nucleic acid-based sequence and divided into strings. Over 10 million non-identical oligonucleic acids, each corresponding to a string, were synthesized on a rigid silicon surface in a manner similar to that described in Example 2. Each non-identical oligonucleic acid was under equal or less than 200 bases in length. The synthesized oligonucleic acids were collected and sequenced and decoded back to digital code, with 100% accuracy for the source digital information.
- A flexible structure comprising thermoplastic material is coated with a nucleoside coupling reagent. The coating agent is patterned for a high density of features. A portion of the flexible surface is illustrated in
FIG. 2B . Each feature has a diameter of 10 um, with a center-to-center distance between two adjacent features of 21 um. The feature size is sufficient to accommodate a sessile drop volume of 0.2 pl during an oligonucleic acid synthesis deposition step. The small feature dimensions allow for a high density of oligonucleic acids to be synthesized on the surface of the substrate. The feature density is 2.2 billion features/m2 (1 feature/441×10−12 m2). A 4.5 m2 substrate is manufactured having 10 billion features, each with a 10 um diameter. The flexible structure is optionally placed in a continuous loop system,FIG. 2A , for oligonucleic acid synthesis. - A flexible substrate is prepared comprising a plurality of features on a thermoplastic flexible material. The substrate serves as a support for the synthesis of oligonucleic acids using an oligonucleic acid synthesis device comprising a deposition device. The flexible substrate is in the form of a flexible media much like a magnetic reel-to-reel tape.
- De novo synthesis operates in a continuous production line manner with the substrate travelling through a solvent bath and then beneath a stack of printheads where the phosphoramidites are printed on to the substrate. The flexible substrate with the sessile drops deposited on to the surface is rolled into a bath of oxidizing agent, then the tape emerges from the oxidizing bath and is immersed in an acetonitrile wash bath then submerged in a deblock bath. Optionally, the tape is traversed through a capping bath. In an alternative workflow, the flexible substrate emerges from the oxidizing bath and is sprayed with acetonitrile in a wash step.
- Alternatively, a spray bar is used instead of a liquid bath. In this process, the nucleotides are still deposited on the surface with an inkjet device but the flood steps are now done in a chamber with a spray nozzles. For example, the deposition device has 2,048 nozzles that each deposit 100,000 droplets per second at 1 nucleobase per droplet. There is a sequential ordering of spray nozzles to mimic the ordering of the flood steps in standard phosphoramidite chemistry. This technique provides for easily changing the chemicals loaded in the spray bar to accommodate different process steps. Oligonucleic acids are deprotected or cleaved in the same manner as described in Example 2.
- For each deposition device, more than 1.75×1013 nucleobases are deposited on the substrate per day (24 hours). A plurality of 200 nucleobase oligonucleic acids is synthesized. In 3 days (72 hours), at a rate of 1.75×1013 bases per day, 262.5×109 oligonucleic acids are synthesized.
- While certain embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/050,912 US20230193383A1 (en) | 2015-09-22 | 2022-10-28 | Flexible substrates for nucleic acid synthesis |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562222020P | 2015-09-22 | 2015-09-22 | |
US15/272,004 US11512347B2 (en) | 2015-09-22 | 2016-09-21 | Flexible substrates for nucleic acid synthesis |
US18/050,912 US20230193383A1 (en) | 2015-09-22 | 2022-10-28 | Flexible substrates for nucleic acid synthesis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/272,004 Continuation US11512347B2 (en) | 2015-09-22 | 2016-09-21 | Flexible substrates for nucleic acid synthesis |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230193383A1 true US20230193383A1 (en) | 2023-06-22 |
Family
ID=58276750
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/272,004 Active 2040-03-20 US11512347B2 (en) | 2015-09-22 | 2016-09-21 | Flexible substrates for nucleic acid synthesis |
US18/050,912 Pending US20230193383A1 (en) | 2015-09-22 | 2022-10-28 | Flexible substrates for nucleic acid synthesis |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/272,004 Active 2040-03-20 US11512347B2 (en) | 2015-09-22 | 2016-09-21 | Flexible substrates for nucleic acid synthesis |
Country Status (4)
Country | Link |
---|---|
US (2) | US11512347B2 (en) |
KR (1) | KR20180058772A (en) |
CN (2) | CN108698012A (en) |
WO (1) | WO2017053450A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12001962B2 (en) | 2016-11-16 | 2024-06-04 | Catalog Technologies, Inc. | Systems for nucleic acid-based data storage |
US12006497B2 (en) | 2018-03-16 | 2024-06-11 | Catalog Technologies, Inc. | Chemical methods for nucleic acid-based data storage |
US12173282B2 (en) | 2019-09-23 | 2024-12-24 | Twist Bioscience, Inc. | Antibodies that bind CD3 epsilon |
US12236354B2 (en) | 2024-04-26 | 2025-02-25 | Catalog Technologies, Inc. | Systems for nucleic acid-based data storage |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI646230B (en) | 2013-08-05 | 2019-01-01 | 扭轉生物科技有限公司 | Re-synthesized gene bank |
WO2016126882A1 (en) | 2015-02-04 | 2016-08-11 | Twist Bioscience Corporation | Methods and devices for de novo oligonucleic acid assembly |
US9981239B2 (en) | 2015-04-21 | 2018-05-29 | Twist Bioscience Corporation | Devices and methods for oligonucleic acid library synthesis |
CA2998169A1 (en) | 2015-09-18 | 2017-03-23 | Twist Bioscience Corporation | Oligonucleic acid variant libraries and synthesis thereof |
KR20180058772A (en) | 2015-09-22 | 2018-06-01 | 트위스트 바이오사이언스 코포레이션 | Flexible substrate for nucleic acid synthesis |
WO2017095958A1 (en) | 2015-12-01 | 2017-06-08 | Twist Bioscience Corporation | Functionalized surfaces and preparation thereof |
CA3034769A1 (en) | 2016-08-22 | 2018-03-01 | Twist Bioscience Corporation | De novo synthesized nucleic acid libraries |
WO2018057526A2 (en) | 2016-09-21 | 2018-03-29 | Twist Bioscience Corporation | Nucleic acid based data storage |
US10650312B2 (en) | 2016-11-16 | 2020-05-12 | Catalog Technologies, Inc. | Nucleic acid-based data storage |
CN110366613A (en) | 2016-12-16 | 2019-10-22 | 特韦斯特生物科学公司 | Variant library of immune synapses and their synthesis |
CN110892485B (en) | 2017-02-22 | 2024-03-22 | 特韦斯特生物科学公司 | Nucleic acid-based data storage |
US10894959B2 (en) | 2017-03-15 | 2021-01-19 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
GB2578844A (en) | 2017-06-12 | 2020-05-27 | Twist Bioscience Corp | Methods for seamless nucleic acid assembly |
WO2018231864A1 (en) | 2017-06-12 | 2018-12-20 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
EA202090562A1 (en) | 2017-09-11 | 2020-08-10 | Твист Байосайенс Корпорейшн | GPCR BINDING PROTEINS AND THEIR SYNTHESIS |
KR102637566B1 (en) | 2017-10-20 | 2024-02-16 | 트위스트 바이오사이언스 코포레이션 | Heated nanowells for polynucleotide synthesis |
IL275818B2 (en) * | 2018-01-04 | 2024-10-01 | Twist Bioscience Corp | Digital information storage based on DNA |
EP3794598A1 (en) | 2018-05-16 | 2021-03-24 | Catalog Technologies, Inc. | Compositions and methods for nucleic acid-based data storage |
SG11202011467RA (en) | 2018-05-18 | 2020-12-30 | Twist Bioscience Corp | Polynucleotides, reagents, and methods for nucleic acid hybridization |
CA3131691A1 (en) | 2019-02-26 | 2020-09-03 | Twist Bioscience Corporation | Variant nucleic acid libraries for antibody optimization |
KR20210143766A (en) | 2019-02-26 | 2021-11-29 | 트위스트 바이오사이언스 코포레이션 | Variant Nucleic Acid Libraries for the GLP1 Receptor |
EP3966823A1 (en) | 2019-05-09 | 2022-03-16 | Catalog Technologies, Inc. | Data structures and operations for searching, computing, and indexing in dna-based data storage |
WO2020257612A1 (en) | 2019-06-21 | 2020-12-24 | Twist Bioscience Corporation | Barcode-based nucleic acid sequence assembly |
AU2020356471A1 (en) | 2019-09-23 | 2022-04-21 | Twist Bioscience Corporation | Variant nucleic acid libraries for CRTH2 |
US11535842B2 (en) | 2019-10-11 | 2022-12-27 | Catalog Technologies, Inc. | Nucleic acid security and authentication |
KR20230016184A (en) | 2020-04-27 | 2023-02-01 | 트위스트 바이오사이언스 코포레이션 | Variant nucleic acid library for coronavirus |
JP2023526017A (en) | 2020-05-11 | 2023-06-20 | カタログ テクノロジーズ, インコーポレイテッド | Programs and functions in DNA-based data storage |
US11970697B2 (en) | 2020-10-19 | 2024-04-30 | Twist Bioscience Corporation | Methods of synthesizing oligonucleotides using tethered nucleotides |
AU2022209701A1 (en) | 2021-01-21 | 2023-08-31 | Twist Bioscience Corporation | Methods and compositions relating to adenosine receptors |
US12201857B2 (en) | 2021-06-22 | 2025-01-21 | Twist Bioscience Corporation | Methods and compositions relating to covid antibody epitopes |
WO2023091614A2 (en) | 2021-11-18 | 2023-05-25 | Twist Bioscience Corporation | Dickkopf-1 variant antibodies and methods of use |
Family Cites Families (912)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3549368A (en) | 1968-07-02 | 1970-12-22 | Ibm | Process for improving photoresist adhesion |
US3920714A (en) | 1972-11-16 | 1975-11-18 | Weber Heinrich | Process for the production of polymeric hydrocarbons with reactive silyl side groups |
GB1550867A (en) | 1975-08-04 | 1979-08-22 | Hughes Aircraft Co | Positioning method and apparatus for fabricating microcircuit devices |
US4415732A (en) | 1981-03-27 | 1983-11-15 | University Patents, Inc. | Phosphoramidite compounds and processes |
EP0090789A1 (en) | 1982-03-26 | 1983-10-05 | Monsanto Company | Chemical DNA synthesis |
US4994373A (en) | 1983-01-27 | 1991-02-19 | Enzo Biochem, Inc. | Method and structures employing chemically-labelled polynucleotide probes |
JPS59224123A (en) | 1983-05-20 | 1984-12-17 | Oki Electric Ind Co Ltd | Alignment mark for wafer |
US5118605A (en) | 1984-10-16 | 1992-06-02 | Chiron Corporation | Polynucleotide determination with selectable cleavage sites |
JPS61141761A (en) | 1984-12-12 | 1986-06-28 | Kanegafuchi Chem Ind Co Ltd | Curable composition |
US5242794A (en) | 1984-12-13 | 1993-09-07 | Applied Biosystems, Inc. | Detection of specific sequences in nucleic acids |
US6492107B1 (en) | 1986-11-20 | 2002-12-10 | Stuart Kauffman | Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique |
US4613398A (en) | 1985-06-06 | 1986-09-23 | International Business Machines Corporation | Formation of etch-resistant resists through preferential permeation |
US4981797A (en) | 1985-08-08 | 1991-01-01 | Life Technologies, Inc. | Process of producing highly transformable cells and cells produced thereby |
US4726877A (en) | 1986-01-22 | 1988-02-23 | E. I. Du Pont De Nemours And Company | Methods of using photosensitive compositions containing microgels |
US4808511A (en) | 1987-05-19 | 1989-02-28 | International Business Machines Corporation | Vapor phase photoresist silylation process |
JPH07113774B2 (en) | 1987-05-29 | 1995-12-06 | 株式会社日立製作所 | Pattern formation method |
US4988617A (en) | 1988-03-25 | 1991-01-29 | California Institute Of Technology | Method of detecting a nucleotide change in nucleic acids |
US5700637A (en) | 1988-05-03 | 1997-12-23 | Isis Innovation Limited | Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays |
ATE143696T1 (en) | 1989-02-28 | 1996-10-15 | Canon Kk | PARTIALLY DOUBLE STRANDED OLIGONUCLEOTIDE AND METHOD FOR FORMING IT |
US5459039A (en) | 1989-05-12 | 1995-10-17 | Duke University | Methods for mapping genetic mutations |
US6008031A (en) | 1989-05-12 | 1999-12-28 | Duke University | Method of analysis and manipulation of DNA utilizing mismatch repair systems |
US5556750A (en) | 1989-05-12 | 1996-09-17 | Duke University | Methods and kits for fractionating a population of DNA molecules based on the presence or absence of a base-pair mismatch utilizing mismatch repair systems |
US5102797A (en) | 1989-05-26 | 1992-04-07 | Dna Plant Technology Corporation | Introduction of heterologous genes into bacteria using transposon flanked expression cassette and a binary vector system |
US5744101A (en) | 1989-06-07 | 1998-04-28 | Affymax Technologies N.V. | Photolabile nucleoside protecting groups |
US5527681A (en) | 1989-06-07 | 1996-06-18 | Affymax Technologies N.V. | Immobilized molecular synthesis of systematically substituted compounds |
US6040138A (en) | 1995-09-15 | 2000-03-21 | Affymetrix, Inc. | Expression monitoring by hybridization to high density oligonucleotide arrays |
US5143854A (en) | 1989-06-07 | 1992-09-01 | Affymax Technologies N.V. | Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof |
US5242974A (en) | 1991-11-22 | 1993-09-07 | Affymax Technologies N.V. | Polymer reversal on solid surfaces |
US6309822B1 (en) | 1989-06-07 | 2001-10-30 | Affymetrix, Inc. | Method for comparing copy number of nucleic acid sequences |
CA2036946C (en) | 1990-04-06 | 2001-10-16 | Kenneth V. Deugau | Indexing linkers |
US5494810A (en) | 1990-05-03 | 1996-02-27 | Cornell Research Foundation, Inc. | Thermostable ligase-mediated DNA amplifications system for the detection of genetic disease |
US6087482A (en) | 1990-07-27 | 2000-07-11 | Isis Pharmaceuticals, Inc. | Heteroatomic oligonucleoside linkages |
FI87886C (en) | 1990-09-06 | 1993-03-10 | Instrumentarium Oy | Fasteners |
DE69133559T2 (en) | 1990-09-27 | 2007-11-22 | Invitrogen Corp., Carlsbad | Direct cloning of PCR amplified nucleic acids |
GB9025236D0 (en) | 1990-11-20 | 1991-01-02 | Secr Defence | Silicon-on porous-silicon;method of production |
US6582908B2 (en) | 1990-12-06 | 2003-06-24 | Affymetrix, Inc. | Oligonucleotides |
DE69133293T2 (en) | 1990-12-06 | 2004-05-27 | Affymetrix, Inc., Santa Clara | Processes and reagents for immobilized polymer synthesis on a very large scale |
EP0834576B1 (en) | 1990-12-06 | 2002-01-16 | Affymetrix, Inc. (a Delaware Corporation) | Detection of nucleic acid sequences |
US5455166A (en) | 1991-01-31 | 1995-10-03 | Becton, Dickinson And Company | Strand displacement amplification |
US5137814A (en) | 1991-06-14 | 1992-08-11 | Life Technologies, Inc. | Use of exo-sample nucleotides in gene cloning |
US5449754A (en) | 1991-08-07 | 1995-09-12 | H & N Instruments, Inc. | Generation of combinatorial libraries |
US5474796A (en) | 1991-09-04 | 1995-12-12 | Protogene Laboratories, Inc. | Method and apparatus for conducting an array of chemical reactions on a support surface |
US5846717A (en) | 1996-01-24 | 1998-12-08 | Third Wave Technologies, Inc. | Detection of nucleic acid sequences by invader-directed cleavage |
US7150982B2 (en) | 1991-09-09 | 2006-12-19 | Third Wave Technologies, Inc. | RNA detection assays |
US7045289B2 (en) | 1991-09-09 | 2006-05-16 | Third Wave Technologies, Inc. | Detection of RNA Sequences |
US6759226B1 (en) | 2000-05-24 | 2004-07-06 | Third Wave Technologies, Inc. | Enzymes for the detection of specific nucleic acid sequences |
US5994069A (en) | 1996-01-24 | 1999-11-30 | Third Wave Technologies, Inc. | Detection of nucleic acids by multiple sequential invasive cleavages |
US5384261A (en) | 1991-11-22 | 1995-01-24 | Affymax Technologies N.V. | Very large scale immobilized polymer synthesis using mechanically directed flow paths |
DE69233087T2 (en) | 1991-11-22 | 2003-12-24 | Affymetrix, Inc. (N.D.Ges.D.Staates Delaware) | Process for the production of polymer arrays |
US5573905A (en) | 1992-03-30 | 1996-11-12 | The Scripps Research Institute | Encoded combinatorial chemical libraries |
WO1993020236A1 (en) | 1992-04-03 | 1993-10-14 | Applied Biosystems, Inc. | Probe composition and method |
JP2553322Y2 (en) | 1992-05-11 | 1997-11-05 | サンデン株式会社 | Filter feed mechanism of beverage brewing device |
JPH07509365A (en) | 1992-07-31 | 1995-10-19 | デイド・ベーリング・マルブルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Method for introducing a specific sequence into the 3' end of polynucleotides |
US5288514A (en) | 1992-09-14 | 1994-02-22 | The Regents Of The University Of California | Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support |
JP3176444B2 (en) | 1992-10-01 | 2001-06-18 | 株式会社リコー | Aqueous ink and recording method using the same |
DE4241045C1 (en) | 1992-12-05 | 1994-05-26 | Bosch Gmbh Robert | Process for anisotropic etching of silicon |
US5368823A (en) | 1993-02-11 | 1994-11-29 | University Of Georgia Research Foundation, Inc. | Automated synthesis of oligonucleotides |
US5395753A (en) | 1993-02-19 | 1995-03-07 | Theratech, Inc. | Method for diagnosing rheumatoid arthritis |
WO1994024143A1 (en) | 1993-04-12 | 1994-10-27 | Northwestern University | Method of forming oligonucleotides |
US7135312B2 (en) | 1993-04-15 | 2006-11-14 | University Of Rochester | Circular DNA vectors for synthesis of RNA and DNA |
US5455239A (en) | 1993-08-05 | 1995-10-03 | Merck & Co. Inc. | 3-aryl of heteroaryl-7-heteroaralkylamido cephalosporin compounds, compositions and methods of use |
US5482845A (en) | 1993-09-24 | 1996-01-09 | The Trustees Of Columbia University In The City Of New York | Method for construction of normalized cDNA libraries |
CN1039623C (en) | 1993-10-22 | 1998-09-02 | 中国人民解放军军事医学科学院毒物药物研究所 | Pharmaceutical composition for preventing and treating motion sickness syndrome and preparation method thereof |
DE69430207T2 (en) | 1993-10-28 | 2002-09-19 | Houston Advanced Research Center, Woodlands | MICROFABRICATED POROUS FLOW UNIT |
US6893816B1 (en) | 1993-10-28 | 2005-05-17 | Houston Advanced Research Center | Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions |
US6027877A (en) | 1993-11-04 | 2000-02-22 | Gene Check, Inc. | Use of immobilized mismatch binding protein for detection of mutations and polymorphisms, purification of amplified DNA samples and allele identification |
US5834252A (en) | 1995-04-18 | 1998-11-10 | Glaxo Group Limited | End-complementary polymerase reaction |
US6015880A (en) | 1994-03-16 | 2000-01-18 | California Institute Of Technology | Method and substrate for performing multiple sequential reactions on a matrix |
ATE510010T1 (en) | 1994-03-29 | 2011-06-15 | Novozymes As | ALKALINE AMYLASE FROM BACILLUS |
US5514789A (en) | 1994-04-21 | 1996-05-07 | Barrskogen, Inc. | Recovery of oligonucleotides by gas phase cleavage |
SE512382C2 (en) | 1994-04-26 | 2000-03-06 | Ericsson Telefon Ab L M | Device and method for placing elongate elements against or adjacent to a surface |
DE69519783T2 (en) | 1994-04-29 | 2001-06-07 | Perkin-Elmer Corp., Foster City | METHOD AND DEVICE FOR REAL-TIME DETECTION OF PRODUCTS OF NUCLEIC ACID AMPLIFICATION |
US6287850B1 (en) | 1995-06-07 | 2001-09-11 | Affymetrix, Inc. | Bioarray chip reaction apparatus and its manufacture |
US5739386A (en) | 1994-06-23 | 1998-04-14 | Affymax Technologies N.V. | Photolabile compounds and methods for their use |
US5641658A (en) | 1994-08-03 | 1997-06-24 | Mosaic Technologies, Inc. | Method for performing amplification of nucleic acid with two primers bound to a single solid support |
US5530516A (en) | 1994-10-04 | 1996-06-25 | Tamarack Scientific Co., Inc. | Large-area projection exposure system |
US6613560B1 (en) | 1994-10-19 | 2003-09-02 | Agilent Technologies, Inc. | PCR microreactor for amplifying DNA using microquantities of sample fluid |
US6635226B1 (en) | 1994-10-19 | 2003-10-21 | Agilent Technologies, Inc. | Microanalytical device and use thereof for conducting chemical processes |
US5556752A (en) | 1994-10-24 | 1996-09-17 | Affymetrix, Inc. | Surface-bound, unimolecular, double-stranded DNA |
CN1166798A (en) | 1994-11-22 | 1997-12-03 | 配合液系统公司 | Amine-Free Photoresist Adhesion Promoters for Microelectronics |
US5688642A (en) | 1994-12-01 | 1997-11-18 | The United States Of America As Represented By The Secretary Of The Navy | Selective attachment of nucleic acid molecules to patterned self-assembled surfaces |
US6017434A (en) | 1995-05-09 | 2000-01-25 | Curagen Corporation | Apparatus and method for the generation, separation, detection, and recognition of biopolymer fragments |
US5830655A (en) | 1995-05-22 | 1998-11-03 | Sri International | Oligonucleotide sizing using cleavable primers |
US5700642A (en) | 1995-05-22 | 1997-12-23 | Sri International | Oligonucleotide sizing using immobilized cleavable primers |
US5877280A (en) | 1995-06-06 | 1999-03-02 | The Mount Sinai School Of Medicine Of The City University Of New York | Thermostable muts proteins |
US6446682B1 (en) | 1995-06-06 | 2002-09-10 | James P. Viken | Auto-loading fluid exchanger and method of use |
US5707806A (en) | 1995-06-07 | 1998-01-13 | Genzyme Corporation | Direct sequence identification of mutations by cleavage- and ligation-associated mutation-specific sequencing |
US5780613A (en) | 1995-08-01 | 1998-07-14 | Northwestern University | Covalent lock for self-assembled oligonucleotide constructs |
US5712126A (en) | 1995-08-01 | 1998-01-27 | Yale University | Analysis of gene expression by display of 3-end restriction fragments of CDNA |
US5854033A (en) | 1995-11-21 | 1998-12-29 | Yale University | Rolling circle replication reporter systems |
US6537776B1 (en) | 1999-06-14 | 2003-03-25 | Diversa Corporation | Synthetic ligation reassembly in directed evolution |
US6352842B1 (en) | 1995-12-07 | 2002-03-05 | Diversa Corporation | Exonucease-mediated gene assembly in directed evolution |
EP0870060B1 (en) | 1995-12-15 | 2003-04-02 | Duke University | Methods using mismatch repair systems for the detection and removal of mutant sequences that arise during enzymatic amplification |
US5962271A (en) | 1996-01-03 | 1999-10-05 | Cloutech Laboratories, Inc. | Methods and compositions for generating full-length cDNA having arbitrary nucleotide sequence at the 3'-end |
US5976846A (en) | 1996-01-13 | 1999-11-02 | Passmore; Steven E. | Method for multifragment in vivo cloning and mutation mapping |
US7432048B2 (en) | 1996-11-29 | 2008-10-07 | Third Wave Technologies, Inc. | Reactions on a solid surface |
US5985557A (en) | 1996-01-24 | 1999-11-16 | Third Wave Technologies, Inc. | Invasive cleavage of nucleic acids |
US7122364B1 (en) | 1998-03-24 | 2006-10-17 | Third Wave Technologies, Inc. | FEN endonucleases |
US6090606A (en) | 1996-01-24 | 2000-07-18 | Third Wave Technologies, Inc. | Cleavage agents |
US7527928B2 (en) | 1996-11-29 | 2009-05-05 | Third Wave Technologies, Inc. | Reactions on a solid surface |
US6706471B1 (en) | 1996-01-24 | 2004-03-16 | Third Wave Technologies, Inc. | Detection of nucleic acid sequences by invader-directed cleavage |
US6274369B1 (en) | 1996-02-02 | 2001-08-14 | Invitrogen Corporation | Method capable of increasing competency of bacterial cell transformation |
US6013440A (en) | 1996-03-11 | 2000-01-11 | Affymetrix, Inc. | Nucleic acid affinity columns |
US6020481A (en) | 1996-04-01 | 2000-02-01 | The Perkin-Elmer Corporation | Asymmetric benzoxanthene dyes |
US6706875B1 (en) | 1996-04-17 | 2004-03-16 | Affyemtrix, Inc. | Substrate preparation process |
US5869245A (en) | 1996-06-05 | 1999-02-09 | Fox Chase Cancer Center | Mismatch endonuclease and its use in identifying mutations in targeted polynucleotide strands |
US5863801A (en) | 1996-06-14 | 1999-01-26 | Sarnoff Corporation | Automated nucleic acid isolation |
US6780982B2 (en) | 1996-07-12 | 2004-08-24 | Third Wave Technologies, Inc. | Charge tags and the separation of nucleic acid molecules |
US5853993A (en) | 1996-10-21 | 1998-12-29 | Hewlett-Packard Company | Signal enhancement method and kit |
WO1998022541A2 (en) | 1996-11-08 | 1998-05-28 | Ikonos Corporation | Method for coating substrates |
US5750672A (en) | 1996-11-22 | 1998-05-12 | Barrskogen, Inc. | Anhydrous amine cleavage of oligonucleotides |
ES2317658T3 (en) | 1996-11-29 | 2009-04-16 | Third Wave Technologies, Inc. | ENDONUCLEASAS FEN - 1, BLENDS AND EXCISION PROCEDURES. |
AU6646398A (en) | 1996-12-31 | 1998-07-31 | Genometrix Incorporated | Multiplexed molecular analysis apparatus and method |
WO1998035018A1 (en) | 1997-02-12 | 1998-08-13 | Life Technologies, Inc. | Methods for lyophilizing competent cells |
US5882496A (en) | 1997-02-27 | 1999-03-16 | The Regents Of The University Of California | Porous silicon structures with high surface area/specific pore size |
US6770748B2 (en) | 1997-03-07 | 2004-08-03 | Takeshi Imanishi | Bicyclonucleoside and oligonucleotide analogue |
US6028189A (en) | 1997-03-20 | 2000-02-22 | University Of Washington | Solvent for oligonucleotide synthesis and methods of use |
US6419883B1 (en) | 1998-01-16 | 2002-07-16 | University Of Washington | Chemical synthesis using solvent microdroplets |
WO1998041531A2 (en) | 1997-03-20 | 1998-09-24 | University Of Washington | Solvent for biopolymer synthesis, solvent microdroplets and methods of use |
CA2283635A1 (en) | 1997-03-21 | 1998-10-01 | Stratagene | Polymerase enhancing factor (pef) extracts, pef protein complexes, isolated pef protein, and methods for purifying and identifying |
US5922593A (en) | 1997-05-23 | 1999-07-13 | Becton, Dickinson And Company | Microbiological test panel and method therefor |
US6969488B2 (en) | 1998-05-22 | 2005-11-29 | Solexa, Inc. | System and apparatus for sequential processing of analytes |
EP0991930B1 (en) | 1997-06-26 | 2004-06-16 | Perseptive Biosystems, Inc. | High density sample holder for analysis of biological samples |
GB9714716D0 (en) | 1997-07-11 | 1997-09-17 | Brax Genomics Ltd | Characterising nucleic acids |
US5989872A (en) | 1997-08-12 | 1999-11-23 | Clontech Laboratories, Inc. | Methods and compositions for transferring DNA sequence information among vectors |
US6027898A (en) | 1997-08-18 | 2000-02-22 | Transgenomic, Inc. | Chromatographic method for mutation detection using mutation site specifically acting enzymes and chemicals |
US6794499B2 (en) | 1997-09-12 | 2004-09-21 | Exiqon A/S | Oligonucleotide analogues |
US6136568A (en) | 1997-09-15 | 2000-10-24 | Hiatt; Andrew C. | De novo polynucleotide synthesis using rolling templates |
EP1015576B1 (en) | 1997-09-16 | 2005-05-04 | Egea Biosciences, LLC | Method for the complete chemical synthesis and assembly of genes and genomes |
US6670127B2 (en) | 1997-09-16 | 2003-12-30 | Egea Biosciences, Inc. | Method for assembly of a polynucleotide encoding a target polypeptide |
US5976842A (en) | 1997-10-30 | 1999-11-02 | Clontech Laboratories, Inc. | Methods and compositions for use in high fidelity polymerase chain reaction |
US8182991B1 (en) | 1997-11-26 | 2012-05-22 | Third Wave Technologies, Inc. | FEN-1 endonucleases, mixtures and cleavage methods |
US6408308B1 (en) | 1998-01-29 | 2002-06-18 | Incyte Pharmaceuticals, Inc. | System and method for generating, analyzing and storing normalized expression datasets from raw expression datasets derived from microarray includes nucleic acid probe sequences |
US6287776B1 (en) | 1998-02-02 | 2001-09-11 | Signature Bioscience, Inc. | Method for detecting and classifying nucleic acid hybridization |
US6251588B1 (en) | 1998-02-10 | 2001-06-26 | Agilent Technologies, Inc. | Method for evaluating oligonucleotide probe sequences |
US6426184B1 (en) | 1998-02-11 | 2002-07-30 | The Regents Of The University Of Michigan | Method and apparatus for chemical and biochemical reactions using photo-generated reagents |
MXPA00008263A (en) | 1998-02-23 | 2002-04-24 | Wisconsin Alumni Res Found | Method and apparatus for synthesis of arrays of dna probes. |
EP1997909B1 (en) | 1998-03-25 | 2012-02-01 | Olink AB | Rolling circle replication of circularised target nucleic acid fragments |
US6284497B1 (en) | 1998-04-09 | 2001-09-04 | Trustees Of Boston University | Nucleic acid arrays and methods of synthesis |
ATE339517T1 (en) | 1998-04-13 | 2006-10-15 | Isis Pharmaceuticals Inc | IDENTIFICATION OF GENETIC TARGETS FOR MODULATION BY OLIGONUCLEOTIDES AND PRODUCTION OF OLIGONUCLEOTIDES FOR MODULATION OF GENES |
US7321828B2 (en) | 1998-04-13 | 2008-01-22 | Isis Pharmaceuticals, Inc. | System of components for preparing oligonucleotides |
US6376285B1 (en) | 1998-05-28 | 2002-04-23 | Texas Instruments Incorporated | Annealed porous silicon with epitaxial layer for SOI |
US6274725B1 (en) | 1998-06-02 | 2001-08-14 | Isis Pharmaceuticals, Inc. | Activators for oligonucleotide synthesis |
US6130045A (en) | 1998-06-11 | 2000-10-10 | Clontech Laboratories, Inc. | Thermostable polymerase |
US6251595B1 (en) | 1998-06-18 | 2001-06-26 | Agilent Technologies, Inc. | Methods and devices for carrying out chemical reactions |
ATE313548T1 (en) | 1998-06-22 | 2006-01-15 | Affymetrix Inc | REAGENT AND METHOD FOR SOLID PHASE SYNTHESIS |
US7399844B2 (en) | 1998-07-09 | 2008-07-15 | Agilent Technologies, Inc. | Method and reagents for analyzing the nucleotide sequence of nucleic acids |
US6218118B1 (en) | 1998-07-09 | 2001-04-17 | Agilent Technologies, Inc. | Method and mixture reagents for analyzing the nucleotide sequence of nucleic acids by mass spectrometry |
US6787308B2 (en) | 1998-07-30 | 2004-09-07 | Solexa Ltd. | Arrayed biomolecules and their use in sequencing |
US20030022207A1 (en) | 1998-10-16 | 2003-01-30 | Solexa, Ltd. | Arrayed polynucleotides and their use in genome analysis |
US6222030B1 (en) | 1998-08-03 | 2001-04-24 | Agilent Technologies, Inc. | Solid phase synthesis of oligonucleotides using carbonate protecting groups and alpha-effect nucleophile deprotection |
US6991922B2 (en) | 1998-08-12 | 2006-01-31 | Proteus S.A. | Process for in vitro creation of recombinant polynucleotide sequences by oriented ligation |
US6951719B1 (en) | 1999-08-11 | 2005-10-04 | Proteus S.A. | Process for obtaining recombined nucleotide sequences in vitro, libraries of sequences and sequences thus obtained |
US6107038A (en) | 1998-08-14 | 2000-08-22 | Agilent Technologies Inc. | Method of binding a plurality of chemicals on a substrate by electrophoretic self-assembly |
EP1117996B1 (en) | 1998-08-28 | 2010-09-15 | febit holding GmbH | Method for producing biochemical reaction supporting materials |
US6258454B1 (en) | 1998-09-01 | 2001-07-10 | Agilent Technologies Inc. | Functionalization of substrate surfaces with silane mixtures |
US6458583B1 (en) | 1998-09-09 | 2002-10-01 | Agilent Technologies, Inc. | Method and apparatus for making nucleic acid arrays |
US6461812B2 (en) | 1998-09-09 | 2002-10-08 | Agilent Technologies, Inc. | Method and multiple reservoir apparatus for fabrication of biomolecular arrays |
JP2002525049A (en) | 1998-09-15 | 2002-08-13 | イェール ユニバーシティ | Molecular cloning using rolling circle amplification |
AR021833A1 (en) | 1998-09-30 | 2002-08-07 | Applied Research Systems | METHODS OF AMPLIFICATION AND SEQUENCING OF NUCLEIC ACID |
US6399516B1 (en) | 1998-10-30 | 2002-06-04 | Massachusetts Institute Of Technology | Plasma etch techniques for fabricating silicon structures from a substrate |
US6309828B1 (en) | 1998-11-18 | 2001-10-30 | Agilent Technologies, Inc. | Method and apparatus for fabricating replicate arrays of nucleic acid molecules |
GB9900298D0 (en) | 1999-01-07 | 1999-02-24 | Medical Res Council | Optical sorting method |
US6376246B1 (en) | 1999-02-05 | 2002-04-23 | Maxygen, Inc. | Oligonucleotide mediated nucleic acid recombination |
EP1151409A1 (en) | 1999-01-18 | 2001-11-07 | Maxygen, Inc. | Methods of populating data stuctures for use in evolutionary simulations |
US20070065838A1 (en) | 1999-01-19 | 2007-03-22 | Maxygen, Inc. | Oligonucleotide mediated nucleic acid recombination |
IL137868A0 (en) | 1999-01-19 | 2001-10-31 | Maxygen Inc | Oligonucleotide mediated nucleic acid recombination |
US6251685B1 (en) | 1999-02-18 | 2001-06-26 | Agilent Technologies, Inc. | Readout method for molecular biological electronically addressable arrays |
EP1153127B1 (en) | 1999-02-19 | 2006-07-26 | febit biotech GmbH | Method for producing polymers |
EP1163369B1 (en) | 1999-02-23 | 2011-05-04 | Caliper Life Sciences, Inc. | Sequencing by incorporation |
US20030186226A1 (en) | 1999-03-08 | 2003-10-02 | Brennan Thomas M. | Methods and compositions for economically synthesizing and assembling long DNA sequences |
US6824866B1 (en) | 1999-04-08 | 2004-11-30 | Affymetrix, Inc. | Porous silica substrates for polymer synthesis and assays |
US6284465B1 (en) | 1999-04-15 | 2001-09-04 | Agilent Technologies, Inc. | Apparatus, systems and method for locating nucleic acids bound to surfaces |
US6469156B1 (en) | 1999-04-20 | 2002-10-22 | The United States Of America As Represented By The Department Of Health And Human Services | Rapid and sensitive method for detecting histoplasma capsulatum |
US6518056B2 (en) | 1999-04-27 | 2003-02-11 | Agilent Technologies Inc. | Apparatus, systems and method for assaying biological materials using an annular format |
US6221653B1 (en) | 1999-04-27 | 2001-04-24 | Agilent Technologies, Inc. | Method of performing array-based hybridization assays using thermal inkjet deposition of sample fluids |
US6773676B2 (en) | 1999-04-27 | 2004-08-10 | Agilent Technologies, Inc. | Devices for performing array hybridization assays and methods of using the same |
US6300137B1 (en) | 1999-04-28 | 2001-10-09 | Agilent Technologies Inc. | Method for synthesizing a specific, surface-bound polymer uniformly over an element of a molecular array |
US6323043B1 (en) | 1999-04-30 | 2001-11-27 | Agilent Technologies, Inc. | Fabricating biopolymer arrays |
US7276336B1 (en) | 1999-07-22 | 2007-10-02 | Agilent Technologies, Inc. | Methods of fabricating an addressable array of biopolymer probes |
US6242266B1 (en) | 1999-04-30 | 2001-06-05 | Agilent Technologies Inc. | Preparation of biopolymer arrays |
JP2003516169A (en) | 1999-05-01 | 2003-05-13 | プシメデイカ・リミテツド | Induced porous silicon |
DE60032259D1 (en) | 1999-05-06 | 2007-01-18 | Sinai School Medicine | Steganography based on DNA |
US7056661B2 (en) | 1999-05-19 | 2006-06-06 | Cornell Research Foundation, Inc. | Method for sequencing nucleic acid molecules |
CA2375060A1 (en) | 1999-05-24 | 2000-11-30 | Invitrogen Corporation | Method for deblocking of labeled oligonucleotides |
US6472147B1 (en) | 1999-05-25 | 2002-10-29 | The Scripps Research Institute | Methods for display of heterodimeric proteins on filamentous phage using pVII and pIX, compositions, vectors and combinatorial libraries |
US6132997A (en) | 1999-05-28 | 2000-10-17 | Agilent Technologies | Method for linear mRNA amplification |
US6815218B1 (en) | 1999-06-09 | 2004-11-09 | Massachusetts Institute Of Technology | Methods for manufacturing bioelectronic devices |
DE19928410C2 (en) | 1999-06-22 | 2002-11-28 | Agilent Technologies Inc | Device housing with a device for operating a laboratory microchip |
US6709852B1 (en) | 1999-06-22 | 2004-03-23 | Invitrogen Corporation | Rapid growing microorganisms for biotechnology applications |
CA2377707A1 (en) | 1999-06-22 | 2000-12-28 | Invitrogen Corporation | Improved primers and methods for the detection and discrimination of nucleic acids |
US6399394B1 (en) | 1999-06-30 | 2002-06-04 | Agilent Technologies, Inc. | Testing multiple fluid samples with multiple biopolymer arrays |
US6465183B2 (en) | 1999-07-01 | 2002-10-15 | Agilent Technologies, Inc. | Multidentate arrays |
US7504213B2 (en) | 1999-07-09 | 2009-03-17 | Agilent Technologies, Inc. | Methods and apparatus for preparing arrays comprising features having degenerate biopolymers |
US6461816B1 (en) | 1999-07-09 | 2002-10-08 | Agilent Technologies, Inc. | Methods for controlling cross-hybridization in analysis of nucleic acid sequences |
US6346423B1 (en) | 1999-07-16 | 2002-02-12 | Agilent Technologies, Inc. | Methods and compositions for producing biopolymeric arrays |
US6306599B1 (en) | 1999-07-16 | 2001-10-23 | Agilent Technologies Inc. | Biopolymer arrays and their fabrication |
US6180351B1 (en) | 1999-07-22 | 2001-01-30 | Agilent Technologies Inc. | Chemical array fabrication with identifier |
US6201112B1 (en) | 1999-07-22 | 2001-03-13 | Agilent Technologies Inc. | Method for 3′ end-labeling ribonucleic acids |
AU775380B2 (en) | 1999-08-18 | 2004-07-29 | Illumina, Inc. | Compositions and methods for preparing oligonucleotide solutions |
US6262490B1 (en) | 1999-11-05 | 2001-07-17 | Advanced Semiconductor Engineering, Inc. | Substrate strip for use in packaging semiconductor chips |
US7244559B2 (en) | 1999-09-16 | 2007-07-17 | 454 Life Sciences Corporation | Method of sequencing a nucleic acid |
US7211390B2 (en) | 1999-09-16 | 2007-05-01 | 454 Life Sciences Corporation | Method of sequencing a nucleic acid |
US6743585B2 (en) | 1999-09-16 | 2004-06-01 | Agilent Technologies, Inc. | Methods for preparing conjugates |
US6319674B1 (en) | 1999-09-16 | 2001-11-20 | Agilent Technologies, Inc. | Methods for attaching substances to surfaces |
US7078167B2 (en) | 1999-09-17 | 2006-07-18 | Agilent Technologies, Inc. | Arrays having background features and methods for using the same |
US7122303B2 (en) | 1999-09-17 | 2006-10-17 | Agilent Technologies, Inc. | Arrays comprising background features that provide for a measure of a non-specific binding and methods for using the same |
AU7537200A (en) | 1999-09-29 | 2001-04-30 | Solexa Ltd. | Polynucleotide sequencing |
DE19964337B4 (en) | 1999-10-01 | 2004-09-16 | Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto | Microfluidic microchip with bendable suction tube |
CA2386791A1 (en) | 1999-10-08 | 2001-04-19 | Protogene Laboratories, Inc. | Method and apparatus for performing large numbers of reactions using array assembly |
US6232072B1 (en) | 1999-10-15 | 2001-05-15 | Agilent Technologies, Inc. | Biopolymer array inspection |
US6451998B1 (en) | 1999-10-18 | 2002-09-17 | Agilent Technologies, Inc. | Capping and de-capping during oligonucleotide synthesis |
US6171797B1 (en) | 1999-10-20 | 2001-01-09 | Agilent Technologies Inc. | Methods of making polymeric arrays |
US7115423B1 (en) | 1999-10-22 | 2006-10-03 | Agilent Technologies, Inc. | Fluidic structures within an array package |
US6387636B1 (en) | 1999-10-22 | 2002-05-14 | Agilent Technologies, Inc. | Method of shielding biosynthesis reactions from the ambient environment on an array |
US6077674A (en) | 1999-10-27 | 2000-06-20 | Agilent Technologies Inc. | Method of producing oligonucleotide arrays with features of high purity |
US8268605B2 (en) | 1999-10-29 | 2012-09-18 | Agilent Technologies, Inc. | Compositions and methods utilizing DNA polymerases |
US20010055761A1 (en) | 1999-10-29 | 2001-12-27 | Agilent Technologies | Small scale dna synthesis using polymeric solid support with functionalized regions |
US6406849B1 (en) | 1999-10-29 | 2002-06-18 | Agilent Technologies, Inc. | Interrogating multi-featured arrays |
US6329210B1 (en) | 1999-10-29 | 2001-12-11 | Agilent Technologies, Inc. | Method and apparatus for high volume polymer synthesis |
US6689319B1 (en) | 1999-10-29 | 2004-02-10 | Agilent Technologies, Ind. | Apparatus for deposition and inspection of chemical and biological fluids |
US6428957B1 (en) | 1999-11-08 | 2002-08-06 | Agilent Technologies, Inc. | Systems tools and methods of assaying biological materials using spatially-addressable arrays |
US6440669B1 (en) | 1999-11-10 | 2002-08-27 | Agilent Technologies, Inc. | Methods for applying small volumes of reagents |
US7041445B2 (en) | 1999-11-15 | 2006-05-09 | Clontech Laboratories, Inc. | Long oligonucleotide arrays |
US6446642B1 (en) | 1999-11-22 | 2002-09-10 | Agilent Technologies, Inc. | Method and apparatus to clean an inkjet reagent deposition device |
US6582938B1 (en) | 2001-05-11 | 2003-06-24 | Affymetrix, Inc. | Amplification of nucleic acids |
US6800439B1 (en) | 2000-01-06 | 2004-10-05 | Affymetrix, Inc. | Methods for improved array preparation |
AU2788101A (en) | 2000-01-11 | 2001-07-24 | Maxygen, Inc. | Integrated systems and methods for diversity generation and screening |
EP1118661A1 (en) | 2000-01-13 | 2001-07-25 | Het Nederlands Kanker Instituut | T cell receptor libraries |
AU2001237965A1 (en) | 2000-01-25 | 2001-08-07 | Affymetrix, Inc. | Method, system and computer software for providing a genomic web portal |
US6587579B1 (en) | 2000-01-26 | 2003-07-01 | Agilent Technologies Inc. | Feature quality in array fabrication |
US7198939B2 (en) | 2000-01-28 | 2007-04-03 | Agilent Technologies, Inc. | Apparatus for interrogating an addressable array |
US6406851B1 (en) | 2000-01-28 | 2002-06-18 | Agilent Technologies, Inc. | Method for coating a substrate quickly and uniformly with a small volume of fluid |
US6458526B1 (en) | 2000-01-28 | 2002-10-01 | Agilent Technologies, Inc. | Method and apparatus to inhibit bubble formation in a fluid |
US6235483B1 (en) | 2000-01-31 | 2001-05-22 | Agilent Technologies, Inc. | Methods and kits for indirect labeling of nucleic acids |
GB0002389D0 (en) | 2000-02-02 | 2000-03-22 | Solexa Ltd | Molecular arrays |
US6403314B1 (en) | 2000-02-04 | 2002-06-11 | Agilent Technologies, Inc. | Computational method and system for predicting fragmented hybridization and for identifying potential cross-hybridization |
US6833450B1 (en) | 2000-03-17 | 2004-12-21 | Affymetrix, Inc. | Phosphite ester oxidation in nucleic acid array preparation |
US6365355B1 (en) | 2000-03-28 | 2002-04-02 | The Regents Of The University Of California | Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches |
US20020025561A1 (en) | 2000-04-17 | 2002-02-28 | Hodgson Clague Pitman | Vectors for gene-self-assembly |
US7776021B2 (en) | 2000-04-28 | 2010-08-17 | The Charles Stark Draper Laboratory | Micromachined bilayer unit for filtration of small molecules |
US6716634B1 (en) | 2000-05-31 | 2004-04-06 | Agilent Technologies, Inc. | Increasing ionization efficiency in mass spectrometry |
US7163660B2 (en) | 2000-05-31 | 2007-01-16 | Infineon Technologies Ag | Arrangement for taking up liquid analytes |
EP1287010A1 (en) | 2000-06-02 | 2003-03-05 | Blue Heron Biotechnology, Inc. | Methods for improving the sequence fidelity of synthetic double-stranded oligonucleotides |
US6686193B2 (en) | 2000-07-10 | 2004-02-03 | Vertex Pharmaceuticals, Inc. | High throughput method and system for screening candidate compounds for activity against target ion channels |
EP1322780A4 (en) | 2000-07-27 | 2005-08-03 | Univ Australian | COMBINATORY PROBES AND THEIR USE |
US7135565B2 (en) | 2000-07-28 | 2006-11-14 | Agilent Technologies, Inc. | Synthesis of polynucleotides using combined oxidation/deprotection chemistry |
US6613893B1 (en) | 2000-07-31 | 2003-09-02 | Agilent Technologies Inc. | Array fabrication |
US7205400B2 (en) | 2000-07-31 | 2007-04-17 | Agilent Technologies, Inc. | Array fabrication |
US6599693B1 (en) | 2000-07-31 | 2003-07-29 | Agilent Technologies Inc. | Array fabrication |
US6890760B1 (en) | 2000-07-31 | 2005-05-10 | Agilent Technologies, Inc. | Array fabrication |
EP1598432A3 (en) | 2000-07-31 | 2006-06-07 | Agilent Technologies, Inc. | Array based methods for sythesizing nucleic acid mixtures |
GB0018876D0 (en) | 2000-08-01 | 2000-09-20 | Applied Research Systems | Method of producing polypeptides |
CA2421059A1 (en) | 2000-08-24 | 2002-02-28 | Maxygen, Inc. | Constructs and their use in metabolic pathway engineering |
AU2001291540A1 (en) | 2000-09-08 | 2002-03-22 | University Technologies International, Inc. | Linker phosphoramidites for oligonucleotide synthesis |
US6966945B1 (en) | 2000-09-20 | 2005-11-22 | Goodrich Corporation | Inorganic matrix compositions, composites and process of making the same |
AU2001293163A1 (en) | 2000-09-27 | 2002-04-08 | Lynx Therapeutics, Inc. | Method for determining relative abundance of nucleic acid sequences |
NO20004869D0 (en) | 2000-09-28 | 2000-09-28 | Torbjoern Rognes | Method for fast optimal local sequence alignment using parallel processing |
US7097809B2 (en) | 2000-10-03 | 2006-08-29 | California Institute Of Technology | Combinatorial synthesis system |
US6716629B2 (en) | 2000-10-10 | 2004-04-06 | Biotrove, Inc. | Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof |
US6693187B1 (en) | 2000-10-17 | 2004-02-17 | Lievre Cornu Llc | Phosphinoamidite carboxlates and analogs thereof in the synthesis of oligonucleotides having reduced internucleotide charge |
DE10051396A1 (en) | 2000-10-17 | 2002-04-18 | Febit Ferrarius Biotech Gmbh | An integrated synthesis and identification of an analyte, comprises particles immobilized at a carrier to be coupled to receptors in a structured pattern to give receptor arrays for biochemical reactions |
AU7680200A (en) | 2000-10-18 | 2002-04-29 | Ultra Proizv Elektronskih Napr | System for payment data exchange and payment terminal device used therein |
DE60125312T2 (en) | 2000-10-26 | 2007-06-06 | Agilent Technologies, Inc. (n.d. Ges. d. Staates Delaware), Santa Clara | microarray |
US6905816B2 (en) | 2000-11-27 | 2005-06-14 | Intelligent Medical Devices, Inc. | Clinically intelligent diagnostic devices and methods |
US20020155439A1 (en) | 2000-12-04 | 2002-10-24 | Ana Rodriguez | Method for generating a library of mutant oligonucleotides using the linear cyclic amplification reaction |
US6768005B2 (en) | 2000-12-20 | 2004-07-27 | Avecia Limited | Process |
DE10060433B4 (en) | 2000-12-05 | 2006-05-11 | Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. | Method for producing a fluid component, fluid component and analysis device |
US20040253242A1 (en) | 2000-12-05 | 2004-12-16 | Bowdish Katherine S. | Rationally designed antibodies |
JP2004517089A (en) | 2000-12-05 | 2004-06-10 | アベシア・リミテッド | Method for preparing phosphorothioate oligonucleotides |
US6660475B2 (en) | 2000-12-15 | 2003-12-09 | New England Biolabs, Inc. | Use of site-specific nicking endonucleases to create single-stranded regions and applications thereof |
AUPR259301A0 (en) | 2001-01-18 | 2001-02-15 | Polymerat Pty Ltd | Polymers having co-continuous architecture |
JP2004533228A (en) | 2001-01-19 | 2004-11-04 | エジー バイオサイエンシーズ, インコーポレイテッド | Computer-based assembly of a polynucleotide encoding a target polypeptide |
US6958217B2 (en) | 2001-01-24 | 2005-10-25 | Genomic Expression Aps | Single-stranded polynucleotide tags |
US7027930B2 (en) | 2001-01-31 | 2006-04-11 | Agilent Technologies, Inc. | Reading chemical arrays |
US7166258B2 (en) | 2001-01-31 | 2007-01-23 | Agilent Technologies, Inc. | Automation-optimized microarray package |
US6879915B2 (en) | 2001-01-31 | 2005-04-12 | Agilent Technologies, Inc. | Chemical array fabrication and use |
US20020164824A1 (en) | 2001-02-16 | 2002-11-07 | Jianming Xiao | Method and apparatus based on bundled capillaries for high throughput screening |
CA2468425A1 (en) | 2001-03-08 | 2003-09-19 | Applera Corporation | Reagents for oligonucleotide cleavage and deprotection |
US6660338B1 (en) | 2001-03-08 | 2003-12-09 | Agilent Technologies, Inc. | Functionalization of substrate surfaces with silane mixtures |
US7211654B2 (en) | 2001-03-14 | 2007-05-01 | Regents Of The University Of Michigan | Linkers and co-coupling agents for optimization of oligonucleotide synthesis and purification on solid supports |
EP2465943A3 (en) | 2001-03-16 | 2012-10-03 | Kalim Mir | Linear polymer display |
US6610978B2 (en) | 2001-03-27 | 2003-08-26 | Agilent Technologies, Inc. | Integrated sample preparation, separation and introduction microdevice for inductively coupled plasma mass spectrometry |
US7208322B2 (en) | 2001-04-02 | 2007-04-24 | Agilent Technologies, Inc. | Sensor surfaces for detecting analytes |
US6943036B2 (en) | 2001-04-30 | 2005-09-13 | Agilent Technologies, Inc. | Error detection in chemical array fabrication |
JP2004530879A (en) | 2001-05-03 | 2004-10-07 | シグマ−ジェノシス リミテッド | How to build a protein microarray |
IL158487A0 (en) | 2001-05-18 | 2004-05-12 | Wisconsin Alumni Res Found | Method for the synthesis of dna sequences |
WO2002094846A2 (en) | 2001-05-22 | 2002-11-28 | Parallel Synthesis Technologies, Inc. | Method for in situ, on-chip chemical synthesis |
US6880576B2 (en) | 2001-06-07 | 2005-04-19 | Nanostream, Inc. | Microfluidic devices for methods development |
US6613523B2 (en) | 2001-06-29 | 2003-09-02 | Agilent Technologies, Inc. | Method of DNA sequencing using cleavable tags |
US6649348B2 (en) | 2001-06-29 | 2003-11-18 | Agilent Technologies Inc. | Methods for manufacturing arrays |
US20040161741A1 (en) | 2001-06-30 | 2004-08-19 | Elazar Rabani | Novel compositions and processes for analyte detection, quantification and amplification |
US6989267B2 (en) | 2001-07-02 | 2006-01-24 | Agilent Technologies, Inc. | Methods of making microarrays with substrate surfaces having covalently bound polyelectrolyte films |
US6753145B2 (en) | 2001-07-05 | 2004-06-22 | Agilent Technologies, Inc. | Buffer composition and method for hybridization of microarrays on adsorbed polymer siliceous surfaces |
US7128876B2 (en) | 2001-07-17 | 2006-10-31 | Agilent Technologies, Inc. | Microdevice and method for component separation in a fluid |
US7314599B2 (en) | 2001-07-17 | 2008-01-01 | Agilent Technologies, Inc. | Paek embossing and adhesion for microfluidic devices |
US6702256B2 (en) | 2001-07-17 | 2004-03-09 | Agilent Technologies, Inc. | Flow-switching microdevice |
US20030108903A1 (en) | 2001-07-19 | 2003-06-12 | Liman Wang | Multiple word DNA computing on surfaces |
CA2454319A1 (en) | 2001-07-26 | 2003-03-27 | Stratagene | Multi-site mutagenesis |
CA2456950A1 (en) | 2001-08-10 | 2003-02-20 | Xencor | Protein design automation for protein libraries |
US6682702B2 (en) | 2001-08-24 | 2004-01-27 | Agilent Technologies, Inc. | Apparatus and method for simultaneously conducting multiple chemical reactions |
US7371580B2 (en) | 2001-08-24 | 2008-05-13 | Agilent Technologies, Inc. | Use of unstructured nucleic acids in assaying nucleic acid molecules |
JP2003101204A (en) | 2001-09-25 | 2003-04-04 | Nec Kansai Ltd | Wiring substrate, method of manufacturing the same, and electronic component |
US20050124022A1 (en) | 2001-10-30 | 2005-06-09 | Maithreyan Srinivasan | Novel sulfurylase-luciferase fusion proteins and thermostable sulfurylase |
US6902921B2 (en) | 2001-10-30 | 2005-06-07 | 454 Corporation | Sulfurylase-luciferase fusion proteins and thermostable sulfurylase |
US6858720B2 (en) | 2001-10-31 | 2005-02-22 | Agilent Technologies, Inc. | Method of synthesizing polynucleotides using ionic liquids |
US6852850B2 (en) | 2001-10-31 | 2005-02-08 | Agilent Technologies, Inc. | Use of ionic liquids for fabrication of polynucleotide arrays |
US7524950B2 (en) | 2001-10-31 | 2009-04-28 | Agilent Technologies, Inc. | Uses of cationic salts for polynucleotide synthesis |
WO2003040410A1 (en) | 2001-11-02 | 2003-05-15 | Nimblegen Systems, Inc. | Detection of hybridization oligonucleotide microarray through covalently labeling microarray probe |
AU2002360361A1 (en) | 2001-11-09 | 2003-06-10 | Biomicroarrays, Inc. | High surface area substrates for microarrays and methods to make same |
US7482118B2 (en) | 2001-11-15 | 2009-01-27 | Third Wave Technologies, Inc. | Endonuclease-substrate complexes |
EP1314783B1 (en) | 2001-11-22 | 2008-11-19 | Sloning BioTechnology GmbH | Nucleic acid linkers and their use in gene synthesis |
US20030099952A1 (en) | 2001-11-26 | 2003-05-29 | Roland Green | Microarrays with visible pattern detection |
US6927029B2 (en) | 2001-12-03 | 2005-08-09 | Agilent Technologies, Inc. | Surface with tethered polymeric species for binding biomolecules |
AU2002365811A1 (en) | 2001-12-03 | 2003-06-17 | Zymogenetics, Inc. | Methods for the selection and cloning of nucleic acid molecules free of unwanted nucleotide sequence alterations |
US6838888B2 (en) | 2001-12-13 | 2005-01-04 | Agilent Technologies, Inc. | Flow cell humidity sensor system |
AU2002357249A1 (en) | 2001-12-13 | 2003-07-09 | Blue Heron Biotechnology, Inc. | Methods for removal of double-stranded oligonucleotides containing sequence errors using mismatch recognition proteins |
US7932070B2 (en) | 2001-12-21 | 2011-04-26 | Agilent Technologies, Inc. | High fidelity DNA polymerase compositions and uses therefor |
US6790620B2 (en) | 2001-12-24 | 2004-09-14 | Agilent Technologies, Inc. | Small volume chambers |
US6846454B2 (en) | 2001-12-24 | 2005-01-25 | Agilent Technologies, Inc. | Fluid exit in reaction chambers |
US7282183B2 (en) | 2001-12-24 | 2007-10-16 | Agilent Technologies, Inc. | Atmospheric control in reaction chambers |
WO2003057924A1 (en) | 2002-01-04 | 2003-07-17 | Board Of Regents, The University Of Texas System | Proofreading, error deletion, and ligation method for synthesis of high-fidelity polynucleotide sequences |
US7025324B1 (en) | 2002-01-04 | 2006-04-11 | Massachusetts Institute Of Technology | Gating apparatus and method of manufacture |
US20040009498A1 (en) | 2002-01-14 | 2004-01-15 | Diversa Corporation | Chimeric antigen binding molecules and methods for making and using them |
US6673552B2 (en) | 2002-01-14 | 2004-01-06 | Diversa Corporation | Methods for purifying annealed double-stranded oligonucleotides lacking base pair mismatches or nucleotide gaps |
AU2003217207A1 (en) | 2002-01-14 | 2003-07-30 | Verenium Corporation | Methods for making polynucleotides and purifying double-stranded polynucleotides |
US7141368B2 (en) | 2002-01-30 | 2006-11-28 | Agilent Technologies, Inc. | Multi-directional deposition in array fabrication |
US20040126757A1 (en) | 2002-01-31 | 2004-07-01 | Francesco Cerrina | Method and apparatus for synthesis of arrays of DNA probes |
US7157229B2 (en) | 2002-01-31 | 2007-01-02 | Nimblegen Systems, Inc. | Prepatterned substrate for optical synthesis of DNA probes |
US7422851B2 (en) | 2002-01-31 | 2008-09-09 | Nimblegen Systems, Inc. | Correction for illumination non-uniformity during the synthesis of arrays of oligomers |
US7037659B2 (en) | 2002-01-31 | 2006-05-02 | Nimblegen Systems Inc. | Apparatus for constructing DNA probes having a prismatic and kaleidoscopic light homogenizer |
US7083975B2 (en) | 2002-02-01 | 2006-08-01 | Roland Green | Microarray synthesis instrument and method |
US20030148291A1 (en) | 2002-02-05 | 2003-08-07 | Karla Robotti | Method of immobilizing biologically active molecules for assay purposes in a microfluidic format |
US6728129B2 (en) | 2002-02-19 | 2004-04-27 | The Regents Of The University Of California | Multistate triple-decker dyads in three distinct architectures for information storage applications |
US6958119B2 (en) | 2002-02-26 | 2005-10-25 | Agilent Technologies, Inc. | Mobile phase gradient generation microfluidic device |
US6929951B2 (en) | 2002-02-28 | 2005-08-16 | Agilent Technologies, Inc. | Method and system for molecular array scanner calibration |
US6770892B2 (en) | 2002-02-28 | 2004-08-03 | Agilent Technologies, Inc. | Method and system for automated focus-distance determination for molecular array scanners |
US6914229B2 (en) | 2002-02-28 | 2005-07-05 | Agilent Technologies, Inc. | Signal offset for prevention of data clipping in a molecular array scanner |
US20050084907A1 (en) | 2002-03-01 | 2005-04-21 | Maxygen, Inc. | Methods, systems, and software for identifying functional biomolecules |
US6919181B2 (en) | 2002-03-25 | 2005-07-19 | Agilent Technologies, Inc. | Methods for generating ligand arrays |
CA2478983A1 (en) | 2002-04-01 | 2003-10-16 | Blue Heron Biotechnology, Inc. | Solid phase methods for polynucleotide production |
EP1350853A1 (en) | 2002-04-05 | 2003-10-08 | ID-Lelystad, Instituut voor Dierhouderij en Diergezondheid B.V. | Detection of polymorphisms |
US6773888B2 (en) | 2002-04-08 | 2004-08-10 | Affymetrix, Inc. | Photoactivatable silane compounds and methods for their synthesis and use |
CA2483338C (en) | 2002-04-22 | 2014-10-14 | Genencor International, Inc. | Method of creating a library of bacterial clones with varying levels of gene expression |
GB0209539D0 (en) | 2002-04-26 | 2002-06-05 | Avecia Ltd | Monomer Polymer and process |
US6946285B2 (en) | 2002-04-29 | 2005-09-20 | Agilent Technologies, Inc. | Arrays with elongated features |
US7125523B2 (en) | 2002-04-29 | 2006-10-24 | Agilent Technologies, Inc. | Holders for arrays |
US7094537B2 (en) | 2002-04-30 | 2006-08-22 | Agilent Technologies, Inc. | Micro arrays with structured and unstructured probes |
US6621076B1 (en) | 2002-04-30 | 2003-09-16 | Agilent Technologies, Inc. | Flexible assembly for transporting sample fluids into a mass spectrometer |
AU2003233243A1 (en) | 2002-05-06 | 2003-11-17 | Noxxon Pharma Ag | Method for amplifying nucleic acids |
US20030211478A1 (en) | 2002-05-08 | 2003-11-13 | Gentel Corporation | Transcription factor profiling on a solid surface |
US7221785B2 (en) | 2002-05-21 | 2007-05-22 | Agilent Technologies, Inc. | Method and system for measuring a molecular array background signal from a continuous background region of specified size |
WO2003100012A2 (en) | 2002-05-24 | 2003-12-04 | Nimblegen Systems, Inc. | Microarrays and method for running hybridization reaction for multiple samples on a single microarray |
US7273730B2 (en) | 2002-05-24 | 2007-09-25 | Invitrogen Corporation | Nested PCR employing degradable primers |
US6789965B2 (en) | 2002-05-31 | 2004-09-14 | Agilent Technologies, Inc. | Dot printer with off-axis loading |
US7537936B2 (en) | 2002-05-31 | 2009-05-26 | Agilent Technologies, Inc. | Method of testing multiple fluid samples with multiple biopolymer arrays |
US7078505B2 (en) | 2002-06-06 | 2006-07-18 | Agilent Technologies, Inc. | Manufacture of arrays with varying deposition parameters |
US7919308B2 (en) | 2002-06-14 | 2011-04-05 | Agilent Technologies, Inc. | Form in place gaskets for assays |
US7351379B2 (en) | 2002-06-14 | 2008-04-01 | Agilent Technologies, Inc. | Fluid containment structure |
US7371348B2 (en) | 2002-06-14 | 2008-05-13 | Agilent Technologies | Multiple array format |
US6939673B2 (en) | 2002-06-14 | 2005-09-06 | Agilent Technologies, Inc. | Manufacture of arrays with reduced error impact |
US7220573B2 (en) | 2002-06-21 | 2007-05-22 | Agilent Technologies, Inc. | Array assay devices and methods of using the same |
US6713262B2 (en) | 2002-06-25 | 2004-03-30 | Agilent Technologies, Inc. | Methods and compositions for high throughput identification of protein/nucleic acid binding pairs |
US7894998B2 (en) | 2002-06-26 | 2011-02-22 | Agilent Technologies, Inc. | Method for identifying suitable nucleic acid probe sequences for use in nucleic acid arrays |
US7202358B2 (en) | 2002-07-25 | 2007-04-10 | Agilent Technologies, Inc. | Methods for producing ligand arrays |
US7452712B2 (en) | 2002-07-30 | 2008-11-18 | Applied Biosystems Inc. | Sample block apparatus and method of maintaining a microcard on a sample block |
US7101508B2 (en) | 2002-07-31 | 2006-09-05 | Agilent Technologies, Inc. | Chemical array fabrication errors |
US6835938B2 (en) | 2002-07-31 | 2004-12-28 | Agilent Technologies, Inc. | Biopolymer array substrate thickness dependent automated focus-distance determination method for biopolymer array scanners |
US7153689B2 (en) | 2002-08-01 | 2006-12-26 | Agilent Technologies, Inc. | Apparatus and methods for cleaning and priming droplet dispensing devices |
US8946387B2 (en) | 2002-08-14 | 2015-02-03 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
US7205128B2 (en) | 2002-08-16 | 2007-04-17 | Agilent Technologies, Inc. | Method for synthesis of the second strand of cDNA |
US7563600B2 (en) | 2002-09-12 | 2009-07-21 | Combimatrix Corporation | Microarray synthesis and assembly of gene-length polynucleotides |
US20040166567A1 (en) | 2002-09-26 | 2004-08-26 | Santi Daniel V | Synthetic genes |
AU2003270898A1 (en) | 2002-09-27 | 2004-04-19 | Nimblegen Systems, Inc. | Microarray with hydrophobic barriers |
DE10393406T5 (en) | 2002-09-30 | 2005-12-22 | Nimblegen Systems, Inc., Madison | Parallel loading of arrays |
US20040101894A1 (en) | 2002-10-01 | 2004-05-27 | Thomas Albert | Microarrays having multiple oligonucleotides in single array features |
US7129075B2 (en) | 2002-10-18 | 2006-10-31 | Transgenomic, Inc. | Isolated CEL II endonuclease |
US8283148B2 (en) | 2002-10-25 | 2012-10-09 | Agilent Technologies, Inc. | DNA polymerase compositions for quantitative PCR and methods thereof |
WO2004039953A2 (en) | 2002-10-28 | 2004-05-13 | Xeotron Corporation | Array oligomer synthesis and use. |
WO2004040295A1 (en) | 2002-10-31 | 2004-05-13 | Nanostream, Inc. | Parallel detection chromatography systems |
US7422911B2 (en) * | 2002-10-31 | 2008-09-09 | Agilent Technologies, Inc. | Composite flexible array substrate having flexible support |
US7390457B2 (en) | 2002-10-31 | 2008-06-24 | Agilent Technologies, Inc. | Integrated microfluidic array device |
US7402279B2 (en) | 2002-10-31 | 2008-07-22 | Agilent Technologies, Inc. | Device with integrated microfluidic and electronic components |
US7629120B2 (en) | 2002-10-31 | 2009-12-08 | Rice University | Method for assembling PCR fragments of DNA |
US7364896B2 (en) | 2002-10-31 | 2008-04-29 | Agilent Technologies, Inc. | Test strips including flexible array substrates and method of hybridization |
US20040086892A1 (en) | 2002-11-06 | 2004-05-06 | Crothers Donald M. | Universal tag assay |
US7029854B2 (en) | 2002-11-22 | 2006-04-18 | Agilent Technologies, Inc. | Methods designing multiple mRNA transcript nucleic acid probe sequences for use in nucleic acid arrays |
US7062385B2 (en) | 2002-11-25 | 2006-06-13 | Tufts University | Intelligent electro-optical nucleic acid-based sensor array and method for detecting volatile compounds in ambient air |
ATE472556T1 (en) | 2002-12-02 | 2010-07-15 | Amgen Fremont Inc | ANTIBODIES DIRECTED AGAINST THE TUMOR NECROSIS FACTOR AND THEIR USES |
US20040110133A1 (en) | 2002-12-06 | 2004-06-10 | Affymetrix, Inc. | Functionated photoacid generator for biological microarray synthesis |
US7932025B2 (en) | 2002-12-10 | 2011-04-26 | Massachusetts Institute Of Technology | Methods for high fidelity production of long nucleic acid molecules with error control |
US7879580B2 (en) | 2002-12-10 | 2011-02-01 | Massachusetts Institute Of Technology | Methods for high fidelity production of long nucleic acid molecules |
US20060076482A1 (en) | 2002-12-13 | 2006-04-13 | Hobbs Steven E | High throughput systems and methods for parallel sample analysis |
US6987263B2 (en) | 2002-12-13 | 2006-01-17 | Nanostream, Inc. | High throughput systems and methods for parallel sample analysis |
US7247337B1 (en) | 2002-12-16 | 2007-07-24 | Agilent Technologies, Inc. | Method and apparatus for microarray fabrication |
US20040191810A1 (en) | 2002-12-17 | 2004-09-30 | Affymetrix, Inc. | Immersed microarrays in conical wells |
GB0229443D0 (en) | 2002-12-18 | 2003-01-22 | Avecia Ltd | Process |
US7960157B2 (en) | 2002-12-20 | 2011-06-14 | Agilent Technologies, Inc. | DNA polymerase blends and uses thereof |
US7737089B2 (en) | 2002-12-23 | 2010-06-15 | Febit Holding Gmbh | Photoactivatable two-stage protective groups for the synthesis of biopolymers |
AU2003288675B2 (en) | 2002-12-23 | 2010-07-22 | Medimmune Limited | Antibodies against PD-1 and uses therefor |
AU2003303396A1 (en) | 2002-12-23 | 2004-07-22 | Agilent Technologies, Inc. | Comparative genomic hybridization assays using immobilized oligonucleotide features and compositions for practicing the same |
DE10260805A1 (en) | 2002-12-23 | 2004-07-22 | Geneart Gmbh | Method and device for optimizing a nucleotide sequence for expression of a protein |
US7372982B2 (en) | 2003-01-14 | 2008-05-13 | Agilent Technologies, Inc. | User interface for molecular array feature analysis |
US6809277B2 (en) | 2003-01-22 | 2004-10-26 | Agilent Technologies, Inc. | Method for registering a deposited material with channel plate channels, and switch produced using same |
EP2145955B1 (en) | 2003-01-29 | 2012-02-22 | 454 Life Sciences Corporation | Bead emulsion nucleic acid amplification |
US7202264B2 (en) | 2003-01-31 | 2007-04-10 | Isis Pharmaceuticals, Inc. | Supports for oligomer synthesis |
US8073626B2 (en) | 2003-01-31 | 2011-12-06 | Agilent Technologies, Inc. | Biopolymer array reading |
US6950756B2 (en) | 2003-02-05 | 2005-09-27 | Agilent Technologies, Inc. | Rearrangement of microarray scan images to form virtual arrays |
GB2398383B (en) | 2003-02-12 | 2005-03-09 | Global Genomics Ab | Method and means for nucleic acid sequencing |
US7413709B2 (en) | 2003-02-12 | 2008-08-19 | Agilent Technologies, Inc. | PAEK-based microfluidic device with integrated electrospray emitter |
US7244513B2 (en) | 2003-02-21 | 2007-07-17 | Nano-Proprietary, Inc. | Stain-etched silicon powder |
US7070932B2 (en) | 2003-02-25 | 2006-07-04 | Agilent Technologies, Inc. | Methods and devices for detecting printhead misalignment of an in situ polymeric array synthesis device |
US7252938B2 (en) | 2003-02-25 | 2007-08-07 | Agilent Technologies, Inc. | Methods and devices for producing a polymer at a location of a substrate |
WO2004080887A1 (en) | 2003-03-07 | 2004-09-23 | Massachusetts Institute Of Technology | Three dimensional mecrofabrication |
US20050053968A1 (en) * | 2003-03-31 | 2005-03-10 | Council Of Scientific And Industrial Research | Method for storing information in DNA |
US7534561B2 (en) | 2003-04-02 | 2009-05-19 | Agilent Technologies, Inc. | Nucleic acid array in situ fabrication methods and arrays produced using the same |
US20060134638A1 (en) | 2003-04-02 | 2006-06-22 | Blue Heron Biotechnology, Inc. | Error reduction in automated gene synthesis |
US20040219663A1 (en) | 2003-04-30 | 2004-11-04 | Page Robert D. | Biopolymer array fabrication using different drop deposition heads |
US7206439B2 (en) | 2003-04-30 | 2007-04-17 | Agilent Technologies, Inc. | Feature locations in array reading |
US7269518B2 (en) | 2003-04-30 | 2007-09-11 | Agilent Technologies, Inc. | Chemical array reading |
US6916113B2 (en) | 2003-05-16 | 2005-07-12 | Agilent Technologies, Inc. | Devices and methods for fluid mixing |
WO2004103563A2 (en) | 2003-05-20 | 2004-12-02 | Fluidigm Corporation | Method and system for microfluidic device and imaging thereof |
AU2004251256B2 (en) | 2003-05-30 | 2009-05-28 | The Board Of Trustees Of The University Of Illinois | Gene expression profiles that identify genetically elite ungulate mammals |
WO2004108081A2 (en) | 2003-06-02 | 2004-12-16 | Isis Pharmaceuticals, Inc. | Oligonucleotide synthesis with alternative solvents |
US8133670B2 (en) | 2003-06-13 | 2012-03-13 | Cold Spring Harbor Laboratory | Method for making populations of defined nucleic acid molecules |
US6938476B2 (en) | 2003-06-25 | 2005-09-06 | Agilent Technologies, Inc. | Apparatus and methods for sensing fluid levels |
US7534563B2 (en) | 2003-06-30 | 2009-05-19 | Agilent Technologies, Inc. | Methods for producing ligand arrays |
US20050016851A1 (en) | 2003-07-24 | 2005-01-27 | Jensen Klavs F. | Microchemical method and apparatus for synthesis and coating of colloidal nanoparticles |
US6843281B1 (en) | 2003-07-30 | 2005-01-18 | Agilent Techinologies, Inc. | Methods and apparatus for introducing liquids into microfluidic chambers |
US7353116B2 (en) | 2003-07-31 | 2008-04-01 | Agilent Technologies, Inc. | Chemical array with test dependent signal reading or processing |
US7939310B2 (en) | 2003-08-06 | 2011-05-10 | University Of Massachusetts | Systems and methods for analyzing nucleic acid sequences |
US7028536B2 (en) | 2004-06-29 | 2006-04-18 | Nanostream, Inc. | Sealing interface for microfluidic device |
US7348144B2 (en) | 2003-08-13 | 2008-03-25 | Agilent Technologies, Inc. | Methods and system for multi-drug treatment discovery |
JP3966256B2 (en) * | 2003-08-25 | 2007-08-29 | トヨタ自動車株式会社 | Control device for electric power steering device |
US7229497B2 (en) | 2003-08-26 | 2007-06-12 | Massachusetts Institute Of Technology | Method of preparing nanocrystals |
US7385050B2 (en) | 2003-08-30 | 2008-06-10 | Agilent Technologies, Inc. | Cleavable linker for polynucleotide synthesis |
US7427679B2 (en) | 2003-08-30 | 2008-09-23 | Agilent Technologies, Inc. | Precursors for two-step polynucleotide synthesis |
US7417139B2 (en) | 2003-08-30 | 2008-08-26 | Agilent Technologies, Inc. | Method for polynucleotide synthesis |
US7585970B2 (en) | 2003-08-30 | 2009-09-08 | Agilent Technologies, Inc. | Method of polynucleotide synthesis using modified support |
US7193077B2 (en) | 2003-08-30 | 2007-03-20 | Agilent Technologies, Inc. | Exocyclic amine triaryl methyl protecting groups in two-step polynucleotide synthesis |
US20050049796A1 (en) * | 2003-09-03 | 2005-03-03 | Webb Peter G. | Methods for encoding non-biological information on microarrays |
DK1664343T3 (en) | 2003-09-09 | 2014-08-11 | Integrigen Inc | METHODS AND COMPOSITIONS FOR GENERATING CHIMELY HUMAN ANTIBODY GENES |
EP1687445A4 (en) | 2003-09-23 | 2007-03-28 | Atom Sciences Inc | Polymeric nucleic acid hybridization probes |
US7488607B2 (en) | 2003-09-30 | 2009-02-10 | Agilent Technologies, Inc. | Electronically readable microarray with electronic addressing function |
US7147362B2 (en) | 2003-10-15 | 2006-12-12 | Agilent Technologies, Inc. | Method of mixing by intermittent centrifugal force |
US7075161B2 (en) | 2003-10-23 | 2006-07-11 | Agilent Technologies, Inc. | Apparatus and method for making a low capacitance artificial nanopore |
US20050277125A1 (en) | 2003-10-27 | 2005-12-15 | Massachusetts Institute Of Technology | High-density reaction chambers and methods of use |
US7169560B2 (en) | 2003-11-12 | 2007-01-30 | Helicos Biosciences Corporation | Short cycle methods for sequencing polynucleotides |
US7276338B2 (en) | 2003-11-17 | 2007-10-02 | Jacobson Joseph M | Nucleotide sequencing via repetitive single molecule hybridization |
DE10353887A1 (en) | 2003-11-18 | 2005-06-16 | Febit Ag | Highly parallel matrix-based DNA synthesizer |
US7851192B2 (en) | 2004-11-22 | 2010-12-14 | New England Biolabs, Inc. | Modified DNA cleavage enzymes and methods for use |
US7282705B2 (en) | 2003-12-19 | 2007-10-16 | Agilent Technologies, Inc. | Microdevice having an annular lining for producing an electrospray emitter |
US20110059865A1 (en) | 2004-01-07 | 2011-03-10 | Mark Edward Brennan Smith | Modified Molecular Arrays |
ES2432040T3 (en) | 2004-01-28 | 2013-11-29 | 454 Life Sciences Corporation | Nucleic acid amplification with continuous flow emulsion |
US7084180B2 (en) | 2004-01-28 | 2006-08-01 | Velocys, Inc. | Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
US7125488B2 (en) | 2004-02-12 | 2006-10-24 | Varian, Inc. | Polar-modified bonded phase materials for chromatographic separations |
AU2005214329A1 (en) | 2004-02-12 | 2005-09-01 | Population Genetics Technologies Ltd | Genetic analysis by sequence-specific sorting |
JP2007534320A (en) | 2004-02-27 | 2007-11-29 | プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ | Polynucleotide synthesis method |
US7875463B2 (en) | 2004-03-26 | 2011-01-25 | Agilent Technologies, Inc. | Generalized pulse jet ejection head control model |
WO2005093092A2 (en) | 2004-03-26 | 2005-10-06 | Bayer Healthcare Ag | Diagnostics and therapeutics for diseases associated with g-protein coupled receptor 44 (gpr44) |
US20050214779A1 (en) | 2004-03-29 | 2005-09-29 | Peck Bill J | Methods for in situ generation of nucleic acid arrays |
US20050214778A1 (en) | 2004-03-29 | 2005-09-29 | Peck Bill J | Methods for in situ generation of nucleic acid arrays |
US8825411B2 (en) | 2004-05-04 | 2014-09-02 | Dna Twopointo, Inc. | Design, synthesis and assembly of synthetic nucleic acids |
CA2565987A1 (en) * | 2004-05-11 | 2005-11-24 | Wyeth | Oligonucleotide arrays to monitor gene expression and methods for making and using same |
ES2459367T3 (en) | 2004-05-19 | 2014-05-09 | Massachusetts Institute Of Technology | Three-dimensional models of perfused cell / tissue diseases |
US7302348B2 (en) | 2004-06-02 | 2007-11-27 | Agilent Technologies, Inc. | Method and system for quantifying and removing spatial-intensity trends in microarray data |
US20060024711A1 (en) | 2004-07-02 | 2006-02-02 | Helicos Biosciences Corporation | Methods for nucleic acid amplification and sequence determination |
ES2372503T3 (en) | 2004-07-06 | 2012-01-20 | Bioren, Inc. | REVISED MUTAGENESIS TO DEVELOP ALTERED POLYPEPTIDES WITH POTENTIATED PROPERTIES. |
US7811753B2 (en) | 2004-07-14 | 2010-10-12 | Ibis Biosciences, Inc. | Methods for repairing degraded DNA |
US20060012793A1 (en) | 2004-07-19 | 2006-01-19 | Helicos Biosciences Corporation | Apparatus and methods for analyzing samples |
US7276720B2 (en) | 2004-07-19 | 2007-10-02 | Helicos Biosciences Corporation | Apparatus and methods for analyzing samples |
US20060019084A1 (en) | 2004-07-23 | 2006-01-26 | Pearson Laurence T | Monolithic composition and method |
US20060024678A1 (en) | 2004-07-28 | 2006-02-02 | Helicos Biosciences Corporation | Use of single-stranded nucleic acid binding proteins in sequencing |
KR101222628B1 (en) | 2004-08-03 | 2013-01-16 | 게네아르트 아게 | Method for modulating gene expression by modifying the CpG content |
WO2006073504A2 (en) | 2004-08-04 | 2006-07-13 | President And Fellows Of Harvard College | Wobble sequencing |
WO2006018044A1 (en) | 2004-08-18 | 2006-02-23 | Agilent Technologies, Inc. | Microfluidic assembly with coupled microfluidic devices |
US7034290B2 (en) | 2004-09-24 | 2006-04-25 | Agilent Technologies, Inc. | Target support with pattern recognition sites |
US7943046B2 (en) | 2004-10-01 | 2011-05-17 | Agilent Technologies, Inc | Methods and systems for on-column protein delipidation |
US20070122817A1 (en) | 2005-02-28 | 2007-05-31 | George Church | Methods for assembly of high fidelity synthetic polynucleotides |
JP2008523786A (en) | 2004-10-18 | 2008-07-10 | コドン デバイシズ インコーポレイテッド | Method for assembling high fidelity synthetic polynucleotides |
US7141807B2 (en) | 2004-10-22 | 2006-11-28 | Agilent Technologies, Inc. | Nanowire capillaries for mass spectrometry |
US20060110744A1 (en) | 2004-11-23 | 2006-05-25 | Sampas Nicolas M | Probe design methods and microarrays for comparative genomic hybridization and location analysis |
US8380441B2 (en) | 2004-11-30 | 2013-02-19 | Agilent Technologies, Inc. | Systems for producing chemical array layouts |
US7977119B2 (en) | 2004-12-08 | 2011-07-12 | Agilent Technologies, Inc. | Chemical arrays and methods of using the same |
US11268149B2 (en) | 2004-12-08 | 2022-03-08 | Cedars-Sinai Medical Center | Diagnosis and treatment of inflammatory bowel disease |
US7439272B2 (en) | 2004-12-20 | 2008-10-21 | Varian, Inc. | Ultraporous sol gel monoliths |
JP2008525020A (en) | 2004-12-22 | 2008-07-17 | ナショナル ユニバーシティ オブ シンガポール | New snake toxin |
EP1838870A2 (en) | 2004-12-29 | 2007-10-03 | Exiqon A/S | NOVEL OLIGONUCLEOTIDE COMPOSITIONS AND PROBE SEQUENCES USEFUL FOR DETECTION AND ANALYSIS OF MICRORNAS AND THEIR TARGET MRNAs |
AU2006204697A1 (en) | 2005-01-13 | 2006-07-20 | Codon Devices, Inc. | Compositions and methods for protein design |
US20060171855A1 (en) | 2005-02-03 | 2006-08-03 | Hongfeng Yin | Devices,systems and methods for multi-dimensional separation |
US20090088679A1 (en) | 2005-02-07 | 2009-04-02 | Massachusetts Institute Of Technology | Electronically-Degradable Layer-by-Layer Thin Films |
US7393665B2 (en) | 2005-02-10 | 2008-07-01 | Population Genetics Technologies Ltd | Methods and compositions for tagging and identifying polynucleotides |
JP4641199B2 (en) | 2005-02-28 | 2011-03-02 | 国立感染症研究所長 | Apparatus for designing RNA interference polynucleotide mixture, method for producing RNA interference polynucleotide mixture, and program for designing RNA interference polynucleotide mixture |
US20060203236A1 (en) | 2005-03-08 | 2006-09-14 | Zhenghua Ji | Sample cell |
EP1623763A1 (en) | 2005-03-11 | 2006-02-08 | Agilent Technologies, Inc. | Chip with cleaning cavity |
US7618777B2 (en) | 2005-03-16 | 2009-11-17 | Agilent Technologies, Inc. | Composition and method for array hybridization |
US20060219637A1 (en) | 2005-03-29 | 2006-10-05 | Killeen Kevin P | Devices, systems and methods for liquid chromatography |
EP1874792B1 (en) | 2005-04-27 | 2016-04-13 | Sigma-Aldrich Co. LLC | Activators for oligonucleotide and phosphoramidite synthesis |
BRPI0607661A2 (en) | 2005-04-29 | 2009-09-22 | J Craig Venter Inst | amplification and cloning of single dna molecule using rolling circle amplification |
US7572907B2 (en) | 2005-04-29 | 2009-08-11 | Agilent Technologies, Inc. | Methods and compounds for polynucleotide synthesis |
CN101189311B (en) | 2005-05-12 | 2011-08-31 | 汉伯公司 | Method for the establishment of a crack resistant epoxy paint coat and paint compositions suitable for said method |
US7396676B2 (en) | 2005-05-31 | 2008-07-08 | Agilent Technologies, Inc. | Evanescent wave sensor with attached ligand |
EP1907571B1 (en) | 2005-06-15 | 2017-04-26 | Complete Genomics Inc. | Nucleic acid analysis by random mixtures of non-overlapping fragments |
US7919239B2 (en) | 2005-07-01 | 2011-04-05 | Agilent Technologies, Inc. | Increasing hybridization efficiencies |
US7718365B2 (en) | 2005-07-09 | 2010-05-18 | Agilent Technologies, Inc. | Microarray analysis of RNA |
US8076064B2 (en) | 2005-07-09 | 2011-12-13 | Agilent Technologies, Inc. | Method of treatment of RNA sample |
ATE510930T1 (en) | 2005-08-02 | 2011-06-15 | Rubicon Genomics Inc | COMPOSITIONS AND METHODS FOR EDITING AND AMPLIFICATION OF DNA USING MULTIPLE ENZYMES IN A SINGLE REACTION |
DE102005037351B3 (en) | 2005-08-08 | 2007-01-11 | Geneart Ag | In vitro method for directed evolution of proteins, useful e.g. in pharmaceutical development, uses expression system for performing translation, transcription and reverse transcription |
DK1929012T3 (en) | 2005-08-11 | 2011-01-31 | Synthetic Genomics Inc | Method of in vitro recombination |
MY143596A (en) | 2005-08-11 | 2011-06-15 | Synthetic Genomics Inc | In vitro recombination method |
US9404882B2 (en) | 2005-08-11 | 2016-08-02 | New Mexico Tech Research Foundation | Method of producing a multi-microchannel, flow-through element and device using same |
US7749701B2 (en) | 2005-08-11 | 2010-07-06 | Agilent Technologies, Inc. | Controlling use of oligonucleotide sequences released from arrays |
US7805252B2 (en) | 2005-08-16 | 2010-09-28 | Dna Twopointo, Inc. | Systems and methods for designing and ordering polynucleotides |
WO2007025059A1 (en) | 2005-08-26 | 2007-03-01 | Surmodics, Inc. | Silane coating compositions, coating systems, and methods |
US20070196834A1 (en) | 2005-09-09 | 2007-08-23 | Francesco Cerrina | Method and system for the generation of large double stranded DNA fragments |
JP5055282B2 (en) | 2005-09-14 | 2012-10-24 | イルミナ インコーポレイテッド | Continuous polymer synthesizer |
EP1939621B1 (en) | 2005-09-16 | 2014-11-19 | Azbil Corporation | Method for manufacturing substrate for biochip, and method for manufacturing biochip |
WO2007043963A1 (en) | 2005-10-13 | 2007-04-19 | Silex Microsystems Ab | Fabrication of inlet and outlet connections for microfluidic chips |
US7368550B2 (en) | 2005-10-31 | 2008-05-06 | Agilent Technologies, Inc. | Phosphorus protecting groups |
US8202985B2 (en) | 2005-10-31 | 2012-06-19 | Agilent Technologies, Inc. | Monomer compositions for the synthesis of polynucleotides, methods of synthesis, and methods of deprotection |
US7759471B2 (en) | 2005-10-31 | 2010-07-20 | Agilent Technologies, Inc. | Monomer compositions for the synthesis of RNA, methods of synthesis, and methods of deprotection |
US8552174B2 (en) | 2005-10-31 | 2013-10-08 | Agilent Technologies, Inc. | Solutions, methods, and processes for deprotection of polynucleotides |
GB0522310D0 (en) | 2005-11-01 | 2005-12-07 | Solexa Ltd | Methods of preparing libraries of template polynucleotides |
US7291471B2 (en) | 2005-11-21 | 2007-11-06 | Agilent Technologies, Inc. | Cleavable oligonucleotide arrays |
GB0524069D0 (en) | 2005-11-25 | 2006-01-04 | Solexa Ltd | Preparation of templates for solid phase amplification |
US8137936B2 (en) | 2005-11-29 | 2012-03-20 | Macevicz Stephen C | Selected amplification of polynucleotides |
DK1966394T3 (en) | 2005-12-22 | 2012-10-29 | Keygene Nv | Improved transcript profiling strategies using high throughput sequencing technologies |
WO2007081841A2 (en) | 2006-01-06 | 2007-07-19 | Stratagene California | Reaction buffer composition for nucleic acid replication with packed dna polymerases |
WO2007081387A1 (en) | 2006-01-11 | 2007-07-19 | Raindance Technologies, Inc. | Microfluidic devices, methods of use, and kits for performing diagnostics |
US7544473B2 (en) | 2006-01-23 | 2009-06-09 | Population Genetics Technologies Ltd. | Nucleic acid analysis using sequence tokens |
WO2007087377A2 (en) | 2006-01-25 | 2007-08-02 | Massachusetts Institute Of Technology | Photoelectrochemical synthesis of high density combinatorial polymer arrays |
US9274108B2 (en) | 2006-02-06 | 2016-03-01 | Massachusetts Institute Of Technology | Self-assembly of macromolecules on multilayered polymer surfaces |
WO2007095171A2 (en) | 2006-02-14 | 2007-08-23 | Massachusetts Institute Of Technology | Absorbing film |
US7807356B2 (en) | 2006-03-09 | 2010-10-05 | Agilent Technologies, Inc. | Labeled nucleotide composition |
TW200806317A (en) | 2006-03-20 | 2008-02-01 | Wyeth Corp | Methods for reducing protein aggregation |
US7855281B2 (en) | 2006-03-23 | 2010-12-21 | Agilent Technologies, Inc. | Cleavable thiocarbonate linkers for polynucleotide synthesis |
US7572908B2 (en) | 2006-03-23 | 2009-08-11 | Agilent Technologies, Inc. | Cleavable linkers for polynucleotides |
US20070231800A1 (en) | 2006-03-28 | 2007-10-04 | Agilent Technologies, Inc. | Determination of methylated DNA |
EP4105644A3 (en) | 2006-03-31 | 2022-12-28 | Illumina, Inc. | Systems and devices for sequence by synthesis analysis |
US20070238108A1 (en) | 2006-04-07 | 2007-10-11 | Agilent Technologies, Inc. | Validation of comparative genomic hybridization |
US20070238104A1 (en) | 2006-04-07 | 2007-10-11 | Agilent Technologies, Inc. | Competitive oligonucleotides |
WO2007118214A2 (en) | 2006-04-07 | 2007-10-18 | The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services | Antibody compositions and methods for treatment of neoplastic disease |
US20070238106A1 (en) | 2006-04-07 | 2007-10-11 | Agilent Technologies, Inc. | Systems and methods of determining alleles and/or copy numbers |
US8058055B2 (en) | 2006-04-07 | 2011-11-15 | Agilent Technologies, Inc. | High resolution chromosomal mapping |
US20100173364A1 (en) | 2006-04-11 | 2010-07-08 | New England Biolabs, Inc. | Repair of Nucleic Acids for Improved Amplification |
US20090062129A1 (en) | 2006-04-19 | 2009-03-05 | Agencourt Personal Genomics, Inc. | Reagents, methods, and libraries for gel-free bead-based sequencing |
US8383338B2 (en) | 2006-04-24 | 2013-02-26 | Roche Nimblegen, Inc. | Methods and systems for uniform enrichment of genomic regions |
US20070259344A1 (en) | 2006-05-03 | 2007-11-08 | Agilent Technologies, Inc. | Compound probes and methods of increasing the effective probe densities of arrays |
US20070259347A1 (en) | 2006-05-03 | 2007-11-08 | Agilent Technologies, Inc. | Methods of increasing the effective probe densities of arrays |
US20070259345A1 (en) | 2006-05-03 | 2007-11-08 | Agilent Technologies, Inc. | Target determination using compound probes |
US20070259346A1 (en) | 2006-05-03 | 2007-11-08 | Agilent Technologies, Inc. | Analysis of arrays |
WO2007137242A2 (en) | 2006-05-19 | 2007-11-29 | Massachusetts Institute Of Technology | Microfluidic-based gene synthesis |
WO2007136834A2 (en) | 2006-05-19 | 2007-11-29 | Codon Devices, Inc. | Combined extension and ligation for nucleic acid assembly |
WO2008054543A2 (en) | 2006-05-20 | 2008-05-08 | Codon Devices, Inc. | Oligonucleotides for multiplex nucleic acid assembly |
EP2487616B1 (en) | 2006-06-19 | 2015-07-29 | Yeda Research And Development Company Limited | Programmable iterated elongation: a method for manufacturing synthetic genes and combinatorial DNA and protein libraries |
AT503902B1 (en) | 2006-07-05 | 2008-06-15 | F Star Biotech Forsch & Entw | METHOD FOR MANIPULATING IMMUNE LOBULINS |
AT503861B1 (en) | 2006-07-05 | 2008-06-15 | F Star Biotech Forsch & Entw | METHOD FOR MANIPULATING T-CELL RECEPTORS |
US20080193772A1 (en) | 2006-07-07 | 2008-08-14 | Bio-Rad Laboratories, Inc | Mass spectrometry probes having hydrophobic coatiings |
EP2049682A2 (en) | 2006-07-31 | 2009-04-22 | Illumina Cambridge Limited | Method of library preparation avoiding the formation of adaptor dimers |
US7524942B2 (en) | 2006-07-31 | 2009-04-28 | Agilent Technologies, Inc. | Labeled nucleotide composition |
US7572585B2 (en) | 2006-07-31 | 2009-08-11 | Agilent Technologies, Inc. | Enzymatic labeling of RNA |
PT2056845T (en) | 2006-08-08 | 2017-11-17 | Rheinische Friedrich-Wilhelms-Universität Bonn | Structure and use of 5' phosphate oligonucleotides |
DE102006039479A1 (en) | 2006-08-23 | 2008-03-06 | Febit Biotech Gmbh | Programmable oligonucleotide synthesis |
WO2008023179A2 (en) | 2006-08-24 | 2008-02-28 | Solexa Limited | Method for retaining even coverage of short insert libraries |
WO2008027558A2 (en) | 2006-08-31 | 2008-03-06 | Codon Devices, Inc. | Iterative nucleic acid assembly using activation of vector-encoded traits |
US8415138B2 (en) | 2006-08-31 | 2013-04-09 | Agilent Technologies, Inc. | Apparatuses and methods for oligonucleotide preparation |
US8097711B2 (en) | 2006-09-02 | 2012-01-17 | Agilent Technologies, Inc. | Thioether substituted aryl carbonate protecting groups |
US20080311628A1 (en) | 2006-10-03 | 2008-12-18 | Ghc Technologies, Inc. | Methods and compositions for rapid amplification and capture of nucleic acid sequences |
US20080287320A1 (en) | 2006-10-04 | 2008-11-20 | Codon Devices | Libraries and their design and assembly |
US20080085511A1 (en) | 2006-10-05 | 2008-04-10 | Peck Bill J | Preparation of biopolymer arrays |
US20080085514A1 (en) | 2006-10-10 | 2008-04-10 | Peck Bill J | Methods and devices for array synthesis |
JP2008097189A (en) | 2006-10-10 | 2008-04-24 | National Institute Of Advanced Industrial & Technology | Method for determining transcript specificity or gene specificity of a base sequence fragment |
US7867782B2 (en) | 2006-10-19 | 2011-01-11 | Agilent Technologies, Inc. | Nanoscale moiety placement methods |
US7999087B2 (en) | 2006-11-15 | 2011-08-16 | Agilent Technologies, Inc. | 2′-silyl containing thiocarbonate protecting groups for RNA synthesis |
WO2008063135A1 (en) | 2006-11-24 | 2008-05-29 | Agency For Science, Technology And Research | Apparatus for processing a sample in a liquid droplet and method of using the same |
WO2008063134A1 (en) | 2006-11-24 | 2008-05-29 | Agency For Science, Technology And Research | Method of producing a pattern of discriminative wettability |
US8242258B2 (en) | 2006-12-03 | 2012-08-14 | Agilent Technologies, Inc. | Protecting groups for RNA synthesis |
CN101611056A (en) | 2006-12-05 | 2009-12-23 | 埃博灵克斯股份有限公司 | Can be incorporated into the peptide of serum protein |
US7989396B2 (en) | 2006-12-05 | 2011-08-02 | The Board Of Trustees Of The Leland Stanford Junior University | Biomolecule immobilization on biosensors |
US7862999B2 (en) | 2007-01-17 | 2011-01-04 | Affymetrix, Inc. | Multiplex targeted amplification using flap nuclease |
US8314220B2 (en) | 2007-01-26 | 2012-11-20 | Agilent Technologies, Inc. | Methods compositions, and kits for detection of microRNA |
US20080182296A1 (en) | 2007-01-31 | 2008-07-31 | Chanda Pranab K | Pcr-directed gene synthesis from large number of overlapping oligodeoxyribonucleotides |
KR100827449B1 (en) | 2007-02-07 | 2008-05-07 | 삼성전자주식회사 | Substrate for oligomeric probe array, oligomer probe array, and method for preparing the photodegradable compound and the compound |
US20100323404A1 (en) | 2007-02-09 | 2010-12-23 | Richard Lathrop | Method for recombining dna sequences and compositions related thereto |
EP2126105A4 (en) | 2007-02-20 | 2010-11-03 | Anaptysbio Inc | Somatic hypermutation systems |
US9029085B2 (en) | 2007-03-07 | 2015-05-12 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
US7651762B2 (en) | 2007-03-13 | 2010-01-26 | Varian, Inc. | Methods and devices using a shrinkable support for porous monolithic materials |
US8500982B2 (en) | 2007-04-04 | 2013-08-06 | The Regents Of The University Of California | Compositions, devices, systems, and methods for using a nanopore |
KR101625363B1 (en) | 2007-05-10 | 2016-05-30 | 애질런트 테크놀로지스, 인크. | Thiocarbon-protecting groups for rna synthesis |
US20100286290A1 (en) | 2007-06-04 | 2010-11-11 | Jakob Schwalbe Lohmann | Enzyme activity assay using rolling circle amplification |
US20090023190A1 (en) | 2007-06-20 | 2009-01-22 | Kai Qin Lao | Sequence amplification with loopable primers |
US20080318334A1 (en) | 2007-06-20 | 2008-12-25 | Robotti Karla M | Microfluidic devices comprising fluid flow paths having a monolithic chromatographic material |
US8194244B2 (en) | 2007-06-29 | 2012-06-05 | Intel Corporation | Solution sample plate with wells designed for improved Raman scattering signal detection efficiency |
US7659069B2 (en) | 2007-08-31 | 2010-02-09 | Agilent Technologies, Inc. | Binary signaling assay using a split-polymerase |
US8685642B2 (en) | 2007-07-30 | 2014-04-01 | Agilent Technologies, Inc. | Allele-specific copy number measurement using single nucleotide polymorphism and DNA arrays |
US7979215B2 (en) | 2007-07-30 | 2011-07-12 | Agilent Technologies, Inc. | Methods and systems for evaluating CGH candidate probe nucleic acid sequences |
US20090036664A1 (en) | 2007-07-31 | 2009-02-05 | Brian Jon Peter | Complex oligonucleotide primer mix |
JP2010535502A (en) | 2007-08-07 | 2010-11-25 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Integrated microfluidic device for gene synthesis |
WO2009023547A2 (en) * | 2007-08-14 | 2009-02-19 | Arcxis Biotechnologies | Polymer microfluidic biochip fabrication |
US20110126929A1 (en) | 2007-08-15 | 2011-06-02 | Massachusetts Institute Of Technology | Microstructures For Fluidic Ballasting and Flow Control |
US9598737B2 (en) | 2012-05-09 | 2017-03-21 | Longhorn Vaccines And Diagnostics, Llc | Next generation genomic sequencing methods |
US20090053704A1 (en) | 2007-08-24 | 2009-02-26 | Natalia Novoradovskaya | Stabilization of nucleic acids on solid supports |
US8877688B2 (en) | 2007-09-14 | 2014-11-04 | Adimab, Llc | Rationally designed, synthetic antibody libraries and uses therefor |
US20100256017A1 (en) | 2007-09-17 | 2010-10-07 | Harry Benjamin Larman | Supramolecular nanostamping printing device |
US7790387B2 (en) | 2007-09-24 | 2010-09-07 | Agilent Technologies, Inc. | Thiocarbonate linkers for polynucleotides |
US8003330B2 (en) | 2007-09-28 | 2011-08-23 | Pacific Biosciences Of California, Inc. | Error-free amplification of DNA for clonal sequencing |
EP2053132A1 (en) | 2007-10-23 | 2009-04-29 | Roche Diagnostics GmbH | Enrichment and sequence analysis of geomic regions |
WO2009070665A1 (en) | 2007-11-27 | 2009-06-04 | Massachusetts Institute Of Technology | Near field detector for integrated surface plasmon resonance biosensor applications |
WO2009076580A2 (en) | 2007-12-12 | 2009-06-18 | Thomas Jefferson University | Compositions and methods for the treatment and prevention of cardiovascular diseases |
EP2247708A4 (en) | 2007-12-17 | 2013-02-27 | Yeda Res & Dev | System and method for editing and manipulating dna |
US9540637B2 (en) | 2008-01-09 | 2017-01-10 | Life Technologies Corporation | Nucleic acid adaptors and uses thereof |
JP2011509095A (en) | 2008-01-09 | 2011-03-24 | ライフ テクノロジーズ コーポレーション | Method for producing a library of paired tags for nucleic acid sequencing |
US7682809B2 (en) | 2008-01-11 | 2010-03-23 | Agilent Technologies, Inc. | Direct ATP release sequencing |
WO2009092564A2 (en) | 2008-01-23 | 2009-07-30 | Roche Diagnostics Gmbh | Integrated instrument performing synthesis and amplification |
US8304273B2 (en) | 2008-01-24 | 2012-11-06 | Massachusetts Institute Of Technology | Insulated nanogap devices and methods of use thereof |
WO2009097368A2 (en) | 2008-01-28 | 2009-08-06 | Complete Genomics, Inc. | Methods and compositions for efficient base calling in sequencing reactions |
US20090194483A1 (en) | 2008-01-31 | 2009-08-06 | Robotti Karla M | Microfluidic device having monolithic separation medium and method of use |
EP3064599B1 (en) | 2008-02-15 | 2018-12-12 | Synthetic Genomics, Inc. | Methods for in vitro joining and combinatorial assembly of nucleic acid molecules |
EP2270142A4 (en) | 2008-03-11 | 2011-06-01 | Univ Tokyo | PROCESS FOR THE PREPARATION OF A DNA FRAGMENT HAVING A STICKY EXTREME |
US20090230044A1 (en) | 2008-03-13 | 2009-09-17 | Agilent Technologies, Inc. | Microfluid Chip Cleaning |
US20090238722A1 (en) | 2008-03-18 | 2009-09-24 | Agilent Technologies, Inc. | Pressure-Reinforced Fluidic Chip |
EP2881736B1 (en) | 2008-03-31 | 2017-06-07 | Pacific Biosciences of California, Inc. | Single polymerase molecule loading methods and compositions |
US20090246788A1 (en) * | 2008-04-01 | 2009-10-01 | Roche Nimblegen, Inc. | Methods and Assays for Capture of Nucleic Acids |
US8911948B2 (en) | 2008-04-30 | 2014-12-16 | Integrated Dna Technologies, Inc. | RNase H-based assays utilizing modified RNA monomers |
JP4582224B2 (en) | 2008-05-02 | 2010-11-17 | ソニー株式会社 | Microbead manufacturing method and microbead |
EP2113255A1 (en) | 2008-05-02 | 2009-11-04 | f-star Biotechnologische Forschungs- und Entwicklungsges.m.b.H. | Cytotoxic immunoglobulin |
CA2724638C (en) | 2008-05-27 | 2020-02-18 | Dako Denmark A/S | Hybridization compositions and methods comprising a polar aprotic solvent |
CA2729499A1 (en) | 2008-06-30 | 2010-01-07 | Morphotek, Inc. | Anti-gd2 antibodies and methods and uses related thereto |
GB2461546B (en) | 2008-07-02 | 2010-07-07 | Argen X Bv | Antigen binding polypeptides |
JP4667490B2 (en) | 2008-07-09 | 2011-04-13 | 三菱電機株式会社 | Cooker |
WO2010014903A1 (en) | 2008-07-31 | 2010-02-04 | Massachusetts Institute Of Technology | Multiplexed olfactory receptor-based microsurface plasmon polariton detector |
WO2010021936A1 (en) | 2008-08-16 | 2010-02-25 | The Board Of Trustees Of The Leland Stanford Junior University | Digital pcr calibration for high throughput sequencing |
AU2009283194B2 (en) | 2008-08-22 | 2014-10-16 | Sangamo Therapeutics, Inc. | Methods and compositions for targeted single-stranded cleavage and targeted integration |
WO2010025310A2 (en) | 2008-08-27 | 2010-03-04 | Westend Asset Clearinghouse Company, Llc | Methods and devices for high fidelity polynucleotide synthesis |
US8034917B2 (en) | 2008-08-28 | 2011-10-11 | Agilent Technologies, Inc. | Primer-directed chromosome painting |
AU2009290102A1 (en) | 2008-09-05 | 2010-03-11 | The Royal Institution For The Advancement Of Learning/Mcgill University | RNA monomers containing O-acetal levulinyl ester groups and their use in RNA microarrays |
WO2010028366A2 (en) | 2008-09-05 | 2010-03-11 | Life Technologies Corporation | Methods and systems for nucleic acid sequencing validation, calibration and normalization |
US8586310B2 (en) | 2008-09-05 | 2013-11-19 | Washington University | Method for multiplexed nucleic acid patch polymerase chain reaction |
CN102439025B (en) | 2008-09-06 | 2017-08-01 | 坎姆根公司 | RNA synthesizes-is used for inverse composition RNA phosphoramidite, and synthesizes in 3 ' ends the application in RNA the facilitating the introduction of of part, chromophore and trim |
US8541569B2 (en) | 2008-09-06 | 2013-09-24 | Chemgenes Corporation | Phosphoramidites for synthetic RNA in the reverse direction, efficient RNA synthesis and convenient introduction of 3'-end ligands, chromophores and modifications of synthetic RNA |
US20100062495A1 (en) | 2008-09-10 | 2010-03-11 | Genscript Corporation | Homologous recombination-based DNA cloning methods and compositions |
US20100076183A1 (en) | 2008-09-22 | 2010-03-25 | Dellinger Douglas J | Protected monomer and method of final deprotection for rna synthesis |
US8213015B2 (en) | 2008-09-25 | 2012-07-03 | Agilent Technologies, Inc. | Integrated flow cell with semiconductor oxide tubing |
AU2009298501A1 (en) | 2008-09-30 | 2010-04-08 | Abbvie Inc. | Improved antibody libraries |
US20100090341A1 (en) | 2008-10-14 | 2010-04-15 | Molecular Imprints, Inc. | Nano-patterned active layers formed by nano-imprint lithography |
US20100301398A1 (en) | 2009-05-29 | 2010-12-02 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
US9080211B2 (en) | 2008-10-24 | 2015-07-14 | Epicentre Technologies Corporation | Transposon end compositions and methods for modifying nucleic acids |
US8357489B2 (en) | 2008-11-13 | 2013-01-22 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for detecting hepatocellular carcinoma |
WO2010062960A2 (en) | 2008-11-26 | 2010-06-03 | Cedars-Sinai Medical Center | METHODS OF DETERMINING RESPONSIVENESS TO ANTI-TNFα THERAPY IN INFLAMMATORY BOWEL DISEASE |
US9394333B2 (en) | 2008-12-02 | 2016-07-19 | Wave Life Sciences Japan | Method for the synthesis of phosphorus atom modified nucleic acids |
US8963262B2 (en) | 2009-08-07 | 2015-02-24 | Massachusettes Institute Of Technology | Method and apparatus for forming MEMS device |
JO3382B1 (en) | 2008-12-23 | 2019-03-13 | Amgen Inc | Human cgrp receptor binding antibodies |
TW201104253A (en) | 2008-12-31 | 2011-02-01 | Nat Health Research Institutes | Microarray chip and method of fabricating for the same |
CA2751762A1 (en) | 2009-02-09 | 2010-08-12 | Helmholtz Zentrum Muenchen Deutsches Forschungszentrum Fuer Gesundheit U Nd Umwelt (Gmbh) | Repertoire of allo-restricted peptide-specific t cell receptor sequences and use thereof |
DK2398915T3 (en) | 2009-02-20 | 2016-12-12 | Synthetic Genomics Inc | Synthesis of nucleic acids sequence verified |
US8569046B2 (en) | 2009-02-20 | 2013-10-29 | Massachusetts Institute Of Technology | Microarray with microchannels |
MX355507B (en) | 2009-03-09 | 2018-04-19 | Bioatla Llc | Mirac proteins. |
US8709717B2 (en) | 2009-04-03 | 2014-04-29 | Illumina, Inc. | Generation of uniform fragments of nucleic acids using patterned substrates |
US7862716B2 (en) | 2009-04-13 | 2011-01-04 | Sielc Technologies Corporation | HPLC schematic with integrated sample cleaning system |
EP2424669B1 (en) | 2009-04-29 | 2020-06-03 | Sicpa Holding Sa | Method for depositing a biological fluid onto a substrate |
US9085798B2 (en) | 2009-04-30 | 2015-07-21 | Prognosys Biosciences, Inc. | Nucleic acid constructs and methods of use |
EP2248914A1 (en) | 2009-05-05 | 2010-11-10 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | The use of class IIB restriction endonucleases in 2nd generation sequencing applications |
US9309557B2 (en) | 2010-12-17 | 2016-04-12 | Life Technologies Corporation | Nucleic acid amplification |
US20100292102A1 (en) | 2009-05-14 | 2010-11-18 | Ali Nouri | System and Method For Preventing Synthesis of Dangerous Biological Sequences |
US20100300882A1 (en) | 2009-05-26 | 2010-12-02 | General Electric Company | Devices and methods for in-line sample preparation of materials |
WO2010141249A2 (en) | 2009-06-02 | 2010-12-09 | Merck Sharp & Dohme Corp. | Generation, characterization and uses thereof of anti-notch3 antibodies |
EP2438195B1 (en) | 2009-06-02 | 2014-12-17 | The Regents of The University of California | Virus discovery by sequencing and assembly of virus-derived sirnas, mirnas, pirnas |
US8309710B2 (en) | 2009-06-29 | 2012-11-13 | Agilent Technologies, Inc. | Use of N-alkyl imidazole for sulfurization of oligonucleotides with an acetyl disulfide |
US8642755B2 (en) | 2009-06-30 | 2014-02-04 | Agilent Technologies, Inc. | Use of thioacetic acid derivatives in the sulfurization of oligonucleotides with phenylacetyl disulfide |
GB0912909D0 (en) | 2009-07-23 | 2009-08-26 | Olink Genomics Ab | Probes for specific analysis of nucleic acids |
US8329208B2 (en) | 2009-07-28 | 2012-12-11 | Methylation Sciences International Srl | Pharmacokinetics of S-adenosylmethionine formulations |
ES2645754T3 (en) | 2009-07-30 | 2017-12-07 | F. Hoffmann-La Roche Ag | Set of oligonucleotide probes as well as methods and uses related thereto |
CA2771441C (en) | 2009-08-19 | 2016-10-11 | Merck Patent Gmbh | Antibodies for the detection of integrin complexes in ffpe material |
EP3029141A1 (en) | 2009-08-20 | 2016-06-08 | Population Genetics Technologies Ltd. | Compositions and methods for intramolecular nucleic acid rearrangement |
US8476598B1 (en) | 2009-08-31 | 2013-07-02 | Sionyx, Inc. | Electromagnetic radiation imaging devices and associated methods |
US20110082055A1 (en) | 2009-09-18 | 2011-04-07 | Codexis, Inc. | Reduced codon mutagenesis |
US20120184724A1 (en) | 2009-09-22 | 2012-07-19 | Agilent Technologies, Inc. | Protected monomers and methods of deprotection for rna synthesis |
US20130053252A1 (en) | 2009-09-25 | 2013-02-28 | President & Fellows Of Harvard College | Nucleic acid amplification and sequencing by synthesis with fluorogenic nucleotides |
US8975019B2 (en) | 2009-10-19 | 2015-03-10 | University Of Massachusetts | Deducing exon connectivity by RNA-templated DNA ligation/sequencing |
ES2617281T3 (en) | 2009-10-28 | 2017-06-16 | Janssen Biotech, Inc. | Anti-glp-1r antibodies and their uses |
WO2011053957A2 (en) | 2009-11-02 | 2011-05-05 | Gen9, Inc. | Compositions and methods for the regulation of multiple genes of interest in a cell |
WO2011056872A2 (en) | 2009-11-03 | 2011-05-12 | Gen9, Inc. | Methods and microfluidic devices for the manipulation of droplets in high fidelity polynucleotide assembly |
US20110114549A1 (en) | 2009-11-13 | 2011-05-19 | Agilent Technolgies, Inc. | Microfluidic device comprising separation columns |
US9216414B2 (en) | 2009-11-25 | 2015-12-22 | Gen9, Inc. | Microfluidic devices and methods for gene synthesis |
EP3597771A1 (en) | 2009-11-25 | 2020-01-22 | Gen9, Inc. | Methods and apparatuses for chip-based dna error reduction |
US8500979B2 (en) | 2009-12-31 | 2013-08-06 | Intel Corporation | Nanogap chemical and biochemical sensors |
WO2011085075A2 (en) | 2010-01-07 | 2011-07-14 | Gen9, Inc. | Assembly of high fidelity polynucleotides |
US9758817B2 (en) | 2010-01-13 | 2017-09-12 | Agilent Technologies, Inc. | Method for identifying a nucleic acid in a sample |
KR101230350B1 (en) | 2010-01-27 | 2013-02-06 | 주식회사 엘지화학 | Battery Pack of Excellent Structural Stability |
US20120027786A1 (en) | 2010-02-23 | 2012-02-02 | Massachusetts Institute Of Technology | Genetically programmable pathogen sense and destroy |
GB201003036D0 (en) | 2010-02-23 | 2010-04-07 | Fermentas Uab | Restriction endonucleases and their applications |
US8716467B2 (en) | 2010-03-03 | 2014-05-06 | Gen9, Inc. | Methods and devices for nucleic acid synthesis |
WO2011109031A1 (en) | 2010-03-05 | 2011-09-09 | Synthetic Genomics, Inc. | Methods for cloning and manipulating genomes |
US20130085472A1 (en) | 2010-03-09 | 2013-04-04 | Toxcure, LLC | Microneedle nasal delivery device |
EP2542681B1 (en) | 2010-04-09 | 2019-02-27 | The Catholic University Of America | Protein and nucleic acid delivery vehicles, components and mechanisms thereof |
US10240194B2 (en) | 2010-05-13 | 2019-03-26 | Gen9, Inc. | Methods for nucleotide sequencing and high fidelity polynucleotide synthesis |
WO2011150168A1 (en) | 2010-05-28 | 2011-12-01 | Gen9, Inc. | Methods and devices for in situ nucleic acid synthesis |
GB2481425A (en) | 2010-06-23 | 2011-12-28 | Iti Scotland Ltd | Method and device for assembling polynucleic acid sequences |
CA2805320A1 (en) | 2010-07-28 | 2012-02-02 | Immunocore Ltd | T cell receptors |
EP2619327B1 (en) | 2010-09-21 | 2014-10-22 | Population Genetics Technologies LTD. | Increasing confidence of allele calls with molecular counting |
US8715933B2 (en) | 2010-09-27 | 2014-05-06 | Nabsys, Inc. | Assay methods using nicking endonucleases |
US20130289246A1 (en) | 2010-09-30 | 2013-10-31 | Vanderbilt University | Influenza virus antibodies and immunogens and uses therefor |
US9689012B2 (en) | 2010-10-12 | 2017-06-27 | Cornell University | Method of dual-adapter recombination for efficient concatenation of multiple DNA fragments in shuffled or specified arrangements |
WO2012154201A1 (en) | 2010-10-22 | 2012-11-15 | President And Fellows Of Harvard College | Orthogonal amplification and assembly of nucleic acid sequences |
AU2011323107B2 (en) | 2010-11-05 | 2015-09-10 | Illumina, Inc. | Linking sequence reads using paired code tags |
EP4039363A1 (en) | 2010-11-12 | 2022-08-10 | Gen9, Inc. | Protein arrays and methods of using and making the same |
JP6118725B2 (en) | 2010-11-12 | 2017-04-19 | ジェン9・インコーポレイテッドGen9,INC. | Methods and devices for nucleic acid synthesis |
EP2652148B1 (en) | 2010-12-17 | 2016-11-30 | Life Technologies Corporation | Methods, compositions, systems, apparatuses and kits for nucleic acid amplification |
WO2012092260A1 (en) | 2010-12-27 | 2012-07-05 | Ibis Biosciences, Inc. | Compositions and methods for producing single-stranded circular dna |
US20120164633A1 (en) | 2010-12-27 | 2012-06-28 | Ibis Biosciences, Inc. | Digital droplet sequencing |
CA2823044C (en) | 2010-12-31 | 2022-08-16 | Jay M. Short | Express humanization of antibodies |
EP2692853A4 (en) | 2011-03-30 | 2014-12-03 | Nat Ct Geriatrics & Gerontology | MEMBRANE SEPARATION TYPE CULTURE DEVICE, MEMBRANE SEPARATION TYPE CULTURE KIT, METHOD FOR SEPARATING STEM CELLS EMPLOYING THE SAME, AND SEPARATION MEMBRANE |
US10131903B2 (en) | 2011-04-01 | 2018-11-20 | The Regents Of The University Of California | Microfluidic platform for synthetic biology applications |
US9384920B1 (en) | 2011-04-04 | 2016-07-05 | Eric J. Bakulich | Locking knob |
US20140357497A1 (en) | 2011-04-27 | 2014-12-04 | Kun Zhang | Designing padlock probes for targeted genomic sequencing |
US8722585B2 (en) | 2011-05-08 | 2014-05-13 | Yan Wang | Methods of making di-tagged DNA libraries from DNA or RNA using double-tagged oligonucleotides |
CN103890245B (en) | 2011-05-20 | 2020-11-17 | 富鲁达公司 | Nucleic acid encoding reactions |
US9752176B2 (en) | 2011-06-15 | 2017-09-05 | Ginkgo Bioworks, Inc. | Methods for preparative in vitro cloning |
EP3345919A1 (en) | 2011-06-21 | 2018-07-11 | VIB vzw | Binding domains directed against gpcr:g protein complexes and uses derived thereof |
CA2840542A1 (en) | 2011-06-28 | 2013-01-03 | Igor Kutyavin | Methods and compositions for enrichment of nucleic acids in mixtures of highly homologous sequences |
US20130045483A1 (en) | 2011-07-01 | 2013-02-21 | Whitehead Institute For Biomedical Research | Yeast cells expressing amyloid beta and uses therefor |
US9139874B2 (en) | 2011-07-07 | 2015-09-22 | Life Technologies Corporation | Bi-directional sequencing compositions and methods |
US20130017978A1 (en) | 2011-07-11 | 2013-01-17 | Finnzymes Oy | Methods and transposon nucleic acids for generating a dna library |
WO2013010062A2 (en) | 2011-07-14 | 2013-01-17 | Life Technologies Corporation | Nucleic acid complexity reduction |
DK3594340T3 (en) | 2011-08-26 | 2021-09-20 | Gen9 Inc | COMPOSITIONS AND METHODS FOR COLLECTING WITH HIGH ACCURACY OF NUCLEIC ACIDS |
US20150203839A1 (en) | 2011-08-26 | 2015-07-23 | Gen9, Inc. | Compositions and Methods for High Fidelity Assembly of Nucleic Acids |
US20150120265A1 (en) | 2011-09-01 | 2015-04-30 | Genome Compiler Corporation | System for polynucleotide construct design, visualization and transactions to manufacture the same |
AU2012304520B2 (en) | 2011-09-06 | 2016-06-16 | Gen-Probe Incorporated | Circularized templates for sequencing |
US8840981B2 (en) | 2011-09-09 | 2014-09-23 | Eastman Kodak Company | Microfluidic device with multilayer coating |
EP2768607B1 (en) | 2011-09-26 | 2021-08-18 | Thermo Fisher Scientific GENEART GmbH | Multiwell plate for high efficiency, small volume nucleic acid synthesis |
EP2766838A2 (en) | 2011-10-11 | 2014-08-20 | Life Technologies Corporation | Systems and methods for analysis and interpretation of nucleic acid sequence data |
EP2769007B1 (en) | 2011-10-19 | 2016-12-07 | Nugen Technologies, Inc. | Compositions and methods for directional nucleic acid amplification and sequencing |
US8987174B2 (en) | 2011-10-28 | 2015-03-24 | Prognosys Biosciences, Inc. | Methods for manufacturing molecular arrays |
US8815782B2 (en) | 2011-11-11 | 2014-08-26 | Agilent Technologies, Inc. | Use of DNAzymes for analysis of an RNA sample |
US20130137173A1 (en) | 2011-11-30 | 2013-05-30 | Feng Zhang | Nucleotide-specific recognition sequences for designer tal effectors |
JP2013151468A (en) | 2011-11-30 | 2013-08-08 | Agilent Technologies Inc | Novel methods for synthesis and purification of oligomers |
US8450107B1 (en) | 2011-11-30 | 2013-05-28 | The Broad Institute Inc. | Nucleotide-specific recognition sequences for designer TAL effectors |
US9279154B2 (en) | 2011-12-21 | 2016-03-08 | Illumina, Inc. | Apparatus and methods for kinetic analysis and determination of nucleic acid sequences |
WO2013093693A1 (en) | 2011-12-22 | 2013-06-27 | Rinat Neuroscience Corp. | Staphylococcus aureus specific antibodies and uses thereof |
US9593375B2 (en) | 2011-12-30 | 2017-03-14 | Quest Diagnostics Investments Incorporated | Nucleic acid analysis using emulsion PCR |
EP2809795B1 (en) | 2012-02-01 | 2019-09-18 | SGI-DNA, Inc. | Materials and methods for the synthesis of error-minimized nucleic acid molecules |
ES2776673T3 (en) | 2012-02-27 | 2020-07-31 | Univ North Carolina Chapel Hill | Methods and uses for molecular tags |
US9670529B2 (en) | 2012-02-28 | 2017-06-06 | Population Genetics Technologies Ltd. | Method for attaching a counter sequence to a nucleic acid sample |
WO2013134881A1 (en) | 2012-03-14 | 2013-09-19 | Innovative Targeting Solutions Inc. | Generating targeted sequence diversity in fusion proteins |
US9150853B2 (en) | 2012-03-21 | 2015-10-06 | Gen9, Inc. | Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis |
CN104168865B (en) | 2012-03-28 | 2016-10-26 | 凯希特许有限公司 | Assist the depressurized system separated with clinical parts of electronics, apply part and method |
US9732384B2 (en) | 2012-04-02 | 2017-08-15 | Lux Bio Group, Inc. | Apparatus and method for molecular separation, purification, and sensing |
JP6301311B2 (en) | 2012-04-10 | 2018-03-28 | ザ トラスティーズ オブ プリンストン ユニバーシティThe Trustees Of Princeton University | Ultra high sensitivity sensor |
US20150353921A9 (en) | 2012-04-16 | 2015-12-10 | Jingdong Tian | Method of on-chip nucleic acid molecule synthesis |
EP3543350B1 (en) | 2012-04-24 | 2021-11-10 | Gen9, Inc. | Methods for sorting nucleic acids and multiplexed preparative in vitro cloning |
US20130281308A1 (en) | 2012-04-24 | 2013-10-24 | Gen9, Inc. | Methods for sorting nucleic acids and preparative in vitro cloning |
MX2019001355A (en) | 2012-05-10 | 2023-01-17 | Bioatla Llc | Multi-specific monoclonal antibodies. |
CA2874413A1 (en) | 2012-05-21 | 2013-11-28 | The Scripps Research Institute | Methods of sample preparation |
AU2013269536B2 (en) | 2012-06-01 | 2018-11-08 | European Molecular Biology Laboratory | High-capacity storage of digital information in DNA |
US10308979B2 (en) | 2012-06-01 | 2019-06-04 | Agilent Technologies, Inc. | Target enrichment and labeling for multi-kilobase DNA |
US9102936B2 (en) | 2012-06-11 | 2015-08-11 | Agilent Technologies, Inc. | Method of adaptor-dimer subtraction using a CRISPR CAS6 protein |
CN113512577A (en) | 2012-06-25 | 2021-10-19 | Gen9股份有限公司 | Methods for nucleic acid assembly and high throughput sequencing |
US9255245B2 (en) | 2012-07-03 | 2016-02-09 | Agilent Technologies, Inc. | Sample probes and methods for sampling intracellular material |
JP6433893B2 (en) | 2012-07-03 | 2018-12-05 | インテグレイテツド・デイー・エヌ・エイ・テクノロジーズ・インコーポレイテツド | Tm enhanced blocking oligonucleotides and baits for improved target enrichment and reduced off-target selection |
WO2014011800A1 (en) | 2012-07-10 | 2014-01-16 | Pivot Bio, Inc. | Methods for multipart, modular and scarless assembly of dna molecules |
US9073962B2 (en) | 2012-07-12 | 2015-07-07 | Massachusetts Institute Of Technology | Methods of serial assembly of DNA bricks into larger structures |
JP6239813B2 (en) | 2012-07-18 | 2017-11-29 | 株式会社Screenセミコンダクターソリューションズ | Substrate processing apparatus and substrate processing method |
KR101743846B1 (en) | 2012-07-19 | 2017-06-05 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | Methods of storing information using nucleic acids |
US20150191524A1 (en) | 2012-07-27 | 2015-07-09 | The Board Of Trustees Of The University Of Illinoi | Engineering t cell receptors |
WO2014021938A1 (en) | 2012-08-02 | 2014-02-06 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and apparatus for nucleic acid synthesis using oligo-templated polymerization |
EP2885408B1 (en) | 2012-08-16 | 2023-01-25 | Synthetic Genomics, Inc. | Digital to biological converter |
AU2013309272B2 (en) | 2012-08-31 | 2017-03-09 | Richard A. Lerner | Methods and compositions related to modulators of eukaryotic cells |
US9328376B2 (en) | 2012-09-05 | 2016-05-03 | Bio-Rad Laboratories, Inc. | Systems and methods for stabilizing droplets |
WO2014062717A1 (en) | 2012-10-15 | 2014-04-24 | Life Technologies Corporation | Compositions, methods, systems and kits for target nucleic acid enrichment |
KR20140048733A (en) | 2012-10-16 | 2014-04-24 | 삼성전자주식회사 | Multiwell plate and method for analyzing target material using the same |
WO2014066179A1 (en) | 2012-10-24 | 2014-05-01 | Clontech Laboratories, Inc. | Template switch-based methods for producing a product nucleic acid |
US11439594B2 (en) | 2012-12-04 | 2022-09-13 | Phosphorex, Inc. | Microparticles and nanoparticles having negative surface charges |
WO2014088694A1 (en) | 2012-12-06 | 2014-06-12 | Agilent Technologies, Inc. | Restriction enzyme-free target enrichment |
WO2014088693A1 (en) | 2012-12-06 | 2014-06-12 | Agilent Technologies, Inc. | Molecular fabrication |
CA2892646A1 (en) | 2012-12-10 | 2014-06-19 | Resolution Bioscience, Inc. | Methods for targeted genomic analysis |
US9976162B2 (en) | 2012-12-10 | 2018-05-22 | Agilent Technologies, Inc. | Pairing code directed assembly |
US20140310830A1 (en) | 2012-12-12 | 2014-10-16 | Feng Zhang | CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes |
SG11201506750QA (en) | 2013-02-28 | 2015-09-29 | Univ Nanyang Tech | Method of manufacturing a device for supporting biological material growth and device therefrom |
EP2964778B1 (en) | 2013-03-05 | 2019-10-09 | Agilent Technologies, Inc. | Detection of genomic rearrangements by sequence capture |
US9580746B2 (en) | 2013-03-05 | 2017-02-28 | Agilent Technologies, Inc. | Synthesis of long fish probes |
WO2014160059A1 (en) | 2013-03-13 | 2014-10-02 | Gen9, Inc. | Compositions and methods for synthesis of high fidelity oligonucleotides |
WO2014160004A1 (en) | 2013-03-13 | 2014-10-02 | Gen9, Inc. | Compositions, methods and apparatus for oligonucleotides synthesis |
US20140274741A1 (en) | 2013-03-15 | 2014-09-18 | The Translational Genomics Research Institute | Methods to capture and sequence large fragments of dna and diagnostic methods for neuromuscular disease |
KR20150131177A (en) | 2013-03-15 | 2015-11-24 | 제넨테크, 인크. | Anti-crth2 antibodies and their use |
US10273471B2 (en) | 2013-03-15 | 2019-04-30 | Gen 9, Inc. | Compositions and methods for multiplex nucleic acids synthesis |
EP2971152B1 (en) | 2013-03-15 | 2018-08-01 | The Board Of Trustees Of The Leland Stanford Junior University | Identification and use of circulating nucleic acid tumor markers |
US20140274729A1 (en) | 2013-03-15 | 2014-09-18 | Nugen Technologies, Inc. | Methods, compositions and kits for generation of stranded rna or dna libraries |
US9771613B2 (en) | 2013-04-02 | 2017-09-26 | Molecular Assemblies, Inc. | Methods and apparatus for synthesizing nucleic acid |
US9279149B2 (en) | 2013-04-02 | 2016-03-08 | Molecular Assemblies, Inc. | Methods and apparatus for synthesizing nucleic acids |
US10683536B2 (en) | 2013-04-02 | 2020-06-16 | Molecular Assemblies, Inc. | Reusable initiators for synthesizing nucleic acids |
US20150293102A1 (en) | 2013-04-13 | 2015-10-15 | Jung-Uk Shim | Detecting low-abundant analyte in microfluidic droplets |
ITRM20130278A1 (en) | 2013-05-10 | 2014-11-11 | Consiglio Nazionale Ricerche | PROCESS OF MANUFACTURE OF SELF-ASSEMBLED FILMS OF BLOCKED COPOLYMERS |
US10654906B2 (en) | 2013-06-26 | 2020-05-19 | Guangdong Xiangxue Life Sciences, Ltd. | High-stability T-cell receptor and preparation method and application thereof |
US20150010953A1 (en) | 2013-07-03 | 2015-01-08 | Agilent Technologies, Inc. | Method for producing a population of oligonucleotides that has reduced synthesis errors |
KR20150005062A (en) | 2013-07-04 | 2015-01-14 | 삼성전자주식회사 | Processor using mini-cores |
US10421957B2 (en) | 2013-07-29 | 2019-09-24 | Agilent Technologies, Inc. | DNA assembly using an RNA-programmable nickase |
EP3027771B1 (en) | 2013-07-30 | 2019-01-16 | Gen9, Inc. | Methods for the production of long length clonal sequence verified nucleic acid constructs |
TWI646230B (en) | 2013-08-05 | 2019-01-01 | 扭轉生物科技有限公司 | Re-synthesized gene bank |
US9595180B2 (en) | 2013-08-07 | 2017-03-14 | Nike, Inc. | Activity recognition with activity reminders |
CN104371019B (en) | 2013-08-13 | 2019-09-10 | 鸿运华宁(杭州)生物医药有限公司 | It is a kind of can with GLP-1R specifically bind antibody and its with the fused protein of GLP-1 |
GB201314721D0 (en) | 2013-08-16 | 2013-10-02 | Almagen Ltd | A method of selectively masking one or more sites on a surface and a method of synthesising an array of molecules |
EP3039161B1 (en) | 2013-08-30 | 2021-10-06 | Personalis, Inc. | Methods and systems for genomic analysis |
WO2015039053A2 (en) | 2013-09-14 | 2015-03-19 | Chemgenes Corporation | Highly efficient synthesis of long rna using reverse direction approach |
WO2015040075A1 (en) | 2013-09-18 | 2015-03-26 | Genome Research Limited | Genomic screening methods using rna-guided endonucleases |
US9422325B2 (en) | 2013-10-04 | 2016-08-23 | Trustees Of Tufts College | Glycosylation reactions using phenyl(trifluoroethyl)iodonium salts |
US9582877B2 (en) | 2013-10-07 | 2017-02-28 | Cellular Research, Inc. | Methods and systems for digitally counting features on arrays |
CA2929108A1 (en) | 2013-10-29 | 2015-05-07 | Longhorn Vaccines And Diagnostics, Llc | Next generation genomic sequencing methods |
JP2016538086A (en) | 2013-11-26 | 2016-12-08 | キセンコ メディカル,エルエルシー | Fixed and released implant delivery system |
WO2015081114A2 (en) | 2013-11-27 | 2015-06-04 | Gen9, Inc. | Libraries of nucleic acids and methods for making the same |
EP3763813A1 (en) | 2013-12-04 | 2021-01-13 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules |
US20160297883A1 (en) | 2013-12-04 | 2016-10-13 | Innovative Targeting Solutions, Inc. | G-protein coupled receptor agonists and methods |
EP3102676A1 (en) | 2013-12-09 | 2016-12-14 | Integrated DNA Technologies Inc. | Long nucleic acid sequences containing variable regions |
GB2521387B (en) * | 2013-12-18 | 2020-05-27 | Ge Healthcare Uk Ltd | Oligonucleotide data storage on solid supports |
WO2015103225A1 (en) | 2013-12-31 | 2015-07-09 | Illumina, Inc. | Addressable flow cell using patterned electrodes |
US9587268B2 (en) | 2014-01-29 | 2017-03-07 | Agilent Technologies Inc. | Fast hybridization for next generation sequencing target enrichment |
US10287627B2 (en) | 2014-02-08 | 2019-05-14 | The Regents Of The University Of Colorado, A Body Corporate | Multiplexed linking PCR |
US10208338B2 (en) | 2014-03-03 | 2019-02-19 | Swift Biosciences, Inc. | Enhanced adaptor ligation |
WO2015136072A1 (en) | 2014-03-14 | 2015-09-17 | Immunocore Limited | Tcr libraries |
US10675618B2 (en) | 2014-03-27 | 2020-06-09 | University Of Maryland, College Park | Integration of ex situ fabricated porous polymer monoliths into fluidic chips |
US10190161B2 (en) | 2014-04-03 | 2019-01-29 | Stmicroelectronics S.R.L. | Apparatus and method for nucleic acid sequencing based on nanowire detectors |
CN106232906A (en) | 2014-04-15 | 2016-12-14 | 沃尔沃建造设备有限公司 | Device and control method thereof for the electromotor and hydraulic pump that control engineering machinery |
DK3143161T3 (en) | 2014-05-16 | 2021-06-21 | Illumina Inc | NUCLEAR ACID SYNTHESIS TECHNIQUES |
US20150361422A1 (en) | 2014-06-16 | 2015-12-17 | Agilent Technologies, Inc. | High throughput gene assembly in droplets |
US20150361423A1 (en) | 2014-06-16 | 2015-12-17 | Agilent Technologies, Inc. | High throughput gene assembly in droplets |
US10870845B2 (en) | 2014-07-01 | 2020-12-22 | Global Life Sciences Solutions Operations UK Ltd | Methods for capturing nucleic acids |
US10472620B2 (en) | 2014-07-01 | 2019-11-12 | General Electric Company | Method, substrate and device for separating nucleic acids |
EP3167071B1 (en) | 2014-07-09 | 2020-10-07 | Gen9, Inc. | Compositions and methods for site-directed dna nicking and cleaving |
WO2016011080A2 (en) | 2014-07-14 | 2016-01-21 | The Regents Of The University Of California | Crispr/cas transcriptional modulation |
US20160017394A1 (en) | 2014-07-15 | 2016-01-21 | Life Technologies Corporation | Compositions and methods for nucleic acid assembly |
WO2016022557A1 (en) | 2014-08-05 | 2016-02-11 | Twist Bioscience Corporation | Cell free cloning of nucleic acids |
WO2016040524A1 (en) | 2014-09-09 | 2016-03-17 | Igenomx International Genomics Corporation | Methods and compositions for rapid nucleic acid library preparation |
WO2016053881A1 (en) | 2014-10-03 | 2016-04-07 | Life Technologies Corporation | Genetic sequence verification compositions, methods and kits |
US9879283B2 (en) | 2014-10-09 | 2018-01-30 | Life Technologies Corporation | CRISPR oligonucleotides and gene editing |
US10648103B2 (en) | 2014-10-10 | 2020-05-12 | Invitae Corporation | Universal blocking oligo system and improved hybridization capture methods for multiplexed capture reactions |
US20170249345A1 (en) | 2014-10-18 | 2017-08-31 | Girik Malik | A biomolecule based data storage system |
WO2016065056A1 (en) | 2014-10-22 | 2016-04-28 | The Regents Of The University Of California | High definition microdroplet printer |
US9890417B2 (en) | 2014-11-03 | 2018-02-13 | Agilent Technologies, Inc. | Signal amplification of fluorescence in situ hybridization |
US10233490B2 (en) | 2014-11-21 | 2019-03-19 | Metabiotech Corporation | Methods for assembling and reading nucleic acid sequences from mixed populations |
CN104562213A (en) | 2014-12-26 | 2015-04-29 | 北京诺禾致源生物信息科技有限公司 | Amplification sublibrary and construction method thereof |
CA2975855A1 (en) | 2015-02-04 | 2016-08-11 | Twist Bioscience Corporation | Compositions and methods for synthetic gene assembly |
WO2016126882A1 (en) | 2015-02-04 | 2016-08-11 | Twist Bioscience Corporation | Methods and devices for de novo oligonucleic acid assembly |
US9834774B2 (en) | 2015-02-11 | 2017-12-05 | Agilent Technologies, Inc. | Methods and compositions for rapid seamless DNA assembly |
WO2016130868A2 (en) | 2015-02-13 | 2016-08-18 | Vaccine Research Institute Of San Diego | Materials and methods to analyze rna isoforms in transcriptomes |
CN104734848A (en) | 2015-03-02 | 2015-06-24 | 郑州轻工业学院 | Recombinant DNA technology based information encrypting and hiding method and application |
AU2016243922A1 (en) | 2015-04-01 | 2017-11-02 | The Scripps Research Institute | Methods and compositions related to GPCR agonist polypeptides |
WO2016162127A1 (en) | 2015-04-08 | 2016-10-13 | Polyphor Ag | Backbone-cyclized peptidomimetics |
US11164661B2 (en) | 2015-04-10 | 2021-11-02 | University Of Washington | Integrated system for nucleic acid-based storage and retrieval of digital data using keys |
EP3283512A4 (en) | 2015-04-17 | 2018-10-03 | Distributed Bio Inc | Method for mass humanization of non-human antibodies |
US9981239B2 (en) | 2015-04-21 | 2018-05-29 | Twist Bioscience Corporation | Devices and methods for oligonucleic acid library synthesis |
US11685773B2 (en) | 2015-04-30 | 2023-06-27 | Abcheck S.R.O. | Method for mass humanization of rabbit antibodies |
US20160333340A1 (en) | 2015-05-11 | 2016-11-17 | Twist Bioscience Corporation | Compositions and methods for nucleic acid amplification |
US9928869B2 (en) | 2015-07-13 | 2018-03-27 | President And Fellows Of Harvard College | Methods for retrievable information storage using nucleic acids |
GB201513113D0 (en) | 2015-07-24 | 2015-09-09 | Genome Res Ltd | Nasal sampling methods |
CA2998169A1 (en) | 2015-09-18 | 2017-03-23 | Twist Bioscience Corporation | Oligonucleic acid variant libraries and synthesis thereof |
KR20180058772A (en) | 2015-09-22 | 2018-06-01 | 트위스트 바이오사이언스 코포레이션 | Flexible substrate for nucleic acid synthesis |
WO2017059399A1 (en) | 2015-10-01 | 2017-04-06 | University Of Washington | Multiplex pairwise assembly of dna oligonucleotides |
US20170141793A1 (en) | 2015-11-13 | 2017-05-18 | Microsoft Technology Licensing, Llc | Error correction for nucleotide data stores |
WO2017095958A1 (en) | 2015-12-01 | 2017-06-08 | Twist Bioscience Corporation | Functionalized surfaces and preparation thereof |
EP3387152B1 (en) | 2015-12-08 | 2022-01-26 | Twinstrand Biosciences, Inc. | Improved adapters, methods, and compositions for duplex sequencing |
GB2562933B (en) | 2016-01-08 | 2022-06-29 | Maxion Therapeutics Ltd | Binding members with altered diversity scaffold domains |
GB201604492D0 (en) | 2016-03-16 | 2016-04-27 | Immatics Biotechnologies Gmbh | Transfected t-cells and t-cell receptors for use in immunotherapy against cancers |
EP3469499A4 (en) | 2016-06-10 | 2020-10-21 | Twist Bioscience Corporation | Systems and methods for automated annotation and screening of biological sequences |
US11708574B2 (en) | 2016-06-10 | 2023-07-25 | Myriad Women's Health, Inc. | Nucleic acid sequencing adapters and uses thereof |
WO2018026920A1 (en) | 2016-08-03 | 2018-02-08 | Twist Bioscience Corporation | Textured surfaces for polynucleotide synthesis |
CA3034769A1 (en) | 2016-08-22 | 2018-03-01 | Twist Bioscience Corporation | De novo synthesized nucleic acid libraries |
CN117298260A (en) | 2016-09-02 | 2023-12-29 | 莱蒂恩技术公司 | Compositions and methods for treating cancer with DuoCAR |
WO2018057526A2 (en) | 2016-09-21 | 2018-03-29 | Twist Bioscience Corporation | Nucleic acid based data storage |
IL266681B2 (en) | 2016-11-18 | 2025-01-01 | Twist Bioscience Corp | Polynucleotide libraries having controlled stoichiometry and synthesis thereof |
CN110366613A (en) | 2016-12-16 | 2019-10-22 | 特韦斯特生物科学公司 | Variant library of immune synapses and their synthesis |
EA201991514A1 (en) | 2016-12-21 | 2019-12-30 | Сефалон, Инк. | ANTIBODIES THAT SPECIALLY CONTACT THE IL-15 AND THEIR APPLICATION |
CN110892485B (en) | 2017-02-22 | 2024-03-22 | 特韦斯特生物科学公司 | Nucleic acid-based data storage |
US10894959B2 (en) | 2017-03-15 | 2021-01-19 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
EP3596258A4 (en) | 2017-03-15 | 2020-12-30 | Twist Bioscience Corporation | De novo synthesized combinatorial nucleic acid libraries |
CA3056685C (en) | 2017-03-23 | 2024-01-16 | QBiotics Pty Ltd | Combination therapy for the treatment or prevention of tumours |
WO2018183918A1 (en) | 2017-03-30 | 2018-10-04 | Grail, Inc. | Enhanced ligation in sequencing library preparation |
CN111094584B (en) | 2017-04-23 | 2024-11-26 | 伊鲁米那股份有限公司 | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
ES2989056T3 (en) | 2017-05-08 | 2024-11-25 | Illumina Inc | Sequencing method using universal short adapters for indexing polynucleotide samples |
GB2578844A (en) | 2017-06-12 | 2020-05-27 | Twist Bioscience Corp | Methods for seamless nucleic acid assembly |
WO2018231864A1 (en) | 2017-06-12 | 2018-12-20 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
US11666863B2 (en) | 2017-07-18 | 2023-06-06 | Investigaciones Forestales Bioforest S.A. | Method and device for asymmetric polarity inversion in electromembrane processes |
EA202090562A1 (en) | 2017-09-11 | 2020-08-10 | Твист Байосайенс Корпорейшн | GPCR BINDING PROTEINS AND THEIR SYNTHESIS |
KR102637566B1 (en) | 2017-10-20 | 2024-02-16 | 트위스트 바이오사이언스 코포레이션 | Heated nanowells for polynucleotide synthesis |
EP3701023A4 (en) | 2017-10-27 | 2021-07-28 | Twist Bioscience Corporation | Systems and methods for polynucleotide scoring |
US11427867B2 (en) | 2017-11-29 | 2022-08-30 | Xgenomes Corp. | Sequencing by emergence |
IL275818B2 (en) | 2018-01-04 | 2024-10-01 | Twist Bioscience Corp | Digital information storage based on DNA |
US10722916B2 (en) | 2018-01-19 | 2020-07-28 | Caulk Garbage Can LLC | Caulk gun attachment for wiping excess caulk |
SG11202011467RA (en) | 2018-05-18 | 2020-12-30 | Twist Bioscience Corp | Polynucleotides, reagents, and methods for nucleic acid hybridization |
WO2020001783A1 (en) | 2018-06-29 | 2020-01-02 | Thermo Fisher Scientific Geneart Gmbh | High throughput assembly of nucleic acid molecules |
US10963953B2 (en) | 2018-10-10 | 2021-03-30 | Alliance Inspection Management, LLC | Reserve management for continuous bidding portal |
AU2019416187A1 (en) | 2018-12-26 | 2021-08-12 | Twist Bioscience Corporation | Highly accurate de novo polynucleotide synthesis |
CA3131514A1 (en) | 2019-02-25 | 2020-09-03 | Twist Bioscience Corporation | Compositions and methods for next generation sequencing |
CA3131691A1 (en) | 2019-02-26 | 2020-09-03 | Twist Bioscience Corporation | Variant nucleic acid libraries for antibody optimization |
KR20210143766A (en) | 2019-02-26 | 2021-11-29 | 트위스트 바이오사이언스 코포레이션 | Variant Nucleic Acid Libraries for the GLP1 Receptor |
WO2020257612A1 (en) | 2019-06-21 | 2020-12-24 | Twist Bioscience Corporation | Barcode-based nucleic acid sequence assembly |
US20220243195A1 (en) | 2019-06-21 | 2022-08-04 | Twist Bioscience Corporation | Barcode-based nucleic acid sequence assembly |
WO2021016395A1 (en) | 2019-07-22 | 2021-01-28 | Igenomx International Genomics Corporation | Methods and compositions for high throughput sample preparation using double unique dual indexing |
WO2021046655A1 (en) | 2019-09-13 | 2021-03-18 | University Health Network | Detection of circulating tumor dna using double stranded hybrid capture |
AU2020356471A1 (en) | 2019-09-23 | 2022-04-21 | Twist Bioscience Corporation | Variant nucleic acid libraries for CRTH2 |
AU2020355027A1 (en) | 2019-09-23 | 2022-04-21 | Twist Bioscience Corporation | Antibodies that bind CD3 Epsilon |
MX2022006995A (en) | 2019-12-09 | 2022-10-27 | Twist Bioscience Corp | Variant nucleic acid libraries for adenosine receptors. |
KR20230016184A (en) | 2020-04-27 | 2023-02-01 | 트위스트 바이오사이언스 코포레이션 | Variant nucleic acid library for coronavirus |
CA3184821A1 (en) | 2020-07-07 | 2022-01-13 | Jeremy Lackey | Devices and methods for light-directed polymer synthesis |
US20220106586A1 (en) | 2020-08-25 | 2022-04-07 | Twist Bioscience Corporation | Compositions and methods for library sequencing |
KR20230074151A (en) | 2020-08-26 | 2023-05-26 | 트위스트 바이오사이언스 코포레이션 | Methods and compositions for GLP1R variants |
CA3190917A1 (en) | 2020-08-28 | 2022-03-03 | Andres Fernandez | Devices and methods for synthesis |
AU2021358892A1 (en) | 2020-10-05 | 2023-06-08 | Twist Bioscience Corporation | Hybridization methods and reagents |
US11970697B2 (en) | 2020-10-19 | 2024-04-30 | Twist Bioscience Corporation | Methods of synthesizing oligonucleotides using tethered nucleotides |
US20220206001A1 (en) | 2020-10-22 | 2022-06-30 | Twist Bioscience Corporation | Methods and systems for detecting coronavirus |
WO2022093811A1 (en) | 2020-10-26 | 2022-05-05 | Twist Bioscience Corporation | Libraries for next generation sequencing |
US20220135690A1 (en) | 2020-11-03 | 2022-05-05 | Twist Bioscience Corporation | Methods and compositions relating to chemokine receptor variants |
AU2022209701A1 (en) | 2021-01-21 | 2023-08-31 | Twist Bioscience Corporation | Methods and compositions relating to adenosine receptors |
US20220277808A1 (en) | 2021-02-19 | 2022-09-01 | Twist Bioscience Corporation | Libraries for identification of genomic variants |
-
2016
- 2016-09-21 KR KR1020187011304A patent/KR20180058772A/en active IP Right Grant
- 2016-09-21 WO PCT/US2016/052916 patent/WO2017053450A1/en active Application Filing
- 2016-09-21 CN CN201680068293.4A patent/CN108698012A/en active Pending
- 2016-09-21 CN CN202110886468.5A patent/CN113604546A/en active Pending
- 2016-09-21 US US15/272,004 patent/US11512347B2/en active Active
-
2022
- 2022-10-28 US US18/050,912 patent/US20230193383A1/en active Pending
Non-Patent Citations (3)
Title |
---|
Alberts et al (Molecular Biology of the Cell 5th edition) (Year: 2008) * |
Goldman et al (Nature 494:77-80 supplementary information) (Year: 2013) * |
Sabir et al (Comptes Rendus Biologies 337:244-9) (Year: 2014) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12001962B2 (en) | 2016-11-16 | 2024-06-04 | Catalog Technologies, Inc. | Systems for nucleic acid-based data storage |
US12006497B2 (en) | 2018-03-16 | 2024-06-11 | Catalog Technologies, Inc. | Chemical methods for nucleic acid-based data storage |
US12173282B2 (en) | 2019-09-23 | 2024-12-24 | Twist Bioscience, Inc. | Antibodies that bind CD3 epsilon |
US12236354B2 (en) | 2024-04-26 | 2025-02-25 | Catalog Technologies, Inc. | Systems for nucleic acid-based data storage |
Also Published As
Publication number | Publication date |
---|---|
US11512347B2 (en) | 2022-11-29 |
KR20180058772A (en) | 2018-06-01 |
CN113604546A (en) | 2021-11-05 |
CN108698012A (en) | 2018-10-23 |
WO2017053450A1 (en) | 2017-03-30 |
US20170081716A1 (en) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230193383A1 (en) | Flexible substrates for nucleic acid synthesis | |
US11562103B2 (en) | Nucleic acid based data storage | |
US12086722B2 (en) | DNA-based digital information storage with sidewall electrodes | |
KR102723464B1 (en) | Nucleic acid-based data storage | |
US20220032256A1 (en) | Devices and methods for light-directed polymer synthesis | |
US20220064206A1 (en) | Devices and methods for synthesis | |
US20200222875A1 (en) | Highly accurate de novo polynucleotide synthesis | |
US20240378459A1 (en) | Dna-based digital information storage with sidewall electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TWIST BIOSCIENCE CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PECK, BILL JAMES;REEL/FRAME:062880/0926 Effective date: 20170113 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |