Nothing Special   »   [go: up one dir, main page]

US20230181849A1 - Powder Delivery Devices - Google Patents

Powder Delivery Devices Download PDF

Info

Publication number
US20230181849A1
US20230181849A1 US18/164,836 US202318164836A US2023181849A1 US 20230181849 A1 US20230181849 A1 US 20230181849A1 US 202318164836 A US202318164836 A US 202318164836A US 2023181849 A1 US2023181849 A1 US 2023181849A1
Authority
US
United States
Prior art keywords
delivery device
substance
capsule
air flow
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US18/164,836
Inventor
Per Gisle Djupesland
Roderick Peter Hafner
Colin David Sheldrake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optinose Inc
Original Assignee
Optinose Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optinose Inc filed Critical Optinose Inc
Priority to US18/164,836 priority Critical patent/US20230181849A1/en
Publication of US20230181849A1 publication Critical patent/US20230181849A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/08Inhaling devices inserted into the nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4816Wall or shell material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0021Mouthpieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • A61M15/003Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using capsules, e.g. to be perforated or broken-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • A61M15/003Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using capsules, e.g. to be perforated or broken-up
    • A61M15/0033Details of the piercing or cutting means
    • A61M15/0035Piercing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • A61M15/003Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using capsules, e.g. to be perforated or broken-up
    • A61M15/0033Details of the piercing or cutting means
    • A61M15/0041Details of the piercing or cutting means with movable piercing or cutting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0086Inhalation chambers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0091Inhalators mechanically breath-triggered
    • A61M15/0098Activated by exhalation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • A61M16/122Preparation of respiratory gases or vapours by mixing different gases with dilution
    • A61M16/125Diluting primary gas with ambient air
    • A61M16/127Diluting primary gas with ambient air by Venturi effect, i.e. entrainment mixers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1075Preparation of respiratory gases or vapours by influencing the temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/06Solids
    • A61M2202/064Powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/07General characteristics of the apparatus having air pumping means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/07General characteristics of the apparatus having air pumping means
    • A61M2205/076General characteristics of the apparatus having air pumping means mouth operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3606General characteristics of the apparatus related to heating or cooling cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3673General characteristics of the apparatus related to heating or cooling thermo-electric, e.g. Peltier effect, thermocouples, semi-conductors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8218Gas operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2206/00Characteristics of a physical parameter; associated device therefor
    • A61M2206/10Flow characteristics
    • A61M2206/14Static flow deviators in tubes disturbing laminar flow in tubes, e.g. archimedes screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0618Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0625Mouth

Definitions

  • the present invention relates to a powder delivery device for the delivery of a powdered substance, in particular to the nasal airway, and both a powdered substance and a capsule for use with the same.
  • U.S. Pat. Nos. 4,013,075 and 4,889,114 disclose examples of prior art inhalation devices, which provide for the inhalation of a powdered substance from a capsule.
  • WO-A-00/051672 discloses a delivery device for delivering a substance, in particular a medicament, in a bi-directional flow through the nasal cavities, that is, an air flow which passes into one nostril, around the posterior margin of the nasal septum and in the opposite direction out of the other nostril.
  • a particular feature of this bi-directional mode of delivery is the ability to target defined regions in the nasal airway, for both topical and systemic delivery, in particular the upper posterior region which cannot be targeted with existing systems.
  • the present inventors have recognized that the delivery of powdered substances using the exhalation breath of a subject still presents a significant challenge, owing to the interaction of the moist exhaled air flow with the powdered substance prior to delivery into the nasal airway.
  • Exhalation into a device leads to condensation on the surfaces of the exposed device components, where the components are at a significantly lower temperature than the exhaled air flow, and significant condensation in the delivery channel will affect the consistency of the delivered doses.
  • the present invention provides a nasal delivery device which utilizes an exhalation breath to deliver a powdered substance, and includes a temperature modifier to reduce the absolute humidity of the exhaled air flow prior to entrainment of the powdered substance.
  • the present invention provides a nasal delivery device which utilizes an exhalation breath to deliver a powdered substance, and incorporates a Venturi unit to draw a powdered substance into the exhaled air flow using an air flow of the ambient atmosphere.
  • the present invention provides a nasal delivery device which utilizes drive means, such as a pressurized gas supply or a turbine, to entrain a powdered substance into a substance gas flow, which in one embodiment is then entrained by an exhaled air flow.
  • drive means such as a pressurized gas supply or a turbine
  • the present invention provides a capsule which is formed from a lightweight material, such as a thin-wall section polymeric material, which reduces the energy required to move the capsule, typically by one or both of vibration and rotation, and thereby provides for emptying at reduced flow rates.
  • a lightweight material such as a thin-wall section polymeric material
  • the material has a reduced tendency to become tacky in the presence of moisture.
  • the present invention provides a powder formulation which is formulated to have reduced hygroscopicity, and preferably a transiently-increased dissolution time, such as achieved by coating or blending, such as to reduce any loss of powdered substance in a device due to interaction with water condensate.
  • the present invention provides a nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising: a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit including an inlet and an outlet; a nosepiece unit including a nosepiece for fitting to a nasal cavity of the subject and being in fluid communication with the outlet of the substance supply unit; and a mouthpiece unit including a mouthpiece in fluid communication with the inlet of the substance supply unit and through which the subject in use exhales such as to entrain substance from the substance supply unit and deliver the same through the nosepiece, and at least one temperature modifier for reducing a temperature of the exhaled air flow such as to reduce the absolute humidity thereof.
  • the at least one temperature modifier comprises at least one elongate channel.
  • the at least one temperature modifier comprises a plurality of elongate channels.
  • the mouthpiece unit includes a plurality of temperature modifiers which can be fluidly connected successively to the mouthpiece, and a switching mechanism which allows for one of the temperature modifiers to be fluidly connected to the mouthpiece.
  • the at least one other temperature modifier is vented to atmosphere.
  • the switching mechanism comprises a rotatable member to which the temperature modifiers are disposed, whereby rotation of the switching mechanism provides for the one of the temperature modifiers to be in fluid communication with the mouthpiece.
  • the substance supply unit comprises a container chamber for receiving a substance-containing container which contains a dose of substance.
  • the container chamber is substantially cylindrical in shape.
  • the container chamber is substantially spherical in shape.
  • the container chamber and the nosepiece comprise a unitary, replaceable component.
  • the substance supply unit comprises a rupturing mechanism for rupturing the container as contained in the container chamber.
  • the container is formed of a material which exhibits insufficient tackiness, and preferably substantially no surface tackiness, in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
  • the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
  • the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
  • the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
  • the container is formed substantially of a cellulose derivative.
  • the container is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose carboxymethylcellulose
  • the container is formed substantially of gelatine.
  • the container is formed of a plastics material.
  • the container includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
  • the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • the container comprises a body of gelatine.
  • the container comprises a capsule.
  • the capsule is substantially cylindrical in shape.
  • the capsule is substantially spherical in shape.
  • the at least one temperature modifier is configured to reduce the temperature of the exhaled air flow by more than about 5° C.
  • the at least one temperature modifier is configured to reduce the temperature of the exhaled air flow by at least about 12° C.
  • the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 10 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
  • the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 20 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
  • the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 30 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
  • the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 40 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
  • the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 50 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
  • the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.5 kPa to the exhaled air flow.
  • the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.25 kPa to the exhaled air flow.
  • the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.10 kPa to the exhaled air flow.
  • the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.05 kPa to the exhaled air flow.
  • the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.025 kPa to the exhaled air flow.
  • the at least one temperature modifier comprises a thermoelectric device.
  • the present invention provides a nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising: a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit comprising a substance-receiving chamber including an inlet and an outlet, and a Venturi unit for drawing a flow of ambient air through the substance-receiving chamber; a nosepiece unit including a nosepiece for fitting to the nasal cavity of the subject and being in fluid communication with the Venturi unit; and a mouthpiece unit including a mouthpiece in fluid communication with the Venturi unit and through which the subject in use exhales such as to entrain substance from the substance-receiving chamber and deliver the same through the nosepiece.
  • the substance-receiving chamber comprises a container chamber for receiving a substance-containing container which contains a dose of substance.
  • the container chamber is substantially cylindrical in shape.
  • the container chamber is substantially spherical in shape.
  • the container chamber and the nosepiece comprise a unitary, replaceable component.
  • the substance supply unit comprises a rupturing mechanism for rupturing the substance-containing container as contained in the container chamber.
  • the container is formed of a material which exhibits insufficient tackiness, and preferably substantially no surface tackiness, in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
  • the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
  • the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
  • the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
  • the container is formed substantially of a cellulose derivative.
  • the container is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose carboxymethylcellulose
  • the container is formed substantially of gelatine.
  • the container is formed of a plastics material.
  • the container includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
  • the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • the container comprises a body of gelatine.
  • the container comprises a capsule.
  • the capsule is substantially cylindrical in shape.
  • the capsule is substantially spherical in shape.
  • the Venturi unit comprises a first, driving air flow inlet which is in fluid communication with the mouthpiece unit and provides a constriction which acts to accelerate the exhaled air flow to deliver a driving air flow at a higher velocity, a second, substance air flow inlet which is in fluid communication with the substance supply unit and through which is in use drawn a substance air flow from the substance-receiving chamber which entrains substance as contained therein, and an air flow outlet which is in fluid communication with the nosepiece unit and through which the driving air flow and the substance air flow are in use delivered.
  • the driving air flow is directed substantially perpendicularly to the substance air flow.
  • the driving air flow is directed substantially parallel to the substance air flow.
  • the mouthpiece unit is fluidly connected to the substance supply unit, such as to provide a supplemental air flow to the substance-receiving chamber on exhalation by the subject into the mouthpiece unit.
  • the mouthpiece unit includes a flow channel which is fluidly connected to the inlet of the substance-receiving chamber.
  • the present invention provides a nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising: a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit comprising a substance-receiving chamber including an inlet and an outlet, and a gas supply unit for delivering a gas flow through the substance-receiving chamber such as in use to provide a gas flow entraining substance from the outlet of the substance-receiving chamber; a nosepiece unit including a nosepiece for fitting to the nasal cavity of the subject and being in fluid communication with the outlet of the substance-receiving chamber; and a mouthpiece unit including a mouthpiece in fluid communication with the outlet of the substance-receiving chamber and the nosepiece and through which the subject in use exhales such as to entrain substance as delivered from the substance-receiving chamber and deliver the same through the nosepiece.
  • a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject
  • the substance-receiving chamber comprises a container chamber for receiving a substance-containing container which contains a dose of substance.
  • the container chamber is substantially cylindrical in shape.
  • the container chamber is substantially spherical in shape.
  • the container chamber and the nosepiece comprise a unitary, replaceable component.
  • the substance supply unit comprises a rupturing mechanism for rupturing the container as contained in the container chamber.
  • the container is formed of a material which exhibits insufficient tackiness, and preferably substantially no surface tackiness, in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
  • the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
  • the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
  • the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
  • the container is formed substantially of a cellulose derivative.
  • the container is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose carboxymethylcellulose
  • the container is formed substantially of gelatine.
  • the container is formed of a plastics material.
  • the container includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
  • the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • the container comprises a body formed substantially of gelatine.
  • the container comprises a capsule.
  • the capsule is substantially cylindrical in shape.
  • the capsule is substantially spherical in shape.
  • the gas supply unit comprises a volume of pressurized gas which, when released, provides the entraining gas flow.
  • the gas supply unit comprises a charged turbine which, when released, provides the entraining gas flow.
  • the gas supply unit is a breath-actuated unit.
  • the gas supply unit is actuated in response to generation of a predeterminable flow rate through the mouthpiece unit.
  • the gas supply unit is actuated in response to generation of a predeterminable pressure at the mouthpiece unit.
  • the gas supply unit is a manually-actuated unit.
  • the present invention provides a capsule for containing a powdered substance which exhibits insufficient tackiness, and preferably no surface tackiness, in the presence of moisture such as not to adhere to an inner surface of a capsule chamber which contains the capsule during emptying of the capsule.
  • the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in an exhalation air flow for a period of up to about 5 s.
  • the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s.
  • the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s.
  • the capsule is formed substantially of a cellulose derivative.
  • the capsule is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose carboxymethylcellulose
  • the capsule is formed of a plastics material.
  • the capsule includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the capsule chamber during emptying of the capsule.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in an exhalation air flow for a period of up to about 5 s.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s.
  • the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • the capsule comprises a body formed substantially of gelatine.
  • the capsule is substantially cylindrical in shape.
  • the capsule is substantially spherical in shape.
  • the capsule comprises a body of thin-wall section.
  • the body has a thickness of not more than about 0.25 mm.
  • the body has a thickness of not more than about 0.20 mm.
  • the present invention extends to the use of a capsule, containing a powdered substance, which exhibits insufficient tackiness, and preferably no surface tackiness, in the presence of moisture such as not to adhere to an inner surface of a capsule chamber which contains the same during emptying of the capsule in an exhaled air flow.
  • the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in an exhalation air flow for a period of up to about 5 s.
  • the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s.
  • the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s.
  • the capsule is formed substantially of a cellulose derivative.
  • the capsule is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose carboxymethylcellulose
  • the capsule is formed of a plastics material.
  • the capsule includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the capsule chamber during emptying of the capsule.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in an exhalation air flow for a period of up to about 5 s.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s.
  • the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s.
  • the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • the capsule comprises a body formed substantially of gelatine.
  • the capsule is substantially cylindrical in shape.
  • the capsule is substantially spherical in shape.
  • the capsule comprises a body of thin-wall section.
  • the body has a thickness of not more than about 0.25 mm.
  • the body has a thickness of not more than about 0.20 mm.
  • the present invention provides a nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising: a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit including an inlet and an outlet; a nosepiece unit including a nosepiece for fitting to a nasal cavity of the subject and being in fluid communication with the outlet of the substance supply unit; and a mouthpiece unit including a mouthpiece in fluid communication with the inlet of the substance supply unit and through which the subject in use exhales such as to entrain substance from the substance supply unit and deliver the same through the nosepiece.
  • the present invention provides a method of delivering substance to a nasal cavity of a subject, the method comprising the steps of: supplying a dose of substance to be delivered to the nasal cavity of the subject; fitting a nosepiece unit including a nosepiece to the nasal cavity of the subject; and the subject exhaling through a mouthpiece unit such as to entrain the supplied dose of substance and deliver the same through the nosepiece to the nasal cavity of the subject, wherein the mouthpiece unit includes at least one temperature modifier for reducing a temperature of the exhaled air flow such as to reduce the absolute humidity thereof.
  • the present invention provides a method of delivering substance to a nasal cavity of a subject, the method comprising the steps of: providing a dose of substance to be delivered to the nasal cavity of the subject in a substance-receiving chamber; fitting a nosepiece unit including a nosepiece to the nasal cavity of the subject; providing a Venturi unit which is operative to draw a flow of ambient air through the substance-receiving chamber; and the subject delivering an exhaled air flow to the Venturi unit such as to draw a flow of ambient air through the substance-receiving chamber, which entrains the powdered substance therein, and to the nosepiece such as to deliver the exhaled air flow entraining the powdered substance to the nasal cavity of the subject.
  • the present invention provides a method of delivering substance to a nasal cavity of a subject, the method comprising the steps of: providing a dose of substance to be delivered to the nasal cavity of the subject in a substance-receiving chamber; fitting a nosepiece unit including a nosepiece to the nasal cavity of the subject; providing a gas flow of ambient air through the substance-receiving chamber, which entrains the powdered substance therein; and the subject delivering an exhaled air flow to the nosepiece which entrains the gas flow entraining the powdered substance, such as to deliver the powdered substance to the nasal cavity of the subject.
  • FIG. 1 illustrates a delivery device in accordance with a first embodiment of the present invention
  • FIG. 2 illustrates the heat exchanger of the delivery device of FIG. 1 ;
  • FIG. 3 illustrates the delivery device of FIG. 1 , in the operative state
  • FIG. 4 illustrates the mouthpiece unit of a delivery device as a modification of the delivery device of FIG. 1 , in a first operative configuration
  • FIG. 5 illustrates the mouthpiece unit of FIG. 4 , in a second operative configuration
  • FIG. 6 illustrates a delivery device in accordance with a second embodiment of the present invention
  • FIG. 7 illustrates the delivery device of FIG. 6 , in the operative state
  • FIG. 8 illustrates a delivery device as a modification of the delivery device of FIG. 6 ;
  • FIG. 9 illustrates the delivery device of FIG. 8 , in the operative state
  • FIG. 10 illustrates a delivery device in accordance with a third embodiment of the present invention.
  • FIG. 11 illustrates the delivery device of FIG. 10 , in the operative state
  • FIG. 12 illustrates a delivery device in accordance with a fourth embodiment of the present invention.
  • FIG. 13 illustrates the delivery device of FIG. 12 , in a first operative state
  • FIG. 14 illustrates the delivery device of FIG. 12 , in a second operative state
  • FIG. 15 illustrates a delivery device as one modification of the delivery device of FIG. 12 ;
  • FIG. 16 illustrates a delivery device as one modification of the delivery device of FIG. 1 ;
  • FIG. 17 illustrates a delivery device as another modification of the delivery device of FIG. 1 .
  • FIGS. 1 to 3 illustrate a delivery device in accordance with a first embodiment of the present invention.
  • the delivery device comprises a substance supply unit 3 which includes a chamber 5 which receives a capsule 7 , which contains a metered amount of a powdered substance which is to be delivered by the delivery device, a rupturing mechanism 9 for rupturing the capsule 7 , a mouthpiece unit 11 which is in fluid communication with the chamber 5 and is gripped in use in the mouth of a subject, and a nosepiece unit 15 which is in fluid communication with the chamber 5 and is fitted to one nostril of the subject.
  • the delivery device is illustrated in an elongate configuration, but, in its practical embodiment, the mouthpiece unit 11 and the nosepiece unit 15 are configured for fitting to the mouth and one nostril of the subject.
  • the substance supply unit 3 includes an inlet 17 which fluidly connects the chamber 5 thereof with the mouthpiece unit 11 and an outlet 19 which fluidly connects the chamber 5 thereof with the nosepiece unit 15 .
  • the substance supply unit 3 includes a grid 21 , here a gauze, which is disposed at the outlet 19 thereof and acts to prevent the capsule 7 or parts thereof from escaping from the chamber 5 .
  • the chamber 5 is cylindrical in shape.
  • the chamber 5 can be substantially spherical in shape, which is particularly advantageous in allowing for the release of the powdered substance from the capsule 7 in any operative position.
  • the chamber 5 and the grid 21 are fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the capsule 7 and the powdered substance as contained thereby to adhere to the wall of the chamber 5 or the grid 21 .
  • a plastics material such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the capsule 7 and the powdered substance as contained thereby to adhere to the wall of the chamber 5 or the grid 21 .
  • the rupturing mechanism 9 comprises a piercing element 23 , here including two pins, which is operable to pierce the capsule 7 , and thereby provide for the release of the contained powdered substance on the generation of a flow through the chamber 5 .
  • the mouthpiece unit 11 comprises a mouthpiece 25 , in this embodiment as defined by a tubular section, which is gripped in the mouth of the subject, and a heat exchanger 27 which is in fluid communication with the mouthpiece 25 and acts to draw heat from the exhaled air flow as delivered through the mouthpiece 25 , thus decreasing the temperature of the air flow as delivered to the chamber 5 .
  • a heat exchanger 27 which is in fluid communication with the mouthpiece 25 and acts to draw heat from the exhaled air flow as delivered through the mouthpiece 25 , thus decreasing the temperature of the air flow as delivered to the chamber 5 .
  • the heat exchanger 27 comprises a channel 29 which has a zig-zag, serpentine configuration, with a circular cross section.
  • the channel 29 could have other configurations, for example, a rectangular cross section.
  • the channel 29 has an effective length of 200 mm and an effective diameter of 4 mm, which reduces the temperature of an exhaled air flow which has a flow rate of 30 I/min to about 25° C. from about 37° C., where the channel 29 is at a temperature of 20° C.
  • the reduction in temperature is calculated as follows:
  • T e T w ⁇ ( T W ⁇ T i ) e ⁇ hAniC
  • T e is the fluid temperature at the exit of the channel 29 ;
  • T W is the fluid temperature at the wall of the channel 29 ;
  • T i is the fluid temperature at the inlet of the channel 29 ;
  • h is the heat transfer coefficient between the gas flowing through the channel 29 and the material of the channel 29 ;
  • A is the surface area of the channel 29 ;
  • m is the mass flow rate; and is the specific heat capacity of the gas flowing through the channel 29 .
  • the channel 29 can include features to enhance the heat transfer coefficient from the exhaled air flow to the wall of the channel 29 , such that the effective length of the channel 29 can be considerably reduced.
  • Typical features include nodules or areas of relative surface roughness that create turbulence and so enhance the heat transfer.
  • the heat exchanger 27 could comprise a plurality of channels 29 .
  • the heat exchanger 27 comprises four channels 29 , as parallel ducts, which each have a width of 10 mm, a height of 1.5 mm and a length of 60 mm. This configuration reduces the temperature of an exhaled air flow which has a flow rate of 30 I/min by about 5° C., where the channels 29 are at a temperature of 20° C., and also cause only a very small pressure drop of 0.024 kPa.
  • the nosepiece unit 15 comprises a nosepiece 30 , in this embodiment as defined by a tubular section, which is inserted into a nostril of the subject, in this embodiment to provide a sealing fit therewith.
  • the nosepiece 30 as a component which contacts the powdered substance, is fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the powdered substance to adhere to the wall of the nosepiece 30 .
  • the capsule 7 is a gelatine capsule.
  • the capsule 7 can be manufactured from a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 7 to adhere to the wall of the chamber 5 or the grid 21 .
  • the capsule 7 is formed of a cellulose derivative, such as hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose carboxymethylcellulose
  • the capsule 7 can comprise a plastics material, preferably a water insoluble material, such as a polycarbonate.
  • the capsule 7 can be manufactured from a lightweight material, such as thin-wall section polymeric materials, which reduces the energy required to move the capsule 7 , typically by one or both of vibration and rotation, and thereby allow the delivery device to be operated at reduced flow rates, which is particularly advantageous for nasal delivery.
  • a lightweight material such as thin-wall section polymeric materials
  • the capsule 7 has a wall section of less than about 0.25 mm, and more preferably less than about 0.2 mm.
  • the capsule 7 can include an outer coating of a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 7 to adhere to the wall of the chamber 5 or the grid 21 .
  • the coated capsule 7 can be formed of gelatine.
  • the coating can comprise one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • the delivery device of this embodiment is operative to discharge the powdered substance from the capsule 7 by rotation and vibration of the capsule 7 , and thus the capsule 7 is preferably formed of a material or coated with a material which exhibits substantially no tackiness in the presence of a moist environment, here a saturated exhaled air flow, that is, does not exhibit an increased moisture content at the outer surface thereof, which would prevent reliable rotation and vibration of the capsule 7 .
  • the capsule 7 is cylindrical in shape with hemispherical ends.
  • the capsule 7 could have other geometric forms, such as spherical, which allows for efficient powder release at low flow rates.
  • the capsule 7 can comprise two or more parts.
  • the capsule 7 can be constructed to act as the primary environmental barrier for the powdered substance.
  • the capsule 7 could be constructed from a relatively thick-walled cylindrical section of a polymeric material which includes two metalized thin film closure members which act to seal the ends of the cylindrical section and thus enclose the same.
  • the chamber 5 which contains the capsule 7 , and the nosepiece 30 comprise a unitary, replaceable component.
  • a subject operates the rupturing mechanism 9 to rupture the capsule 7 , inserts the nosepiece 30 into one of his/her nostrils, grips the mouthpiece 25 in his/her mouth, and exhales through the mouthpiece 25 .
  • the exhaled air flow is reduced in temperature by the heat exchanger 27 on delivery therethrough, such as to reduce the absolute humidity of the exhaled air flow, and this cooled air is then driven through the chamber 5 , which acts to move the capsule 7 , in this embodiment by vibration and rotation, and entrain the powdered substance as contained by the capsule 7 .
  • the exhaled air flow as then entraining the powdered substance, is delivered though the nosepiece 30 into one nasal cavity of the subject.
  • the exhaled air flow has such a pressure as to pass around the posterior region of the nasal septum, and into the other nasal cavity, thereby achieving a bi-directional air flow as described in the applicants' earlier WO-A-00/051672.
  • the mouthpiece unit 11 includes a plurality of, in this embodiment first and second heat exchangers 27 a, b which can be used successively, such as to allow for the evaporation of the condensed moisture from the one or more previously-used heat exchangers 27 a, b , and a switching mechanism 31 which allows for one of the heat exchangers 27 a, b to be fluidly connected to the mouthpiece 25 .
  • the switching mechanism 31 comprises a rotatable member to which the heat exchangers 27 a, b are disposed, whereby rotation of the switching mechanism 31 provides for one of the heat exchangers 27 a, b to be in fluid communication with the mouthpiece 25 and the at least one other of the heat exchangers 27 a, b to be in fluid communication with the atmosphere.
  • FIG. 4 illustrates a first configuration, in which the first heat exchanger 27 a is in fluid communication with the mouthpiece 25 and the second heat exchanger 27 b is vented to atmosphere.
  • FIG. 5 illustrates a second configuration, in which the second heat exchanger 27 b is in fluid communication with the mouthpiece 25 and the first heat exchanger 27 a is vented to atmosphere.
  • the one of the heat exchangers 27 a, b which is in fluid communication with the mouthpiece 25 acts to cool the exhaled air flow as delivered therethrough, and thereby trap water vapor from the exhaled air, and the other of the heat exchangers 27 a, b which is vented to atmosphere provides for evaporation of the water condensate as trapped from a previous exhalation therethrough.
  • the switching mechanism 31 could be operatively coupled to the rupturing mechanism 9 , such as to provide for operation of the switching mechanism 31 with each operation of the rupturing mechanism 9 .
  • FIGS. 6 and 7 illustrate a nasal delivery device in accordance with a second embodiment of the present invention.
  • the delivery device comprises a substance supply unit 103 which includes a chamber 105 which receives a capsule 107 , which contains a metered amount of a powdered substance which is to be delivered by the delivery device, a rupturing mechanism 109 for rupturing the capsule 107 , a Venturi unit 110 which is in fluid communication with the chamber 105 and is operative to draw an air flow of the ambient atmosphere through the chamber 105 , a mouthpiece unit 111 which is in fluid communication with the Venturi unit 110 and is gripped in use in the mouth of a subject, and a nosepiece unit 114 which is in fluid communication with the Venturi unit 110 and is fitted to one nostril of the subject.
  • the delivery device is illustrated in an elongate configuration, but, in its practical embodiment, the mouthpiece unit 111 and the nosepiece unit 114 are configured for fitting to the mouth and one nostril of the subject.
  • the substance supply unit 103 includes an inlet 117 which fluidly connects the chamber 105 thereof with the ambient atmosphere and an outlet 119 which fluidly connects the chamber 105 thereof with the Venturi unit 110 .
  • the substance supply unit 103 includes a grid 121 , here a gauze, which is disposed at the outlet 119 thereof and acts to prevent the capsule 107 or parts thereof from escaping from the chamber 105 .
  • the chamber 105 is cylindrical in shape.
  • the chamber 105 could be spherical in shape, which is particularly advantageous in allowing for the release of the powdered substance from the capsule 107 when in any operative position.
  • the chamber 105 and the grid 121 are fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the capsule 107 and the powdered substance as contained thereby to adhere to the wall of the chamber 105 or the grid 121 .
  • a material having a low moisture sensitivity here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the capsule 107 and the powdered substance as contained thereby to adhere to the wall of the chamber 105 or the grid 121 .
  • the rupturing mechanism 109 comprises a piercing element 123 , here including two pins, which is operable to pierce the capsule 107 , and thereby provide for the release of the contained powdered substance on the generation of a flow through the chamber 105 .
  • the capsule 107 is a gelatine capsule.
  • the capsule 107 can be manufactured from a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 107 to adhere to the wall of the chamber 105 or the grid 121 .
  • the capsule 107 is formed of a cellulose derivative, such as hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulos.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose carboxymethylcellulos.
  • the capsule 107 can comprise a plastics material, preferably a water insoluble material, such as a polycarbonate.
  • the capsule 107 can be manufactured from a lightweight material, such as thin-wall section polymeric materials, which reduces the energy required to move the capsule 107 , typically by one or both of vibration and rotation, and thereby allows the delivery device to be operated at reduced flow rates, which is particularly advantageous for nasal delivery.
  • a lightweight material such as thin-wall section polymeric materials
  • the capsule 107 has a wall section of less than about 0.25 mm, and more preferably less than about 0.2 mm.
  • the capsule 107 can include an outer coating of a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 107 to adhere to the wall of the chamber 105 or the grid 121 .
  • the coated capsule 107 can be formed of gelatine.
  • the coating can comprise one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose carboxymethylcellulose
  • polyvinyl alcohol acrylic acid polymer
  • methacrylic acid polymer ethyl acrylic acid polymer
  • cellulose acetate phthalate polyvinyl acetate phthalate
  • hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate or any combination of layers thereof.
  • the delivery device of this embodiment is operative to discharge the powdered substance from the capsule 107 by rotation and vibration of the capsule 107 , and thus the capsule 107 is preferably formed of a material or coated with a material which exhibits substantially no tackiness in the presence of a moist environment, here a saturated exhaled air flow, that is, does not exhibit an increased moisture content at the outer surface thereof, which would prevent reliable rotation and vibration of the capsule 107 .
  • the capsule 107 is cylindrical in shape, with hemispherical ends.
  • the capsule 107 could have other geometric forms, such as spherical, which allows for efficient powder release at low flow rates.
  • the capsule 107 can comprise two or more parts.
  • the capsule 107 can be constructed to act as the primary environmental barrier for the powdered substance.
  • the capsule 107 could be constructed from a relatively thick-walled cylindrical section of a polymeric material which includes two metalized thin film closure members which act to seal the ends of the cylindrical section and thus enclose the same.
  • the Venturi unit 110 comprises a first, driving air flow inlet 133 which is in fluid communication with the mouthpiece unit 111 and provides a constriction which acts to accelerate the exhaled air flow to deliver a driving air flow at a higher velocity, a second, substance air flow inlet 135 which is in fluid communication with the outlet 119 of the substance supply unit 103 and through which, by the reduced local pressure as developed thereat by the Venturi effect, is drawn a substance air flow from the chamber 105 of the substance supply unit 103 which entrains the powdered substance, and an air flow outlet 139 which is in fluid communication with the nosepiece unit 114 and through which the driving air flow and the substance air flow are delivered.
  • the driving air flow is directed substantially perpendicularly to the substance air flow.
  • This configuration which utilizes ambient air to entrain the powdered substance from the capsule 107 , is particularly advantageous, in avoiding the use of exhaled air to entrain the powdered substance.
  • Exhaled air has a high humidity which would lead to condensation both in the chamber 105 and the capsule 107 , which can cause problems in the complete entrainment of the powdered substance, both in terms of adhesion of the capsule 107 to the wall of the chamber 105 and adhesion of the powdered substance to the wall of the capsule 107 , particularly where the powdered substance is a hygroscopic powder.
  • the mouthpiece unit 111 comprises a mouthpiece 145 , in this embodiment as defined by a tubular section, which is gripped in the mouth of the subject.
  • the nosepiece unit 114 comprises a nosepiece 147 , in this embodiment as defined by a tubular section, which is inserted into a nostril of the subject, in this embodiment to provide a sealing fit therewith.
  • the nosepiece 147 as a component which contacts the powdered substance, is fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the powdered substance to adhere to the wall of the nosepiece 147 .
  • the chamber 105 which contains the capsule 107 , and the nosepiece 147 comprise a unitary, replaceable component.
  • a subject operates the rupturing mechanism 109 to rupture the capsule 107 , inserts the nosepiece 147 into one of his/her nostrils, grips the mouthpiece 145 in his/her mouth, and exhales through the mouthpiece 145 .
  • the exhaled air flow is forced through the driving air flow inlet 133 of the Venturi unit 110 , which acts to deliver the exhaled air flow as a driving air flow over the substance air flow inlet 135 of the Venturi unit 110 and draw a substance air flow, which entrains powdered substance, from the chamber 105 of the substance supply unit 103 .
  • the substance air flow acts to move the capsule 107 , in this embodiment by vibration and rotation, and entrain the powdered substance as contained by the capsule 107 .
  • the exhaled air flow passes through the air flow outlet 139 of the Venturi unit 110 , and is delivered though the nosepiece 147 into one nasal cavity of the subject.
  • the exhaled air flow has such a pressure as to pass around the posterior margin of the nasal septum, and into the other nasal cavity, thereby achieving a bi-directional air flow as described in the applicants' earlier WO-A-00/051672.
  • the substance supply unit 103 can be additionally fluidly connected to the mouthpiece unit 111 , in this embodiment by a flow channel 151 which fluidly connects the mouthpiece 145 to the inlet 117 of the substance supply unit 103 , such as to provide for a supplemental air flow to the chamber 105 , which assists in entraining the powdered substance as contained by the capsule 107 .
  • the resulting air flow still has a reduced absolute humidity (water vapour content) as compared with an exhaled air flow, where the ambient air is not saturated.
  • FIGS. 10 and 11 illustrate a nasal delivery device in accordance with a third embodiment of the present invention.
  • the delivery device comprises a substance supply unit 203 which includes a chamber 205 which receives a capsule 207 , which contains a metered amount of a powdered substance which is to be delivered by the delivery device, a rupturing mechanism 209 for rupturing the capsule 207 , a Venturi unit 210 which is operative to draw an air flow of the ambient atmosphere through the chamber 205 , a mouthpiece unit 211 which is in fluid communication with the Venturi unit 210 and is gripped in use in the mouth of a subject, and a nosepiece unit 214 which is in fluid communication with the Venturi unit 210 and is fitted to one nostril of the subject.
  • the delivery device is illustrated in an orthogonal configuration, but, in its practical embodiment, the mouthpiece unit 211 and the nosepiece unit 214 are configured for fitting to the mouth and one nostril of the subject.
  • the substance supply unit 203 includes an inlet 217 which fluidly connects the chamber 205 thereof with the ambient atmosphere and an outlet 219 which fluidly connects the chamber 205 thereof with the Venturi unit 210 .
  • the substance supply unit 203 includes a grid 221 , here a gauze, which is disposed at the outlet 219 thereof and acts to prevent the capsule 207 or parts thereof from escaping from the chamber 205 .
  • the chamber 205 is cylindrical in shape.
  • the chamber 205 could be spherical in shape, which is particularly advantageous in allowing for the release of the powdered substance from the capsule 207 when in any operative position.
  • the chamber 205 and the grid 221 as components which contact the capsule 207 and the contained powdered substance, are fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the capsule 207 and the powdered substance as contained thereby to adhere to the wall of the chamber 205 or the grid 221 .
  • a material having a low moisture sensitivity here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the capsule 207 and the powdered substance as contained thereby to adhere to the wall of the chamber 205 or the grid 221 .
  • the rupturing mechanism 209 comprises a piercing element 223 , here including two pins, which is operable to pierce the capsule 207 , and thereby provide for the release of the contained powdered substance on the generation of a flow through the chamber 205 .
  • the capsule 207 is a gelatine capsule.
  • the capsule 207 can be manufactured from a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 207 to adhere to the wall of the chamber 205 or the grid 221 .
  • the capsule 207 is formed of a cellulose derivative, such as hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose carboxymethylcellulose
  • the capsule 207 can comprise a plastics material, preferably a water insoluble material, such as a polycarbonate.
  • the capsule 207 can be manufactured from a lightweight material, such as thin-wall section polymeric materials, which reduces the energy required to move the capsule 207 , typically by one or both of vibration and rotation, and thereby allows the delivery device to be operated at reduced flow rates, which is particularly advantageous for nasal delivery.
  • a lightweight material such as thin-wall section polymeric materials
  • the capsule 207 has a wall section of less than about 0.25 mm, and more preferably less than about 0.2 mm.
  • the capsule 207 can include an outer coating of a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 207 to adhere to the wall of the chamber 205 or the grid 221 .
  • the coated capsule 207 can be formed of gelatine.
  • the coating can comprise one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose carboxymethylcellulose
  • polyvinyl alcohol acrylic acid polymer
  • methacrylic acid polymer ethyl acrylic acid polymer
  • cellulose acetate phthalate polyvinyl acetate phthalate
  • hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate or any combination of layers thereof.
  • the delivery device of this embodiment is operative to discharge the powdered substance from the capsule 207 by rotation and vibration of the capsule 207 , and thus the capsule 207 is preferably formed of a material or coated with a material which exhibits substantially no tackiness in the presence of a moist environment, here a saturated exhaled air flow, that is, does not exhibit an increased moisture content at the outer surface thereof, which would prevent reliable rotation and vibration of the capsule 207 .
  • the capsule 207 is cylindrical in shape, with hemispherical ends.
  • the capsule 207 could have other geometric forms, such as spherical, which allows for efficient powder release at low flow rates.
  • the capsule 207 can comprise two or more parts.
  • the capsule 207 can be constructed to act as the primary environmental barrier for the powdered substance.
  • the capsule 207 could be constructed from a relatively thick-walled cylindrical section of a polymeric material which includes two metalized thin film closure members which act to seal the ends of the cylindrical section and thus enclose the same.
  • the Venturi unit 210 comprises at least one driving air flow inlet 233 which is in fluid communication with the mouthpiece unit 211 and provides a constriction which acts to accelerate the exhaled air flow to deliver at least one driving air flow at a higher velocity, a second, substance air flow inlet 235 which is fluid communication with the outlet 219 of the substance supply unit 203 and through which, by the reduced local pressure as developed thereat by the Venturi effect, is drawn a substance air flow from the chamber 205 of the substance supply unit 203 which entrains the powdered substance, and an air flow outlet 239 which is in fluid communication with the nosepiece unit 214 and through which the driving air flow and the substance air flow are delivered.
  • the at least one driving air flow is directed substantially parallel to the substance air flow.
  • the Venturi unit 210 comprises a plurality of air flow inlets 233 which are disposed in an annular arrangement, here concentrically, about the substance air flow inlet 235 .
  • This configuration which utilizes ambient air to entrain the powdered substance from the capsule 207 , is particularly advantageous, in avoiding the use of exhaled air to entrain the powdered substance.
  • Exhaled air has a high humidity which would lead to condensation both in the chamber 205 and the capsule 207 , which can cause problems in the complete entrainment of the powdered substance, both in terms of adhesion of the capsule 207 and the contained powdered substance to the wall of the chamber 205 and adhesion of the powdered substance to the capsule 207 , particularly where the powdered substance is a hygroscopic powder.
  • the mouthpiece unit 211 comprises a mouthpiece 245 , in this embodiment as defined by a tubular section, which is gripped in the mouth of the subject.
  • the nosepiece unit 214 comprises a nosepiece 247 , in this embodiment as defined by a tubular section, which is inserted into a nostril of the subject, in this embodiment to provide a sealing fit therewith.
  • the nosepiece 247 as a component which contacts the powdered substance, is fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the powdered substance to adhere to the wall of the nosepiece 247 .
  • the chamber 205 which contains the capsule 207 , and the nosepiece 247 comprise a unitary, replaceable component.
  • a subject operates the rupturing mechanism 209 to rupture the capsule 207 , inserts the nosepiece 247 into one of his/her nostrils, grips the mouthpiece 245 in his/her mouth, and exhales through the mouthpiece 245 .
  • the exhaled air flow is forced through the at least one driving air flow inlet 233 of the Venturi unit 210 , which acts to deliver the exhaled air flow as a driving air flow past the substance air flow inlet 235 of the Venturi unit 210 and draw a substance air flow, which entrains powdered substance, from the chamber 205 of the substance supply unit 203 .
  • the substance air flow acts to move the capsule 207 , in this embodiment by vibration and rotation, and entrain the powdered substance as contained by the capsule 207 .
  • the exhaled air flow passes through the air flow outlet 239 of the Venturi unit 210 , and is delivered though the nosepiece 247 into one nasal cavity of the subject.
  • the exhaled air flow has such a pressure as to pass around the posterior margin of the nasal septum, and into the other nasal cavity, thereby achieving a bi-directional air flow as described in the applicants' earlier WO-A-00/051672.
  • FIGS. 12 to 14 illustrate a nasal delivery device in accordance with a fourth embodiment of the present invention.
  • the delivery device comprises a substance supply unit 303 which includes a chamber 305 which receives a capsule 307 , which contains a metered amount of a powdered substance which is to be delivered by the delivery device, a rupturing mechanism 309 for rupturing the capsule 307 , a gas supply unit 310 which is operative to deliver a gas flow through the chamber 305 , a mouthpiece unit 311 which is in fluid communication with the chamber 305 and is gripped in use in the mouth of a subject, and a nosepiece unit 314 which is in fluid communication with the chamber 305 and is fitted to one nostril of the subject.
  • the delivery device is illustrated in an elongate configuration, but, in its practical embodiment, the mouthpiece unit 311 and the nosepiece unit 314 are configured for fitting to the mouth and one nostril of the subject.
  • the substance supply unit 303 includes an inlet 317 which fluidly connects the chamber 305 thereof with the gas supply unit 310 and an outlet 319 which fluidly connects the chamber 305 thereof with the mouthpiece unit 311 and the nosepiece unit 314 .
  • the substance supply unit 303 includes a grid 321 , here a gauze, which is disposed at the outlet 319 thereof and acts to prevent the capsule 307 or parts thereof from escaping from the chamber 305 .
  • the chamber 305 is cylindrical in shape.
  • the chamber 305 could be spherical in shape, which is particularly advantageous in allowing for the release of the powdered substance from the capsule 307 when in any operative position.
  • the chamber 305 and the grid 321 as components which contact the capsule 307 and the contained powdered substance, are fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the capsule 307 and the powdered substance as contained thereby to adhere to the wall of the chamber 305 or the grid 321 .
  • a material having a low moisture sensitivity here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the capsule 307 and the powdered substance as contained thereby to adhere to the wall of the chamber 305 or the grid 321 .
  • the rupturing mechanism 309 comprises a piercing element 323 , here including two pins, which is operable to pierce the capsule 307 , and thereby provide for the release of the contained powdered substance on the generation of a flow through the chamber 305 .
  • the capsule 307 is a gelatine capsule.
  • the capsule 307 can be manufactured from a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 307 to adhere to the wall of the chamber 305 or the grid 321 .
  • the capsule 307 is formed of a cellulose derivative, such as hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose carboxymethylcellulose
  • the capsule 307 can comprise a plastics material, preferably a water insoluble material, such as a polycarbonate.
  • the capsule 307 can be manufactured from a lightweight material, such as thin-wall section polymeric materials, which reduces the energy required to move the capsule 307 , typically by one or both of vibration and rotation, and thereby allows the delivery device to be operated at reduced flow rates, which is particularly advantageous for nasal delivery.
  • a lightweight material such as thin-wall section polymeric materials
  • the capsule 307 has a wall section of less than about 0.25 mm, and more preferably less than about 0.2 mm.
  • the capsule 307 can include an outer coating of a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 307 to adhere to the wall of the chamber 305 or the grid 321 .
  • the coated capsule 307 can be formed of gelatine.
  • the coating can comprise one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • HPMC hydroxypropyl methylcellulose
  • HPMC hydroxypropyl methylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose carboxymethylcellulose
  • polyvinyl alcohol acrylic acid polymer
  • methacrylic acid polymer ethyl acrylic acid polymer
  • cellulose acetate phthalate polyvinyl acetate phthalate
  • hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate or any combination of layers thereof.
  • the delivery device of this embodiment is operative to discharge the powdered substance from the capsule 307 by rotation and vibration of the capsule 307 , and thus the capsule 307 is preferably formed of a material or coated with a material which exhibits substantially no tackiness in the presence of a moist environment, here a saturated exhaled air flow, that is, does not exhibit an increased moisture content at the outer surface thereof, which would prevent reliable rotation and vibration of the capsule 307 .
  • the capsule 307 is cylindrical in shape, with hemispherical ends.
  • the capsule 307 could have other geometric forms, such as spherical, which allows for efficient powder release at low flow rates.
  • the capsule 307 can comprise two or more parts.
  • the capsule 307 can be constructed to act as the primary environmental barrier for the powdered substance.
  • the capsule 307 could be constructed from a relatively thick-walled cylindrical section of a polymeric material which includes two metalized thin film closure members which act to seal the ends of the cylindrical section and thus enclose the same.
  • the gas supply unit 310 comprises a high-pressure reservoir 341 , preferably at a pressure of from about 1 bar to about 10 bar, and more preferably at a pressure from about 2 bar to about 10 bar, which, when actuated, delivers a gas flow which acts to drive powder release from the capsule 307 .
  • the reservoir 341 can be a pre-filled volume of gas at high-pressure, such as a pressurized canister which contains a propellant.
  • the reservoir 341 can be charged using a pump mechanism.
  • the gas supply unit 310 is configured such as to be actuated on the generation of a predetermined flow rate through the mouthpiece unit 311 , typically a flow rate of from about 10 I/min to about 50 I/min.
  • the gas supply unit 310 can be configured such as to be actuated on the generation of a predetermined pressure at the mouthpiece unit 311 .
  • gas supply unit 310 can be configured such as to be manually actuated.
  • This configuration is particularly advantageous, in avoiding the use of exhaled air to entrain the powdered substance, and in one embodiment allowing the use of a dry gas.
  • Exhaled air has a high humidity which would lead to condensation both in the chamber 305 and the capsule 307 , which can cause problems in the complete entrainment of the powdered substance, both in terms of adhesion of the capsule 307 and the contained powdered substance to the wall of the chamber 305 and adhesion of the powdered substance to the capsule 307 , particularly where the powdered substance is a hygroscopic powder.
  • the mouthpiece unit 311 comprises a mouthpiece 345 , in this embodiment as defined by a tubular section, which is gripped in the mouth of the subject.
  • the nosepiece unit 314 comprises a nosepiece 347 , in this embodiment as defined by a tubular section, which is inserted into a nostril of the subject, in this embodiment to provide a sealing fit therewith.
  • the nosepiece 347 as a component which contacts the powdered substance, is fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the powdered substance to adhere to the wall of the nosepiece 347 .
  • the chamber 305 which contains the capsule 307 , and the nosepiece 347 comprise a unitary, replaceable component.
  • a subject operates the rupturing mechanism 309 to rupture the capsule 307 , inserts the nosepiece 347 into one of his/her nostrils, grips the mouthpiece 345 in his/her mouth, and exhales through the mouthpiece 345 .
  • the exhaled air flow is delivered though the nosepiece 347 into one nasal cavity of the subject.
  • the gas supply unit 310 when the exhaled air flow has a predetermined flow rate, the gas supply unit 310 is actuated, such as to deliver a gas flow through the chamber 305 .
  • This gas flow acts to move the capsule 307 , in this embodiment by vibration and rotation, and entrain the powdered substance as contained by the capsule 307 , and the gas flow, as then entraining the powdered substance, is delivered into the exhaled air flow passing through the nosepiece 347 into one nasal cavity of the subject, such that the exhaled air flow entrains the powdered substance into the nasal cavity of the subject.
  • This configuration is particularly advantageous where the gas supply unit 310 is a pressurized canister, as the gas flow from a pressurized canister is cold, and this cold gas is mixed with the warmer exhaled air flow prior to delivery to the nasal cavity.
  • the exhaled air flow has such a pressure as to pass around the posterior margin of the nasal septum, and into the other nasal cavity, thereby achieving a bi-directional air flow as described in the applicants' earlier WO-A-00/051672.
  • the gas supply unit 310 could comprise a charged turbine 353 , for example, a propeller which is charged by a resilient element, such as spring.
  • a charged turbine 353 for example, a propeller which is charged by a resilient element, such as spring.
  • the powdered substance can also be formulated, for example, by coating or blending, such as to reduce the hygroscopicity and transiently increase the dissolution time, and thus reduce any loss of powdered substance in the device due to interaction with condensation on the internal surfaces of the device.
  • the delivery devices of the described embodiments have been described in relation to the use of capsules 7 , 107 , 207 , 307 . It is to be understood that the present invention has application with any kind of powder delivery system, including blisters and metering from bulk, and can be configured as a single-use or multi-use device.
  • thermoelectric device as the heat exchanger 27
  • a device which utilizes the Peltier effect as illustrated in FIG. 16 .
  • the delivery device of the first-described embodiment could be modified such that the chamber 5 is substantially spherical in shape, which is particularly advantageous in allowing for the release of the powdered substance from the capsule 7 in any operative position, and the capsule 7 could be spherical.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Emergency Medicine (AREA)
  • Otolaryngology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising: a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit including an inlet and an outlet; a nosepiece unit including a nosepiece for fitting to a nasal cavity of the subject and being in fluid communication with the outlet of the substance supply unit; and a mouthpiece unit including a mouthpiece in fluid communication with the inlet of the substance supply unit and through which the subject in use exhales such as to entrain substance from the container chamber and deliver the same through the nosepiece, and at least one temperature modifier for reducing a temperature of the exhaled air flow such as to reduce the absolute humidity thereof.

Description

    CROSS REFERENCE TO PRIOR APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 11/816,984, filed on Jun. 10, 2009, now U.S. patent Ser. No. ______, which in turn is a U.S. national stage entry of PCT/GB06/00631, filed Feb. 23, 2006, which claims priority to GB0503738.7, filed Feb. 23, 2005. The content of all the prior applications is hereby incorporated by reference in its entirety.
  • FIELD OF INVENTION
  • The present invention relates to a powder delivery device for the delivery of a powdered substance, in particular to the nasal airway, and both a powdered substance and a capsule for use with the same.
  • BACKGROUND
  • There is an increasing interest in the nasal delivery of substances, typically pharmaceutical drugs, both as powders and liquids, for topical and systemic delivery.
  • Current delivery systems are not suited to the delivery of substances to the upper posterior region of the nasal airway, in particular targeted delivery to the olfactory region and the sinus ostia.
  • U.S. Pat. Nos. 4,013,075 and 4,889,114 disclose examples of prior art inhalation devices, which provide for the inhalation of a powdered substance from a capsule.
  • WO-A-00/051672, the content of which is herein incorporated by reference, discloses a delivery device for delivering a substance, in particular a medicament, in a bi-directional flow through the nasal cavities, that is, an air flow which passes into one nostril, around the posterior margin of the nasal septum and in the opposite direction out of the other nostril. A particular feature of this bi-directional mode of delivery is the ability to target defined regions in the nasal airway, for both topical and systemic delivery, in particular the upper posterior region which cannot be targeted with existing systems.
  • SUMMARY OF THE INVENTION
  • The present inventors have recognized that the delivery of powdered substances using the exhalation breath of a subject still presents a significant challenge, owing to the interaction of the moist exhaled air flow with the powdered substance prior to delivery into the nasal airway.
  • Exhalation into a device leads to condensation on the surfaces of the exposed device components, where the components are at a significantly lower temperature than the exhaled air flow, and significant condensation in the delivery channel will affect the consistency of the delivered doses.
  • It is an aim of the present invention to provide a delivery device which allows for the delivery of powdered substances, either supplied in capsules or blisters, which contain a pre-metered dose of substance with the appropriate particle size distribution and surface properties, or metered from bulk, where using the exhalation breath of the subject.
  • In one aspect the present invention provides a nasal delivery device which utilizes an exhalation breath to deliver a powdered substance, and includes a temperature modifier to reduce the absolute humidity of the exhaled air flow prior to entrainment of the powdered substance.
  • In another aspect the present invention provides a nasal delivery device which utilizes an exhalation breath to deliver a powdered substance, and incorporates a Venturi unit to draw a powdered substance into the exhaled air flow using an air flow of the ambient atmosphere.
  • In a further aspect the present invention provides a nasal delivery device which utilizes drive means, such as a pressurized gas supply or a turbine, to entrain a powdered substance into a substance gas flow, which in one embodiment is then entrained by an exhaled air flow.
  • In a yet further aspect the present invention provides a capsule which is formed from a lightweight material, such as a thin-wall section polymeric material, which reduces the energy required to move the capsule, typically by one or both of vibration and rotation, and thereby provides for emptying at reduced flow rates. In one embodiment the material has a reduced tendency to become tacky in the presence of moisture.
  • In a still further aspect the present invention provides a powder formulation which is formulated to have reduced hygroscopicity, and preferably a transiently-increased dissolution time, such as achieved by coating or blending, such as to reduce any loss of powdered substance in a device due to interaction with water condensate.
  • In one preferred aspect the present invention provides a nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising: a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit including an inlet and an outlet; a nosepiece unit including a nosepiece for fitting to a nasal cavity of the subject and being in fluid communication with the outlet of the substance supply unit; and a mouthpiece unit including a mouthpiece in fluid communication with the inlet of the substance supply unit and through which the subject in use exhales such as to entrain substance from the substance supply unit and deliver the same through the nosepiece, and at least one temperature modifier for reducing a temperature of the exhaled air flow such as to reduce the absolute humidity thereof.
  • In one embodiment the at least one temperature modifier comprises at least one elongate channel.
  • Preferably, the at least one temperature modifier comprises a plurality of elongate channels.
  • In one embodiment the mouthpiece unit includes a plurality of temperature modifiers which can be fluidly connected successively to the mouthpiece, and a switching mechanism which allows for one of the temperature modifiers to be fluidly connected to the mouthpiece.
  • Preferably, when the one of the temperature modifiers is fluidly connected to the mouthpiece, the at least one other temperature modifier is vented to atmosphere.
  • In one embodiment the switching mechanism comprises a rotatable member to which the temperature modifiers are disposed, whereby rotation of the switching mechanism provides for the one of the temperature modifiers to be in fluid communication with the mouthpiece.
  • Preferably, the substance supply unit comprises a container chamber for receiving a substance-containing container which contains a dose of substance.
  • In one embodiment the container chamber is substantially cylindrical in shape.
  • In another embodiment the container chamber is substantially spherical in shape.
  • In one embodiment the container chamber and the nosepiece comprise a unitary, replaceable component.
  • In one embodiment the substance supply unit comprises a rupturing mechanism for rupturing the container as contained in the container chamber.
  • In one embodiment the container is formed of a material which exhibits insufficient tackiness, and preferably substantially no surface tackiness, in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
  • Preferably, the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
  • More preferably, the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
  • Still more preferably, the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
  • In one embodiment the container is formed substantially of a cellulose derivative.
  • Preferably, the container is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • In another embodiment the container is formed substantially of gelatine.
  • In a further embodiment the container is formed of a plastics material.
  • In a still further embodiment the container includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
  • Preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
  • More preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
  • Still more preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
  • Preferably, the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • In one embodiment the container comprises a body of gelatine.
  • In one embodiment the container comprises a capsule.
  • In one embodiment the capsule is substantially cylindrical in shape.
  • In another embodiment the capsule is substantially spherical in shape.
  • In one embodiment the at least one temperature modifier is configured to reduce the temperature of the exhaled air flow by more than about 5° C.
  • Preferably, the at least one temperature modifier is configured to reduce the temperature of the exhaled air flow by at least about 12° C.
  • Preferably, the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 10 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
  • More preferably, the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 20 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
  • Still more preferably, the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 30 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
  • Yet more preferably, the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 40 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
  • Still yet more preferably, the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 50 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
  • Preferably, the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.5 kPa to the exhaled air flow.
  • More preferably, the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.25 kPa to the exhaled air flow.
  • Still more preferably, the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.10 kPa to the exhaled air flow.
  • Yet more preferably, the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.05 kPa to the exhaled air flow.
  • Still yet more preferably, the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.025 kPa to the exhaled air flow.
  • In another embodiment the at least one temperature modifier comprises a thermoelectric device.
  • In another preferred aspect the present invention provides a nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising: a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit comprising a substance-receiving chamber including an inlet and an outlet, and a Venturi unit for drawing a flow of ambient air through the substance-receiving chamber; a nosepiece unit including a nosepiece for fitting to the nasal cavity of the subject and being in fluid communication with the Venturi unit; and a mouthpiece unit including a mouthpiece in fluid communication with the Venturi unit and through which the subject in use exhales such as to entrain substance from the substance-receiving chamber and deliver the same through the nosepiece.
  • Preferably, the substance-receiving chamber comprises a container chamber for receiving a substance-containing container which contains a dose of substance.
  • In one embodiment the container chamber is substantially cylindrical in shape.
  • In another embodiment the container chamber is substantially spherical in shape.
  • In one embodiment the container chamber and the nosepiece comprise a unitary, replaceable component.
  • In one embodiment the substance supply unit comprises a rupturing mechanism for rupturing the substance-containing container as contained in the container chamber.
  • In one embodiment the container is formed of a material which exhibits insufficient tackiness, and preferably substantially no surface tackiness, in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
  • Preferably, the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
  • More preferably, the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
  • Still more preferably, the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
  • In one embodiment the container is formed substantially of a cellulose derivative.
  • Preferably, the container is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • In another embodiment the container is formed substantially of gelatine.
  • In a further embodiment the container is formed of a plastics material.
  • In a still further embodiment the container includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
  • Preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
  • More preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
  • Still more preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
  • Preferably, the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • In one embodiment the container comprises a body of gelatine.
  • In one embodiment the container comprises a capsule.
  • In one embodiment the capsule is substantially cylindrical in shape.
  • In another embodiment the capsule is substantially spherical in shape.
  • In one embodiment the Venturi unit comprises a first, driving air flow inlet which is in fluid communication with the mouthpiece unit and provides a constriction which acts to accelerate the exhaled air flow to deliver a driving air flow at a higher velocity, a second, substance air flow inlet which is in fluid communication with the substance supply unit and through which is in use drawn a substance air flow from the substance-receiving chamber which entrains substance as contained therein, and an air flow outlet which is in fluid communication with the nosepiece unit and through which the driving air flow and the substance air flow are in use delivered.
  • In one embodiment the driving air flow is directed substantially perpendicularly to the substance air flow.
  • In another embodiment the driving air flow is directed substantially parallel to the substance air flow.
  • In one embodiment the mouthpiece unit is fluidly connected to the substance supply unit, such as to provide a supplemental air flow to the substance-receiving chamber on exhalation by the subject into the mouthpiece unit.
  • Preferably, the mouthpiece unit includes a flow channel which is fluidly connected to the inlet of the substance-receiving chamber.
  • In a further preferred aspect the present invention provides a nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising: a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit comprising a substance-receiving chamber including an inlet and an outlet, and a gas supply unit for delivering a gas flow through the substance-receiving chamber such as in use to provide a gas flow entraining substance from the outlet of the substance-receiving chamber; a nosepiece unit including a nosepiece for fitting to the nasal cavity of the subject and being in fluid communication with the outlet of the substance-receiving chamber; and a mouthpiece unit including a mouthpiece in fluid communication with the outlet of the substance-receiving chamber and the nosepiece and through which the subject in use exhales such as to entrain substance as delivered from the substance-receiving chamber and deliver the same through the nosepiece.
  • Preferably, the substance-receiving chamber comprises a container chamber for receiving a substance-containing container which contains a dose of substance.
  • In one embodiment the container chamber is substantially cylindrical in shape.
  • In another embodiment the container chamber is substantially spherical in shape.
  • In one embodiment the container chamber and the nosepiece comprise a unitary, replaceable component.
  • In one embodiment the substance supply unit comprises a rupturing mechanism for rupturing the container as contained in the container chamber.
  • In one embodiment the container is formed of a material which exhibits insufficient tackiness, and preferably substantially no surface tackiness, in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
  • Preferably, the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
  • More preferably, the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
  • Still more preferably, the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
  • In one embodiment the container is formed substantially of a cellulose derivative.
  • Preferably, the container is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • In another embodiment the container is formed substantially of gelatine.
  • In a further embodiment the container is formed of a plastics material.
  • In a still further embodiment the container includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
  • Preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
  • More preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
  • Still more preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
  • Preferably, the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • In one embodiment the container comprises a body formed substantially of gelatine.
  • In one embodiment the container comprises a capsule.
  • In one embodiment the capsule is substantially cylindrical in shape.
  • In another embodiment the capsule is substantially spherical in shape.
  • In one embodiment the gas supply unit comprises a volume of pressurized gas which, when released, provides the entraining gas flow.
  • In another embodiment the gas supply unit comprises a charged turbine which, when released, provides the entraining gas flow.
  • In one embodiment the gas supply unit is a breath-actuated unit.
  • In one embodiment the gas supply unit is actuated in response to generation of a predeterminable flow rate through the mouthpiece unit.
  • In another embodiment the gas supply unit is actuated in response to generation of a predeterminable pressure at the mouthpiece unit.
  • In another embodiment the gas supply unit is a manually-actuated unit.
  • In a still further preferred aspect the present invention provides a capsule for containing a powdered substance which exhibits insufficient tackiness, and preferably no surface tackiness, in the presence of moisture such as not to adhere to an inner surface of a capsule chamber which contains the capsule during emptying of the capsule.
  • Preferably, the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in an exhalation air flow for a period of up to about 5 s.
  • More preferably, the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s.
  • Still more preferably, the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s.
  • In one embodiment the capsule is formed substantially of a cellulose derivative.
  • Preferably, the capsule is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • In another embodiment the capsule is formed of a plastics material.
  • In one embodiment the capsule includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the capsule chamber during emptying of the capsule.
  • Preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in an exhalation air flow for a period of up to about 5 s.
  • More preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s.
  • Still more preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s.
  • Preferably, the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • In one embodiment the capsule comprises a body formed substantially of gelatine.
  • In one embodiment the capsule is substantially cylindrical in shape.
  • In another embodiment the capsule is substantially spherical in shape.
  • In one embodiment the capsule comprises a body of thin-wall section.
  • Preferably, the body has a thickness of not more than about 0.25 mm.
  • More preferably, the body has a thickness of not more than about 0.20 mm.
  • In a yet further preferred aspect the present invention extends to the use of a capsule, containing a powdered substance, which exhibits insufficient tackiness, and preferably no surface tackiness, in the presence of moisture such as not to adhere to an inner surface of a capsule chamber which contains the same during emptying of the capsule in an exhaled air flow.
  • Preferably, the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in an exhalation air flow for a period of up to about 5 s.
  • More preferably, the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s.
  • Still more preferably, the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s.
  • In one embodiment the capsule is formed substantially of a cellulose derivative.
  • Preferably, the capsule is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • In another embodiment the capsule is formed of a plastics material.
  • In one embodiment the capsule includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the capsule chamber during emptying of the capsule.
  • Preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in an exhalation air flow for a period of up to about 5 s.
  • More preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s.
  • Still more preferably, the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s.
  • Preferably, the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • In one embodiment the capsule comprises a body formed substantially of gelatine.
  • In one embodiment the capsule is substantially cylindrical in shape.
  • In another embodiment the capsule is substantially spherical in shape.
  • In one embodiment the capsule comprises a body of thin-wall section.
  • Preferably, the body has a thickness of not more than about 0.25 mm.
  • More preferably, the body has a thickness of not more than about 0.20 mm.
  • In yet another preferred aspect the present invention provides a nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising: a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit including an inlet and an outlet; a nosepiece unit including a nosepiece for fitting to a nasal cavity of the subject and being in fluid communication with the outlet of the substance supply unit; and a mouthpiece unit including a mouthpiece in fluid communication with the inlet of the substance supply unit and through which the subject in use exhales such as to entrain substance from the substance supply unit and deliver the same through the nosepiece.
  • In still another preferred aspect the present invention provides a method of delivering substance to a nasal cavity of a subject, the method comprising the steps of: supplying a dose of substance to be delivered to the nasal cavity of the subject; fitting a nosepiece unit including a nosepiece to the nasal cavity of the subject; and the subject exhaling through a mouthpiece unit such as to entrain the supplied dose of substance and deliver the same through the nosepiece to the nasal cavity of the subject, wherein the mouthpiece unit includes at least one temperature modifier for reducing a temperature of the exhaled air flow such as to reduce the absolute humidity thereof.
  • In yet still another preferred aspect the present invention provides a method of delivering substance to a nasal cavity of a subject, the method comprising the steps of: providing a dose of substance to be delivered to the nasal cavity of the subject in a substance-receiving chamber; fitting a nosepiece unit including a nosepiece to the nasal cavity of the subject; providing a Venturi unit which is operative to draw a flow of ambient air through the substance-receiving chamber; and the subject delivering an exhaled air flow to the Venturi unit such as to draw a flow of ambient air through the substance-receiving chamber, which entrains the powdered substance therein, and to the nosepiece such as to deliver the exhaled air flow entraining the powdered substance to the nasal cavity of the subject.
  • In a yet still further preferred aspect the present invention provides a method of delivering substance to a nasal cavity of a subject, the method comprising the steps of: providing a dose of substance to be delivered to the nasal cavity of the subject in a substance-receiving chamber; fitting a nosepiece unit including a nosepiece to the nasal cavity of the subject; providing a gas flow of ambient air through the substance-receiving chamber, which entrains the powdered substance therein; and the subject delivering an exhaled air flow to the nosepiece which entrains the gas flow entraining the powdered substance, such as to deliver the powdered substance to the nasal cavity of the subject.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Preferred embodiments of the present invention will now be described hereinbelow by way of example only with reference to the accompanying drawings, in which:
  • FIG. 1 illustrates a delivery device in accordance with a first embodiment of the present invention;
  • FIG. 2 illustrates the heat exchanger of the delivery device of FIG. 1 ;
  • FIG. 3 illustrates the delivery device of FIG. 1 , in the operative state;
  • FIG. 4 illustrates the mouthpiece unit of a delivery device as a modification of the delivery device of FIG. 1 , in a first operative configuration;
  • FIG. 5 illustrates the mouthpiece unit of FIG. 4 , in a second operative configuration;
  • FIG. 6 illustrates a delivery device in accordance with a second embodiment of the present invention;
  • FIG. 7 illustrates the delivery device of FIG. 6 , in the operative state;
  • FIG. 8 illustrates a delivery device as a modification of the delivery device of FIG. 6 ;
  • FIG. 9 illustrates the delivery device of FIG. 8 , in the operative state;
  • FIG. 10 illustrates a delivery device in accordance with a third embodiment of the present invention;
  • FIG. 11 illustrates the delivery device of FIG. 10 , in the operative state;
  • FIG. 12 illustrates a delivery device in accordance with a fourth embodiment of the present invention;
  • FIG. 13 illustrates the delivery device of FIG. 12 , in a first operative state;
  • FIG. 14 illustrates the delivery device of FIG. 12 , in a second operative state;
  • FIG. 15 illustrates a delivery device as one modification of the delivery device of FIG. 12 ;
  • FIG. 16 illustrates a delivery device as one modification of the delivery device of FIG. 1 ; and
  • FIG. 17 illustrates a delivery device as another modification of the delivery device of FIG. 1 .
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIGS. 1 to 3 illustrate a delivery device in accordance with a first embodiment of the present invention.
  • The delivery device comprises a substance supply unit 3 which includes a chamber 5 which receives a capsule 7, which contains a metered amount of a powdered substance which is to be delivered by the delivery device, a rupturing mechanism 9 for rupturing the capsule 7, a mouthpiece unit 11 which is in fluid communication with the chamber 5 and is gripped in use in the mouth of a subject, and a nosepiece unit 15 which is in fluid communication with the chamber 5 and is fitted to one nostril of the subject. For ease of illustration, the delivery device is illustrated in an elongate configuration, but, in its practical embodiment, the mouthpiece unit 11 and the nosepiece unit 15 are configured for fitting to the mouth and one nostril of the subject.
  • The substance supply unit 3 includes an inlet 17 which fluidly connects the chamber 5 thereof with the mouthpiece unit 11 and an outlet 19 which fluidly connects the chamber 5 thereof with the nosepiece unit 15.
  • In this embodiment the substance supply unit 3 includes a grid 21, here a gauze, which is disposed at the outlet 19 thereof and acts to prevent the capsule 7 or parts thereof from escaping from the chamber 5.
  • In this embodiment the chamber 5 is cylindrical in shape.
  • In another embodiment the chamber 5 can be substantially spherical in shape, which is particularly advantageous in allowing for the release of the powdered substance from the capsule 7 in any operative position.
  • In this embodiment the chamber 5 and the grid 21, as components which contact the capsule 7 and the contained powder, are fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the capsule 7 and the powdered substance as contained thereby to adhere to the wall of the chamber 5 or the grid 21.
  • In this embodiment the rupturing mechanism 9 comprises a piercing element 23, here including two pins, which is operable to pierce the capsule 7, and thereby provide for the release of the contained powdered substance on the generation of a flow through the chamber 5.
  • The mouthpiece unit 11 comprises a mouthpiece 25, in this embodiment as defined by a tubular section, which is gripped in the mouth of the subject, and a heat exchanger 27 which is in fluid communication with the mouthpiece 25 and acts to draw heat from the exhaled air flow as delivered through the mouthpiece 25, thus decreasing the temperature of the air flow as delivered to the chamber 5. By decreasing the temperature of the air flow, the humidity of the air flow is reduced, with the water vapor condensing in the heat exchanger 27, and the impact of condensation is significantly reduced, thus allowing for successive doses of powdered substance to be delivered without affecting the release of powdered substance from the capsules 7.
  • As illustrated in FIG. 2 , in this embodiment the heat exchanger 27 comprises a channel 29 which has a zig-zag, serpentine configuration, with a circular cross section. In other embodiments the channel 29 could have other configurations, for example, a rectangular cross section.
  • In this embodiment the channel 29 has an effective length of 200 mm and an effective diameter of 4 mm, which reduces the temperature of an exhaled air flow which has a flow rate of 30 I/min to about 25° C. from about 37° C., where the channel 29 is at a temperature of 20° C.
  • The reduction in temperature is calculated as follows:

  • T e =T w−(T W −T i)e −hAniC
  • Where:Te is the fluid temperature at the exit of the channel 29; TW is the fluid temperature at the wall of the channel 29; Ti is the fluid temperature at the inlet of the channel 29; h is the heat transfer coefficient between the gas flowing through the channel 29 and the material of the channel 29; A is the surface area of the channel 29; m is the mass flow rate; and is the specific heat capacity of the gas flowing through the channel 29. This calculation assumes turbulent flow in the channel 29 (Nu=0.023Re0.8Pr0.3).
  • In other embodiments the channel 29 can include features to enhance the heat transfer coefficient from the exhaled air flow to the wall of the channel 29, such that the effective length of the channel 29 can be considerably reduced. Typical features include nodules or areas of relative surface roughness that create turbulence and so enhance the heat transfer.
  • In other embodiments the heat exchanger 27 could comprise a plurality of channels 29.
  • In one embodiment the heat exchanger 27 comprises four channels 29, as parallel ducts, which each have a width of 10 mm, a height of 1.5 mm and a length of 60 mm. This configuration reduces the temperature of an exhaled air flow which has a flow rate of 30 I/min by about 5° C., where the channels 29 are at a temperature of 20° C., and also cause only a very small pressure drop of 0.024 kPa.
  • The nosepiece unit 15 comprises a nosepiece 30, in this embodiment as defined by a tubular section, which is inserted into a nostril of the subject, in this embodiment to provide a sealing fit therewith.
  • In this embodiment the nosepiece 30, as a component which contacts the powdered substance, is fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the powdered substance to adhere to the wall of the nosepiece 30.
  • In one embodiment the capsule 7 is a gelatine capsule.
  • In another embodiment the capsule 7 can be manufactured from a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 7 to adhere to the wall of the chamber 5 or the grid 21.
  • In one embodiment the capsule 7 is formed of a cellulose derivative, such as hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • In another embodiment the capsule 7 can comprise a plastics material, preferably a water insoluble material, such as a polycarbonate.
  • In one embodiment the capsule 7 can be manufactured from a lightweight material, such as thin-wall section polymeric materials, which reduces the energy required to move the capsule 7, typically by one or both of vibration and rotation, and thereby allow the delivery device to be operated at reduced flow rates, which is particularly advantageous for nasal delivery.
  • In one embodiment the capsule 7 has a wall section of less than about 0.25 mm, and more preferably less than about 0.2 mm.
  • In an alternative embodiment the capsule 7 can include an outer coating of a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 7 to adhere to the wall of the chamber 5 or the grid 21.
  • In one embodiment the coated capsule 7 can be formed of gelatine.
  • In one embodiment the coating can comprise one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate.
  • The delivery device of this embodiment is operative to discharge the powdered substance from the capsule 7 by rotation and vibration of the capsule 7, and thus the capsule 7 is preferably formed of a material or coated with a material which exhibits substantially no tackiness in the presence of a moist environment, here a saturated exhaled air flow, that is, does not exhibit an increased moisture content at the outer surface thereof, which would prevent reliable rotation and vibration of the capsule 7.
  • In this embodiment, as illustrated in FIG. 1 , the capsule 7 is cylindrical in shape with hemispherical ends.
  • In other embodiments the capsule 7 could have other geometric forms, such as spherical, which allows for efficient powder release at low flow rates.
  • In one embodiment the capsule 7 can comprise two or more parts.
  • In one alternative embodiment the capsule 7 can be constructed to act as the primary environmental barrier for the powdered substance. For example, the capsule 7 could be constructed from a relatively thick-walled cylindrical section of a polymeric material which includes two metalized thin film closure members which act to seal the ends of the cylindrical section and thus enclose the same.
  • In one embodiment, where the delivery device is a re-usable device, the chamber 5, which contains the capsule 7, and the nosepiece 30 comprise a unitary, replaceable component.
  • In operation, as illustrated in FIG. 3 , a subject operates the rupturing mechanism 9 to rupture the capsule 7, inserts the nosepiece 30 into one of his/her nostrils, grips the mouthpiece 25 in his/her mouth, and exhales through the mouthpiece 25.
  • The exhaled air flow is reduced in temperature by the heat exchanger 27 on delivery therethrough, such as to reduce the absolute humidity of the exhaled air flow, and this cooled air is then driven through the chamber 5, which acts to move the capsule 7, in this embodiment by vibration and rotation, and entrain the powdered substance as contained by the capsule 7.
  • The exhaled air flow, as then entraining the powdered substance, is delivered though the nosepiece 30 into one nasal cavity of the subject.
  • In this embodiment the exhaled air flow has such a pressure as to pass around the posterior region of the nasal septum, and into the other nasal cavity, thereby achieving a bi-directional air flow as described in the applicants' earlier WO-A-00/051672.
  • In one modification, as illustrated in FIGS. 4 and 5 , the mouthpiece unit 11 includes a plurality of, in this embodiment first and second heat exchangers 27 a, b which can be used successively, such as to allow for the evaporation of the condensed moisture from the one or more previously-used heat exchangers 27 a, b, and a switching mechanism 31 which allows for one of the heat exchangers 27 a, b to be fluidly connected to the mouthpiece 25.
  • In this embodiment the switching mechanism 31 comprises a rotatable member to which the heat exchangers 27 a, b are disposed, whereby rotation of the switching mechanism 31 provides for one of the heat exchangers 27 a, b to be in fluid communication with the mouthpiece 25 and the at least one other of the heat exchangers 27 a, b to be in fluid communication with the atmosphere. FIG. 4 illustrates a first configuration, in which the first heat exchanger 27 a is in fluid communication with the mouthpiece 25 and the second heat exchanger 27 b is vented to atmosphere. FIG. 5 illustrates a second configuration, in which the second heat exchanger 27 b is in fluid communication with the mouthpiece 25 and the first heat exchanger 27 a is vented to atmosphere.
  • With this configuration, the one of the heat exchangers 27 a, b which is in fluid communication with the mouthpiece 25 acts to cool the exhaled air flow as delivered therethrough, and thereby trap water vapor from the exhaled air, and the other of the heat exchangers 27 a, b which is vented to atmosphere provides for evaporation of the water condensate as trapped from a previous exhalation therethrough.
  • In an alternative embodiment the switching mechanism 31 could be operatively coupled to the rupturing mechanism 9, such as to provide for operation of the switching mechanism 31 with each operation of the rupturing mechanism 9.
  • FIGS. 6 and 7 illustrate a nasal delivery device in accordance with a second embodiment of the present invention.
  • The delivery device comprises a substance supply unit 103 which includes a chamber 105 which receives a capsule 107, which contains a metered amount of a powdered substance which is to be delivered by the delivery device, a rupturing mechanism 109 for rupturing the capsule 107, a Venturi unit 110 which is in fluid communication with the chamber 105 and is operative to draw an air flow of the ambient atmosphere through the chamber 105, a mouthpiece unit 111 which is in fluid communication with the Venturi unit 110 and is gripped in use in the mouth of a subject, and a nosepiece unit 114 which is in fluid communication with the Venturi unit 110 and is fitted to one nostril of the subject. For ease of illustration, the delivery device is illustrated in an elongate configuration, but, in its practical embodiment, the mouthpiece unit 111 and the nosepiece unit 114 are configured for fitting to the mouth and one nostril of the subject.
  • The substance supply unit 103 includes an inlet 117 which fluidly connects the chamber 105 thereof with the ambient atmosphere and an outlet 119 which fluidly connects the chamber 105 thereof with the Venturi unit 110.
  • In this embodiment the substance supply unit 103 includes a grid 121, here a gauze, which is disposed at the outlet 119 thereof and acts to prevent the capsule 107 or parts thereof from escaping from the chamber 105.
  • In this embodiment the chamber 105 is cylindrical in shape.
  • In another embodiment the chamber 105 could be spherical in shape, which is particularly advantageous in allowing for the release of the powdered substance from the capsule 107 when in any operative position.
  • In this embodiment the chamber 105 and the grid 121, as components which contact the capsule 107 and the contained powdered substance, are fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the capsule 107 and the powdered substance as contained thereby to adhere to the wall of the chamber 105 or the grid 121.
  • In this embodiment the rupturing mechanism 109 comprises a piercing element 123, here including two pins, which is operable to pierce the capsule 107, and thereby provide for the release of the contained powdered substance on the generation of a flow through the chamber 105.
  • In one embodiment the capsule 107 is a gelatine capsule.
  • In another embodiment the capsule 107 can be manufactured from a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 107 to adhere to the wall of the chamber 105 or the grid 121.
  • In one embodiment the capsule 107 is formed of a cellulose derivative, such as hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulos.
  • In another embodiment the capsule 107 can comprise a plastics material, preferably a water insoluble material, such as a polycarbonate.
  • In one embodiment the capsule 107 can be manufactured from a lightweight material, such as thin-wall section polymeric materials, which reduces the energy required to move the capsule 107, typically by one or both of vibration and rotation, and thereby allows the delivery device to be operated at reduced flow rates, which is particularly advantageous for nasal delivery.
  • In one embodiment the capsule 107 has a wall section of less than about 0.25 mm, and more preferably less than about 0.2 mm.
  • In an alternative embodiment the capsule 107 can include an outer coating of a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 107 to adhere to the wall of the chamber 105 or the grid 121.
  • In one embodiment the coated capsule 107 can be formed of gelatine.
  • In one embodiment the coating can comprise one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • The delivery device of this embodiment is operative to discharge the powdered substance from the capsule 107 by rotation and vibration of the capsule 107, and thus the capsule 107 is preferably formed of a material or coated with a material which exhibits substantially no tackiness in the presence of a moist environment, here a saturated exhaled air flow, that is, does not exhibit an increased moisture content at the outer surface thereof, which would prevent reliable rotation and vibration of the capsule 107.
  • In this embodiment the capsule 107 is cylindrical in shape, with hemispherical ends.
  • In other embodiments the capsule 107 could have other geometric forms, such as spherical, which allows for efficient powder release at low flow rates.
  • In one embodiment the capsule 107 can comprise two or more parts.
  • In one alternative embodiment the capsule 107 can be constructed to act as the primary environmental barrier for the powdered substance. For example, the capsule 107 could be constructed from a relatively thick-walled cylindrical section of a polymeric material which includes two metalized thin film closure members which act to seal the ends of the cylindrical section and thus enclose the same.
  • The Venturi unit 110 comprises a first, driving air flow inlet 133 which is in fluid communication with the mouthpiece unit 111 and provides a constriction which acts to accelerate the exhaled air flow to deliver a driving air flow at a higher velocity, a second, substance air flow inlet 135 which is in fluid communication with the outlet 119 of the substance supply unit 103 and through which, by the reduced local pressure as developed thereat by the Venturi effect, is drawn a substance air flow from the chamber 105 of the substance supply unit 103 which entrains the powdered substance, and an air flow outlet 139 which is in fluid communication with the nosepiece unit 114 and through which the driving air flow and the substance air flow are delivered. In this embodiment the driving air flow is directed substantially perpendicularly to the substance air flow.
  • This configuration, which utilizes ambient air to entrain the powdered substance from the capsule 107, is particularly advantageous, in avoiding the use of exhaled air to entrain the powdered substance. Exhaled air has a high humidity which would lead to condensation both in the chamber 105 and the capsule 107, which can cause problems in the complete entrainment of the powdered substance, both in terms of adhesion of the capsule 107 to the wall of the chamber 105 and adhesion of the powdered substance to the wall of the capsule 107, particularly where the powdered substance is a hygroscopic powder.
  • The mouthpiece unit 111 comprises a mouthpiece 145, in this embodiment as defined by a tubular section, which is gripped in the mouth of the subject.
  • The nosepiece unit 114 comprises a nosepiece 147, in this embodiment as defined by a tubular section, which is inserted into a nostril of the subject, in this embodiment to provide a sealing fit therewith.
  • In this embodiment the nosepiece 147, as a component which contacts the powdered substance, is fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the powdered substance to adhere to the wall of the nosepiece 147.
  • In one embodiment, where the delivery device is a re-usable device, the chamber 105, which contains the capsule 107, and the nosepiece 147 comprise a unitary, replaceable component.
  • In operation, as illustrated in FIG. 7 , a subject operates the rupturing mechanism 109 to rupture the capsule 107, inserts the nosepiece 147 into one of his/her nostrils, grips the mouthpiece 145 in his/her mouth, and exhales through the mouthpiece 145.
  • The exhaled air flow is forced through the driving air flow inlet 133 of the Venturi unit 110, which acts to deliver the exhaled air flow as a driving air flow over the substance air flow inlet 135 of the Venturi unit 110 and draw a substance air flow, which entrains powdered substance, from the chamber 105 of the substance supply unit 103. The substance air flow acts to move the capsule 107, in this embodiment by vibration and rotation, and entrain the powdered substance as contained by the capsule 107.
  • The exhaled air flow, as then entraining the powdered substance, passes through the air flow outlet 139 of the Venturi unit 110, and is delivered though the nosepiece 147 into one nasal cavity of the subject.
  • In this embodiment the exhaled air flow has such a pressure as to pass around the posterior margin of the nasal septum, and into the other nasal cavity, thereby achieving a bi-directional air flow as described in the applicants' earlier WO-A-00/051672.
  • In one modification of the above-described delivery device, as illustrated in FIGS. 8 and 9 , the substance supply unit 103 can be additionally fluidly connected to the mouthpiece unit 111, in this embodiment by a flow channel 151 which fluidly connects the mouthpiece 145 to the inlet 117 of the substance supply unit 103, such as to provide for a supplemental air flow to the chamber 105, which assists in entraining the powdered substance as contained by the capsule 107.
  • By regulating this supplementary air flow and blending the same with the ambient air as entrained through the inlet 117 of the substance supply unit 103, the resulting air flow still has a reduced absolute humidity (water vapour content) as compared with an exhaled air flow, where the ambient air is not saturated.
  • Operation of this device, which is illustrated in FIG. 9 , is the same as for the delivery device of the above-described second embodiment.
  • FIGS. 10 and 11 illustrate a nasal delivery device in accordance with a third embodiment of the present invention.
  • The delivery device comprises a substance supply unit 203 which includes a chamber 205 which receives a capsule 207, which contains a metered amount of a powdered substance which is to be delivered by the delivery device, a rupturing mechanism 209 for rupturing the capsule 207, a Venturi unit 210 which is operative to draw an air flow of the ambient atmosphere through the chamber 205, a mouthpiece unit 211 which is in fluid communication with the Venturi unit 210 and is gripped in use in the mouth of a subject, and a nosepiece unit 214 which is in fluid communication with the Venturi unit 210 and is fitted to one nostril of the subject. For ease of illustration, the delivery device is illustrated in an orthogonal configuration, but, in its practical embodiment, the mouthpiece unit 211 and the nosepiece unit 214 are configured for fitting to the mouth and one nostril of the subject.
  • The substance supply unit 203 includes an inlet 217 which fluidly connects the chamber 205 thereof with the ambient atmosphere and an outlet 219 which fluidly connects the chamber 205 thereof with the Venturi unit 210.
  • In this embodiment the substance supply unit 203 includes a grid 221, here a gauze, which is disposed at the outlet 219 thereof and acts to prevent the capsule 207 or parts thereof from escaping from the chamber 205.
  • In this embodiment the chamber 205 is cylindrical in shape.
  • In another embodiment the chamber 205 could be spherical in shape, which is particularly advantageous in allowing for the release of the powdered substance from the capsule 207 when in any operative position.
  • In this embodiment the chamber 205 and the grid 221, as components which contact the capsule 207 and the contained powdered substance, are fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the capsule 207 and the powdered substance as contained thereby to adhere to the wall of the chamber 205 or the grid 221.
  • In this embodiment the rupturing mechanism 209 comprises a piercing element 223, here including two pins, which is operable to pierce the capsule 207, and thereby provide for the release of the contained powdered substance on the generation of a flow through the chamber 205.
  • In one embodiment the capsule 207 is a gelatine capsule.
  • In another embodiment the capsule 207 can be manufactured from a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 207 to adhere to the wall of the chamber 205 or the grid 221.
  • In one embodiment the capsule 207 is formed of a cellulose derivative, such as hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • In another embodiment the capsule 207 can comprise a plastics material, preferably a water insoluble material, such as a polycarbonate.
  • In one embodiment the capsule 207 can be manufactured from a lightweight material, such as thin-wall section polymeric materials, which reduces the energy required to move the capsule 207, typically by one or both of vibration and rotation, and thereby allows the delivery device to be operated at reduced flow rates, which is particularly advantageous for nasal delivery.
  • In one embodiment the capsule 207 has a wall section of less than about 0.25 mm, and more preferably less than about 0.2 mm.
  • In an alternative embodiment the capsule 207 can include an outer coating of a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 207 to adhere to the wall of the chamber 205 or the grid 221.
  • In one embodiment the coated capsule 207 can be formed of gelatine.
  • In one embodiment the coating can comprise one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • The delivery device of this embodiment is operative to discharge the powdered substance from the capsule 207 by rotation and vibration of the capsule 207, and thus the capsule 207 is preferably formed of a material or coated with a material which exhibits substantially no tackiness in the presence of a moist environment, here a saturated exhaled air flow, that is, does not exhibit an increased moisture content at the outer surface thereof, which would prevent reliable rotation and vibration of the capsule 207.
  • In this embodiment the capsule 207 is cylindrical in shape, with hemispherical ends.
  • In other embodiments the capsule 207 could have other geometric forms, such as spherical, which allows for efficient powder release at low flow rates.
  • In one embodiment the capsule 207 can comprise two or more parts.
  • In one alternative embodiment the capsule 207 can be constructed to act as the primary environmental barrier for the powdered substance. For instance, the capsule 207 could be constructed from a relatively thick-walled cylindrical section of a polymeric material which includes two metalized thin film closure members which act to seal the ends of the cylindrical section and thus enclose the same.
  • The Venturi unit 210 comprises at least one driving air flow inlet 233 which is in fluid communication with the mouthpiece unit 211 and provides a constriction which acts to accelerate the exhaled air flow to deliver at least one driving air flow at a higher velocity, a second, substance air flow inlet 235 which is fluid communication with the outlet 219 of the substance supply unit 203 and through which, by the reduced local pressure as developed thereat by the Venturi effect, is drawn a substance air flow from the chamber 205 of the substance supply unit 203 which entrains the powdered substance, and an air flow outlet 239 which is in fluid communication with the nosepiece unit 214 and through which the driving air flow and the substance air flow are delivered. In this embodiment the at least one driving air flow is directed substantially parallel to the substance air flow.
  • In this embodiment the Venturi unit 210 comprises a plurality of air flow inlets 233 which are disposed in an annular arrangement, here concentrically, about the substance air flow inlet 235.
  • This configuration, which utilizes ambient air to entrain the powdered substance from the capsule 207, is particularly advantageous, in avoiding the use of exhaled air to entrain the powdered substance. Exhaled air has a high humidity which would lead to condensation both in the chamber 205 and the capsule 207, which can cause problems in the complete entrainment of the powdered substance, both in terms of adhesion of the capsule 207 and the contained powdered substance to the wall of the chamber 205 and adhesion of the powdered substance to the capsule 207, particularly where the powdered substance is a hygroscopic powder.
  • The mouthpiece unit 211 comprises a mouthpiece 245, in this embodiment as defined by a tubular section, which is gripped in the mouth of the subject.
  • The nosepiece unit 214 comprises a nosepiece 247, in this embodiment as defined by a tubular section, which is inserted into a nostril of the subject, in this embodiment to provide a sealing fit therewith.
  • In this embodiment the nosepiece 247, as a component which contacts the powdered substance, is fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the powdered substance to adhere to the wall of the nosepiece 247.
  • In one embodiment, where the delivery device is a re-usable device, the chamber 205, which contains the capsule 207, and the nosepiece 247 comprise a unitary, replaceable component.
  • In operation, as illustrated in FIG. 11 , a subject operates the rupturing mechanism 209 to rupture the capsule 207, inserts the nosepiece 247 into one of his/her nostrils, grips the mouthpiece 245 in his/her mouth, and exhales through the mouthpiece 245.
  • The exhaled air flow is forced through the at least one driving air flow inlet 233 of the Venturi unit 210, which acts to deliver the exhaled air flow as a driving air flow past the substance air flow inlet 235 of the Venturi unit 210 and draw a substance air flow, which entrains powdered substance, from the chamber 205 of the substance supply unit 203. The substance air flow acts to move the capsule 207, in this embodiment by vibration and rotation, and entrain the powdered substance as contained by the capsule 207.
  • The exhaled air flow, as then entraining the powdered substance, passes through the air flow outlet 239 of the Venturi unit 210, and is delivered though the nosepiece 247 into one nasal cavity of the subject.
  • In this embodiment the exhaled air flow has such a pressure as to pass around the posterior margin of the nasal septum, and into the other nasal cavity, thereby achieving a bi-directional air flow as described in the applicants' earlier WO-A-00/051672.
  • FIGS. 12 to 14 illustrate a nasal delivery device in accordance with a fourth embodiment of the present invention.
  • The delivery device comprises a substance supply unit 303 which includes a chamber 305 which receives a capsule 307, which contains a metered amount of a powdered substance which is to be delivered by the delivery device, a rupturing mechanism 309 for rupturing the capsule 307, a gas supply unit 310 which is operative to deliver a gas flow through the chamber 305, a mouthpiece unit 311 which is in fluid communication with the chamber 305 and is gripped in use in the mouth of a subject, and a nosepiece unit 314 which is in fluid communication with the chamber 305 and is fitted to one nostril of the subject. For ease of illustration, the delivery device is illustrated in an elongate configuration, but, in its practical embodiment, the mouthpiece unit 311 and the nosepiece unit 314 are configured for fitting to the mouth and one nostril of the subject.
  • The substance supply unit 303 includes an inlet 317 which fluidly connects the chamber 305 thereof with the gas supply unit 310 and an outlet 319 which fluidly connects the chamber 305 thereof with the mouthpiece unit 311 and the nosepiece unit 314.
  • In this embodiment the substance supply unit 303 includes a grid 321, here a gauze, which is disposed at the outlet 319 thereof and acts to prevent the capsule 307 or parts thereof from escaping from the chamber 305.
  • In this embodiment the chamber 305 is cylindrical in shape.
  • In another embodiment the chamber 305 could be spherical in shape, which is particularly advantageous in allowing for the release of the powdered substance from the capsule 307 when in any operative position.
  • In this embodiment the chamber 305 and the grid 321, as components which contact the capsule 307 and the contained powdered substance, are fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the capsule 307 and the powdered substance as contained thereby to adhere to the wall of the chamber 305 or the grid 321.
  • In this embodiment the rupturing mechanism 309 comprises a piercing element 323, here including two pins, which is operable to pierce the capsule 307, and thereby provide for the release of the contained powdered substance on the generation of a flow through the chamber 305.
  • In one embodiment the capsule 307 is a gelatine capsule.
  • In another embodiment the capsule 307 can be manufactured from a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 307 to adhere to the wall of the chamber 305 or the grid 321.
  • In one embodiment the capsule 307 is formed of a cellulose derivative, such as hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
  • In another embodiment the capsule 307 can comprise a plastics material, preferably a water insoluble material, such as a polycarbonate.
  • In one embodiment the capsule 307 can be manufactured from a lightweight material, such as thin-wall section polymeric materials, which reduces the energy required to move the capsule 307, typically by one or both of vibration and rotation, and thereby allows the delivery device to be operated at reduced flow rates, which is particularly advantageous for nasal delivery.
  • In one embodiment the capsule 307 has a wall section of less than about 0.25 mm, and more preferably less than about 0.2 mm.
  • In an alternative embodiment the capsule 307 can include an outer coating of a material which has a reduced tendency to become tacky in the presence of moisture, as occurs with gelatine capsules, and therefore reduce the tendency for the capsule 307 to adhere to the wall of the chamber 305 or the grid 321.
  • In one embodiment the coated capsule 307 can be formed of gelatine.
  • In one embodiment the coating can comprise one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
  • The delivery device of this embodiment is operative to discharge the powdered substance from the capsule 307 by rotation and vibration of the capsule 307, and thus the capsule 307 is preferably formed of a material or coated with a material which exhibits substantially no tackiness in the presence of a moist environment, here a saturated exhaled air flow, that is, does not exhibit an increased moisture content at the outer surface thereof, which would prevent reliable rotation and vibration of the capsule 307.
  • In this embodiment the capsule 307 is cylindrical in shape, with hemispherical ends.
  • In other embodiments the capsule 307 could have other geometric forms, such as spherical, which allows for efficient powder release at low flow rates.
  • In one embodiment the capsule 307 can comprise two or more parts.
  • In one alternative embodiment the capsule 307 can be constructed to act as the primary environmental barrier for the powdered substance. For instance, the capsule 307 could be constructed from a relatively thick-walled cylindrical section of a polymeric material which includes two metalized thin film closure members which act to seal the ends of the cylindrical section and thus enclose the same.
  • In this embodiment the gas supply unit 310 comprises a high-pressure reservoir 341, preferably at a pressure of from about 1 bar to about 10 bar, and more preferably at a pressure from about 2 bar to about 10 bar, which, when actuated, delivers a gas flow which acts to drive powder release from the capsule 307. In one embodiment the reservoir 341 can be a pre-filled volume of gas at high-pressure, such as a pressurized canister which contains a propellant. In an alternative embodiment the reservoir 341 can be charged using a pump mechanism.
  • In this embodiment the gas supply unit 310 is configured such as to be actuated on the generation of a predetermined flow rate through the mouthpiece unit 311, typically a flow rate of from about 10 I/min to about 50 I/min.
  • In another embodiment the gas supply unit 310 can be configured such as to be actuated on the generation of a predetermined pressure at the mouthpiece unit 311.
  • In a further embodiment the gas supply unit 310 can be configured such as to be manually actuated.
  • This configuration is particularly advantageous, in avoiding the use of exhaled air to entrain the powdered substance, and in one embodiment allowing the use of a dry gas. Exhaled air has a high humidity which would lead to condensation both in the chamber 305 and the capsule 307, which can cause problems in the complete entrainment of the powdered substance, both in terms of adhesion of the capsule 307 and the contained powdered substance to the wall of the chamber 305 and adhesion of the powdered substance to the capsule 307, particularly where the powdered substance is a hygroscopic powder.
  • The mouthpiece unit 311 comprises a mouthpiece 345, in this embodiment as defined by a tubular section, which is gripped in the mouth of the subject.
  • The nosepiece unit 314 comprises a nosepiece 347, in this embodiment as defined by a tubular section, which is inserted into a nostril of the subject, in this embodiment to provide a sealing fit therewith.
  • In this embodiment the nosepiece 347, as a component which contacts the powdered substance, is fabricated from a material having a low moisture sensitivity, here a plastics material, such as to reduce any tendency to become tacky in the presence of moisture, and therefore reduce the tendency for the powdered substance to adhere to the wall of the nosepiece 347.
  • In one embodiment, where the delivery device is a re-usable device, the chamber 305, which contains the capsule 307, and the nosepiece 347 comprise a unitary, replaceable component.
  • Operation of the delivery device will now be described hereinbelow with reference to FIGS. 13 and 14 of the accompanying drawings.
  • As illustrated in FIG. 13 , a subject operates the rupturing mechanism 309 to rupture the capsule 307, inserts the nosepiece 347 into one of his/her nostrils, grips the mouthpiece 345 in his/her mouth, and exhales through the mouthpiece 345.
  • The exhaled air flow is delivered though the nosepiece 347 into one nasal cavity of the subject.
  • In this embodiment, as illustrated in FIG. 14 , when the exhaled air flow has a predetermined flow rate, the gas supply unit 310 is actuated, such as to deliver a gas flow through the chamber 305. This gas flow acts to move the capsule 307, in this embodiment by vibration and rotation, and entrain the powdered substance as contained by the capsule 307, and the gas flow, as then entraining the powdered substance, is delivered into the exhaled air flow passing through the nosepiece 347 into one nasal cavity of the subject, such that the exhaled air flow entrains the powdered substance into the nasal cavity of the subject. This configuration is particularly advantageous where the gas supply unit 310 is a pressurized canister, as the gas flow from a pressurized canister is cold, and this cold gas is mixed with the warmer exhaled air flow prior to delivery to the nasal cavity.
  • In this embodiment the exhaled air flow has such a pressure as to pass around the posterior margin of the nasal septum, and into the other nasal cavity, thereby achieving a bi-directional air flow as described in the applicants' earlier WO-A-00/051672.
  • In one modification, as illustrated in FIG. 15 , the gas supply unit 310 could comprise a charged turbine 353, for example, a propeller which is charged by a resilient element, such as spring. With this configuration, on actuation of the gas supply unit 310, stored energy drives the turbine to entrain atmospheric air through the chamber 305 which contains the capsule 307.
  • Finally, it will be understood that the present invention has been described in its preferred embodiments and can be modified in many different ways without departing from the scope of the invention as defined by the appended claims.
  • In one embodiment the powdered substance can also be formulated, for example, by coating or blending, such as to reduce the hygroscopicity and transiently increase the dissolution time, and thus reduce any loss of powdered substance in the device due to interaction with condensation on the internal surfaces of the device.
  • Also, the delivery devices of the described embodiments have been described in relation to the use of capsules 7, 107, 207, 307. It is to be understood that the present invention has application with any kind of powder delivery system, including blisters and metering from bulk, and can be configured as a single-use or multi-use device.
  • Furthermore, the delivery device of the first-described embodiment could be modified to incorporate a thermoelectric device as the heat exchanger 27, for example, a device which utilizes the Peltier effect, as illustrated in FIG. 16 .
  • In another modification, as illustrated in FIG. 17 , the delivery device of the first-described embodiment could be modified such that the chamber 5 is substantially spherical in shape, which is particularly advantageous in allowing for the release of the powdered substance from the capsule 7 in any operative position, and the capsule 7 could be spherical.

Claims (138)

1. A nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising:
a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit including an inlet and an outlet;
a nosepiece unit including a nosepiece for fitting to a nasal cavity of the subject and being in fluid communication with the outlet of the substance supply unit; and
a mouthpiece unit including a mouthpiece in fluid communication with the inlet of the substance supply unit and through which the subject in use exhales such as to entrain substance from the substance supply unit and deliver the same through the nosepiece, and at least one temperature modifier for reducing a temperature of the exhaled air flow such as to reduce the absolute humidity thereof.
2. The delivery device of claim 1, wherein the at least one temperature modifier comprises at least one elongate channel.
3. The delivery device of claim 2, wherein the at least one temperature modifier comprises a plurality of elongate channels.
4. The delivery device of claim 2 or 3, wherein the mouthpiece unit includes a plurality of temperature modifiers which can be fluidly connected successively to the mouthpiece, and a switching mechanism which allows for one of the temperature modifiers to be fluidly connected to the mouthpiece.
5. The delivery device of claim 4, wherein, when the one of the temperature modifiers is fluidly connected to the mouthpiece, the at least one other temperature modifier is vented to atmosphere.
6. The delivery device of claim 4 or 5, wherein the switching mechanism comprises a rotatable member to which the temperature modifiers are disposed, whereby rotation of the switching mechanism provides for the one of the temperature modifiers to be in fluid communication with the mouthpiece.
7. The delivery device of any of claims 1 to 6, wherein the substance supply unit comprises a container chamber for receiving a substance-containing container which contains a dose of substance.
8. The delivery device of claim 7, wherein the container chamber is substantially cylindrical in shape.
9. The delivery device of claim 7, wherein the container chamber is substantially spherical in shape.
10. The delivery device of any of claims 7 to 9, wherein the container chamber and the nosepiece comprise a unitary, replaceable component.
11. The delivery device of any of claims 7 to 10, wherein the substance supply unit comprises a rupturing mechanism for rupturing the container as contained in the container chamber.
12. The delivery device of any of claims 7 to 11, wherein the container is formed of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
13. The delivery device of claim 12, wherein the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
14. The delivery device of claim 13, wherein the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
15. The delivery device of claim 14, wherein the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
16. The delivery device of any of claims 7 to 15, wherein the container is formed substantially of a cellulose derivative.
17. The delivery device of claim 16, wherein the container is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
18. The container of any of claims 7 to 11, wherein the container is formed substantially of gelatine.
19. The delivery device of any of claims 7 to 15, wherein the container is formed of a plastics material.
20. The delivery device of any of claims 7 to 15, wherein the container includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
21. The delivery device of claim 20, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
22. The delivery device of claim 21, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
23. The delivery device of claim 22, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
24. The delivery device of any of claims 20 to 23, wherein the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
25. The delivery device of any of claims 20 to 24, wherein the container comprises a body of gelatine.
26. The delivery device of any of claims 7 to 25, wherein the container comprises a capsule.
27. The delivery device of claim 26, wherein the capsule is substantially cylindrical in shape.
28. The delivery device of claim 26, wherein the capsule is substantially spherical in shape.
29. The delivery device of any of claims 1 to 28, wherein the at least one temperature modifier is configured to reduce the temperature of the exhaled air flow by more than about 5° C.
30. The delivery device of claim 29, wherein the at least one temperature modifier is configured to reduce the temperature of the exhaled air flow by at least about 12° C.
31. The delivery device of any of claims 1 to 30, wherein the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 10 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
32. The delivery device of claim 31, wherein the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 20 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
33. The delivery device of claim 32, wherein the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 30 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
34. The delivery device of claim 33, wherein the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 40 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
35. The delivery device of claim 34, wherein the at least one temperature modifier is configured to allow a flow therethrough at a flow rate of at least about 50 I/min at a pressure of less than about 2 kPa, and preferably less than about 1 kPa.
36. The delivery device of any of claims 1 to 35, wherein the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.5 kPa to the exhaled air flow.
37. The delivery device of claim 36, wherein the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.25 kPa to the exhaled air flow.
38. The delivery device of claim 37, wherein the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.10 kPa to the exhaled air flow.
39. The delivery device of claim 38, wherein the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.05 kPa to the exhaled air flow.
40. The delivery device of claim 39, wherein the at least one temperature modifier is configured such as to provide a pressure drop of not more than about 0.025 kPa to the exhaled air flow.
41. The delivery device of any of claims 1 to 40, wherein the at least one temperature modifier comprises a thermoelectric device.
42. A nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising:
a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit comprising a substance-receiving chamber including an inlet and an outlet, and a Venturi unit for drawing a flow of ambient air through the substance-receiving chamber;
a nosepiece unit including a nosepiece for fitting to the nasal cavity of the subject and being in fluid communication with the Venturi unit; and
a mouthpiece unit including a mouthpiece in fluid communication with the Venturi unit and through which the subject in use exhales such as to entrain substance from the substance-receiving chamber and deliver the same through the nosepiece.
43. The delivery device of claim 42, wherein the substance-receiving chamber comprises a container chamber for receiving a substance-containing container which contains a dose of substance.
44. The delivery device of claim 43, wherein the container chamber is substantially cylindrical in shape.
45. The delivery device of claim 43, wherein the container chamber is substantially spherical in shape.
46. The delivery device of any of claims 43 to 45, wherein the container chamber and the nosepiece comprise a unitary, replaceable component.
47. The delivery device of any of claims 43 to 46, wherein the substance supply unit comprises a rupturing mechanism for rupturing the substance-containing container as contained in the container chamber.
48. The delivery device of any of claims 43 to 47, wherein the container is formed of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
49. The delivery device of claim 48, wherein the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
50. The delivery device of claim 49, wherein the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
51. The delivery device of claim 50, wherein the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
52. The delivery device of any of claims 43 to 51, wherein the container is formed substantially of a cellulose derivative.
53. The delivery device of claim 52, wherein the container is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
54. The delivery device of any of claims 43 to 47, wherein the container is formed substantially of gelatine.
55. The delivery device of any of claims 43 to 51, wherein the container is formed of a plastics material.
56. The delivery device of any of claims 43 to 51, wherein the container includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
57. The delivery device of claim 56, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
58. The delivery device of claim 57, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
59. The delivery device of claim 58, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
60. The delivery device of any of claims 56 to 59, wherein the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
61. The delivery device of any of claims 56 to 60, wherein the container comprises a body of gelatine.
62. The delivery device of any of claims 43 to 61, wherein the container comprises a capsule.
63. The delivery device of claim 62, wherein the capsule is substantially cylindrical in shape.
64. The delivery device of claim 62, wherein the capsule is substantially spherical in shape.
65. The delivery device of any of claims 42 to 64, wherein the Venturi unit comprises a first, driving air flow inlet which is in fluid communication with the mouthpiece unit and provides a constriction which acts to accelerate the exhaled air flow to deliver a driving air flow at a higher velocity, a second, substance air flow inlet which is in fluid communication with the substance supply unit and through which is in use drawn a substance air flow from the substance-receiving chamber which, entrains substance as contained therein, and an air flow outlet which is in fluid communication with the nosepiece unit and through which the driving air flow and the substance air flow are in use delivered.
66. The delivery device of claim 65, wherein the driving air flow is directed substantially perpendicularly to the substance air flow.
67. The delivery device of claim 65, wherein the driving air flow is directed substantially parallel to the substance air flow.
68. The delivery device of any of claims 42 to 67, wherein the mouthpiece unit is fluidly connected to the substance supply unit, such as to provide a supplemental air flow to the substance-receiving chamber on exhalation by the subject into the mouthpiece unit.
69. The delivery device of claim 68, wherein the mouthpiece unit includes a flow channel which is fluidly connected to the inlet of the substance-receiving chamber.
70. A nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising:
a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit comprising a substance-receiving chamber including an inlet and an outlet, and a gas supply unit for delivering a gas flow through the substance-receiving chamber such as in use to provide a gas flow entraining substance from the outlet of the substance-receiving chamber;
a nosepiece unit including a nosepiece for fitting to the nasal cavity of the subject and being in fluid communication with the outlet of the substance-receiving chamber; and
a mouthpiece unit including a mouthpiece in fluid communication with the outlet of the substance-receiving chamber and the nosepiece and through which the subject in use exhales such as to entrain substance as delivered from the substance-receiving chamber and deliver the same through the nosepiece.
71. The delivery device of claim 70, wherein the substance-receiving chamber comprises a container chamber for receiving a substance-containing container which contains a dose of substance.
72. The delivery device of claim 71, wherein the container chamber is substantially cylindrical in shape.
73. The delivery device of claim 71, wherein the container chamber is substantially spherical in shape.
74. The delivery device of any of claims 71 to 73, wherein the container chamber and the nosepiece comprise a unitary, replaceable component.
75. The delivery device of any of claims 71 to 74, wherein the substance supply unit comprises a rupturing mechanism for rupturing the container as contained in the container chamber.
76. The delivery device of any of claims 71 to 75, wherein the container is formed of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
77. The delivery device of claim 76, wherein the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
78. The delivery device of claim 77, wherein the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
79. The delivery device of claim 78, wherein the container is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
80. The delivery device of any of claims 71 to 79, wherein the container is formed substantially of a cellulose derivative.
81. The delivery device of claim 80, wherein the container is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
82. The delivery device of any of claims 71 to 75, wherein the container is formed substantially of gelatine.
83. The delivery device of any of claims 71 to 79, wherein the container is formed of a plastics material.
84. The delivery device of any of claims 71 to 79, wherein the container includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the container chamber during emptying of the container.
85. The delivery device of claim 84, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 5 s following exhalation.
86. The delivery device of claim 85, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s following exhalation.
87. The delivery device of claim 86, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s following exhalation.
88. The delivery device of any of claims 84 to 87, wherein the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
89. The delivery device of any of claims 84 to 88, wherein the container comprises a body formed substantially of gelatine.
90. The delivery device of any of claims 71 to 89, wherein the container comprises a capsule.
91. The delivery device of claim 90, wherein the capsule is substantially cylindrical in shape.
92. The delivery device of claim 90, wherein the capsule is substantially spherical in shape.
93. The delivery device of any of claims 70 to 92, wherein the gas supply unit comprises a volume of pressurized gas which, when released, provides the entraining gas flow.
94. The delivery device of any of claims 70 to 92, wherein the gas supply unit comprises a charged turbine which, when released, provides the entraining gas flow.
95. The delivery device of any of claims 70 to 94, wherein the gas supply unit is a breath-actuated unit.
96. The delivery device of claim 95, wherein the gas supply unit is actuated in response to generation of a predeterminable flow rate through the mouthpiece unit.
97. The delivery device of claim 95, wherein the gas supply unit is actuated in response to generation of a predeterminable pressure at the mouthpiece unit.
98. The delivery device of any of claims 70 to 94, wherein the gas supply unit is a manually-actuated unit.
99. A capsule for containing a powdered substance which exhibits insufficient tackiness, and preferably no surface tackiness, in the presence of moisture such as not to adhere to an inner surface of a capsule chamber which contains the capsule during emptying of the capsule.
100. The capsule of claim 99, where formed of a material which exhibits insufficient tackiness in the presence of moisture in an exhalation air flow for a period of up to about 5 s.
101. The capsule of claim 100, where formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s.
102. The capsule of claim 100, where formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s.
103. The capsule of any of claims 99 to 102, where formed substantially of a cellulose derivative.
104. The capsule of claim 103, where formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
105. The capsule of any of claims 99 to 102, where formed of a plastics material.
106. The capsule of any of claims 99 to 102, where including a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the capsule chamber during emptying of the capsule.
107. The capsule of claim 106, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in an exhalation air flow for a period of up to about 5 s.
108. The capsule of claim 107, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s.
109. The capsule of claim 108, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s.
110. The capsule of any of claims 106 to 109, wherein the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
111. The capsule of any of claims 106 to 110, where comprising a body formed substantially of gelatine.
112. The capsule of any of claims 102 to 111, wherein the capsule is substantially cylindrical in shape.
113. The capsule of any of claims 102 to 111, wherein the capsule is substantially spherical in shape.
114. The capsule of any of claims 102 to 113, where comprising a body of thin-wall section.
115. The capsule of claim 114, wherein the body has a thickness of not more than about 0.25 mm.
116. The capsule of claim 115, wherein the body has a thickness of not more than about 0.20 mm.
117. Use of a capsule, containing a powdered substance, which exhibits insufficient tackiness, and preferably no surface tackiness, in the presence of moisture such as not to adhere to an inner surface of a capsule chamber which contains the same during emptying of the capsule in an exhaled air flow.
118. The use of claim 117, wherein the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in an exhalation air flow for a period of up to about 5 s.
119. The use of claim 118, wherein the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s.
120. The use of claim 119, wherein the capsule is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s.
121. The use of any of claims 117 to 120, wherein the capsule is formed substantially of a cellulose derivative.
122. The use of claim 121, wherein the capsule is formed substantially of one of hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose and carboxymethylcellulose.
123. The use of any of claims 117 to 120, wherein the capsule is formed of a plastics material.
124. The use of any of claims 117 to 120, wherein the capsule includes a coating of a material which exhibits insufficient tackiness in the presence of moisture such as not to adhere to an inner surface of the capsule chamber during emptying of the capsule.
125. The use of claim 124, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in an exhalation air flow for a period of up to about 5 s.
126. The use of claim 125, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 2 s.
127. The use of claim 126, wherein the coating is formed of a material which exhibits insufficient tackiness in the presence of moisture in the exhalation air flow for a period of up to about 1 s.
128. The use of any of claims 124 to 127, wherein the coating comprises substantially one of parylene, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, methylcellulose, ethylcellulose, carboxymethylcellulose, polyvinyl alcohol, acrylic acid polymer, methacrylic acid polymer, ethyl acrylic acid polymer, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate and hydroxyl methylcellulose acetate succinate, or any combination of layers thereof.
129. The use of any of claims 124 to 128, wherein the capsule comprises a body formed substantially of gelatine.
130. The use of any of claims 117 to 129, wherein the capsule is substantially cylindrical in shape.
131. The use of any of claims 117 to 129, wherein the capsule is substantially spherical in shape.
132. The use of any of claims 117 to 131, wherein the capsule comprises a body of thin-wall section.
133. The use of claim 132, wherein the body has a thickness of not more than about 0.25 mm.
134. The use of claim 133, wherein the body has a thickness of not more than about 0.20 mm.
135. A nasal delivery device for delivering substance to a nasal cavity of a subject, the delivery device comprising:
a substance supply unit for supplying a dose of substance to be delivered to the nasal cavity of the subject, the substance supply unit including an inlet and an outlet;
a nosepiece unit including a nosepiece for fitting to a nasal cavity of the subject and being in fluid communication with the outlet of the substance supply unit; and
a mouthpiece unit including a mouthpiece in fluid communication with the inlet of the substance supply unit and through which the subject in use exhales such as to entrain substance from the substance supply unit and deliver the same through the nosepiece.
136. A method of delivering substance to a nasal cavity of a subject, the method comprising the steps of:
supplying a dose of substance to be delivered to the nasal cavity of the subject;
fitting a nosepiece unit including a nosepiece to the nasal cavity of the subject; and
the subject exhaling through a mouthpiece unit such as to entrain the supplied dose of substance and deliver the same through the nosepiece to the nasal cavity of the subject, wherein the mouthpiece unit includes at least one temperature modifier for reducing a temperature of the exhaled air flow such as to reduce the absolute humidity thereof.
137. A method of delivering substance to a nasal cavity of a subject, the method comprising the steps of:
providing a dose of substance to be delivered to the nasal cavity of the subject in a substance-receiving chamber;
fitting a nosepiece unit including a nosepiece to the nasal cavity of the subject;
providing a Venturi unit which is operative to draw a flow of ambient air through the substance-receiving chamber; and
the subject delivering an exhaled air flow to the Venturi unit such as to draw a flow of ambient air through the substance-receiving chamber which entrains the powdered substance therein, and to the nosepiece such as to deliver the exhaled air flow entraining the powdered substance to the nasal cavity of the subject.
138. A method of delivering substance to a nasal cavity of a subject, the method comprising the steps of:
providing a dose of substance to be delivered to the nasal cavity of the subject in a substance-receiving chamber;
fitting a nosepiece unit including a nosepiece to the nasal cavity of the subject;
providing a gas flow of ambient air through the substance-receiving chamber, which entrains the powdered substance therein; and
the subject delivering an exhaled air flow to the nosepiece which entrains the gas flow entraining the powdered substance, such as to deliver the powdered substance to the nasal cavity of the subject.
US18/164,836 2005-02-23 2023-02-06 Powder Delivery Devices Abandoned US20230181849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/164,836 US20230181849A1 (en) 2005-02-23 2023-02-06 Powder Delivery Devices

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GB0503738.7 2005-02-23
GB0503738A GB0503738D0 (en) 2005-02-23 2005-02-23 Powder delivery devices
PCT/GB2006/000631 WO2006090149A2 (en) 2005-02-23 2006-02-23 Nasal delivery device
US81698409A 2009-06-10 2009-06-10
US14/491,720 US9144652B2 (en) 2005-02-23 2014-09-19 Powder delivery devices
US14/829,845 US20160166788A1 (en) 2005-02-23 2015-08-19 Powder Delivery Devices
US15/879,009 US11571531B2 (en) 2005-02-23 2018-01-24 Powder delivery devices
US18/164,836 US20230181849A1 (en) 2005-02-23 2023-02-06 Powder Delivery Devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/879,009 Continuation US11571531B2 (en) 2005-02-23 2018-01-24 Powder delivery devices

Publications (1)

Publication Number Publication Date
US20230181849A1 true US20230181849A1 (en) 2023-06-15

Family

ID=34401186

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/816,984 Active 2030-10-24 US8899229B2 (en) 2005-02-23 2006-02-23 Powder delivery devices
US14/491,720 Active US9144652B2 (en) 2005-02-23 2014-09-19 Powder delivery devices
US14/829,845 Abandoned US20160166788A1 (en) 2005-02-23 2015-08-19 Powder Delivery Devices
US15/879,009 Active US11571531B2 (en) 2005-02-23 2018-01-24 Powder delivery devices
US18/164,836 Abandoned US20230181849A1 (en) 2005-02-23 2023-02-06 Powder Delivery Devices

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US11/816,984 Active 2030-10-24 US8899229B2 (en) 2005-02-23 2006-02-23 Powder delivery devices
US14/491,720 Active US9144652B2 (en) 2005-02-23 2014-09-19 Powder delivery devices
US14/829,845 Abandoned US20160166788A1 (en) 2005-02-23 2015-08-19 Powder Delivery Devices
US15/879,009 Active US11571531B2 (en) 2005-02-23 2018-01-24 Powder delivery devices

Country Status (8)

Country Link
US (5) US8899229B2 (en)
EP (1) EP1853338B1 (en)
JP (2) JP5561902B2 (en)
CN (2) CN101217992B (en)
AU (1) AU2006217724A1 (en)
CA (2) CA2918226C (en)
GB (5) GB0503738D0 (en)
WO (1) WO2006090149A2 (en)

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0114272D0 (en) 2001-06-12 2001-08-01 Optinose As Nasal delivery device
DK1161274T3 (en) 1999-03-03 2005-05-09 Optinose As Nasal administration device
US9006175B2 (en) 1999-06-29 2015-04-14 Mannkind Corporation Potentiation of glucose elimination
ZA200306564B (en) 2001-02-26 2004-10-15 Optinose As Nasal devices.
ES2425392T3 (en) 2002-03-20 2013-10-15 Mannkind Corporation Cartridge for an inhalation device
GB0215270D0 (en) 2002-07-02 2002-08-14 Optinose As Nasal devices
GB0215904D0 (en) * 2002-07-09 2002-08-21 Team Holdings Uk Ltd Drug delivery system and method
GB0311570D0 (en) * 2003-05-20 2003-06-25 Optinose As Delivery device and method
GB0319119D0 (en) 2003-08-14 2003-09-17 Optinose As Delivery devices
GB0320171D0 (en) * 2003-08-28 2003-10-01 Optinose As Delivery devices
PL1786784T3 (en) 2004-08-20 2011-04-29 Mannkind Corp Catalysis of diketopiperazine synthesis
US7820676B2 (en) 2004-08-23 2010-10-26 Mannkind Corporation Diketopiperazine salts for drug delivery and related methods
GB0420513D0 (en) * 2004-09-15 2004-10-20 Optinose As Powder delivery devices
GB0503738D0 (en) * 2005-02-23 2005-03-30 Optinose As Powder delivery devices
US8763605B2 (en) 2005-07-20 2014-07-01 Manta Devices, Llc Inhalation device
ES2640282T3 (en) 2005-09-14 2017-11-02 Mannkind Corporation Drug formulation method based on increasing the affinity of crystalline microparticle surfaces for active agents
AU2006335994A1 (en) 2006-01-19 2007-07-26 Optinose As Nasal administration
GB0602980D0 (en) 2006-02-14 2006-03-29 Optinose As Delivery device and method
CA2643464C (en) 2006-02-22 2018-09-04 Mannkind Corporation A method for improving the pharmaceutic properties of microparticles comprising diketopiperazine and an active agent
GB0604444D0 (en) 2006-03-06 2006-04-12 Optinose As Nasal devices
JP2009529991A (en) * 2006-03-21 2009-08-27 バング アンド オルフセン メディコム アクティーゼルスカブ Inhaler flow path
GB0605799D0 (en) 2006-03-23 2006-05-03 Optinose As Nasal delivery devices
DE102006016903A1 (en) 2006-04-11 2007-10-25 Boehringer Ingelheim Pharma Gmbh & Co. Kg inhaler
GB2438834A (en) * 2006-06-08 2007-12-12 Optinose As Intranasal protein administration
GB2440316A (en) * 2006-07-25 2008-01-30 Optinose As Nasal inhaler with scrubber
GB0623728D0 (en) 2006-11-28 2007-01-10 Optinose As Delivery devices
GB2461433B (en) * 2006-11-28 2011-07-13 Optinose As Delivery devices
GB0623732D0 (en) * 2006-11-28 2007-01-10 Optinose As Powder delivery devices
GB0623731D0 (en) 2006-11-28 2007-01-10 Optinose As Delivery device
GB2477223A (en) * 2006-11-28 2011-07-27 Optinose As Nasal delivery system with a replaceable nosepiece unit
GB2476731B (en) * 2006-11-28 2011-08-24 Optinose As Delivery devices
GB2448193A (en) 2007-04-05 2008-10-08 Optinose As Nasal delivery device
GB2448183A (en) 2007-04-05 2008-10-08 Optinose As Nasal powder delivery device
US11224704B2 (en) 2007-07-06 2022-01-18 Manta Devices, Llc Dose delivery device for inhalation
WO2009009013A2 (en) * 2007-07-06 2009-01-15 Manta Devices, Llc Inhalation devices for storing and delivering medicament
GB0719299D0 (en) 2007-10-03 2007-11-14 Optinose As Nasal delivery devices
WO2011163272A1 (en) 2010-06-21 2011-12-29 Mannkind Corporation Dry powder drug delivery system and methods
CN101459908B (en) * 2007-12-13 2012-04-25 华为技术有限公司 Service subscribing method, system, server
US20090182216A1 (en) * 2008-01-14 2009-07-16 Roushey Iii William James Moisture control in a transdermal blood alcohol monitor
CN101980738A (en) 2008-02-07 2011-02-23 华盛顿大学 Circumferential aerosol device
US9839772B2 (en) 2008-05-06 2017-12-12 Cook Medical Technologies Llc Apparatus and methods for delivering therapeutic agents
US8485180B2 (en) 2008-06-13 2013-07-16 Mannkind Corporation Dry powder drug delivery system
IL279542B2 (en) 2008-06-13 2023-10-01 Mannkind Corp A dry powder inhaler and system for drug delivery
EP2300083B1 (en) 2008-06-20 2013-05-22 MannKind Corporation An interactive apparatus and method for real-time profiling of inhalation efforts
JP5331985B2 (en) * 2008-07-10 2013-10-30 憲司 中村 Manual powder spray device and manual powder spray container using the same
TWI532497B (en) 2008-08-11 2016-05-11 曼凱公司 Use of ultrarapid acting insulin
FR2939334B1 (en) * 2008-12-10 2011-01-21 Valois Sas DEVICE FOR DISPENSING FLUID PRODUCT.
US8314106B2 (en) 2008-12-29 2012-11-20 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
US9132250B2 (en) 2009-09-03 2015-09-15 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
PL2405963T3 (en) 2009-03-11 2014-04-30 Mannkind Corp Apparatus, system and method for measuring resistance of an inhaler
CN102481425A (en) * 2009-04-02 2012-05-30 呼吸科技公司 Methods, systems and apparatus for non-invasive open ventilation using a gas delivery nozzle within an outer tube
AU2010259943C1 (en) 2009-06-12 2016-03-03 Mannkind Corporation Diketopiperazine microparticles with defined specific surface areas
CA2774902C (en) 2009-09-03 2017-01-03 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
CA2778698A1 (en) 2009-11-03 2011-05-12 Mannkind Corporation An apparatus and method for simulating inhalation efforts
US8469030B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
US8439037B2 (en) * 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US8469031B2 (en) * 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
ES2666676T3 (en) * 2009-12-26 2018-05-07 Inspiro Medical Ltd Dry Powder Management Device
DE202010005594U1 (en) * 2010-04-22 2010-08-26 Jurcevic, Dinko Opening device for filled with free-flowing or flowable substances capsules and capsules designed for this purpose
GB201015371D0 (en) 2010-09-14 2010-10-27 Optinose As Nasal delivery
CA2826410A1 (en) * 2010-11-29 2012-06-07 Sanofi-Aventis Deutschland Gmbh Medicated module for an inhaler
WO2012078804A1 (en) * 2010-12-07 2012-06-14 Respira Therapeutics, Inc. Dry powder inhaler
KR101236720B1 (en) * 2011-02-28 2013-02-25 서울대학교산학협력단 Powder inhaler
BR122021002471B8 (en) 2011-03-03 2022-10-25 Impel Neuropharma Inc NASAL DRUG DISTRIBUTION DEVICE
US9949923B2 (en) 2011-03-15 2018-04-24 Optinose As Nasal delivery
SG194034A1 (en) 2011-04-01 2013-11-29 Mannkind Corp Blister package for pharmaceutical cartridges
CN107376071B (en) 2011-05-09 2021-07-09 英倍尔药业股份有限公司 Nozzle for delivering a compound to the upper olfactory region of a user
CN103747825B (en) * 2011-05-16 2016-02-17 技术合伙公司 Dose container
WO2012174472A1 (en) 2011-06-17 2012-12-20 Mannkind Corporation High capacity diketopiperazine microparticles
MX2014004983A (en) 2011-10-24 2014-09-22 Mannkid Corp Methods and compositions for treating pain.
US10463815B2 (en) 2012-02-21 2019-11-05 Respira Therapeutics, Inc. Inhaler to deliver substances for prophylaxis or prevention of disease or injury caused by the inhalation of biological or chemical agents
ES2683865T3 (en) 2012-02-24 2018-09-28 Optinose As Nasal Administration Devices
IN2014DN07611A (en) 2012-02-24 2015-05-15 Optinose As
SG10201600092UA (en) 2012-02-24 2016-02-26 Optinose As Nasal Delivery Devices
JP6199375B2 (en) * 2012-05-09 2017-09-20 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Nebulizer
EP2662105B1 (en) * 2012-05-09 2017-01-18 Boehringer Ingelheim International GmbH Atomiser
EP3248642B1 (en) * 2012-06-28 2020-04-08 The Government of The United States of America as represented by The Secretary of The Department of Health and Human Services Nasal dry powder delivery system for vaccines and other treatment agents
ES2624294T3 (en) 2012-07-12 2017-07-13 Mannkind Corporation Dry powder drug delivery systems
US10159644B2 (en) 2012-10-26 2018-12-25 Mannkind Corporation Inhalable vaccine compositions and methods
US20150367366A1 (en) * 2012-12-06 2015-12-24 Aerodesigns, Inc. Aerosol dispenser with edible cartridge
EP2964297B1 (en) * 2013-03-08 2020-05-06 Interquim, S.A. Inhaler
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
KR102499439B1 (en) 2013-03-15 2023-02-13 맨카인드 코포레이션 Microcrystalline diketopiperazine compositions and methods
WO2014150826A1 (en) * 2013-03-15 2014-09-25 Aerodesigns, Inc. Aerosol dispenser with edible cartridge
US11554229B2 (en) 2013-03-26 2023-01-17 OptiNose Inc. Nasal administration
WO2014179228A1 (en) 2013-04-28 2014-11-06 Impel Neuropharma Inc. Medical unit dose container
USD761951S1 (en) 2013-05-23 2016-07-19 Optinose As Nosepiece unit
KR102465025B1 (en) 2013-07-18 2022-11-09 맨카인드 코포레이션 Heat-stable dry powder pharmaceutical compositions and methods
CA2920488C (en) 2013-08-05 2022-04-26 Mannkind Corporation Insufflation apparatus and methods
EP2868334B1 (en) 2013-11-05 2017-01-11 Benedict Gerber Nasal spray
US10245074B2 (en) 2013-11-11 2019-04-02 Crossbay Medical, Inc. Apparatus and methods for accessing and sealing bodily vessels and cavities
US10034986B2 (en) * 2013-11-11 2018-07-31 Crossbay Medical, Inc. Method and apparatus of tubal patency catheter and delivery systems
US9028401B1 (en) 2013-11-11 2015-05-12 Cross Bay Medical, Inc. Apparatus and methods for accessing and sealing bodily vessels and cavities
US9974329B2 (en) * 2014-01-02 2018-05-22 Philip Morris Products S.A. Aerosol-generating system comprising a cylindrical polymeric capsule
WO2015148905A1 (en) 2014-03-28 2015-10-01 Mannkind Corporation Use of ultrarapid acting insulin
EP3137140B1 (en) 2014-05-02 2019-07-10 Manta Devices, LLC Delivery device
KR102458964B1 (en) * 2014-06-25 2022-10-25 옵티노즈, 인크. Nasal administration
FR3025110B1 (en) * 2014-09-02 2016-12-23 Univ Francois-Rabelais De Tours NASAL FLUID SPRAY DEVICE
US10561806B2 (en) 2014-10-02 2020-02-18 Mannkind Corporation Mouthpiece cover for an inhaler
KR20170085121A (en) 2014-11-19 2017-07-21 옵티노즈 에이에스 Intranasal Administration
EP3244952A4 (en) 2015-01-14 2018-11-14 Respira Therapeutics, Inc. Powder dispersion methods and devices
CN108601916B (en) 2015-09-10 2021-07-09 英倍尔药业股份有限公司 In-line nasal delivery device
FR3046552B1 (en) * 2016-01-07 2018-02-16 Aptar France Sas NASAL POWDER DISTRIBUTION DEVICE.
CN105963838B (en) * 2016-06-08 2018-12-14 湖南明康中锦医疗科技发展有限公司 A kind of empty oxygen mixed structure and ventilator for ventilator
BR112018074957A2 (en) * 2016-07-07 2019-03-12 Philip Morris Products S.A. nicotine inhaler system
US11426543B2 (en) 2017-04-18 2022-08-30 Inspiring Pty Ltd Dry powder inhaler and flexible bag spacer device for a dry powder inhaler
US11744967B2 (en) * 2017-09-26 2023-09-05 Shin Nippon Biomedical Laboratories, Ltd. Intranasal delivery devices
US10792449B2 (en) 2017-10-03 2020-10-06 Breathe Technologies, Inc. Patient interface with integrated jet pump
EP3713626A4 (en) 2017-11-21 2021-08-18 Impel Neuropharma Inc. Intranasal device with inlet interface
WO2019104205A1 (en) 2017-11-21 2019-05-31 Impel Neuropharma, Inc. Intranasal device with dip tube
CN108261604A (en) * 2017-12-07 2018-07-10 上海昊海生物科技股份有限公司 The aseptic powdery spray equipment closed for wound care, the surface of a wound
CN108421138A (en) * 2017-12-25 2018-08-21 宫本海 A kind of nasal cavity atomizing medicine absorber
BR112020013744A8 (en) 2018-01-05 2022-10-18 Impel Neuropharma Inc DIHYDROERGOTAMINE INTRANASAL DISPENSATION BY PRECISION OLFATIVE DEVICE
CN111836615A (en) 2018-01-05 2020-10-27 英倍尔药业股份有限公司 Intranasal delivery of olanzapine by precision nasal device
US20210008305A1 (en) * 2018-03-09 2021-01-14 Health Research, Inc. Induction spacer for inhaler
WO2020018959A1 (en) 2018-07-19 2020-01-23 Impel Neuropharma, Inc. Respiratory tract delivery of levodopa and dopa decarboxylase inhibitor for treatment of parkinson's disease
US20220296825A1 (en) * 2018-10-04 2022-09-22 Optinose As Exhalation delivery system for and method of treating sinus disease
US11759585B2 (en) 2019-01-03 2023-09-19 Impel Pharmaceuticals Inc. Nasal drug delivery device with detachable nozzle
BR112021023049A8 (en) 2019-05-17 2022-10-18 Impel Neuropharma Inc SINGLE USE NASAL DISPENSING DEVICE
CN111514418B (en) * 2019-06-12 2022-01-14 中南大学湘雅二医院 Self-suction nasal powder material feeding device
AU2020361621A1 (en) 2019-10-09 2022-07-21 Crossbay Medical, Inc. Apparatus and method for everting catheter for IUD delivery and placement in the uterine cavity
JP2023511370A (en) 2020-01-22 2023-03-17 シーロス セラピューティクス, インコーポレイテッド Reduction of side effects of NMDA antagonists
NL2026704B1 (en) * 2020-10-19 2021-11-23 Wenzhou central hospital Dry powder inhalant capable of preventing respiratory tract transmission of mycobacterium tuberculosis
WO2022241214A1 (en) 2021-05-14 2022-11-17 Seelos Therapeutics, Inc. Methods of using nmda receptor antagonists
TW202310825A (en) 2021-05-14 2023-03-16 美商西羅斯醫療公司 Reducing side effects of nmda receptor antagonists
WO2024033662A1 (en) * 2022-08-12 2024-02-15 Cambridge Healthcare Innovations Limited Negative pressure amplification apparatus and inhaler

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507277A (en) * 1966-09-17 1970-04-21 Fisons Pharmaceuticals Ltd Inhalation device
US4564363A (en) * 1983-07-13 1986-01-14 Smithkline Beckman Corporation Delayed action assembly
US5176132A (en) * 1989-05-31 1993-01-05 Fisons Plc Medicament inhalation device and formulation
US5533502A (en) * 1993-05-28 1996-07-09 Vortran Medical Technology, Inc. Powder inhaler with aerosolization occurring within each individual powder receptacle
US6098618A (en) * 1997-03-14 2000-08-08 Astra Aktiebolag Inhalation device
US6138673A (en) * 1995-06-29 2000-10-31 Fisons Limited Inhalation device and method
US20040112380A1 (en) * 2001-02-26 2004-06-17 Djupesland Per Gisle Nasal delivery devices
US20050072430A1 (en) * 2001-06-12 2005-04-07 Per Gisle Djupesland Nasal devices
US20060025355A1 (en) * 2004-06-21 2006-02-02 Nektar Therapeutics Compositions comprising amphotericin B, methods, and systems
US20060254583A1 (en) * 2003-03-20 2006-11-16 Arthur Deboeck Dry powder inhaler system
US7841337B2 (en) * 2000-11-15 2010-11-30 Optinose As Breath-actuated nasal delivery device
US8899229B2 (en) * 2005-02-23 2014-12-02 Optinose As Powder delivery devices

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US605436A (en) 1898-06-07 Inhaler
US642748A (en) 1899-02-23 1900-02-06 Arthur Manners Inhaler.
US658436A (en) 1900-05-28 1900-09-25 Hans Hennerich Groth Insufflator.
US746749A (en) 1903-03-18 1903-12-15 George E Seidel Nasal medicator.
US794641A (en) 1905-03-06 1905-07-11 Alfred H Ramey Inhaler.
US902832A (en) 1907-09-20 1908-11-03 Edward F Philbrook Inhaler.
IT1017153B (en) 1974-07-15 1977-07-20 Isf Spa APPARATUS FOR INHALATIONS
YU41046B (en) * 1974-08-22 1986-10-31 Schering Ag Medicine inholating device
JPS5384871A (en) 1977-01-05 1978-07-26 Hitachi Ltd Recovering apparatus for gas
JPS5453674A (en) 1977-10-07 1979-04-27 Hitachi Ltd Cold trap
JPS56114801U (en) * 1980-02-01 1981-09-03
JPS56114801A (en) 1980-02-16 1981-09-09 Seijiro Suda Storage of hydrogen
US4570630A (en) * 1983-08-03 1986-02-18 Miles Laboratories, Inc. Medicament inhalation device
DE3345722A1 (en) 1983-12-17 1985-06-27 Boehringer Ingelheim KG, 6507 Ingelheim INHALATOR
JPS63248422A (en) 1987-04-03 1988-10-14 Kogyo Kaihatsu Kenkyusho Steam trapping method
US4819625A (en) * 1987-11-12 1989-04-11 Cimco, Inc. Nebulizer heater
US4829997A (en) * 1988-02-18 1989-05-16 University Of Victoria Portable heat exchanger for inhalation rewarming
IT1220780B (en) * 1988-06-15 1990-06-21 Interpump Spa HIGH FLEXIBILITY OF USE DEVICE FOR CLEANING SURFACES USING A LIQUID JET
US5337740A (en) * 1991-08-01 1994-08-16 New England Pharmaceuticals, Inc. Inhalation devices
US5373841A (en) 1992-02-04 1994-12-20 Kyllonen; David M. Self-operated nasal humidifier
DE69330672T2 (en) * 1992-06-12 2002-06-27 Teijin Ltd., Osaka PHARMACEUTICAL PREPARATION FOR APPLICATION IN THE AIRWAY
US5239993A (en) 1992-08-26 1993-08-31 Glaxo Inc. Dosage inhalator providing optimized compound inhalation trajectory
JPH07147255A (en) 1993-11-25 1995-06-06 Kokusai Electric Co Ltd Gas cooler
BR9606838A (en) 1995-01-23 1999-11-30 Direct Haler A S Inhaler
JPH08238318A (en) 1995-03-03 1996-09-17 Unisia Jecs Corp Medicator for nostril
SE506208C2 (en) * 1995-07-05 1997-11-24 Aerocrine Systems Kb Device for collecting gas from the upper respiratory tract and delivering this gas to the inhalation air in a respirator
US5797392C1 (en) 1996-01-22 2001-01-09 Direct Haler As Inhaler
SI0986413T1 (en) 1997-05-27 2004-12-31 Direct-Haler A/S Inhaler for powdered medicaments
DE19835346A1 (en) * 1998-08-05 2000-02-10 Boehringer Ingelheim Pharma Two-part capsule for pharmaceutical preparations for powder inhalers
DK1161274T3 (en) 1999-03-03 2005-05-09 Optinose As Nasal administration device
GB0015309D0 (en) 2000-06-21 2000-08-16 Djupesland Per G Apparatus
DE10126924A1 (en) 2001-06-01 2002-12-05 Boehringer Ingelheim Pharma Inhalation capsule contains powdered mixture of tiotropium and auxiliary, for treating asthma or chronic obstructive pulmonary disease, having capsule material of low moisture content to improve stability
US20030070679A1 (en) * 2001-06-01 2003-04-17 Boehringer Ingelheim Pharma Kg Capsules containing inhalable tiotropium
AUPR656201A0 (en) 2001-07-24 2001-08-16 R.P. Scherer Holdings Pty Ltd Non-gelatin shells for capsules
GB0130857D0 (en) 2001-12-22 2002-02-06 Glaxo Group Ltd Medicament dispenser
US8777906B1 (en) * 2002-01-24 2014-07-15 Robin Scott Gray Syringe with inspection window
US8323692B2 (en) * 2002-02-21 2012-12-04 Valeant International Bermuda Controlled release dosage forms
GB0207422D0 (en) 2002-03-28 2002-05-08 Optinose As Nasal devices
GB0207817D0 (en) 2002-04-04 2002-05-15 Optinose As Nasal devices
GB0209494D0 (en) * 2002-04-25 2002-06-05 Optinose As Nasal devices
EP1502588B1 (en) * 2002-05-09 2013-03-06 Chugai Seiyaku Kabushiki Kaisha Light-stabilized soft capsule for formulations
GB0215270D0 (en) 2002-07-02 2002-08-14 Optinose As Nasal devices
GB0215904D0 (en) 2002-07-09 2002-08-21 Team Holdings Uk Ltd Drug delivery system and method
US20040043064A1 (en) * 2002-08-29 2004-03-04 Iorio Theodore L. Dosage forms having reduced moisture transmission
US20050056280A1 (en) 2002-12-31 2005-03-17 Nektar Therapeutics Receptacle for an aerosolizable pharmaceutical formulation
GB0300008D0 (en) * 2003-01-02 2003-02-05 Optinose As Delivery devices
US20040173211A1 (en) 2003-01-14 2004-09-09 Boehringer Ingelheim International Gmbh Powder inhaler
DE10300982A1 (en) 2003-01-14 2004-07-22 Boehringer Ingelheim Pharma Gmbh & Co. Kg powder inhaler
US7559325B2 (en) * 2003-04-09 2009-07-14 Novartis Pharma Ag Aerosolization apparatus with air inlet shield
GB0311570D0 (en) 2003-05-20 2003-06-25 Optinose As Delivery device and method
GB0319119D0 (en) 2003-08-14 2003-09-17 Optinose As Delivery devices
GB0320171D0 (en) 2003-08-28 2003-10-01 Optinose As Delivery devices
USD530815S1 (en) 2004-03-19 2006-10-24 Optinose As Nasal delivery device
GB0420513D0 (en) 2004-09-15 2004-10-20 Optinose As Powder delivery devices
CN100502378C (en) 2005-07-15 2009-06-17 北京大学深圳研究生院 Circuit and method of peak-to-average ratio suppression in OFDM system
AU2006335994A1 (en) 2006-01-19 2007-07-26 Optinose As Nasal administration
WO2007093784A1 (en) 2006-02-14 2007-08-23 Optinose As Delivery device and method
GB0602980D0 (en) 2006-02-14 2006-03-29 Optinose As Delivery device and method
GB0604319D0 (en) 2006-03-03 2006-04-12 Optinose As Nasal delivery
GB0604444D0 (en) 2006-03-06 2006-04-12 Optinose As Nasal devices
GB0605799D0 (en) 2006-03-23 2006-05-03 Optinose As Nasal delivery devices
GB2437488A (en) 2006-04-25 2007-10-31 Optinose As Pharmaceutical oily formulation for nasal or buccal administration
GB2438834A (en) 2006-06-08 2007-12-12 Optinose As Intranasal protein administration
GB2440316A (en) 2006-07-25 2008-01-30 Optinose As Nasal inhaler with scrubber
KR101429576B1 (en) 2006-08-08 2014-08-12 고꾸리츠 다이가꾸 호우징 오까야마 다이가꾸 Diagnostic agent
GB0623728D0 (en) 2006-11-28 2007-01-10 Optinose As Delivery devices
GB0623731D0 (en) 2006-11-28 2007-01-10 Optinose As Delivery device
GB0623732D0 (en) 2006-11-28 2007-01-10 Optinose As Powder delivery devices
WO2008122018A1 (en) 2007-04-02 2008-10-09 Abbott Respiratory Llc Breath actuated nasal pump
GB2448193A (en) 2007-04-05 2008-10-08 Optinose As Nasal delivery device
GB2448183A (en) * 2007-04-05 2008-10-08 Optinose As Nasal powder delivery device
GB0719299D0 (en) 2007-10-03 2007-11-14 Optinose As Nasal delivery devices
US8899230B2 (en) 2008-02-15 2014-12-02 Nasologix, Inc. Aerosol therapy device with high frequency delivery
WO2010029441A2 (en) 2008-09-15 2010-03-18 Optinose As Nasal delivery
WO2010131486A1 (en) * 2009-05-15 2010-11-18 Shin Nippon Biomedical Laboratories, Ltd. Intranasal pharmaceutical compositions with improved pharmacokinetics
GB201015371D0 (en) 2010-09-14 2010-10-27 Optinose As Nasal delivery
AU2011308548B2 (en) * 2010-09-30 2014-10-23 Breathe Technologies, Inc. Methods, systems and devices for humidifying a respiratory tract
US9949923B2 (en) 2011-03-15 2018-04-24 Optinose As Nasal delivery
ES2683865T3 (en) 2012-02-24 2018-09-28 Optinose As Nasal Administration Devices
SG10201600092UA (en) 2012-02-24 2016-02-26 Optinose As Nasal Delivery Devices
IN2014DN07611A (en) 2012-02-24 2015-05-15 Optinose As
EP4062939A1 (en) 2013-03-26 2022-09-28 Optinose AS Nasal administration
US11554229B2 (en) 2013-03-26 2023-01-17 OptiNose Inc. Nasal administration
USD723156S1 (en) 2013-05-23 2015-02-24 Optinose As Nasal delivery device
USD725769S1 (en) 2013-05-23 2015-03-31 Optinose As Nasal delivery device
USD761951S1 (en) 2013-05-23 2016-07-19 Optinose As Nosepiece unit
KR20170085121A (en) 2014-11-19 2017-07-21 옵티노즈 에이에스 Intranasal Administration

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507277A (en) * 1966-09-17 1970-04-21 Fisons Pharmaceuticals Ltd Inhalation device
US4564363A (en) * 1983-07-13 1986-01-14 Smithkline Beckman Corporation Delayed action assembly
US5176132A (en) * 1989-05-31 1993-01-05 Fisons Plc Medicament inhalation device and formulation
US5533502A (en) * 1993-05-28 1996-07-09 Vortran Medical Technology, Inc. Powder inhaler with aerosolization occurring within each individual powder receptacle
US6138673A (en) * 1995-06-29 2000-10-31 Fisons Limited Inhalation device and method
US6098618A (en) * 1997-03-14 2000-08-08 Astra Aktiebolag Inhalation device
US7841337B2 (en) * 2000-11-15 2010-11-30 Optinose As Breath-actuated nasal delivery device
US20040112380A1 (en) * 2001-02-26 2004-06-17 Djupesland Per Gisle Nasal delivery devices
US7347201B2 (en) * 2001-02-26 2008-03-25 Optinose As Nasal delivery devices
US20050072430A1 (en) * 2001-06-12 2005-04-07 Per Gisle Djupesland Nasal devices
US7975690B2 (en) * 2001-06-12 2011-07-12 Optinose As Nasal devices
US20060254583A1 (en) * 2003-03-20 2006-11-16 Arthur Deboeck Dry powder inhaler system
US20060025355A1 (en) * 2004-06-21 2006-02-02 Nektar Therapeutics Compositions comprising amphotericin B, methods, and systems
US8899229B2 (en) * 2005-02-23 2014-12-02 Optinose As Powder delivery devices
US11571531B2 (en) * 2005-02-23 2023-02-07 OptiNose Inc. Powder delivery devices

Also Published As

Publication number Publication date
EP1853338A2 (en) 2007-11-14
AU2006217724A1 (en) 2006-08-31
GB201000325D0 (en) 2010-02-24
GB2424587B (en) 2010-05-19
GB201000321D0 (en) 2010-02-24
WO2006090149A3 (en) 2006-12-21
US20180272085A1 (en) 2018-09-27
US11571531B2 (en) 2023-02-07
CA2598953A1 (en) 2006-08-31
GB2465098B (en) 2010-06-16
CA2918226C (en) 2018-10-30
EP1853338B1 (en) 2019-07-17
CN103463716A (en) 2013-12-25
CA2598953C (en) 2018-09-25
US20090293873A1 (en) 2009-12-03
JP2008531101A (en) 2008-08-14
US8899229B2 (en) 2014-12-02
GB2465098A (en) 2010-05-12
JP5561902B2 (en) 2014-07-30
GB2465099B (en) 2010-06-16
US9144652B2 (en) 2015-09-29
CN101217992B (en) 2013-07-10
WO2006090149A2 (en) 2006-08-31
CN103463716B (en) 2016-06-29
GB0503738D0 (en) 2005-03-30
GB201000312D0 (en) 2010-02-24
GB2465097B (en) 2010-06-16
JP5832981B2 (en) 2015-12-16
CN101217992A (en) 2008-07-09
GB2465099A (en) 2010-05-12
US20160166788A1 (en) 2016-06-16
GB0603634D0 (en) 2006-04-05
JP2013027724A (en) 2013-02-07
GB2465097A (en) 2010-05-12
GB2424587A (en) 2006-10-04
CA2918226A1 (en) 2006-08-31
US20150101605A1 (en) 2015-04-16

Similar Documents

Publication Publication Date Title
US20230181849A1 (en) Powder Delivery Devices
EP2460555B1 (en) Nasal delivery device
TWI313613B (en) Breath actuated nasal drug delivery system and method of delivering a predetermined amount of medication to nasal epithelia of a user by using a nasal drug delivery system
US10124129B2 (en) Dispensing device, storage device and method for dispensing a formulation
US6014972A (en) Dry drug particle delivery system and method for ventilator circuits
JP4607834B2 (en) System and method for aerosolizing pharmaceutical formulations
JP2005533582A5 (en)
US20120125331A1 (en) Dry powder inhaler with aeroelastic dispersion mechanism
EP0826386B1 (en) Powder dispenser
US5881720A (en) Method of delivering halotherapy
JP2008049127A (en) Inhaler
EP3107606B1 (en) Inhalation device for inhaling powders

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION