US20220339830A1 - Method for the preparation of composite material in sandwich form - Google Patents
Method for the preparation of composite material in sandwich form Download PDFInfo
- Publication number
- US20220339830A1 US20220339830A1 US17/810,770 US202217810770A US2022339830A1 US 20220339830 A1 US20220339830 A1 US 20220339830A1 US 202217810770 A US202217810770 A US 202217810770A US 2022339830 A1 US2022339830 A1 US 2022339830A1
- Authority
- US
- United States
- Prior art keywords
- core
- sandwich
- outer layers
- insert
- polymeric material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000002131 composite material Substances 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title description 3
- 239000000463 material Substances 0.000 claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 239000011159 matrix material Substances 0.000 claims abstract description 7
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 7
- 239000004744 fabric Substances 0.000 claims description 18
- 238000002844 melting Methods 0.000 claims description 15
- 230000008018 melting Effects 0.000 claims description 15
- -1 polypropylene Polymers 0.000 claims description 14
- 239000012779 reinforcing material Substances 0.000 claims description 13
- 238000007596 consolidation process Methods 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 12
- 239000000835 fiber Substances 0.000 claims description 9
- 229920001169 thermoplastic Polymers 0.000 claims description 9
- 239000004416 thermosoftening plastic Substances 0.000 claims description 9
- 239000004697 Polyetherimide Substances 0.000 claims description 8
- 239000004743 Polypropylene Substances 0.000 claims description 8
- 229920001601 polyetherimide Polymers 0.000 claims description 8
- 229920001155 polypropylene Polymers 0.000 claims description 8
- 239000003365 glass fiber Substances 0.000 claims description 7
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 6
- 239000004643 cyanate ester Substances 0.000 claims description 6
- 229920002530 polyetherether ketone Polymers 0.000 claims description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 6
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 6
- 239000004593 Epoxy Substances 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000004917 carbon fiber Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- 229920001187 thermosetting polymer Polymers 0.000 claims description 4
- 239000004760 aramid Substances 0.000 claims description 3
- 230000001413 cellular effect Effects 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920006231 aramid fiber Polymers 0.000 claims description 2
- 239000003779 heat-resistant material Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 30
- 238000010438 heat treatment Methods 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 230000002787 reinforcement Effects 0.000 description 7
- 239000006260 foam Substances 0.000 description 6
- 229920006362 Teflon® Polymers 0.000 description 5
- 239000003292 glue Substances 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000009940 knitting Methods 0.000 description 3
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14467—Joining articles or parts of a single article
- B29C45/14508—Joining juxtaposed sheet-like articles, e.g. for making trim panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D24/00—Producing articles with hollow walls
- B29D24/002—Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/16—Cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0001—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0005—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14778—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
- B29C45/14786—Fibrous material or fibre containing material, e.g. fibre mats or fibre reinforced material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/72—Heating or cooling
- B29C45/7207—Heating or cooling of the moulded articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/08—Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
- B29C70/086—Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/18—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length in the form of a mat, e.g. sheet moulding compound [SMC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/34—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/46—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
- B29C70/467—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements during mould closing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/46—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
- B29C70/48—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/54—Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
- B29C70/541—Positioning reinforcements in a mould, e.g. using clamping means for the reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
- B29C70/681—Component parts, details or accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
- B29C70/70—Completely encapsulating inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D24/00—Producing articles with hollow walls
- B29D24/002—Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled
- B29D24/005—Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled the structure having joined ribs, e.g. honeycomb
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/001—Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings
- B29D99/0021—Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings provided with plain or filled structures, e.g. cores, placed between two or more plates or sheets, e.g. in a matrix
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/02—Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
- B32B17/04—Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/066—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B19/00—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
- B32B19/02—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica the layer of fibres or particles being impregnated or embedded in a plastic substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B19/00—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
- B32B19/04—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B19/00—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
- B32B19/06—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/10—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
- B32B3/12—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/02—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/10—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/146—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers whereby one or more of the layers is a honeycomb structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/16—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/10—Removing layers, or parts of layers, mechanically or chemically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/026—Knitted fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/12—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/245—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/005—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
- B32B9/007—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/04—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B9/046—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/18—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
- B29C2043/181—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles encapsulated
- B29C2043/182—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles encapsulated completely
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14467—Joining articles or parts of a single article
- B29C2045/1454—Joining articles or parts of a single article injecting between inserts not being in contact with each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14754—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles being in movable or releasable engagement with the coating, e.g. bearing assemblies
- B29C2045/1477—Removable inserts, e.g. the insert being peeled off after moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/18—Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
- B29C45/1816—Feeding auxiliary material, e.g. colouring material
- B29C2045/1825—Feeding auxiliary material, e.g. colouring material feeding auxiliary material for either skin or core of the injected article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2063/00—Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2069/00—Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2071/00—Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2079/00—Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
- B29K2079/08—PI, i.e. polyimides or derivatives thereof
- B29K2079/085—Thermoplastic polyimides, e.g. polyesterimides, PEI, i.e. polyetherimides, or polyamideimides; Derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2083/00—Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2101/00—Use of unspecified macromolecular compounds as moulding material
- B29K2101/10—Thermosetting resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2101/00—Use of unspecified macromolecular compounds as moulding material
- B29K2101/12—Thermoplastic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/08—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
- B29K2105/0872—Prepregs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2277/00—Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2307/00—Use of elements other than metals as reinforcement
- B29K2307/04—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2309/00—Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
- B29K2309/08—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2023/00—Tubular articles
- B29L2023/005—Hoses, i.e. flexible
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2023/00—Tubular articles
- B29L2023/005—Hoses, i.e. flexible
- B29L2023/007—Medical tubes other than catheters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0253—Polyolefin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
- B32B2262/0269—Aromatic polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/06—Vegetal fibres
- B32B2262/062—Cellulose fibres, e.g. cotton
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/103—Metal fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/12—Conjugate fibres, e.g. core/sheath or side-by-side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0271—Epoxy resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/02—Cellular or porous
- B32B2305/024—Honeycomb
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/07—Parts immersed or impregnated in a matrix
- B32B2305/076—Prepregs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/10—Fibres of continuous length
- B32B2305/18—Fabrics, textiles
- B32B2305/182—Fabrics, textiles knitted
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/714—Inert, i.e. inert to chemical degradation, corrosion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/72—Density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2309/00—Parameters for the laminating or treatment process; Apparatus details
- B32B2309/08—Dimensions, e.g. volume
- B32B2309/10—Dimensions, e.g. volume linear, e.g. length, distance, width
- B32B2309/105—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/08—Cars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/18—Aircraft
Definitions
- the invention relates to the field of products made of composite material or composite materials.
- Products made of composite materials means a product that may include a resin matrix consisting of a polymeric material, in particular, thermoplastic or thermosetting material. This matrix may be reinforced by a material that may have a melting point higher than the melting point of the polymeric material.
- FRP usually refers to “fiber reinforced plastic”.
- Composite materials of the FRP type have good mechanical resistance with respect to the weight of the material. They also have very good resistance to corrosion. They have properties superior to those of the components taken separately. They allow in particular, in the field of automotive or aeronautics, lightening of parts traditionally made of steel. They also have good resistance to fatigue.
- the reinforcements of the composite can be obtained in different ways: by the addition of mineral fibers dispersed in the matrix, by the use of a supporting structure made of steel or synthetic material, by the use of a reinforcing fiber fabric, by the use of non-wovens or mats or other products obtained by textile methods.
- the fabric reinforcements may have a flat structure and may be composed of weft yarn and warp yarn intersecting and intertwining perpendicularly. Their manufacture may require the use of a separate spool by warp thread.
- Knitted reinforcements can mean a product generally obtained from continuous yarn where the yarn forms mesh intertwined, arranged in successive rows.
- the production of a traditional knit requires only a spool of yarn for the yarn mesh.
- the yarn may be of the monofilament or multifilament type.
- the multifilament may be a roving (i.e., set of parallel continuous filaments assembled without torsion), a spun yarn (i.e., a set of short staple fibers assembled with torsion).
- Yarn may also be an assembly of several yarns or filaments of different materials. This assembly can be done by twisting, wrapping. It is therefore possible to produce yarn comprising polymeric material and reinforcing material. For example, it is possible to assemble reinforcement yarn of the aramid, carbon, glass type, and thermoplastic yarn (i.e. polypropylene, polycarbonate, polyetherimide (PEI)). This type of yarn can then be called mixed yarn.
- PEI polyetherimide
- This type of mixed yarn can make it possible to obtain a preform, containing both the reinforcement and the matrix.
- This preform is said to be “dry”, as opposed to the gummy and sticky resin pre-impregnated fabric commonly called “prepreg”.
- the impregnation of the skins and the binding of these to the core can influence the final properties of the sandwich composite.
- Good impregnation of the skins generally requires a consolidation method in several stages; which consumes time and resources. This is particularly the case when the finished product has a complex 3D shape.
- the traditional methods for making a sandwich can generally include the following steps:
- a core for example honeycomb or foam
- the core of the sandwich can be chosen specifically to resist the curing of the outer layers. In some cases, it has been found that it is impaired by putting under temperature and pressure. It has been observed, for example, that foam cores may sag or shrink during this treatment.
- Document EP 0 770 472 A1 outlines a method for manufacturing a composite material sandwich panel with a core formed of an open-cell structure and skins formed of fibers and resin.
- the document provides for the interposition of a watertight membrane and a film of glue between the skins and the core. After closing the mold, a single thermal cycle makes it possible to polymerize the glue and then to inject the resin under pressure into the fibers and finally to polymerize the resin.
- Document EP 1 086 801 A1 outlines a method of manufacturing a sandwich panel by the resin injection technique, RTM. To avoid filling the honeycomb structure, this method requires the establishment in the mold of a film of an intumescent material and a barrier fabric on each of the faces of the core.
- the method according to the invention uses an insert of heat-resistant material, to form the outer layers, instead of the core and the replacement of the insert by the core when the outer layers are consolidated. All that remains then is to perform heat treatment to bond the outer layers to the core.
- the method according to the invention may include the following steps:
- Embodiment of outer layers or pre-impregnated skins for example by knitting or weaving yarns that may include polymeric material and reinforcing material;
- the skins can be made from a textile of reinforcing material and the polymeric material can be provided by injection.
- the method may then include the following steps:
- the insert may be rigid or not. In particular, it can be silicone.
- it may expand at the temperature. This can allow increasing compression during consolidation.
- the insert can provide a particular shape to the finished product, such as for example a beveled shape.
- an adhesive layer may be inserted between the sandwich body and the outer layers.
- This adhesive may be liquid glue, an adhesive film or a knitted preform comprising thermoplastic fibers.
- the thickness of the core can be generally at least about 2 mm and not greater than about 50 mm, preferably at least about 3 mm and not greater than about 40 mm, and more preferably at least about 5 mm and not greater than about 25 mm, and the thickness of the skin can be at least about 0.2 mm and not greater than about 5 mm, preferably at least about 0.4 mm and not greater than about 2 mm, and more preferably at least about 0.5 mm and not greater than about 1 mm.
- the object of this invention can be to provide an alternative method of manufacturing a sandwich, in particular to provide a manufacturing method that dissociates the choice of material of the body of the sandwich and the choice of the material of the outer layers.
- Polymeric material may include thermoplastic materials such as, for example, polycarbonate (PC), polyetherimide (PEI), polypropylene (PP), poly(ethylene terephthalate) (PET), polyether ether ketone (PEEK), or thermosetting materials such as for example epoxy, cyanate ester, phenolic resin, polyester.
- thermoplastic materials such as, for example, polycarbonate (PC), polyetherimide (PEI), polypropylene (PP), poly(ethylene terephthalate) (PET), polyether ether ketone (PEEK), or thermosetting materials such as for example epoxy, cyanate ester, phenolic resin, polyester.
- Reinforcing material may include synthetic materials, such as para-aramid, polypropylene, natural materials, such as linen, inorganic materials, such as glass, quartz, carbon, basalt, metal.
- the method according to the invention has proven particularly advantageous because it can make it possible to dissociate the choice of the type of core of the sandwich from the choice of the transformation method.
- the method according to the invention can make it possible to achieve good impregnation of the outer skins.
- Embodiment 1 A method of manufacturing a sandwich-shaped composite material product wherein the sandwich-shaped composite material product comprises two outer layers and a core, the outer layers having a matrix of fiber-reinforced polymeric material, the polymeric material having a melting point below the melting point of the material constituting the fibers; wherein the method being characterized in that it uses an insert consisting of material having a melting point higher than the melting point of the polymeric material, on which the outer layers are consolidated; and wherein this insert is subsequently replaced by the core of the sandwich, the assembly then undergoing a consolidation treatment for bonding the outer layers to the core.
- Embodiment 2 The method according to embodiment 1, characterized in that it comprises the following steps: production of preforms composed of fiber-reinforced polymeric material intended to become the outer layers of the sandwich, juxtaposition, in a mold, of a first preform, of the insert, and of a second preform, consolidation of the preforms to obtain the outer layers, by heating and pressurizing, to reach the temperature of the melting point of the polymeric material, without reaching the temperature of the melting point of the reinforcing material or the material of the insert, removal of the insert, separation of the outer layers and insertion of the core of the sandwich, heat treatment to adhere the outer layers to the core, cooling of the product thus obtained.
- Embodiment 3 The method according to embodiment 2, characterized in that the preforms are made using pre-impregnated polymer resin fabrics.
- Embodiment 4 The method according to embodiment 2, characterized in that the preforms are made by knitting a yarn comprising the reinforcing material and the polymeric material.
- Embodiment 5 The method according to embodiment 2, characterized in that a peel cost is added between the preforms, at the places intended to form a zone without a core.
- Embodiment 6 The method according to embodiment 1, characterized in that it comprises the following steps: juxtaposition, in a mold, of a fabric or knit made of reinforcing material, the insert, and a second fabric or knit made of reinforcing material; injection of a resin of polymeric material under pressure and temperature; removal of the insert and insertion of the core of the sandwich; consolidation curing to adhere the outer layers to the core of the sandwich; cooling of the product thus obtained.
- Embodiment 7 The method according to embodiment 1, characterized in that the insert is made of silicone.
- Embodiment 10 The method according to embodiment 1, characterized in that the polymeric material is of the thermosetting type, in particular chosen from epoxy, cyanate ester, phenolic resins and polyester.
- Embodiment 11 The method according to embodiment 1, characterized in that the core of the sandwich consists of cellular honeycomb material.
- Embodiment 12 The method according to embodiment 1, characterized in that the thickness of the core is at least about 2 mm and not greater than about 50 mm.
- Embodiment 13 The method according to embodiment 1, characterized in that the thickness of each of the outer layers is at least about 0.2 mm and not greater than about 5 mm.
- a rigid insert for example a Teflon® block of a few millimeters is deposited on the fabrics.
- the second skin of the sandwich is made by draping several “prepreg” fabrics on the rigid insert.
- the mold is closed by a flexible counter-mold.
- the assembly is allowed to cool and the insert is removed.
- a high-temperature-resistant glue is applied to each of the faces intended to be in contact with the core.
- a polyimide foam-type core (approximate density of 50 kg/m3) is introduced in place of the insert.
- the entire sandwich is then subjected to a final consolidation treatment, under vacuum at a temperature of about 90-120° C., so as to ensure good adhesion of the skins and the core.
- the first skin is formed by a stack of several non-impregnated reinforcing fabrics, of carbon fibers, deposited in a steel mold.
- a soft insert (silicone plate a few millimeters thick) is deposited on the fabric.
- the second skin is formed by a fabric of the same type deposited on the insert.
- the mold is closed by the steel counter mold.
- Cyanate ester resin is injected by a known RTM-type method, at a temperature between 80 and 120° C. under a pressure of 10 to 15 bar.
- the heat treatment is prolonged for 4 hours.
- the mold is allowed to cool, then the insert is removed and the skins are separated by removing the peel ply.
- a very thin layer of cyanate ester resin is added to the skins (on the faces intended to come into contact with the honeycomb).
- a honeycomb core is introduced between the two skins, in place of the insert, to form a sandwich.
- the entire sandwich is subjected to heat treatment (180-200° C.), under vacuum, for 4 hours so as to bond the skins and the core.
- a knit is made using a mixed yarn comprising glass fibers and thermoplastic fibers.
- This knit is deposited in a steel mold to form the first skin.
- a second knit of the same type is deposited on the insert to form the second skin.
- Teflon-coated peel ply (PTFE-coated glass fibers) is placed at the junction between the two skins.
- the junction is the area where the two skins join to cover the field of the core.
- Teflon-coated peel ply is placed at the junction between the two skins.
- the mold is closed by a steel counter mold.
- the mold is allowed to cool, then the insert is removed and the skins are separated by removing the peel ply.
- a knit preform of a thermoplastic yarn is deposited on either side of a honeycomb core, so as to form a connecting layer between the core and the skins of the sandwich.
- honeycomb core and the knit preforms are introduced between the two skins, in place of the insert, to form a sandwich.
- the entire sandwich is subjected to heat treatment (200-250° C.), under vacuum, for a few hours, so as to bond the skins and the core.
- a knit is made using a mixed yarn comprising glass fibers and thermoplastic fibers.
- This knit is deposited in a steel mold to form the first skin.
- a rigid insert of material expandable under the effect of temperature is deposited on the knit.
- a second knit of the same type is deposited on the insert to form the second skin.
- Teflon-coated peel ply is placed at the junction between the two skins.
- the mold is closed by a steel counter mold.
- the skins are consolidated by a heat treatment at 200-250° C., under a pressure of 3 to 10 bar for few dozen minutes.
- the mold is allowed to cool, then the insert is removed and the skins are separated by removing the peel ply.
- An expanded epoxy foam core is injected between the two skins, in place of the insert, to form a sandwich.
- the whole sandwich is subjected to heat treatment (65-120° C.), under vacuum, for a few hours so as to bind the skins and the core.
- a knit is made using a mixed yarn comprising glass fibers and thermoplastic fibers.
- a first knit is draped over a silicone bladder and the assembly is deposited in a first steel mold for the consolidation of the outer skin.
- the mold is closed and a vacuum is drawn.
- the mold is pressurized (3 to 10 bar) and heated rapidly by induction heating to a temperature of 200 to 250° C. The temperature is maintained for a few minutes. After cooling, the bladder is removed and a first skin is thus produced.
- a second skin is made in the same way as the first in a second mold.
- the following is deposited successively: the external skin previously consolidated, an epoxy or liquid form glue film, a honeycomb structure, the previously consolidated internal skin of the final composite product.
- the silicone bladder used to consolidate the inner skin is put in place and the mold is closed. A vacuum is drawn to the maximum and the assembly is heated to a temperature of 65-120° C. for a few hours (oven heating method) so as to bond the skins and the core.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Health & Medical Sciences (AREA)
- Thermal Sciences (AREA)
- Ceramic Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Fluid Mechanics (AREA)
- Laminated Bodies (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
- This application is a divisional of and claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 16/714,965, entitled “METHOD FOR THE PREPARATION OF COMPOSITE MATERIAL IN SANDWICH FORM,” by Gaetan MAO et al., filed Dec. 16, 2019, which claims priority under 35 U.S.C. § 119(a)-(d) to French Patent Application No. 1873207, entitled “METHOD FOR THE PREPARATION OF COMPOSITE MATERIAL IN SANDWICH FORM,” by Gaetan MAO et al., filed Dec. 18, 2018, both of which are assigned to the current assignee hereof and incorporated herein by reference in their entireties.
- The invention relates to the field of products made of composite material or composite materials. Products made of composite materials means a product that may include a resin matrix consisting of a polymeric material, in particular, thermoplastic or thermosetting material. This matrix may be reinforced by a material that may have a melting point higher than the melting point of the polymeric material. FRP usually refers to “fiber reinforced plastic”.
- Composite materials of the FRP type have good mechanical resistance with respect to the weight of the material. They also have very good resistance to corrosion. They have properties superior to those of the components taken separately. They allow in particular, in the field of automotive or aeronautics, lightening of parts traditionally made of steel. They also have good resistance to fatigue.
- The reinforcements of the composite can be obtained in different ways: by the addition of mineral fibers dispersed in the matrix, by the use of a supporting structure made of steel or synthetic material, by the use of a reinforcing fiber fabric, by the use of non-wovens or mats or other products obtained by textile methods.
- The fabric reinforcements may have a flat structure and may be composed of weft yarn and warp yarn intersecting and intertwining perpendicularly. Their manufacture may require the use of a separate spool by warp thread.
- More recently, knitted reinforcements have been used. Knitted reinforcements can mean a product generally obtained from continuous yarn where the yarn forms mesh intertwined, arranged in successive rows. The production of a traditional knit requires only a spool of yarn for the yarn mesh.
- The yarn may be of the monofilament or multifilament type. The multifilament may be a roving (i.e., set of parallel continuous filaments assembled without torsion), a spun yarn (i.e., a set of short staple fibers assembled with torsion). Yarn may also be an assembly of several yarns or filaments of different materials. This assembly can be done by twisting, wrapping. It is therefore possible to produce yarn comprising polymeric material and reinforcing material. For example, it is possible to assemble reinforcement yarn of the aramid, carbon, glass type, and thermoplastic yarn (i.e. polypropylene, polycarbonate, polyetherimide (PEI)). This type of yarn can then be called mixed yarn.
- The knitting of this type of mixed yarn can make it possible to obtain a preform, containing both the reinforcement and the matrix. This preform is said to be “dry”, as opposed to the gummy and sticky resin pre-impregnated fabric commonly called “prepreg”.
- It is also possible to produce products in the form of a sandwich that may include two outer layers, or skins, made of FRP type composite material and a central body, or core, of lighter material of the foam type or cellular honeycomb material. Thanks to their construction in the form of sandwich, these products can achieve, with equal weight, much better performances.
- The impregnation of the skins and the binding of these to the core can influence the final properties of the sandwich composite. Good impregnation of the skins generally requires a consolidation method in several stages; which consumes time and resources. This is particularly the case when the finished product has a complex 3D shape.
- The traditional methods for making a sandwich can generally include the following steps:
- production of the outer layers using skins pre-impregnated with polymeric material;
- juxtaposition of the outer layers on either side of a core, for example honeycomb or foam;
- consolidation of the outer layers to ensure the melting of the polymeric material, while ensuring the connection of all layers to the core.
- Depending on the thickness of the skins, it may be necessary to stack several folds. Several cycles of curing may then be necessary to ensure good consolidation of the fabric folds of each skin and ensure good adhesion between the skins and the core. With this type of manufacturing method, the core of the sandwich can be chosen specifically to resist the curing of the outer layers. In some cases, it has been found that it is impaired by putting under temperature and pressure. It has been observed, for example, that foam cores may sag or shrink during this treatment.
- In addition, it also appeared that during curing, polymeric material could flow into the cells of the honeycomb.
- Document EP 0 770 472 A1 outlines a method for manufacturing a composite material sandwich panel with a core formed of an open-cell structure and skins formed of fibers and resin. To avoid melting of the resin in the open cells of the core, the document provides for the interposition of a watertight membrane and a film of glue between the skins and the core. After closing the mold, a single thermal cycle makes it possible to polymerize the glue and then to inject the resin under pressure into the fibers and finally to polymerize the resin.
- This method, however, has the disadvantage of requiring the use of several layers and in particular a watertight membrane. This increases the costs of the finished product.
- Document EP 1 086 801 A1 outlines a method of manufacturing a sandwich panel by the resin injection technique, RTM. To avoid filling the honeycomb structure, this method requires the establishment in the mold of a film of an intumescent material and a barrier fabric on each of the faces of the core.
- The method according to the invention uses an insert of heat-resistant material, to form the outer layers, instead of the core and the replacement of the insert by the core when the outer layers are consolidated. All that remains then is to perform heat treatment to bond the outer layers to the core.
- According to a first embodiment, the method according to the invention may include the following steps:
- Embodiment of outer layers or pre-impregnated skins, for example by knitting or weaving yarns that may include polymeric material and reinforcing material;
- Juxtaposition in a mold, of an outer layer, an insert of heat-resistant material and a second outer layer;
- Shaping of the skins by curing at a temperature and pressure that can allow consolidation and fusion of the polymeric material without reaching the melting point of the reinforcing material;
- Removal of the insert and introduction of the core of the sandwich, for example, of foam or honeycomb, between the 2 preformed skins;
- Curing of the assembly at a temperature to allow adhesion between the outer layers and the core of the sandwich.
- According to another embodiment, the skins can be made from a textile of reinforcing material and the polymeric material can be provided by injection.
- The method may then include the following steps:
- Juxtaposition in a mold of a reinforcement fabric, an insert of material resistant to heat then another reinforcing fabric;
- Resin injection;
- Removal of the insert and introduction of the core of the sandwich, for example of foam or honeycomb, between the 2 preformed skins;
- Curing the whole at a temperature allowing adhesion between the outer layers and the core of the sandwich.
- The insert may be rigid or not. In particular, it can be silicone.
- In some embodiments, it may expand at the temperature. This can allow increasing compression during consolidation.
- The insert can provide a particular shape to the finished product, such as for example a beveled shape.
- In some embodiments, an adhesive layer may be inserted between the sandwich body and the outer layers. This adhesive may be liquid glue, an adhesive film or a knitted preform comprising thermoplastic fibers.
- The outer layers may be the same or different.
- Advantageously, to obtain a good sandwich effect, the thickness of the core can be generally at least about 2 mm and not greater than about 50 mm, preferably at least about 3 mm and not greater than about 40 mm, and more preferably at least about 5 mm and not greater than about 25 mm, and the thickness of the skin can be at least about 0.2 mm and not greater than about 5 mm, preferably at least about 0.4 mm and not greater than about 2 mm, and more preferably at least about 0.5 mm and not greater than about 1 mm.
- The object of this invention can be to provide an alternative method of manufacturing a sandwich, in particular to provide a manufacturing method that dissociates the choice of material of the body of the sandwich and the choice of the material of the outer layers.
- Polymeric material may include thermoplastic materials such as, for example, polycarbonate (PC), polyetherimide (PEI), polypropylene (PP), poly(ethylene terephthalate) (PET), polyether ether ketone (PEEK), or thermosetting materials such as for example epoxy, cyanate ester, phenolic resin, polyester.
- Reinforcing material may include synthetic materials, such as para-aramid, polypropylene, natural materials, such as linen, inorganic materials, such as glass, quartz, carbon, basalt, metal.
- The method according to the invention has proven particularly advantageous because it can make it possible to dissociate the choice of the type of core of the sandwich from the choice of the transformation method. The method according to the invention can make it possible to achieve good impregnation of the outer skins.
- Many different aspects and embodiments are possible. Some of those aspects and embodiments are described herein. After reading this specification, skilled artisans will appreciate that those aspects and embodiments are only illustrative and do not limit the scope of the present invention. Embodiments may be in accordance with any one or more of the embodiments as listed below.
- Embodiment 1. A method of manufacturing a sandwich-shaped composite material product wherein the sandwich-shaped composite material product comprises two outer layers and a core, the outer layers having a matrix of fiber-reinforced polymeric material, the polymeric material having a melting point below the melting point of the material constituting the fibers; wherein the method being characterized in that it uses an insert consisting of material having a melting point higher than the melting point of the polymeric material, on which the outer layers are consolidated; and wherein this insert is subsequently replaced by the core of the sandwich, the assembly then undergoing a consolidation treatment for bonding the outer layers to the core.
- Embodiment 2. The method according to embodiment 1, characterized in that it comprises the following steps: production of preforms composed of fiber-reinforced polymeric material intended to become the outer layers of the sandwich, juxtaposition, in a mold, of a first preform, of the insert, and of a second preform, consolidation of the preforms to obtain the outer layers, by heating and pressurizing, to reach the temperature of the melting point of the polymeric material, without reaching the temperature of the melting point of the reinforcing material or the material of the insert, removal of the insert, separation of the outer layers and insertion of the core of the sandwich, heat treatment to adhere the outer layers to the core, cooling of the product thus obtained.
- Embodiment 3. The method according to embodiment 2, characterized in that the preforms are made using pre-impregnated polymer resin fabrics.
- Embodiment 4. The method according to embodiment 2, characterized in that the preforms are made by knitting a yarn comprising the reinforcing material and the polymeric material.
- Embodiment 5. The method according to embodiment 2, characterized in that a peel cost is added between the preforms, at the places intended to form a zone without a core.
- Embodiment 6. The method according to embodiment 1, characterized in that it comprises the following steps: juxtaposition, in a mold, of a fabric or knit made of reinforcing material, the insert, and a second fabric or knit made of reinforcing material; injection of a resin of polymeric material under pressure and temperature; removal of the insert and insertion of the core of the sandwich; consolidation curing to adhere the outer layers to the core of the sandwich; cooling of the product thus obtained.
- Embodiment 7. The method according to embodiment 1, characterized in that the insert is made of silicone.
- Embodiment 8. The method according to embodiment 1, characterized in that the reinforcing material is chosen from glass, carbon and aramid fibers.
- Embodiment 9. The method according to embodiment 1, characterized in that the polymeric material is of the thermoplastic type, in particular chosen from polycarbonate (PC), polyetherimide (PEI), polypropylene (PP), poly(ethylene terephthalate) (PET), polyether ether ketone (PEEK).
- Embodiment 10. The method according to embodiment 1, characterized in that the polymeric material is of the thermosetting type, in particular chosen from epoxy, cyanate ester, phenolic resins and polyester.
- Embodiment 11. The method according to embodiment 1, characterized in that the core of the sandwich consists of cellular honeycomb material.
- Embodiment 12. The method according to embodiment 1, characterized in that the thickness of the core is at least about 2 mm and not greater than about 50 mm.
- Embodiment 13. The method according to embodiment 1, characterized in that the thickness of each of the outer layers is at least about 0.2 mm and not greater than about 5 mm.
- The following examples illustrate the invention in a non-limiting manner.
- Several “prepreg” cyanate ester impregnated carbon fiber fabrics are draped in a steel mold to form the first skin of the sandwich.
- A rigid insert (for example a Teflon® block of a few millimeters) is deposited on the fabrics.
- The second skin of the sandwich is made by draping several “prepreg” fabrics on the rigid insert.
- Teflon-coated peel ply (PTFE-coated glass fibers) is placed at the junction between the two skins. The junction is the area where the skins join to cover the field of the core.
- The mold is closed by a flexible counter-mold.
- The skins are consolidated by heat treatment under vacuum at about 180-220° C. for a few hours.
- The assembly is allowed to cool and the insert is removed.
- A high-temperature-resistant glue is applied to each of the faces intended to be in contact with the core.
- A polyimide foam-type core (approximate density of 50 kg/m3) is introduced in place of the insert.
- The entire sandwich is then subjected to a final consolidation treatment, under vacuum at a temperature of about 90-120° C., so as to ensure good adhesion of the skins and the core.
- The first skin is formed by a stack of several non-impregnated reinforcing fabrics, of carbon fibers, deposited in a steel mold.
- A soft insert (silicone plate a few millimeters thick) is deposited on the fabric.
- The second skin is formed by a fabric of the same type deposited on the insert.
- The mold is closed by the steel counter mold.
- Cyanate ester resin is injected by a known RTM-type method, at a temperature between 80 and 120° C. under a pressure of 10 to 15 bar.
- The heat treatment is prolonged for 4 hours.
- The mold is allowed to cool, then the insert is removed and the skins are separated by removing the peel ply.
- A very thin layer of cyanate ester resin is added to the skins (on the faces intended to come into contact with the honeycomb).
- A honeycomb core is introduced between the two skins, in place of the insert, to form a sandwich.
- The entire sandwich is subjected to heat treatment (180-200° C.), under vacuum, for 4 hours so as to bond the skins and the core.
- A knit is made using a mixed yarn comprising glass fibers and thermoplastic fibers.
- This knit is deposited in a steel mold to form the first skin.
- An insert of material expandable under the effect of temperature is deposited on the knit.
- A second knit of the same type is deposited on the insert to form the second skin.
- Teflon-coated peel ply (PTFE-coated glass fibers) is placed at the junction between the two skins. The junction is the area where the two skins join to cover the field of the core.
- Teflon-coated peel ply is placed at the junction between the two skins.
- The mold is closed by a steel counter mold.
- The skins are consolidated by heat treatment at 200-250° C., under a pressure of 3 to 10 bar for a few dozen minutes.
- The mold is allowed to cool, then the insert is removed and the skins are separated by removing the peel ply.
- A knit preform of a thermoplastic yarn is deposited on either side of a honeycomb core, so as to form a connecting layer between the core and the skins of the sandwich.
- The honeycomb core and the knit preforms are introduced between the two skins, in place of the insert, to form a sandwich.
- The entire sandwich is subjected to heat treatment (200-250° C.), under vacuum, for a few hours, so as to bond the skins and the core.
- A knit is made using a mixed yarn comprising glass fibers and thermoplastic fibers.
- This knit is deposited in a steel mold to form the first skin.
- A rigid insert of material expandable under the effect of temperature is deposited on the knit.
- A second knit of the same type is deposited on the insert to form the second skin.
- Teflon-coated peel ply is placed at the junction between the two skins.
- The mold is closed by a steel counter mold.
- The skins are consolidated by a heat treatment at 200-250° C., under a pressure of 3 to 10 bar for few dozen minutes.
- The mold is allowed to cool, then the insert is removed and the skins are separated by removing the peel ply.
- An expanded epoxy foam core is injected between the two skins, in place of the insert, to form a sandwich.
- The whole sandwich is subjected to heat treatment (65-120° C.), under vacuum, for a few hours so as to bind the skins and the core.
- A knit is made using a mixed yarn comprising glass fibers and thermoplastic fibers.
- A first knit is draped over a silicone bladder and the assembly is deposited in a first steel mold for the consolidation of the outer skin. The mold is closed and a vacuum is drawn. The mold is pressurized (3 to 10 bar) and heated rapidly by induction heating to a temperature of 200 to 250° C. The temperature is maintained for a few minutes. After cooling, the bladder is removed and a first skin is thus produced.
- A second skin (inner skin) is made in the same way as the first in a second mold.
- In the tooling used to consolidate the outer skin, the following is deposited successively: the external skin previously consolidated, an epoxy or liquid form glue film, a honeycomb structure, the previously consolidated internal skin of the final composite product.
- The silicone bladder used to consolidate the inner skin is put in place and the mold is closed. A vacuum is drawn to the maximum and the assembly is heated to a temperature of 65-120° C. for a few hours (oven heating method) so as to bond the skins and the core.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/810,770 US20220339830A1 (en) | 2018-12-18 | 2022-07-05 | Method for the preparation of composite material in sandwich form |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1873207A FR3089854B1 (en) | 2018-12-18 | 2018-12-18 | METHOD FOR PREPARING A COMPOSITE MATERIAL IN THE FORM OF A SANDWICH |
FR1873207 | 2018-12-18 | ||
US16/714,965 US11420368B2 (en) | 2018-12-18 | 2019-12-16 | Method for the preparation of composite material in sandwich form |
US17/810,770 US20220339830A1 (en) | 2018-12-18 | 2022-07-05 | Method for the preparation of composite material in sandwich form |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/714,965 Division US11420368B2 (en) | 2018-12-18 | 2019-12-16 | Method for the preparation of composite material in sandwich form |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220339830A1 true US20220339830A1 (en) | 2022-10-27 |
Family
ID=67514677
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/714,965 Active 2040-07-24 US11420368B2 (en) | 2018-12-18 | 2019-12-16 | Method for the preparation of composite material in sandwich form |
US17/810,770 Pending US20220339830A1 (en) | 2018-12-18 | 2022-07-05 | Method for the preparation of composite material in sandwich form |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/714,965 Active 2040-07-24 US11420368B2 (en) | 2018-12-18 | 2019-12-16 | Method for the preparation of composite material in sandwich form |
Country Status (10)
Country | Link |
---|---|
US (2) | US11420368B2 (en) |
EP (1) | EP3898208A1 (en) |
JP (2) | JP7153801B2 (en) |
KR (2) | KR102508576B1 (en) |
CN (1) | CN113329866A (en) |
BR (1) | BR112021011626A2 (en) |
CA (1) | CA3122042A1 (en) |
FR (1) | FR3089854B1 (en) |
IL (1) | IL284055B1 (en) |
WO (1) | WO2020127057A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3089854B1 (en) | 2018-12-18 | 2022-02-04 | Saint Gobain Performance Plastics France | METHOD FOR PREPARING A COMPOSITE MATERIAL IN THE FORM OF A SANDWICH |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192482A (en) * | 1989-02-17 | 1993-03-09 | Schreiner Luchtvaart Groep B.V. | Method of producing a local reinforcement in a sandwich structure |
US6247747B1 (en) * | 1995-08-22 | 2001-06-19 | Toray Industries, Inc. | Panel and cargo compartment for a truck |
US20020012767A1 (en) * | 2000-06-27 | 2002-01-31 | Yutaka Ueda | Honeycomb sandwich panel |
US6767623B1 (en) * | 1999-12-10 | 2004-07-27 | Basf Aktiengesellschaft | Sandwich panel |
US20050208263A1 (en) * | 2004-03-05 | 2005-09-22 | Reiner Wilkens | Composite component |
US20140138872A1 (en) * | 2011-07-21 | 2014-05-22 | Hidetaka Hattori | Method and device configured to produce at least two products including fiber reinforced resin |
US20150122454A1 (en) * | 2012-04-30 | 2015-05-07 | Airbus Defence And Space Limited | Apparatus and method for mounting heat pipes to panels |
US20150145274A1 (en) * | 2013-11-28 | 2015-05-28 | Toyoda Gosei Co., Ltd. | Vehicle exterior component |
US20150327819A1 (en) * | 2014-05-15 | 2015-11-19 | Gosakan Aravamudan | Radiolucent Patient Table |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3687223A (en) * | 1971-01-12 | 1972-08-29 | Rigips Stempel Gmbh | Sound-retarding wall elements |
AR207365A1 (en) | 1974-06-25 | 1976-09-30 | Monsanto Co | YARN OF NYLON 66 WITH HIGH MODULE IN BREAK, LOW MODULE IN ELONGATION OF 10% INDEX IN POSITIVE TENSION AND UNIFORMITY OF DENIER A SPOOL THAT HAS WINDING ON THE SAME THE YARN AND A PROCEDURE FOR SPINNING IN THE FUSION STATE OF NYLON 66 |
AR207251A1 (en) | 1975-05-22 | 1976-09-22 | Monsanto Co | PROCEDURE TO PRODUCE A YARN FROM A THERMOPLASTIC POLYAMIDE POLYMER FOR SPINNING IN THE MELTED STATE |
US4336090A (en) * | 1980-06-30 | 1982-06-22 | The Boeing Company | Method of making sandwich panel |
CH655049A5 (en) | 1982-03-09 | 1986-03-27 | Micafil Ag | Fibre-reinforced plastic |
KR930003766B1 (en) * | 1987-03-20 | 1993-05-10 | 지. 오. 알. 아플리카지오니 스페샬리 에스. 피. 에이. | Method and device for the manufacturing of thermoformed pannels of plastic material comprising at least on padded member |
DE3741539A1 (en) | 1987-12-08 | 1989-06-22 | Bayer Ag | LIGHT COMPOSITE MATERIAL, COMPOSITE MATERIAL WHICH CAN TRANSFER IN THIS LIGHT COMPOSITE MATERIAL, METHOD FOR THE PRODUCTION OF THE LIGHT COMPOSITE MATERIAL AND COMPOSITE MATERIAL AND PARTS CONTAINING OR EXISTING FROM THE LIGHT COMPOSITE MATERIAL |
FR2701665B1 (en) | 1993-02-17 | 1995-05-19 | Europ Propulsion | Method for manufacturing a part made of composite material, in particular a sandwich panel, from several assembled preforms. |
CA2122548A1 (en) | 1993-05-25 | 1994-11-26 | George M. Kent | Reinforcing composite items with composite thermoplastic staple fibers |
US5472769A (en) | 1993-12-10 | 1995-12-05 | American Institute Of Criminology International Corp. | Soft body armor material with enhanced puncture resistance comprising at least one continuous fabric having knit portions and integrally woven hinge portions |
DE19513506A1 (en) | 1995-04-10 | 1996-10-17 | Hoechst Ag | Hybrid yarn and permanently deformable textile material made from it, its production and use |
FR2740383B1 (en) | 1995-10-27 | 1998-01-16 | Aerospatiale | METHOD FOR MANUFACTURING A COMPOSITE MATERIAL PANEL WITH RESIN TRANSFER MOLDING |
US6027798A (en) * | 1995-11-01 | 2000-02-22 | The Boeing Company | Pin-reinforced sandwich structure |
JP3693426B2 (en) * | 1996-07-31 | 2005-09-07 | 三井化学株式会社 | Composite plate and manufacturing method thereof |
JP2000052363A (en) | 1998-08-11 | 2000-02-22 | Sekisui Chem Co Ltd | Mold for molding reinforced plastic |
FR2798618B1 (en) | 1999-09-21 | 2002-05-03 | Aerospatiale Matra Airbus | METHOD FOR MANUFACTURING A SANDWICH PANEL MADE OF COMPOSITE MATERIAL, AND A PANEL THUS OBTAINED |
FR2836690B1 (en) * | 2002-03-04 | 2004-08-27 | Eads Launch Vehicles | PROCESS FOR THE PRODUCTION OF A DOUBLE-WALL THERMOSTRUCTURAL COMPOSITE MONOLITHIC PIECE AND PART OBTAINED |
JP4471672B2 (en) * | 2004-01-30 | 2010-06-02 | 東邦テナックス株式会社 | Resin transfer molding method and sandwich laminate manufacturing method |
FR2902803B1 (en) | 2006-06-21 | 2008-11-14 | Snecma Propulsion Solide Sa | FIBROUS REINFORCING STRUCTURE FOR A PIECE OF COMPOSITE MATERIAL AND PART COMPRISING THE SAME |
DE102008006261B3 (en) * | 2008-01-25 | 2009-01-08 | Eads Deutschland Gmbh | Laminate for lining matrix feeders used to impregnate preforms comprises gas-permeable inner sheet and gas-impermeable outer sheet separated by layer of gas-permeable spacers, textile layer being laminated to outer surface of inner sheet |
KR101026962B1 (en) * | 2008-12-24 | 2011-04-11 | 주식회사 성우하이텍 | Production method of bumper beam |
DE102009036018A1 (en) | 2009-08-04 | 2011-02-17 | Siemens Aktiengesellschaft | Thermoplastic final stage blade |
JP5796287B2 (en) * | 2009-10-05 | 2015-10-21 | 横浜ゴム株式会社 | Epoxy resin composition for fiber reinforced composite material, prepreg and honeycomb sandwich panel using the same |
GB2477091A (en) | 2010-01-20 | 2011-07-27 | Hexcel Composites Ltd | Structureal laminate comprising face sheets, core and open-structured sheet |
US9022077B2 (en) | 2010-12-31 | 2015-05-05 | Eaton Corporation | Composite tube for fluid delivery system |
JP2013022834A (en) * | 2011-07-21 | 2013-02-04 | Mitsubishi Heavy Ind Ltd | Composite material of fiber-reinforced resin and lightweight core, and method and apparatus for producing the same |
US20130255103A1 (en) | 2012-04-03 | 2013-10-03 | Nike, Inc. | Apparel And Other Products Incorporating A Thermoplastic Polymer Material |
DE102013108645B4 (en) * | 2013-08-09 | 2021-05-06 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method for producing a test specimen and use of the test specimen |
US20160214332A1 (en) | 2013-12-16 | 2016-07-28 | Jing Zhao | Method of Making Of Carbon Fiber Composite Sheet |
WO2015134335A1 (en) | 2014-03-02 | 2015-09-11 | Drexel University | Articulating devices |
US10576670B2 (en) | 2014-09-15 | 2020-03-03 | The Regents Of The University Of Michigan | Methods to increase structural performance, strength and durability of fabric-reinforced composite materials by pre-stressing |
FR3026675B1 (en) * | 2014-10-02 | 2016-11-11 | Mbda France | PROCESS FOR THE PRODUCTION OF A DOUBLE-WALL THERMOSTRUCTURAL COMPOSITE MONOLITHIC PIECE AND PART OBTAINED |
US10730252B2 (en) * | 2015-03-23 | 2020-08-04 | Khalifa University of Science and Technology | Lightweight composite single-skin sandwich lattice structures |
EP3120927A1 (en) | 2015-07-24 | 2017-01-25 | Centre National De La Recherche Scientifique | Entangled fluidic device |
US20170157865A1 (en) | 2015-12-07 | 2017-06-08 | Hattar Tanin LLC | Composite fiber materials |
CN108137839B (en) | 2015-12-16 | 2021-07-06 | 东丽株式会社 | Prepreg, laminate, fiber-reinforced composite material, and method for producing fiber-reinforced composite material |
CN105619841A (en) * | 2015-12-29 | 2016-06-01 | 东华大学 | Forming method for thermoplastic composite material |
EP3219476B1 (en) * | 2016-03-17 | 2021-06-30 | Airbus Operations GmbH | Method for repairing a sandwich construction element |
JP6447750B2 (en) | 2016-07-22 | 2019-01-09 | 住友ベークライト株式会社 | Method for manufacturing sandwich panel |
FR3065181B1 (en) | 2017-04-14 | 2020-11-06 | Rt2I | PROCESS FOR MAKING A DRY PREFORM MADE BY KNITTING, PROCESS FOR MANUFACTURING A PRODUCT IN COMPOSITE MATERIALS FROM THE SAID PREFORM |
FR3089854B1 (en) | 2018-12-18 | 2022-02-04 | Saint Gobain Performance Plastics France | METHOD FOR PREPARING A COMPOSITE MATERIAL IN THE FORM OF A SANDWICH |
FR3093668B1 (en) | 2019-03-11 | 2021-04-02 | Saint Gobain Performance Plastics France | PROCESS FOR THE PREPARATION OF A POLYMERIC MATERIAL |
FR3093667B1 (en) | 2019-03-11 | 2021-04-23 | Saint Gobain Performance Plastics France | PREPARATION OF A COMPOSITE MATERIAL PRODUCT CONTAINING ZONES OF DIFFERENT FUNCTIONALITIES |
-
2018
- 2018-12-18 FR FR1873207A patent/FR3089854B1/en active Active
-
2019
- 2019-12-16 KR KR1020217022700A patent/KR102508576B1/en active IP Right Grant
- 2019-12-16 EP EP19820762.3A patent/EP3898208A1/en active Pending
- 2019-12-16 WO PCT/EP2019/085359 patent/WO2020127057A1/en unknown
- 2019-12-16 KR KR1020237005647A patent/KR102656324B1/en active IP Right Grant
- 2019-12-16 BR BR112021011626-5A patent/BR112021011626A2/en active Search and Examination
- 2019-12-16 US US16/714,965 patent/US11420368B2/en active Active
- 2019-12-16 CN CN201980084765.9A patent/CN113329866A/en active Pending
- 2019-12-16 CA CA3122042A patent/CA3122042A1/en active Pending
- 2019-12-16 JP JP2021535650A patent/JP7153801B2/en active Active
- 2019-12-16 IL IL284055A patent/IL284055B1/en unknown
-
2022
- 2022-07-05 US US17/810,770 patent/US20220339830A1/en active Pending
- 2022-10-03 JP JP2022159668A patent/JP2023011570A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192482A (en) * | 1989-02-17 | 1993-03-09 | Schreiner Luchtvaart Groep B.V. | Method of producing a local reinforcement in a sandwich structure |
US6247747B1 (en) * | 1995-08-22 | 2001-06-19 | Toray Industries, Inc. | Panel and cargo compartment for a truck |
US6767623B1 (en) * | 1999-12-10 | 2004-07-27 | Basf Aktiengesellschaft | Sandwich panel |
US20020012767A1 (en) * | 2000-06-27 | 2002-01-31 | Yutaka Ueda | Honeycomb sandwich panel |
US20050208263A1 (en) * | 2004-03-05 | 2005-09-22 | Reiner Wilkens | Composite component |
US20140138872A1 (en) * | 2011-07-21 | 2014-05-22 | Hidetaka Hattori | Method and device configured to produce at least two products including fiber reinforced resin |
US20150122454A1 (en) * | 2012-04-30 | 2015-05-07 | Airbus Defence And Space Limited | Apparatus and method for mounting heat pipes to panels |
US20150145274A1 (en) * | 2013-11-28 | 2015-05-28 | Toyoda Gosei Co., Ltd. | Vehicle exterior component |
US20150327819A1 (en) * | 2014-05-15 | 2015-11-19 | Gosakan Aravamudan | Radiolucent Patient Table |
Also Published As
Publication number | Publication date |
---|---|
EP3898208A1 (en) | 2021-10-27 |
IL284055B1 (en) | 2024-07-01 |
US20200189157A1 (en) | 2020-06-18 |
FR3089854B1 (en) | 2022-02-04 |
CN113329866A (en) | 2021-08-31 |
JP7153801B2 (en) | 2022-10-14 |
CA3122042A1 (en) | 2020-06-25 |
IL284055A (en) | 2021-08-31 |
KR102656324B1 (en) | 2024-04-12 |
WO2020127057A1 (en) | 2020-06-25 |
BR112021011626A2 (en) | 2021-08-31 |
KR20230030667A (en) | 2023-03-06 |
JP2022515398A (en) | 2022-02-18 |
KR20210110837A (en) | 2021-09-09 |
US11420368B2 (en) | 2022-08-23 |
JP2023011570A (en) | 2023-01-24 |
FR3089854A1 (en) | 2020-06-19 |
KR102508576B1 (en) | 2023-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020201610B2 (en) | Fabrication of composite laminates using temporarily stitched preforms | |
EP1731282B1 (en) | Preform, frp, and processes for producing these | |
Edwards | An overview of the technology of fibre-reinforced plastics for design purposes | |
CA2803414C (en) | Fibre reinforced composite moulding | |
US20170282491A1 (en) | Veil-stabilized composite with improved tensile strength | |
US7930907B2 (en) | Crimp-free infusible reinforcement fabric and composite reinforced material therefrom | |
CN113710464A (en) | Preparation of composite materials comprising different functional areas | |
US20220339830A1 (en) | Method for the preparation of composite material in sandwich form | |
CN111347581A (en) | Preparation method of continuous fiber prefabricated member | |
US20200406563A1 (en) | Method and process to produce advanced theromoplastic based composite material parts | |
RU2804425C2 (en) | Method for obtaining composite material in the form of sandwich structure | |
KR102070596B1 (en) | Flow medium for fabricating fiber reinforced plastic and Compound mat and Vacuum assisted molding process using the Same | |
GB2237583A (en) | Fibre reinforced thermoplastic composites | |
KR20230004742A (en) | Intermediate Composite Members, Manufacturing Methods, and Composite Parts | |
US20220009128A1 (en) | Method for manufacturing a fibre preform | |
BR122024010452A2 (en) | METHOD FOR MANUFACTURING A SANDWICH-SHAPED COMPOSITE MATERIAL PRODUCT | |
US20240100739A1 (en) | Preform produced by knitting, composite product incorporating such a preform and manufacturing methods | |
RU2782809C1 (en) | Production of a composite material containing various functional areas | |
JP2007530810A (en) | Reinforcing materials, reinforcing laminates, and composite materials having these |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |