Nothing Special   »   [go: up one dir, main page]

US20220339830A1 - Method for the preparation of composite material in sandwich form - Google Patents

Method for the preparation of composite material in sandwich form Download PDF

Info

Publication number
US20220339830A1
US20220339830A1 US17/810,770 US202217810770A US2022339830A1 US 20220339830 A1 US20220339830 A1 US 20220339830A1 US 202217810770 A US202217810770 A US 202217810770A US 2022339830 A1 US2022339830 A1 US 2022339830A1
Authority
US
United States
Prior art keywords
core
sandwich
outer layers
insert
polymeric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/810,770
Inventor
Gaëtan MAO
Nicolas DUMONT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Performance Plastics France
Original Assignee
Saint Gobain Performance Plastics France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Performance Plastics France filed Critical Saint Gobain Performance Plastics France
Priority to US17/810,770 priority Critical patent/US20220339830A1/en
Publication of US20220339830A1 publication Critical patent/US20220339830A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14467Joining articles or parts of a single article
    • B29C45/14508Joining juxtaposed sheet-like articles, e.g. for making trim panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D24/00Producing articles with hollow walls
    • B29D24/002Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14786Fibrous material or fibre containing material, e.g. fibre mats or fibre reinforced material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/7207Heating or cooling of the moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/18Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length in the form of a mat, e.g. sheet moulding compound [SMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/467Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements during mould closing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/541Positioning reinforcements in a mould, e.g. using clamping means for the reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/681Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/70Completely encapsulating inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D24/00Producing articles with hollow walls
    • B29D24/002Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled
    • B29D24/005Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled the structure having joined ribs, e.g. honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/001Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings
    • B29D99/0021Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings provided with plain or filled structures, e.g. cores, placed between two or more plates or sheets, e.g. in a matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/066Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/02Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica the layer of fibres or particles being impregnated or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/06Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/146Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers whereby one or more of the layers is a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/046Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • B29C2043/181Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles encapsulated
    • B29C2043/182Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles encapsulated completely
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14467Joining articles or parts of a single article
    • B29C2045/1454Joining articles or parts of a single article injecting between inserts not being in contact with each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14754Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles being in movable or releasable engagement with the coating, e.g. bearing assemblies
    • B29C2045/1477Removable inserts, e.g. the insert being peeled off after moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • B29C45/1816Feeding auxiliary material, e.g. colouring material
    • B29C2045/1825Feeding auxiliary material, e.g. colouring material feeding auxiliary material for either skin or core of the injected article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • B29K2079/085Thermoplastic polyimides, e.g. polyesterimides, PEI, i.e. polyetherimides, or polyamideimides; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2277/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/005Hoses, i.e. flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/005Hoses, i.e. flexible
    • B29L2023/007Medical tubes other than catheters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/12Conjugate fibres, e.g. core/sheath or side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0271Epoxy resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/024Honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/18Fabrics, textiles
    • B32B2305/182Fabrics, textiles knitted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Definitions

  • the invention relates to the field of products made of composite material or composite materials.
  • Products made of composite materials means a product that may include a resin matrix consisting of a polymeric material, in particular, thermoplastic or thermosetting material. This matrix may be reinforced by a material that may have a melting point higher than the melting point of the polymeric material.
  • FRP usually refers to “fiber reinforced plastic”.
  • Composite materials of the FRP type have good mechanical resistance with respect to the weight of the material. They also have very good resistance to corrosion. They have properties superior to those of the components taken separately. They allow in particular, in the field of automotive or aeronautics, lightening of parts traditionally made of steel. They also have good resistance to fatigue.
  • the reinforcements of the composite can be obtained in different ways: by the addition of mineral fibers dispersed in the matrix, by the use of a supporting structure made of steel or synthetic material, by the use of a reinforcing fiber fabric, by the use of non-wovens or mats or other products obtained by textile methods.
  • the fabric reinforcements may have a flat structure and may be composed of weft yarn and warp yarn intersecting and intertwining perpendicularly. Their manufacture may require the use of a separate spool by warp thread.
  • Knitted reinforcements can mean a product generally obtained from continuous yarn where the yarn forms mesh intertwined, arranged in successive rows.
  • the production of a traditional knit requires only a spool of yarn for the yarn mesh.
  • the yarn may be of the monofilament or multifilament type.
  • the multifilament may be a roving (i.e., set of parallel continuous filaments assembled without torsion), a spun yarn (i.e., a set of short staple fibers assembled with torsion).
  • Yarn may also be an assembly of several yarns or filaments of different materials. This assembly can be done by twisting, wrapping. It is therefore possible to produce yarn comprising polymeric material and reinforcing material. For example, it is possible to assemble reinforcement yarn of the aramid, carbon, glass type, and thermoplastic yarn (i.e. polypropylene, polycarbonate, polyetherimide (PEI)). This type of yarn can then be called mixed yarn.
  • PEI polyetherimide
  • This type of mixed yarn can make it possible to obtain a preform, containing both the reinforcement and the matrix.
  • This preform is said to be “dry”, as opposed to the gummy and sticky resin pre-impregnated fabric commonly called “prepreg”.
  • the impregnation of the skins and the binding of these to the core can influence the final properties of the sandwich composite.
  • Good impregnation of the skins generally requires a consolidation method in several stages; which consumes time and resources. This is particularly the case when the finished product has a complex 3D shape.
  • the traditional methods for making a sandwich can generally include the following steps:
  • a core for example honeycomb or foam
  • the core of the sandwich can be chosen specifically to resist the curing of the outer layers. In some cases, it has been found that it is impaired by putting under temperature and pressure. It has been observed, for example, that foam cores may sag or shrink during this treatment.
  • Document EP 0 770 472 A1 outlines a method for manufacturing a composite material sandwich panel with a core formed of an open-cell structure and skins formed of fibers and resin.
  • the document provides for the interposition of a watertight membrane and a film of glue between the skins and the core. After closing the mold, a single thermal cycle makes it possible to polymerize the glue and then to inject the resin under pressure into the fibers and finally to polymerize the resin.
  • Document EP 1 086 801 A1 outlines a method of manufacturing a sandwich panel by the resin injection technique, RTM. To avoid filling the honeycomb structure, this method requires the establishment in the mold of a film of an intumescent material and a barrier fabric on each of the faces of the core.
  • the method according to the invention uses an insert of heat-resistant material, to form the outer layers, instead of the core and the replacement of the insert by the core when the outer layers are consolidated. All that remains then is to perform heat treatment to bond the outer layers to the core.
  • the method according to the invention may include the following steps:
  • Embodiment of outer layers or pre-impregnated skins for example by knitting or weaving yarns that may include polymeric material and reinforcing material;
  • the skins can be made from a textile of reinforcing material and the polymeric material can be provided by injection.
  • the method may then include the following steps:
  • the insert may be rigid or not. In particular, it can be silicone.
  • it may expand at the temperature. This can allow increasing compression during consolidation.
  • the insert can provide a particular shape to the finished product, such as for example a beveled shape.
  • an adhesive layer may be inserted between the sandwich body and the outer layers.
  • This adhesive may be liquid glue, an adhesive film or a knitted preform comprising thermoplastic fibers.
  • the thickness of the core can be generally at least about 2 mm and not greater than about 50 mm, preferably at least about 3 mm and not greater than about 40 mm, and more preferably at least about 5 mm and not greater than about 25 mm, and the thickness of the skin can be at least about 0.2 mm and not greater than about 5 mm, preferably at least about 0.4 mm and not greater than about 2 mm, and more preferably at least about 0.5 mm and not greater than about 1 mm.
  • the object of this invention can be to provide an alternative method of manufacturing a sandwich, in particular to provide a manufacturing method that dissociates the choice of material of the body of the sandwich and the choice of the material of the outer layers.
  • Polymeric material may include thermoplastic materials such as, for example, polycarbonate (PC), polyetherimide (PEI), polypropylene (PP), poly(ethylene terephthalate) (PET), polyether ether ketone (PEEK), or thermosetting materials such as for example epoxy, cyanate ester, phenolic resin, polyester.
  • thermoplastic materials such as, for example, polycarbonate (PC), polyetherimide (PEI), polypropylene (PP), poly(ethylene terephthalate) (PET), polyether ether ketone (PEEK), or thermosetting materials such as for example epoxy, cyanate ester, phenolic resin, polyester.
  • Reinforcing material may include synthetic materials, such as para-aramid, polypropylene, natural materials, such as linen, inorganic materials, such as glass, quartz, carbon, basalt, metal.
  • the method according to the invention has proven particularly advantageous because it can make it possible to dissociate the choice of the type of core of the sandwich from the choice of the transformation method.
  • the method according to the invention can make it possible to achieve good impregnation of the outer skins.
  • Embodiment 1 A method of manufacturing a sandwich-shaped composite material product wherein the sandwich-shaped composite material product comprises two outer layers and a core, the outer layers having a matrix of fiber-reinforced polymeric material, the polymeric material having a melting point below the melting point of the material constituting the fibers; wherein the method being characterized in that it uses an insert consisting of material having a melting point higher than the melting point of the polymeric material, on which the outer layers are consolidated; and wherein this insert is subsequently replaced by the core of the sandwich, the assembly then undergoing a consolidation treatment for bonding the outer layers to the core.
  • Embodiment 2 The method according to embodiment 1, characterized in that it comprises the following steps: production of preforms composed of fiber-reinforced polymeric material intended to become the outer layers of the sandwich, juxtaposition, in a mold, of a first preform, of the insert, and of a second preform, consolidation of the preforms to obtain the outer layers, by heating and pressurizing, to reach the temperature of the melting point of the polymeric material, without reaching the temperature of the melting point of the reinforcing material or the material of the insert, removal of the insert, separation of the outer layers and insertion of the core of the sandwich, heat treatment to adhere the outer layers to the core, cooling of the product thus obtained.
  • Embodiment 3 The method according to embodiment 2, characterized in that the preforms are made using pre-impregnated polymer resin fabrics.
  • Embodiment 4 The method according to embodiment 2, characterized in that the preforms are made by knitting a yarn comprising the reinforcing material and the polymeric material.
  • Embodiment 5 The method according to embodiment 2, characterized in that a peel cost is added between the preforms, at the places intended to form a zone without a core.
  • Embodiment 6 The method according to embodiment 1, characterized in that it comprises the following steps: juxtaposition, in a mold, of a fabric or knit made of reinforcing material, the insert, and a second fabric or knit made of reinforcing material; injection of a resin of polymeric material under pressure and temperature; removal of the insert and insertion of the core of the sandwich; consolidation curing to adhere the outer layers to the core of the sandwich; cooling of the product thus obtained.
  • Embodiment 7 The method according to embodiment 1, characterized in that the insert is made of silicone.
  • Embodiment 10 The method according to embodiment 1, characterized in that the polymeric material is of the thermosetting type, in particular chosen from epoxy, cyanate ester, phenolic resins and polyester.
  • Embodiment 11 The method according to embodiment 1, characterized in that the core of the sandwich consists of cellular honeycomb material.
  • Embodiment 12 The method according to embodiment 1, characterized in that the thickness of the core is at least about 2 mm and not greater than about 50 mm.
  • Embodiment 13 The method according to embodiment 1, characterized in that the thickness of each of the outer layers is at least about 0.2 mm and not greater than about 5 mm.
  • a rigid insert for example a Teflon® block of a few millimeters is deposited on the fabrics.
  • the second skin of the sandwich is made by draping several “prepreg” fabrics on the rigid insert.
  • the mold is closed by a flexible counter-mold.
  • the assembly is allowed to cool and the insert is removed.
  • a high-temperature-resistant glue is applied to each of the faces intended to be in contact with the core.
  • a polyimide foam-type core (approximate density of 50 kg/m3) is introduced in place of the insert.
  • the entire sandwich is then subjected to a final consolidation treatment, under vacuum at a temperature of about 90-120° C., so as to ensure good adhesion of the skins and the core.
  • the first skin is formed by a stack of several non-impregnated reinforcing fabrics, of carbon fibers, deposited in a steel mold.
  • a soft insert (silicone plate a few millimeters thick) is deposited on the fabric.
  • the second skin is formed by a fabric of the same type deposited on the insert.
  • the mold is closed by the steel counter mold.
  • Cyanate ester resin is injected by a known RTM-type method, at a temperature between 80 and 120° C. under a pressure of 10 to 15 bar.
  • the heat treatment is prolonged for 4 hours.
  • the mold is allowed to cool, then the insert is removed and the skins are separated by removing the peel ply.
  • a very thin layer of cyanate ester resin is added to the skins (on the faces intended to come into contact with the honeycomb).
  • a honeycomb core is introduced between the two skins, in place of the insert, to form a sandwich.
  • the entire sandwich is subjected to heat treatment (180-200° C.), under vacuum, for 4 hours so as to bond the skins and the core.
  • a knit is made using a mixed yarn comprising glass fibers and thermoplastic fibers.
  • This knit is deposited in a steel mold to form the first skin.
  • a second knit of the same type is deposited on the insert to form the second skin.
  • Teflon-coated peel ply (PTFE-coated glass fibers) is placed at the junction between the two skins.
  • the junction is the area where the two skins join to cover the field of the core.
  • Teflon-coated peel ply is placed at the junction between the two skins.
  • the mold is closed by a steel counter mold.
  • the mold is allowed to cool, then the insert is removed and the skins are separated by removing the peel ply.
  • a knit preform of a thermoplastic yarn is deposited on either side of a honeycomb core, so as to form a connecting layer between the core and the skins of the sandwich.
  • honeycomb core and the knit preforms are introduced between the two skins, in place of the insert, to form a sandwich.
  • the entire sandwich is subjected to heat treatment (200-250° C.), under vacuum, for a few hours, so as to bond the skins and the core.
  • a knit is made using a mixed yarn comprising glass fibers and thermoplastic fibers.
  • This knit is deposited in a steel mold to form the first skin.
  • a rigid insert of material expandable under the effect of temperature is deposited on the knit.
  • a second knit of the same type is deposited on the insert to form the second skin.
  • Teflon-coated peel ply is placed at the junction between the two skins.
  • the mold is closed by a steel counter mold.
  • the skins are consolidated by a heat treatment at 200-250° C., under a pressure of 3 to 10 bar for few dozen minutes.
  • the mold is allowed to cool, then the insert is removed and the skins are separated by removing the peel ply.
  • An expanded epoxy foam core is injected between the two skins, in place of the insert, to form a sandwich.
  • the whole sandwich is subjected to heat treatment (65-120° C.), under vacuum, for a few hours so as to bind the skins and the core.
  • a knit is made using a mixed yarn comprising glass fibers and thermoplastic fibers.
  • a first knit is draped over a silicone bladder and the assembly is deposited in a first steel mold for the consolidation of the outer skin.
  • the mold is closed and a vacuum is drawn.
  • the mold is pressurized (3 to 10 bar) and heated rapidly by induction heating to a temperature of 200 to 250° C. The temperature is maintained for a few minutes. After cooling, the bladder is removed and a first skin is thus produced.
  • a second skin is made in the same way as the first in a second mold.
  • the following is deposited successively: the external skin previously consolidated, an epoxy or liquid form glue film, a honeycomb structure, the previously consolidated internal skin of the final composite product.
  • the silicone bladder used to consolidate the inner skin is put in place and the mold is closed. A vacuum is drawn to the maximum and the assembly is heated to a temperature of 65-120° C. for a few hours (oven heating method) so as to bond the skins and the core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The object of the invention can be a method of manufacturing a product in the form of a sandwich comprising a core and outer layers. The outer layers may be composed of composite material comprising a fiber-reinforced polymeric matrix. The method uses an insert of heat-resistant material, for example silicone. The object of this invention can be to provide a method of manufacturing a sandwich that dissociates the choice of material of the core of the sandwich from the choice of the material of the outer layers.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application is a divisional of and claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 16/714,965, entitled “METHOD FOR THE PREPARATION OF COMPOSITE MATERIAL IN SANDWICH FORM,” by Gaetan MAO et al., filed Dec. 16, 2019, which claims priority under 35 U.S.C. § 119(a)-(d) to French Patent Application No. 1873207, entitled “METHOD FOR THE PREPARATION OF COMPOSITE MATERIAL IN SANDWICH FORM,” by Gaetan MAO et al., filed Dec. 18, 2018, both of which are assigned to the current assignee hereof and incorporated herein by reference in their entireties.
  • DETAILED DESCRIPTION
  • The invention relates to the field of products made of composite material or composite materials. Products made of composite materials means a product that may include a resin matrix consisting of a polymeric material, in particular, thermoplastic or thermosetting material. This matrix may be reinforced by a material that may have a melting point higher than the melting point of the polymeric material. FRP usually refers to “fiber reinforced plastic”.
  • Composite materials of the FRP type have good mechanical resistance with respect to the weight of the material. They also have very good resistance to corrosion. They have properties superior to those of the components taken separately. They allow in particular, in the field of automotive or aeronautics, lightening of parts traditionally made of steel. They also have good resistance to fatigue.
  • The reinforcements of the composite can be obtained in different ways: by the addition of mineral fibers dispersed in the matrix, by the use of a supporting structure made of steel or synthetic material, by the use of a reinforcing fiber fabric, by the use of non-wovens or mats or other products obtained by textile methods.
  • The fabric reinforcements may have a flat structure and may be composed of weft yarn and warp yarn intersecting and intertwining perpendicularly. Their manufacture may require the use of a separate spool by warp thread.
  • More recently, knitted reinforcements have been used. Knitted reinforcements can mean a product generally obtained from continuous yarn where the yarn forms mesh intertwined, arranged in successive rows. The production of a traditional knit requires only a spool of yarn for the yarn mesh.
  • The yarn may be of the monofilament or multifilament type. The multifilament may be a roving (i.e., set of parallel continuous filaments assembled without torsion), a spun yarn (i.e., a set of short staple fibers assembled with torsion). Yarn may also be an assembly of several yarns or filaments of different materials. This assembly can be done by twisting, wrapping. It is therefore possible to produce yarn comprising polymeric material and reinforcing material. For example, it is possible to assemble reinforcement yarn of the aramid, carbon, glass type, and thermoplastic yarn (i.e. polypropylene, polycarbonate, polyetherimide (PEI)). This type of yarn can then be called mixed yarn.
  • The knitting of this type of mixed yarn can make it possible to obtain a preform, containing both the reinforcement and the matrix. This preform is said to be “dry”, as opposed to the gummy and sticky resin pre-impregnated fabric commonly called “prepreg”.
  • It is also possible to produce products in the form of a sandwich that may include two outer layers, or skins, made of FRP type composite material and a central body, or core, of lighter material of the foam type or cellular honeycomb material. Thanks to their construction in the form of sandwich, these products can achieve, with equal weight, much better performances.
  • The impregnation of the skins and the binding of these to the core can influence the final properties of the sandwich composite. Good impregnation of the skins generally requires a consolidation method in several stages; which consumes time and resources. This is particularly the case when the finished product has a complex 3D shape.
  • The traditional methods for making a sandwich can generally include the following steps:
  • production of the outer layers using skins pre-impregnated with polymeric material;
  • juxtaposition of the outer layers on either side of a core, for example honeycomb or foam;
  • consolidation of the outer layers to ensure the melting of the polymeric material, while ensuring the connection of all layers to the core.
  • Depending on the thickness of the skins, it may be necessary to stack several folds. Several cycles of curing may then be necessary to ensure good consolidation of the fabric folds of each skin and ensure good adhesion between the skins and the core. With this type of manufacturing method, the core of the sandwich can be chosen specifically to resist the curing of the outer layers. In some cases, it has been found that it is impaired by putting under temperature and pressure. It has been observed, for example, that foam cores may sag or shrink during this treatment.
  • In addition, it also appeared that during curing, polymeric material could flow into the cells of the honeycomb.
  • Document EP 0 770 472 A1 outlines a method for manufacturing a composite material sandwich panel with a core formed of an open-cell structure and skins formed of fibers and resin. To avoid melting of the resin in the open cells of the core, the document provides for the interposition of a watertight membrane and a film of glue between the skins and the core. After closing the mold, a single thermal cycle makes it possible to polymerize the glue and then to inject the resin under pressure into the fibers and finally to polymerize the resin.
  • This method, however, has the disadvantage of requiring the use of several layers and in particular a watertight membrane. This increases the costs of the finished product.
  • Document EP 1 086 801 A1 outlines a method of manufacturing a sandwich panel by the resin injection technique, RTM. To avoid filling the honeycomb structure, this method requires the establishment in the mold of a film of an intumescent material and a barrier fabric on each of the faces of the core.
  • The method according to the invention uses an insert of heat-resistant material, to form the outer layers, instead of the core and the replacement of the insert by the core when the outer layers are consolidated. All that remains then is to perform heat treatment to bond the outer layers to the core.
  • According to a first embodiment, the method according to the invention may include the following steps:
  • Embodiment of outer layers or pre-impregnated skins, for example by knitting or weaving yarns that may include polymeric material and reinforcing material;
  • Juxtaposition in a mold, of an outer layer, an insert of heat-resistant material and a second outer layer;
  • Shaping of the skins by curing at a temperature and pressure that can allow consolidation and fusion of the polymeric material without reaching the melting point of the reinforcing material;
  • Removal of the insert and introduction of the core of the sandwich, for example, of foam or honeycomb, between the 2 preformed skins;
  • Curing of the assembly at a temperature to allow adhesion between the outer layers and the core of the sandwich.
  • According to another embodiment, the skins can be made from a textile of reinforcing material and the polymeric material can be provided by injection.
  • The method may then include the following steps:
  • Juxtaposition in a mold of a reinforcement fabric, an insert of material resistant to heat then another reinforcing fabric;
  • Resin injection;
  • Removal of the insert and introduction of the core of the sandwich, for example of foam or honeycomb, between the 2 preformed skins;
  • Curing the whole at a temperature allowing adhesion between the outer layers and the core of the sandwich.
  • The insert may be rigid or not. In particular, it can be silicone.
  • In some embodiments, it may expand at the temperature. This can allow increasing compression during consolidation.
  • The insert can provide a particular shape to the finished product, such as for example a beveled shape.
  • In some embodiments, an adhesive layer may be inserted between the sandwich body and the outer layers. This adhesive may be liquid glue, an adhesive film or a knitted preform comprising thermoplastic fibers.
  • The outer layers may be the same or different.
  • Advantageously, to obtain a good sandwich effect, the thickness of the core can be generally at least about 2 mm and not greater than about 50 mm, preferably at least about 3 mm and not greater than about 40 mm, and more preferably at least about 5 mm and not greater than about 25 mm, and the thickness of the skin can be at least about 0.2 mm and not greater than about 5 mm, preferably at least about 0.4 mm and not greater than about 2 mm, and more preferably at least about 0.5 mm and not greater than about 1 mm.
  • The object of this invention can be to provide an alternative method of manufacturing a sandwich, in particular to provide a manufacturing method that dissociates the choice of material of the body of the sandwich and the choice of the material of the outer layers.
  • Polymeric material may include thermoplastic materials such as, for example, polycarbonate (PC), polyetherimide (PEI), polypropylene (PP), poly(ethylene terephthalate) (PET), polyether ether ketone (PEEK), or thermosetting materials such as for example epoxy, cyanate ester, phenolic resin, polyester.
  • Reinforcing material may include synthetic materials, such as para-aramid, polypropylene, natural materials, such as linen, inorganic materials, such as glass, quartz, carbon, basalt, metal.
  • The method according to the invention has proven particularly advantageous because it can make it possible to dissociate the choice of the type of core of the sandwich from the choice of the transformation method. The method according to the invention can make it possible to achieve good impregnation of the outer skins.
  • Many different aspects and embodiments are possible. Some of those aspects and embodiments are described herein. After reading this specification, skilled artisans will appreciate that those aspects and embodiments are only illustrative and do not limit the scope of the present invention. Embodiments may be in accordance with any one or more of the embodiments as listed below.
  • Embodiment 1. A method of manufacturing a sandwich-shaped composite material product wherein the sandwich-shaped composite material product comprises two outer layers and a core, the outer layers having a matrix of fiber-reinforced polymeric material, the polymeric material having a melting point below the melting point of the material constituting the fibers; wherein the method being characterized in that it uses an insert consisting of material having a melting point higher than the melting point of the polymeric material, on which the outer layers are consolidated; and wherein this insert is subsequently replaced by the core of the sandwich, the assembly then undergoing a consolidation treatment for bonding the outer layers to the core.
  • Embodiment 2. The method according to embodiment 1, characterized in that it comprises the following steps: production of preforms composed of fiber-reinforced polymeric material intended to become the outer layers of the sandwich, juxtaposition, in a mold, of a first preform, of the insert, and of a second preform, consolidation of the preforms to obtain the outer layers, by heating and pressurizing, to reach the temperature of the melting point of the polymeric material, without reaching the temperature of the melting point of the reinforcing material or the material of the insert, removal of the insert, separation of the outer layers and insertion of the core of the sandwich, heat treatment to adhere the outer layers to the core, cooling of the product thus obtained.
  • Embodiment 3. The method according to embodiment 2, characterized in that the preforms are made using pre-impregnated polymer resin fabrics.
  • Embodiment 4. The method according to embodiment 2, characterized in that the preforms are made by knitting a yarn comprising the reinforcing material and the polymeric material.
  • Embodiment 5. The method according to embodiment 2, characterized in that a peel cost is added between the preforms, at the places intended to form a zone without a core.
  • Embodiment 6. The method according to embodiment 1, characterized in that it comprises the following steps: juxtaposition, in a mold, of a fabric or knit made of reinforcing material, the insert, and a second fabric or knit made of reinforcing material; injection of a resin of polymeric material under pressure and temperature; removal of the insert and insertion of the core of the sandwich; consolidation curing to adhere the outer layers to the core of the sandwich; cooling of the product thus obtained.
  • Embodiment 7. The method according to embodiment 1, characterized in that the insert is made of silicone.
  • Embodiment 8. The method according to embodiment 1, characterized in that the reinforcing material is chosen from glass, carbon and aramid fibers.
  • Embodiment 9. The method according to embodiment 1, characterized in that the polymeric material is of the thermoplastic type, in particular chosen from polycarbonate (PC), polyetherimide (PEI), polypropylene (PP), poly(ethylene terephthalate) (PET), polyether ether ketone (PEEK).
  • Embodiment 10. The method according to embodiment 1, characterized in that the polymeric material is of the thermosetting type, in particular chosen from epoxy, cyanate ester, phenolic resins and polyester.
  • Embodiment 11. The method according to embodiment 1, characterized in that the core of the sandwich consists of cellular honeycomb material.
  • Embodiment 12. The method according to embodiment 1, characterized in that the thickness of the core is at least about 2 mm and not greater than about 50 mm.
  • Embodiment 13. The method according to embodiment 1, characterized in that the thickness of each of the outer layers is at least about 0.2 mm and not greater than about 5 mm.
  • The following examples illustrate the invention in a non-limiting manner.
  • EXAMPLES Example 1
  • Several “prepreg” cyanate ester impregnated carbon fiber fabrics are draped in a steel mold to form the first skin of the sandwich.
  • A rigid insert (for example a Teflon® block of a few millimeters) is deposited on the fabrics.
  • The second skin of the sandwich is made by draping several “prepreg” fabrics on the rigid insert.
  • Teflon-coated peel ply (PTFE-coated glass fibers) is placed at the junction between the two skins. The junction is the area where the skins join to cover the field of the core.
  • The mold is closed by a flexible counter-mold.
  • The skins are consolidated by heat treatment under vacuum at about 180-220° C. for a few hours.
  • The assembly is allowed to cool and the insert is removed.
  • A high-temperature-resistant glue is applied to each of the faces intended to be in contact with the core.
  • A polyimide foam-type core (approximate density of 50 kg/m3) is introduced in place of the insert.
  • The entire sandwich is then subjected to a final consolidation treatment, under vacuum at a temperature of about 90-120° C., so as to ensure good adhesion of the skins and the core.
  • Example 2
  • The first skin is formed by a stack of several non-impregnated reinforcing fabrics, of carbon fibers, deposited in a steel mold.
  • A soft insert (silicone plate a few millimeters thick) is deposited on the fabric.
  • The second skin is formed by a fabric of the same type deposited on the insert.
  • The mold is closed by the steel counter mold.
  • Cyanate ester resin is injected by a known RTM-type method, at a temperature between 80 and 120° C. under a pressure of 10 to 15 bar.
  • The heat treatment is prolonged for 4 hours.
  • The mold is allowed to cool, then the insert is removed and the skins are separated by removing the peel ply.
  • A very thin layer of cyanate ester resin is added to the skins (on the faces intended to come into contact with the honeycomb).
  • A honeycomb core is introduced between the two skins, in place of the insert, to form a sandwich.
  • The entire sandwich is subjected to heat treatment (180-200° C.), under vacuum, for 4 hours so as to bond the skins and the core.
  • Example 3
  • A knit is made using a mixed yarn comprising glass fibers and thermoplastic fibers.
  • This knit is deposited in a steel mold to form the first skin.
  • An insert of material expandable under the effect of temperature is deposited on the knit.
  • A second knit of the same type is deposited on the insert to form the second skin.
  • Teflon-coated peel ply (PTFE-coated glass fibers) is placed at the junction between the two skins. The junction is the area where the two skins join to cover the field of the core.
  • Teflon-coated peel ply is placed at the junction between the two skins.
  • The mold is closed by a steel counter mold.
  • The skins are consolidated by heat treatment at 200-250° C., under a pressure of 3 to 10 bar for a few dozen minutes.
  • The mold is allowed to cool, then the insert is removed and the skins are separated by removing the peel ply.
  • A knit preform of a thermoplastic yarn is deposited on either side of a honeycomb core, so as to form a connecting layer between the core and the skins of the sandwich.
  • The honeycomb core and the knit preforms are introduced between the two skins, in place of the insert, to form a sandwich.
  • The entire sandwich is subjected to heat treatment (200-250° C.), under vacuum, for a few hours, so as to bond the skins and the core.
  • Example 4
  • A knit is made using a mixed yarn comprising glass fibers and thermoplastic fibers.
  • This knit is deposited in a steel mold to form the first skin.
  • A rigid insert of material expandable under the effect of temperature is deposited on the knit.
  • A second knit of the same type is deposited on the insert to form the second skin.
  • Teflon-coated peel ply is placed at the junction between the two skins.
  • The mold is closed by a steel counter mold.
  • The skins are consolidated by a heat treatment at 200-250° C., under a pressure of 3 to 10 bar for few dozen minutes.
  • The mold is allowed to cool, then the insert is removed and the skins are separated by removing the peel ply.
  • An expanded epoxy foam core is injected between the two skins, in place of the insert, to form a sandwich.
  • The whole sandwich is subjected to heat treatment (65-120° C.), under vacuum, for a few hours so as to bind the skins and the core.
  • Example 5
  • A knit is made using a mixed yarn comprising glass fibers and thermoplastic fibers.
  • A first knit is draped over a silicone bladder and the assembly is deposited in a first steel mold for the consolidation of the outer skin. The mold is closed and a vacuum is drawn. The mold is pressurized (3 to 10 bar) and heated rapidly by induction heating to a temperature of 200 to 250° C. The temperature is maintained for a few minutes. After cooling, the bladder is removed and a first skin is thus produced.
  • A second skin (inner skin) is made in the same way as the first in a second mold.
  • In the tooling used to consolidate the outer skin, the following is deposited successively: the external skin previously consolidated, an epoxy or liquid form glue film, a honeycomb structure, the previously consolidated internal skin of the final composite product.
  • The silicone bladder used to consolidate the inner skin is put in place and the mold is closed. A vacuum is drawn to the maximum and the assembly is heated to a temperature of 65-120° C. for a few hours (oven heating method) so as to bond the skins and the core.

Claims (8)

What is claimed is:
1. A method of manufacturing a sandwich-shaped composite material product wherein the sandwich-shaped composite material product comprises two outer layers and a core, the outer layers having a matrix of fiber-reinforced polymeric material, the polymeric material having a melting point below the melting point of the material constituting the fibers;
wherein the method being is characterized in that it uses an insert consisting of material having a melting point higher than the melting point of the polymeric material, on which the outer layers are consolidated; and
wherein this insert is subsequently replaced by the core of the sandwich-shaped composite material product to form an assembly, the assembly then undergoing a consolidation treatment for bonding the outer layers to the core,
wherein the method is further characterized in that it comprises the following steps:
juxtaposition, in a mold, of a fabric or knit made of reinforcing material, the insert, and a second fabric or knit made of reinforcing material;
injection of a resin of polymeric material under pressure and temperature;
removal of the insert and insertion of the core of the sandwich;
consolidation curing to adhere the outer layers to the core of the sandwich;
cooling of the product thus obtained.
2. The method according to claim 1, characterized in that the insert is made of silicone.
3. The method according to claim 1, characterized in that the reinforcing material is chosen from glass, carbon and aramid fibers.
4. The method according to claim 1, characterized in that the polymeric material is of the thermoplastic type chosen from polycarbonate (PC), polyetherimide (PEI), polypropylene (PP), poly(ethylene terephthalate) (PET), and polyether ether ketone (PEEK).
5. The method according to claim 1, characterized in that the polymeric material is of the thermosetting type, chosen from epoxy, cyanate ester, phenolic resins and polyester.
6. The method according to claim 1, characterized in that the core of the sandwich-shaped composite material product consists of cellular honeycomb material.
7. The method according to claim 1, characterized in that the thickness of the core is at least about 2 mm and not greater than about 50 mm.
8. The method according to claim 1, characterized in that the thickness of each of the outer layers is at least about 0.2 mm and not greater than about 5 mm.
US17/810,770 2018-12-18 2022-07-05 Method for the preparation of composite material in sandwich form Pending US20220339830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/810,770 US20220339830A1 (en) 2018-12-18 2022-07-05 Method for the preparation of composite material in sandwich form

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1873207A FR3089854B1 (en) 2018-12-18 2018-12-18 METHOD FOR PREPARING A COMPOSITE MATERIAL IN THE FORM OF A SANDWICH
FR1873207 2018-12-18
US16/714,965 US11420368B2 (en) 2018-12-18 2019-12-16 Method for the preparation of composite material in sandwich form
US17/810,770 US20220339830A1 (en) 2018-12-18 2022-07-05 Method for the preparation of composite material in sandwich form

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/714,965 Division US11420368B2 (en) 2018-12-18 2019-12-16 Method for the preparation of composite material in sandwich form

Publications (1)

Publication Number Publication Date
US20220339830A1 true US20220339830A1 (en) 2022-10-27

Family

ID=67514677

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/714,965 Active 2040-07-24 US11420368B2 (en) 2018-12-18 2019-12-16 Method for the preparation of composite material in sandwich form
US17/810,770 Pending US20220339830A1 (en) 2018-12-18 2022-07-05 Method for the preparation of composite material in sandwich form

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/714,965 Active 2040-07-24 US11420368B2 (en) 2018-12-18 2019-12-16 Method for the preparation of composite material in sandwich form

Country Status (10)

Country Link
US (2) US11420368B2 (en)
EP (1) EP3898208A1 (en)
JP (2) JP7153801B2 (en)
KR (2) KR102508576B1 (en)
CN (1) CN113329866A (en)
BR (1) BR112021011626A2 (en)
CA (1) CA3122042A1 (en)
FR (1) FR3089854B1 (en)
IL (1) IL284055B1 (en)
WO (1) WO2020127057A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3089854B1 (en) 2018-12-18 2022-02-04 Saint Gobain Performance Plastics France METHOD FOR PREPARING A COMPOSITE MATERIAL IN THE FORM OF A SANDWICH

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192482A (en) * 1989-02-17 1993-03-09 Schreiner Luchtvaart Groep B.V. Method of producing a local reinforcement in a sandwich structure
US6247747B1 (en) * 1995-08-22 2001-06-19 Toray Industries, Inc. Panel and cargo compartment for a truck
US20020012767A1 (en) * 2000-06-27 2002-01-31 Yutaka Ueda Honeycomb sandwich panel
US6767623B1 (en) * 1999-12-10 2004-07-27 Basf Aktiengesellschaft Sandwich panel
US20050208263A1 (en) * 2004-03-05 2005-09-22 Reiner Wilkens Composite component
US20140138872A1 (en) * 2011-07-21 2014-05-22 Hidetaka Hattori Method and device configured to produce at least two products including fiber reinforced resin
US20150122454A1 (en) * 2012-04-30 2015-05-07 Airbus Defence And Space Limited Apparatus and method for mounting heat pipes to panels
US20150145274A1 (en) * 2013-11-28 2015-05-28 Toyoda Gosei Co., Ltd. Vehicle exterior component
US20150327819A1 (en) * 2014-05-15 2015-11-19 Gosakan Aravamudan Radiolucent Patient Table

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687223A (en) * 1971-01-12 1972-08-29 Rigips Stempel Gmbh Sound-retarding wall elements
AR207365A1 (en) 1974-06-25 1976-09-30 Monsanto Co YARN OF NYLON 66 WITH HIGH MODULE IN BREAK, LOW MODULE IN ELONGATION OF 10% INDEX IN POSITIVE TENSION AND UNIFORMITY OF DENIER A SPOOL THAT HAS WINDING ON THE SAME THE YARN AND A PROCEDURE FOR SPINNING IN THE FUSION STATE OF NYLON 66
AR207251A1 (en) 1975-05-22 1976-09-22 Monsanto Co PROCEDURE TO PRODUCE A YARN FROM A THERMOPLASTIC POLYAMIDE POLYMER FOR SPINNING IN THE MELTED STATE
US4336090A (en) * 1980-06-30 1982-06-22 The Boeing Company Method of making sandwich panel
CH655049A5 (en) 1982-03-09 1986-03-27 Micafil Ag Fibre-reinforced plastic
KR930003766B1 (en) * 1987-03-20 1993-05-10 지. 오. 알. 아플리카지오니 스페샬리 에스. 피. 에이. Method and device for the manufacturing of thermoformed pannels of plastic material comprising at least on padded member
DE3741539A1 (en) 1987-12-08 1989-06-22 Bayer Ag LIGHT COMPOSITE MATERIAL, COMPOSITE MATERIAL WHICH CAN TRANSFER IN THIS LIGHT COMPOSITE MATERIAL, METHOD FOR THE PRODUCTION OF THE LIGHT COMPOSITE MATERIAL AND COMPOSITE MATERIAL AND PARTS CONTAINING OR EXISTING FROM THE LIGHT COMPOSITE MATERIAL
FR2701665B1 (en) 1993-02-17 1995-05-19 Europ Propulsion Method for manufacturing a part made of composite material, in particular a sandwich panel, from several assembled preforms.
CA2122548A1 (en) 1993-05-25 1994-11-26 George M. Kent Reinforcing composite items with composite thermoplastic staple fibers
US5472769A (en) 1993-12-10 1995-12-05 American Institute Of Criminology International Corp. Soft body armor material with enhanced puncture resistance comprising at least one continuous fabric having knit portions and integrally woven hinge portions
DE19513506A1 (en) 1995-04-10 1996-10-17 Hoechst Ag Hybrid yarn and permanently deformable textile material made from it, its production and use
FR2740383B1 (en) 1995-10-27 1998-01-16 Aerospatiale METHOD FOR MANUFACTURING A COMPOSITE MATERIAL PANEL WITH RESIN TRANSFER MOLDING
US6027798A (en) * 1995-11-01 2000-02-22 The Boeing Company Pin-reinforced sandwich structure
JP3693426B2 (en) * 1996-07-31 2005-09-07 三井化学株式会社 Composite plate and manufacturing method thereof
JP2000052363A (en) 1998-08-11 2000-02-22 Sekisui Chem Co Ltd Mold for molding reinforced plastic
FR2798618B1 (en) 1999-09-21 2002-05-03 Aerospatiale Matra Airbus METHOD FOR MANUFACTURING A SANDWICH PANEL MADE OF COMPOSITE MATERIAL, AND A PANEL THUS OBTAINED
FR2836690B1 (en) * 2002-03-04 2004-08-27 Eads Launch Vehicles PROCESS FOR THE PRODUCTION OF A DOUBLE-WALL THERMOSTRUCTURAL COMPOSITE MONOLITHIC PIECE AND PART OBTAINED
JP4471672B2 (en) * 2004-01-30 2010-06-02 東邦テナックス株式会社 Resin transfer molding method and sandwich laminate manufacturing method
FR2902803B1 (en) 2006-06-21 2008-11-14 Snecma Propulsion Solide Sa FIBROUS REINFORCING STRUCTURE FOR A PIECE OF COMPOSITE MATERIAL AND PART COMPRISING THE SAME
DE102008006261B3 (en) * 2008-01-25 2009-01-08 Eads Deutschland Gmbh Laminate for lining matrix feeders used to impregnate preforms comprises gas-permeable inner sheet and gas-impermeable outer sheet separated by layer of gas-permeable spacers, textile layer being laminated to outer surface of inner sheet
KR101026962B1 (en) * 2008-12-24 2011-04-11 주식회사 성우하이텍 Production method of bumper beam
DE102009036018A1 (en) 2009-08-04 2011-02-17 Siemens Aktiengesellschaft Thermoplastic final stage blade
JP5796287B2 (en) * 2009-10-05 2015-10-21 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite material, prepreg and honeycomb sandwich panel using the same
GB2477091A (en) 2010-01-20 2011-07-27 Hexcel Composites Ltd Structureal laminate comprising face sheets, core and open-structured sheet
US9022077B2 (en) 2010-12-31 2015-05-05 Eaton Corporation Composite tube for fluid delivery system
JP2013022834A (en) * 2011-07-21 2013-02-04 Mitsubishi Heavy Ind Ltd Composite material of fiber-reinforced resin and lightweight core, and method and apparatus for producing the same
US20130255103A1 (en) 2012-04-03 2013-10-03 Nike, Inc. Apparel And Other Products Incorporating A Thermoplastic Polymer Material
DE102013108645B4 (en) * 2013-08-09 2021-05-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for producing a test specimen and use of the test specimen
US20160214332A1 (en) 2013-12-16 2016-07-28 Jing Zhao Method of Making Of Carbon Fiber Composite Sheet
WO2015134335A1 (en) 2014-03-02 2015-09-11 Drexel University Articulating devices
US10576670B2 (en) 2014-09-15 2020-03-03 The Regents Of The University Of Michigan Methods to increase structural performance, strength and durability of fabric-reinforced composite materials by pre-stressing
FR3026675B1 (en) * 2014-10-02 2016-11-11 Mbda France PROCESS FOR THE PRODUCTION OF A DOUBLE-WALL THERMOSTRUCTURAL COMPOSITE MONOLITHIC PIECE AND PART OBTAINED
US10730252B2 (en) * 2015-03-23 2020-08-04 Khalifa University of Science and Technology Lightweight composite single-skin sandwich lattice structures
EP3120927A1 (en) 2015-07-24 2017-01-25 Centre National De La Recherche Scientifique Entangled fluidic device
US20170157865A1 (en) 2015-12-07 2017-06-08 Hattar Tanin LLC Composite fiber materials
CN108137839B (en) 2015-12-16 2021-07-06 东丽株式会社 Prepreg, laminate, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
CN105619841A (en) * 2015-12-29 2016-06-01 东华大学 Forming method for thermoplastic composite material
EP3219476B1 (en) * 2016-03-17 2021-06-30 Airbus Operations GmbH Method for repairing a sandwich construction element
JP6447750B2 (en) 2016-07-22 2019-01-09 住友ベークライト株式会社 Method for manufacturing sandwich panel
FR3065181B1 (en) 2017-04-14 2020-11-06 Rt2I PROCESS FOR MAKING A DRY PREFORM MADE BY KNITTING, PROCESS FOR MANUFACTURING A PRODUCT IN COMPOSITE MATERIALS FROM THE SAID PREFORM
FR3089854B1 (en) 2018-12-18 2022-02-04 Saint Gobain Performance Plastics France METHOD FOR PREPARING A COMPOSITE MATERIAL IN THE FORM OF A SANDWICH
FR3093668B1 (en) 2019-03-11 2021-04-02 Saint Gobain Performance Plastics France PROCESS FOR THE PREPARATION OF A POLYMERIC MATERIAL
FR3093667B1 (en) 2019-03-11 2021-04-23 Saint Gobain Performance Plastics France PREPARATION OF A COMPOSITE MATERIAL PRODUCT CONTAINING ZONES OF DIFFERENT FUNCTIONALITIES

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192482A (en) * 1989-02-17 1993-03-09 Schreiner Luchtvaart Groep B.V. Method of producing a local reinforcement in a sandwich structure
US6247747B1 (en) * 1995-08-22 2001-06-19 Toray Industries, Inc. Panel and cargo compartment for a truck
US6767623B1 (en) * 1999-12-10 2004-07-27 Basf Aktiengesellschaft Sandwich panel
US20020012767A1 (en) * 2000-06-27 2002-01-31 Yutaka Ueda Honeycomb sandwich panel
US20050208263A1 (en) * 2004-03-05 2005-09-22 Reiner Wilkens Composite component
US20140138872A1 (en) * 2011-07-21 2014-05-22 Hidetaka Hattori Method and device configured to produce at least two products including fiber reinforced resin
US20150122454A1 (en) * 2012-04-30 2015-05-07 Airbus Defence And Space Limited Apparatus and method for mounting heat pipes to panels
US20150145274A1 (en) * 2013-11-28 2015-05-28 Toyoda Gosei Co., Ltd. Vehicle exterior component
US20150327819A1 (en) * 2014-05-15 2015-11-19 Gosakan Aravamudan Radiolucent Patient Table

Also Published As

Publication number Publication date
EP3898208A1 (en) 2021-10-27
IL284055B1 (en) 2024-07-01
US20200189157A1 (en) 2020-06-18
FR3089854B1 (en) 2022-02-04
CN113329866A (en) 2021-08-31
JP7153801B2 (en) 2022-10-14
CA3122042A1 (en) 2020-06-25
IL284055A (en) 2021-08-31
KR102656324B1 (en) 2024-04-12
WO2020127057A1 (en) 2020-06-25
BR112021011626A2 (en) 2021-08-31
KR20230030667A (en) 2023-03-06
JP2022515398A (en) 2022-02-18
KR20210110837A (en) 2021-09-09
US11420368B2 (en) 2022-08-23
JP2023011570A (en) 2023-01-24
FR3089854A1 (en) 2020-06-19
KR102508576B1 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
AU2020201610B2 (en) Fabrication of composite laminates using temporarily stitched preforms
EP1731282B1 (en) Preform, frp, and processes for producing these
Edwards An overview of the technology of fibre-reinforced plastics for design purposes
CA2803414C (en) Fibre reinforced composite moulding
US20170282491A1 (en) Veil-stabilized composite with improved tensile strength
US7930907B2 (en) Crimp-free infusible reinforcement fabric and composite reinforced material therefrom
CN113710464A (en) Preparation of composite materials comprising different functional areas
US20220339830A1 (en) Method for the preparation of composite material in sandwich form
CN111347581A (en) Preparation method of continuous fiber prefabricated member
US20200406563A1 (en) Method and process to produce advanced theromoplastic based composite material parts
RU2804425C2 (en) Method for obtaining composite material in the form of sandwich structure
KR102070596B1 (en) Flow medium for fabricating fiber reinforced plastic and Compound mat and Vacuum assisted molding process using the Same
GB2237583A (en) Fibre reinforced thermoplastic composites
KR20230004742A (en) Intermediate Composite Members, Manufacturing Methods, and Composite Parts
US20220009128A1 (en) Method for manufacturing a fibre preform
BR122024010452A2 (en) METHOD FOR MANUFACTURING A SANDWICH-SHAPED COMPOSITE MATERIAL PRODUCT
US20240100739A1 (en) Preform produced by knitting, composite product incorporating such a preform and manufacturing methods
RU2782809C1 (en) Production of a composite material containing various functional areas
JP2007530810A (en) Reinforcing materials, reinforcing laminates, and composite materials having these

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED