US20220227739A1 - Compounds, compositions, and methods for modulating cftr - Google Patents
Compounds, compositions, and methods for modulating cftr Download PDFInfo
- Publication number
- US20220227739A1 US20220227739A1 US17/411,682 US202117411682A US2022227739A1 US 20220227739 A1 US20220227739 A1 US 20220227739A1 US 202117411682 A US202117411682 A US 202117411682A US 2022227739 A1 US2022227739 A1 US 2022227739A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- group
- phenyl
- alkoxy
- substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 323
- 238000000034 method Methods 0.000 title claims description 87
- 239000000203 mixture Substances 0.000 title claims description 79
- 108010079245 Cystic Fibrosis Transmembrane Conductance Regulator Proteins 0.000 claims abstract description 132
- 230000000694 effects Effects 0.000 claims abstract description 58
- 238000012545 processing Methods 0.000 claims abstract description 5
- 230000001413 cellular effect Effects 0.000 claims abstract description 4
- 230000007547 defect Effects 0.000 claims abstract description 4
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 136
- 102100023419 Cystic fibrosis transmembrane conductance regulator Human genes 0.000 claims description 122
- 125000001424 substituent group Chemical group 0.000 claims description 105
- 229910052736 halogen Inorganic materials 0.000 claims description 103
- 229910052757 nitrogen Inorganic materials 0.000 claims description 96
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 94
- 229910052739 hydrogen Inorganic materials 0.000 claims description 93
- 239000001257 hydrogen Substances 0.000 claims description 93
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 92
- 150000002367 halogens Chemical class 0.000 claims description 92
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 84
- -1 C3-6cycloalkoxy Chemical group 0.000 claims description 78
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 74
- 229910003827 NRaRb Inorganic materials 0.000 claims description 54
- 229910052760 oxygen Inorganic materials 0.000 claims description 54
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 47
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 46
- 229910052717 sulfur Inorganic materials 0.000 claims description 46
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 39
- 125000000623 heterocyclic group Chemical group 0.000 claims description 37
- 125000005842 heteroatom Chemical group 0.000 claims description 36
- 201000010099 disease Diseases 0.000 claims description 33
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 33
- PURKAOJPTOLRMP-UHFFFAOYSA-N ivacaftor Chemical compound C1=C(O)C(C(C)(C)C)=CC(C(C)(C)C)=C1NC(=O)C1=CNC2=CC=CC=C2C1=O PURKAOJPTOLRMP-UHFFFAOYSA-N 0.000 claims description 28
- 229960004508 ivacaftor Drugs 0.000 claims description 27
- 125000002950 monocyclic group Chemical group 0.000 claims description 27
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 25
- 150000003839 salts Chemical class 0.000 claims description 25
- 239000008194 pharmaceutical composition Substances 0.000 claims description 24
- 125000006274 (C1-C3)alkoxy group Chemical group 0.000 claims description 23
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 22
- 125000004043 oxo group Chemical group O=* 0.000 claims description 22
- 201000003883 Cystic fibrosis Diseases 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 17
- 125000001072 heteroaryl group Chemical group 0.000 claims description 17
- MJUVRTYWUMPBTR-MRXNPFEDSA-N 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-n-[1-[(2r)-2,3-dihydroxypropyl]-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)indol-5-yl]cyclopropane-1-carboxamide Chemical compound FC=1C=C2N(C[C@@H](O)CO)C(C(C)(CO)C)=CC2=CC=1NC(=O)C1(C=2C=C3OC(F)(F)OC3=CC=2)CC1 MJUVRTYWUMPBTR-MRXNPFEDSA-N 0.000 claims description 16
- UFSKUSARDNFIRC-UHFFFAOYSA-N lumacaftor Chemical compound N1=C(C=2C=C(C=CC=2)C(O)=O)C(C)=CC=C1NC(=O)C1(C=2C=C3OC(F)(F)OC3=CC=2)CC1 UFSKUSARDNFIRC-UHFFFAOYSA-N 0.000 claims description 16
- 125000002619 bicyclic group Chemical group 0.000 claims description 15
- 102200128219 rs75527207 Human genes 0.000 claims description 14
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 13
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 13
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 claims description 13
- 125000005844 heterocyclyloxy group Chemical group 0.000 claims description 13
- 229960000998 lumacaftor Drugs 0.000 claims description 13
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 12
- 125000005843 halogen group Chemical group 0.000 claims description 12
- 229940002612 prodrug Drugs 0.000 claims description 12
- 239000000651 prodrug Substances 0.000 claims description 12
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 11
- 102200128182 rs74551128 Human genes 0.000 claims description 11
- 208000019693 Lung disease Diseases 0.000 claims description 10
- 102100026383 Vasopressin-neurophysin 2-copeptin Human genes 0.000 claims description 10
- 201000010064 diabetes insipidus Diseases 0.000 claims description 10
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 10
- 102200128591 rs78655421 Human genes 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 9
- 230000007812 deficiency Effects 0.000 claims description 9
- GHTGYZMBQPXTCQ-UHFFFAOYSA-N CC1(C)Cc2c(sc(NC(=O)c3ccn[nH]3)c2C(N)=O)C(C)(C)O1 Chemical compound CC1(C)Cc2c(sc(NC(=O)c3ccn[nH]3)c2C(N)=O)C(C)(C)O1 GHTGYZMBQPXTCQ-UHFFFAOYSA-N 0.000 claims description 8
- 208000015532 congenital bilateral absence of vas deferens Diseases 0.000 claims description 8
- 125000001153 fluoro group Chemical group F* 0.000 claims description 8
- TZBJGXHYKVUXJN-UHFFFAOYSA-N genistein Natural products C1=CC(O)=CC=C1C1=COC2=CC(O)=CC(O)=C2C1=O TZBJGXHYKVUXJN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052705 radium Inorganic materials 0.000 claims description 8
- 229910052701 rubidium Inorganic materials 0.000 claims description 8
- QVDYQHXNAQHIKH-TZIWHRDSSA-N galicaftor Chemical compound FC1(OC2=C(O1)C=CC(=C2)C1(CC1)C(=O)N[C@@H]1C[C@@H](OC2=CC(=CC=C12)OC(F)F)C1=CC=C(C(=O)O)C=C1)F QVDYQHXNAQHIKH-TZIWHRDSSA-N 0.000 claims description 7
- 229940045109 genistein Drugs 0.000 claims description 7
- 235000006539 genistein Nutrition 0.000 claims description 7
- ZCOLJUOHXJRHDI-CMWLGVBASA-N genistein 7-O-beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=C2C(=O)C(C=3C=CC(O)=CC=3)=COC2=C1 ZCOLJUOHXJRHDI-CMWLGVBASA-N 0.000 claims description 7
- 208000015439 Lysosomal storage disease Diseases 0.000 claims description 6
- 125000000000 cycloalkoxy group Chemical group 0.000 claims description 6
- 102200132108 rs80034486 Human genes 0.000 claims description 6
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 claims description 5
- 201000011240 Frontotemporal dementia Diseases 0.000 claims description 5
- 208000008955 Mucolipidoses Diseases 0.000 claims description 5
- 230000001154 acute effect Effects 0.000 claims description 5
- 230000000172 allergic effect Effects 0.000 claims description 5
- 208000010668 atopic eczema Diseases 0.000 claims description 5
- 108010040974 cystic fibrosis transmembrane conductance regulator delta F508 Proteins 0.000 claims description 5
- 206010012601 diabetes mellitus Diseases 0.000 claims description 5
- 208000024827 Alzheimer disease Diseases 0.000 claims description 4
- 206010006473 Bronchopulmonary aspergillosis Diseases 0.000 claims description 4
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 claims description 4
- 208000000668 Chronic Pancreatitis Diseases 0.000 claims description 4
- 206010009137 Chronic sinusitis Diseases 0.000 claims description 4
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 claims description 4
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 claims description 4
- 208000003556 Dry Eye Syndromes Diseases 0.000 claims description 4
- 206010033649 Pancreatitis chronic Diseases 0.000 claims description 4
- 108091000054 Prion Proteins 0.000 claims description 4
- 208000004430 Pulmonary Aspergillosis Diseases 0.000 claims description 4
- 208000021386 Sjogren Syndrome Diseases 0.000 claims description 4
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 claims description 4
- 208000006673 asthma Diseases 0.000 claims description 4
- 201000009267 bronchiectasis Diseases 0.000 claims description 4
- 208000027157 chronic rhinosinusitis Diseases 0.000 claims description 4
- 150000002632 lipids Chemical class 0.000 claims description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 4
- 230000000306 recurrent effect Effects 0.000 claims description 4
- UMOGNCVNHXWFIX-VIFPVBQESA-N 3-amino-N-[(2S)-2-hydroxypropyl]-5-[4-(trifluoromethoxy)phenyl]sulfonylpyridine-2-carboxamide Chemical compound NC=1C(=NC=C(C=1)S(=O)(=O)C1=CC=C(C=C1)OC(F)(F)F)C(=O)NC[C@H](C)O UMOGNCVNHXWFIX-VIFPVBQESA-N 0.000 claims description 3
- 102100034452 Alternative prion protein Human genes 0.000 claims description 3
- 102100032187 Androgen receptor Human genes 0.000 claims description 3
- 102000014461 Ataxins Human genes 0.000 claims description 3
- 108010078286 Ataxins Proteins 0.000 claims description 3
- 206010006458 Bronchitis chronic Diseases 0.000 claims description 3
- 206010008025 Cerebellar ataxia Diseases 0.000 claims description 3
- 208000010693 Charcot-Marie-Tooth Disease Diseases 0.000 claims description 3
- 206010010774 Constipation Diseases 0.000 claims description 3
- 206010014561 Emphysema Diseases 0.000 claims description 3
- 208000024720 Fabry Disease Diseases 0.000 claims description 3
- 229940126130 GLPG2451 Drugs 0.000 claims description 3
- 206010019860 Hereditary angioedema Diseases 0.000 claims description 3
- 208000033981 Hereditary haemochromatosis Diseases 0.000 claims description 3
- 101000775732 Homo sapiens Androgen receptor Proteins 0.000 claims description 3
- 208000023105 Huntington disease Diseases 0.000 claims description 3
- 208000001145 Metabolic Syndrome Diseases 0.000 claims description 3
- 206010072928 Mucolipidosis type II Diseases 0.000 claims description 3
- 208000035467 Pancreatic insufficiency Diseases 0.000 claims description 3
- 208000018737 Parkinson disease Diseases 0.000 claims description 3
- 208000000609 Pick Disease of the Brain Diseases 0.000 claims description 3
- 208000025237 Polyendocrinopathy Diseases 0.000 claims description 3
- 201000005660 Protein C Deficiency Diseases 0.000 claims description 3
- 208000006269 X-Linked Bulbo-Spinal Atrophy Diseases 0.000 claims description 3
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 claims description 3
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 3
- 201000004562 autosomal dominant cerebellar ataxia Diseases 0.000 claims description 3
- 206010006451 bronchitis Diseases 0.000 claims description 3
- 208000007451 chronic bronchitis Diseases 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 208000013746 hereditary thrombophilia due to congenital protein C deficiency Diseases 0.000 claims description 3
- 208000020460 mucolipidosis II alpha/beta Diseases 0.000 claims description 3
- 201000002212 progressive supranuclear palsy Diseases 0.000 claims description 3
- 102200128203 rs121908755 Human genes 0.000 claims description 3
- 208000011580 syndromic disease Diseases 0.000 claims description 3
- XRPSUWYWZUQALB-UHFFFAOYSA-N 2-[7-ethoxy-4-(3-fluorophenyl)-1-oxophthalazin-2-yl]-n-methyl-n-(2-methyl-1,3-benzoxazol-6-yl)acetamide Chemical compound N=1N(CC(=O)N(C)C=2C=C3OC(C)=NC3=CC=2)C(=O)C2=CC(OCC)=CC=C2C=1C1=CC=CC(F)=C1 XRPSUWYWZUQALB-UHFFFAOYSA-N 0.000 claims description 2
- 206010062264 Congenital hyperthyroidism Diseases 0.000 claims description 2
- 206010013883 Dwarfism Diseases 0.000 claims description 2
- 208000000563 Hyperlipoproteinemia Type II Diseases 0.000 claims description 2
- 206010051125 Hypofibrinogenaemia Diseases 0.000 claims description 2
- 208000000038 Hypoparathyroidism Diseases 0.000 claims description 2
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 claims description 2
- 208000002678 Mucopolysaccharidoses Diseases 0.000 claims description 2
- 206010068871 Myotonic dystrophy Diseases 0.000 claims description 2
- 206010031243 Osteogenesis imperfecta Diseases 0.000 claims description 2
- 206010045261 Type IIa hyperlipidaemia Diseases 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 2
- 201000001386 familial hypercholesterolemia Diseases 0.000 claims description 2
- 201000001441 melanoma Diseases 0.000 claims description 2
- 206010028093 mucopolysaccharidosis Diseases 0.000 claims description 2
- 230000002988 nephrogenic effect Effects 0.000 claims description 2
- 230000020978 protein processing Effects 0.000 claims description 2
- 102220002718 rs121908745 Human genes 0.000 claims description 2
- 102200128201 rs121909011 Human genes 0.000 claims description 2
- 102200128617 rs75961395 Human genes 0.000 claims description 2
- 102220338971 rs762679408 Human genes 0.000 claims description 2
- 102200128169 rs77932196 Human genes 0.000 claims description 2
- 102200128229 rs80055610 Human genes 0.000 claims description 2
- 150000002431 hydrogen Chemical group 0.000 claims 24
- 102000008371 intracellularly ATP-gated chloride channel activity proteins Human genes 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 277
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 252
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 190
- 238000001819 mass spectrum Methods 0.000 description 190
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 162
- 230000002829 reductive effect Effects 0.000 description 151
- 238000006243 chemical reaction Methods 0.000 description 139
- 239000007787 solid Substances 0.000 description 134
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 127
- 235000019439 ethyl acetate Nutrition 0.000 description 125
- 229910001868 water Inorganic materials 0.000 description 119
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 108
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 108
- 238000005160 1H NMR spectroscopy Methods 0.000 description 95
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 92
- 239000000543 intermediate Substances 0.000 description 83
- 238000007792 addition Methods 0.000 description 71
- 239000000284 extract Substances 0.000 description 70
- 238000004128 high performance liquid chromatography Methods 0.000 description 70
- 230000035772 mutation Effects 0.000 description 67
- 239000003208 petroleum Substances 0.000 description 64
- 238000001914 filtration Methods 0.000 description 63
- 238000004440 column chromatography Methods 0.000 description 61
- 239000003921 oil Substances 0.000 description 60
- 235000019198 oils Nutrition 0.000 description 60
- 239000007832 Na2SO4 Substances 0.000 description 56
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 56
- 229910052938 sodium sulfate Inorganic materials 0.000 description 56
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 54
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 48
- 239000012298 atmosphere Substances 0.000 description 45
- 239000003814 drug Substances 0.000 description 45
- 239000000706 filtrate Substances 0.000 description 45
- 229940124597 therapeutic agent Drugs 0.000 description 37
- 239000012267 brine Substances 0.000 description 35
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 35
- 108090000623 proteins and genes Proteins 0.000 description 34
- 102000004169 proteins and genes Human genes 0.000 description 32
- 229910002651 NO3 Inorganic materials 0.000 description 27
- 239000003795 chemical substances by application Substances 0.000 description 27
- YMWUJEATGCHHMB-UHFFFAOYSA-N dichloromethane Natural products ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 27
- 229910000027 potassium carbonate Inorganic materials 0.000 description 27
- 235000018102 proteins Nutrition 0.000 description 27
- 125000004432 carbon atom Chemical group C* 0.000 description 25
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 22
- 230000006870 function Effects 0.000 description 20
- 238000003756 stirring Methods 0.000 description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 19
- 230000007111 proteostasis Effects 0.000 description 19
- 239000003153 chemical reaction reagent Substances 0.000 description 18
- 239000002244 precipitate Substances 0.000 description 18
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 17
- 238000009472 formulation Methods 0.000 description 17
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 16
- 125000000217 alkyl group Chemical group 0.000 description 16
- 230000001965 increasing effect Effects 0.000 description 16
- 239000007858 starting material Substances 0.000 description 16
- 238000011282 treatment Methods 0.000 description 16
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- 230000032258 transport Effects 0.000 description 15
- 229920006395 saturated elastomer Polymers 0.000 description 14
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 13
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 13
- 239000002253 acid Substances 0.000 description 13
- 208000035475 disorder Diseases 0.000 description 13
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 239000012279 sodium borohydride Substances 0.000 description 12
- 229910000033 sodium borohydride Inorganic materials 0.000 description 12
- BQEXDUKMTVYBRK-UHFFFAOYSA-N 4-methyl-3-nitrophenol Chemical compound CC1=CC=C(O)C=C1[N+]([O-])=O BQEXDUKMTVYBRK-UHFFFAOYSA-N 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 11
- 230000002950 deficient Effects 0.000 description 11
- 230000004064 dysfunction Effects 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 10
- 230000002776 aggregation Effects 0.000 description 10
- 238000004220 aggregation Methods 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 206010002022 amyloidosis Diseases 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 8
- 239000012230 colorless oil Substances 0.000 description 8
- 239000003937 drug carrier Substances 0.000 description 8
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 8
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 7
- BLLLZEOPEKUXEG-UHFFFAOYSA-N 3-phenylcyclobutan-1-ol Chemical compound C1C(O)CC1C1=CC=CC=C1 BLLLZEOPEKUXEG-UHFFFAOYSA-N 0.000 description 7
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 7
- 239000007821 HATU Substances 0.000 description 7
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 7
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 7
- 229940024606 amino acid Drugs 0.000 description 7
- 235000001014 amino acid Nutrition 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- PQJJJMRNHATNKG-UHFFFAOYSA-N ethyl bromoacetate Chemical compound CCOC(=O)CBr PQJJJMRNHATNKG-UHFFFAOYSA-N 0.000 description 7
- 150000003254 radicals Chemical class 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000000829 suppository Substances 0.000 description 7
- DPGSPRJLAZGUBQ-UHFFFAOYSA-N 2-ethenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound CC1(C)OB(C=C)OC1(C)C DPGSPRJLAZGUBQ-UHFFFAOYSA-N 0.000 description 6
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 6
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 6
- 102000012605 Cystic Fibrosis Transmembrane Conductance Regulator Human genes 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 229910004039 HBF4 Inorganic materials 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 6
- 125000003342 alkenyl group Chemical group 0.000 description 6
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 6
- 125000002837 carbocyclic group Chemical group 0.000 description 6
- 238000002648 combination therapy Methods 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- USZLCYNVCCDPLQ-UHFFFAOYSA-N hydron;n-methoxymethanamine;chloride Chemical compound Cl.CNOC USZLCYNVCCDPLQ-UHFFFAOYSA-N 0.000 description 6
- NXPHGHWWQRMDIA-UHFFFAOYSA-M magnesium;carbanide;bromide Chemical compound [CH3-].[Mg+2].[Br-] NXPHGHWWQRMDIA-UHFFFAOYSA-M 0.000 description 6
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- VVWRJUBEIPHGQF-MDZDMXLPSA-N propan-2-yl (ne)-n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)\N=N\C(=O)OC(C)C VVWRJUBEIPHGQF-MDZDMXLPSA-N 0.000 description 6
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 6
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 6
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- WLPUWLXVBWGYMZ-UHFFFAOYSA-N tricyclohexylphosphine Chemical compound C1CCCCC1P(C1CCCCC1)C1CCCCC1 WLPUWLXVBWGYMZ-UHFFFAOYSA-N 0.000 description 6
- OOUGLTULBSNHNF-UHFFFAOYSA-N 3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid Chemical compound OC(=O)C1=CC=CC(C=2N=C(ON=2)C=2C(=CC=CC=2)F)=C1 OOUGLTULBSNHNF-UHFFFAOYSA-N 0.000 description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 5
- FGYTXJYBEDPMQK-UHFFFAOYSA-N CC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound CC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O FGYTXJYBEDPMQK-UHFFFAOYSA-N 0.000 description 5
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 5
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 5
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 5
- 229910000024 caesium carbonate Inorganic materials 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 description 5
- 125000000753 cycloalkyl group Chemical group 0.000 description 5
- 230000002685 pulmonary effect Effects 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- 239000012453 solvate Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 5
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 5
- KVBJIVDDLMDAPB-UHFFFAOYSA-N 1-chloro-2-nitro-4-phenylmethoxybenzene Chemical compound C1=C(Cl)C([N+](=O)[O-])=CC(OCC=2C=CC=CC=2)=C1 KVBJIVDDLMDAPB-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 206010011878 Deafness Diseases 0.000 description 4
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 4
- 208000009829 Lewy Body Disease Diseases 0.000 description 4
- 201000002832 Lewy body dementia Diseases 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 229910020284 Na2SO4.10H2O Inorganic materials 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 4
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 239000006071 cream Substances 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 230000010370 hearing loss Effects 0.000 description 4
- 231100000888 hearing loss Toxicity 0.000 description 4
- 208000016354 hearing loss disease Diseases 0.000 description 4
- 230000002132 lysosomal effect Effects 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 4
- XURJYWPXVPKIOX-UHFFFAOYSA-N methyl 2-(2-ethoxy-2-oxoethoxy)benzoate Chemical compound CCOC(=O)COC1=CC=CC=C1C(=O)OC XURJYWPXVPKIOX-UHFFFAOYSA-N 0.000 description 4
- 230000007823 neuropathy Effects 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 230000003000 nontoxic effect Effects 0.000 description 4
- 125000005592 polycycloalkyl group Polymers 0.000 description 4
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 4
- VQMSRUREDGBWKT-UHFFFAOYSA-N quinoline-4-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=NC2=C1 VQMSRUREDGBWKT-UHFFFAOYSA-N 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 4
- 230000000707 stereoselective effect Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- DGMVXGHRFDVQHC-UHFFFAOYSA-N 1-methyl-2-nitro-4-phenylmethoxybenzene Chemical compound C1=C([N+]([O-])=O)C(C)=CC=C1OCC1=CC=CC=C1 DGMVXGHRFDVQHC-UHFFFAOYSA-N 0.000 description 3
- JUIKCULGDIZNDI-UHFFFAOYSA-N 4-chloro-3-nitrophenol Chemical compound OC1=CC=C(Cl)C([N+]([O-])=O)=C1 JUIKCULGDIZNDI-UHFFFAOYSA-N 0.000 description 3
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 3
- MHMGHNIZLRQBFK-UHFFFAOYSA-N 5-cyclohexyloxy-2-methylaniline Chemical compound C1=C(N)C(C)=CC=C1OC1CCCCC1 MHMGHNIZLRQBFK-UHFFFAOYSA-N 0.000 description 3
- PIURJJDJQLTYEM-UHFFFAOYSA-N 7-methoxy-3-methyl-1-benzofuran Chemical compound COC1=CC=CC2=C1OC=C2C PIURJJDJQLTYEM-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 101150029409 CFTR gene Proteins 0.000 description 3
- 102000011045 Chloride Channels Human genes 0.000 description 3
- 108010062745 Chloride Channels Proteins 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- 229910010084 LiAlH4 Inorganic materials 0.000 description 3
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 3
- LQZMLBORDGWNPD-UHFFFAOYSA-N N-iodosuccinimide Substances IN1C(=O)CCC1=O LQZMLBORDGWNPD-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 108010071690 Prealbumin Proteins 0.000 description 3
- 208000024777 Prion disease Diseases 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 102000009190 Transthyretin Human genes 0.000 description 3
- 206010064930 age-related macular degeneration Diseases 0.000 description 3
- 125000003302 alkenyloxy group Chemical group 0.000 description 3
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 125000005133 alkynyloxy group Chemical group 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 229960003995 ataluren Drugs 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 125000000392 cycloalkenyl group Chemical group 0.000 description 3
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 235000003599 food sweetener Nutrition 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000012280 lithium aluminium hydride Substances 0.000 description 3
- 231100000516 lung damage Toxicity 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- HNQIVZYLYMDVSB-UHFFFAOYSA-N methanesulfonimidic acid Chemical compound CS(N)(=O)=O HNQIVZYLYMDVSB-UHFFFAOYSA-N 0.000 description 3
- HOWXDNGXHMYIIK-UHFFFAOYSA-N methyl 3-hydroxy-1-benzofuran-2-carboxylate Chemical compound C1=CC=C2C(O)=C(C(=O)OC)OC2=C1 HOWXDNGXHMYIIK-UHFFFAOYSA-N 0.000 description 3
- 229960001047 methyl salicylate Drugs 0.000 description 3
- YQCGOSZYHRVOFW-UHFFFAOYSA-N n-(2,4-ditert-butyl-5-hydroxyphenyl)-4-oxo-1h-quinoline-3-carboxamide;3-[6-[[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropanecarbonyl]amino]-3-methylpyridin-2-yl]benzoic acid Chemical compound C1=C(O)C(C(C)(C)C)=CC(C(C)(C)C)=C1NC(=O)C1=CNC2=CC=CC=C2C1=O.N1=C(C=2C=C(C=CC=2)C(O)=O)C(C)=CC=C1NC(=O)C1(C=2C=C3OC(F)(F)OC3=CC=2)CC1 YQCGOSZYHRVOFW-UHFFFAOYSA-N 0.000 description 3
- 201000001119 neuropathy Diseases 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 210000000496 pancreas Anatomy 0.000 description 3
- 208000033808 peripheral neuropathy Diseases 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 108010040003 polyglutamine Proteins 0.000 description 3
- 229920000155 polyglutamine Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 239000003765 sweetening agent Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- OAOWHOGTNDZQLT-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenyl) 4-(1-hydroxyethyl)benzenesulfonate Chemical compound OC(C)C1=CC=C(C=C1)S(=O)(=O)OC1=C(C(=C(C(=C1F)F)F)F)F OAOWHOGTNDZQLT-UHFFFAOYSA-N 0.000 description 2
- KNKJIFOQFOHKRI-IZZDOVSWSA-N (2e)-n-(2,5-dimethylphenyl)-2-hydroxyiminoacetamide Chemical compound CC1=CC=C(C)C(NC(=O)\C=N\O)=C1 KNKJIFOQFOHKRI-IZZDOVSWSA-N 0.000 description 2
- YCKUALHNSOMJPK-VZUCSPMQSA-N (2e)-n-(4-fluoro-2-methylphenyl)-2-hydroxyiminoacetamide Chemical compound CC1=CC(F)=CC=C1NC(=O)\C=N\O YCKUALHNSOMJPK-VZUCSPMQSA-N 0.000 description 2
- 125000004916 (C1-C6) alkylcarbonyl group Chemical group 0.000 description 2
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- MOYOZRGZXMUBOH-UHFFFAOYSA-N 1-(1-methylsulfonylpiperidin-4-yl)ethanol Chemical compound CC(O)C1CCN(S(C)(=O)=O)CC1 MOYOZRGZXMUBOH-UHFFFAOYSA-N 0.000 description 2
- LZIRKRXTWVPKQZ-UHFFFAOYSA-N 1-(1-methylsulfonylpiperidin-4-yl)ethanone Chemical compound CC(=O)C1CCN(S(C)(=O)=O)CC1 LZIRKRXTWVPKQZ-UHFFFAOYSA-N 0.000 description 2
- YDNRARYUBSRRSL-UHFFFAOYSA-N 1-(2,1-benzothiazol-3-yl)ethanone Chemical compound C1=CC=CC2=C(C(=O)C)SN=C21 YDNRARYUBSRRSL-UHFFFAOYSA-N 0.000 description 2
- GCJRXAOVNVDYQU-UHFFFAOYSA-N 1-(2,1-benzoxazol-3-yl)ethanone Chemical compound C1=CC=CC2=C(C(=O)C)ON=C21 GCJRXAOVNVDYQU-UHFFFAOYSA-N 0.000 description 2
- VZEOJJIAYZCDPI-UHFFFAOYSA-N 1-(2-hydroxy-3-methoxyphenyl)ethanone Chemical compound COC1=CC=CC(C(C)=O)=C1O VZEOJJIAYZCDPI-UHFFFAOYSA-N 0.000 description 2
- ZFUSOVIZZGBORZ-UHFFFAOYSA-N 1-(2-hydroxy-6-methylphenyl)ethanone Chemical compound CC(=O)C1=C(C)C=CC=C1O ZFUSOVIZZGBORZ-UHFFFAOYSA-N 0.000 description 2
- HWXWRZYNNFRZGY-UHFFFAOYSA-N 1-(2-hydroxyphenyl)-2-methylpropan-1-one Chemical compound CC(C)C(=O)C1=CC=CC=C1O HWXWRZYNNFRZGY-UHFFFAOYSA-N 0.000 description 2
- QADCPIOQDOBMKS-UHFFFAOYSA-N 1-(3-bromo-1-benzofuran-2-yl)ethanone Chemical compound C1=CC=C2C(Br)=C(C(=O)C)OC2=C1 QADCPIOQDOBMKS-UHFFFAOYSA-N 0.000 description 2
- UZSCWWHVZCNFKQ-UHFFFAOYSA-N 1-(3-ethyl-1-benzofuran-2-yl)ethanone Chemical compound C1=CC=C2C(CC)=C(C(C)=O)OC2=C1 UZSCWWHVZCNFKQ-UHFFFAOYSA-N 0.000 description 2
- BMKMDHRZSAIZTD-UHFFFAOYSA-N 1-(3-methoxy-2-phenylmethoxyphenyl)ethanone Chemical compound COC1=CC=CC(C(C)=O)=C1OCC1=CC=CC=C1 BMKMDHRZSAIZTD-UHFFFAOYSA-N 0.000 description 2
- HBTQKSGOEOVCBN-UHFFFAOYSA-N 1-(3-methyl-1-benzothiophen-2-yl)ethanone Chemical compound C1=CC=C2C(C)=C(C(=O)C)SC2=C1 HBTQKSGOEOVCBN-UHFFFAOYSA-N 0.000 description 2
- NYXCSMWVRWOPJP-UHFFFAOYSA-N 1-(4-methylsulfonylphenyl)ethanol Chemical compound CC(O)C1=CC=C(S(C)(=O)=O)C=C1 NYXCSMWVRWOPJP-UHFFFAOYSA-N 0.000 description 2
- HNSFAXPMNOFMQI-UHFFFAOYSA-N 1-(oxan-4-yl)ethanol Chemical compound CC(O)C1CCOCC1 HNSFAXPMNOFMQI-UHFFFAOYSA-N 0.000 description 2
- PTGRHIKFLQHQLF-UHFFFAOYSA-N 1-[4-(oxetan-3-yl)phenyl]ethanone Chemical compound C1=CC(C(=O)C)=CC=C1C1COC1 PTGRHIKFLQHQLF-UHFFFAOYSA-N 0.000 description 2
- MGKPCLNUSDGXGT-UHFFFAOYSA-N 1-benzofuran-3-one Chemical compound C1=CC=C2C(=O)COC2=C1 MGKPCLNUSDGXGT-UHFFFAOYSA-N 0.000 description 2
- BATSQIIBPFHADJ-UHFFFAOYSA-N 1-bromo-2-nitro-4-(1-phenylethoxy)benzene Chemical compound CC(OC1=CC(=C(Br)C=C1)[N+]([O-])=O)C1=CC=CC=C1 BATSQIIBPFHADJ-UHFFFAOYSA-N 0.000 description 2
- CRRUGYDDEMGVDY-UHFFFAOYSA-N 1-bromoethylbenzene Chemical compound CC(Br)C1=CC=CC=C1 CRRUGYDDEMGVDY-UHFFFAOYSA-N 0.000 description 2
- ZLLMEWYTXUOLMK-UHFFFAOYSA-N 1-ethenyl-2-nitro-4-(1-phenylethoxy)benzene Chemical compound CC(OC1=CC(=C(C=C)C=C1)[N+]([O-])=O)C1=CC=CC=C1 ZLLMEWYTXUOLMK-UHFFFAOYSA-N 0.000 description 2
- FWBDUAPLKFBELK-UHFFFAOYSA-N 1-fluoro-2-nitro-4-phenylmethoxybenzene Chemical compound C1=C(F)C([N+](=O)[O-])=CC(OCC=2C=CC=CC=2)=C1 FWBDUAPLKFBELK-UHFFFAOYSA-N 0.000 description 2
- ACGKEJKQMNUVCY-UHFFFAOYSA-N 1-methyl-2-nitro-4-(1-phenylethoxy)benzene Chemical compound CC(OC1=CC(=C(C)C=C1)[N+]([O-])=O)C1=CC=CC=C1 ACGKEJKQMNUVCY-UHFFFAOYSA-N 0.000 description 2
- JPAUXKDGNAKOOJ-UHFFFAOYSA-N 1-methyl-2-nitro-4-phenoxybenzene Chemical compound C1=C([N+]([O-])=O)C(C)=CC=C1OC1=CC=CC=C1 JPAUXKDGNAKOOJ-UHFFFAOYSA-N 0.000 description 2
- JJBCKBBHLMGZFV-UHFFFAOYSA-N 1-methyl-3-nitro-5-phenylmethoxybenzene Chemical compound CC1=CC(=CC(OCC2=CC=CC=C2)=C1)[N+]([O-])=O JJBCKBBHLMGZFV-UHFFFAOYSA-N 0.000 description 2
- AZKRZTZMYWCUTK-UHFFFAOYSA-N 1-methyl-4-nitro-2-phenylmethoxybenzene Chemical compound CC1=CC=C([N+]([O-])=O)C=C1OCC1=CC=CC=C1 AZKRZTZMYWCUTK-UHFFFAOYSA-N 0.000 description 2
- FLBWJVGXYMBARW-UHFFFAOYSA-N 1-pyrazolo[1,5-a]pyridin-5-ylethanol Chemical compound C1=C(C(O)C)C=CN2N=CC=C21 FLBWJVGXYMBARW-UHFFFAOYSA-N 0.000 description 2
- JGQPSDIWMGNAPE-UHFFFAOYSA-N 2,1-benzothiazole Chemical compound C1=CC=CC2=CSN=C21 JGQPSDIWMGNAPE-UHFFFAOYSA-N 0.000 description 2
- GZCRRUYXFQIRTH-UHFFFAOYSA-N 2,1-benzothiazole-3-carbaldehyde Chemical compound C1=CC=CC2=C(C=O)SN=C21 GZCRRUYXFQIRTH-UHFFFAOYSA-N 0.000 description 2
- CZZZABOKJQXEBO-UHFFFAOYSA-N 2,4-dimethylaniline Chemical compound CC1=CC=C(N)C(C)=C1 CZZZABOKJQXEBO-UHFFFAOYSA-N 0.000 description 2
- UPNORGIBUMCVRU-UHFFFAOYSA-N 2,5-bis(phenylmethoxy)aniline Chemical compound C=1C=C(OCC=2C=CC=CC=2)C(N)=CC=1OCC1=CC=CC=C1 UPNORGIBUMCVRU-UHFFFAOYSA-N 0.000 description 2
- VOWZNBNDMFLQGM-UHFFFAOYSA-N 2,5-dimethylaniline Chemical compound CC1=CC=C(C)C(N)=C1 VOWZNBNDMFLQGM-UHFFFAOYSA-N 0.000 description 2
- JFHXZDNSABDMHT-UHFFFAOYSA-N 2-(2-propanoylphenoxy)acetic acid Chemical compound CCC(=O)C1=CC=CC=C1OCC(O)=O JFHXZDNSABDMHT-UHFFFAOYSA-N 0.000 description 2
- OSECRBXORZWFQV-UHFFFAOYSA-N 2-(3-amino-4-methylphenoxy)ethanol Chemical compound CC1=CC=C(OCCO)C=C1N OSECRBXORZWFQV-UHFFFAOYSA-N 0.000 description 2
- UQYGWMRSXOUVBV-UHFFFAOYSA-N 2-(4-methyl-3-nitrophenoxy)ethanol Chemical compound CC1=CC=C(OCCO)C=C1[N+]([O-])=O UQYGWMRSXOUVBV-UHFFFAOYSA-N 0.000 description 2
- JLLXSRLEXBECPY-UHFFFAOYSA-N 2-(carboxymethoxy)benzoic acid Chemical compound OC(=O)COC1=CC=CC=C1C(O)=O JLLXSRLEXBECPY-UHFFFAOYSA-N 0.000 description 2
- OLKYFBNIFKQRIZ-UHFFFAOYSA-N 2-bromo-4-tert-butylaniline Chemical compound CC(C)(C)C1=CC=C(N)C(Br)=C1 OLKYFBNIFKQRIZ-UHFFFAOYSA-N 0.000 description 2
- JBKINHFZTVLNEM-UHFFFAOYSA-N 2-bromoethoxy-tert-butyl-dimethylsilane Chemical compound CC(C)(C)[Si](C)(C)OCCBr JBKINHFZTVLNEM-UHFFFAOYSA-N 0.000 description 2
- QWJMNTICFWQYMN-UHFFFAOYSA-N 2-fluoro-5-phenylmethoxyaniline Chemical compound C1=C(F)C(N)=CC(OCC=2C=CC=CC=2)=C1 QWJMNTICFWQYMN-UHFFFAOYSA-N 0.000 description 2
- MDELTTSQKNXQPG-UHFFFAOYSA-N 2-methyl-1-(2-phenylmethoxyphenyl)propan-1-one Chemical compound CC(C)C(=O)C1=CC=CC=C1OCC1=CC=CC=C1 MDELTTSQKNXQPG-UHFFFAOYSA-N 0.000 description 2
- PBSZHNXXFIYDBU-UHFFFAOYSA-N 2-methyl-1-nitro-3-phenylmethoxybenzene Chemical compound C1=CC=C([N+]([O-])=O)C(C)=C1OCC1=CC=CC=C1 PBSZHNXXFIYDBU-UHFFFAOYSA-N 0.000 description 2
- PBAXHOUGHZKSRP-UHFFFAOYSA-N 2-methyl-1-nitro-4-phenylmethoxybenzene Chemical compound C1=C([N+]([O-])=O)C(C)=CC(OCC=2C=CC=CC=2)=C1 PBAXHOUGHZKSRP-UHFFFAOYSA-N 0.000 description 2
- IHMXLABJHKKMTC-UHFFFAOYSA-N 2-methyl-3-phenylmethoxyaniline Chemical compound CC1=C(N)C=CC=C1OCC1=CC=CC=C1 IHMXLABJHKKMTC-UHFFFAOYSA-N 0.000 description 2
- PAXQXJDYVORMOO-UHFFFAOYSA-N 2-methyl-4-(trifluoromethyl)aniline Chemical compound CC1=CC(C(F)(F)F)=CC=C1N PAXQXJDYVORMOO-UHFFFAOYSA-N 0.000 description 2
- YMZVPMQBIGSBOW-UHFFFAOYSA-N 2-methyl-4-phenylmethoxyaniline Chemical compound C1=C(N)C(C)=CC(OCC=2C=CC=CC=2)=C1 YMZVPMQBIGSBOW-UHFFFAOYSA-N 0.000 description 2
- FXCVMAAOKFRJEE-UHFFFAOYSA-N 2-methyl-5-(1-phenylethoxy)aniline Chemical compound C=1C=CC=CC=1C(C)OC1=CC=C(C)C(N)=C1 FXCVMAAOKFRJEE-UHFFFAOYSA-N 0.000 description 2
- OFEJJIXGMFAASR-UHFFFAOYSA-N 2-methyl-5-(2-phenylethoxy)aniline Chemical compound C1=C(N)C(C)=CC=C1OCCC1=CC=CC=C1 OFEJJIXGMFAASR-UHFFFAOYSA-N 0.000 description 2
- WQVMODODUXDXSY-UHFFFAOYSA-N 2-methyl-5-phenoxyaniline Chemical compound C1=C(N)C(C)=CC=C1OC1=CC=CC=C1 WQVMODODUXDXSY-UHFFFAOYSA-N 0.000 description 2
- XNRKEHVEZGIZJJ-UHFFFAOYSA-N 2-methyl-5-phenylmethoxyaniline Chemical compound C1=C(N)C(C)=CC=C1OCC1=CC=CC=C1 XNRKEHVEZGIZJJ-UHFFFAOYSA-N 0.000 description 2
- QDZFMSSFDIBXED-UHFFFAOYSA-N 2-nitro-1,4-bis(phenylmethoxy)benzene Chemical compound C=1C=C(OCC=2C=CC=CC=2)C([N+](=O)[O-])=CC=1OCC1=CC=CC=C1 QDZFMSSFDIBXED-UHFFFAOYSA-N 0.000 description 2
- IUEXCOWAYRHFEP-UHFFFAOYSA-N 3,4-dimethyl-1-benzofuran Chemical compound C1=CC(C)=C2C(C)=COC2=C1 IUEXCOWAYRHFEP-UHFFFAOYSA-N 0.000 description 2
- FJYFWUYIYAPJQX-UHFFFAOYSA-N 3,4-dimethyl-1-benzofuran-2-carbaldehyde Chemical compound C1=CC(C)=C2C(C)=C(C=O)OC2=C1 FJYFWUYIYAPJQX-UHFFFAOYSA-N 0.000 description 2
- IFSAUAGJCFGPRT-UHFFFAOYSA-N 3-[(2-methylpropan-2-yl)oxycarbonylamino]-1-benzofuran-2-carboxylic acid Chemical compound C1=CC=C2C(NC(=O)OC(C)(C)C)=C(C(O)=O)OC2=C1 IFSAUAGJCFGPRT-UHFFFAOYSA-N 0.000 description 2
- YVPGZQLRPAGKLA-UHFFFAOYSA-N 3-[1-(4-carbamoyl-2-methylphenyl)-5-(4-imidazol-1-ylphenyl)pyrrol-2-yl]propanoic acid Chemical compound CC1=CC(C(N)=O)=CC=C1N1C(C=2C=CC(=CC=2)N2C=NC=C2)=CC=C1CCC(O)=O YVPGZQLRPAGKLA-UHFFFAOYSA-N 0.000 description 2
- LCUJMIJZIBBAAX-UHFFFAOYSA-N 3-chloro-1-benzofuran-2-carbaldehyde Chemical compound C1=CC=C2C(Cl)=C(C=O)OC2=C1 LCUJMIJZIBBAAX-UHFFFAOYSA-N 0.000 description 2
- BELMSLQEYXXRGC-UHFFFAOYSA-N 3-ethyl-1-benzofuran Chemical compound C1=CC=C2C(CC)=COC2=C1 BELMSLQEYXXRGC-UHFFFAOYSA-N 0.000 description 2
- CGLVLAFVRYUDBY-UHFFFAOYSA-N 3-methoxy-1-benzofuran-2-carbaldehyde Chemical compound C1=CC=C2C(OC)=C(C=O)OC2=C1 CGLVLAFVRYUDBY-UHFFFAOYSA-N 0.000 description 2
- MZOCFIBSONGMJF-UHFFFAOYSA-N 3-methoxy-1-benzofuran-2-carboxylic acid Chemical compound C1=CC=C2C(OC)=C(C(O)=O)OC2=C1 MZOCFIBSONGMJF-UHFFFAOYSA-N 0.000 description 2
- YLYLDKOXGOLUGR-UHFFFAOYSA-N 3-methoxy-2-phenylmethoxybenzoic acid Chemical compound COC1=CC=CC(C(O)=O)=C1OCC1=CC=CC=C1 YLYLDKOXGOLUGR-UHFFFAOYSA-N 0.000 description 2
- YUGZXQTXCBFEAD-UHFFFAOYSA-N 3-methyl-1-benzofuran-7-ol Chemical compound C1=CC=C2C(C)=COC2=C1O YUGZXQTXCBFEAD-UHFFFAOYSA-N 0.000 description 2
- AGUBQTXICDWDOC-UHFFFAOYSA-N 3-methyl-5-phenylmethoxyaniline Chemical compound CC1=CC(N)=CC(OCC=2C=CC=CC=2)=C1 AGUBQTXICDWDOC-UHFFFAOYSA-N 0.000 description 2
- BVQSFCUGCAZOJQ-UHFFFAOYSA-N 3-phenylcyclobutan-1-one Chemical compound C1C(=O)CC1C1=CC=CC=C1 BVQSFCUGCAZOJQ-UHFFFAOYSA-N 0.000 description 2
- MUTQIDYRDJUSQN-UHFFFAOYSA-N 3-phenylmethoxy-1-benzofuran-2-carboxylic acid Chemical compound C(C1=CC=CC=C1)OC1=C(OC2=C1C=CC=C2)C(=O)O MUTQIDYRDJUSQN-UHFFFAOYSA-N 0.000 description 2
- OCIGHXVYRYKMIK-UHFFFAOYSA-N 3-propan-2-yl-1-benzofuran Chemical compound C1=CC=C2C(C(C)C)=COC2=C1 OCIGHXVYRYKMIK-UHFFFAOYSA-N 0.000 description 2
- AHGZAMRWUUYCBF-UHFFFAOYSA-N 3-propan-2-yl-1-benzofuran-2-carbaldehyde Chemical compound C1=CC=C2C(C(C)C)=C(C=O)OC2=C1 AHGZAMRWUUYCBF-UHFFFAOYSA-N 0.000 description 2
- VYRDPBOVRAVNKT-UHFFFAOYSA-N 4,7-dimethyl-1h-indole-2,3-dione Chemical compound CC1=CC=C(C)C2=C1NC(=O)C2=O VYRDPBOVRAVNKT-UHFFFAOYSA-N 0.000 description 2
- YNIHBLVNHPIYLM-UHFFFAOYSA-N 4-(1-hydroxyethyl)-n-methylbenzenesulfonamide Chemical compound CNS(=O)(=O)C1=CC=C(C(C)O)C=C1 YNIHBLVNHPIYLM-UHFFFAOYSA-N 0.000 description 2
- HDYYKJIWEZHRSM-UHFFFAOYSA-N 4-(difluoromethoxy)-1-methyl-2-nitrobenzene Chemical compound CC1=CC=C(OC(F)F)C=C1[N+]([O-])=O HDYYKJIWEZHRSM-UHFFFAOYSA-N 0.000 description 2
- GDIIPKWHAQGCJF-UHFFFAOYSA-N 4-Amino-2-nitrotoluene Chemical compound CC1=CC=C(N)C=C1[N+]([O-])=O GDIIPKWHAQGCJF-UHFFFAOYSA-N 0.000 description 2
- WMNMXFLMOCGTME-UHFFFAOYSA-N 4-[2-[tert-butyl(dimethyl)silyl]oxyethoxy]-2-methylaniline Chemical compound CC1=CC(OCCO[Si](C)(C)C(C)(C)C)=CC=C1N WMNMXFLMOCGTME-UHFFFAOYSA-N 0.000 description 2
- ABIRLDRMHFIXJP-UHFFFAOYSA-N 4-cyclohexyloxy-1-methyl-2-nitrobenzene Chemical compound C1=C([N+]([O-])=O)C(C)=CC=C1OC1CCCCC1 ABIRLDRMHFIXJP-UHFFFAOYSA-N 0.000 description 2
- SQMZODGIHXHNAW-UHFFFAOYSA-N 4-methyl-2-nitro-1-phenylmethoxybenzene Chemical compound [O-][N+](=O)C1=CC(C)=CC=C1OCC1=CC=CC=C1 SQMZODGIHXHNAW-UHFFFAOYSA-N 0.000 description 2
- TZWRMTAIHRIAFC-UHFFFAOYSA-N 4-methyl-3-phenylmethoxyaniline Chemical compound CC1=CC=C(N)C=C1OCC1=CC=CC=C1 TZWRMTAIHRIAFC-UHFFFAOYSA-N 0.000 description 2
- OTLNPYWUJOZPPA-UHFFFAOYSA-M 4-nitrobenzoate Chemical compound [O-]C(=O)C1=CC=C([N+]([O-])=O)C=C1 OTLNPYWUJOZPPA-UHFFFAOYSA-M 0.000 description 2
- LJFVSIDBFJPKLD-UHFFFAOYSA-N 4-phenylmethoxy-1h-indole Chemical compound C=1C=CC=2NC=CC=2C=1OCC1=CC=CC=C1 LJFVSIDBFJPKLD-UHFFFAOYSA-N 0.000 description 2
- RCWMWQFNIDKOND-UHFFFAOYSA-N 4-tert-butyl-2-ethenylaniline Chemical compound CC(C)(C)C1=CC=C(N)C(C=C)=C1 RCWMWQFNIDKOND-UHFFFAOYSA-N 0.000 description 2
- MAYHWEBVTBSGTR-UHFFFAOYSA-N 4-tert-butyl-2-ethylaniline Chemical compound CCC1=CC(C(C)(C)C)=CC=C1N MAYHWEBVTBSGTR-UHFFFAOYSA-N 0.000 description 2
- ZPWRNXCIWFCXOL-UHFFFAOYSA-N 4-tert-butyl-2-methylaniline Chemical compound CC1=CC(C(C)(C)C)=CC=C1N ZPWRNXCIWFCXOL-UHFFFAOYSA-N 0.000 description 2
- WXHBHENUGQWESC-UHFFFAOYSA-N 5-(difluoromethoxy)-2-methylaniline Chemical compound CC1=CC=C(OC(F)F)C=C1N WXHBHENUGQWESC-UHFFFAOYSA-N 0.000 description 2
- NPRAKNSGKOICIE-UHFFFAOYSA-N 5-bromo-7-methyl-1h-indole-2,3-dione Chemical compound CC1=CC(Br)=CC2=C1NC(=O)C2=O NPRAKNSGKOICIE-UHFFFAOYSA-N 0.000 description 2
- UTQPVTUKUNIWMB-UHFFFAOYSA-N 5-fluoro-7-methyl-1h-indole-2,3-dione Chemical compound CC1=CC(F)=CC2=C1NC(=O)C2=O UTQPVTUKUNIWMB-UHFFFAOYSA-N 0.000 description 2
- OMTFBZKZNBBYPB-UHFFFAOYSA-N 5-methyl-2-phenylmethoxyaniline Chemical compound NC1=CC(C)=CC=C1OCC1=CC=CC=C1 OMTFBZKZNBBYPB-UHFFFAOYSA-N 0.000 description 2
- WNNRNHJTCLXTNK-UHFFFAOYSA-N 7-methoxy-3-methyl-1-benzofuran-2-carbaldehyde Chemical compound COC1=CC=CC2=C1OC(C=O)=C2C WNNRNHJTCLXTNK-UHFFFAOYSA-N 0.000 description 2
- AQOWFISTBQALKW-UHFFFAOYSA-N 7-methyl-4-phenylmethoxy-1h-indole Chemical compound C1=2C=CNC=2C(C)=CC=C1OCC1=CC=CC=C1 AQOWFISTBQALKW-UHFFFAOYSA-N 0.000 description 2
- JYGWUKVTKTYJML-UHFFFAOYSA-N 7-methyl-5-(trifluoromethyl)-1h-indole-2,3-dione Chemical compound CC1=CC(C(F)(F)F)=CC2=C1NC(=O)C2=O JYGWUKVTKTYJML-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 102100022712 Alpha-1-antitrypsin Human genes 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- PMHTUTKHFFAQSR-UHFFFAOYSA-N BrC1=CC(=C(C=C1)NC(C=NO)=O)C Chemical compound BrC1=CC(=C(C=C1)NC(C=NO)=O)C PMHTUTKHFFAQSR-UHFFFAOYSA-N 0.000 description 2
- RCJHXRVHULMOBP-UHFFFAOYSA-N C(=O)C=1OC2=C(C=1NC(OC(C)(C)C)=O)C=CC=C2 Chemical compound C(=O)C=1OC2=C(C=1NC(OC(C)(C)C)=O)C=CC=C2 RCJHXRVHULMOBP-UHFFFAOYSA-N 0.000 description 2
- JUKJCHVAOWJWAA-UHFFFAOYSA-N C(C)(=O)C1=C(OCC(=O)O)C(=CC=C1)OC Chemical compound C(C)(=O)C1=C(OCC(=O)O)C(=CC=C1)OC JUKJCHVAOWJWAA-UHFFFAOYSA-N 0.000 description 2
- HZKQKGCEXFHUSQ-UHFFFAOYSA-N C(C)(=O)C1=C(OCC(=O)O)C=CC=C1C Chemical compound C(C)(=O)C1=C(OCC(=O)O)C=CC=C1C HZKQKGCEXFHUSQ-UHFFFAOYSA-N 0.000 description 2
- IFZSRMOAVQBNFN-UHFFFAOYSA-N C(C)(=O)C1=C(OCC(=O)OCC)C=CC=C1C Chemical compound C(C)(=O)C1=C(OCC(=O)OCC)C=CC=C1C IFZSRMOAVQBNFN-UHFFFAOYSA-N 0.000 description 2
- POPURPPQTLUNMJ-UHFFFAOYSA-N C(C)(=O)C1=CC=C(C=C1)S(=O)(=O)OC1=C(C(=C(C(=C1F)F)F)F)F Chemical compound C(C)(=O)C1=CC=C(C=C1)S(=O)(=O)OC1=C(C(=C(C(=C1F)F)F)F)F POPURPPQTLUNMJ-UHFFFAOYSA-N 0.000 description 2
- SCRFFXWIIUCNIT-RIYZIHGNSA-N C(C)(C)(C)C1=CC(=C(C=C1)NC(/C=N/O)=O)C Chemical compound C(C)(C)(C)C1=CC(=C(C=C1)NC(/C=N/O)=O)C SCRFFXWIIUCNIT-RIYZIHGNSA-N 0.000 description 2
- HWWXWBSMQOFLHA-UHFFFAOYSA-N C(C)(C)(C)C1=CC(=C(C=C1)NC(OC(C)(C)C)=O)C Chemical compound C(C)(C)(C)C1=CC(=C(C=C1)NC(OC(C)(C)C)=O)C HWWXWBSMQOFLHA-UHFFFAOYSA-N 0.000 description 2
- LKCKXWDHPIFICC-UHFFFAOYSA-N C(C)(C)(C)C=1C=C2C(C(NC2=C(C=1)C)=O)=O Chemical compound C(C)(C)(C)C=1C=C2C(C(NC2=C(C=1)C)=O)=O LKCKXWDHPIFICC-UHFFFAOYSA-N 0.000 description 2
- JDNDZTLNZFLXNT-UHFFFAOYSA-N C(C)C1=C(N)C=C(C=C1)OC(C)C1=CC=CC=C1 Chemical compound C(C)C1=C(N)C=C(C=C1)OC(C)C1=CC=CC=C1 JDNDZTLNZFLXNT-UHFFFAOYSA-N 0.000 description 2
- RTASPYFRYBYLBI-UHFFFAOYSA-N C(C)C1=C(N)C=C(C=C1)OCC1=C(C=CC=C1)C Chemical compound C(C)C1=C(N)C=C(C=C1)OCC1=C(C=CC=C1)C RTASPYFRYBYLBI-UHFFFAOYSA-N 0.000 description 2
- BWKFSBSWYPTEOC-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C(C(=O)N(C)OC)C=CC=C1OC Chemical compound C(C1=CC=CC=C1)OC1=C(C(=O)N(C)OC)C=CC=C1OC BWKFSBSWYPTEOC-UHFFFAOYSA-N 0.000 description 2
- AELDVBFXGKLYRX-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C(OC2=C1C=CC=C2)C(=O)N(C)OC Chemical compound C(C1=CC=CC=C1)OC1=C(OC2=C1C=CC=C2)C(=O)N(C)OC AELDVBFXGKLYRX-UHFFFAOYSA-N 0.000 description 2
- KCCPSIAHAGDQEI-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C(OC2=C1C=CC=C2)C(=O)OC Chemical compound C(C1=CC=CC=C1)OC1=C(OC2=C1C=CC=C2)C(=O)OC KCCPSIAHAGDQEI-UHFFFAOYSA-N 0.000 description 2
- RJZJPFKUQSUKEO-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C(OC2=C1C=CC=C2)C=O Chemical compound C(C1=CC=CC=C1)OC1=C(OC2=C1C=CC=C2)C=O RJZJPFKUQSUKEO-UHFFFAOYSA-N 0.000 description 2
- PVDYEWZLTIXAIB-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(C(NC2=C(C=C1)C)=O)=O Chemical compound C(C1=CC=CC=C1)OC1=C2C(C(NC2=C(C=C1)C)=O)=O PVDYEWZLTIXAIB-UHFFFAOYSA-N 0.000 description 2
- VVXDFSGGWBJTNF-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(C(NC2=C(C=C1)Cl)=O)=O Chemical compound C(C1=CC=CC=C1)OC1=C2C(C(NC2=C(C=C1)Cl)=O)=O VVXDFSGGWBJTNF-UHFFFAOYSA-N 0.000 description 2
- DAOMOFOTJGYQOB-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(C(NC2=CC=C1)=O)=O Chemical compound C(C1=CC=CC=C1)OC1=C2C(C(NC2=CC=C1)=O)=O DAOMOFOTJGYQOB-UHFFFAOYSA-N 0.000 description 2
- ANSPTOKBUMMDRN-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C=CNC2=C(C=C1)Cl Chemical compound C(C1=CC=CC=C1)OC1=C2C=CNC2=C(C=C1)Cl ANSPTOKBUMMDRN-UHFFFAOYSA-N 0.000 description 2
- LBJCOXRLKBIGMC-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=CC(=C(C=C1)C1CC1)[N+](=O)[O-] Chemical compound C(C1=CC=CC=C1)OC1=CC(=C(C=C1)C1CC1)[N+](=O)[O-] LBJCOXRLKBIGMC-UHFFFAOYSA-N 0.000 description 2
- IQPJSXAYQQFOQQ-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=CC=C2C(=CC(=NC2=C1C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=CC=C2C(=CC(=NC2=C1C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O IQPJSXAYQQFOQQ-UHFFFAOYSA-N 0.000 description 2
- YXZJLRWNCQRSJU-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=CC=CC=2C(=C(OC=21)C=O)C Chemical compound C(C1=CC=CC=C1)OC1=CC=CC=2C(=C(OC=21)C=O)C YXZJLRWNCQRSJU-UHFFFAOYSA-N 0.000 description 2
- VHWSNGLQKVCNAV-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=CC=CC=2C(=COC=21)C Chemical compound C(C1=CC=CC=C1)OC1=CC=CC=2C(=COC=21)C VHWSNGLQKVCNAV-UHFFFAOYSA-N 0.000 description 2
- SVSLIXRULWQJHE-UHFFFAOYSA-N C(C1=CC=CC=C1)OC=1C=CC(=C(N)C=1)C1CC1 Chemical compound C(C1=CC=CC=C1)OC=1C=CC(=C(N)C=1)C1CC1 SVSLIXRULWQJHE-UHFFFAOYSA-N 0.000 description 2
- RSTRVACUUQTGSR-UHFFFAOYSA-N C1(CCCCC1)OC1=CC(=C(C=C1)C=C)[N+](=O)[O-] Chemical compound C1(CCCCC1)OC1=CC(=C(C=C1)C=C)[N+](=O)[O-] RSTRVACUUQTGSR-UHFFFAOYSA-N 0.000 description 2
- DUZWRMPSWSECSR-UHFFFAOYSA-N C1(CCCCC1)OC=1C=CC(=C(N)C=1)CC Chemical compound C1(CCCCC1)OC=1C=CC(=C(N)C=1)CC DUZWRMPSWSECSR-UHFFFAOYSA-N 0.000 description 2
- AVPIDVDVWNQULP-UHFFFAOYSA-N CC(C(=O)C1=C(OCC(=O)O)C=CC=C1)C Chemical compound CC(C(=O)C1=C(OCC(=O)O)C=CC=C1)C AVPIDVDVWNQULP-UHFFFAOYSA-N 0.000 description 2
- ITYNCXIOKRQVJV-UHFFFAOYSA-N CC(O)C1=C2C=CC=CC2=NS1 Chemical compound CC(O)C1=C2C=CC=CC2=NS1 ITYNCXIOKRQVJV-UHFFFAOYSA-N 0.000 description 2
- SGYKUASZOQKJFG-UHFFFAOYSA-N CC(O)C1=CC=C(C=C1)C1COC1 Chemical compound CC(O)C1=CC=C(C=C1)C1COC1 SGYKUASZOQKJFG-UHFFFAOYSA-N 0.000 description 2
- RMQNSFCNWJNNPE-UHFFFAOYSA-N CC1=C(C=C(C=C1)OC1CC(C1)C1=CC=CC=C1)[N+](=O)[O-] Chemical compound CC1=C(C=C(C=C1)OC1CC(C1)C1=CC=CC=C1)[N+](=O)[O-] RMQNSFCNWJNNPE-UHFFFAOYSA-N 0.000 description 2
- LNIBUOBIJZPOEY-UHFFFAOYSA-N CC1=C(C=C(OC2CCC(CC2)C(=O)NN)C=C1)[N+](=O)[O-] Chemical compound CC1=C(C=C(OC2CCC(CC2)C(=O)NN)C=C1)[N+](=O)[O-] LNIBUOBIJZPOEY-UHFFFAOYSA-N 0.000 description 2
- SYSGGJLRFGIGJZ-UHFFFAOYSA-N CC1=C(C=C(OC2CCC(CC2)C(=O)OCC)C=C1)[N+](=O)[O-] Chemical compound CC1=C(C=C(OC2CCC(CC2)C(=O)OCC)C=C1)[N+](=O)[O-] SYSGGJLRFGIGJZ-UHFFFAOYSA-N 0.000 description 2
- RTQUXKTUKFQPKJ-UHFFFAOYSA-N CC1=C(C=C(OC2CCC(CC2)C2=NN=CO2)C=C1)[N+]([O-])=O Chemical compound CC1=C(C=C(OC2CCC(CC2)C2=NN=CO2)C=C1)[N+]([O-])=O RTQUXKTUKFQPKJ-UHFFFAOYSA-N 0.000 description 2
- GHTAFWHKFCHDTA-UHFFFAOYSA-N CC1=C(C=C(OCC=2C=NC=CC=2)C=C1)[N+](=O)[O-] Chemical compound CC1=C(C=C(OCC=2C=NC=CC=2)C=C1)[N+](=O)[O-] GHTAFWHKFCHDTA-UHFFFAOYSA-N 0.000 description 2
- CVAKEWGDQACINJ-UHFFFAOYSA-N CC1=C(C=C(OCCC2=CC=CC=C2)C=C1)[N+]([O-])=O Chemical compound CC1=C(C=C(OCCC2=CC=CC=C2)C=C1)[N+]([O-])=O CVAKEWGDQACINJ-UHFFFAOYSA-N 0.000 description 2
- BBUQUSMHSQLGLA-UHFFFAOYSA-N CC1=C(N)C=C(C=C1)OC1CC(C1)C1=CC=CC=C1 Chemical compound CC1=C(N)C=C(C=C1)OC1CC(C1)C1=CC=CC=C1 BBUQUSMHSQLGLA-UHFFFAOYSA-N 0.000 description 2
- LZRVJRREWKNINH-UHFFFAOYSA-N CC1=C(N)C=C(C=C1)OC1CCC(CC1)C=1OC=NN=1 Chemical compound CC1=C(N)C=C(C=C1)OC1CCC(CC1)C=1OC=NN=1 LZRVJRREWKNINH-UHFFFAOYSA-N 0.000 description 2
- HFUUSESYMRSVHY-UHFFFAOYSA-N CC1=C(N)C=C(C=C1)OCC=1C=NC=CC=1 Chemical compound CC1=C(N)C=C(C=C1)OCC=1C=NC=CC=1 HFUUSESYMRSVHY-UHFFFAOYSA-N 0.000 description 2
- CWEZBPGOLYEIMQ-UHFFFAOYSA-N CCC1=C(C=C(OCC2=C(C)C=CC=C2)C=C1)[N+]([O-])=O Chemical compound CCC1=C(C=C(OCC2=C(C)C=CC=C2)C=C1)[N+]([O-])=O CWEZBPGOLYEIMQ-UHFFFAOYSA-N 0.000 description 2
- OJHIEVVWFUBGEY-UHFFFAOYSA-N CON(C(=O)C=1OC2=C(C=1NC(OC(C)(C)C)=O)C=CC=C2)C Chemical compound CON(C(=O)C=1OC2=C(C=1NC(OC(C)(C)C)=O)C=CC=C2)C OJHIEVVWFUBGEY-UHFFFAOYSA-N 0.000 description 2
- NQYZCOOSHIMJKU-UHFFFAOYSA-N CON(C)C(=O)C1=CC2=CC=NN2C=C1 Chemical compound CON(C)C(=O)C1=CC2=CC=NN2C=C1 NQYZCOOSHIMJKU-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 208000002177 Cataract Diseases 0.000 description 2
- VGLIWSBUPHUPHY-UHFFFAOYSA-N ClS(=O)NC1=C(C=CC=C1)C Chemical compound ClS(=O)NC1=C(C=CC=C1)C VGLIWSBUPHUPHY-UHFFFAOYSA-N 0.000 description 2
- 208000025103 Congenital isolated hyperinsulinism Diseases 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical group [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- 206010012688 Diabetic retinal oedema Diseases 0.000 description 2
- 206010012689 Diabetic retinopathy Diseases 0.000 description 2
- MGAZPYAVTXZSCO-UHFFFAOYSA-N FC(COC1=CC(=C(C=C1)C)[N+](=O)[O-])F Chemical compound FC(COC1=CC(=C(C=C1)C)[N+](=O)[O-])F MGAZPYAVTXZSCO-UHFFFAOYSA-N 0.000 description 2
- UAEMKXZEXLTMSQ-UHFFFAOYSA-N FC(COC=1C=CC(=C(N)C=1)C)F Chemical compound FC(COC=1C=CC(=C(N)C=1)C)F UAEMKXZEXLTMSQ-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102000004547 Glucosylceramidase Human genes 0.000 description 2
- 108010017544 Glucosylceramidase Proteins 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 102000010445 Lactoferrin Human genes 0.000 description 2
- 108010063045 Lactoferrin Proteins 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 102000005431 Molecular Chaperones Human genes 0.000 description 2
- 108010006519 Molecular Chaperones Proteins 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- YISFEHCBDAVAJB-UHFFFAOYSA-N N,3-dimethoxy-N-methyl-1-benzofuran-2-carboxamide Chemical compound CON(C(=O)C=1OC2=C(C=1OC)C=CC=C2)C YISFEHCBDAVAJB-UHFFFAOYSA-N 0.000 description 2
- YTADNGDYDDQSJW-UHFFFAOYSA-N ON=CC(=O)NC1=C(C=C(C=C1)C(F)(F)F)C Chemical compound ON=CC(=O)NC1=C(C=C(C=C1)C(F)(F)F)C YTADNGDYDDQSJW-UHFFFAOYSA-N 0.000 description 2
- 235000019502 Orange oil Nutrition 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 2
- WSABLKSELYNSHV-UHFFFAOYSA-N S1C(=CC2=C1C=CC=C2)C1=NC2=C(C=C(C=C2C(=N1)C(=O)O)C)C Chemical compound S1C(=CC2=C1C=CC=C2)C1=NC2=C(C=C(C=C2C(=N1)C(=O)O)C)C WSABLKSELYNSHV-UHFFFAOYSA-N 0.000 description 2
- SHASBWIGPIDSKK-UHFFFAOYSA-N S1C(=NC2=C1C=CC=C2)C1=NC2=C(C=C(C=C2C(=C1)C(=O)O)C)C Chemical compound S1C(=NC2=C1C=CC=C2)C1=NC2=C(C=C(C=C2C(=C1)C(=O)O)C)C SHASBWIGPIDSKK-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 102000019197 Superoxide Dismutase Human genes 0.000 description 2
- 108010012715 Superoxide dismutase Proteins 0.000 description 2
- UDTPHSYFOCQBSA-UHFFFAOYSA-N [O-][N+](=O)C1=C(Cl)C=CC(OC2CCCCC2)=C1 Chemical compound [O-][N+](=O)C1=C(Cl)C=CC(OC2CCCCC2)=C1 UDTPHSYFOCQBSA-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 108010070626 acid beta-galactosidase Proteins 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000002260 anti-inflammatory agent Substances 0.000 description 2
- 229940121363 anti-inflammatory agent Drugs 0.000 description 2
- 150000003934 aromatic aldehydes Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N chlorine dioxide Inorganic materials O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- NKLCNNUWBJBICK-UHFFFAOYSA-N dess–martin periodinane Chemical compound C1=CC=C2I(OC(=O)C)(OC(C)=O)(OC(C)=O)OC(=O)C2=C1 NKLCNNUWBJBICK-UHFFFAOYSA-N 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 201000011190 diabetic macular edema Diseases 0.000 description 2
- LMIQZCUWJCICAC-UHFFFAOYSA-N ethyl 2-(2-acetyl-6-methoxyphenoxy)acetate Chemical compound C(C)(=O)C1=C(OCC(=O)OCC)C(=CC=C1)OC LMIQZCUWJCICAC-UHFFFAOYSA-N 0.000 description 2
- ORNAPWRLYAJFON-UHFFFAOYSA-N ethyl 2-(2-cyanophenoxy)acetate Chemical compound CCOC(=O)COC1=CC=CC=C1C#N ORNAPWRLYAJFON-UHFFFAOYSA-N 0.000 description 2
- BCBBSVVVKPVZPW-UHFFFAOYSA-N ethyl 2-(2-propanoylphenoxy)acetate Chemical compound CCOC(=O)COC1=CC=CC=C1C(=O)CC BCBBSVVVKPVZPW-UHFFFAOYSA-N 0.000 description 2
- LNGCDROPYBRMAN-UHFFFAOYSA-N ethyl 2-[2-(2-methylpropanoyl)phenoxy]acetate Chemical compound CCOC(=O)COC1=CC=CC=C1C(=O)C(C)C LNGCDROPYBRMAN-UHFFFAOYSA-N 0.000 description 2
- RIZOAQIIIWWHTN-UHFFFAOYSA-N ethyl 3-[(2-methylpropan-2-yl)oxycarbonylamino]-1-benzofuran-2-carboxylate Chemical compound C1=CC=C2C(NC(=O)OC(C)(C)C)=C(C(=O)OCC)OC2=C1 RIZOAQIIIWWHTN-UHFFFAOYSA-N 0.000 description 2
- PWOARNMOPCOJEV-UHFFFAOYSA-N ethyl 3-amino-1-benzofuran-2-carboxylate Chemical compound C1=CC=C2C(N)=C(C(=O)OCC)OC2=C1 PWOARNMOPCOJEV-UHFFFAOYSA-N 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 208000035474 group of disease Diseases 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 208000034737 hemoglobinopathy Diseases 0.000 description 2
- 125000004366 heterocycloalkenyl group Chemical group 0.000 description 2
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 2
- 208000010544 human prion disease Diseases 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 208000018337 inherited hemoglobinopathy Diseases 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 210000003963 intermediate filament Anatomy 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 2
- 230000037427 ion transport Effects 0.000 description 2
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 2
- 229940078795 lactoferrin Drugs 0.000 description 2
- 235000021242 lactoferrin Nutrition 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 208000002780 macular degeneration Diseases 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- BWRCJLJJIXYLNV-UHFFFAOYSA-N methyl 2-hydroxy-3-methoxybenzoate Chemical compound COC(=O)C1=CC=CC(OC)=C1O BWRCJLJJIXYLNV-UHFFFAOYSA-N 0.000 description 2
- CBOLPMASAMZJNE-UHFFFAOYSA-N methyl 3-methoxy-1-benzofuran-2-carboxylate Chemical compound C1=CC=C2C(OC)=C(C(=O)OC)OC2=C1 CBOLPMASAMZJNE-UHFFFAOYSA-N 0.000 description 2
- RRXHRZZMUQKMDJ-UHFFFAOYSA-N methyl 3-methoxy-2-phenylmethoxybenzoate Chemical compound COC(=O)C1=CC=CC(OC)=C1OCC1=CC=CC=C1 RRXHRZZMUQKMDJ-UHFFFAOYSA-N 0.000 description 2
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 2
- KTMKRRPZPWUYKK-UHFFFAOYSA-N methylboronic acid Chemical compound CB(O)O KTMKRRPZPWUYKK-UHFFFAOYSA-N 0.000 description 2
- 210000003097 mucus Anatomy 0.000 description 2
- 208000031225 myocardial ischemia Diseases 0.000 description 2
- VOCLXLUSQNGZFI-UHFFFAOYSA-N n-(3-amino-4-methylphenyl)-2-phenylacetamide Chemical compound C1=C(N)C(C)=CC=C1NC(=O)CC1=CC=CC=C1 VOCLXLUSQNGZFI-UHFFFAOYSA-N 0.000 description 2
- ZKMYHZKZDMIROQ-UHFFFAOYSA-N n-(3-amino-4-methylphenyl)benzamide Chemical compound C1=C(N)C(C)=CC=C1NC(=O)C1=CC=CC=C1 ZKMYHZKZDMIROQ-UHFFFAOYSA-N 0.000 description 2
- LAGSZXDYZTXEQU-UHFFFAOYSA-N n-(4-methyl-3-nitrophenyl)-2-phenylacetamide Chemical compound C1=C([N+]([O-])=O)C(C)=CC=C1NC(=O)CC1=CC=CC=C1 LAGSZXDYZTXEQU-UHFFFAOYSA-N 0.000 description 2
- BGNVVFFDLZQZMT-UHFFFAOYSA-N n-(4-methyl-3-nitrophenyl)benzamide Chemical compound C1=C([N+]([O-])=O)C(C)=CC=C1NC(=O)C1=CC=CC=C1 BGNVVFFDLZQZMT-UHFFFAOYSA-N 0.000 description 2
- LVGHBDSUMFBRHR-UHFFFAOYSA-N n-methoxy-n-methyl-2,1-benzoxazole-3-carboxamide Chemical compound C1=CC=CC2=C(C(=O)N(C)OC)ON=C21 LVGHBDSUMFBRHR-UHFFFAOYSA-N 0.000 description 2
- 239000006199 nebulizer Substances 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- RNVCVTLRINQCPJ-UHFFFAOYSA-N o-toluidine Chemical compound CC1=CC=CC=C1N RNVCVTLRINQCPJ-UHFFFAOYSA-N 0.000 description 2
- 239000010502 orange oil Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 208000024691 pancreas disease Diseases 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000002831 pharmacologic agent Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000002953 preparative HPLC Methods 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000004845 protein aggregation Effects 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- HPALNHOPSODBEP-UHFFFAOYSA-N pyrazolo[1,5-a]pyridine-5-carbaldehyde Chemical compound C1=C(C=O)C=CN2N=CC=C21 HPALNHOPSODBEP-UHFFFAOYSA-N 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 102200092601 rs34536353 Human genes 0.000 description 2
- 102200128599 rs80282562 Human genes 0.000 description 2
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 208000007056 sickle cell anemia Diseases 0.000 description 2
- 230000000391 smoking effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- VBCHFLAIVPJIOJ-UHFFFAOYSA-N tert-butyl N-(2-bromo-4-tert-butylphenyl)carbamate Chemical compound BrC1=C(C=CC(=C1)C(C)(C)C)NC(OC(C)(C)C)=O VBCHFLAIVPJIOJ-UHFFFAOYSA-N 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- KTGNTDVGQBAHNV-UHFFFAOYSA-N tert-butyl n-[2-bromo-4-(trifluoromethyl)phenyl]carbamate Chemical compound CC(C)(C)OC(=O)NC1=CC=C(C(F)(F)F)C=C1Br KTGNTDVGQBAHNV-UHFFFAOYSA-N 0.000 description 2
- DKQYJBLRSCHYTN-UHFFFAOYSA-N tert-butyl n-[2-methyl-4-(trifluoromethyl)phenyl]carbamate Chemical compound CC1=CC(C(F)(F)F)=CC=C1NC(=O)OC(C)(C)C DKQYJBLRSCHYTN-UHFFFAOYSA-N 0.000 description 2
- WDZWXJQBVQIWOM-UHFFFAOYSA-N tert-butyl-dimethyl-[2-(3-methyl-4-nitrophenoxy)ethoxy]silane Chemical compound CC1=CC(OCCO[Si](C)(C)C(C)(C)C)=CC=C1[N+]([O-])=O WDZWXJQBVQIWOM-UHFFFAOYSA-N 0.000 description 2
- RWRDLPDLKQPQOW-UHFFFAOYSA-N tetrahydropyrrole Natural products C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- LKKCSUHCVGCGFA-KGZKBUQUSA-N (1r,2r)-2-aminocyclohexan-1-ol;hydrochloride Chemical compound Cl.N[C@@H]1CCCC[C@H]1O LKKCSUHCVGCGFA-KGZKBUQUSA-N 0.000 description 1
- OBQRODBYVNIZJU-UHFFFAOYSA-N (4-acetylphenyl)boronic acid Chemical compound CC(=O)C1=CC=C(B(O)O)C=C1 OBQRODBYVNIZJU-UHFFFAOYSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- 125000004454 (C1-C6) alkoxycarbonyl group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- 125000006376 (C3-C10) cycloalkyl group Chemical group 0.000 description 1
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 1
- RHKPJTFLRQNNGJ-UHFFFAOYSA-N 1,3-benzothiazole-2-carbaldehyde Chemical compound C1=CC=C2SC(C=O)=NC2=C1 RHKPJTFLRQNNGJ-UHFFFAOYSA-N 0.000 description 1
- COEIDSYLZJLOSQ-UHFFFAOYSA-N 1-(3,7-dimethyl-1-benzofuran-2-yl)ethanone Chemical compound C1=CC=C2C(C)=C(C(=O)C)OC2=C1C COEIDSYLZJLOSQ-UHFFFAOYSA-N 0.000 description 1
- MTNZPWYMBRSDTL-UHFFFAOYSA-N 1-(3-methyl-1-benzofuran-2-yl)ethanone Chemical compound C1=CC=C2C(C)=C(C(=O)C)OC2=C1 MTNZPWYMBRSDTL-UHFFFAOYSA-N 0.000 description 1
- GGKIWVXNCLSGBC-UHFFFAOYSA-N 1-(3-phenyl-1-benzofuran-2-yl)ethanone Chemical compound CC(=O)C=1OC2=CC=CC=C2C=1C1=CC=CC=C1 GGKIWVXNCLSGBC-UHFFFAOYSA-N 0.000 description 1
- KAVZYDHKJNABPC-UHFFFAOYSA-N 1-(4-methylsulfonylphenyl)ethanone Chemical compound CC(=O)C1=CC=C(S(C)(=O)=O)C=C1 KAVZYDHKJNABPC-UHFFFAOYSA-N 0.000 description 1
- 125000005851 1-(N-(alkoxycarbonyl)amino)ethyl group Chemical group 0.000 description 1
- 125000005848 1-(alkoxycarbonyloxy)ethyl group Chemical group 0.000 description 1
- WGVYCXYGPNNUQA-UHFFFAOYSA-N 1-(bromomethyl)-2-methylbenzene Chemical compound CC1=CC=CC=C1CBr WGVYCXYGPNNUQA-UHFFFAOYSA-N 0.000 description 1
- VNMXIOWPBADSIC-UHFFFAOYSA-N 1-(oxan-4-yl)ethanone Chemical compound CC(=O)C1CCOCC1 VNMXIOWPBADSIC-UHFFFAOYSA-N 0.000 description 1
- JQCSUVJDBHJKNG-UHFFFAOYSA-N 1-methoxy-ethyl Chemical group C[CH]OC JQCSUVJDBHJKNG-UHFFFAOYSA-N 0.000 description 1
- 125000005849 1-methyl-1-(alkoxycarbonyloxy)ethyl group Chemical group 0.000 description 1
- STNLQJRBZHAGSO-UHFFFAOYSA-N 1-piperidin-4-ylethanone Chemical compound CC(=O)C1CCNCC1 STNLQJRBZHAGSO-UHFFFAOYSA-N 0.000 description 1
- 125000001462 1-pyrrolyl group Chemical group [*]N1C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000002182 2'-hydroxyphenyl-2-thiazolin-3-yl group Chemical group [H]OC1=C(C([H])=C([H])C([H])=C1[H])C1=NC([H])(*)C([H])([H])S1 0.000 description 1
- KDUWXMIHHIVXER-UHFFFAOYSA-N 2'-hydroxypropiophenone Chemical compound CCC(=O)C1=CC=CC=C1O KDUWXMIHHIVXER-UHFFFAOYSA-N 0.000 description 1
- PHYDLUSJJFZNFG-UHFFFAOYSA-N 2,1-benzoxazole-3-carboxylic acid Chemical compound C1=CC=CC2=C(C(=O)O)ON=C21 PHYDLUSJJFZNFG-UHFFFAOYSA-N 0.000 description 1
- XBNGYFFABRKICK-UHFFFAOYSA-N 2,3,4,5,6-pentafluorophenol Chemical compound OC1=C(F)C(F)=C(F)C(F)=C1F XBNGYFFABRKICK-UHFFFAOYSA-N 0.000 description 1
- JKTCBAGSMQIFNL-UHFFFAOYSA-N 2,3-dihydrofuran Chemical compound C1CC=CO1 JKTCBAGSMQIFNL-UHFFFAOYSA-N 0.000 description 1
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 1
- GXSRUDIFFWGHOQ-UHFFFAOYSA-N 2-(1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Chemical compound C1=CC=C2OC(C3=CC(=C4C(C)=CC=C(C4=N3)C)C(O)=O)=CC2=C1 GXSRUDIFFWGHOQ-UHFFFAOYSA-N 0.000 description 1
- XIDNMJOYNYDYBL-UHFFFAOYSA-N 2-(1-benzofuran-2-yl)-6,8-dimethylquinoline-4-carboxylic acid Chemical compound C1=CC=C2OC(C3=NC4=C(C)C=C(C=C4C(C(O)=O)=C3)C)=CC2=C1 XIDNMJOYNYDYBL-UHFFFAOYSA-N 0.000 description 1
- NWSBGZLHVNYYBC-UHFFFAOYSA-N 2-(1-benzofuran-2-yl)-6-chloro-8-methylquinoline-4-carboxylic acid Chemical compound C1=CC=C2OC(C3=CC(=C4C=C(Cl)C=C(C4=N3)C)C(O)=O)=CC2=C1 NWSBGZLHVNYYBC-UHFFFAOYSA-N 0.000 description 1
- GSUTWDXMHXZCSN-UHFFFAOYSA-N 2-(1-benzothiophen-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Chemical compound C1=CC=C2SC(C3=CC(=C4C(C)=CC=C(C4=N3)C)C(O)=O)=CC2=C1 GSUTWDXMHXZCSN-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N 2-Amino-2-Deoxy-Hexose Chemical compound NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- JVYROUWXXSWCMI-UHFFFAOYSA-N 2-bromo-1,1-difluoroethane Chemical compound FC(F)CBr JVYROUWXXSWCMI-UHFFFAOYSA-N 0.000 description 1
- QKRJIXSZTKOFTD-UHFFFAOYSA-N 2-bromo-4-(trifluoromethyl)aniline Chemical compound NC1=CC=C(C(F)(F)F)C=C1Br QKRJIXSZTKOFTD-UHFFFAOYSA-N 0.000 description 1
- XUUQBQARYVONLX-UHFFFAOYSA-N 2-ethyl-5-(1-phenylpropoxy)aniline Chemical compound C(C)C1=C(N)C=C(C=C1)OC(CC)C1=CC=CC=C1 XUUQBQARYVONLX-UHFFFAOYSA-N 0.000 description 1
- QZZUVGYVRUDDIQ-UHFFFAOYSA-N 2-ethyl-5-[(3-methylphenyl)methoxy]aniline Chemical compound C(C)C1=C(N)C=C(C=C1)OCC1=CC(=CC=C1)C QZZUVGYVRUDDIQ-UHFFFAOYSA-N 0.000 description 1
- VFYFKUDDQPCUPY-UHFFFAOYSA-N 2-ethyl-5-[(4-methylphenyl)methoxy]aniline Chemical compound C(C)C1=C(N)C=C(C=C1)OCC1=CC=C(C=C1)C VFYFKUDDQPCUPY-UHFFFAOYSA-N 0.000 description 1
- BCEVNCNJCAHOSB-UHFFFAOYSA-N 2-ethyl-5-phenylmethoxyaniline Chemical compound C1(=CC=CC=C1)COC1=CC(=C(CC)C=C1)N BCEVNCNJCAHOSB-UHFFFAOYSA-N 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- CHZCERSEMVWNHL-UHFFFAOYSA-N 2-hydroxybenzonitrile Chemical compound OC1=CC=CC=C1C#N CHZCERSEMVWNHL-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- GAKLFAZBKQGUBO-UHFFFAOYSA-N 2-methyl-3-nitrophenol Chemical compound CC1=C(O)C=CC=C1[N+]([O-])=O GAKLFAZBKQGUBO-UHFFFAOYSA-N 0.000 description 1
- UXEVWBULOANPSG-UHFFFAOYSA-N 2-methyl-5-(3-phenylcyclohexyl)oxyaniline Chemical compound CC1=C(N)C=C(C=C1)OC1CC(CCC1)C1=CC=CC=C1 UXEVWBULOANPSG-UHFFFAOYSA-N 0.000 description 1
- HCWAUYQKNZQPSQ-UHFFFAOYSA-N 2-methyl-5-(4-phenylcyclohexyl)oxyaniline Chemical compound CC1=C(N)C=C(C=C1)OC1CCC(CC1)C1=CC=CC=C1 HCWAUYQKNZQPSQ-UHFFFAOYSA-N 0.000 description 1
- RBKKOCJARQSWLQ-UHFFFAOYSA-N 2-methyl-5-(pyridin-2-ylmethoxy)aniline Chemical compound CC1=C(N)C=C(C=C1)OCC1=NC=CC=C1 RBKKOCJARQSWLQ-UHFFFAOYSA-N 0.000 description 1
- UMFDLIXUUJMPSI-UHFFFAOYSA-N 2-methyl-5-nitrophenol Chemical compound CC1=CC=C([N+]([O-])=O)C=C1O UMFDLIXUUJMPSI-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- SYDNSSSQVSOXTN-UHFFFAOYSA-N 2-nitro-p-cresol Chemical compound CC1=CC=C(O)C([N+]([O-])=O)=C1 SYDNSSSQVSOXTN-UHFFFAOYSA-N 0.000 description 1
- VIIYYMZOGKODQG-UHFFFAOYSA-N 2-nitrobenzene-1,4-diol Chemical compound OC1=CC=C(O)C([N+]([O-])=O)=C1 VIIYYMZOGKODQG-UHFFFAOYSA-N 0.000 description 1
- VMZCDNSFRSVYKQ-UHFFFAOYSA-N 2-phenylacetyl chloride Chemical compound ClC(=O)CC1=CC=CC=C1 VMZCDNSFRSVYKQ-UHFFFAOYSA-N 0.000 description 1
- CHROPCMKBZZQJH-UHFFFAOYSA-N 2-phenylmethoxybenzonitrile Chemical compound N#CC1=CC=CC=C1OCC1=CC=CC=C1 CHROPCMKBZZQJH-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- HBZAZSCNDMDWEU-WREZULKGSA-N 3,5-diamino-6-chloro-n-[n'-[4-[4-[2-[hexyl-[(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl]amino]ethoxy]phenyl]butyl]carbamimidoyl]pyrazine-2-carboxamide Chemical compound C1=CC(OCCN(CCCCCC)C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)=CC=C1CCCCNC(=N)NC(=O)C1=NC(Cl)=C(N)N=C1N HBZAZSCNDMDWEU-WREZULKGSA-N 0.000 description 1
- RCAUZJGALLIUPL-UHFFFAOYSA-N 3,6-dimethyl-1-benzofuran-2-carbaldehyde Chemical compound CC1=CC=C2C(C)=C(C=O)OC2=C1 RCAUZJGALLIUPL-UHFFFAOYSA-N 0.000 description 1
- KHCXGFNZZRXOND-UHFFFAOYSA-N 3-(bromomethyl)pyridine Chemical compound BrCC1=CC=CN=C1 KHCXGFNZZRXOND-UHFFFAOYSA-N 0.000 description 1
- USHQRIKZLHNPQR-JTQLQIEISA-N 3-amino-6-methoxy-n-[(2s)-3,3,3-trifluoro-2-hydroxy-2-methylpropyl]-5-(trifluoromethyl)pyridine-2-carboxamide Chemical compound COC1=NC(C(=O)NC[C@](C)(O)C(F)(F)F)=C(N)C=C1C(F)(F)F USHQRIKZLHNPQR-JTQLQIEISA-N 0.000 description 1
- APJAEXGNDLFGPD-AWCRTANDSA-N 3-amino-n-{4-[2-(2,6-dimethyl-phenoxy)-acetylamino]-3-hydroxy-1-isobutyl-5-phenyl-pentyl}-benzamide Chemical compound C([C@@H]([C@@H](O)C[C@H](CC(C)C)NC(=O)C=1C=CC(N)=CC=1)NC(=O)COC=1C(=CC=CC=1C)C)C1=CC=CC=C1 APJAEXGNDLFGPD-AWCRTANDSA-N 0.000 description 1
- ICJNAOJPUTYWNV-UHFFFAOYSA-N 3-bromo-1-benzofuran Chemical compound C1=CC=C2C(Br)=COC2=C1 ICJNAOJPUTYWNV-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- YDKHBBPNERNHQR-UHFFFAOYSA-N 3-cyclohexyl-1-benzofuran-2-carbaldehyde Chemical compound C1(CCCCC1)C1=C(OC2=C1C=CC=C2)C=O YDKHBBPNERNHQR-UHFFFAOYSA-N 0.000 description 1
- SYLDYZJJFFPXRO-UHFFFAOYSA-N 3-cyclopropyl-1-benzofuran-2-carbaldehyde Chemical compound O=CC=1OC2=CC=CC=C2C=1C1CC1 SYLDYZJJFFPXRO-UHFFFAOYSA-N 0.000 description 1
- KBEIFKMKVCDETC-UHFFFAOYSA-N 3-iodooxetane Chemical compound IC1COC1 KBEIFKMKVCDETC-UHFFFAOYSA-N 0.000 description 1
- SEBRPHZZSLCDRQ-UHFFFAOYSA-N 3-methyl-1-benzothiophene Chemical compound C1=CC=C2C(C)=CSC2=C1 SEBRPHZZSLCDRQ-UHFFFAOYSA-N 0.000 description 1
- KDKCEPVMXOUFJD-UHFFFAOYSA-N 3-methyl-5-nitrophenol Chemical compound CC1=CC(O)=CC([N+]([O-])=O)=C1 KDKCEPVMXOUFJD-UHFFFAOYSA-N 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- 125000001397 3-pyrrolyl group Chemical group [H]N1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- KXBBHEJLCXNUJC-UHFFFAOYSA-N 4-(2,2-difluoroethoxy)-2-methylaniline Chemical compound CC1=CC(OCC(F)F)=CC=C1N KXBBHEJLCXNUJC-UHFFFAOYSA-N 0.000 description 1
- PHSXSKMXVMWZLK-UHFFFAOYSA-N 4-(difluoromethoxy)-2-methylaniline Chemical compound CC1=CC(OC(F)F)=CC=C1N PHSXSKMXVMWZLK-UHFFFAOYSA-N 0.000 description 1
- GERJIEKMNDGSCS-DQEYMECFSA-N 4-[[(1s,4s)-2-[[4-[4-(1,3-oxazol-2-yl)phenoxy]phenyl]methyl]-2,5-diazabicyclo[2.2.1]heptan-5-yl]methyl]benzoic acid Chemical compound C([C@]1(N(C[C@]2([H])C1)CC=1C=CC(OC=3C=CC(=CC=3)C=3OC=CN=3)=CC=1)[H])N2CC1=CC=C(C(O)=O)C=C1 GERJIEKMNDGSCS-DQEYMECFSA-N 0.000 description 1
- FXVDNCRTKXMSEZ-UHFFFAOYSA-N 4-acetylbenzenesulfonyl chloride Chemical compound CC(=O)C1=CC=C(S(Cl)(=O)=O)C=C1 FXVDNCRTKXMSEZ-UHFFFAOYSA-N 0.000 description 1
- WQUBEIMCFHCJCO-AWCRTANDSA-N 4-amino-n-{4-[2-(2,6-dimethyl-phenoxy)-acetylamino]-3-hydroxy-1-isobutyl-5-phenyl-pentyl}-benzamide Chemical compound C([C@@H]([C@@H](O)C[C@H](CC(C)C)NC(=O)C=1C=C(N)C=CC=1)NC(=O)COC=1C(=CC=CC=1C)C)C1=CC=CC=C1 WQUBEIMCFHCJCO-AWCRTANDSA-N 0.000 description 1
- KZNXALJXBRSMFL-UHFFFAOYSA-N 4-bromo-1-methyl-2-nitrobenzene Chemical compound CC1=CC=C(Br)C=C1[N+]([O-])=O KZNXALJXBRSMFL-UHFFFAOYSA-N 0.000 description 1
- PCHYYOCUCGCSBU-UHFFFAOYSA-N 4-bromo-2-methylaniline Chemical compound CC1=CC(Br)=CC=C1N PCHYYOCUCGCSBU-UHFFFAOYSA-N 0.000 description 1
- MTNZLOXGKDQNKA-UHFFFAOYSA-N 4-bromo-3-nitrophenol Chemical compound OC1=CC=C(Br)C([N+]([O-])=O)=C1 MTNZLOXGKDQNKA-UHFFFAOYSA-N 0.000 description 1
- HFNOQSYXXDKYMM-UHFFFAOYSA-N 4-ethyl-3-nitrophenol Chemical compound CCC1=CC=C(O)C=C1[N+]([O-])=O HFNOQSYXXDKYMM-UHFFFAOYSA-N 0.000 description 1
- KMHLGVTVACLEJE-UHFFFAOYSA-N 4-fluoro-2-methylaniline Chemical compound CC1=CC(F)=CC=C1N KMHLGVTVACLEJE-UHFFFAOYSA-N 0.000 description 1
- JSRMPTJZAJUPGZ-UHFFFAOYSA-N 4-fluoro-3-nitrophenol Chemical compound OC1=CC=C(F)C([N+]([O-])=O)=C1 JSRMPTJZAJUPGZ-UHFFFAOYSA-N 0.000 description 1
- NLMQHXUGJIAKTH-UHFFFAOYSA-N 4-hydroxyindole Chemical compound OC1=CC=CC2=C1C=CN2 NLMQHXUGJIAKTH-UHFFFAOYSA-N 0.000 description 1
- PIIZYNQECPTVEO-UHFFFAOYSA-N 4-nitro-m-cresol Chemical compound CC1=CC(O)=CC=C1[N+]([O-])=O PIIZYNQECPTVEO-UHFFFAOYSA-N 0.000 description 1
- OTLNPYWUJOZPPA-UHFFFAOYSA-N 4-nitrobenzoic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1 OTLNPYWUJOZPPA-UHFFFAOYSA-N 0.000 description 1
- HFZSCCJTJGWTDZ-UHFFFAOYSA-N 5,7-dimethyl-1h-indole-2,3-dione Chemical compound CC1=CC(C)=CC2=C1NC(=O)C2=O HFZSCCJTJGWTDZ-UHFFFAOYSA-N 0.000 description 1
- JEKIPSQAQQDXAS-UHFFFAOYSA-N 5-phenylmethoxy-2-propan-2-ylaniline Chemical compound C(C1=CC=CC=C1)OC=1C=CC(=C(N)C=1)C(C)C JEKIPSQAQQDXAS-UHFFFAOYSA-N 0.000 description 1
- OARQLSPWUSYOQV-UHFFFAOYSA-N 6-(2,2-difluoroethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid Chemical compound FC(COC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)F OARQLSPWUSYOQV-UHFFFAOYSA-N 0.000 description 1
- ANBDXMZWJRRYJJ-UHFFFAOYSA-N 7-chloro-3-methyl-1-benzofuran-2-carbaldehyde Chemical compound C1=CC=C2C(C)=C(C=O)OC2=C1Cl ANBDXMZWJRRYJJ-UHFFFAOYSA-N 0.000 description 1
- WXJJVMCCWACDSK-UHFFFAOYSA-N 7-fluoro-3-methyl-1-benzofuran-2-carbaldehyde Chemical compound C1=CC=C2C(C)=C(C=O)OC2=C1F WXJJVMCCWACDSK-UHFFFAOYSA-N 0.000 description 1
- RLNQBYPMWRKTNY-UHFFFAOYSA-N 7-methyl-4-(trifluoromethoxy)-1H-indole-2,3-dione Chemical compound CC=1C=CC(=C2C(C(NC=12)=O)=O)OC(F)(F)F RLNQBYPMWRKTNY-UHFFFAOYSA-N 0.000 description 1
- 208000022385 ALys amyloidosis Diseases 0.000 description 1
- 102100024645 ATP-binding cassette sub-family C member 8 Human genes 0.000 description 1
- 108050004138 ATP-binding cassette subfamily C member 8 Proteins 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 208000011403 Alexander disease Diseases 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000029602 Alpha-N-acetylgalactosaminidase deficiency Diseases 0.000 description 1
- 102100026882 Alpha-synuclein Human genes 0.000 description 1
- 206010001881 Alveolar proteinosis Diseases 0.000 description 1
- 208000031277 Amaurotic familial idiocy Diseases 0.000 description 1
- 108700023418 Amidases Proteins 0.000 description 1
- 206010002023 Amyloidoses Diseases 0.000 description 1
- 208000009575 Angelman syndrome Diseases 0.000 description 1
- 206010002388 Angina unstable Diseases 0.000 description 1
- 206010059245 Angiopathy Diseases 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 102100022146 Arylsulfatase A Human genes 0.000 description 1
- 102100031491 Arylsulfatase B Human genes 0.000 description 1
- 206010068220 Aspartylglucosaminuria Diseases 0.000 description 1
- 108010023546 Aspartylglucosylaminase Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 102000007371 Ataxin-3 Human genes 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 229910015845 BBr3 Inorganic materials 0.000 description 1
- 102100032487 Beta-mannosidase Human genes 0.000 description 1
- 102100025617 Beta-synuclein Human genes 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- FKTHDORUBWSEQX-UHFFFAOYSA-N BrC1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C Chemical compound BrC1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C FKTHDORUBWSEQX-UHFFFAOYSA-N 0.000 description 1
- 201000006474 Brain Ischemia Diseases 0.000 description 1
- MHVQOOFVBRGAQM-UHFFFAOYSA-N C(C)(C)(C)C=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C)(C)(C)C=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O MHVQOOFVBRGAQM-UHFFFAOYSA-N 0.000 description 1
- QALGPHUTAKMZAN-UHFFFAOYSA-N C(C)C1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C Chemical compound C(C)C1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C QALGPHUTAKMZAN-UHFFFAOYSA-N 0.000 description 1
- CVIWDDQLIAJLDK-UHFFFAOYSA-N C(C)C1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C)C1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O CVIWDDQLIAJLDK-UHFFFAOYSA-N 0.000 description 1
- NZBKOHDPUMHKHS-UHFFFAOYSA-N C(C1=CC=CC=C1)(=O)NC1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C1=CC=CC=C1)(=O)NC1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O NZBKOHDPUMHKHS-UHFFFAOYSA-N 0.000 description 1
- CQFJPVPYYHVHKI-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C(C=C2C(=CC(=NC2=C1)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)C Chemical compound C(C1=CC=CC=C1)OC1=C(C=C2C(=CC(=NC2=C1)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)C CQFJPVPYYHVHKI-UHFFFAOYSA-N 0.000 description 1
- IWOSBKKFXKYITJ-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C Chemical compound C(C1=CC=CC=C1)OC1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C IWOSBKKFXKYITJ-UHFFFAOYSA-N 0.000 description 1
- QGRNCQDNIQCNSN-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C(C)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C(C)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O QGRNCQDNIQCNSN-UHFFFAOYSA-N 0.000 description 1
- YIOFPCWMSWXWHU-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C)C1=C(OC2=C1C=CC=C2)C)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C)C1=C(OC2=C1C=CC=C2)C)C(=O)O YIOFPCWMSWXWHU-UHFFFAOYSA-N 0.000 description 1
- AYYCPNZKOYHSDP-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C)C1=C(SC2=C1C=CC=C2)C)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C)C1=C(SC2=C1C=CC=C2)C)C(=O)O AYYCPNZKOYHSDP-UHFFFAOYSA-N 0.000 description 1
- RQVKKOWVUFDYAC-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O RQVKKOWVUFDYAC-UHFFFAOYSA-N 0.000 description 1
- XPPXBAYAOWZYGX-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C)C=1SC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C)C=1SC2=C(C=1C)C=CC=C2)C(=O)O XPPXBAYAOWZYGX-UHFFFAOYSA-N 0.000 description 1
- DRCGSMQVBQUHSS-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C1CC1)C1=C(OC2=C1C=CC=C2)C)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C1CC1)C1=C(OC2=C1C=CC=C2)C)C(=O)O DRCGSMQVBQUHSS-UHFFFAOYSA-N 0.000 description 1
- WGTOQPQEDYPQQR-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C1CC1)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)C1CC1)C=1OC2=C(C=1C)C=CC=C2)C(=O)O WGTOQPQEDYPQQR-UHFFFAOYSA-N 0.000 description 1
- JKROPROENWMCMP-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)CC)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)CC)C=1OC2=C(C=1C)C=CC=C2)C(=O)O JKROPROENWMCMP-UHFFFAOYSA-N 0.000 description 1
- MHIFSQJZWCZSLN-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)Cl)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)Cl)C=1OC2=C(C=1C)C=CC=C2)C(=O)O MHIFSQJZWCZSLN-UHFFFAOYSA-N 0.000 description 1
- GUVNUCIUAVVKIR-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)F)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=C(C=C1)F)C=1OC2=C(C=1C)C=CC=C2)C(=O)O GUVNUCIUAVVKIR-UHFFFAOYSA-N 0.000 description 1
- UYMGAQVUVPNOCK-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=CC(=C1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=CC(=C1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O UYMGAQVUVPNOCK-UHFFFAOYSA-N 0.000 description 1
- ACJWWZKONSDYAU-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=CC=C1)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C1=CC=CC=C1)OC1=C2C(=CC(=NC2=CC=C1)C=1OC2=C(C=1C)C=CC=C2)C(=O)O ACJWWZKONSDYAU-UHFFFAOYSA-N 0.000 description 1
- OMAAOXWFZKQJAR-UHFFFAOYSA-N C(C1=CC=CC=C1)OC1=CC(=C2C(=CC(=NC2=C1)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)C Chemical compound C(C1=CC=CC=C1)OC1=CC(=C2C(=CC(=NC2=C1)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)C OMAAOXWFZKQJAR-UHFFFAOYSA-N 0.000 description 1
- NIBRQRBACLWWSS-UHFFFAOYSA-N C(C1=CC=CC=C1)OC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C(C1=CC=CC=C1)OC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O NIBRQRBACLWWSS-UHFFFAOYSA-N 0.000 description 1
- PKHOBDWMRMEIIB-UHFFFAOYSA-N C(C1=CC=CC=C1)OC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)C Chemical compound C(C1=CC=CC=C1)OC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)C PKHOBDWMRMEIIB-UHFFFAOYSA-N 0.000 description 1
- LZTIGEXJQOJTER-UHFFFAOYSA-N C1(CC1)C1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C Chemical compound C1(CC1)C1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C LZTIGEXJQOJTER-UHFFFAOYSA-N 0.000 description 1
- QOJYCPFWZVQDOB-UHFFFAOYSA-N C1(CCCCC1)C1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C Chemical compound C1(CCCCC1)C1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C QOJYCPFWZVQDOB-UHFFFAOYSA-N 0.000 description 1
- ZJACQCIHLORNCB-UHFFFAOYSA-N C1(CCCCC1)OC1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound C1(CCCCC1)OC1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O ZJACQCIHLORNCB-UHFFFAOYSA-N 0.000 description 1
- WZFONRBCEPXQEO-UHFFFAOYSA-N CC1=C(OC2=C1C=CC=C2C)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C Chemical compound CC1=C(OC2=C1C=CC=C2C)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C WZFONRBCEPXQEO-UHFFFAOYSA-N 0.000 description 1
- ZGWWUKIUNXBOAR-UHFFFAOYSA-N CC1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C(C)C)C=CC=C2)C(=O)O Chemical compound CC1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C(C)C)C=CC=C2)C(=O)O ZGWWUKIUNXBOAR-UHFFFAOYSA-N 0.000 description 1
- BRDYZQWPPCBGFG-UHFFFAOYSA-N CC1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound CC1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O BRDYZQWPPCBGFG-UHFFFAOYSA-N 0.000 description 1
- UPNZFMCWJDZJJQ-UHFFFAOYSA-N CC1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C1=CC=CC=C1)C=CC=C2)C(=O)O Chemical compound CC1=C2C(=CC(=NC2=C(C=C1)C)C=1OC2=C(C=1C1=CC=CC=C1)C=CC=C2)C(=O)O UPNZFMCWJDZJJQ-UHFFFAOYSA-N 0.000 description 1
- YBYPOGQVXHCTMH-UHFFFAOYSA-N CC1=C2N=C(C=C(C(O)=O)C2=C(OCC2=CC=CC=C2)C=C1)C1=C2C=CC=CC2=NO1 Chemical compound CC1=C2N=C(C=C(C(O)=O)C2=C(OCC2=CC=CC=C2)C=C1)C1=C2C=CC=CC2=NO1 YBYPOGQVXHCTMH-UHFFFAOYSA-N 0.000 description 1
- FMIKYUNXPUZESD-UHFFFAOYSA-N CC=1C=C(C=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)C(F)(F)F Chemical compound CC=1C=C(C=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)C(F)(F)F FMIKYUNXPUZESD-UHFFFAOYSA-N 0.000 description 1
- AIHVVTCHYONBHC-UHFFFAOYSA-N CC=1C=C(C=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OC(F)(F)F Chemical compound CC=1C=C(C=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OC(F)(F)F AIHVVTCHYONBHC-UHFFFAOYSA-N 0.000 description 1
- JRWPMNIAWBDSNQ-UHFFFAOYSA-N CC=1C=C2C(=CC(=NC2=C(C=1)C)C1=C(C2=C(S1)C=CC=C2)C)C(=O)O Chemical compound CC=1C=C2C(=CC(=NC2=C(C=1)C)C1=C(C2=C(S1)C=CC=C2)C)C(=O)O JRWPMNIAWBDSNQ-UHFFFAOYSA-N 0.000 description 1
- TWZNIHJUKLIOCV-UHFFFAOYSA-N CC=1C=C2C(=CC(=NC2=C(C=1)C)C1=C(OC2=C1C=CC=C2)C)C(=O)O Chemical compound CC=1C=C2C(=CC(=NC2=C(C=1)C)C1=C(OC2=C1C=CC=C2)C)C(=O)O TWZNIHJUKLIOCV-UHFFFAOYSA-N 0.000 description 1
- YGHYIYNYQZNOIC-UHFFFAOYSA-N CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)NC(CC1=CC=CC=C1)=O Chemical compound CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)NC(CC1=CC=CC=C1)=O YGHYIYNYQZNOIC-UHFFFAOYSA-N 0.000 description 1
- NXCBEPIFCPFCJO-UHFFFAOYSA-N CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OC(F)(F)F Chemical compound CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OC(F)(F)F NXCBEPIFCPFCJO-UHFFFAOYSA-N 0.000 description 1
- HYHUMKKKCFBPDY-UHFFFAOYSA-N CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OC1=CC=CC=C1 Chemical compound CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OC1=CC=CC=C1 HYHUMKKKCFBPDY-UHFFFAOYSA-N 0.000 description 1
- ROKGINOVKHPKRR-UHFFFAOYSA-N CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OC1CC(C1)C1=CC=CC=C1 Chemical compound CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OC1CC(C1)C1=CC=CC=C1 ROKGINOVKHPKRR-UHFFFAOYSA-N 0.000 description 1
- WOMSPCHKCYXPAX-UHFFFAOYSA-N CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OC1CC(CCC1)C1=CC=CC=C1 Chemical compound CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OC1CC(CCC1)C1=CC=CC=C1 WOMSPCHKCYXPAX-UHFFFAOYSA-N 0.000 description 1
- QRZLZPWWZPBTTC-UHFFFAOYSA-N CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OC1CCC(CC1)C=1OC=NN=1 Chemical compound CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OC1CCC(CC1)C=1OC=NN=1 QRZLZPWWZPBTTC-UHFFFAOYSA-N 0.000 description 1
- ZVNQWSOOVHRVDR-UHFFFAOYSA-N CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OCC1=NC=CC=C1 Chemical compound CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OCC1=NC=CC=C1 ZVNQWSOOVHRVDR-UHFFFAOYSA-N 0.000 description 1
- HODYWHXYTAUCFV-UHFFFAOYSA-N CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OCC=1C=NC=CC=1 Chemical compound CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OCC=1C=NC=CC=1 HODYWHXYTAUCFV-UHFFFAOYSA-N 0.000 description 1
- UADVVQPYEITVJA-UHFFFAOYSA-N CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OCCC1=CC=CC=C1 Chemical compound CC=1C=CC(=C2C(=CC(=NC=12)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)OCCC1=CC=CC=C1 UADVVQPYEITVJA-UHFFFAOYSA-N 0.000 description 1
- NRIOTCHGGJUEFV-UHFFFAOYSA-N COC1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C Chemical compound COC1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C NRIOTCHGGJUEFV-UHFFFAOYSA-N 0.000 description 1
- RBHBDDOFLXFNEK-UHFFFAOYSA-N COC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound COC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O RBHBDDOFLXFNEK-UHFFFAOYSA-N 0.000 description 1
- 101100080277 Caenorhabditis elegans ncr-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 108010059081 Cathepsin A Proteins 0.000 description 1
- 102000005572 Cathepsin A Human genes 0.000 description 1
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 1
- 206010008120 Cerebral ischaemia Diseases 0.000 description 1
- 108010036867 Cerebroside-Sulfatase Proteins 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- DWJKDDNGPPARKR-UHFFFAOYSA-N ClC1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C Chemical compound ClC1=C(OC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)C)C DWJKDDNGPPARKR-UHFFFAOYSA-N 0.000 description 1
- KPEFMLBWMQDKAL-UHFFFAOYSA-N ClC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound ClC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O KPEFMLBWMQDKAL-UHFFFAOYSA-N 0.000 description 1
- SRLVYEFTTWQUJG-UHFFFAOYSA-N ClC=1C=C2C(=CC(=NC2=C(C=1)C)C=1SC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound ClC=1C=C2C(=CC(=NC2=C(C=1)C)C=1SC2=C(C=1C)C=CC=C2)C(=O)O SRLVYEFTTWQUJG-UHFFFAOYSA-N 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 229910021589 Copper(I) bromide Inorganic materials 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 208000011990 Corticobasal Degeneration Diseases 0.000 description 1
- 208000035902 Critical illness myopathy Diseases 0.000 description 1
- 206010011659 Cutaneous amyloidosis Diseases 0.000 description 1
- 206010011732 Cyst Diseases 0.000 description 1
- 206010011777 Cystinosis Diseases 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- DSLZVSRJTYRBFB-LLEIAEIESA-N D-glucaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O DSLZVSRJTYRBFB-LLEIAEIESA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- 206010011903 Deafness traumatic Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 208000032781 Diabetic cardiomyopathy Diseases 0.000 description 1
- 206010064553 Dialysis amyloidosis Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 102000003837 Epithelial Sodium Channels Human genes 0.000 description 1
- 108090000140 Epithelial Sodium Channels Proteins 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- UHOMBSMRNLIKNQ-UHFFFAOYSA-N FC(OC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)F Chemical compound FC(OC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O)F UHOMBSMRNLIKNQ-UHFFFAOYSA-N 0.000 description 1
- CBTASNSGFZQKEG-UHFFFAOYSA-N FC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O Chemical compound FC=1C=C2C(=CC(=NC2=C(C=1)C)C=1OC2=C(C=1C)C=CC=C2)C(=O)O CBTASNSGFZQKEG-UHFFFAOYSA-N 0.000 description 1
- 206010016202 Familial Amyloidosis Diseases 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 208000002339 Frontotemporal Lobar Degeneration Diseases 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 201000008892 GM1 Gangliosidosis Diseases 0.000 description 1
- 102100028496 Galactocerebrosidase Human genes 0.000 description 1
- 108010042681 Galactosylceramidase Proteins 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 208000008069 Geographic Atrophy Diseases 0.000 description 1
- 208000003736 Gerstmann-Straussler-Scheinker Disease Diseases 0.000 description 1
- 206010072075 Gerstmann-Straussler-Scheinker syndrome Diseases 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- 208000010055 Globoid Cell Leukodystrophy Diseases 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 206010053185 Glycogen storage disease type II Diseases 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 208000019683 Gorham-Stout disease Diseases 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 101000823116 Homo sapiens Alpha-1-antitrypsin Proteins 0.000 description 1
- 101000807859 Homo sapiens Vasopressin V2 receptor Proteins 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 206010060378 Hyperinsulinaemia Diseases 0.000 description 1
- 101710096421 Iduronate 2-sulfatase Proteins 0.000 description 1
- 102100029199 Iduronate 2-sulfatase Human genes 0.000 description 1
- 108010003381 Iduronidase Proteins 0.000 description 1
- 102000004627 Iduronidase Human genes 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 208000029400 Inclusion myopathy Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 208000028226 Krabbe disease Diseases 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- OBSIQMZKFXFYLV-QMMMGPOBSA-N L-phenylalanine amide group Chemical group N[C@@H](CC1=CC=CC=C1)C(=O)N OBSIQMZKFXFYLV-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-M L-tyrosinate group Chemical group N[C@@H](CC1=CC=C(C=C1)O)C(=O)[O-] OUYCCCASQSFEME-QMMMGPOBSA-M 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 208000002569 Machado-Joseph Disease Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 102100024295 Maltase-glucoamylase Human genes 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000037196 Medullary thyroid carcinoma Diseases 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 201000011442 Metachromatic leukodystrophy Diseases 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 102100040243 Microtubule-associated protein tau Human genes 0.000 description 1
- 101710115937 Microtubule-associated protein tau Proteins 0.000 description 1
- 206010072927 Mucolipidosis type I Diseases 0.000 description 1
- 206010028095 Mucopolysaccharidosis IV Diseases 0.000 description 1
- 206010056893 Mucopolysaccharidosis VII Diseases 0.000 description 1
- 208000025915 Mucopolysaccharidosis type 6 Diseases 0.000 description 1
- 208000001089 Multiple system atrophy Diseases 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 102100026784 Myelin proteolipid protein Human genes 0.000 description 1
- 201000009623 Myopathy Diseases 0.000 description 1
- 102100021003 N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase Human genes 0.000 description 1
- 125000005850 N-(alkoxycarbonyl)aminomethyl group Chemical group 0.000 description 1
- 108010027520 N-Acetylgalactosamine-4-Sulfatase Proteins 0.000 description 1
- 102100031688 N-acetylgalactosamine-6-sulfatase Human genes 0.000 description 1
- 101710099863 N-acetylgalactosamine-6-sulfatase Proteins 0.000 description 1
- 108010023320 N-acetylglucosamine-6-sulfatase Proteins 0.000 description 1
- 101710202061 N-acetyltransferase Proteins 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 108010006140 N-sulfoglucosamine sulfohydrolase Proteins 0.000 description 1
- 208000000592 Nasal Polyps Diseases 0.000 description 1
- 208000002537 Neuronal Ceroid-Lipofuscinoses Diseases 0.000 description 1
- 101100459404 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) npc-1 gene Proteins 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 229910021588 Nickel(II) iodide Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 208000002946 Noise-Induced Hearing Loss Diseases 0.000 description 1
- HLJHZXCUAAOEMC-UHFFFAOYSA-N O1C(=CC2=C1C=CC=C2)C1=NC2=C(C=C(C=C2C(=C1)C(=O)O)OC)C Chemical compound O1C(=CC2=C1C=CC=C2)C1=NC2=C(C=C(C=C2C(=C1)C(=O)O)OC)C HLJHZXCUAAOEMC-UHFFFAOYSA-N 0.000 description 1
- GPKHWPIEPCJXEC-UHFFFAOYSA-N O1C(=CC2=C1C=CC=C2)C1=NC2=C(C=C(C=C2C(=C1C)C(=O)O)C)C Chemical compound O1C(=CC2=C1C=CC=C2)C1=NC2=C(C=C(C=C2C(=C1C)C(=O)O)C)C GPKHWPIEPCJXEC-UHFFFAOYSA-N 0.000 description 1
- QQHYAQXWQYKYIE-UHFFFAOYSA-N O1C(=CC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)OC)C Chemical compound O1C(=CC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)OC)C QQHYAQXWQYKYIE-UHFFFAOYSA-N 0.000 description 1
- NZFZTJDEBAIKHE-UHFFFAOYSA-N O1C(=CC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)OCC1=CC=CC=C1)C Chemical compound O1C(=CC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)OCC1=CC=CC=C1)C NZFZTJDEBAIKHE-UHFFFAOYSA-N 0.000 description 1
- MMVGAHICIBZWIQ-UHFFFAOYSA-N O1C(=NC2=C1C=CC=C2)C1=NC2=C(C=C(C=C2C(=C1)C(=O)O)C)C Chemical compound O1C(=NC2=C1C=CC=C2)C1=NC2=C(C=C(C=C2C(=C1)C(=O)O)C)C MMVGAHICIBZWIQ-UHFFFAOYSA-N 0.000 description 1
- MQVUMGHCSRPQCG-UHFFFAOYSA-N OCC1=CN=NN1CCCNC(=O)C1=NOC(=C1)C1=CC=CC=C1 Chemical group OCC1=CN=NN1CCCNC(=O)C1=NOC(=C1)C1=CC=CC=C1 MQVUMGHCSRPQCG-UHFFFAOYSA-N 0.000 description 1
- 208000022873 Ocular disease Diseases 0.000 description 1
- 208000007871 Odontogenic Tumors Diseases 0.000 description 1
- 208000010191 Osteitis Deformans Diseases 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019213 POCl3 Inorganic materials 0.000 description 1
- 208000027067 Paget disease of bone Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 208000017493 Pelizaeus-Merzbacher disease Diseases 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 208000024571 Pick disease Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- GLWBYJXEQGXRLN-UHFFFAOYSA-N S1C(=CC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)OCC1=CC=CC=C1)C Chemical compound S1C(=CC2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)OCC1=CC=CC=C1)C GLWBYJXEQGXRLN-UHFFFAOYSA-N 0.000 description 1
- VNVXVAQTPJCBGW-UHFFFAOYSA-N S1C=C(C2=C1C=CC=C2)C1=NC2=C(C=C(C=C2C(=C1)C(=O)O)C)C Chemical compound S1C=C(C2=C1C=CC=C2)C1=NC2=C(C=C(C=C2C(=C1)C(=O)O)C)C VNVXVAQTPJCBGW-UHFFFAOYSA-N 0.000 description 1
- CFNUCGHIDGAJKM-UHFFFAOYSA-N S1C=C(C2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)OCC1=CC=CC=C1)C Chemical compound S1C=C(C2=C1C=CC=C2)C1=NC2=C(C=CC(=C2C(=C1)C(=O)O)OCC1=CC=CC=C1)C CFNUCGHIDGAJKM-UHFFFAOYSA-N 0.000 description 1
- 101100379247 Salmo trutta apoa1 gene Proteins 0.000 description 1
- 208000021811 Sandhoff disease Diseases 0.000 description 1
- 208000027583 Serpinopathy Diseases 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 201000001828 Sly syndrome Diseases 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 208000036834 Spinocerebellar ataxia type 3 Diseases 0.000 description 1
- 208000007718 Stable Angina Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 102100040347 TAR DNA-binding protein 43 Human genes 0.000 description 1
- 101710150875 TAR DNA-binding protein 43 Proteins 0.000 description 1
- 229920002253 Tannate Polymers 0.000 description 1
- 208000034799 Tauopathies Diseases 0.000 description 1
- 208000022292 Tay-Sachs disease Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108700001567 Type I Schindler Disease Proteins 0.000 description 1
- 108010044965 UDP-N-acetylglucosamine-lysosomal-enzyme N-acetylglucosaminephosphotransferase Proteins 0.000 description 1
- 208000007814 Unstable Angina Diseases 0.000 description 1
- 208000018756 Variant Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 102100037108 Vasopressin V2 receptor Human genes 0.000 description 1
- 208000026589 Wolman disease Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- YBCVMFKXIKNREZ-UHFFFAOYSA-N acoh acetic acid Chemical compound CC(O)=O.CC(O)=O YBCVMFKXIKNREZ-UHFFFAOYSA-N 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 125000005076 adamantyloxycarbonyl group Chemical group C12(CC3CC(CC(C1)C3)C2)OC(=O)* 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000000240 adjuvant effect Effects 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 208000026594 alcoholic fatty liver disease Diseases 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000005194 alkoxycarbonyloxy group Chemical group 0.000 description 1
- 125000005206 alkoxycarbonyloxymethyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000005336 allyloxy group Chemical group 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- 150000004716 alpha keto acids Chemical class 0.000 description 1
- 108010030291 alpha-Galactosidase Proteins 0.000 description 1
- 102000005840 alpha-Galactosidase Human genes 0.000 description 1
- 108010028144 alpha-Glucosidases Proteins 0.000 description 1
- 102000012086 alpha-L-Fucosidase Human genes 0.000 description 1
- 108010061314 alpha-L-Fucosidase Proteins 0.000 description 1
- 108010012864 alpha-Mannosidase Proteins 0.000 description 1
- 102000019199 alpha-Mannosidase Human genes 0.000 description 1
- 108090000185 alpha-Synuclein Proteins 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 201000008333 alpha-mannosidosis Diseases 0.000 description 1
- 102000005922 amidase Human genes 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000006286 aqueous extract Substances 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 125000005099 aryl alkyl carbonyl group Chemical group 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 230000001746 atrial effect Effects 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- 125000005334 azaindolyl group Chemical group N1N=C(C2=CC=CC=C12)* 0.000 description 1
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical compound C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004601 benzofurazanyl group Chemical group N1=C2C(=NO1)C(=CC=C2)* 0.000 description 1
- 125000004618 benzofuryl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 108010055059 beta-Mannosidase Proteins 0.000 description 1
- 108090000182 beta-Synuclein Proteins 0.000 description 1
- 201000006486 beta-mannosidosis Diseases 0.000 description 1
- 150000001602 bicycloalkyls Chemical group 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 208000016738 bone Paget disease Diseases 0.000 description 1
- 210000000424 bronchial epithelial cell Anatomy 0.000 description 1
- 229940124630 bronchodilator Drugs 0.000 description 1
- 239000000168 bronchodilator agent Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 239000007958 cherry flavor Substances 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 206010009887 colitis Diseases 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 206010011005 corneal dystrophy Diseases 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000002993 cycloalkylene group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000006547 cyclononyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- WLVKDFJTYKELLQ-UHFFFAOYSA-N cyclopropylboronic acid Chemical compound OB(O)C1CC1 WLVKDFJTYKELLQ-UHFFFAOYSA-N 0.000 description 1
- 208000031513 cyst Diseases 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- DEZRYPDIMOWBDS-UHFFFAOYSA-N dcm dichloromethane Chemical compound ClCCl.ClCCl DEZRYPDIMOWBDS-UHFFFAOYSA-N 0.000 description 1
- 125000004855 decalinyl group Chemical group C1(CCCC2CCCCC12)* 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 208000033679 diabetic kidney disease Diseases 0.000 description 1
- 208000010643 digestive system disease Diseases 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- CETRZFQIITUQQL-UHFFFAOYSA-N dmso dimethylsulfoxide Chemical compound CS(C)=O.CS(C)=O CETRZFQIITUQQL-UHFFFAOYSA-N 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- OLAMWIPURJGSKE-UHFFFAOYSA-N et2o diethylether Chemical compound CCOCC.CCOCC OLAMWIPURJGSKE-UHFFFAOYSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- OCLXJTCGWSSVOE-UHFFFAOYSA-N ethanol etoh Chemical compound CCO.CCO OCLXJTCGWSSVOE-UHFFFAOYSA-N 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 1
- BZKQJSLASWRDNE-UHFFFAOYSA-N ethyl 4-hydroxycyclohexane-1-carboxylate Chemical compound CCOC(=O)C1CCC(O)CC1 BZKQJSLASWRDNE-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- OJCSPXHYDFONPU-UHFFFAOYSA-N etoac etoac Chemical compound CCOC(C)=O.CCOC(C)=O OJCSPXHYDFONPU-UHFFFAOYSA-N 0.000 description 1
- 239000003172 expectorant agent Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 201000006061 fatal familial insomnia Diseases 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 201000008049 fucosidosis Diseases 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- 125000004612 furopyridinyl group Chemical group O1C(=CC2=C1C=CC=N2)* 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 125000005643 gamma-butyrolacton-4-yl group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 208000018685 gastrointestinal system disease Diseases 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 201000004502 glycogen storage disease II Diseases 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 201000008977 glycoproteinosis Diseases 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002373 hemiacetals Chemical group 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000003451 hyperinsulinaemic effect Effects 0.000 description 1
- 201000008980 hyperinsulinism Diseases 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 201000008319 inclusion body myositis Diseases 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 208000021267 infertility disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 208000019715 inherited Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- UEXQBEVWFZKHNB-UHFFFAOYSA-N intermediate 29 Natural products C1=CC(N)=CC=C1NC1=NC=CC=N1 UEXQBEVWFZKHNB-UHFFFAOYSA-N 0.000 description 1
- 201000004332 intermediate coronary syndrome Diseases 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000019948 ion homeostasis Effects 0.000 description 1
- SYJRVVFAAIUVDH-UHFFFAOYSA-N ipa isopropanol Chemical compound CC(C)O.CC(C)O SYJRVVFAAIUVDH-UHFFFAOYSA-N 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- JXDYKVIHCLTXOP-UHFFFAOYSA-N isatin Chemical class C1=CC=C2C(=O)C(=O)NC2=C1 JXDYKVIHCLTXOP-UHFFFAOYSA-N 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- TWBYWOBDOCUKOW-UHFFFAOYSA-M isonicotinate Chemical compound [O-]C(=O)C1=CC=NC=C1 TWBYWOBDOCUKOW-UHFFFAOYSA-M 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 208000017476 juvenile neuronal ceroid lipofuscinosis Diseases 0.000 description 1
- 206010023497 kuru Diseases 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 201000003775 lattice corneal dystrophy Diseases 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 208000015413 lichen amyloidosis Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004199 lung function Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- LVKCSZQWLOVUGB-UHFFFAOYSA-M magnesium;propane;bromide Chemical compound [Mg+2].[Br-].C[CH-]C LVKCSZQWLOVUGB-UHFFFAOYSA-M 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- BCVXHSPFUWZLGQ-UHFFFAOYSA-N mecn acetonitrile Chemical compound CC#N.CC#N BCVXHSPFUWZLGQ-UHFFFAOYSA-N 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- COTNUBDHGSIOTA-UHFFFAOYSA-N meoh methanol Chemical compound OC.OC COTNUBDHGSIOTA-UHFFFAOYSA-N 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- LULAYUGMBFYYEX-UHFFFAOYSA-N metachloroperbenzoic acid Natural products OC(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-N 0.000 description 1
- 229940071648 metered dose inhaler Drugs 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 125000005699 methyleneoxy group Chemical group [H]C([H])([*:1])O[*:2] 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 230000000420 mucociliary effect Effects 0.000 description 1
- 208000020468 mucolipidosis III alpha/beta Diseases 0.000 description 1
- 229940066491 mucolytics Drugs 0.000 description 1
- 208000005340 mucopolysaccharidosis III Diseases 0.000 description 1
- 208000011045 mucopolysaccharidosis type 3 Diseases 0.000 description 1
- 208000025919 mucopolysaccharidosis type 7 Diseases 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- PEECTLLHENGOKU-UHFFFAOYSA-N n,n-dimethylpyridin-4-amine Chemical compound CN(C)C1=CC=NC=C1.CN(C)C1=CC=NC=C1 PEECTLLHENGOKU-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 238000002663 nebulization Methods 0.000 description 1
- 201000007607 neuronal ceroid lipofuscinosis 3 Diseases 0.000 description 1
- BFSQJYRFLQUZKX-UHFFFAOYSA-L nickel(ii) iodide Chemical compound I[Ni]I BFSQJYRFLQUZKX-UHFFFAOYSA-L 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 208000008338 non-alcoholic fatty liver disease Diseases 0.000 description 1
- 238000013546 non-drug therapy Methods 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 208000027825 odontogenic neoplasm Diseases 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 239000007968 orange flavor Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 1
- WLJNZVDCPSBLRP-UHFFFAOYSA-N pamoic acid Chemical class C1=CC=C2C(CC=3C4=CC=CC=C4C=C(C=3O)C(=O)O)=C(O)C(C(O)=O)=CC2=C1 WLJNZVDCPSBLRP-UHFFFAOYSA-N 0.000 description 1
- 229940014662 pantothenate Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 239000008249 pharmaceutical aerosol Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229940114930 potassium stearate Drugs 0.000 description 1
- ANBFRLKBEIFNQU-UHFFFAOYSA-M potassium;octadecanoate Chemical compound [K+].CCCCCCCCCCCCCCCCCC([O-])=O ANBFRLKBEIFNQU-UHFFFAOYSA-M 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 208000030153 prolactin-producing pituitary gland adenoma Diseases 0.000 description 1
- 125000001325 propanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 201000003489 pulmonary alveolar proteinosis Diseases 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- PKBWKZMOZIZGJB-UHFFFAOYSA-N pyrazolo[1,5-a]pyridine-5-carboxylic acid Chemical compound C1=C(C(=O)O)C=CN2N=CC=C21 PKBWKZMOZIZGJB-UHFFFAOYSA-N 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 210000003994 retinal ganglion cell Anatomy 0.000 description 1
- 102200128204 rs121909005 Human genes 0.000 description 1
- 102200128220 rs121909013 Human genes 0.000 description 1
- 102200132013 rs121909041 Human genes 0.000 description 1
- 102200132105 rs193922525 Human genes 0.000 description 1
- 102200132017 rs267606723 Human genes 0.000 description 1
- 102220020559 rs397508453 Human genes 0.000 description 1
- 102200128190 rs397508804 Human genes 0.000 description 1
- 102200093459 rs397517963 Human genes 0.000 description 1
- 102200132015 rs74503330 Human genes 0.000 description 1
- 102200084783 rs749452002 Human genes 0.000 description 1
- 102200132008 rs75541969 Human genes 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 208000011985 sialidosis Diseases 0.000 description 1
- 125000000048 sinapoyl group Chemical group O=C([*])\C([H])=C([H])\C1=C([H])C(OC([H])([H])[H])=C(O[H])C(OC([H])([H])[H])=C1[H] 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- WRIKHQLVHPKCJU-UHFFFAOYSA-N sodium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([Na])[Si](C)(C)C WRIKHQLVHPKCJU-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 230000037436 splice-site mutation Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 108010026424 tau Proteins Proteins 0.000 description 1
- 102000013498 tau Proteins Human genes 0.000 description 1
- JJXOIFHXNBFRNV-UHFFFAOYSA-N tert-butyl (2-methylpropan-2-yl)oxycarbonyl carbonate Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C.CC(C)(C)OC(=O)OC(=O)OC(C)(C)C JJXOIFHXNBFRNV-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- BRNULMACUQOKMR-UHFFFAOYSA-N thiomorpholine Chemical compound C1CSCCN1 BRNULMACUQOKMR-UHFFFAOYSA-N 0.000 description 1
- 208000013818 thyroid gland medullary carcinoma Diseases 0.000 description 1
- 238000003354 tissue distribution assay Methods 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- NNBZCPXTIHJBJL-UHFFFAOYSA-N trans-decahydronaphthalene Natural products C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- GKASDNZWUGIAMG-UHFFFAOYSA-N triethyl orthoformate Chemical compound CCOC(OCC)OCC GKASDNZWUGIAMG-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- MHNHYTDAOYJUEZ-UHFFFAOYSA-N triphenylphosphane Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 MHNHYTDAOYJUEZ-UHFFFAOYSA-N 0.000 description 1
- 210000001177 vas deferen Anatomy 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 208000006542 von Hippel-Lindau disease Diseases 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 208000027121 wild type ATTR amyloidosis Diseases 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 125000005853 β-dimethylaminoethyl group Chemical group 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
- A61K31/343—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/4375—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/443—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with oxygen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4709—Non-condensed quinolines and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/472—Non-condensed isoquinolines, e.g. papaverine
- A61K31/4725—Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/517—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/08—Bridged systems
Definitions
- Protein homeostasis a balance between protein synthesis, folding, trafficking, aggregation, and degradation, referred to as protein homeostasis, utilizing sensors and networks of pathways (Sitia et al., Nature 426: 891-894, 2003; Ron et al., Nat Rev Mol Cell Biol 8: 519-529, 2007).
- the cellular maintenance of protein homeostasis, or proteostasis refers to controlling the conformation, binding interactions, location and concentration of individual proteins making up the proteome.
- Protein folding in vivo is accomplished through interactions between the folding polypeptide chain and macromolecular cellular components, including multiple classes of chaperones and folding enzymes, which minimize aggregation (Wiseman et al., Cell 131: 809-821, 2007). Whether a given protein folds in a certain cell type depends on the distribution, concentration, and subcellular localization of chaperones, folding enzymes, metabolites and the like (Wiseman et al.).
- Cystic fibrosis and other maladies of protein misfolding arise as a result of an imbalance in the capacity of the protein homeostasis (proteostasis) environment to handle the reduced energetic stability of misfolded, mutated proteins that are critical for normal physiology (Balch et al., Science 319, 916-9 (2008); Powers, et al., Annu Rev Biochem 78, 959-91 (2009); Hutt et al., FEBS Lett 583, 2639-46 (2009)).
- Cystic Fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene which encodes a multi-membrane spanning epithelial chloride channel (Riordan et al., Annu Rev Biochem 77, 701-26 (2008)). Approximately ninety percent of patients have a deletion of phenylalanine (Phe) 508 ( ⁇ F508) on at least one allele. This mutation results in disruption of the energetics of the protein fold leading to degradation of CFTR in the endoplasmic reticulum (ER).
- CFTR cystic fibrosis transmembrane conductance regulator
- the ⁇ F508 mutation is thus associated with defective folding and trafficking, as well as enhanced degradation of the mutant CFTR protein (Qu et al., J Biol Chem 272, 15739-44 (1997)).
- the loss of a functional CFTR channel at the plasma membrane disrupts ionic homeostasis (Cl ⁇ , Na + , HCO 3 ⁇ ) and airway surface hydration leading to reduced lung function (Riordan et al.).
- Reduced periciliary liquid volume and increased mucus viscosity impede mucociliary clearance resulting in chronic infection and inflammation, phenotypic hallmarks of CF disease (Boucher, J Intern Med 261, 5-16 (2007)).
- ⁇ F508 CFTR also impacts the normal function of additional organs (pancreas, intestine, gall bladder), suggesting that the loss-of-function impacts multiple downstream pathways that will require correction.
- cystic fibrosis mutations in the CFTR gene and/or the activity of the CFTR channel has also been implicated in other conditions, including for example, congenital bilateral absence of vas deferens (CBAVD), acute, recurrent, or chronic pancreatitis, disseminated bronchiectasis, asthma, allergic pulmonary aspergillosis, smoking-related lung diseases, such as chronic obstructive pulmonary disease (COPD), dry eye disease, Sjogren's syndrome and chronic sinusitis, (Sloane et al. (2012), PLoS ONE 7(6): e39809.doi:10.1371/journal.pone.0039809; Bombieri et al.
- CBAVD congenital bilateral absence of vas deferens
- COPD chronic obstructive pulmonary disease
- COPD chronic obstructive pulmonary disease
- compositions that include a disclosed compound such as those compounds having disclosed formulas such as Formula I and a pharmaceutically acceptable carrier or excipient.
- the compositions can include at least one additional CFTR modulator, for example, may include one, two, three, four five or more additional CFTR modulators.
- a method comprising administering a disclosed compound to a subject (e.g., a human patient) suffering from a disease associated with decreased CFTR activity (e.g., cystic fibrosis, congenital bilateral absence of vas deferens (CBAVD), acute, recurrent, or chronic pancreatitis, disseminated bronchiectasis, asthma, allergic pulmonary aspergillosis, chronic obstructive pulmonary disease (COPD), chronic sinusitis, dry eye disease, protein C deficiency, A- ⁇ -lipoproteinemia, lysosomal storage disease, type 1 chylomicronemia, mild pulmonary disease, lipid processing deficiencies, type 1 hereditary angioedema, coagulation-fibrinolyis, hereditary hemochromatosis, CFTR-related metabolic syndrome, chronic bronchitis, constipation, pancreatic insufficiency, hereditary emphysema, Sjo
- CFTR activity
- disclosed methods described herein can further include administering at least one additional CFTR modulator e.g., administering at least two, three, four or five additional CFTR modulators.
- at least one additional CFTR modulator is a CFTR corrector (e.g., VX-809, VX-661 and VX-983) or potentiator (e.g., ivacaftor and genistein).
- one of the at least two additional therapeutic agents is a CFTR corrector (e.g., VX-809, VX-661 and VX-983) and the other is a CFTR potentiator (e.g., ivacaftor and genistein).
- an agent encompasses both a single agent and a combination of two or more agents.
- the present disclosure is directed in part to compounds as described herein having the Formula I or a pharmaceutically acceptable salt, prodrug or solvate thereof, pharmaceutical compositions, methods of increasing CFTR activity and methods of treating cystic fibrosis.
- A is a 8-10 membered bicyclic heteroaryl having 1, 2, or 3 heteroatoms each selected from the group consisting of O, N, and S; wherein the bicyclic heteroaryl may optionally be substituted by one, two or three substituents each independently selected from R A1 ;
- X 1 is selected from the group consisting of N and C(R X1 );
- X 2 is selected from the group consisting of N and C(R X2 );
- X 3 is selected from the group consisting of N and C(R X3 );
- X 1 , X 2 or X 3 can be N;
- R 1 is selected from the group consisting of hydrogen; —C(O)OH, —C(O)OC 1-6 alkyl, —C(O)—C(O)OH, —P(O)(OH) 2 , C 1-6 alkyl, and a 5-6 membered monocyclic heteroaryl having one, two, three, or four heteroatoms each selected from the group consisting of O, N, and S; wherein C 1-6 alkyl may optionally be substituted by one, two, or three substituents each selected independently from the group consisting of halogen, hydroxyl, C(O)OH, —P(O)(OH) 2 , and —C(O)OC 1-6 alkyl; and wherein said heteroaryl may optionally be substituted by one or two substituents each independently selected from the group consisting of halogen, hydroxyl, and C 1-4 alkyl;
- R 2 is selected from the group consisting of hydrogen, halogen, cyano, C 1-6 alkyl, C 1-6 alkoxy, and C 3-6 cycloalkyl; wherein C 1-6 alkyl, C 1-6 alkoxy, and C 3-6 cycloalkyl may optionally be substituted by one or more substituents each independently selected from the group consisting of halogen, hydroxyl, and phenyl; and wherein phenyl may optionally be substituted by one or more substituents each independently selected from R p ;
- R 3 is selected from the group consisting of hydrogen, halogen, hydroxyl, C 1-6 alkyl, C 1-6 alkoxy, —S(O) w —C 1-6 alkyl (where w is 0, 1, or 2), —NR a —C 1-6 alkyl, C 3-6 cycloalkoxy, —S(O) w —C 3-6 cycloalkyl (where w is 0, 1, or 2), —NR a —C 3-6 cycloalkyl, —O-phenyl, —S(O) w -phenyl (where w is 0, 1, or 2), —NR a -phenyl, C 8-12 benzocycloalkoxy, —NR a R b , —OC(O)NR a -phenyl, —NR a —C(O)—O— phenyl, —NR a —C(O)—C 1-6 alkyl-phenyl, —C
- R ff is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NR a R b , oxo, C 1-6 alkyl and C 1-6 alkoxy;
- R gg is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NR a R b , C 1-6 alkyl, C 1-6 alkoxy, C 3-6 cycloalkyl (optionally substituted by one, two or three substituents independently selected from the group consisting of halogen, hydroxyl, C 1-3 alkyl and C 1-3 alkoxy (optionally substituted by one, two or three fluorine atoms)), phenyl, a 5-6 membered monocyclic or 8-10 membered bicyclic heteroaryl having one, two or three heteroatoms each independently selected from the group consisting of O, N, and S, and a 4-10 membered monocyclic, bridged bycyclic, or spirocyclic heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclic ring contains an —NH moiety, that nitrogen may optionally be substituted by a substitu
- R hh is independently selected for each occurrence from the group consisting of halogen, cyano, C 1-6 alkyl, C 1-6 alkoxy, S(O) w —C 1-3 alkyl, —S(O) w —NR a R b , —NR a —S(O) w C 1-3 alkyl (where w is 0, 1, or 2), a 5-6 membered monocyclic heteroaryl having one, two or three heteroatoms each independently selected from the group consisting of O, N, and S, and a 4-7 membered heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein C 1-6 alkoxy and S(O) w —C 1-3 alkyl may optionally be substituted by one, two, or three halogens;
- R ii is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NR a R b , oxo, C 1-6 alkyl and C 1-6 alkoxy;
- R A1 is independently for each occurrence selected from the group consisting of hydrogen, halogen, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxy, C 3 -C 6 cycloalkyl, phenyl, —NR a R b , —O—C(O)—NR a -phenyl, —NR a —C(O)-phenyl, and —NR a —C 1-4 alkyl-phenyl; wherein C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxy, C 3-6 cycloalkyl and phenyl may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and —NR a R b ;
- R X1 is selected from the group consisting of hydrogen, —C(O)OH, and C 1-6 alkyl; wherein C 1-6 alkyl may optionally be substituted by one, two or three halogens;
- R X2 is selected from the group consisting of hydrogen, halogen, C 1-6 alkyl, C 1-6 alkoxy, and —C 1-6 alkoxy-phenyl; wherein phenyl may optionally be substituted by one or more substituents selected from R p ;
- R X3 is selected from the group consisting of hydrogen, halogen, cyano, C 1-6 alkyl, C 1-6 alkoxy, —C 1-6 alkoxy-phenyl, C 3-6 cycloalkyl, C 3-6 cycloalkoxy, and phenyl; wherein C 1-6 alkyl and C 1-6 alkoxy may optionally be substituted by one, two, or three substituents selected from the group consisting of hydroxyl and halogen; and wherein phenyl may optionally be substituted by one or more substituents selected from R p ;
- R a and R b are each independently selected from the group consisting of hydrogen, C 1-6 alkyl, phenyl, —C(O)-phenyl, and —C(O)—C 1-6 alkyl; or
- R p is independently selected for each occurrence from the group consisting of halogen, hydroxyl, cyano, C 1-6 alkyl, C 3-6 cycloalkyl, C 1-6 alkoxy, phenyl, C 3-6 cycloalkoxy, —S(O) w —C 1-3 alkyl (where w is 0, 1, or 2), —S(O) w —NR a R b , and —NR a R b .
- A may be selected from the group consisting of:
- X 4 may independently for each occurrence be selected from the group consisting of O, S, and N(R 4 );
- R A1 may independently for each occurrence be selected from the group consisting of hydrogen, halogen, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxy, C 3-6 cycloalkyl, phenyl, —NR a R b , —OC(O)NR a R b , —NR a —C(O)-phenyl, and —O—C(O)—NR a -phenyl; wherein C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxy, C 3-6 cycloalkyl, phenyl, —OC(O)NR a R b , —NR a —C(O)-phenyl, and —O—C(O)—NR a -phenyl may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phen
- R A2 may be selected from the group consisting of hydrogen and C 1-6 alkyl
- R A3 and R A4 may be each independently selected from the group consisting of hydrogen, halogen, C 1-6 alkyl, C 1-6 alkoxy, and NR a R b wherein C 1-6 alkyl and C 1-6 alkoxy may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and NR a R b ;
- R 4 may be selected from the group consisting of hydrogen, C 1-6 alkyl, C 3-6 cycloalkyl, phenyl, heterocycle, C 1-6 alkyl-S(O) 2 —, and phenyl-S(O) 2 —; wherein C 1-6 alkyl, C 3-6 cycloalkyl, phenyl, and heterocycle may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and NR a R b ;
- R X5 may be selected from the group consisting of hydrogen, halogen, and C 1-6 alkyl.
- R 1 may be —C(O)OH.
- R 1 may be selected from the group consisting of:
- X is selected from the group consisting of O and S; R′′ is hydrogen or C 1-4 alkyl; and each R 66 and R 77 is independently from the group consisting of hydrogen, halogen, hydroxyl, and C 1-4 alkyl.
- R 1 may be selected from the group consisting of:
- R 2 may be selected from the group consisting of hydrogen, C 1-6 alkyl, C 1-6 cycloalkyl, and halogen.
- R 2 may be methyl or ethyl.
- R 3 may be C 3-6 cycloalkoxy; wherein C 3-6 cycloalkoxy may be optionally substituted by one or two substituents selected from R gg .
- R gg may be selected from the group consisting of: C 1-6 alkyl,
- R 11 , R 22 , R 33 and R 44 are independently selected for each occurrence from the group consisting of hydrogen and C 1-6 alkyl.
- R gg may be
- R 3 may be C 1-6 alkoxy, wherein C 1-6 alkoxy may be optionally substituted by one, two or three substituents selected from R gg .
- R gg may be selected from the group consisting of: halogen, hydroxyl, C 1-6 alkoxy, C 3-6 cycloalkyl (optionally substituted by one or two substituents independently selected from the group consisting of hydroxyl, C 1-3 alkyl and C 1-3 alkoxy), phenyl,
- R 11 , R 22 , R 33 and R 44 are independently selected for each occurrence from the group consisting of hydrogen, hydroxyl, C 1-6 alkyl, C 1-3 alkoxy and oxo; and wherein R N is selected from the group consisting of hydrogen and —S(O) 2 —C 1-3 alkyl; and wherein phenyl may be optionally substituted by on one two substituents selected from R hh .
- R gg may be selected from the group consisting of:
- R hh may be selected from the group consisting of: halogen, C 1-3 alkyl, C 1-3 alkoxy, cyano, —S(O) w —C 1-3 alkyl (where w is 0, 1, or 2), —S(O) w —NR a R b , —NR a —S(O) w —C 1-3 alkyl,
- R a is hydrogen or methyl; and wherein C 1-3 alkoxy and S(O) w —C 1-3 alkyl may optionally be substituted by one, two, or three fluorine atoms.
- R 3 may be a monocyclic, spirocyclic, or bridged bicyclic heterocyclyloxy.
- R 3 may be selected from the group consisting of:
- R 11 , R 22 , R 33 and R 44 are independently selected for each occurrence from the group consisting of hydrogen, hydroxyl, C 1-6 alkyl, C 1-3 alkoxy and oxo; and wherein R N is selected from the group consisting of hydrogen and —S(O) 2 —C 1-3 alkyl.
- R 3 may be selected from the group consisting of:
- X 1 may be C(R X1 ), X 2 is C(R X2 ), and X 3 is C(R X3 ).
- A may be selected from the group consisting of:
- A may be selected from the group consisting of:
- a disclosed compound of Formula I may be represented by:
- X is O or S
- R A1 is selected from the group consisting of hydrogen and C 1-6 alkyl
- R 1 is selected from the group consisting of —C(O)OH and a 5-6 membered monocyclic heteroaryl having one, two, three, or four heteroatoms each selected from the group consisting of O, N, and S; wherein said heteroaryl may optionally be substituted by one or two substituents each independently selected from the group consisting of halogen, hydroxyl, and C 1-4 alkyl;
- R 2 is selected from the group consisting of hydrogen, halogen, cyano, C 1-6 alkyl, C 1-6 alkoxy, and C 3-6 cycloalkyl;
- Y is O or S(O), (where w is 0, 1 or 2);
- R 25 and R 26 are each independently selected from the group consisting of hydrogen and C 1-6 alkyl
- p is 0 or 1
- B is a 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclic ring contains an —NH moiety, that nitrogen may optionally be substituted by a substituent selected from the group consisting of C 1-6 alkyl, —C(O)—C 1-6 alkyl, —C(O)—O—C 1-6 alkyl, and —S(O) w —C 1-3 alkyl (where w is 0, 1, or 2); and wherein said heterocyclic ring may optionally be substituted by one, two, three, or four substituents each independently selected from hydroxyl, C 1-6 alkyl, C 1-6 alkoxy, and oxo.
- X may be O.
- R A1 may be methyl.
- R 1 may be —C(O)OH.
- p may be 1.
- a disclosed compound of Formula I may be represented by
- Y may be O.
- R 2 may be C 1-6 alkyl.
- a disclosed compound may be represented by:
- X is O or S
- R A1 is selected from the group consisting of hydrogen and C 1-6 alkyl
- R 1 is selected from the group consisting of —C(O)OH and a 5-6 membered monocyclic heteroaryl having one, two, three, or four heteroatoms each selected from the group consisting of O, N, and S; wherein said heteroaryl may optionally be substituted by one or two substituents each independently selected from the group consisting of halogen, hydroxyl, and C 1-4 alkyl;
- R 2 is selected from the group consisting of hydrogen, halogen, cyano, C 1-6 alkyl, C 1-6 alkoxy, and C 3-6 cycloalkyl;
- Y is O or S(O) w (where w is 0, 1 or 2);
- R 25 and R 26 are each independently selected from the group consisting of hydrogen and C 1-6 alkyl
- p is 0 or 1
- R 34 , R 35 , R 36 and R 37 are each independently from the group consisting of hydrogen, hydroxyl, methyl and methoxy, or R 36 and R 37 taken together form an oxo moiety.
- X 1 is selected from the group consisting of N and C(R X1 );
- X 2 is selected from the group consisting of N and C(R X2 );
- X 3 is selected from the group consisting of N and C(R X3 );
- X 1 , X 2 or X 3 can be N;
- R 2 is selected from the group consisting of hydrogen, halogen, cyano, C 1-6 alkyl, C 1-6 alkoxy, and C 3-6 cycloalkyl; wherein C 1-6 alkyl, C 1-6 alkoxy, and C 3-6 cycloalkyl may optionally be substituted by one or more substituents each independently selected from the group consisting of halogen, hydroxyl, and phenyl; and wherein phenyl may optionally be substituted by one or more substituents each independently selected from R p ;
- R 3 is selected from the group consisting of hydrogen, halogen, hydroxyl, C 1-6 alkyl, C 1-6 alkoxy, —S(O) w —C 1-6 alkyl (where w is 0, 1, or 2), —NR a —C 1-6 alkyl, C 3-6 cycloalkoxy, —S(O) w —C 3-6 cycloalkyl (where w is 0, 1, or 2), —NR a —C 3-6 cycloalkyl, —O-phenyl, —S(O) w -phenyl (where w is 0, 1, or 2), —NR a -phenyl, C 8-12 benzocycloalkoxy, —NR a R b , —OC(O)NR a -phenyl, —NR a —C(O)—O— phenyl, —NR a —C(O)—C 1-6 alkyl-phenyl, —C
- R ff is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NR a R b , oxo, C 1-6 alkyl and C 1-6 alkoxy;
- R gg is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NR a R b , C 1-6 alkyl, C 1-6 alkoxy, C 3-6 cycloalkyl (optionally substituted by one, two or three substituents independently selected from the group consisting of halogen, hydroxyl, C 1-3 alkyl and C 1-3 alkoxy (optionally substituted by one, two or three fluorine atoms)), phenyl, a 5-6 membered monocyclic or 8-10 membered bicyclic heteroaryl having one, two or three heteroatoms each independently selected from the group consisting of O, N, and S, and a 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclic ring contains an —NH moiety, that nitrogen may optionally be substituted by a substitu
- R hh is independently selected for each occurrence from the group consisting of halogen, cyano, C 1-6 alkyl, C 1-6 alkoxy, S(O) w —C 1-3 alkyl, —S(O) w —NR a R b , —NR a —S(O) w C 1-3 alkyl (where w is 0, 1, or 2), a 5-6 membered monocyclic heteroaryl having one, two or three heteroatoms each independently selected from the group consisting of O, N, and S, and a 4-7 membered heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein C 1-6 alkoxy and S(O) w —C 1-3 alkyl may optionally be substituted by one, two, or three halogens;
- R ii is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NR a R b , oxo, C 1-6 alkyl and C 1-6 alkoxy;
- R A1 is independently for each occurrence selected from the group consisting of hydrogen, halogen, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxy, C 3-6 cycloalkyl, phenyl, —NR a R b , —O—C(O)—NR a -phenyl, —NR a —C(O)-phenyl, and —NR a —C 1-4 alkyl-phenyl; wherein C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxy, C 3-6 cycloalkyl and phenyl may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and —NR a R b ;
- R X1 is selected from the group consisting of hydrogen, —C(O)OH, and C 1-6 alkyl; wherein C 1-6 alkyl may optionally be substituted by one, two or three halogens;
- R X2 is selected from the group consisting of hydrogen, halogen, C 1-6 alkyl, C 1-6 alkoxy, and —C 1-6 alkox-phenyl; wherein phenyl may optionally be substituted by one or more substituents selected from R p ;
- R X3 is selected from the group consisting of hydrogen, halogen, cyano, C 1-6 alkyl, C 1-6 alkoxy, —C 1-6 alkoxy-phenyl, C 3-6 cycloalkyl, C 3-6 cycloalkoxy, and phenyl; wherein C 1-6 alkyl and C 1-6 alkoxy may optionally be substituted by one, two, or three substituents selected from the group consisting of hydroxyl and halogen; and wherein phenyl may optionally be substituted by one or more substituents selected from R p ;
- R a and R b are each independently selected from the group consisting of hydrogen, C 1-6 alkyl, phenyl, —C(O)-phenyl, and —C(O)—C 1-6 alkyl; or
- R p is independently selected, for each occurrence, from the group consisting of halogen, hydroxyl, cyano, C 1-6 alkyl, C 3-6 cycloalkyl, C 1-6 alkoxy, phenyl, C 3-6 cycloalkoxy, —S(O) w —C 1-3 alkyl (where w is 0, 1, or 2), —S(O) w —NR a R b , and —NR a R b .
- R 2 may be selected from the group consisting of hydrogen, C 1-6 alkyl, C 1-6 -cycloalkyl, and halogen.
- R 2 may be methyl or ethyl.
- R 3 may be C 3-6 cycloalkoxy; wherein C 3-6 cycloalkoxy may be optionally substituted by one or two substituents selected from R gg .
- R gg may be selected from the group consisting of: C 1-6 alkyl,
- R 11 , R 22 , R 33 and R 44 are independently selected for each occurrence from the group consisting of hydrogen and C 1-6 alkyl.
- R gg may be
- R 3 may be C 1-6 alkoxy, wherein C 1-6 alkoxy may be optionally substituted by one, two or three substituents selected from R gg .
- R gg may be selected from the group consisting of: halogen, hydroxyl, C 1-6 alkoxy, C 3-6 cycloalkyl (optionally substituted by one or two substituents independently selected from the group consisting of hydroxyl, C 1-3 alkyl and C 1-3 alkoxy), phenyl,
- R 11 , R 22 , R 33 and R 44 are independently selected for each occurrence from the group consisting of hydrogen, hydroxyl, C 1-6 alkyl, C 1-3 alkoxy and oxo; and wherein R N is selected from the group consisting of hydrogen and —S(O) 2 —C 1-3 alkyl; and wherein phenyl may be optionally substituted by on one two substituents selected from R hh .
- R gg may be selected from the group consisting of:
- R hh may be selected from the group consisting of: halogen, C 1-3 alkyl, C 1-3 alkoxy, cyano, —S(O) w —C 1-3 alkyl (where w is 0, 1, or 2), —S(O) w —NR a R b , —NR a —S(O) w —C 1-3 alkyl,
- R a is hydrogen or methyl; and wherein C 1-3 alkoxy and S(O) w —C 1-3 alkyl may optionally be substituted by one, two, or three fluorine atoms.
- R 3 may be a monocyclic, spirocyclic, or bridged bicyclic heterocyclyloxy.
- R 3 may be selected from the group consisting of:
- R 11 , R 22 , R 33 and R 44 are independently selected for each occurrence from the group consisting of hydrogen, hydroxyl, C 1-6 alkyl, C 1-3 alkoxy and oxo; and wherein R N is selected from the group consisting of hydrogen and —S(O) 2 —C 1-3 alkyl.
- R 3 may be selected from the group consisting of:
- R X1 in Formula I and other Formulas may be hydrogen.
- R X1 may be C 1-6 alkyl, e.g., methyl.
- R X1 may be —C(O)OH.
- R X2 may be hydrogen. In other embodiments, R X2 may be C 1-6 alkyl, e.g., methyl. In other embodiments, RX2 may be C 1-6 alkoxy substituted by phenyl, e.g., benzyloxy.
- R X3 may be hydrogen or cyano. In other embodiments, R X3 may be halogen, e.g., fluoride, chloride, or bromide. In other embodiments, R X3 may be C 1-6 alkyl, e.g., methyl, ethyl, i-propyl, or t-butyl; or C 1-6 alkyl substituted by one of more fluorides, e.g., trifluoromethyl. R X3 , for example, may be C 1-6 alkoxy, e.g, methoxy, or C 1-6 alkoxy substituted by phenyl, e.g., benzyloxy. In further embodiments, R X3 may be C 3-6 cycloalkyl, e.g., cyclopropyl. In another embodiment, R X3 may be phenyl.
- R 1 may be —C(O)OH. In some embodiments, R 1 may be hydrogen or —C(O)—C(O)OH. In other embodiments, R 1 may be C 1-6 alkyl substituted by hydroxyl, e.g., methyleneoxy, or substituted by —C(O)OH.
- R 2 may be hydrogen. In other embodiments, R 2 may be C 1-6 alkyl, e.g., methyl. R 2 , for example, may be C 1-6 alkoxy substituted by phenyl, e.g., benzyloxy.
- R 3 may be hydrogen. In other embodiments, R 3 may be C 1-6 alkyl, e.g., methyl. In other embodiments, R 3 may be C 1-6 alkoxy, e.g, methoxy, or C 1-6 alkoxy substituted by phenyl, e.g., benzyloxy. In further embodiments, R 3 may be C 3-6 cycloalkoxy (which may be optionally substituted as described herein), e.g., cyclopropyloxy, cyclobutyloxy, or cyclohexyloxy.
- cyclopropyloxy, cyclobutyloxy, and cyclohexyloxy may be substituted by phenyl or heteroaryl.
- R 3 may be —O-phenyl.
- R 3 may be —NH—C(O)-phenyl, —NH—C(O)—CH 2 -phenyl, —O—C(O)—NH— phenyl, or —NH—C(O)—O-phenyl.
- R A1 may be hydrogen. In other embodiments, R A1 may be halogen, e.g., chloride or bromide. In other embodiments, R A1 may be C 1-4 alkyl, e.g., methyl, ethyl, or i-propyl. In one embodiment, R A1 may be C 2-6 alkynyl, e.g., ethynyl. In some embodiments, R A1 may be C 3-6 cycloalkyl, e.g., cyclopropyl or cyclohexyl. In another embodiment, R A1 may be phenyl.
- R A1 may be C 1-6 alkoxy, e.g, methoxy, or C 1-6 alkoxy substituted by phenyl, e.g., benzyloxy.
- R A1 may be —NHMe, —NH—CH 2 -phenyl, —O—C(O)—NH-phenyl, or —NH—C(O)—O-phenyl.
- R A2 may be hydrogen. In other embodiments, R A2 may be C 1-6 alkyl, e.g., methyl.
- compositions that include a disclosed compound such as those compounds having Formula I and a pharmaceutically acceptable carrier or excipient.
- the compositions can include at least one additional CFTR modulator as described anywhere herein or at least two additional CFTR modulators, each independently as described anywhere herein.
- alkyl refers to both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms; for example, “C 1 -C 10 alkyl” denotes alkyl having 1 to 10 carbon atoms, and straight or branched hydrocarbons of 1-6, 1-4, or 1-3 carbon atoms, referred to herein as C 1-6 alkyl, C 1-4 alkyl, and C 1-3 alkyl, respectively.
- alkyl examples include, but are not limited to, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl, n-pentyl, n-hexyl, 2-methylbutyl, 2-methylpentyl, 2-ethylbutyl, 3-methylpentyl, and 4-methylpentyl.
- alkylcarbonyl refers to a straight or branched alkyl group attached to a carbonyl group (alkyl-C(O)—).
- exemplary alkylcarbonyl groups include, but are not limited to, alkylcarbonyl groups of 1-6 atoms, referred to herein as C 1-6 alkylcarbonyl groups.
- Exemplary alkylcarbonyl groups include, but are not limited to, acetyl, propanoyl, isopropanoyl, butanoyl, etc.
- carbonyl refers to the radical —C(O)—.
- cyano refers to the radical —CN.
- alkenyl refers to both straight and branched-chain moieties having the specified number of carbon atoms and having at least one carbon-carbon double bond.
- exemplary alkenyl groups include, but are not limited to, a straight or branched group of 2-6 or 3-4 carbon atoms, referred to herein as C 2-6 alkenyl, and C 3-4 alkenyl, respectively.
- exemplary alkenyl groups include, but are not limited to, vinyl, allyl, butenyl, pentenyl, etc.
- alkynyl refers to both straight and branched-chain moieties having the specified number or carbon atoms and having at least one carbon-carbon triple bond.
- cycloalkyl refers to saturated cyclic alkyl moieties having 3 or more carbon atoms, for example, 3-10, 3-6, or 4-6 carbons, referred to herein as C 3-10 cycloalkyl, C 3-6 cycloalkyl or C 4-6 cycloalkyl, respectively for example.
- saturated cyclic alkyl moieties can contain up to 18 carbon atoms and include monocycloalkyl, polycycloalkyl, and benzocycloalkyl structures.
- Monocycloalkyl refers to groups having a single ring group.
- Polycycloalkyl denotes hydrocarbon systems containing two or more ring systems with one or more ring carbon atoms in common; i.e., a spiro, fused, or bridged structure.
- Benzocycloalkyl signifies a monocyclic alkyl group fused to a benzene ring, referred to herein as C 8-12 benzocycloalkyl, for example.
- Examples of monocycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, cyclopentadecyl, cyclohexadecyl, cycloheptadecyl, and cyclooctadecyl.
- polycycloalkyl groups include, but are not limited to, decahydronaphthalene, spiro[4.5]decyl, bicyclo[2.2.1]heptyl, bicyclo[3.2.1]octyl, pinanyl, norbornyl, adamantyl, and bicyclo[2.2.2]octyl.
- benzocycloalkyl groups include, but are not limited to, tetrahydronaphthyl, indanyl, and 1.2-benzocycloheptanyl.
- cycloalkoxy refers to a cycloalkyl group as just described, that is a monocycloalkyl, polycycloalkyl, or benzocycloalkyl structure, bound to the remainder of the molecule through an ethereal oxygen atom.
- exemplary cycloalkoxy groups include, but are not limited to, cycloalkoxy groups of 3-6 carbon atoms, referred to herein as C 3-6 cycloalkoxy groups.
- Exemplary cycloalkoxy groups include, but are not limited to, cyclopropoxy, cyclobutoxy, cyclohexyloxy, etc.
- benzocycloalkoxy refers to a monocyclic cycloalkoxy group fused to a benzene ring, referred to herein for example as C 8-12 benzocycloalkoxy.
- benzocycloalkoxy groups include, but are not limited to, tetrahydronaphthyloxy, indanyloxy, and 1.2-benzocycloheptanyloxy.
- cycloalkenyl refers to cyclic alkenyl moieties having 3 or more carbon atoms.
- cycloalkynyl refers to cyclic alkynyl moieties having 5 or more carbon atoms.
- Alkylene means a straight or branched, saturated aliphatic divalent radical having the number of carbons indicated.
- Cycloalkylene refers to a divalent radical of carbocyclic saturated hydrocarbon group having the number of carbons indicated.
- alkoxy refers to a straight or branched alkyl group attached to oxygen (alkyl-O—).
- exemplary alkoxy groups include, but are not limited to, alkoxy groups of 1-6 or 2-6 carbon atoms, referred to herein as C 1-6 alkoxy, and C 2-6 alkoxy, respectively.
- Exemplary alkoxy groups include, but are not limited to methoxy, ethoxy, isopropoxy, etc.
- alkoxyalkyl refers to a straight or branched alkyl group attached to oxygen, attached to a second straight or branched alkyl group (alkyl-O-alkyl-).
- exemplary alkoxyalkyl groups include, but are not limited to, alkoxyalkyl groups in which each of the alkyl groups independently contains 1-6 carbon atoms, referred to herein as C 1-6 alkoxy-C 1-6 alkyl.
- Exemplary alkoxyalkyl groups include, but are not limited to methoxymethyl, 2-methoxyethyl, 1-methoxyethyl, 2-methoxypropyl, ethoxymethyl, 2-isopropoxyethyl etc.
- alkoxycarbonyl refers to a straight or branched alkyl group attached to oxygen, attached to a carbonyl group (alkyl-O—C(O)—).
- alkoxycarbonyl groups include, but are not limited to, alkoxycarbonyl groups of 1-6 carbon atoms, referred to herein as C 1-6 alkoxycarbonyl.
- alkoxycarbonyl groups include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, etc.
- alkenyloxy refers to a straight or branched alkenyl group attached to oxygen (alkenyl-O—).
- exemplary alkenyloxy groups include, but are not limited to, groups with an alkenyl group of 3-6 carbon atoms, referred to herein as C 3-6 alkenyloxy.
- exemplary “alkenyloxy” groups include, but are not limited to allyloxy, butenyloxy, etc.
- alkynyloxy refers to a straight or branched alkynyl group attached to oxygen (alkynyl-O).
- exemplary alkynyloxy groups include, but are not limited to, groups with an alkynyl group of 3-6 carbon atoms, referred to herein as C 3-6 alkynyloxy.
- exemplary alkynyloxy groups include, but are not limited to, propynyloxy, butynyloxy, etc.
- heterocyclic or “heterocycle” encompasses heterocycloalkyl, heterocycloalkenyl, heterobicycloalkyl, heterobicycloalkenyl, heteropolycycloalkyl, heteropolycycloalkenyl, and the like unless indicated otherwise.
- Heterocycloalkyl refers to cycloalkyl groups containing one or more heteroatoms (O, S, or N) within the ring.
- Heterocycloalkenyl as used herein refers to cycloalkenyl groups containing one or more heteroatoms (O, S or N) within the ring.
- Heterobicycloalkyl refers to bicycloalkyl groups containing one or more heteroatoms (O, S or N) within a ring.
- Heterobicycloalkenyl as used herein refers to bicycloalkenyl groups containing one or more heteroatoms (O, S or N) within a ring
- a heterocycle can refer to, for example, a saturated or partially unsaturated 4- to 12 or 4-10-membered ring structure, including monocyclic, bridged bicyclic, fused bycyclic and spirocyclic rings, and whose ring structures include one to three heteroatoms, such as nitrogen, oxygen, and sulfur. Where possible, heterocyclyl rings may be linked to the adjacent radical through carbon or nitrogen.
- heterocyclyl groups include, but are not limited to, pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, oxetane, azetidine, tetrahydrofuran or dihydrofuran, etc.
- oxo refers to the radical ⁇ O.
- Cycloalkyl, cycloalkenyl, and heterocyclic groups also include groups similar to those described above for each of these respective categories, but which are substituted with one or more oxo moieties.
- heteroaryl refers to aromatic carbocyclic groups containing one or more heteroatoms (O, S, or N) within a ring.
- a heteroaryl group unless indicated otherwise, can be monocyclic or polycyclic.
- a heteroaryl group may additionally be substituted or unsubstituted.
- Contemplated heteroaryl groups include ring systems substituted with one or more oxo moieties.
- a polycyclic heteroaryl can comprise fused rings, covalently attached rings or a combination thereof.
- a polycyclic heteroaryl is a polycyclic ring system that comprises at least one aromatic ring containing one or more heteroatoms within a ring.
- heteroaryl groups include, but are not limited to, pyridinyl, pyridazinyl, imidazolyl, pyrimidinyl, pyrazolyl, triazolyl, pyrazinyl, quinolyl, isoquinolyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, isothiazolyl, pyrrolyl, quinolinyl, isoquinolinyl, indolyl, benzimidazolyl, benzofuranyl, cinnolinyl, indazolyl, indolizinyl, phthalazinyl, triazinyl, isoindolyl, purinyl, oxadiazolyl, thiadiazolyl, furazanyl, benzofurazanyl, benzothiophenyl, benzotriazolyl, benzothiazolyl, benzo
- heteroaryl groups may be C-attached or heteroatom-attached (where such is possible).
- a group derived from pyrrole may be pyrrol-1-yl (N-attached) or pyrrol-3-yl (C-attached).
- the heteroaryl is 4- to 12-membered heteroaryl.
- the heteroaryl is a mono or bicyclic 4- to 10-membered heteroaryl.
- heterocyclyloxy refers to a heterocyclyl group attached to oxygen (heterocyclyl-O—).
- heteroaryloxy refers to a heteroaryl group attached to oxygen (heteroaryl-O—).
- halo or halogen as used herein refer to F, Cl, Br, or I.
- haloalkyl refers to an alkyl group having 1 to (2n+1) substituent(s) independently selected from F, Cl, Br or I, where n is the maximum number of carbon atoms in the alkyl group. It will be understood that haloalkyl is a specific example of an optionally substituted alkyl.
- hydroxy and “hydroxyl” as used herein refers to the radical —OH.
- H is the symbol for hydrogen
- N is the symbol for nitrogen
- S is the symbol for sulfur
- 0 is the symbol for oxygen
- Me is an abbreviation for methyl.
- the compounds of the disclosure may contain one or more chiral centers and, therefore, exist as stereoisomers.
- stereoisomers when used herein consist of all enantiomers or diastereomers. These compounds may be designated by the symbols “(+),” “( ⁇ ),” “R” or “S,” depending on the configuration of substituents around the stereogenic carbon atom, but the skilled artisan will recognize that a structure may denote a chiral center implicitly.
- the present disclosure encompasses various stereoisomers of disclosed compounds and mixtures thereof. Mixtures of enantiomers or diastereomers may be designated “(t)” in nomenclature, but the skilled artisan will recognize that a structure may denote a chiral center implicitly.
- the compounds of the disclosure may contain one or more double bonds and, therefore, exist as geometric isomers resulting from the arrangement of substituents around a carbon-carbon double bond.
- the symbol denotes a bond that may be a single, double or triple bond as described herein.
- Substituents around a carbon-carbon double bond are designated as being in the “Z” or “E” configuration wherein the terms “Z” and “E” are used in accordance with IUPAC standards. Unless otherwise specified, structures depicting double bonds encompass both the “E” and “Z” isomers.
- Substituents around a carbon-carbon double bond alternatively can be referred to as “cis” or “trans,” where “cis” represents substituents on the same side of the double bond and “trans” represents substituents on opposite sides of the double bond.
- Compounds of the disclosure may contain a carbocyclic or heterocyclic ring and therefore, exist as geometric isomers resulting from the arrangement of substituents around the ring.
- the arrangement of substituents around a carbocyclic or heterocyclic ring are designated as being in the “Z” or “E” configuration wherein the terms “Z” and “E” are used in accordance with IUPAC standards.
- structures depicting carbocyclic or heterocyclic rings encompass both “Z” and “E” isomers.
- Substituents around a carbocyclic or heterocyclic ring may also be referred to as “cis” or “trans”, where the term “cis” represents substituents on the same side of the plane of the ring and the term “trans” represents substituents on opposite sides of the plane of the ring. Mixtures of compounds wherein the substituents are disposed on both the same and opposite sides of plane of the ring are designated “cis/trans.”
- Individual enantiomers and diasterisomers of disclosed compounds can be prepared synthetically from commercially available starting materials that contain asymmetric or stereogenic centers, or by preparation of racemic mixtures followed by resolution methods well known to those of ordinary skill in the art. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral auxiliary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and liberation of the optically pure product from the auxiliary, (2) salt formation employing an optically active resolving agent, (3) direct separation of the mixture of optical enantiomers on chiral liquid chromatographic columns or (4) kinetic resolution using stereoselective chemical or enzymatic reagents.
- Racemic mixtures can also be resolved into their component enantiomers by well known methods, such as chiral-phase liquid chromatography or crystallizing the compound in a chiral solvent.
- Stereoselective syntheses a chemical or enzymatic reaction in which a single reactant forms an unequal mixture of stereoisomers during the creation of a new stereocenter or during the transformation of a pre-existing one, are well known in the art.
- Stereoselective syntheses encompass both enantio- and diastereoselective transformations, and may involve the use of chiral auxiliaries. For examples, see Carreira and Kvaerno, Classics in Stereoselective Synthesis , Wiley-VCH: Weinheim, 2009. Where a particular compound is described or depicted, it is intended to encompass that chemical structure as well as tautomers of that structure.
- enantiomerically pure means a stereomerically pure composition of a compound.
- a stereochemically pure composition is a composition that is free or substantially free of other stereoisomers of that compound.
- an enantiomerically pure composition of the compound is free or substantially free of the other enantiomer.
- an enantiomerically pure composition is free or substantially free of the other diastereomers.
- a compound has an R-configuration at a specific position when it is present in excess compared to the compound having an S-configuration at that position.
- a compound has an S-configuration at a specific position when it is present in excess compared to the compound having an R-configuration at that position.
- a disclosed compound is amorphous or, in another embodiment, a single polymorph. In another embodiment, a disclosed compound is a mixture of polymorphs. In another embodiment, a disclosed compound is in a crystalline form.
- Isotopically labeled compounds are also contemplated herein, which are identical to those recited herein, except that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
- isotopes that can be incorporated into compounds of the disclosure include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine and chlorine, such as 2 H, 3 H, 13 C, 11 C, 15 N, 18 O, 17 O, 31 P, 32 p, 35 S, 18 F, and 36 Cl, respectively.
- a disclosed compound may have one or more H atoms replaced with deuterium.
- isotopically labeled disclosed compounds are useful in compound and/or substrate tissue distribution assays.
- Tritiated (i.e., 3 H) and carbon-14 (i.e., 14 C) isotopes are particularly suitable for their ease of preparation and detectability.
- substitution with heavier isotopes such as deuterium (i.e., 2 H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence may be suitable in some circumstances.
- Isotopically labeled compounds can generally be prepared by following procedures analogous to those disclosed in the examples herein by substituting an isotopically labeled reagent for a non-isotopically labeled reagent.
- one or more of the nitrogen atoms of a disclosed compound if present are oxidized to N-oxide.
- Disclosed compounds may be also be prepared using methods described in the literature, including, but not limited to, J. Med. Chem. 2011, 54(13), 4350-64 ; Russian Journal of Organic Chemistry, 2011, 47(8), 1199-1203; U.S. Patent Application Publication No. 2009/0036451 A1; WO2008/046072 A2, and U.S. Pat. No. 4,336,264, the contents of each of which are expressly incorporated by reference herein.
- contemplated herein in an embodiment is a method of increasing CFTR activity in a subject comprising administering an effective amount of a disclosed compound. Also contemplated herein is a method of treating a patient suffering from a condition associated with CFTR activity comprising administering to said patient an effective amount of a compound described herein.
- Treating” or “treatment” includes preventing or delaying the onset of the symptoms, complications, or biochemical indicia of a disease, alleviating or ameliorating the symptoms or arresting or inhibiting further development of the disease, condition, or disorder.
- a “subject” is an animal to be treated or in need of treatment.
- a “patient” is a human subject in need of treatment.
- an “effective amount” refers to that amount of an agent that is sufficient to achieve a desired and/or recited effect.
- an “effective amount” of the therapeutic agent that is sufficient to ameliorate of one or more symptoms of a disorder and/or prevent advancement of a disorder, cause regression of the disorder and/or to achieve a desired effect.
- modulating encompasses increasing, enhancing, inhibiting, decreasing, suppressing, and the like.
- increasing and enhancing mean to cause a net gain by either direct or indirect means.
- inhibiting and decreasing encompass causing a net decrease by either direct or indirect means.
- CFTR activity is enhanced after administration of a compound described herein when there is an increase in the CFTR activity as compared to that in the absence of the administration of the compound.
- CFTR activity encompasses, for example, chloride channel activity of the CFTR, and/or other ion transport activity (for example, HCO 3 transport).
- the activity of one or more (e.g., one or two) mutant CFTRs is enhanced (e.g., increased).
- one or more mutant CFTRs e.g., ⁇ F508, S549N, G542X, G551D, R117H, N1303K, W1282X, R553X, 621+1G>T, 1717-1G>A, 3849+10kbC>T, 2789+5G>A, 3120+1G>A, I507del, R1162X, 1898+1G>A, 3659delC, G85E, D1152H, R560T, R347P, 2184insA, A455E, R334W, Q493X, and 2184delA CFTR) is enhanced (e.g., increased).
- Contemplated patients may have a CFTR mutation(s) from one or more classes, such as without limitation, Class I CFTR mutations, Class II CFTR mutations, Class III CFTR mutations, Class IV CFTR mutations, Class V CFTR mutations, and Class VI mutations.
- CFTR mutation(s) from one or more classes, such as without limitation, Class I CFTR mutations, Class II CFTR mutations, Class III CFTR mutations, Class IV CFTR mutations, Class V CFTR mutations, and Class VI mutations.
- Contemplated subject e.g., human subject
- CFTR genotypes include, without limitation, homozygote mutations (e.g., ⁇ F508/ ⁇ F508 and R117H/R117H) and compound heterozygote mutations (e.g., ⁇ F508/G551D; ⁇ F508/A455E; ⁇ F508/G542X; ⁇ 508F/W1204X; R553X/W1316X; W1282X/N1303K, 591 ⁇ 18/E831X, F508del/R117H/N1303K/3849+10kbC>T; ⁇ 303K/384; and DF508/G178R).
- homozygote mutations e.g., ⁇ F508/ ⁇ F508 and R117H/R117H
- compound heterozygote mutations e.g., ⁇ F508/G551D; ⁇ F508/A455E
- the mutation is a Class I mutation, e.g., a G542X; a Class II/I mutation, e.g., a ⁇ F508/G542X compound heterozygous mutation.
- the mutation is a Class III mutation, e.g., a G551D; a Class II/Class III mutation, e.g., a ⁇ F508/G551D compound heterozygous mutation.
- the mutation is a Class V mutation, e.g., a A455E; Class II/Class V mutation, e.g., a ⁇ F508/A455E compound heterozygous mutation.
- ⁇ F508 is the most prevalent mutation of CFTR which results in misfolding of the protein and impaired trafficking from the endoplasmic reticulum to the apical membrane (Dormer et al. (2001). J Cell Sci 114, 4073-4081; http://www.genet.sickkids.on.ca/app).
- ⁇ F508 CFTR activity is enhanced (e.g., increased).
- ⁇ F508 CFTR activity and/or G542X CFTR activity and/or G551D CFTR activity and/or A455E CFTR activity is enhanced (e.g., increased).
- An enhancement of CFTR activity can be measured, for example, using literature described methods, including for example, Ussing chamber assays, patch clamp assays, and hBE Ieq assay (Devor et al. (2000), Am J Physiol Cell Physiol 279(2): C461-79; Dousmanis et al. (2002), J Gen Physiol 119(6): 545-59; Bruscia et al. (2005), PNAS 103(8): 2965-2971).
- the disclosure also encompasses a method of treating cystic fibrosis.
- Methods of treating other conditions associated with CFTR activity, including conditions associated with deficient CFTR activity, comprising administering an effective amount of a disclosed compound, are also provided herein.
- a method of treating a condition associated with deficient or decreased CFTR activity comprising administering an effective amount of a disclosed compound that enhances CFTR activity.
- conditions associated with deficient CFTR activity are cystic fibrosis, congenital bilateral absence of vas deferens (CBAVD), acute, recurrent, or chronic pancreatitis, disseminated bronchiectasis, asthma, allergic pulmonary aspergillosis, smoking-related lung diseases, such as chronic obstructive pulmonary disease (COPD), chronic sinusitis, dry eye disease, protein C deficiency, A ⁇ -lipoproteinemia, lysosomal storage disease, type 1 chylomicronemia, mild pulmonary disease, lipid processing deficiencies, type 1 hereditary angioedema, coagulation-fibrinolyis, hereditary hemochromatosis, CFTR-related metabolic syndrome, chronic bronchitis, constipation, pancreatic insuffici
- COPD chronic obstruct
- disclosed methods of treatment further comprise administering an additional therapeutic agent.
- a method of administering a disclosed compound and at least one additional therapeutic agent comprises administering a disclosed compound, and at least two additional therapeutic agents.
- Additional therapeutic agents include, for example, mucolytic agents, bronchodilators, antibiotics, anti-infective agents, anti-inflammatory agents, ion channel modulating agents, therapeutic agents used in gene therapy, CFTR correctors, and CFTR potentiators, or other agents that modulates CFTR activity.
- at least one additional therapeutic agent is selected from the group consisting of a CFTR corrector and a CFTR potentiator.
- Non-limiting examples of CFTR correctors and potentiators include VX-770 (Ivacaftor), deuterated Ivacaftor, GLPG2851, GLPG2737, GLPG2451, VX-809 (3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid, VX-661 (1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-[1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(2-hydroxy-1,1-dimethylethyl)-1H-indol-5-yl]-cyclopropanecarboxamide), VX-983, VX-152, VX-440, and Ataluren (PTC124) (3-[5-(2-fluor
- Non-limiting examples of modulators include QBW-251, QR-010, NB-124, riociquat, and compounds described in, e.g., WO2014/045283; WO2014/081821, WO2014/081820, WO2014/152213; WO2014/160440, WO2014/160478, US2014027933; WO2014/0228376, WO2013/038390, WO2011/113894, WO2013/038386; and WO2014/180562, of which the disclosed modulators in those publications are contemplated as an additional therapeutic agent and incorporated by reference.
- Non-limiting examples of anti-inflammatory agents include N6022 (3-(5-(4-(1H-imidazol-1-yl) phenyl)-1-(4-carbamoyl-2-methylphenyl)-1H-pyrrol-2-yl) propanoic acid), CTX-4430, N1861, N1785, and N91115.
- the methods described herein can further include administering an additional therapeutic agent or administering at least two additional CFTR therapeutic agents. In some embodiments, the methods described herein can further include administering an additional CFTR modulator or administering at least two additional CFTR modulators. In certain embodiments, at least one CFTR modulator is a CFTR corrector (e.g., VX-809, VX-661, VX-983, VX-152, VX-440, and GLPG2222 or GLPG2665) or potentiator (e.g., ivacaftor, genistein and GLPG1837).
- CFTR corrector e.g., VX-809, VX-661, VX-983, VX-152, VX-440, and GLPG2222 or GLPG2665
- potentiator e.g., ivacaftor, genistein and GLPG1837
- one of the at least two additional therapeutic agents is a CFTR corrector (e.g., VX-809, VX-661, VX-152, VX-440, and VX-983) and the other is a CFTR potentiator (e.g., ivacaftor and genistein).
- one of the at least two additional therapeutic agents is a CFTR corrector (e.g., GLPG2222) and the other is a CFTR potentiator (e.g., GLPG1837).
- one of the at least two additional therapeutic agents is a CFTR corrector (e.g., VX-809 or VX-661) and the other is a CFTR potentiator (e.g., ivacaftor).
- at least one CFTR modulator is an agent that enhances read-through of stop codons (e.g., NB124 or ataluren).
- NB124 has the structure:
- the methods described herein can further include administrating an epithelial sodium channel (ENaC) inhibitor (e.g., VX-371).
- ENaC epithelial sodium channel
- this disclosure provides a method of treating a condition associated with deficient or decreased CFTR activity (e.g., cystic fibrosis), which includes administering to a subject in need thereof (e.g., a human patient in need thereof) an effective amount of a disclosed compound and at least one or two additional CFTR therapeutic agent(s) (e.g., at least one or two additional CFTR therapeutic agents, e.g., in which one of the at least one or two additional therapeutic agents is optionally a CFTR corrector, modulator or amplifier (e.g., VX-809, VX-661, VX-983, GLPG2222, NB124, ataluren) and/or the other is a CFTR potentiator (e.g., ivacaftor, genistein, and GLPG1837); e.g., one of the at least two additional therapeutic agents is GLPG2222, and the other is GLPG1837; or one of the at least two additional CFTR therapeutic agent(
- an exemplary amplifier is N-(3-(5-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)propyl)-5-phenylisoxazole-3-carboxamide (“Compound A”).
- the subject's CFTR genotype includes, without limitation, one or more Class I CFTR mutations, one or more Class II CFTR mutations, one or more Class III CFTR mutations, one or more Class IV CFTR mutations, or one or more Class V CFTR mutations, or one or more Class VI CFTR mutations.
- the subject's CFTR genotype includes, without limitation, one or more homozygote mutations (e.g., ⁇ F508/ ⁇ F508 or R117H/R117H) and/or one or more compound heterozygote mutations (e.g., ⁇ F508/G551D; ⁇ F508/A455E; ⁇ F508/G542X; ⁇ 508F/W1204X; R553X/W1316X; W1282X/N1303K; F508del/R117H; N1303K/3849+10kbC>T; ⁇ F508/R334W; DF508/G178R. and 591 ⁇ 18/E831X).
- one or more homozygote mutations e.g., ⁇ F508/ ⁇ F508 or R117H/R117H
- compound heterozygote mutations e.g., ⁇ F508/G551D; ⁇ F508/
- the subject's CFTR genotype includes a Class I mutation, e.g., a G542X Class I mutation, e.g., a ⁇ F508/G542X compound heterozygous mutation.
- the subject's CFTR genotype includes a Class III mutation, e.g., a G551D Class III mutation, e.g., a ⁇ F508/G551D compound heterozygous mutation.
- the subject's CFTR genotype includes a Class V mutation, e.g., a A455E Class V mutation, e.g., a ⁇ F508/A455E compound heterozygous mutation.
- ⁇ F508 CFTR activity and/or G542X CFTR activity and/or G551D CFTR activity and/or A455E activity is enhanced (e.g., increased).
- the enhancement in activity (e.g., increase in activity) provided by the combination of the disclosed compound and one or two additional therapeutic agents is greater than additive when compared to the enhancement in activity provided by each therapeutic component individually.
- a method of treating a patient having one or more of the following mutations in the CFTR gene comprising administering an effective amount of a disclosed compound.
- such exemplary methods may include, for example, administering to such patient a combination therapy, e.g., administering (simultaneously or sequentially) an effective amount of ivacaftor to said patient and an effective amount of a disclosed compound that may act as an amplifier or a disclosed compound that may act as a corrector.
- a combination therapy e.g., administering (simultaneously or sequentially) an effective amount of ivacaftor to said patient and an effective amount of a disclosed compound that may act as an amplifier or a disclosed compound that may act as a corrector.
- Such administration may result, for example, in increased chloride transport in human bronchial epithelial cells with e.g., one or two copies of mutations, e.g, ⁇ F508 mutation, as compared to administration of ivacaftor alone.
- Another combination therapy that includes a disclosed compound may also include an effective amount of a readthrough agent (e.g., ataluren, NB124
- a disclosed compound may be advantageous as compared to known CFTR correctors.
- exposure to a disclosed compound can result, at least in some embodiments, in a greater proportion of CFTR protein on the cell surface as compared to a known corrector.
- CFTR function of a disclosed compound administered with e.g., ivacaftor may be increased.
- a disclosed compound co-dosed with ivacaftor can restore chloride transport equal to, or greater than, the combination of lumacaftor and ivacaftor in CFTR HBE cells.
- the combination of a disclosed compound, lumacaftor and ivacaftor may increase chloride transport e.g., over 1 fold, e.g., a further 1.4-fold.
- Disclosed compounds can maintain, in some embodiments, similar functional benefit whether ivacaftor is administered for 24 hours or acutely, in contrast to the combination of lumacaftor and ivacaftor that has attenuated response at 24 hours compared to acute ivacaftor administration.
- a patient is co-administered a disclosed compound, a CFTR potentiator agent (e.g., ivacaftor) and optionally, one or more CFTR corrector agent(s) (e.g, VX-661 and/or lumacaftor) as part of a specific treatment regimen intended to provide the beneficial effect from the co-action of these therapeutic agents.
- a beneficial effect of a combination may include, but is not limited to, pharmacokinetic or pharmacodynamic co-action resulting from the combination of therapeutic agents.
- administration of a disclosed compound with ivacaftor alone or with a CFTR corrector agent may result in a level of function (e.g., as measured by chloride activity in HBE cells or patients that have a ⁇ F508 mutation, that achieves clinical improvement (or better) as compared to the chloride activity level in cells or patients with a G551D mutation receiving ivacaftor alone, or ivacaftor and a corrector agent (lumacaftor or VX-661; or for example, administration of a disclosed compound with ivacaftor alone or ivacaftor with a CFTR corrector agent (e.g., lumacaftor or VX-661) may result in a level of function (e.g., as measured by chloride activity in HBE cells or patients that have a A455E mutation, that achieves clinical improvement (or better) as compared to the chloride activity level
- a level of function e.g., as measured by chloride activity in H
- having a G551D class III mutation may show e.g., about two times or more improved activity of ivacaftor as compared to administration of ivacaftor alone.
- Administration of disclosed therapeutic agents in combination typically is carried out over a defined time period (usually a day, days, weeks, months or years depending upon the combination selected).
- Combination therapy is intended to embrace administration of multiple therapeutic agents in a sequential manner, that is, wherein each therapeutic agent is administered at a different time, as well as administration of these therapeutic agents, or at least two of the therapeutic agents, in a substantially simultaneous manner.
- Substantially simultaneous administration can be accomplished, for example, by administering to the subject a single tablet or capsule having a fixed ratio of each therapeutic agent or in multiple, single capsules for each of the therapeutic agents.
- Sequential or substantially simultaneous administration of each therapeutic agent can be effected by any appropriate route including, but not limited to, oral routes, inhalational routes, intravenous routes, intramuscular routes, and direct absorption through mucous membrane tissues.
- the therapeutic agents can be administered by the same route or by different routes.
- a first therapeutic agent of the combination selected may be administered by intravenous injection or inhalation or nebulizer while the other therapeutic agents of the combination may be administered orally.
- all therapeutic agents may be administered orally or all therapeutic agents may be administered by intravenous injection, inhalation or nebulization.
- Combination therapy also can embrace the administration of the therapeutic agents as described above in further combination with other biologically active ingredients and non-drug therapies.
- the combination therapy further comprises a non-drug treatment
- the non-drug treatment may be conducted at any suitable time so long as a beneficial effect from the co-action of the combination of the therapeutic agents and non-drug treatment is achieved.
- the beneficial effect is still achieved when the non-drug treatment is temporally removed from the administration of the therapeutic agents, perhaps by a day, days or even weeks.
- the components of a disclosed combination may be administered to a patient simultaneously or sequentially. It will be appreciated that the components may be present in the same pharmaceutically acceptable carrier and, therefore, are administered simultaneously. Alternatively, the active ingredients may be present in separate pharmaceutical carriers, such as, conventional oral dosage forms, that can be administered either simultaneously or sequentially.
- a method of identifying a candidate agent that increases CFTR activity includes: (i) contacting a cell that expresses a CFTR protein with the candidate agent and a disclosed compound; (ii) measuring the CFTR activity in the cell in the presence of the candidate agent and the disclosed compound; and (iii) comparing the CFTR activity to that in the absence of the test agent, wherein an increase in CFTR activity in the presence of the test agent indicates that the agent increases CFTR activity.
- the cell expresses a mutant CFTR protein.
- CFTR activity is measured by measuring chloride channel activity of the CFTR, and/or other ion transport activity.
- the method is high-throughput.
- the candidate agent is a CFTR corrector or a CFTR potentiator.
- a method for treating a patient having CF or a condition associated with deficient or decreased CFTR activity, or suspected to have CF or a condition associated with deficient or decreased CFTR activity comprising testing the patient (e.g., testing the patient's cells, mucosa and/or bodily fluids) for a specific functional or molecular profile, optionally assessing the results of such testing, and administering to the patient a disclosed compound based on the testing and/or assessment.
- testing the patient e.g., testing the patient's cells, mucosa and/or bodily fluids
- a specific functional or molecular profile optionally assessing the results of such testing
- administering to the patient a disclosed compound based on the testing and/or assessment.
- pharmaceutically acceptable salt(s) refers to salts of acidic or basic groups that may be present in a disclosed compounds used in disclosed compositions.
- Compounds included in the present compositions that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids.
- the acids that may be used to prepare pharmaceutically acceptable acid addition salts of such basic compounds are those that form non-toxic acid addition salts, i.e., salts containing pharmacologically acceptable anions, including, but not limited to, malate, oxalate, chloride, bromide, iodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and pamoate (i.e., 1,1′-methylene-
- Compounds included in the present compositions that are acidic in nature are capable of forming base salts with various pharmacologically acceptable cations.
- Examples of such salts include alkali metal or alkaline earth metal salts, e.g., calcium, magnesium, sodium, lithium, zinc, potassium, and iron salts.
- Examples of such salts also include, e.g., ammonium salts and quaternary ammonium salts.
- Compounds included in the present compositions that include a basic or acidic moiety may also form pharmaceutically acceptable salts with various amino acids.
- the compounds of the disclosure may contain both acidic and basic groups; for example, one amino and one carboxylic acid group. In such a case, the compound can exist as an acid addition salt, a zwitterion, or a base salt.
- contemplated methods may include for example, administering prodrugs of the compounds described herein, for example, prodrugs of a compound of Formula I, or a pharmaceutical composition thereof.
- prodrug refers to compounds that are transformed in vivo to yield a disclosed compound or a pharmaceutically acceptable salt, hydrate or solvate of the compound. The transformation may occur by various mechanisms (such as by esterase, amidase, phosphatase, oxidative and or reductive metabolism) in various locations (such as in the intestinal lumen or upon transit of the intestine, blood or liver). Prodrugs are well known in the art (for example, see Rautio, Kumpulainen, et al., Nature Reviews Drug Discovery 2008, 7, 255).
- a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as (C 1-8 )alkyl, (C 2-12 )alkylcarbonyloxymethyl, 1-(alkylcarbonyloxy)ethyl having from 4 to 9 carbon atoms, 1-methyl-1-(alkylcarbonyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1-(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N-(alkoxycarbonyl)amino)eth
- a group such as (C 1-8 )alkyl, (C 2-12 )alkylcarbonyloxymethyl, 1-(alkyl
- a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as (C 1-6 )alkylcarbonyloxymethyl, 1-((C 1-6 )alkylcarbonyloxy)ethyl, 1-methyl-1-((C 1-6 )alkylcarbonyloxy)ethyl (C 1-6 )alkoxycarbonyloxy)methyl, N—(C 1-6 )alkoxycarbonylaminomethyl, succinoyl, (C 1-6 )alkylcarbonyl, ⁇ -amino(C 1-4 )alkylcarbonyl, arylalkylcarbonyl and ⁇ -aminoalkylcarbonyl, or ⁇ -aminoalkylcarbonyl- ⁇ -aminoalkylcarbonyl, where each ⁇ -aminoalkylcarbonyl group is independently selected from the naturally occurring L-amino acids, P(O)
- a prodrug can be formed, for example, by creation of an amide or carbamate, an N-alkylcarbonyloxyalkyl derivative, an (oxodioxolenyl)methyl derivative, an N-Mannich base, imine or enamine.
- a secondary amine can be metabolically cleaved to generate a bioactive primary amine, or a tertiary amine can metabolically cleaved to generate a bioactive primary or secondary amine.
- clathrates of the compounds described herein are also contemplated herein.
- “Pharmaceutically or pharmacologically acceptable” include molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to an animal, or a human, as appropriate.
- preparations should meet sterility, pyrogenicity, and general safety and purity standards as required by FDA Office of Biologics standards.
- compositions may also contain other active compounds providing supplemental, additional, or enhanced therapeutic functions.
- composition refers to a composition comprising at least one compound as disclosed herein formulated together with one or more pharmaceutically acceptable carriers.
- compositions comprising a pharmaceutically acceptable carrier or excipient and a compound described herein.
- a disclosed compound, or a pharmaceutically acceptable salt, solvate, clathrate or prodrug thereof can be administered in pharmaceutical compositions comprising a pharmaceutically acceptable carrier or excipient.
- the excipient can be chosen based on the expected route of administration of the composition in therapeutic applications.
- the route of administration of the composition depends on the condition to be treated. For example, intravenous injection may be suitable for treatment of a systemic disorder and oral administration may be suitable to treat a gastrointestinal disorder.
- the route of administration and the dosage of the composition to be administered can be determined by the skilled artisan without undue experimentation in conjunction with standard dose-response studies.
- a pharmaceutical composition comprising a disclosed compound or a pharmaceutically acceptable salt, solvate, clathrate or prodrug, can be administered by a variety of routes including, but not limited to, parenteral, oral, pulmonary, ophthalmic, nasal, rectal, vaginal, aural, topical, buccal, transdermal, intravenous, intramuscular, subcutaneous, intradermal, intraocular, intracerebral, intralymphatic, intraarticular, intrathecal and intraperitoneal.
- compositions can also include, depending on the formulation desired, pharmaceutically-acceptable, non-toxic carriers or diluents, which are defined as vehicles commonly used to formulate pharmaceutical compositions for animal or human administration.
- diluent is selected so as not to affect the biological activity of the pharmacologic agent or composition. Examples of such diluents are distilled water, physiological phosphate-buffered saline, Ringer's solutions, dextrose solution, and Hank's solution.
- the pharmaceutical composition or formulation may also include other carriers, adjuvants, or nontoxic, nontherapeutic, nonimmunogenic stabilizers and the like.
- compositions can also include large, slowly metabolized macromolecules such as proteins, polysaccharides such as chitosan, polylactic acids, polyglycolic acids and copolymers (such as latex functionalized SEPHAROSETM, agarose, cellulose, and the like), polymeric amino acids, amino acid copolymers, and lipid aggregates (such as oil droplets or liposomes).
- macromolecules such as proteins, polysaccharides such as chitosan, polylactic acids, polyglycolic acids and copolymers (such as latex functionalized SEPHAROSETM, agarose, cellulose, and the like), polymeric amino acids, amino acid copolymers, and lipid aggregates (such as oil droplets or liposomes).
- compositions can be administered parenterally such as, for example, by intravenous, intramuscular, intrathecal or subcutaneous injection.
- Parenteral administration can be accomplished by incorporating a composition into a solution or suspension.
- solutions or suspensions may also include sterile diluents such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents.
- Parenteral formulations may also include antibacterial agents such as, for example, benzyl alcohol or methyl parabens, antioxidants such as, for example, ascorbic acid or sodium bisulfite and chelating agents such as EDTA.
- Buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose may also be added.
- the parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.
- auxiliary substances such as wetting or emulsifying agents, surfactants, pH buffering substances and the like can be present in compositions.
- Other components of pharmaceutical compositions are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, and mineral oil.
- glycols such as propylene glycol or polyethylene glycol are suitable liquid carriers, particularly for injectable solutions.
- Injectable formulations can be prepared either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared.
- the preparation also can also be emulsified or encapsulated in liposomes or micro particles such as polylactide, polyglycolide, or copolymer for enhanced adjuvant effect, as discussed above [Langer, Science 249: 1527, 1990 and Hanes, Advanced Drug Delivery Reviews 28: 97-119, 1997].
- the compositions and pharmacologic agents described herein can be administered in the form of a depot injection or implant preparation which can be formulated in such a manner as to permit a sustained or pulsatile release of the active ingredient.
- Additional formulations suitable for other modes of administration include oral, intranasal, and pulmonary formulations, suppositories, transdermal applications and ocular delivery.
- binders and carriers include, for example, polyalkylene glycols or triglycerides; such suppositories can be formed from mixtures containing the active ingredient in the range of about 0.5% to about 10%, or about 1% to about 2%.
- Oral formulations include excipients, such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, and magnesium carbonate. Topical application can result in transdermal or intradermal delivery.
- Transdermal delivery can be achieved using a skin patch or using transferosomes.
- a skin patch or using transferosomes.
- the pharmaceutical compositions can be incorporated with excipients and used in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, chewing gums and the like.
- Tablets, pills, capsules, troches and the like may also contain binders, excipients, disintegrating agent, lubricants, glidants, sweetening agents, and flavoring agents.
- binders include microcrystalline cellulose, gum tragacanth or gelatin.
- excipients include starch or lactose.
- disintegrating agents include alginic acid, corn starch and the like.
- lubricants include magnesium stearate or potassium stearate.
- glidant is colloidal silicon dioxide.
- sweetening agents include sucrose, saccharin and the like.
- flavoring agents include peppermint, methyl salicylate, orange flavoring and the like. Materials used in preparing these various compositions should be pharmaceutically pure and non-toxic in the amounts used. In another embodiment, the composition is administered as a tablet or a capsule.
- tablets may be coated with shellac, sugar or both.
- a syrup or elixir may contain, in addition to the active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and a flavoring such as cherry or orange flavor, and the like.
- a pharmaceutical composition may be presented as pessaries, tampons, creams, gels, pastes, foams or spray.
- nasally administering or nasal administration includes administering the composition to the mucus membranes of the nasal passage or nasal cavity of the patient.
- pharmaceutical compositions for nasal administration of a composition include therapeutically effective amounts of the compounds prepared by well-known methods to be administered, for example, as a nasal spray, nasal drop, suspension, gel, ointment, cream or powder. Administration of the composition may also take place using a nasal tampon or nasal sponge.
- suitable formulations may include biocompatible oil, wax, gel, powder, polymer, or other liquid or solid carriers.
- Such formulations may be administered by applying directly to affected tissues, for example, a liquid formulation to treat infection of conjunctival tissue can be administered dropwise to the subject's eye, or a cream formulation can be administered to the skin.
- Rectal administration includes administering the pharmaceutical compositions into the rectum or large intestine. This can be accomplished using suppositories or enemas.
- Suppository formulations can easily be made by methods known in the art. For example, suppository formulations can be prepared by heating glycerin to about 120° C., dissolving the pharmaceutical composition in the glycerin, mixing the heated glycerin after which purified water may be added, and pouring the hot mixture into a suppository mold.
- Transdermal administration includes percutaneous absorption of the composition through the skin.
- Transdermal formulations include patches, ointments, creams, gels, salves and the like.
- pulmonary will also mean to include a tissue or cavity that is contingent to the respiratory tract, in particular, the sinuses.
- an aerosol formulation containing the active agent a manual pump spray, nebulizer or pressurized metered-dose inhaler as well as dry powder formulations are contemplated.
- Suitable formulations of this type can also include other agents, such as antistatic agents, to maintain the disclosed compounds as effective aerosols.
- a drug delivery device for delivering aerosols comprises a suitable aerosol canister with a metering valve containing a pharmaceutical aerosol formulation as described and an actuator housing adapted to hold the canister and allow for drug delivery.
- the canister in the drug delivery device has a head space representing greater than about 15% of the total volume of the canister.
- the compound intended for pulmonary administration is dissolved, suspended or emulsified in a mixture of a solvent, surfactant and propellant. The mixture is maintained under pressure in a canister that has been sealed with a metering valve.
- the disclosure also encompasses the treatment of a condition associated with a dysfunction in proteostasis in a subject comprising administering to said subject an effective amount of a disclosed compound that enhances, improves or restores proteostasis of a protein.
- Proteostasis refers to protein homeostasis. Dysfunction in protein homeostasis is a result of protein misfolding, protein aggregation, defective protein trafficking or protein degradation.
- the disclosure contemplates s administering a disclosed compound e.g., Formula I that corrects protein misfolding, reduces protein aggregation, corrects or restores protein trafficking and/or affects protein degradation for the treatment of a condition associated with a dysfunction in proteostasis.
- a disclosed compound e.g., Formula I that corrects protein misfolding and/or corrects or restores protein trafficking is administered.
- the mutated or defective enzyme is the cystic fibrosis transmembrane conductance regulator (CFTR).
- CFTR cystic fibrosis transmembrane conductance regulator
- One of the most common mutations of this protein is ⁇ F508 which is a deletion ( ⁇ ) of three nucleotides resulting in a loss of the amino acid phenylalanine (F) at the 508th (508) position on the protein.
- mutated cystic fibrosis transmembrane conductance regulator exists in a misfolded state and is characterized by altered trafficking as compared to the wild type CFTR.
- Additional exemplary proteins of which there can be a dysfunction in proteostasis, for example that can exist in a misfolded state include, but are not limited to, glucocerebrosidase, hexosamine A, aspartylglucosaminidase, ⁇ -galactosidase A, cysteine transporter, acid ceremidase, acid ⁇ -L-fucosidase, protective protein, cathepsin A, acid ⁇ -glucosidase, acid ⁇ -galactosidase, iduronate 2-sulfatase, ⁇ -L-iduronidase, galactocerebrosidase, acid ⁇ -mannosidase, acid ⁇ -mannosidase, arylsulfatase B, arylsulfatase A, N-acetylgalactosamine-6-sulfate sulfatase, acid ⁇ -galactosidas
- Protein conformational diseases encompass gain of function disorders and loss of function disorders.
- the protein conformational disease is a gain of function disorder.
- gain of function disorder is a disease characterized by increased aggregation-associated proteotoxicity. In these diseases, aggregation exceeds clearance inside and/or outside of the cell.
- Gain of function diseases include, but are not limited to, neurodegenerative diseases associated with aggregation of polyglutamine, Lewy body diseases, amyotrophic lateral sclerosis, transthyretin-associated aggregation diseases, Alzheimer's disease, Machado-Joseph disease, cerebral B-amyloid angiopathy, retinal ganglion cell degeneration, tauopathies (progressive supranuclear palsy, corticobasal degeneration, frontotemporal lobar degeneration), cerebral hemorrhage with amyloidosis, Alexander disease, Serpinopathies, familial amyloidotic neuropathy, senile systemic amyloidosis, ApoAI amyloidosis, ApoAII amyloidosis, ApoAIV amyloidosis, familial amyloidosis of the Finnish type, lysozyme amyloidosis, fibrinogen amyloidosis, dialysis amyloidosis, inclusion body my
- Neurodegenerative diseases associated with aggregation of polyglutamine include, but are not limited to, Huntington's disease, dentatorubral and pallidoluysian atrophy, several forms of spino-cerebellar ataxia, and spinal and bulbar muscular atrophy.
- Alzheimer's disease is characterized by the formation of two types of aggregates: extracellular aggregates of A ⁇ peptide and intracellular aggregates of the microtubule associated protein tau.
- Transthyretin-associated aggregation diseases include, for example, senile systemic amyloidoses and familial amyloidotic neuropathy.
- Lewy body diseases are characterized by an aggregation of ⁇ -synuclein protein and include, for example, Parkinson's disease, lewy body dementia (LBD) and multiple system atrophy (SMA).
- Prion diseases also known as transmissible spongiform encephalopathies or TSEs
- Exemplary human prion diseases are Creutzfeldt-Jakob Disease (CJD), Variant Creutzfeldt-Jakob Disease, Gerstmann-Straussler-Scheinker Syndrome, Fatal Familial Insomnia and Kuru.
- the misfolded protein is alpha-1 anti-trypsin.
- the protein conformation disease is a loss of function disorder.
- Loss of function diseases are a group of diseases characterized by inefficient folding of a protein resulting in excessive degradation of the protein.
- Loss of function diseases include, for example, lysosomal storage diseases.
- Lysosomal storage diseases are a group of diseases characterized by a specific lysosomal enzyme deficiency which may occur in a variety of tissues, resulting in the build-up of molecules normally degraded by the deficient enzyme.
- the lysosomal enzyme deficiency can be in a lysosomal hydrolase or a protein involved in the lysosomal trafficking.
- Lysosomal storage diseases include, but are not limited to, aspartylglucosaminuria, Fabry's disease, Batten disease, Cystinosis, Farber, Fucosidosis, Galactasidosialidosis, Gaucher's disease (including Types 1, 2 and 3), Gm1 gangliosidosis, Hunter's disease, Hurler-Scheie's disease, Krabbe's disease, ⁇ -Mannosidosis, ⁇ -Mannosidosis, Maroteaux-Lamy's disease, Metachromatic Leukodystrophy, Morquio A syndrome, Morquio B syndrome, Mucolipidosis II, Mucolipidosis III, Neimann-Pick Disease (including Types A, B and C), Pompe's disease, Sandhoff disease, Sanfilippo syndrome (including Types A, B, C and D), Schindler disease, Schindler-Kanzaki disease, Sialidosis, Sly syndrome, Tay-Sach's disease and Wolman disease.
- a disease associated with a dysfunction in proteostasis is a cardiovascular disease.
- Cardiovascular diseases include, but are not limited to, coronary artery disease, myocardial infarction, stroke, restenosis and arteriosclerosis.
- Conditions associated with a dysfunction of proteostasis also include ischemic conditions, such as, ischemia/reperfusion injury, myocardial ischemia, stable angina, unstable angina, stroke, ischemic heart disease and cerebral ischemia.
- a treatment of a disease associated with a dysfunction in proteostasis is diabetes and/or complications of diabetes, including, but not limited to, diabetic retinopathy, cardiomyopathy, neuropathy, nephropathy, and impaired wound healing is contemplated.
- a treatment of a disease associated with a dysfunction in proteostasis is an ocular disease including, but not limited to, age-related macular degeneration (AMD), diabetic macular edema (DME), diabetic retinopathy, glaucoma, cataracts, retinitis pigmentosa (RP) and dry macular degeneration is contemplated.
- AMD age-related macular degeneration
- DME diabetic macular edema
- RP retinitis pigmentosa
- dry macular degeneration is contemplated.
- a disclosed method is directed to treating a disease associated with a dysfunction in proteostasis, wherein the disease affects the respiratory system or the pancreas.
- a contemplated method encompass treating a condition selected from the group consisting of polyendocrinopathy/hyperinsulinemia, diabetes mellitus, Charcot-Marie Tooth syndrome, Pelizaeus-Merzbacher disease, and Gorham's Syndrome.
- hemoglobinopathies such as sickle cell anemia
- an inflammatory disease such as inflammatory bowel disease, colitis, ankylosing spondylitis
- intermediate filament diseases such as non-alcoholic and alcoholic fatty liver disease
- drug induced lung damage such as methotrexate-induced lung damage.
- methods for treating hearing loss such as noise-induced hearing loss, aminoglycoside-induced hearing loss, and cisplatin-induced hearing loss comprising administering a disclosed compound are provided.
- Additional conditions include those associated with a defect in protein trafficking and that can be treated according to a disclosed methods include: PGP mutations, hERG trafficking mutations, nephrongenic diabetes insipidus mutations in the arginine-vasopressin receptor 2, persistent hyperinsulinemic hypoglycemia of infancy (PHH1) mutations in the sulfonylurea receptor 1, and ⁇ 1AT.
- the compounds described herein can be prepared in a number of ways based on the teachings contained herein and synthetic procedures known in the art. In the description of the synthetic methods described below, it is to be understood that all proposed reaction conditions, including choice of solvent, reaction atmosphere, reaction temperature, duration of the experiment and workup procedures, can be chosen to be the conditions standard for that reaction, unless otherwise indicated. It is understood by one skilled in the art of organic synthesis that the functionality present on various portions of the molecule should be compatible with the reagents and reactions proposed. Substituents not compatible with the reaction conditions will be apparent to one skilled in the art, and alternate methods are therefore indicated. The starting materials for the examples are either commercially available or are readily prepared by standard methods from known materials. At least some of the compounds identified as “intermediates” herein are contemplated as compounds of the disclosure.
- Scheme I General procedures for the preparation of contemplated compounds are outlined in Scheme I and Scheme II.
- the disclosed compounds may be prepared, for example, either by base-mediated condensation of an aromatic aldehyde with a suitably functionalized isatin derivative (Scheme I), or three-component coupling between an aromatic aldehyde, a functionalized aniline, and an alpha-keto acid as shown in Scheme II.
- N-(4-Bromo-2-methylphenyl)-2-(N-hydroxyimino)acetamide To a 1000-mL round-bottom flask was placed a solution of 2,2,2-trichloroethane-1,1-diol (12.78 g, 77.27 mmol, 1.20 equiv) in water (200 mL) and 2N HCl (100 mL). To this solution were added Na 2 SO 4 (18.32 g), NH 2 OH.HCl (8.9 g), and 4-bromo-2-methylaniline (12 g, 64.50 mmol) then the reaction was stirred for 1 h at 90° C.
- A. tert-Butyldimethyl[2-(3-methyl-4-nitrophenoxy)ethoxy]silane To a 250-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (1 g, 6.53 mmol, 1.00 equiv) in NMP (50 mL) then Cs 2 CO 3 (2.77 g, 8.50 mmol), NaI (980 mg), and (2-bromoethoxy)(tert-butyl)dimethylsilane (3.10 g, 12.96 mmol) were added. The resulting solution was stirred for 6 h at 100° C. then the reaction was quenched with water and extracted with EtOAc.
- A. tert-Butyl N-(2-Bromo-4-tert-butylphenyl)carbamate To a 250-mL round-bottom flask was placed a solution of 2-bromo-4-tert-butylaniline (4.56 g, 19.99 mmol) in THF (100 mL) then DMAP (244 mg, 2.00 mmol) and Boc 2 O (8.72 g, 39.95 mmol) were added. The reaction was stirred for 2 h at 65° C., then diluted with 250 mL of H 2 O and extracted with EtOAc (2 ⁇ 250 mL).
- A. 1-Methyl-2-nitro-4-(2-phenylethoxy)benzene To a 100-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (5 g, 32.65 mmol) in DMF (10 mL) then K 2 CO 3 (13.5 g, 96.97 mmol, 3.00 equiv) and BnBr (6.05 g, 32.69 mmol) were added. The reaction was stirred at 130° C. overnight, cooled to rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure.
- A. 1-Methyl-2-nitro-4-phenoxybenzene To a 30-mL sealed tube was placed a solution of 4-bromo-1-methyl-2-nitrobenzene (1.07 g, 4.95 mmol) in dioxane (18 mL) then phenol (470 mg, 4.99 mmol), Cs 2 CO 3 (3.26 g, 10.01 mmol), and CuI (190 mg, 1.00 mmol) were added. The reaction was heated to 120° C. for 3 h under microwave irradiation, cooled to rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na 2 SO 4 , and concentrated under reduced pressure.
- N-Methoxy-N-methyl-2,1-benzoxazole-3-carboxamide To a 50-mL round-bottom flask was placed a solution of 2,1-benzoxazole-3-carboxylic acid (500 mg, 3.07 mmol) in DCM (20 mL) then HATU (2.33 g, 6.13 mmol), DIEA (2.4 g, 18.57 mmol), and methoxy(methyl)amine hydrochloride (598 mg, 6.13 mmol) were added. The reaction was stirred for 5 h at rt, quenched by the addition of 15 mL of water, and extracted with DCM (3 ⁇ 30 mL).
- N-(Oxo-[4]-sulfanylidene)methanesulfonamide To a 100-mL round-bottom flask was placed a solution of methanesulfonamide (17.8 g, 187.13 mmol) in toluene (50 mL) then thionyl chloride (20 mL) was added. The reaction was stirred overnight at 90° C. then concentrated under reduced pressure affording 26.4 g of the title compound as a brown oil.
- A. 3-Methyl-1-benzofuran-7-ol To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 7-methoxy-3-methyl-1-benzofuran (400 mg, 2.47 mmol) in DCM (5 mL) then the solution was cooled to ⁇ 78° C. and BBr 3 (3.7 mL) was added. The reaction was stirred for 5 h over which time the temperature was allowed to increase to rt. The reaction was quenched by the addition of water and extracted with DCM. The organic extracts were combined and concentrated under reduced pressure.
- A. 1-Chloro-4-(cyclohexyloxy)-2-nitrobenzene To a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-chloro-3-nitrophenol (5 g, 28.81 mmol), cyclohexanol (5.78 g, 57.71 mmol), and PPh 3 (11.36 g, 43.31 mmol) in THF (50 mL) then the solution was cooled to 0° C. and DIAD (8.76 g, 43.32 mmol) was added dropwise with stirring.
- A. 1-Methyl-2-nitro-4-(1-phenylethoxy)benzene To a 50-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (1.5 g, 9.80 mmol) in acetone (20 mL) then K 2 CO 3 (4.07 g, 29.49 mmol) and (1-bromoethyl)benzene (2 g, 10.81 mmol) were added. The reaction was stirred overnight at rt, the solids were removed by filtration, and concentrated under reduced pressure affording 2.8 g of the title compound as a yellow oil.
- A. 4-tert-Butyl-2-ethenylaniline To a 500-mL 3-necked round-bottom flask, was placed a solution of 2-bromo-4-tert-butylaniline (1.38 g, 6.05 mmol) in dioxane/water (120 mL) then Pd(OAc) 2 (135 mg, 0.60 mmol), 2-ethenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.41 g, 9.15 mmol), PCy 3 .HBF 4 (440 mg, 1.19 mmol), and K 3 PO 4 (3.81 g, 17.97 mmol) were added under nitrogen.
- N-Methoxy-N-methylpyrazolo[1,5-a]pyridine-5-carboxamide To a 100-mL round-bottom flask was placed a solution of pyrazolo[1,5-a]pyridine-5-carboxylic acid (3.24 g, 19.98 mmol) in DCM (50 mL) then methoxy(methyl)amine hydrochloride (2.925 g, 29.99 mmol), HATU (11.4 g, 29.98 mmol), and DIEA (7.74 g, 59.89 mmol) were added. The reaction was stirred for 2 h at rt then concentrated under reduced pressure.
- A. 1-(4-(Methylsulfonyl)phenyl)ethanol To a 1000-mL 3-necked round-bottom flask was placed a solution of 1-(4-(methylsulfonyl)phenyl)ethanone (25 g, 126.26 mmol) in a mixture of THF (100 mL) and MeOH (200 mL) then the solution was cooled to 0° C. and NaBH 4 (4.80 g, 126.26 mmol) was added. The reaction was allowed to warm to rt and stirred for 2 h, then quenched by the addition of water and extracted with EtOAc.
- 1-(4-(Methylsulfonyl)phenyl)ethanol To a 1000-mL 3-necked round-bottom flask was placed a solution of 1-(4-(methylsulfonyl)phenyl)ethanone (25 g, 126.26 mmol) in a mixture of THF
- Pentafluorophenyl 4-(1-Hydroxyethyl)benzenesulfonate To a 50-mL round-bottom flask was placed a solution of pentafluorophenyl 4-acetylbenzenesulfonate (800 mg, 2.18 mmol, as prepared in the previous step) in MeOH (20 mL) then the solution was cooled to 0° C. and NaBH 4 (1 g, 2.62 mmol) was added in several portions. The reaction was warmed to rt, stirred for 1 h, and concentrated under reduced pressure.
- A. 2-(1-Benzothiophene-2-amido)-3,5-dimethylbenzoic acid To a 100-mL round-bottom flask was placed a solution of 1-benzothiophene-2-carboxylic acid (1.0 g, 5.61 mmol) in DCM (30 mL) followed by the dropwise addition of oxalyl chloride (1.426 g, 11.23 mmol) with stirring at 0° C. To the solution was added DMF (0.01 mL) then the reaction was stirred for 1 h at rt. The solvent was removed under reduced pressure affording 1.1 g of 1-benzothiophene-2-carbonyl chloride as a yellow solid.
- A. 6-Cyano-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid To a 10-mL sealed tube was placed a solution of 6-bromo-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (100 mg, 0.25 mmol, Compound 21) in DMF (3 mL) then Pd(PPh 3 ) 4 (29 mg, 0.03 mmol) and Zn(CN) 2 (59 mg, 0.50 mmol) were added under nitrogen. The reaction was heated to 120° C. for 2 h under microwave irradiation then quenched by the addition of water.
- tert-Butyl N-[2-[Methoxy(methyl)carbamoyl]-1-benzofuran-3-yl]-N-methylcarbamate To a 100-mL round-bottom flask was placed a solution of tert-butyl N-[2-[methoxy(methyl)carbamoyl]-1-benzofuran-3-yl]carbamate (1.2 g, 3.75 mmol, as prepared in Intermediate 20, Step E) in MeCN (50 mL) then NaH (300 mg, 7.50 mmol) was added. The resulting solution was stirred for 20 min at rt then MeI (2.66 g, 18.74 mmol) was added.
- A. (3-Methyl-1-benzofuran-2-yl)boronic acid To a 50-mL 3-necked round-bottom flask was placed a solution of 3-methyl-1-benzofuran (792 mg, 5.99 mmol) in THF (30 mL) then the solution was cooled to ⁇ 78° C. and BuLi (3.6 mL of a 2.5 M hexanes solution, 9.00 mmol) was added dropwise with stirring over 10 min then the reaction was stirred for 30 min at ⁇ 78° C. To this was added B(OMe) 3 (1.2 g, 11.55 mmol) dropwise with stirring at ⁇ 78° C. over 5 min then the reaction was stirred for 16 h at rt.
- Example 16 Preparation of 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1R)-1-phenylethoxy]quinoline-4-carboxylic add (Compound 137) and 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1S)-1-phenylethoxy]quinoline-4-carboxylic add (Compound 138)
- A. 5-(Benzyloxy)-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid To a 5-ml, sealed tube was placed a solution of 1-(3-methyl-1-benzothiophen-2-yl)ethan-1-one (165 mg, 0.87 mmol) in EtOH (2 mL) then 4-(benzyloxy)-2,3-dihydro-1H-indole-2,3-dione (200 mg, 0.79 mmol, Intermediate 21) and KOH (88 mg, 1.57 mmol) were added. The reaction was stirred overnight at 80° C. then concentrated under reduced pressure.
- A. 5-(Benzyloxy)-6-bromo-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid To a 50-mL round-bottom flask was placed a solution of 5-(benzyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (169.2 mg, 0.40 mmol, Compound 30) in DCM/THF (1:1, 10 mL) then the solution was cooled to ⁇ 30° C. and NBS (71.2 mg, 0.40 mmol) was added in small portions. The cooling bath was removed then the reaction was stirred overnight.
- N 1 -Benzyl-4-methylbenzene-1,3-diamine To a 25-mL round-bottom flask purged and maintained with an inert atmosphere of N2, was placed a solution of N-benzyl-4-methyl-3-nitroaniline (243 mg, 1.00 mmol, as prepared in the previous step) in MeOH (5 mL) then Pd on carbon (20 mg) was added. The solution was degassed and back-filled with H 2 and stirred for 5 h at rt. The H 2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 200 mg (94%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C 14 H 17 N 2 + : 213.1 (M+H); Found: 213.1.
- A 5-(Benzyloxy)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carbonyl chloride.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Pulmonology (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Plural Heterocyclic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Hydrogenated Pyridines (AREA)
Abstract
The present disclosure is directed to disclosed compounds that modulate, e.g., address underlying defects in cellular processing of CFTR activity.
Description
- This application is a continuation of U.S. application Ser. No. 16/716,765 filed on Dec. 17, 2019, which is a continuation of U.S. patent application Ser. No. 15/766,667, filed Apr. 6, 2018, which is a national stage filing under 35 U.S.C. § 371 of PCT/US2016/055693, filed Oct. 6, 2016, which claims the benefit of, and priority to, U.S. provisional application Ser. No. 62/237,887, filed Oct. 6, 2015; 62/277,600, filed Jan. 12, 2016; and 62/319,433, filed Apr. 7, 2016; the contents of each of which are hereby incorporated by reference herein in their entirety.
- Cells normally maintain a balance between protein synthesis, folding, trafficking, aggregation, and degradation, referred to as protein homeostasis, utilizing sensors and networks of pathways (Sitia et al., Nature 426: 891-894, 2003; Ron et al., Nat Rev Mol Cell Biol 8: 519-529, 2007). The cellular maintenance of protein homeostasis, or proteostasis, refers to controlling the conformation, binding interactions, location and concentration of individual proteins making up the proteome. Protein folding in vivo is accomplished through interactions between the folding polypeptide chain and macromolecular cellular components, including multiple classes of chaperones and folding enzymes, which minimize aggregation (Wiseman et al., Cell 131: 809-821, 2007). Whether a given protein folds in a certain cell type depends on the distribution, concentration, and subcellular localization of chaperones, folding enzymes, metabolites and the like (Wiseman et al.). Cystic fibrosis and other maladies of protein misfolding arise as a result of an imbalance in the capacity of the protein homeostasis (proteostasis) environment to handle the reduced energetic stability of misfolded, mutated proteins that are critical for normal physiology (Balch et al., Science 319, 916-9 (2008); Powers, et al., Annu Rev Biochem 78, 959-91 (2009); Hutt et al., FEBS Lett 583, 2639-46 (2009)).
- Cystic Fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene which encodes a multi-membrane spanning epithelial chloride channel (Riordan et al., Annu Rev Biochem 77, 701-26 (2008)). Approximately ninety percent of patients have a deletion of phenylalanine (Phe) 508 (ΔF508) on at least one allele. This mutation results in disruption of the energetics of the protein fold leading to degradation of CFTR in the endoplasmic reticulum (ER). The ΔF508 mutation is thus associated with defective folding and trafficking, as well as enhanced degradation of the mutant CFTR protein (Qu et al., J Biol Chem 272, 15739-44 (1997)). The loss of a functional CFTR channel at the plasma membrane disrupts ionic homeostasis (Cl−, Na+, HCO3 −) and airway surface hydration leading to reduced lung function (Riordan et al.). Reduced periciliary liquid volume and increased mucus viscosity impede mucociliary clearance resulting in chronic infection and inflammation, phenotypic hallmarks of CF disease (Boucher, J Intern Med 261, 5-16 (2007)). In addition to respiratory dysfunction, ΔF508 CFTR also impacts the normal function of additional organs (pancreas, intestine, gall bladder), suggesting that the loss-of-function impacts multiple downstream pathways that will require correction.
- In addition to cystic fibrosis, mutations in the CFTR gene and/or the activity of the CFTR channel has also been implicated in other conditions, including for example, congenital bilateral absence of vas deferens (CBAVD), acute, recurrent, or chronic pancreatitis, disseminated bronchiectasis, asthma, allergic pulmonary aspergillosis, smoking-related lung diseases, such as chronic obstructive pulmonary disease (COPD), dry eye disease, Sjogren's syndrome and chronic sinusitis, (Sloane et al. (2012), PLoS ONE 7(6): e39809.doi:10.1371/journal.pone.0039809; Bombieri et al. (2011), J Cyst Fibros. 2011 June; 10 Suppl 2:S86-102; (Albert et al. (2008), Clinical Respiratory Medicine, Third Ed., Mosby Inc.; Levin et al. (2005), Invest Ophthalmol Vis Sci., 46(4):1428-34; Froussard (2007), Pancreas 35(1): 94-5).
- There remains a need in the art for compounds, compositions and methods of increasing CFTR activity as well as for methods of treating CF, other CFTR-related diseases, and other maladies of protein misfolding.
- This disclosure is directed in part to compounds having Formula I:
- and pharmaceutically acceptable salts thereof, in which A, X1, X2, X3, R1, R2, and R3 are as defined herein.
- Also contemplated herein are pharmaceutical compositions that include a disclosed compound such as those compounds having disclosed formulas such as Formula I and a pharmaceutically acceptable carrier or excipient. In certain embodiments, the compositions can include at least one additional CFTR modulator, for example, may include one, two, three, four five or more additional CFTR modulators.
- In certain embodiments, a method is provided comprising administering a disclosed compound to a subject (e.g., a human patient) suffering from a disease associated with decreased CFTR activity (e.g., cystic fibrosis, congenital bilateral absence of vas deferens (CBAVD), acute, recurrent, or chronic pancreatitis, disseminated bronchiectasis, asthma, allergic pulmonary aspergillosis, chronic obstructive pulmonary disease (COPD), chronic sinusitis, dry eye disease, protein C deficiency, A-β-lipoproteinemia, lysosomal storage disease, type 1 chylomicronemia, mild pulmonary disease, lipid processing deficiencies, type 1 hereditary angioedema, coagulation-fibrinolyis, hereditary hemochromatosis, CFTR-related metabolic syndrome, chronic bronchitis, constipation, pancreatic insufficiency, hereditary emphysema, Sjogren's syndrome, familial hypercholesterolemia, I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, nephrogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear palsy, Pick's disease, Huntington's disease, spinocerebellar ataxia type I, spinal and bulbar muscular atrophy, dentatorubral pallidoluysian, myotonic dystrophy, hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease, and Straussler-Scheinker syndrome). In certain embodiments, the disease is cystic fibrosis. For example, contemplated herein is a method for treating a patient suffering from cystic fibrosis comprising administering to said patient an effective amount of a disclosed compound.
- In some embodiments, disclosed methods described herein can further include administering at least one additional CFTR modulator e.g., administering at least two, three, four or five additional CFTR modulators. In certain embodiments, at least one additional CFTR modulator is a CFTR corrector (e.g., VX-809, VX-661 and VX-983) or potentiator (e.g., ivacaftor and genistein). In certain of these embodiments, one of the at least two additional therapeutic agents is a CFTR corrector (e.g., VX-809, VX-661 and VX-983) and the other is a CFTR potentiator (e.g., ivacaftor and genistein).
- As used herein, the words “a” and “an” are meant to include one or more unless otherwise specified. For example, the term “an agent” encompasses both a single agent and a combination of two or more agents.
- As discussed above, the present disclosure is directed in part to compounds as described herein having the Formula I or a pharmaceutically acceptable salt, prodrug or solvate thereof, pharmaceutical compositions, methods of increasing CFTR activity and methods of treating cystic fibrosis.
- For example, provided herein are compounds having Formula I:
- or a pharmaceutically acceptable salt, prodrug, or stereoisomer thereof, wherein:
- A is a 8-10 membered bicyclic heteroaryl having 1, 2, or 3 heteroatoms each selected from the group consisting of O, N, and S; wherein the bicyclic heteroaryl may optionally be substituted by one, two or three substituents each independently selected from RA1;
- X1 is selected from the group consisting of N and C(RX1);
- X2 is selected from the group consisting of N and C(RX2);
- X3 is selected from the group consisting of N and C(RX3);
- wherein only one of X1, X2 or X3 can be N;
- R1 is selected from the group consisting of hydrogen; —C(O)OH, —C(O)OC1-6alkyl, —C(O)—C(O)OH, —P(O)(OH)2, C1-6alkyl, and a 5-6 membered monocyclic heteroaryl having one, two, three, or four heteroatoms each selected from the group consisting of O, N, and S; wherein C1-6 alkyl may optionally be substituted by one, two, or three substituents each selected independently from the group consisting of halogen, hydroxyl, C(O)OH, —P(O)(OH)2, and —C(O)OC1-6alkyl; and wherein said heteroaryl may optionally be substituted by one or two substituents each independently selected from the group consisting of halogen, hydroxyl, and C1-4alkyl;
- R2 is selected from the group consisting of hydrogen, halogen, cyano, C1-6alkyl, C1-6alkoxy, and C3-6cycloalkyl; wherein C1-6alkyl, C1-6alkoxy, and C3-6cycloalkyl may optionally be substituted by one or more substituents each independently selected from the group consisting of halogen, hydroxyl, and phenyl; and wherein phenyl may optionally be substituted by one or more substituents each independently selected from Rp;
- R3 is selected from the group consisting of hydrogen, halogen, hydroxyl, C1-6alkyl, C1-6alkoxy, —S(O)w—C1-6alkyl (where w is 0, 1, or 2), —NRa—C1-6alkyl, C3-6cycloalkoxy, —S(O)w—C3-6cycloalkyl (where w is 0, 1, or 2), —NRa—C3-6cycloalkyl, —O-phenyl, —S(O)w-phenyl (where w is 0, 1, or 2), —NRa-phenyl, C8-12benzocycloalkoxy, —NRaRb, —OC(O)NRa-phenyl, —NRa—C(O)—O— phenyl, —NRa—C(O)—C1-6alkyl-phenyl, —C1-6alkyl-NRa-phenyl, —NRa—C1-6alkyl-phenyl, and a 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclyloxy, heterocyclyl-NRa—, or heterocyclyl-S(O)w— moiety (where w is 0, 1, or 2) having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclyloxy, heterocyclyl-NRa—, or heterocyclyl-S(O)w— ring contains an —NH moiety, that nitrogen may optionally be substituted by a substituent selected from the group consisting of C1-6alkyl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, and —S(O)w—C1-3alkyl (where w is 0, 1, or 2); and wherein said heterocyclyloxy, heterocyclyl-NRa—, and heterocyclyl-S(O)w may optionally be substituted by one, two, three, or four substituents each independently selected from Rf; and wherein said phenyl moiety of —O-phenyl, —S(O)w-phenyl, —NRa-phenyl, —OC(O)NRa-phenyl, —NRa—C(O)—O-phenyl, —NRa—C(O)—C1-6alkyl-phenyl, —C1-6alkyl-NRa-phenyl and —NRa—C1-6alkyl-phenyl may optionally be substituted by one, two, or three substituents each independently selected from Rp; and wherein C1-6alkoxy, —S(O)w—C1-6alkyl (where w is 0, 1, or 2), —NRa—C1-6alkyl, C3-6cycloalkoxy, —S(O)w—C3-6cycloalkyl (where w is 0, 1, or 2), and —NRa—C3-6cycloalkyl may optionally be substituted by one, two, or three substituents each independently selected from Rgg;
- Rff is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NRaRb, oxo, C1-6alkyl and C1-6alkoxy;
- Rgg is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NRaRb, C1-6alkyl, C1-6alkoxy, C3-6cycloalkyl (optionally substituted by one, two or three substituents independently selected from the group consisting of halogen, hydroxyl, C1-3alkyl and C1-3alkoxy (optionally substituted by one, two or three fluorine atoms)), phenyl, a 5-6 membered monocyclic or 8-10 membered bicyclic heteroaryl having one, two or three heteroatoms each independently selected from the group consisting of O, N, and S, and a 4-10 membered monocyclic, bridged bycyclic, or spirocyclic heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclic ring contains an —NH moiety, that nitrogen may optionally be substituted by a substituent selected from the group consisting of C1-6alkyl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, and —S(O)w—C1-3alkyl (where w is 0, 1, or 2); and wherein phenyl may optionally be substituted by one, two, or three substituents each independently selected from Rhh; and wherein said 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclic ring may optionally be substituted by one, two, three, or four substituents each independently selected from Rii;
- Rhh is independently selected for each occurrence from the group consisting of halogen, cyano, C1-6alkyl, C1-6alkoxy, S(O)w—C1-3alkyl, —S(O)w—NRaRb, —NRa—S(O)wC1-3alkyl (where w is 0, 1, or 2), a 5-6 membered monocyclic heteroaryl having one, two or three heteroatoms each independently selected from the group consisting of O, N, and S, and a 4-7 membered heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein C1-6alkoxy and S(O)w—C1-3alkyl may optionally be substituted by one, two, or three halogens;
- Rii is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NRaRb, oxo, C1-6alkyl and C1-6alkoxy;
- RA1 is independently for each occurrence selected from the group consisting of hydrogen, halogen, C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C1-6alkoxy, C3-C6cycloalkyl, phenyl, —NRaRb, —O—C(O)—NRa-phenyl, —NRa—C(O)-phenyl, and —NRa—C1-4alkyl-phenyl; wherein C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C1-6alkoxy, C3-6cycloalkyl and phenyl may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and —NRaRb;
- RX1 is selected from the group consisting of hydrogen, —C(O)OH, and C1-6alkyl; wherein C1-6alkyl may optionally be substituted by one, two or three halogens;
- RX2 is selected from the group consisting of hydrogen, halogen, C1-6alkyl, C1-6alkoxy, and —C1-6alkoxy-phenyl; wherein phenyl may optionally be substituted by one or more substituents selected from Rp;
- RX3 is selected from the group consisting of hydrogen, halogen, cyano, C1-6alkyl, C1-6alkoxy, —C1-6alkoxy-phenyl, C3-6cycloalkyl, C3-6cycloalkoxy, and phenyl; wherein C1-6alkyl and C1-6alkoxy may optionally be substituted by one, two, or three substituents selected from the group consisting of hydroxyl and halogen; and wherein phenyl may optionally be substituted by one or more substituents selected from Rp;
- Ra and Rb are each independently selected from the group consisting of hydrogen, C1-6 alkyl, phenyl, —C(O)-phenyl, and —C(O)—C1-6alkyl; or
- Ra and Rb taken together with the nitrogen to which they are attached form a heterocyclic ring; and
- Rp is independently selected for each occurrence from the group consisting of halogen, hydroxyl, cyano, C1-6alkyl, C3-6cycloalkyl, C1-6alkoxy, phenyl, C3-6cycloalkoxy, —S(O)w—C1-3alkyl (where w is 0, 1, or 2), —S(O)w—NRaRb, and —NRaRb.
- In some embodiments, A may be selected from the group consisting of:
- wherein:
- X4 may independently for each occurrence be selected from the group consisting of O, S, and N(R4);
- X5 may be selected from the group consisting of N and C(RX5);
- RA1 may independently for each occurrence be selected from the group consisting of hydrogen, halogen, C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C1-6alkoxy, C3-6cycloalkyl, phenyl, —NRaRb, —OC(O)NRaRb, —NRa—C(O)-phenyl, and —O—C(O)—NRa-phenyl; wherein C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C1-6alkoxy, C3-6cycloalkyl, phenyl, —OC(O)NRaRb, —NRa—C(O)-phenyl, and —O—C(O)—NRa-phenyl may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and NRaRb;
- RA2 may be selected from the group consisting of hydrogen and C1-6alkyl;
- RA3 and RA4 may be each independently selected from the group consisting of hydrogen, halogen, C1-6alkyl, C1-6alkoxy, and NRaRb wherein C1-6alkyl and C1-6alkoxy may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and NRaRb;
- R4 may be selected from the group consisting of hydrogen, C1-6alkyl, C3-6cycloalkyl, phenyl, heterocycle, C1-6alkyl-S(O)2—, and phenyl-S(O)2—; wherein C1-6alkyl, C3-6cycloalkyl, phenyl, and heterocycle may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and NRaRb;
- and RX5 may be selected from the group consisting of hydrogen, halogen, and C1-6alkyl.
- In certain embodiments, R1 may be —C(O)OH.
- In certain other embodiments, R1 may be selected from the group consisting of:
- wherein X is selected from the group consisting of O and S; R″ is hydrogen or C1-4alkyl; and each R66 and R77 is independently from the group consisting of hydrogen, halogen, hydroxyl, and C1-4alkyl.
- For example, R1 may be selected from the group consisting of:
- In certain embodiments, R2 may be selected from the group consisting of hydrogen, C1-6alkyl, C1-6cycloalkyl, and halogen. For example, R2 may be methyl or ethyl.
- In certain embodiments, R3 may be C3-6cycloalkoxy; wherein C3-6cycloalkoxy may be optionally substituted by one or two substituents selected from Rgg. For example, Rgg may be selected from the group consisting of: C1-6alkyl,
- wherein R11, R22, R33 and R44 are independently selected for each occurrence from the group consisting of hydrogen and C1-6alkyl.
- For example, Rgg may be
- In certain embodiments, R3 may be C1-6alkoxy, wherein C1-6alkoxy may be optionally substituted by one, two or three substituents selected from Rgg. For example, Rgg may be selected from the group consisting of: halogen, hydroxyl, C1-6alkoxy, C3-6cycloalkyl (optionally substituted by one or two substituents independently selected from the group consisting of hydroxyl, C1-3alkyl and C1-3alkoxy), phenyl,
- wherein R11, R22, R33 and R44 are independently selected for each occurrence from the group consisting of hydrogen, hydroxyl, C1-6alkyl, C1-3alkoxy and oxo; and wherein RN is selected from the group consisting of hydrogen and —S(O)2—C1-3alkyl; and wherein phenyl may be optionally substituted by on one two substituents selected from Rhh.
- For example, Rgg may be selected from the group consisting of:
- In certain embodiments, Rhh may be selected from the group consisting of: halogen, C1-3alkyl, C1-3alkoxy, cyano, —S(O)w—C1-3alkyl (where w is 0, 1, or 2), —S(O)w—NRaRb, —NRa—S(O)w—C1-3alkyl,
- and wherein Ra is hydrogen or methyl; and wherein C1-3alkoxy and S(O)w—C1-3alkyl may optionally be substituted by one, two, or three fluorine atoms.
- In certain embodiments, R3 may be a monocyclic, spirocyclic, or bridged bicyclic heterocyclyloxy.
- For example, R3 may be selected from the group consisting of:
- wherein R11, R22, R33 and R44 are independently selected for each occurrence from the group consisting of hydrogen, hydroxyl, C1-6alkyl, C1-3alkoxy and oxo; and wherein RN is selected from the group consisting of hydrogen and —S(O)2—C1-3alkyl.
- For example, R3 may be selected from the group consisting of:
- In certain embodiments, X1 may be C(RX1), X2 is C(RX2), and X3 is C(RX3).
- In an embodiment, A may be selected from the group consisting of:
- For example, A may be selected from the group consisting of:
- In certain embodiments, a disclosed compound of Formula I may be represented by:
- wherein
- X is O or S;
- RA1 is selected from the group consisting of hydrogen and C1-6alkyl;
- R1 is selected from the group consisting of —C(O)OH and a 5-6 membered monocyclic heteroaryl having one, two, three, or four heteroatoms each selected from the group consisting of O, N, and S; wherein said heteroaryl may optionally be substituted by one or two substituents each independently selected from the group consisting of halogen, hydroxyl, and C1-4alkyl;
- R2 is selected from the group consisting of hydrogen, halogen, cyano, C1-6alkyl, C1-6alkoxy, and C3-6cycloalkyl;
- Y is O or S(O), (where w is 0, 1 or 2);
- R25 and R26 are each independently selected from the group consisting of hydrogen and C1-6alkyl;
- p is 0 or 1; and
- B is a 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclic ring contains an —NH moiety, that nitrogen may optionally be substituted by a substituent selected from the group consisting of C1-6alkyl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, and —S(O)w—C1-3alkyl (where w is 0, 1, or 2); and wherein said heterocyclic ring may optionally be substituted by one, two, three, or four substituents each independently selected from hydroxyl, C1-6alkyl, C1-6alkoxy, and oxo.
- In certain embodiments, X may be O. In certain other embodiments, RA1 may be methyl. In a further embodiment, R1 may be —C(O)OH. In a further embodiment, p may be 1.
- For example, a disclosed compound of Formula I may be represented by
- In certain embodiments, Y may be O. In certain other embodiments, R2 may be C1-6alkyl.
- For example, a disclosed compound may be represented by:
- wherein
- X is O or S;
- RA1 is selected from the group consisting of hydrogen and C1-6alkyl;
- R1 is selected from the group consisting of —C(O)OH and a 5-6 membered monocyclic heteroaryl having one, two, three, or four heteroatoms each selected from the group consisting of O, N, and S; wherein said heteroaryl may optionally be substituted by one or two substituents each independently selected from the group consisting of halogen, hydroxyl, and C1-4alkyl;
- R2 is selected from the group consisting of hydrogen, halogen, cyano, C1-6alkyl, C1-6alkoxy, and C3-6cycloalkyl;
- Y is O or S(O)w (where w is 0, 1 or 2);
- R25 and R26 are each independently selected from the group consisting of hydrogen and C1-6alkyl;
- p is 0 or 1; and
- B is
- wherein R34, R35, R36 and R37 are each independently from the group consisting of hydrogen, hydroxyl, methyl and methoxy, or R36 and R37 taken together form an oxo moiety.
- For example, provided herein are compounds represented by Formula II, III, IV, or V:
- and pharmaceutically acceptable salts thereof, wherein:
- X1 is selected from the group consisting of N and C(RX1);
- X2 is selected from the group consisting of N and C(RX2);
- X3 is selected from the group consisting of N and C(RX3);
- wherein only one of X1, X2 or X3 can be N;
- R2 is selected from the group consisting of hydrogen, halogen, cyano, C1-6alkyl, C1-6alkoxy, and C3-6cycloalkyl; wherein C1-6alkyl, C1-6alkoxy, and C3-6cycloalkyl may optionally be substituted by one or more substituents each independently selected from the group consisting of halogen, hydroxyl, and phenyl; and wherein phenyl may optionally be substituted by one or more substituents each independently selected from Rp;
- R3 is selected from the group consisting of hydrogen, halogen, hydroxyl, C1-6alkyl, C1-6alkoxy, —S(O)w—C1-6alkyl (where w is 0, 1, or 2), —NRa—C1-6alkyl, C3-6cycloalkoxy, —S(O)w—C3-6cycloalkyl (where w is 0, 1, or 2), —NRa—C3-6cycloalkyl, —O-phenyl, —S(O)w-phenyl (where w is 0, 1, or 2), —NRa-phenyl, C8-12benzocycloalkoxy, —NRaRb, —OC(O)NRa-phenyl, —NRa—C(O)—O— phenyl, —NRa—C(O)—C1-6alkyl-phenyl, —C1-6alkyl-NRa-phenyl, —NRa—C1-6alkyl-phenyl, and a 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclyloxy, heterocyclyl-NRa—, or heterocyclyl-S(O)w— moiety (where w is 0, 1, or 2) having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclyloxy, heterocyclyl-NRa—, or heterocyclyl-S(O)w— ring contains an —NH moiety, that nitrogen may optionally be substituted by a substituent selected from the group consisting of C1-6alkyl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, and —S(O)w—C1-3alkyl (where w is 0, 1, or 2); and wherein said heterocyclyloxy, heterocyclyl-NRa—, and heterocyclyl-S(O)w may optionally be substituted by one, two, three, or four substituents each independently selected from Rff; and wherein said phenyl moiety of —O-phenyl, —S(O)w-phenyl, —NRa-phenyl, —OC(O)NRa-phenyl, —NRa—C(O)—O-phenyl, —NRa—C(O)—C1-6alkyl-phenyl, —C1-6alkyl-NRa-phenyl and —NRa—C1-6alkyl-phenyl may optionally be substituted by one, two, or three substituents each independently selected from Rp; and wherein C1-6alkoxy, —S(O)w—C1-6alkyl (where w is 0, 1, or 2), —NRa—C1-6alkyl, C3-6cycloalkoxy, —S(O)w—C3-6cycloalkyl (where w is 0, 1, or 2), and —NRa—C3-6cycloalkyl may optionally be substituted by one, two, or three substituents each independently selected from Rgg;
- Rff is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NRaRb, oxo, C1-6alkyl and C1-6alkoxy;
- Rgg is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NRaRb, C1-6alkyl, C1-6alkoxy, C3-6cycloalkyl (optionally substituted by one, two or three substituents independently selected from the group consisting of halogen, hydroxyl, C1-3alkyl and C1-3alkoxy (optionally substituted by one, two or three fluorine atoms)), phenyl, a 5-6 membered monocyclic or 8-10 membered bicyclic heteroaryl having one, two or three heteroatoms each independently selected from the group consisting of O, N, and S, and a 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclic ring contains an —NH moiety, that nitrogen may optionally be substituted by a substituent selected from the group consisting of C1-6alkyl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, and —S(O)w—C1-3alkyl (where w is 0, 1, or 2); and wherein phenyl may optionally be substituted by one, two, or three substituents each independently selected from Rhh; and wherein said 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclic ring may optionally be substituted by one, two, three, or four substituents each independently selected from Rii;
- Rhh is independently selected for each occurrence from the group consisting of halogen, cyano, C1-6alkyl, C1-6alkoxy, S(O)w—C1-3alkyl, —S(O)w—NRaRb, —NRa—S(O)wC1-3alkyl (where w is 0, 1, or 2), a 5-6 membered monocyclic heteroaryl having one, two or three heteroatoms each independently selected from the group consisting of O, N, and S, and a 4-7 membered heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein C1-6alkoxy and S(O)w—C1-3alkyl may optionally be substituted by one, two, or three halogens;
- Rii is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NRaRb, oxo, C1-6alkyl and C1-6alkoxy;
- RA1 is independently for each occurrence selected from the group consisting of hydrogen, halogen, C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C1-6alkoxy, C3-6cycloalkyl, phenyl, —NRaRb, —O—C(O)—NRa-phenyl, —NRa—C(O)-phenyl, and —NRa—C1-4alkyl-phenyl; wherein C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C1-6alkoxy, C3-6cycloalkyl and phenyl may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and —NRaRb;
- RX1 is selected from the group consisting of hydrogen, —C(O)OH, and C1-6alkyl; wherein C1-6alkyl may optionally be substituted by one, two or three halogens;
- RX2 is selected from the group consisting of hydrogen, halogen, C1-6alkyl, C1-6alkoxy, and —C1-6alkox-phenyl; wherein phenyl may optionally be substituted by one or more substituents selected from Rp;
- RX3 is selected from the group consisting of hydrogen, halogen, cyano, C1-6alkyl, C1-6alkoxy, —C1-6alkoxy-phenyl, C3-6cycloalkyl, C3-6cycloalkoxy, and phenyl; wherein C1-6alkyl and C1-6alkoxy may optionally be substituted by one, two, or three substituents selected from the group consisting of hydroxyl and halogen; and wherein phenyl may optionally be substituted by one or more substituents selected from Rp;
- Ra and Rb are each independently selected from the group consisting of hydrogen, C1-6 alkyl, phenyl, —C(O)-phenyl, and —C(O)—C1-6alkyl; or
- Ra and Rb taken together with the nitrogen to which they are attached form a heterocyclic ring; and
- Rp is independently selected, for each occurrence, from the group consisting of halogen, hydroxyl, cyano, C1-6alkyl, C3-6cycloalkyl, C1-6alkoxy, phenyl, C3-6cycloalkoxy, —S(O)w—C1-3alkyl (where w is 0, 1, or 2), —S(O)w—NRaRb, and —NRaRb.
- In certain embodiments, R2 may be selected from the group consisting of hydrogen, C1-6alkyl, C1-6-cycloalkyl, and halogen. For example, R2 may be methyl or ethyl.
- In certain embodiments, R3 may be C3-6cycloalkoxy; wherein C3-6cycloalkoxy may be optionally substituted by one or two substituents selected from Rgg. For example, Rgg may be selected from the group consisting of: C1-6alkyl,
- wherein R11, R22, R33 and R44 are independently selected for each occurrence from the group consisting of hydrogen and C1-6alkyl.
- For example, Rgg may be
- In certain embodiments, R3 may be C1-6alkoxy, wherein C1-6alkoxy may be optionally substituted by one, two or three substituents selected from Rgg. For example, Rgg may be selected from the group consisting of: halogen, hydroxyl, C1-6alkoxy, C3-6cycloalkyl (optionally substituted by one or two substituents independently selected from the group consisting of hydroxyl, C1-3alkyl and C1-3alkoxy), phenyl,
- wherein R11, R22, R33 and R44 are independently selected for each occurrence from the group consisting of hydrogen, hydroxyl, C1-6alkyl, C1-3alkoxy and oxo; and wherein RN is selected from the group consisting of hydrogen and —S(O)2—C1-3alkyl; and wherein phenyl may be optionally substituted by on one two substituents selected from Rhh.
- For example, Rgg may be selected from the group consisting of:
- In certain embodiments, Rhh may be selected from the group consisting of: halogen, C1-3alkyl, C1-3alkoxy, cyano, —S(O)w—C1-3alkyl (where w is 0, 1, or 2), —S(O)w—NRaRb, —NRa—S(O)w—C1-3alkyl,
- wherein Ra is hydrogen or methyl; and wherein C1-3alkoxy and S(O)w—C1-3alkyl may optionally be substituted by one, two, or three fluorine atoms.
- In certain embodiments, R3 may be a monocyclic, spirocyclic, or bridged bicyclic heterocyclyloxy.
- For example, R3 may be selected from the group consisting of:
- wherein R11, R22, R33 and R44 are independently selected for each occurrence from the group consisting of hydrogen, hydroxyl, C1-6alkyl, C1-3alkoxy and oxo; and wherein RN is selected from the group consisting of hydrogen and —S(O)2—C1-3alkyl.
For example, R3 may be selected from the group consisting of: - In certain embodiments, RX1 in Formula I and other Formulas may be hydrogen. In other embodiments, RX1 may be C1-6alkyl, e.g., methyl. In other embodiments, RX1 may be —C(O)OH.
- In certain embodiments, RX2 may be hydrogen. In other embodiments, RX2 may be C1-6alkyl, e.g., methyl. In other embodiments, RX2 may be C1-6alkoxy substituted by phenyl, e.g., benzyloxy.
- In certain embodiments, RX3 may be hydrogen or cyano. In other embodiments, RX3 may be halogen, e.g., fluoride, chloride, or bromide. In other embodiments, RX3 may be C1-6alkyl, e.g., methyl, ethyl, i-propyl, or t-butyl; or C1-6alkyl substituted by one of more fluorides, e.g., trifluoromethyl. RX3, for example, may be C1-6alkoxy, e.g, methoxy, or C1-6alkoxy substituted by phenyl, e.g., benzyloxy. In further embodiments, RX3 may be C3-6cycloalkyl, e.g., cyclopropyl. In another embodiment, RX3 may be phenyl.
- In one embodiment, R1 may be —C(O)OH. In some embodiments, R1 may be hydrogen or —C(O)—C(O)OH. In other embodiments, R1 may be C1-6alkyl substituted by hydroxyl, e.g., methyleneoxy, or substituted by —C(O)OH.
- In certain embodiments, R2 may be hydrogen. In other embodiments, R2 may be C1-6alkyl, e.g., methyl. R2, for example, may be C1-6alkoxy substituted by phenyl, e.g., benzyloxy.
- In certain embodiments, R3 may be hydrogen. In other embodiments, R3 may be C1-6 alkyl, e.g., methyl. In other embodiments, R3 may be C1-6alkoxy, e.g, methoxy, or C1-6alkoxy substituted by phenyl, e.g., benzyloxy. In further embodiments, R3 may be C3-6cycloalkoxy (which may be optionally substituted as described herein), e.g., cyclopropyloxy, cyclobutyloxy, or cyclohexyloxy. In some embodiments, cyclopropyloxy, cyclobutyloxy, and cyclohexyloxy may be substituted by phenyl or heteroaryl. In one embodiment, R3 may be —O-phenyl. In other embodiments, R3 may be —NH—C(O)-phenyl, —NH—C(O)—CH2-phenyl, —O—C(O)—NH— phenyl, or —NH—C(O)—O-phenyl.
- In certain embodiments, RA1 may be hydrogen. In other embodiments, RA1 may be halogen, e.g., chloride or bromide. In other embodiments, RA1 may be C1-4alkyl, e.g., methyl, ethyl, or i-propyl. In one embodiment, RA1 may be C2-6alkynyl, e.g., ethynyl. In some embodiments, RA1 may be C3-6cycloalkyl, e.g., cyclopropyl or cyclohexyl. In another embodiment, RA1 may be phenyl. In further embodiments, RA1 may be C1-6alkoxy, e.g, methoxy, or C1-6alkoxy substituted by phenyl, e.g., benzyloxy. In other embodiments, RA1 may be —NHMe, —NH—CH2-phenyl, —O—C(O)—NH-phenyl, or —NH—C(O)—O-phenyl.
- In certain embodiments, RA2 may be hydrogen. In other embodiments, RA2 may be C1-6alkyl, e.g., methyl.
- Also provided herein are compounds disclosed in the Exemplification.
- Also contemplated herein are pharmaceutical compositions that include a disclosed compound such as those compounds having Formula I and a pharmaceutically acceptable carrier or excipient. In certain embodiments, the compositions can include at least one additional CFTR modulator as described anywhere herein or at least two additional CFTR modulators, each independently as described anywhere herein.
- The features and other details of the disclosure will now be more particularly described. Before further description of the present disclosure, certain terms employed in the specification, examples and appended claims are collected here. These definitions should be read in light of the remainder of the disclosure and as understood by a person of skill in the art. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by a person of ordinary skill in the art.
- It will be appreciated that the description of the present disclosure herein should be construed in congruity with the laws and principals of chemical bonding.
- The term “alkyl”, as used herein, unless otherwise indicated, refers to both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms; for example, “C1-C10 alkyl” denotes alkyl having 1 to 10 carbon atoms, and straight or branched hydrocarbons of 1-6, 1-4, or 1-3 carbon atoms, referred to herein as C1-6 alkyl, C1-4 alkyl, and C1-3 alkyl, respectively. Examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl, n-pentyl, n-hexyl, 2-methylbutyl, 2-methylpentyl, 2-ethylbutyl, 3-methylpentyl, and 4-methylpentyl.
- The term “alkylcarbonyl” as used herein refers to a straight or branched alkyl group attached to a carbonyl group (alkyl-C(O)—). Exemplary alkylcarbonyl groups include, but are not limited to, alkylcarbonyl groups of 1-6 atoms, referred to herein as C1-6alkylcarbonyl groups. Exemplary alkylcarbonyl groups include, but are not limited to, acetyl, propanoyl, isopropanoyl, butanoyl, etc.
- The term “carbonyl” as used herein refers to the radical —C(O)—.
- The term “cyano” as used herein refers to the radical —CN.
- The term, “alkenyl”, as used herein, refers to both straight and branched-chain moieties having the specified number of carbon atoms and having at least one carbon-carbon double bond. Exemplary alkenyl groups include, but are not limited to, a straight or branched group of 2-6 or 3-4 carbon atoms, referred to herein as C2-6 alkenyl, and C3-4 alkenyl, respectively. Exemplary alkenyl groups include, but are not limited to, vinyl, allyl, butenyl, pentenyl, etc.
- The term, “alkynyl”, as used herein, refers to both straight and branched-chain moieties having the specified number or carbon atoms and having at least one carbon-carbon triple bond.
- The term “cycloalkyl,” as used herein, refers to saturated cyclic alkyl moieties having 3 or more carbon atoms, for example, 3-10, 3-6, or 4-6 carbons, referred to herein as C3-10 cycloalkyl, C3-6 cycloalkyl or C4-6 cycloalkyl, respectively for example. Unless otherwise stated, such saturated cyclic alkyl moieties can contain up to 18 carbon atoms and include monocycloalkyl, polycycloalkyl, and benzocycloalkyl structures. Monocycloalkyl refers to groups having a single ring group. Polycycloalkyl denotes hydrocarbon systems containing two or more ring systems with one or more ring carbon atoms in common; i.e., a spiro, fused, or bridged structure. Benzocycloalkyl signifies a monocyclic alkyl group fused to a benzene ring, referred to herein as C8-12benzocycloalkyl, for example. Examples of monocycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, cyclopentadecyl, cyclohexadecyl, cycloheptadecyl, and cyclooctadecyl. Examples of polycycloalkyl groups include, but are not limited to, decahydronaphthalene, spiro[4.5]decyl, bicyclo[2.2.1]heptyl, bicyclo[3.2.1]octyl, pinanyl, norbornyl, adamantyl, and bicyclo[2.2.2]octyl. Examples of benzocycloalkyl groups include, but are not limited to, tetrahydronaphthyl, indanyl, and 1.2-benzocycloheptanyl.
- The term “cycloalkoxy” refers to a cycloalkyl group as just described, that is a monocycloalkyl, polycycloalkyl, or benzocycloalkyl structure, bound to the remainder of the molecule through an ethereal oxygen atom. Exemplary cycloalkoxy groups include, but are not limited to, cycloalkoxy groups of 3-6 carbon atoms, referred to herein as C3-6cycloalkoxy groups. Exemplary cycloalkoxy groups include, but are not limited to, cyclopropoxy, cyclobutoxy, cyclohexyloxy, etc. The term “benzocycloalkoxy” refers to a monocyclic cycloalkoxy group fused to a benzene ring, referred to herein for example as C8-12benzocycloalkoxy. Examples of benzocycloalkoxy groups include, but are not limited to, tetrahydronaphthyloxy, indanyloxy, and 1.2-benzocycloheptanyloxy.
- The term “cycloalkenyl,” as used herein, refers to cyclic alkenyl moieties having 3 or more carbon atoms.
- The term “cycloalkynyl,” as used herein, refers to cyclic alkynyl moieties having 5 or more carbon atoms.
- “Alkylene” means a straight or branched, saturated aliphatic divalent radical having the number of carbons indicated. “Cycloalkylene” refers to a divalent radical of carbocyclic saturated hydrocarbon group having the number of carbons indicated.
- The term “alkoxy” as used herein refers to a straight or branched alkyl group attached to oxygen (alkyl-O—). Exemplary alkoxy groups include, but are not limited to, alkoxy groups of 1-6 or 2-6 carbon atoms, referred to herein as C1-6 alkoxy, and C2-6 alkoxy, respectively. Exemplary alkoxy groups include, but are not limited to methoxy, ethoxy, isopropoxy, etc.
- The term “alkoxyalkyl” as used herein refers to a straight or branched alkyl group attached to oxygen, attached to a second straight or branched alkyl group (alkyl-O-alkyl-). Exemplary alkoxyalkyl groups include, but are not limited to, alkoxyalkyl groups in which each of the alkyl groups independently contains 1-6 carbon atoms, referred to herein as C1-6alkoxy-C1-6alkyl. Exemplary alkoxyalkyl groups include, but are not limited to methoxymethyl, 2-methoxyethyl, 1-methoxyethyl, 2-methoxypropyl, ethoxymethyl, 2-isopropoxyethyl etc.
- The term “alkyoxycarbonyl” as used herein refers to a straight or branched alkyl group attached to oxygen, attached to a carbonyl group (alkyl-O—C(O)—). Exemplary alkoxycarbonyl groups include, but are not limited to, alkoxycarbonyl groups of 1-6 carbon atoms, referred to herein as C1-6alkoxycarbonyl. Exemplary alkoxycarbonyl groups include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, etc.
- The term “alkenyloxy” used herein refers to a straight or branched alkenyl group attached to oxygen (alkenyl-O—). Exemplary alkenyloxy groups include, but are not limited to, groups with an alkenyl group of 3-6 carbon atoms, referred to herein as C3-6alkenyloxy. Exemplary “alkenyloxy” groups include, but are not limited to allyloxy, butenyloxy, etc.
- The term “alkynyloxy” used herein refers to a straight or branched alkynyl group attached to oxygen (alkynyl-O). Exemplary alkynyloxy groups include, but are not limited to, groups with an alkynyl group of 3-6 carbon atoms, referred to herein as C3-6alkynyloxy. Exemplary alkynyloxy groups include, but are not limited to, propynyloxy, butynyloxy, etc.
- The term “heterocyclic” or “heterocycle” encompasses heterocycloalkyl, heterocycloalkenyl, heterobicycloalkyl, heterobicycloalkenyl, heteropolycycloalkyl, heteropolycycloalkenyl, and the like unless indicated otherwise. Heterocycloalkyl refers to cycloalkyl groups containing one or more heteroatoms (O, S, or N) within the ring. Heterocycloalkenyl as used herein refers to cycloalkenyl groups containing one or more heteroatoms (O, S or N) within the ring. Heterobicycloalkyl refers to bicycloalkyl groups containing one or more heteroatoms (O, S or N) within a ring. Heterobicycloalkenyl as used herein refers to bicycloalkenyl groups containing one or more heteroatoms (O, S or N) within a ring, a heterocycle can refer to, for example, a saturated or partially unsaturated 4- to 12 or 4-10-membered ring structure, including monocyclic, bridged bicyclic, fused bycyclic and spirocyclic rings, and whose ring structures include one to three heteroatoms, such as nitrogen, oxygen, and sulfur. Where possible, heterocyclyl rings may be linked to the adjacent radical through carbon or nitrogen. Examples of heterocyclyl groups include, but are not limited to, pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, oxetane, azetidine, tetrahydrofuran or dihydrofuran, etc.
- The term “oxo” as used herein refers to the radical ═O.
- Cycloalkyl, cycloalkenyl, and heterocyclic groups also include groups similar to those described above for each of these respective categories, but which are substituted with one or more oxo moieties.
- The term “heteroaryl”, as used herein, refers to aromatic carbocyclic groups containing one or more heteroatoms (O, S, or N) within a ring. A heteroaryl group, unless indicated otherwise, can be monocyclic or polycyclic. A heteroaryl group may additionally be substituted or unsubstituted. Contemplated heteroaryl groups include ring systems substituted with one or more oxo moieties. A polycyclic heteroaryl can comprise fused rings, covalently attached rings or a combination thereof. A polycyclic heteroaryl is a polycyclic ring system that comprises at least one aromatic ring containing one or more heteroatoms within a ring. Examples of heteroaryl groups include, but are not limited to, pyridinyl, pyridazinyl, imidazolyl, pyrimidinyl, pyrazolyl, triazolyl, pyrazinyl, quinolyl, isoquinolyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, isothiazolyl, pyrrolyl, quinolinyl, isoquinolinyl, indolyl, benzimidazolyl, benzofuranyl, cinnolinyl, indazolyl, indolizinyl, phthalazinyl, triazinyl, isoindolyl, purinyl, oxadiazolyl, thiadiazolyl, furazanyl, benzofurazanyl, benzothiophenyl, benzotriazolyl, benzothiazolyl, benzoxazolyl, quinazolinyl, quinoxalinyl, naphthyridinyl, dihydroquinolyl, tetrahydroquinolyl, dihydroisoquinolyl, tetrahydroisoquinolyl, benzofuryl, furopyridinyl, pyrolopyrimidinyl, thiazolopyridinyl, oxazolopyridinyl and azaindolyl. The foregoing heteroaryl groups may be C-attached or heteroatom-attached (where such is possible). For instance, a group derived from pyrrole may be pyrrol-1-yl (N-attached) or pyrrol-3-yl (C-attached). In some embodiments, the heteroaryl is 4- to 12-membered heteroaryl. In yet other embodiments, the heteroaryl is a mono or bicyclic 4- to 10-membered heteroaryl.
- The term “heterocyclyloxy” as used herein refers to a heterocyclyl group attached to oxygen (heterocyclyl-O—).
- The term “heteroaryloxy” as used herein refers to a heteroaryl group attached to oxygen (heteroaryl-O—).
- The terms “halo” or “halogen” as used herein refer to F, Cl, Br, or I.
- The term “haloalkyl” as used herein refers to an alkyl group having 1 to (2n+1) substituent(s) independently selected from F, Cl, Br or I, where n is the maximum number of carbon atoms in the alkyl group. It will be understood that haloalkyl is a specific example of an optionally substituted alkyl.
- The terms “hydroxy” and “hydroxyl” as used herein refers to the radical —OH.
- As will be understood by the skilled artisan, “H” is the symbol for hydrogen, “N” is the symbol for nitrogen, “S” is the symbol for sulfur, “0” is the symbol for oxygen. “Me” is an abbreviation for methyl.
- The compounds of the disclosure may contain one or more chiral centers and, therefore, exist as stereoisomers. The term “stereoisomers” when used herein consist of all enantiomers or diastereomers. These compounds may be designated by the symbols “(+),” “(−),” “R” or “S,” depending on the configuration of substituents around the stereogenic carbon atom, but the skilled artisan will recognize that a structure may denote a chiral center implicitly. The present disclosure encompasses various stereoisomers of disclosed compounds and mixtures thereof. Mixtures of enantiomers or diastereomers may be designated “(t)” in nomenclature, but the skilled artisan will recognize that a structure may denote a chiral center implicitly.
- The compounds of the disclosure may contain one or more double bonds and, therefore, exist as geometric isomers resulting from the arrangement of substituents around a carbon-carbon double bond. The symbol denotes a bond that may be a single, double or triple bond as described herein. Substituents around a carbon-carbon double bond are designated as being in the “Z” or “E” configuration wherein the terms “Z” and “E” are used in accordance with IUPAC standards. Unless otherwise specified, structures depicting double bonds encompass both the “E” and “Z” isomers. Substituents around a carbon-carbon double bond alternatively can be referred to as “cis” or “trans,” where “cis” represents substituents on the same side of the double bond and “trans” represents substituents on opposite sides of the double bond.
- Compounds of the disclosure may contain a carbocyclic or heterocyclic ring and therefore, exist as geometric isomers resulting from the arrangement of substituents around the ring. The arrangement of substituents around a carbocyclic or heterocyclic ring are designated as being in the “Z” or “E” configuration wherein the terms “Z” and “E” are used in accordance with IUPAC standards. Unless otherwise specified, structures depicting carbocyclic or heterocyclic rings encompass both “Z” and “E” isomers. Substituents around a carbocyclic or heterocyclic ring may also be referred to as “cis” or “trans”, where the term “cis” represents substituents on the same side of the plane of the ring and the term “trans” represents substituents on opposite sides of the plane of the ring. Mixtures of compounds wherein the substituents are disposed on both the same and opposite sides of plane of the ring are designated “cis/trans.”
- Individual enantiomers and diasterisomers of disclosed compounds can be prepared synthetically from commercially available starting materials that contain asymmetric or stereogenic centers, or by preparation of racemic mixtures followed by resolution methods well known to those of ordinary skill in the art. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral auxiliary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and liberation of the optically pure product from the auxiliary, (2) salt formation employing an optically active resolving agent, (3) direct separation of the mixture of optical enantiomers on chiral liquid chromatographic columns or (4) kinetic resolution using stereoselective chemical or enzymatic reagents. Racemic mixtures can also be resolved into their component enantiomers by well known methods, such as chiral-phase liquid chromatography or crystallizing the compound in a chiral solvent. Stereoselective syntheses, a chemical or enzymatic reaction in which a single reactant forms an unequal mixture of stereoisomers during the creation of a new stereocenter or during the transformation of a pre-existing one, are well known in the art. Stereoselective syntheses encompass both enantio- and diastereoselective transformations, and may involve the use of chiral auxiliaries. For examples, see Carreira and Kvaerno, Classics in Stereoselective Synthesis, Wiley-VCH: Weinheim, 2009. Where a particular compound is described or depicted, it is intended to encompass that chemical structure as well as tautomers of that structure.
- The term “enantiomerically pure” means a stereomerically pure composition of a compound. For example, a stereochemically pure composition is a composition that is free or substantially free of other stereoisomers of that compound. In another example, for a compound having one chiral center, an enantiomerically pure composition of the compound is free or substantially free of the other enantiomer. In yet another example, for a compound having two chiral centers, an enantiomerically pure composition is free or substantially free of the other diastereomers.
- Where a particular stereochemistry is described or depicted it is intended to mean that a particular enantiomer is present in excess relative to the other enantiomer. A compound has an R-configuration at a specific position when it is present in excess compared to the compound having an S-configuration at that position. A compound has an S-configuration at a specific position when it is present in excess compared to the compound having an R-configuration at that position.
- The compounds disclosed herein can exist in solvated as well as unsolvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that disclosed compounds include both solvated and unsolvated forms. In one embodiment, a disclosed compound is amorphous or, in another embodiment, a single polymorph. In another embodiment, a disclosed compound is a mixture of polymorphs. In another embodiment, a disclosed compound is in a crystalline form.
- Isotopically labeled compounds are also contemplated herein, which are identical to those recited herein, except that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds of the disclosure include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine and chlorine, such as 2H, 3H, 13C, 11C, 15N, 18O, 17O, 31P, 32p, 35S, 18F, and 36Cl, respectively. For example, a disclosed compound may have one or more H atoms replaced with deuterium.
- Certain isotopically labeled disclosed compounds (e.g., those labeled with 3H and 14C) are useful in compound and/or substrate tissue distribution assays. Tritiated (i.e., 3H) and carbon-14 (i.e., 14C) isotopes are particularly suitable for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (i.e., 2H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence may be suitable in some circumstances. Isotopically labeled compounds can generally be prepared by following procedures analogous to those disclosed in the examples herein by substituting an isotopically labeled reagent for a non-isotopically labeled reagent.
- In some embodiments one or more of the nitrogen atoms of a disclosed compound if present are oxidized to N-oxide.
- Representative synthetic routes for the preparation of the compounds disclosed herein are provided throughout the Examples section. As will be understood by the skilled artisan, diastereomers can be separated from the reaction mixture using column chromatography.
- Disclosed compounds may be also be prepared using methods described in the literature, including, but not limited to, J. Med. Chem. 2011, 54(13), 4350-64; Russian Journal of Organic Chemistry, 2011, 47(8), 1199-1203; U.S. Patent Application Publication No. 2009/0036451 A1; WO2008/046072 A2, and U.S. Pat. No. 4,336,264, the contents of each of which are expressly incorporated by reference herein.
- As discussed above, contemplated herein in an embodiment is a method of increasing CFTR activity in a subject comprising administering an effective amount of a disclosed compound. Also contemplated herein is a method of treating a patient suffering from a condition associated with CFTR activity comprising administering to said patient an effective amount of a compound described herein.
- “Treating” or “treatment” includes preventing or delaying the onset of the symptoms, complications, or biochemical indicia of a disease, alleviating or ameliorating the symptoms or arresting or inhibiting further development of the disease, condition, or disorder. A “subject” is an animal to be treated or in need of treatment. A “patient” is a human subject in need of treatment.
- An “effective amount” refers to that amount of an agent that is sufficient to achieve a desired and/or recited effect. In the context of a method of treatment, an “effective amount” of the therapeutic agent that is sufficient to ameliorate of one or more symptoms of a disorder and/or prevent advancement of a disorder, cause regression of the disorder and/or to achieve a desired effect.
- The term “modulating” encompasses increasing, enhancing, inhibiting, decreasing, suppressing, and the like. The terms “increasing” and “enhancing” mean to cause a net gain by either direct or indirect means. As used herein, the terms “inhibiting” and “decreasing” encompass causing a net decrease by either direct or indirect means.
- In some examples, CFTR activity is enhanced after administration of a compound described herein when there is an increase in the CFTR activity as compared to that in the absence of the administration of the compound. CFTR activity encompasses, for example, chloride channel activity of the CFTR, and/or other ion transport activity (for example, HCO3 transport). In certain of these embodiments, the activity of one or more (e.g., one or two) mutant CFTRs (e.g., ΔF508, S549N, G542X, G551D, R117H, N1303K, W1282X, R553X, 621+1G>T, 1717-1G>A, 3849+10kbC>T, 2789+5G>A, 3120+1G>A, I507del, R1162X, 1898+1G>A, 3659delC, G85E, D1152H, R560T, R347P, 2184insA, A455E, R334W, Q493X, and 2184delA CFTR) is enhanced (e.g., increased). Contemplated patients may have a CFTR mutation(s) from one or more classes, such as without limitation, Class I CFTR mutations, Class II CFTR mutations, Class III CFTR mutations, Class IV CFTR mutations, Class V CFTR mutations, and Class VI mutations. Contemplated subject (e.g., human subject) CFTR genotypes include, without limitation, homozygote mutations (e.g., ΔF508/ΔF508 and R117H/R117H) and compound heterozygote mutations (e.g., ΔF508/G551D; ΔF508/A455E; ΔF508/G542X; Δ508F/W1204X; R553X/W1316X; W1282X/N1303K, 591Δ18/E831X, F508del/R117H/N1303K/3849+10kbC>T; Δ303K/384; and DF508/G178R).
- In certain embodiments, the mutation is a Class I mutation, e.g., a G542X; a Class II/I mutation, e.g., a ΔF508/G542X compound heterozygous mutation. In other embodiments, the mutation is a Class III mutation, e.g., a G551D; a Class II/Class III mutation, e.g., a ΔF508/G551D compound heterozygous mutation. In still other embodiments, the mutation is a Class V mutation, e.g., a A455E; Class II/Class V mutation, e.g., a ΔF508/A455E compound heterozygous mutation. Of the more than 1000 known mutations of the CFTR gene, ΔF508 is the most prevalent mutation of CFTR which results in misfolding of the protein and impaired trafficking from the endoplasmic reticulum to the apical membrane (Dormer et al. (2001). J Cell Sci 114, 4073-4081; http://www.genet.sickkids.on.ca/app). In certain embodiments, ΔF508 CFTR activity is enhanced (e.g., increased). In certain embodiments, ΔF508 CFTR activity and/or G542X CFTR activity and/or G551D CFTR activity and/or A455E CFTR activity is enhanced (e.g., increased). An enhancement of CFTR activity can be measured, for example, using literature described methods, including for example, Ussing chamber assays, patch clamp assays, and hBE Ieq assay (Devor et al. (2000), Am J Physiol Cell Physiol 279(2): C461-79; Dousmanis et al. (2002), J Gen Physiol 119(6): 545-59; Bruscia et al. (2005), PNAS 103(8): 2965-2971).
- As discussed above, the disclosure also encompasses a method of treating cystic fibrosis. Methods of treating other conditions associated with CFTR activity, including conditions associated with deficient CFTR activity, comprising administering an effective amount of a disclosed compound, are also provided herein.
- For example, provided herein is a method of treating a condition associated with deficient or decreased CFTR activity comprising administering an effective amount of a disclosed compound that enhances CFTR activity. Non-limiting examples of conditions associated with deficient CFTR activity are cystic fibrosis, congenital bilateral absence of vas deferens (CBAVD), acute, recurrent, or chronic pancreatitis, disseminated bronchiectasis, asthma, allergic pulmonary aspergillosis, smoking-related lung diseases, such as chronic obstructive pulmonary disease (COPD), chronic sinusitis, dry eye disease, protein C deficiency, Aβ-lipoproteinemia, lysosomal storage disease, type 1 chylomicronemia, mild pulmonary disease, lipid processing deficiencies, type 1 hereditary angioedema, coagulation-fibrinolyis, hereditary hemochromatosis, CFTR-related metabolic syndrome, chronic bronchitis, constipation, pancreatic insufficiency, hereditary emphysema, and Sjogren's syndrome.
- In some embodiments, disclosed methods of treatment further comprise administering an additional therapeutic agent. For example, in an embodiment, provided herein is a method of administering a disclosed compound and at least one additional therapeutic agent. In certain aspects, a disclosed method of treatment comprises administering a disclosed compound, and at least two additional therapeutic agents. Additional therapeutic agents include, for example, mucolytic agents, bronchodilators, antibiotics, anti-infective agents, anti-inflammatory agents, ion channel modulating agents, therapeutic agents used in gene therapy, CFTR correctors, and CFTR potentiators, or other agents that modulates CFTR activity. In some embodiments, at least one additional therapeutic agent is selected from the group consisting of a CFTR corrector and a CFTR potentiator. Non-limiting examples of CFTR correctors and potentiators include VX-770 (Ivacaftor), deuterated Ivacaftor, GLPG2851, GLPG2737, GLPG2451, VX-809 (3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid, VX-661 (1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-[1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(2-hydroxy-1,1-dimethylethyl)-1H-indol-5-yl]-cyclopropanecarboxamide), VX-983, VX-152, VX-440, and Ataluren (PTC124) (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid), FDL169, GLPG1837/ABBV-974 (for example, a CFTR potentiator), GLPG2665, GLPG2222 (for example, a CFTR corrector); and compounds described in, e.g., WO2014/144860 and 2014/176553, hereby incorporated by reference. Non-limiting examples of modulators include QBW-251, QR-010, NB-124, riociquat, and compounds described in, e.g., WO2014/045283; WO2014/081821, WO2014/081820, WO2014/152213; WO2014/160440, WO2014/160478, US2014027933; WO2014/0228376, WO2013/038390, WO2011/113894, WO2013/038386; and WO2014/180562, of which the disclosed modulators in those publications are contemplated as an additional therapeutic agent and incorporated by reference. Non-limiting examples of anti-inflammatory agents include N6022 (3-(5-(4-(1H-imidazol-1-yl) phenyl)-1-(4-carbamoyl-2-methylphenyl)-1H-pyrrol-2-yl) propanoic acid), CTX-4430, N1861, N1785, and N91115.
- In some embodiments, the methods described herein can further include administering an additional therapeutic agent or administering at least two additional CFTR therapeutic agents. In some embodiments, the methods described herein can further include administering an additional CFTR modulator or administering at least two additional CFTR modulators. In certain embodiments, at least one CFTR modulator is a CFTR corrector (e.g., VX-809, VX-661, VX-983, VX-152, VX-440, and GLPG2222 or GLPG2665) or potentiator (e.g., ivacaftor, genistein and GLPG1837). In certain of these embodiments, one of the at least two additional therapeutic agents is a CFTR corrector (e.g., VX-809, VX-661, VX-152, VX-440, and VX-983) and the other is a CFTR potentiator (e.g., ivacaftor and genistein). In certain of these embodiments, one of the at least two additional therapeutic agents is a CFTR corrector (e.g., GLPG2222) and the other is a CFTR potentiator (e.g., GLPG1837). In certain of these embodiments, one of the at least two additional therapeutic agents is a CFTR corrector (e.g., VX-809 or VX-661) and the other is a CFTR potentiator (e.g., ivacaftor). In certain of these embodiments, at least one CFTR modulator is an agent that enhances read-through of stop codons (e.g., NB124 or ataluren). NB124 has the structure:
- In other embodiments, the methods described herein can further include administrating an epithelial sodium channel (ENaC) inhibitor (e.g., VX-371).
- Accordingly, in another aspect, this disclosure provides a method of treating a condition associated with deficient or decreased CFTR activity (e.g., cystic fibrosis), which includes administering to a subject in need thereof (e.g., a human patient in need thereof) an effective amount of a disclosed compound and at least one or two additional CFTR therapeutic agent(s) (e.g., at least one or two additional CFTR therapeutic agents, e.g., in which one of the at least one or two additional therapeutic agents is optionally a CFTR corrector, modulator or amplifier (e.g., VX-809, VX-661, VX-983, GLPG2222, NB124, ataluren) and/or the other is a CFTR potentiator (e.g., ivacaftor, genistein, and GLPG1837); e.g., one of the at least two additional therapeutic agents is GLPG2222, and the other is GLPG1837; or one of the at least two additional therapeutic agents is VX-809 or VX-661, and the other is ivacaftor. Additional agents, e.g. amplifiers, are disclosed in co-pending applications PCT/US14/044100, PCT/US15/020460, PCT/US15/020499, and PCT/US15/036691, each incorporated by reference. For example, an exemplary amplifier is N-(3-(5-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)propyl)-5-phenylisoxazole-3-carboxamide (“Compound A”). In certain embodiments, the subject's CFTR genotype includes, without limitation, one or more Class I CFTR mutations, one or more Class II CFTR mutations, one or more Class III CFTR mutations, one or more Class IV CFTR mutations, or one or more Class V CFTR mutations, or one or more Class VI CFTR mutations. In certain embodiments, the subject's CFTR genotype includes, without limitation, one or more homozygote mutations (e.g., ΔF508/ΔF508 or R117H/R117H) and/or one or more compound heterozygote mutations (e.g., ΔF508/G551D; ΔF508/A455E; ΔF508/G542X; Δ508F/W1204X; R553X/W1316X; W1282X/N1303K; F508del/R117H; N1303K/3849+10kbC>T; ΔF508/R334W; DF508/G178R. and 591Δ18/E831X). In certain embodiments, the subject's CFTR genotype includes a Class I mutation, e.g., a G542X Class I mutation, e.g., a ΔF508/G542X compound heterozygous mutation. In other embodiments, the subject's CFTR genotype includes a Class III mutation, e.g., a G551D Class III mutation, e.g., a ΔF508/G551D compound heterozygous mutation. In still other embodiments, the subject's CFTR genotype includes a Class V mutation, e.g., a A455E Class V mutation, e.g., a ΔF508/A455E compound heterozygous mutation. In certain embodiments, ΔF508 CFTR activity and/or G542X CFTR activity and/or G551D CFTR activity and/or A455E activity is enhanced (e.g., increased). In certain embodiments, the enhancement in activity (e.g., increase in activity) provided by the combination of the disclosed compound and one or two additional therapeutic agents is greater than additive when compared to the enhancement in activity provided by each therapeutic component individually.
-
Class Effect on CFTR protein Example of mutation I Shortened protein W1282X Instead of inserting the amino acid tryptophan (W), the protein sequence is prematurely stopped (indicated by an X). II Protein fails to reach ΔF508 A phenylalanine amino acid cell membrane (F) is deleted III Channel cannot be G551D A “missense” mutation: regulated properly instead of a glycine amino acid (G), aspartate (D) is added IV Reduced chloride R117H Missense conductance V Reduced due to incorrect 3120+1G > A Splice-site mutation in splicing of gene gene intron 16 VI Reduced due to protein N287Y a A −>T at 991 instability -
Genotype Description Possible Symptoms Δ508F/Δ508F homozygote Severe lung disease, pancreatic insufficient R117H/R117H homozygote Congenital bilateral absence of the vas deferens, No lung or pancreas disease, WT/Δ508F heterozygote Unaffected WT/3120+1 G > A heterozygote Unaffected Δ508F/W1204X compound No lung disease, pancreatic heterozygote insufficient R553X and W1316X compound Mild lung disease, heterozygote pancreatic insufficient 591Δ18/E831X compound No lung or pancreas disease, heterozygote nasal polyps - For example, provided herein is a method of treating a patient having one or more of the following mutations in the CFTR gene: G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N, S549R, G970R, or R117H, and/or e.g., a patient with one or two copies of the F508del mutation, or one copy of the ΔF508 mutation and a second mutation that results in a gating effect in the CFTR protein (e.g., a patient that is heterozygous for ΔF508 and G551D mutation), a patient with one copy of the ΔF508 mutation and a second mutation that results in residual CFTR activity, or a patient with one copy of the ΔF508 mutation and a second mutation that results in residual CFTR activity, comprising administering an effective amount of a disclosed compound. As described herein, such exemplary methods (e.g., of a patient having one or mutations such as those described above) may include, for example, administering to such patient a combination therapy, e.g., administering (simultaneously or sequentially) an effective amount of ivacaftor to said patient and an effective amount of a disclosed compound that may act as an amplifier or a disclosed compound that may act as a corrector. Such administration may result, for example, in increased chloride transport in human bronchial epithelial cells with e.g., one or two copies of mutations, e.g, ΔF508 mutation, as compared to administration of ivacaftor alone. Another combination therapy that includes a disclosed compound may also include an effective amount of a readthrough agent (e.g., ataluren, NB124) and an effective amount of disclosed compound that may act as an amplifier or as a corrector.
- Without being limited by theory, a disclosed compound may be advantageous as compared to known CFTR correctors. For example, using e.g., F508del-CFTR protein relative quantitation, exposure to a disclosed compound can result, at least in some embodiments, in a greater proportion of CFTR protein on the cell surface as compared to a known corrector. In another embodiment, using e.g., F508del-CFTR HBE, CFTR function of a disclosed compound administered with e.g., ivacaftor may be increased. For example, a disclosed compound co-dosed with ivacaftor (or another corrector) can restore chloride transport equal to, or greater than, the combination of lumacaftor and ivacaftor in CFTR HBE cells. In another embodiment, the combination of a disclosed compound, lumacaftor and ivacaftor may increase chloride transport e.g., over 1 fold, e.g., a further 1.4-fold. Disclosed compounds, for example, can maintain, in some embodiments, similar functional benefit whether ivacaftor is administered for 24 hours or acutely, in contrast to the combination of lumacaftor and ivacaftor that has attenuated response at 24 hours compared to acute ivacaftor administration.
- The phrase “combination therapy,” as used herein, refers to an embodiment where a patient is co-administered a disclosed compound, a CFTR potentiator agent (e.g., ivacaftor) and optionally, one or more CFTR corrector agent(s) (e.g, VX-661 and/or lumacaftor) as part of a specific treatment regimen intended to provide the beneficial effect from the co-action of these therapeutic agents. For example, a beneficial effect of a combination may include, but is not limited to, pharmacokinetic or pharmacodynamic co-action resulting from the combination of therapeutic agents. For example, administration of a disclosed compound with ivacaftor alone or with a CFTR corrector agent (e.g., lumacaftor or VX-661) may result in a level of function (e.g., as measured by chloride activity in HBE cells or patients that have a ΔF508 mutation, that achieves clinical improvement (or better) as compared to the chloride activity level in cells or patients with a G551D mutation receiving ivacaftor alone, or ivacaftor and a corrector agent (lumacaftor or VX-661; or for example, administration of a disclosed compound with ivacaftor alone or ivacaftor with a CFTR corrector agent (e.g., lumacaftor or VX-661) may result in a level of function (e.g., as measured by chloride activity in HBE cells or patients that have a A455E mutation, that achieves clinical improvement (or better) as compared to the chloride activity level at e.g., 50% or more of wild type cells; or upon administration of a disclosed compound and ivacaftor to a patient (e.g. having a G551D class III mutation) may show e.g., about two times or more improved activity of ivacaftor as compared to administration of ivacaftor alone. Administration of disclosed therapeutic agents in combination typically is carried out over a defined time period (usually a day, days, weeks, months or years depending upon the combination selected). Combination therapy is intended to embrace administration of multiple therapeutic agents in a sequential manner, that is, wherein each therapeutic agent is administered at a different time, as well as administration of these therapeutic agents, or at least two of the therapeutic agents, in a substantially simultaneous manner. Substantially simultaneous administration can be accomplished, for example, by administering to the subject a single tablet or capsule having a fixed ratio of each therapeutic agent or in multiple, single capsules for each of the therapeutic agents. Sequential or substantially simultaneous administration of each therapeutic agent can be effected by any appropriate route including, but not limited to, oral routes, inhalational routes, intravenous routes, intramuscular routes, and direct absorption through mucous membrane tissues. The therapeutic agents can be administered by the same route or by different routes. For example, a first therapeutic agent of the combination selected may be administered by intravenous injection or inhalation or nebulizer while the other therapeutic agents of the combination may be administered orally. Alternatively, for example, all therapeutic agents may be administered orally or all therapeutic agents may be administered by intravenous injection, inhalation or nebulization.
- Combination therapy also can embrace the administration of the therapeutic agents as described above in further combination with other biologically active ingredients and non-drug therapies. Where the combination therapy further comprises a non-drug treatment, the non-drug treatment may be conducted at any suitable time so long as a beneficial effect from the co-action of the combination of the therapeutic agents and non-drug treatment is achieved. For example, in appropriate cases, the beneficial effect is still achieved when the non-drug treatment is temporally removed from the administration of the therapeutic agents, perhaps by a day, days or even weeks.
- The components of a disclosed combination may be administered to a patient simultaneously or sequentially. It will be appreciated that the components may be present in the same pharmaceutically acceptable carrier and, therefore, are administered simultaneously. Alternatively, the active ingredients may be present in separate pharmaceutical carriers, such as, conventional oral dosage forms, that can be administered either simultaneously or sequentially.
- In a further aspect, a method of identifying a candidate agent that increases CFTR activity is provided, which includes: (i) contacting a cell that expresses a CFTR protein with the candidate agent and a disclosed compound; (ii) measuring the CFTR activity in the cell in the presence of the candidate agent and the disclosed compound; and (iii) comparing the CFTR activity to that in the absence of the test agent, wherein an increase in CFTR activity in the presence of the test agent indicates that the agent increases CFTR activity. In certain embodiments, the cell expresses a mutant CFTR protein. In certain embodiments, CFTR activity is measured by measuring chloride channel activity of the CFTR, and/or other ion transport activity. In certain of these embodiments, the method is high-throughput. In certain of these embodiments, the candidate agent is a CFTR corrector or a CFTR potentiator.
- Provided herein, in an embodiment, is a method for treating a patient having CF or a condition associated with deficient or decreased CFTR activity, or suspected to have CF or a condition associated with deficient or decreased CFTR activity, comprising testing the patient (e.g., testing the patient's cells, mucosa and/or bodily fluids) for a specific functional or molecular profile, optionally assessing the results of such testing, and administering to the patient a disclosed compound based on the testing and/or assessment. For example, provided herein is a method for treating a patient having CF or a condition associated with deficient or decreased CFTR activity and a specific functional or molecular profile comprising administering to the patient a disclosed compound.
- The term “pharmaceutically acceptable salt(s)” as used herein refers to salts of acidic or basic groups that may be present in a disclosed compounds used in disclosed compositions. Compounds included in the present compositions that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids. The acids that may be used to prepare pharmaceutically acceptable acid addition salts of such basic compounds are those that form non-toxic acid addition salts, i.e., salts containing pharmacologically acceptable anions, including, but not limited to, malate, oxalate, chloride, bromide, iodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and pamoate (i.e., 1,1′-methylene-bis-(2-hydroxy-3-naphthoate)) salts. Compounds included in the present compositions that are acidic in nature are capable of forming base salts with various pharmacologically acceptable cations. Examples of such salts include alkali metal or alkaline earth metal salts, e.g., calcium, magnesium, sodium, lithium, zinc, potassium, and iron salts. Examples of such salts also include, e.g., ammonium salts and quaternary ammonium salts. Compounds included in the present compositions that include a basic or acidic moiety may also form pharmaceutically acceptable salts with various amino acids. The compounds of the disclosure may contain both acidic and basic groups; for example, one amino and one carboxylic acid group. In such a case, the compound can exist as an acid addition salt, a zwitterion, or a base salt.
- In an embodiment, contemplated methods may include for example, administering prodrugs of the compounds described herein, for example, prodrugs of a compound of Formula I, or a pharmaceutical composition thereof.
- The term “prodrug” refers to compounds that are transformed in vivo to yield a disclosed compound or a pharmaceutically acceptable salt, hydrate or solvate of the compound. The transformation may occur by various mechanisms (such as by esterase, amidase, phosphatase, oxidative and or reductive metabolism) in various locations (such as in the intestinal lumen or upon transit of the intestine, blood or liver). Prodrugs are well known in the art (for example, see Rautio, Kumpulainen, et al., Nature Reviews Drug Discovery 2008, 7, 255). For example, if a compound of the disclosure or a pharmaceutically acceptable salt, hydrate or solvate of the compound contains a carboxylic acid functional group, a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as (C1-8)alkyl, (C2-12)alkylcarbonyloxymethyl, 1-(alkylcarbonyloxy)ethyl having from 4 to 9 carbon atoms, 1-methyl-1-(alkylcarbonyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1-(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N-(alkoxycarbonyl)amino)ethyl having from 4 to 10 carbon atoms, 3-phthalidyl, 4-crotonolactonyl, gamma-butyrolacton-4-yl, di-N,N—(C1-2)alkylamino-(C2-3)alkyl (such as β-dimethylaminoethyl), carbamoyl-(C1-2)alkyl, N,N-di(C1-2)alkylcarbamoyl-(C1-2)alkyl and piperidino-, pyrrolidino- or morpholino(C2-3)alkyl.
- Similarly, if a compound of the disclosure contains an alcohol functional group, a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as (C1-6)alkylcarbonyloxymethyl, 1-((C1-6)alkylcarbonyloxy)ethyl, 1-methyl-1-((C1-6)alkylcarbonyloxy)ethyl (C1-6)alkoxycarbonyloxy)methyl, N—(C1-6)alkoxycarbonylaminomethyl, succinoyl, (C1-6)alkylcarbonyl, α-amino(C1-4)alkylcarbonyl, arylalkylcarbonyl and α-aminoalkylcarbonyl, or α-aminoalkylcarbonyl-α-aminoalkylcarbonyl, where each α-aminoalkylcarbonyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH)2, —P(O)(O(C1-6)alkyl)2 or glycosyl (the radical resulting from the removal of a hydroxyl group of the hemiacetal form of a carbohydrate).
- If a compound of the disclosure incorporates an amine functional group, a prodrug can be formed, for example, by creation of an amide or carbamate, an N-alkylcarbonyloxyalkyl derivative, an (oxodioxolenyl)methyl derivative, an N-Mannich base, imine or enamine. In addition, a secondary amine can be metabolically cleaved to generate a bioactive primary amine, or a tertiary amine can metabolically cleaved to generate a bioactive primary or secondary amine. For examples, see Simplicio, et al., Molecules 2008, 13, 519 and references therein.
- Also contemplated in certain embodiments is the use of clathrates of the compounds described herein, pharmaceutical compositions comprising the clathrates, and methods of use of the clathrates. Clathrates of a disclosed compound or a pharmaceutical composition thereof are also contemplated herein.
- “Pharmaceutically or pharmacologically acceptable” include molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to an animal, or a human, as appropriate. For human administration, preparations should meet sterility, pyrogenicity, and general safety and purity standards as required by FDA Office of Biologics standards.
- The term “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” as used herein refers to any and all solvents, dispersion media, coatings, isotonic and absorption delaying agents, and the like, that are compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. The compositions may also contain other active compounds providing supplemental, additional, or enhanced therapeutic functions.
- The term “pharmaceutical composition” as used herein refers to a composition comprising at least one compound as disclosed herein formulated together with one or more pharmaceutically acceptable carriers.
- As discussed above, the disclosure also contemplates administration of pharmaceutical compositions comprising a pharmaceutically acceptable carrier or excipient and a compound described herein. A disclosed compound, or a pharmaceutically acceptable salt, solvate, clathrate or prodrug thereof, can be administered in pharmaceutical compositions comprising a pharmaceutically acceptable carrier or excipient. The excipient can be chosen based on the expected route of administration of the composition in therapeutic applications. The route of administration of the composition depends on the condition to be treated. For example, intravenous injection may be suitable for treatment of a systemic disorder and oral administration may be suitable to treat a gastrointestinal disorder. The route of administration and the dosage of the composition to be administered can be determined by the skilled artisan without undue experimentation in conjunction with standard dose-response studies. Relevant circumstances to be considered in making those determinations include the condition or conditions to be treated, the choice of composition to be administered, the age, weight, and response of the individual patient, and the severity of the patient's symptoms. A pharmaceutical composition comprising a disclosed compound or a pharmaceutically acceptable salt, solvate, clathrate or prodrug, can be administered by a variety of routes including, but not limited to, parenteral, oral, pulmonary, ophthalmic, nasal, rectal, vaginal, aural, topical, buccal, transdermal, intravenous, intramuscular, subcutaneous, intradermal, intraocular, intracerebral, intralymphatic, intraarticular, intrathecal and intraperitoneal. The compositions can also include, depending on the formulation desired, pharmaceutically-acceptable, non-toxic carriers or diluents, which are defined as vehicles commonly used to formulate pharmaceutical compositions for animal or human administration. The diluent is selected so as not to affect the biological activity of the pharmacologic agent or composition. Examples of such diluents are distilled water, physiological phosphate-buffered saline, Ringer's solutions, dextrose solution, and Hank's solution. In addition, the pharmaceutical composition or formulation may also include other carriers, adjuvants, or nontoxic, nontherapeutic, nonimmunogenic stabilizers and the like. Pharmaceutical compositions can also include large, slowly metabolized macromolecules such as proteins, polysaccharides such as chitosan, polylactic acids, polyglycolic acids and copolymers (such as latex functionalized SEPHAROSE™, agarose, cellulose, and the like), polymeric amino acids, amino acid copolymers, and lipid aggregates (such as oil droplets or liposomes).
- Disclosed compositions can be administered parenterally such as, for example, by intravenous, intramuscular, intrathecal or subcutaneous injection. Parenteral administration can be accomplished by incorporating a composition into a solution or suspension. Such solutions or suspensions may also include sterile diluents such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents. Parenteral formulations may also include antibacterial agents such as, for example, benzyl alcohol or methyl parabens, antioxidants such as, for example, ascorbic acid or sodium bisulfite and chelating agents such as EDTA. Buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose may also be added. The parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.
- Additionally, auxiliary substances, such as wetting or emulsifying agents, surfactants, pH buffering substances and the like can be present in compositions. Other components of pharmaceutical compositions are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, and mineral oil. In general, glycols such as propylene glycol or polyethylene glycol are suitable liquid carriers, particularly for injectable solutions.
- Injectable formulations can be prepared either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared. The preparation also can also be emulsified or encapsulated in liposomes or micro particles such as polylactide, polyglycolide, or copolymer for enhanced adjuvant effect, as discussed above [Langer, Science 249: 1527, 1990 and Hanes, Advanced Drug Delivery Reviews 28: 97-119, 1997]. The compositions and pharmacologic agents described herein can be administered in the form of a depot injection or implant preparation which can be formulated in such a manner as to permit a sustained or pulsatile release of the active ingredient.
- Additional formulations suitable for other modes of administration include oral, intranasal, and pulmonary formulations, suppositories, transdermal applications and ocular delivery. For suppositories, binders and carriers include, for example, polyalkylene glycols or triglycerides; such suppositories can be formed from mixtures containing the active ingredient in the range of about 0.5% to about 10%, or about 1% to about 2%. Oral formulations include excipients, such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, and magnesium carbonate. Topical application can result in transdermal or intradermal delivery. Transdermal delivery can be achieved using a skin patch or using transferosomes. [Paul et al., Eur. J. Immunol. 25: 3521-24, 1995; Cevc et al., Biochem. Biophys. Acta 1368: 201-15, 1998].
- For the purpose of oral therapeutic administration, the pharmaceutical compositions can be incorporated with excipients and used in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, chewing gums and the like. Tablets, pills, capsules, troches and the like may also contain binders, excipients, disintegrating agent, lubricants, glidants, sweetening agents, and flavoring agents. Some examples of binders include microcrystalline cellulose, gum tragacanth or gelatin. Examples of excipients include starch or lactose. Some examples of disintegrating agents include alginic acid, corn starch and the like. Examples of lubricants include magnesium stearate or potassium stearate. An example of a glidant is colloidal silicon dioxide. Some examples of sweetening agents include sucrose, saccharin and the like. Examples of flavoring agents include peppermint, methyl salicylate, orange flavoring and the like. Materials used in preparing these various compositions should be pharmaceutically pure and non-toxic in the amounts used. In another embodiment, the composition is administered as a tablet or a capsule.
- Various other materials may be present as coatings or to modify the physical form of the dosage unit. For instance, tablets may be coated with shellac, sugar or both. A syrup or elixir may contain, in addition to the active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and a flavoring such as cherry or orange flavor, and the like. For vaginal administration, a pharmaceutical composition may be presented as pessaries, tampons, creams, gels, pastes, foams or spray.
- The pharmaceutical composition can also be administered by nasal administration. As used herein, nasally administering or nasal administration includes administering the composition to the mucus membranes of the nasal passage or nasal cavity of the patient. As used herein, pharmaceutical compositions for nasal administration of a composition include therapeutically effective amounts of the compounds prepared by well-known methods to be administered, for example, as a nasal spray, nasal drop, suspension, gel, ointment, cream or powder. Administration of the composition may also take place using a nasal tampon or nasal sponge.
- For topical administration, suitable formulations may include biocompatible oil, wax, gel, powder, polymer, or other liquid or solid carriers. Such formulations may be administered by applying directly to affected tissues, for example, a liquid formulation to treat infection of conjunctival tissue can be administered dropwise to the subject's eye, or a cream formulation can be administered to the skin.
- Rectal administration includes administering the pharmaceutical compositions into the rectum or large intestine. This can be accomplished using suppositories or enemas. Suppository formulations can easily be made by methods known in the art. For example, suppository formulations can be prepared by heating glycerin to about 120° C., dissolving the pharmaceutical composition in the glycerin, mixing the heated glycerin after which purified water may be added, and pouring the hot mixture into a suppository mold.
- Transdermal administration includes percutaneous absorption of the composition through the skin. Transdermal formulations include patches, ointments, creams, gels, salves and the like.
- In addition to the usual meaning of administering the formulations described herein to any part, tissue or organ whose primary function is gas exchange with the external environment, for purposes of the present disclosure, “pulmonary” will also mean to include a tissue or cavity that is contingent to the respiratory tract, in particular, the sinuses. For pulmonary administration, an aerosol formulation containing the active agent, a manual pump spray, nebulizer or pressurized metered-dose inhaler as well as dry powder formulations are contemplated. Suitable formulations of this type can also include other agents, such as antistatic agents, to maintain the disclosed compounds as effective aerosols.
- A drug delivery device for delivering aerosols comprises a suitable aerosol canister with a metering valve containing a pharmaceutical aerosol formulation as described and an actuator housing adapted to hold the canister and allow for drug delivery. The canister in the drug delivery device has a head space representing greater than about 15% of the total volume of the canister. Often, the compound intended for pulmonary administration is dissolved, suspended or emulsified in a mixture of a solvent, surfactant and propellant. The mixture is maintained under pressure in a canister that has been sealed with a metering valve.
- The disclosure also encompasses the treatment of a condition associated with a dysfunction in proteostasis in a subject comprising administering to said subject an effective amount of a disclosed compound that enhances, improves or restores proteostasis of a protein. Proteostasis refers to protein homeostasis. Dysfunction in protein homeostasis is a result of protein misfolding, protein aggregation, defective protein trafficking or protein degradation. For example, the disclosure contemplates s administering a disclosed compound e.g., Formula I that corrects protein misfolding, reduces protein aggregation, corrects or restores protein trafficking and/or affects protein degradation for the treatment of a condition associated with a dysfunction in proteostasis. In some aspects, a disclosed compound e.g., Formula I that corrects protein misfolding and/or corrects or restores protein trafficking is administered. In cystic fibrosis, the mutated or defective enzyme is the cystic fibrosis transmembrane conductance regulator (CFTR). One of the most common mutations of this protein is ΔF508 which is a deletion (Δ) of three nucleotides resulting in a loss of the amino acid phenylalanine (F) at the 508th (508) position on the protein. As described above, mutated cystic fibrosis transmembrane conductance regulator exists in a misfolded state and is characterized by altered trafficking as compared to the wild type CFTR. Additional exemplary proteins of which there can be a dysfunction in proteostasis, for example that can exist in a misfolded state, include, but are not limited to, glucocerebrosidase, hexosamine A, aspartylglucosaminidase, α-galactosidase A, cysteine transporter, acid ceremidase, acid α-L-fucosidase, protective protein, cathepsin A, acid β-glucosidase, acid β-galactosidase, iduronate 2-sulfatase, α-L-iduronidase, galactocerebrosidase, acid α-mannosidase, acid β-mannosidase, arylsulfatase B, arylsulfatase A, N-acetylgalactosamine-6-sulfate sulfatase, acid β-galactosidase, N-acetylglucosamine-1-phosphotransferase, acid sphingmyelinase, NPC-1, acid α-glucosidase, β-hexosamine B, heparin N-sulfatase, a —N-acetylglucosaminidase, β-glucosaminide N-acetyltransferase, N-acetylglucosamine-6-sulfate sulfatase, a —N-acetylgalactosaminidase, β-neuramidase, β-glucuronidase, β-hexosamine A and acid lipase, polyglutamine, β-synuclein, TDP-43, superoxide dismutase (SOD), Aβ peptide, tau protein, transthyretin and insulin. The compounds of Formula I can be used to restore proteostasis (e.g., correct folding and/or alter trafficking) of the proteins described above.
- Protein conformational diseases encompass gain of function disorders and loss of function disorders. In one embodiment, the protein conformational disease is a gain of function disorder. The terms “gain of function disorder,” “gain of function disease,” “gain of toxic function disorder” and “gain of toxic function disease” are used interchangeably herein. A gain of function disorder is a disease characterized by increased aggregation-associated proteotoxicity. In these diseases, aggregation exceeds clearance inside and/or outside of the cell. Gain of function diseases include, but are not limited to, neurodegenerative diseases associated with aggregation of polyglutamine, Lewy body diseases, amyotrophic lateral sclerosis, transthyretin-associated aggregation diseases, Alzheimer's disease, Machado-Joseph disease, cerebral B-amyloid angiopathy, retinal ganglion cell degeneration, tauopathies (progressive supranuclear palsy, corticobasal degeneration, frontotemporal lobar degeneration), cerebral hemorrhage with amyloidosis, Alexander disease, Serpinopathies, familial amyloidotic neuropathy, senile systemic amyloidosis, ApoAI amyloidosis, ApoAII amyloidosis, ApoAIV amyloidosis, familial amyloidosis of the Finnish type, lysozyme amyloidosis, fibrinogen amyloidosis, dialysis amyloidosis, inclusion body myositis/myopathy, cataracts, medullary thyroid carcinoma, cardiac atrial amyloidosis, pituitary prolactinoma, hereditary lattice corneal dystrophy, cutaneous lichen amyloidosis, corneal lactoferrin amyloidosis, corneal lactoferrin amyloidosis, pulmonary alveolar proteinosis, odontogenic tumor amyloid, seminal vesical amyloid, sickle cell disease, critical illness myopathy, von Hippel-Lindau disease, spinocerebellar ataxia 1, Angelman syndrome, giant axon neuropathy, inclusion body myopathy with Paget disease of bone, frontotemporal dementia (IBMPFD) and prion diseases. Neurodegenerative diseases associated with aggregation of polyglutamine include, but are not limited to, Huntington's disease, dentatorubral and pallidoluysian atrophy, several forms of spino-cerebellar ataxia, and spinal and bulbar muscular atrophy. Alzheimer's disease is characterized by the formation of two types of aggregates: extracellular aggregates of Aβ peptide and intracellular aggregates of the microtubule associated protein tau. Transthyretin-associated aggregation diseases include, for example, senile systemic amyloidoses and familial amyloidotic neuropathy. Lewy body diseases are characterized by an aggregation of α-synuclein protein and include, for example, Parkinson's disease, lewy body dementia (LBD) and multiple system atrophy (SMA). Prion diseases (also known as transmissible spongiform encephalopathies or TSEs) are characterized by aggregation of prion proteins. Exemplary human prion diseases are Creutzfeldt-Jakob Disease (CJD), Variant Creutzfeldt-Jakob Disease, Gerstmann-Straussler-Scheinker Syndrome, Fatal Familial Insomnia and Kuru. In another embodiment, the misfolded protein is alpha-1 anti-trypsin.
- In a further embodiment, the protein conformation disease is a loss of function disorder. The terms “loss of function disease” and “loss of function disorder” are used interchangeably herein. Loss of function diseases are a group of diseases characterized by inefficient folding of a protein resulting in excessive degradation of the protein. Loss of function diseases include, for example, lysosomal storage diseases. Lysosomal storage diseases are a group of diseases characterized by a specific lysosomal enzyme deficiency which may occur in a variety of tissues, resulting in the build-up of molecules normally degraded by the deficient enzyme. The lysosomal enzyme deficiency can be in a lysosomal hydrolase or a protein involved in the lysosomal trafficking. Lysosomal storage diseases include, but are not limited to, aspartylglucosaminuria, Fabry's disease, Batten disease, Cystinosis, Farber, Fucosidosis, Galactasidosialidosis, Gaucher's disease (including Types 1, 2 and 3), Gm1 gangliosidosis, Hunter's disease, Hurler-Scheie's disease, Krabbe's disease, α-Mannosidosis, β-Mannosidosis, Maroteaux-Lamy's disease, Metachromatic Leukodystrophy, Morquio A syndrome, Morquio B syndrome, Mucolipidosis II, Mucolipidosis III, Neimann-Pick Disease (including Types A, B and C), Pompe's disease, Sandhoff disease, Sanfilippo syndrome (including Types A, B, C and D), Schindler disease, Schindler-Kanzaki disease, Sialidosis, Sly syndrome, Tay-Sach's disease and Wolman disease.
- In another embodiment, a disease associated with a dysfunction in proteostasis is a cardiovascular disease. Cardiovascular diseases include, but are not limited to, coronary artery disease, myocardial infarction, stroke, restenosis and arteriosclerosis. Conditions associated with a dysfunction of proteostasis also include ischemic conditions, such as, ischemia/reperfusion injury, myocardial ischemia, stable angina, unstable angina, stroke, ischemic heart disease and cerebral ischemia.
- In yet another embodiment, a treatment of a disease associated with a dysfunction in proteostasis is diabetes and/or complications of diabetes, including, but not limited to, diabetic retinopathy, cardiomyopathy, neuropathy, nephropathy, and impaired wound healing is contemplated.
- In a further embodiment, a treatment of a disease associated with a dysfunction in proteostasis is an ocular disease including, but not limited to, age-related macular degeneration (AMD), diabetic macular edema (DME), diabetic retinopathy, glaucoma, cataracts, retinitis pigmentosa (RP) and dry macular degeneration is contemplated.
- In yet additional embodiments, a disclosed method is directed to treating a disease associated with a dysfunction in proteostasis, wherein the disease affects the respiratory system or the pancreas. In certain additional embodiments, a contemplated method encompass treating a condition selected from the group consisting of polyendocrinopathy/hyperinsulinemia, diabetes mellitus, Charcot-Marie Tooth syndrome, Pelizaeus-Merzbacher disease, and Gorham's Syndrome.
- Additional conditions associated with a dysfunction of proteostasis include hemoglobinopathies, inflammatory diseases, intermediate filament diseases, drug-induced lung damage and hearing loss. For example, provided herein are methods for the treatment of hemoglobinopathies (such as sickle cell anemia), an inflammatory disease (such as inflammatory bowel disease, colitis, ankylosing spondylitis), intermediate filament diseases (such as non-alcoholic and alcoholic fatty liver disease) and drug induced lung damage (such as methotrexate-induced lung damage). In another embodiment, methods for treating hearing loss, such as noise-induced hearing loss, aminoglycoside-induced hearing loss, and cisplatin-induced hearing loss comprising administering a disclosed compound are provided.
- Additional conditions include those associated with a defect in protein trafficking and that can be treated according to a disclosed methods include: PGP mutations, hERG trafficking mutations, nephrongenic diabetes insipidus mutations in the arginine-vasopressin receptor 2, persistent hyperinsulinemic hypoglycemia of infancy (PHH1) mutations in the sulfonylurea receptor 1, and α1AT.
- The disclosure is illustrated by the following examples which are not meant to be limiting in any way.
- The compounds described herein can be prepared in a number of ways based on the teachings contained herein and synthetic procedures known in the art. In the description of the synthetic methods described below, it is to be understood that all proposed reaction conditions, including choice of solvent, reaction atmosphere, reaction temperature, duration of the experiment and workup procedures, can be chosen to be the conditions standard for that reaction, unless otherwise indicated. It is understood by one skilled in the art of organic synthesis that the functionality present on various portions of the molecule should be compatible with the reagents and reactions proposed. Substituents not compatible with the reaction conditions will be apparent to one skilled in the art, and alternate methods are therefore indicated. The starting materials for the examples are either commercially available or are readily prepared by standard methods from known materials. At least some of the compounds identified as “intermediates” herein are contemplated as compounds of the disclosure.
- General procedures for the preparation of contemplated compounds are outlined in Scheme I and Scheme II. The disclosed compounds may be prepared, for example, either by base-mediated condensation of an aromatic aldehyde with a suitably functionalized isatin derivative (Scheme I), or three-component coupling between an aromatic aldehyde, a functionalized aniline, and an alpha-keto acid as shown in Scheme II.
-
-
Abbreviation Name rt room temperature THF tetrahydrofuran MeCN acetonitrile MTBE tert-butyl methyl ether DMSO dimethylsulfoxide DCM dichloromethane DCE 1,2-dichloroethane EtOH ethanol Et2O diethyl ether MeOH methanol IPA isopropanol EtOAc ethyl acetate DMF N,N-dimethylformamide TFA trifluoroacetic acid Boc2O di-tert-butyl dicarbonate TEOF triethylorthoformate DMAP 4-(dimethylamino)pyridine TsOH 4-toluenesulfonic acid Ac2O acetic anhydride AcOH acetic acid AcCl acetyl chloride BnBr benzyl bromide NaOMe sodium methoxide NaOAc sodium acetate BuLi n-butyllithium MeMgBr methylmagnesium bromide HATU 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5- b]pyridinium-3-oxide hexafluorophosphate DIEA N,N-diisopropylelhylamine TEA triethylamine KOtBu potassium tert-butoxide TBHP tert-butyl hydroperoxide PPh3 triphenylphosphine DIAD diisopropyl azodicarboxylate Pd(OAc)2 palladium(II) acetate Ni(OAc)2 nickel(II) acetate NIS N-iodosuccinimide NBS N-bromosuccinimde py pyridine MeI iodomethane dppf 1,1′-bis(diphenylphosphino)ferrocene atm atmosphere NaBH(OAc)3 sodium triacetoxyborohydride mCPBA meta-chloroperbenzoic acid conc concentrated ESI Electrospray Ionization pos positive neg negative Calcd. Calculated - A. tert-Butyl N-[2-Bromo-4-(trifluoromethyl)phenyl]carbamate. To a 100-mL round-bottom flask was placed a solution of 2-bromo-4-(trifluoromethyl)aniline (4.8 g, 20.00 mmol) in THF (20 mL) then DMAP (488 mg, 3.99 mmol) and Boc2O (8.72 g) were added. The reaction was heated to reflux overnight then concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:50) affording 7.9 g of the title compound as a white solid. 1H NMR (300 MHz, CDCl3): δ 7.89 (s, 1H), 7.62-7.59 (d, J=9.0 Hz, 1H), 7.38-7.35 (d, J=9.0 Hz, 1H), 1.42 (s, 9H).
- B. tert-Butyl N-[2-Methyl-4-(trifluoromethyl)phenyl]carbamate. To a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of tert-butyl N-[2-bromo-4-(trifluoromethyl)phenyl]carbamate (6.75 g, 19.85 mmol, as prepared in the previous step) in dioxane/H2O (20:1; 20 mL) then methylboronic acid (2.98 g, 49.78 mmol), K3PO4 (25.25 g, 118.95 mmol), Pd(OAc)2 (889 mg, 3.96 mmol), and PCy3.HBF4 (2.92 g, 7.93 mmol) were added. The reaction was stirred at 100° C. for 12 h then concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:2) affording 4.69 g (86%) of the title compound as a brown solid. 1H NMR (300 MHz, CDCl3): δ 8.09-8.07 (d, J=6.0 Hz, 1H), 7.48-7.46 (d, J=6.0 Hz, 1H), 6.42 (s, 1H), 2.23 (s, 3H), 1.42 (s, 9H).
- C. 2-Methyl-4-(trifluoromethyl)aniline. To a 100-mL round-bottom flask was placed a solution of tert-butyl N-[2-methyl-4-(trifluoromethyl)phenyl]carbamate (3.621 g, 13.15 mmol, as prepared in the previous step) in DCM (20 mL) then TFA (6 mL) was added. The reaction was stirred for 1 hour at rt, diluted with DCM, and extracted with water. The aqueous extracts were combined then the pH was adjusted to 8 with saturated aqueous NaHCO3 solution and extracted with EtOAc. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 200 mg (9%) of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C8H9F3N+: 176.1 (M+H); Found: 176.0.
- D. 2-(N-Hydroxyimino)-N-[2-methyl-4-(trifluoromethyl)phenyl]acetamide. To a 100-mL round-bottom flask was placed a solution of 2,2,2-trichloroethane-1,1-diol (300 mg, 1.81 mmol), NH2OH.HCl (300 mg, 4.32 mmol), and Na2SO4 (1 g, 7.04 mmol) in water (20 mL). A solution of 2-methyl-4-(trifluoromethyl)aniline (200 mg, 1.14 mmol, as prepared in the previous step) in conc. HCl/H2O (0.5/10 mL) was added then the reaction was stirred for 2 h at 100° C. The reaction mixture was cooled to rt then the precipitate was isolated by filtration affording 56 mg (20%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H10F3N2O2 +: 247.1 (M+H); Found: 247.1.
- E. 7-Methyl-5-(trifluoromethyl)-2,3-dihydro-1H-indole-2,3-dione. To a 50-mL round-bottom flask was placed a solution of 2-(N-hydroxyimino)-N-[2-methyl-4-(trifluoromethyl)phenyl]acetamide (56 mg, 0.23 mmol, as prepared in the previous step) in conc. H2SO4 (2 mL) and stirred for 30 min at 90° C. The reaction was diluted with water and then the mixture was extracted with EtOAc (3×30 mL). The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 46 mg of the title compound as an orange solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H7F3NO2 +: 230.0 (M+H); Found: 230.0.
- A. (2E)-N-(4-Fluoro-2-methylphenyl)-2-(N-hydroxyimino)acetamide. To a 500-mL round-bottom flask was placed a solution of 4-fluoro-2-methylaniline (6 g, 47.94 mmol) in 10% HCl (80 mL) then 2,2,2-trichloroethane-1,1-diol (8.7 g, 52.60 mmol, 1.10 equiv) and NH2OH.HCl (10.6 g, 152.54 mmol, 3.20 equiv) were added. The reaction was stirred for 1 h at 80° C. then cooled to rt and extracted with EtOAc (3×50 mL). The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 4.4 g (47%) of the title compound as a brown oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H10FN2O2 +: 197.1 (M+H); Found: 197.1.
- B. 5-Fluoro-7-methyl-2,3-dihydro-1H-indole-2,3-dione. To a 100-mL round-bottom flask was placed a solution of (2E)-N-(4-fluoro-2-methylphenyl)-2-(N-hydroxyimino)acetamide (4.4 g, 22.43 mmol, as prepared in the previous step) in conc. H2SO4 (10 mL) then the mixture was stirred for 1 h at 80° C. The reaction was then quenched by the addition of water/ice and the precipitate was isolated by filtration affording 1.8 g (45%) of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H7FNO2 +: 180.1 (M+H); Found: 180.0. 1H NMR (400 MHz, DMSO-d6): δ 8.93 (s, 1H), 7.19-7.13 (m, 2H), 2.30 (s, 3H).
- A. N-(4-Bromo-2-methylphenyl)-2-(N-hydroxyimino)acetamide. To a 1000-mL round-bottom flask was placed a solution of 2,2,2-trichloroethane-1,1-diol (12.78 g, 77.27 mmol, 1.20 equiv) in water (200 mL) and 2N HCl (100 mL). To this solution were added Na2SO4 (18.32 g), NH2OH.HCl (8.9 g), and 4-bromo-2-methylaniline (12 g, 64.50 mmol) then the reaction was stirred for 1 h at 90° C. The reaction was quenched with water (200 mL) then the precipitate was isolated by filtration, washed with water (3×200 mL), and dried affording 7.38 g (45%) of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H10BrN2O2 +: 257.0 (M+H); Found: 256.8.
- B. 5-Bromo-7-methyl-2,3-dihydro-1H-indole-2,3-dione. To a 250-mL round-bottom flask was placed a solution of N-(4-bromo-2-methylphenyl)-2-(N-hydroxyimino)acetamide (7.38 g, 28.71 mmol, as prepared in the previous step) in concentrated H2SO4 (70 mL). The solution was stirred for 2 h at 80° C. then quenched by the addition of 500 mL of water/ice. The precipitate was isolated by filtration, washed with water (3×200 mL), and dried affording 6.5 g (94%) of the title compound as a red solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H7BrNO2 +: 240.0 (M+H); Found: 240.0. 1H NMR (400 MHz, DMSO-d6): δ 11.16 (s, 1H), 7.60 (s, 1H), 7.44 (s, 1H), 2.14 (s, 3H).
- A. 4-(Benzyloxy)-2-methyl-1-nitrobenzene. To a 100-mL round-bottom flask was placed a solution of 3-methyl-4-nitrophenol (1.53 g, 9.99 mmol) and K2CO3 (2.07 g, 14.98 mmol) in DMF (15 mL) then BnBr (2.04 g, 11.93 mmol) was added dropwise to the stirred solution. The reaction was stirred at rt overnight then quenched by the addition of water and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:20) affording 2.2 g (91%) of the title compound as a white solid.
- B. 4-(Benzyloxy)-2-methylaniline. To a 100-mL round-bottom flask purged and maintained with an inert atmosphere of N2 was placed a solution of 4-(benzyloxy)-2-methyl-1-nitrobenzene (2.2 g, 9.04 mmol) in MeOH (20 mL), then Raney Ni (200 mg) was added. The reaction was purged with H2 then stirred for 16 h at rt. The atmosphere was purged with N2, then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 1.8 g (93%) of the title compound as a dark red oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H16NO+: 214.1 (M+H); Found: 214.0.
- A. tert-Butyldimethyl[2-(3-methyl-4-nitrophenoxy)ethoxy]silane. To a 250-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (1 g, 6.53 mmol, 1.00 equiv) in NMP (50 mL) then Cs2CO3 (2.77 g, 8.50 mmol), NaI (980 mg), and (2-bromoethoxy)(tert-butyl)dimethylsilane (3.10 g, 12.96 mmol) were added. The resulting solution was stirred for 6 h at 100° C. then the reaction was quenched with water and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 1.48 g (73%) of the title compound as a white solid. 1H NMR (300 MHz, CDCl3): δ 8.14-8.03 (m, 1H), 6.84-6.81 (m, 2H), 4.14-4.11 (m, 2H), 4.01-3.98 (m, 2H), 2.64 (s, 3H), 0.92 (s, 9H), 0.11 (s, 6H).
- B. 4-[2-[(tert-Butyldimethylsilyl)oxy]ethoxy]-2-methylaniline. To a 250-mL round-bottom flask purged and maintained with an inert atmosphere of N2 was placed a solution of tert-butyldimethyl[2-(3-methyl-4-nitrophenoxy)ethoxy]silane (1.48 g, 4.75 mmol, as prepared in the previous step) in MeOH (50 mL), then Raney Ni (200 mg) was added. The reaction was purged with H2 then stirred for 16 h at rt. The atmosphere was purged with N2, then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 1.2 g of the title compound as a dark red oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H28NO2Si+: 282.2 (M+H); Found: 282.2.
- A. tert-Butyl N-(2-Bromo-4-tert-butylphenyl)carbamate. To a 250-mL round-bottom flask was placed a solution of 2-bromo-4-tert-butylaniline (4.56 g, 19.99 mmol) in THF (100 mL) then DMAP (244 mg, 2.00 mmol) and Boc2O (8.72 g, 39.95 mmol) were added. The reaction was stirred for 2 h at 65° C., then diluted with 250 mL of H2O and extracted with EtOAc (2×250 mL). The organic extracts were combined, was washed with brine (2×250 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 7 g of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H23BrNO2 +: 328.1 (M+H); Found: 328.1.
- B. tert-Butyl N-(4-tert-Butyl-2-methylphenyl)carbamate. To a 50-mL round-bottom flask was placed a solution of tert-butyl N-(2-bromo-4-tert-butylphenyl)carbamate (1.64 g, 5.00 mmol, as prepared in the previous step) in 1,4-dioxane/H2O (20/0.5 mL), then PCy3.HBF4 (368 mg, 1.00 mmol), Pd(OAc)2 (112 mg, 0.50 mmol), K3PO4 (3.18 g, 14.98 mmol) and methylboronic acid (450 mg, 7.52 mmol) were added. The resulting solution was purged with N2, stirred for 16 h at 100° C., and diluted with 200 mL of H2O. The mixture was extracted with EtOAc (2×200 mL) and the organic extracts were combined, was washed with brine (2×200 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether/EtOAc (100:1) affording 520 mg (40%) of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H26NO2 +: 264.2 (M+H); Found: 264.2.
- C. 4-tert-Butyl-2-methylaniline. To a 25-mL round-bottom flask was placed a solution of tert-butyl N-(4-tert-butyl-2-methylphenyl)carbamate (520 mg, 1.97 mmol, as prepared in the previous step) in DCM (6 mL) then TFA (3 mL) was added. The resulting solution was stirred for 2 h at rt then concentrated under reduced pressure. The residue was dissolved in 100 mL of aqueous NaHCO3 then the solution was extracted with EtOAc (2×50 mL). The organic extracts were combined, washed with brine (2×50 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 320 mg of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H18N+: 164.1 (M+H); Found: 164.1.
- D. (2E)-N-(4-tert-Butyl-2-methylphenyl)-2-(N-hydroxyimino)acetamide. To a 250-mL round-bottom flask was placed a solution of 4-tert-butyl-2-methylaniline (320 mg, 1.96 mmol, as prepared in the previous step) in water (100 mL) followed by NH2OH.HCl (420 mg, 6.00 mmol), Na2SO4 (10 g), conc. HCl (0.4 mL), and 2,2,2-trichloroethane-1,1-diol (396 mg, 2.39 mmol, 1.20 equiv). The resulting solution was stirred for 1 h at 90° C. then the reaction was cooled to rt. The solids were isolated by filtration and dried in an oven under reduced pressure affording 360 mg (78%) of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C13H19N2O2 +: 235.1 (M+H); Found: 235.1.
- E. 5-tert-Butyl-7-methyl-2,3-dihydro-1H-indole-2,3-dione. To a 25-mL round-bottom flask was placed a solution of (2E)-N-(4-tert-butyl-2-methylphenyl)-2-(N-hydroxyimino)acetamide (360 mg, 1.54 mmol, as prepared in the previous step) in conc. H2SO4 (3 mL). The resulting solution was stirred for 30 min at 70° C. then quenched by the addition of 100 mL of water/ice. The precipitate was isolated by filtration and dried in an oven under reduced pressure affording 150 mg (45%) of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C13H16NO2 +: 218.1 (M+H); Found: 218.1.
- A. (2E)-N-(2,5-dimethylphenyl)-2-(N-hydroxyimino)acetamide. To a 3000-mL round-bottom flask was placed a solution of 2,2,2-trichloroethane-1,1-diol (36 g, 217.65 mmol), NH2OH.HCl (44 g, 628.57 mmol) and Na2SO4 (300 g) in water (2000 mL) then 2,5-dimethylaniline (24.2 g, 199.70 mmol) in conc. HCl (20 mL) was added. The reaction was stirred at 100° C. for 1 h then cooled to rt and the precipitate was isolated by filtration and dried in an oven under reduced pressure affording 35.5 g (92%) of the title compound as a light brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H13N2O2 +: 193.1 (M+H); Found: 193.1.
- B. 4,7-Dimethyl-2,3-dihydro-1H-indole-2,3-dione. To a 50-mL round-bottom flask was placed a solution of (2E)-N-(2,5-dimethylphenyl)-2-(N-hydroxyimino)acetamide (3.5 g, 18.21 mmol, as prepared in the previous step) in conc H2SO4 (20 mL). The reaction was stirred for 30 min at 70° C. then quenched by the addition of 200 mL of water/ice. The solids were isolated by filtration and dried in an oven under reduced pressure affording 600 mg (19%) of the title compound as a red solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H10NO2 +: 176.1 (M+H); Found: 176.0.
- A. Ethyl 2-(2-Propanoylphenoxy)acetate. To a 250-mL round-bottom flask was placed a solution of 1-(2-hydroxyphenyl)propan-1-one (4.5 g, 29.97 mmol) in acetone (30 mL) then ethyl 2-bromoacetate (6.012 g, 36.00 mmol) and K2CO3 (12.42 g, 89.86 mmol) were added. The reaction was heated to reflux overnight, cooled to rt, and the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 6.769 g (96%) of the title compound as a colorless liquid.
- B. 2-(2-Propanoylphenoxy)acetic acid. To a 500-mL round-bottom flask was placed a solution of ethyl 2-(2-propanoylphenoxy)acetate (6.769 g, 28.65 mmol, as prepared in the previous step) in water (100 mL) then Na2CO3 (9.121 g, 86.06 mmol) was added. The reaction was stirred for 3 h at 100° C., cooled to rt, and the pH of the solution was adjusted to 2-3 with 6M HCl. The precipitate was isolated by filtration affording 5.79 g (97%) of the title compound as a white solid.
- C. 3-Ethyl-1-benzofuran. To a 100-mL round-bottom flask was placed a solution of 2-(2-propanoylphenoxy)acetic acid (4.16 g, 19.98 mmol, as prepared in the previous step) in Ac2O (20 mL), then NaOAc (8.2 g, 100.00 mmol) was added. The reaction was stirred at 140° C. overnight then cooled to rt, and the pH of the solution was adjusted to 6-7 with saturated aqueous NaHCO3 solution. The resulting solution was extracted with EtOAc (3×100 mL) and the organic extracts were combined, dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether affording 2.424 g (83%) of the title compound as a colorless liquid. 1H NMR (300 MHz, CDCl3): δ 7.63-7.60 (m, 1H), 7.54-7.51 (m, 1H), 7.45 (s, 1H), 7.37-7.26 (m, 2H), 2.80-2.72 (q, J=6.0 Hz, 2H), 1.42-1.37 (t, J=6.0 Hz, 3H).
- D. 1-(3-Ethyl-1-benzofuran-2-yl)ethan-1-one. To a 100-mL round-bottom flask was placed a solution of AlCl3 (2.65 g, 19.92 mmol) and AcCl (1.56 g, 19.89 mmol) in DCM (30 mL). The mixture was stirred for 30 min then 3-ethyl-1-benzofuran (2.424 g, 16.58 mmol, as prepared in the previous step) was added. The reaction was stirred for 30 min at rt then the pH of the solution was adjusted to 7 with saturated aqueous NaHCO3 solution. The solids were removed by filtration then the filtrate was dried over anhydrous Na2SO4 and concentrated under reduced pressure affording 2.348 g (75%) of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C12H13O2 +: 189.1 (M+H); Found: 189.1.
- Using General Procedure A with reagents, starting materials, and conditions familiar to those skilled in the art, the following intermediates were prepared:
-
Interme- diate Name and Data 17 1-(3-Phenyl-1-benzofuran-2-yl)ethan-1-one. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H13O2 +: 237.1 (M + H); Found: 237.1. 1H NMR (400 MHz, DMSO-d6): δ 7.81-7.79 (d, J = 8.0 Hz, 1H), 7.64-7.51 (m, 7H), 7.42-7.38 (m, 1H), 2.48 (s, 3H). 64 1-(3,7-Dimethyl-1-benzofuran-2-yl)ethan-1-one. Mass Spectrum (LCMS, ESI pos): Calcd. for C12H13O2 +: 189.1 (M + H); Found: 189.1. - A. Methyl 2-(2-Ethoxy-2-oxoethoxy)benzoate. To a 1-L round-bottom flask was placed a solution of methyl 2-hydroxybenzoate (40 g, 262.90 mmol) in acetone (500 mL) followed by ethyl 2-bromoacetate (53 g, 317.36 mmol) and K2CO3 (110 g, 790.15 mmol). The resulting solution was stirred at 80° C. overnight, cooled to rt, and filtered. The filtrate was concentrated under reduced pressure affording 70 g of the title compound as yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C12H15O5 +: 239.1 (M+H); Found: 239.2.
- B. 2-(Carboxymethoxy)benzoic acid. To a 1-L round-bottom flask was placed a solution of methyl 2-(2-ethoxy-2-oxoethoxy)benzoate (30 g, 125.93 mmol, as prepared in the previous step) in MeOH/THF (1:1, 500 mL) then NaOH (10 g, 250.02 mmol) was added. The reaction was stirred at 80° C. overnight, cooled to rt, and concentrated under reduced pressure. The residue was dissolved in water and the pH was adjusted to 5 with HCl. The precipitate was isolated by filtration affording 15 g (61%) of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H9O5 +: 197.04 (M+H); Found: 197.1. 1H NMR (400 MHz, DMSO-d6): δ 12.87 (s, 2H), 7.68-7.66 (m, 1H), 7.51-7.46 (m, 1H), 7.08-6.98 (m, 2H), 4.78 (s, 2H).
- C. 2,3-Dihydro-1-benzofuran-3-one. To a 500-mL round-bottom flask was placed a solution of 2-(carboxymethoxy)benzoic acid (15 g, 76.47 mmol, as prepared in the previous step) in Ac2O (150 mL) then NaOAc (20 g, 243.80 mmol) was added. The reaction was stirred at 140° C. overnight, cooled to rt, quenched by the addition of water, and extracted with EtOAc (3×50 mL). The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:50) affording 6 g (58%) of the title compound as a brown oil.
- D. 3-Chloro-1-benzofuran-2-carbaldehyde. To a 100-mL round-bottom flask was placed a solution of 2,3-dihydro-1-benzofuran-3-one (1 g, 7.46 mmol, as prepared in the previous step) in DMF (3 mL) followed by the dropwise addition of POCl3 (5.2 g, 33.91 mmol, 4.55 equiv) with stirring. The resulting solution was stirred at 100° C. overnight, cooled to rt, and quenched by the addition of water/ice. The precipitate was isolated by filtration affording 600 mg (45%) of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H6ClO2 +: 181.0 (M+H); Found: 181.1.
- A. 1-(3-Bromo-1-benzofuran-2-yl)ethan-1-one. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of AlCl3 (1.01 g, 7.57 mmol) in DCM (10 mL) followed by the addition of AcCl (594 mg, 7.57 mmol). The mixture was stirred 30 min at rt then 3-bromo-1-benzofuran (500 mg, 2.54 mmol) was added. The reaction was stirred for 30 min at rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 620 mg of the title compound as a light yellow solid.
- A. 1-(Benzyloxy)-4-methyl-2-nitrobenzene. To a 100-mL round-bottom flask was placed a solution of 4-methyl-2-nitrophenol (3.06 g, 19.98 mmol) in DMF (30 mL) then K2CO3 (4.14 g, 29.95 mmol) and BnBr (4.08 g, 23.85 mmol) were added. The reaction was stirred for 2 h at rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:25) affording 4.5 g (93%) of the title compound as yellow oil.
- B. 2-(Benzyloxy)-5-methylaniline. To a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of 1-(benzyloxy)-4-methyl-2-nitrobenzene (4.5 g, 18.50 mmol, as prepared in the previous step) in EtOAc (50 mL) then Raney Ni (200 mg) was added and the solution was degassed and back filled with H2. The reaction was stirred for 1 h at rt then the atmosphere was purged with N2 and the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 3.5 g (89%) of the title compound as an orange oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H16NO+: 214.1 (M+H); Found: 214.1.
- A. 2-(Benzyloxy)-1-methyl-4-nitrobenzene. To a 100-mL round-bottom flask was placed a solution of 2-methyl-5-nitrophenol (1.53 g, 9.99 mmol) in MeCN (20 mL) followed by K2CO3 (2.07 g, 14.98 mmol) and BnBr (2.04 g, 11.93 mmol). The reaction was stirred for 2 h at 80° C. then quenched by the addition of water/ice. The precipitate was isolated by filtration affording 2.35 g (97%) of the title compound as an off-white solid.
- B. 3-(Benzyloxy)-4-methylaniline. To a 250-mL round-bottom flask was placed a solution of 2-(benzyloxy)-1-methyl-4-nitrobenzene (1.9 g, 7.81 mmol, as prepared in the previous step) in MeOH (80 mL) and THF (40 mL). To this solution was added Ni(OAc)2.4H2O (3.8 g, 15.32 mmol) then the solution was cooled to 0° C. and NaBH4 (1.2 g, 31.72 mmol) was added in small portions. The reaction was stirred for 5 min at 0° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 1.9 g of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H16NO+: 214.1 (M+H); Found: 214.0.
- A. 4-(Benzyloxy)-1-methyl-2-nitrobenzene. To a 100-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (1.53 g, 9.99 mmol) in DMF (20 mL) then K2CO3 (2.07 g, 14.98 mmol) and BnBr (2.04 g, 11.93 mmol) were added. The resulting mixture was stirred for 16 h at rt then quenched by the addition of water. The resulting solution was extracted with EtOAc and the organic extracts were combined. The resulting solution was washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude product was purified by column chromatography eluting with EtOAc/petroleum ether (1:50) affording 1.6 g (66%) of the title compound as light yellow oil.
- B. 5-(Benzyloxy)-2-methylaniline. To a 250-mL round-bottom flask purged and maintained with an inert atmosphere of N2 was placed a solution of 4-(benzyloxy)-1-methyl-2-nitrobenzene (1.4 g, 5.76 mmol, as prepared in the previous step) in MeOH (30 mL), then Raney Ni (150 mg) was added. The reaction was purged with H2 then stirred for 16 h at rt. The atmosphere was purged with N2, then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 1 g (81%) of the title compound as light red oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H16NO+: 214.1 (M+H); Found: 214.1.
- A. 1-[2-(Benzyloxy)phenyl]-2-methylpropan-1-one. To a 100-mL round-bottom flask was placed a solution of 2-(benzyloxy)benzonitrile (10 g, 47.79 mmol) and CuBr (140 mg, 0.98 mmol) in THF (15 mL) then isopropylmagnesium bromide (62 mL, 62 mmol) was added. The reaction was stirred for 5 h at 80° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:5) affording 5 g (41%) of the title compound as light yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C17H19O2 +: 255.1 (M+H); Found: 255.1.
- B. 1-(2-Hydroxyphenyl)-2-methylpropan-1-one. To a 100-mL round-bottom flask purged and maintained with an inert atmosphere of N2 was placed a solution of 1-[2-(benzyloxy)phenyl]-2-methylpropan-1-one (2.4 g, 9.44 mmol, as prepared in the previous step) in MeOH (20 mL) followed by Pd on carbon (400 mg). The solution was degassed and back-filled with H2 then stirred for 2 h at rt. The H2 was vented then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 1.5 g (97%) of the title compound as light yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H13O2 +: 165.1 (M+H); Found: 165.0.
- C. Ethyl 2-[2-(2-Methylpropanoyl)phenoxy]acetate. To a 100-mL round-bottom flask was placed a solution of 1-(2-hydroxyphenyl)-2-methylpropan-1-one (4.9 g, 29.84 mmol, as prepared in the previous step) in acetone (30 mL) then K2CO3 (12.4 g, 89.86 mmol) and ethyl 2-bromoacetate (4.99 g, 29.88 mmol) were added. The reaction was stirred for 3 h at 56° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with water, and concentrated under reduced pressure affording 7.5 g of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H19O4 +: 251.1 (M+H); Found: 251.1.
- D. 2-[2-(2-Methylpropanoyl)phenoxy]acetic acid. To a 100-mL round-bottom flask was placed a solution of ethyl 2-[2-(2-methylpropanoyl)phenoxy]acetate (5 g, 19.98 mmol, as prepared in the previous step) and Na2CO3 (6.36 g, 59.44 mmol) in water (10 mL). The reaction was stirred at 95° C. for 2 h, quenched by the addition of dilute HCl/ice, and extracted with EtOAc. The organic extracts were combined, washed with water, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 3.8 g (86%) of the title compound as a yellow oil. 1H NMR (400 MHz, DMSO-d6): δ 13.06 (s, 1H), 7.51-7.39 (m, 2H), 7.06-7.02 (m, 2H), 4.82 (s, 2H), 3.65-3.55 (m, 1H), 1.08-1.06 (d, J=8.0 Hz, 6H).
- E. 3-(Propan-2-yl)-1-benzofuran. To a 100-mL round-bottom flask was placed a solution of 2-[2-(2-methylpropanoyl)phenoxy]acetic acid (3.8 g, 17.10 mmol, as prepared in the previous step) in Ac2O (38 mL) then NaOAc (7.6 g) was added. The reaction was stirred at 140° C. overnight, quenched by the addition of saturated aqueous NaHCO3, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:1000) affording 3.12 g of the title compound as colorless oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H13O+: 161.1 (M+H); Found: 161.1. 1H NMR (400 MHz, DMSO-d6): δ 7.73 (s, 1H), 7.69-7.66 (m, 1H), 7.56-7.53 (m, 1H), 7.33-7.22 (m, 2H), 3.13-3.02 (m, 1H), 1.32-1.30 (d, J=8.0 Hz, 6H).
- F. 3-(Propan-2-yl)-1-benzofuran-2-carbaldehyde. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of 3-(propan-2-yl)-1-benzofuran (500 mg, 3.12 mmol, as prepared in the previous step) in THF (10 mL). The solution was cooled to −78° C. then BuLi (3.75 mL, 3.75 mmol) was added dropwise. The mixture was stirred 30 min at −78° C. then DMF (456 mg, 6.25 mmol) was added. The reaction was stirred for 30 min at −78° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1;1000) affording 200 mg (34%) of the title compound as a yellow oil.
- Using General Procedure B with reagents, starting materials, and conditions familiar to those skilled in the art, the following intermediates were prepared:
-
Interme- diate Name and Data 15 3-Cyclopropyl-1-benzofuran-2-carbaldehyde. Mass Spectrum (LCMS, ESI pos): Calcd. for C12H11O2 +: 187.1 (M + H); Found: 187.0. 16 3-Cyclohexyl-1-benzofuran-2-carbaldehyde. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H17O2 +: 229.1 (M + H); Found: 229.1. - A. Methyl 2-(2-Ethoxy-2-oxoethoxy)benzoate. To a 500-mL round-bottom flask was placed a solution of methyl 2-hydroxybenzoate (20 g, 131.45 mmol) in acetone (200 mL) then ethyl 2-bromoacetate (26.4 g, 158.08 mmol) and K2CO3 (54.8 g, 393.64 mmol) were added. The reaction was stirred at 80° C. overnight, cooled to rt, and the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 48 g of the title compound as yellow oil.
- B. Methyl 3-Hydroxy-1-benzofuran-2-carboxylate. To a 250-mL round-bottom flask was placed a solution of methyl 2-(2-ethoxy-2-oxoethoxy)benzoate (11.9 g, 49.95 mmol, as prepared in the previous step) in MeOH (100 mL) then NaOMe (12.6 g, 70.00 mmol) was added. The reaction was stirred for 1.5 h at 65° C. then the solvent was removed under reduced pressure. The residue was dissolved in 200 mL of H2O, then the pH of the solution was adjusted to 5-6 with AcOH. The precipitate was isolated by filtration and dried in an oven under reduced pressure affording 6 g (63%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H9O4 +: 193.1 (M+H); Found: 193.0. 1H NMR (300 MHz, DMSO-d6): δ 10.76 (s, 1H), 7.87-7.83 (m, 1H), 7.54-7.44 (m, 2H), 7.30-7.24 (m, 1H), 3.49 (s, 3H).
- C. Methyl 3-Methoxy-1-benzofuran-2-carboxylate. To a 100-mL round-bottom flask was placed a solution of methyl 3-hydroxy-1-benzofuran-2-carboxylate (2.02 g, 10.51 mmol, as prepared in the previous step) and K2CO3 (1.6 g, 11.58 mmol) in acetone (30 mL) then dimethyl sulfate (1.6 g, 12.69 mmol) was added. The reaction was stiffed for 1.5 h at 65° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 2.5 g of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H11O4 +: 207.1 (M+H); Found: 207.0.
- D. 3-Methoxy-1-benzofuran-2-carboxylic acid. To a 100-mL round-bottom flask was placed a solution of methyl 3-methoxy-1-benzofuran-2-carboxylate (2.5 g, 12.12 mmol, as prepared in the previous step) in a mixture of EtOH (15 mL) and water (10 mL). To this solution was added NaOH (1.3 g, 32.50 mmol) then the reaction was stirred at 80° C. overnight. The EtOH was removed under reduced pressure then the solution was washed with EtOAc, the pH was adjusted to 6 with 2N HCl, and extracted with EtOAc. The organic extracts were combined, was washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 1.67 g (72%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H9O4 +: 193.1 (M+H); Found: 193.0.
- E. N, 3-Dimethoxy-N-methyl-1-benzofuran-2-carboxamide. To a 250-mL round-bottom flask was placed a solution of 3-methoxy-1-benzofuran-2-carboxylic acid (1.67 g, 8.69 mmol, as prepared in the previous step) in DCM (50 mL) then methoxy(methyl)amine hydrochloride (1.69 g, 17.33 mmol), HATU (6.61 g, 17.38 mmol), and DIEA (3.37 g, 26.08 mmol) were added. The reaction was stirred for 2 h at rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:5) affording 1.8 g (88%) of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C12H14NO4 +: 236.1 (M+H); Found: 236.0. 1H NMR (300 MHz, CDCl3): δ 7.73 (d, J=7.9 Hz, 1H), 7.51-7.36 (m, 2H), 7.30 (s, 1H), 4.15 (s, 3H), 3.86 (s, 3H), 3.39 (s, 3H).
- F. 3-Methoxy-1-benzofuran-2-carbaldehyde. To a 100-mL round-bottom flask was placed a solution of N, 3-dimethoxy-N-methyl-1-benzofuran-2-carboxamide (350 mg, 1.49 mmol, as prepared in the previous step) in THF (15 mL) then the solution was cooled to −20° C. and LiAlH4 (170 mg, 4.48 mmol) was added in small portions. The reaction was stirred for 5 min at −20° C. then quenched by the addition of Na2SO4.10H2O and the precipitate was removed by filtration. The filtrate was diluted with 50 mL of water and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 170 mg (65%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H9O3 +: 177.1 (M+H); Found: 177.0.
- A. Methyl 3-(Benzyloxy)-1-benzofuran-2-carboxylate. To a 25-mL round-bottom flask was placed a solution of methyl 3-hydroxy-1-benzofuran-2-carboxylate (192 mg, 1.00 mmol, as prepared in Intermediate 18, Step B) and KOtBu (224 mg, 2.00 mmol) in DMSO (5 mL). To this solution was added benzyl bromide (256 mg, 1.50 mmol) then the reaction was stirred at 100° C. for 2 h, diluted with 50 mL of H2O, and extracted with EtOAc (2×50 mL). The organic extracts were combined, washed with brine (2×50 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude product was purified by Prep-TLC (petroleum ether/EtOAc=8:1) affording 160 mg (57%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C17H15O4 +: 283.1 (M+H); Found: 283.1.
- B. 3-(Benzyloxy)-1-benzofuran-2-carboxylic acid. To a 25-mL round-bottom flask was placed a solution of methyl 3-(benzyloxy)-1-benzofuran-2-carboxylate (160 mg, 0.57 mmol, as prepared in the previous step) in EtOH/H2O (5/2 mL). To this solution was added KOH (95 mg, 1.69 mmol) then the reaction was stirred at 80° C. for 1 h, diluted with 50 mL of H2O, and washed with EtOAc (1×50 mL). The pH of the solution was adjusted to 3-4 with conc. HCl then the precipitate was isolated by filtration and dried in an oven under reduced pressure affording 105 mg (69%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H13O4 +: 269.1 (M+H); Found: 269.0.
- C. 3-(Benzyloxy)-N-methoxy-N-methyl-1-benzofuran-2-carboxamide. To a 25-mL round-bottom flask was placed a solution of 3-(benzyloxy)-1-benzofuran-2-carboxylic acid (105 mg, 0.39 mmol, as prepared in the previous step) in DCM (3 mL) then HATU (228 mg, 0.60 mmol), DIEA (155 mg, 1.20 mmol), and methoxy(methyl)amine hydrochloride (58.5 mg, 0.60 mmol) were added. The reaction was stirred for 1 h at rt, diluted with 50 mL of H2O, and extracted with EtOAc (2×50 mL). The organic extracts were combined, washed with brine (2×50 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude product was purified by Prep-TLC (petroleum ether/EtOAc=5:1) affording 70 mg (57%) of the title compound as yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C18H18NO4 +: 312.1 (M+H); Found: 312.2.
- D. 3-(Benzyloxy)-1-benzofuran-2-carbaldehyde. To a 50-mL 3-necked round-bottom flask was placed a solution of 3-(benzyloxy)-N-methoxy-N-methyl-1-benzofuran-2-carboxamide (350 mg, 1.12 mmol, as prepared in the previous step) in THF (5 mL) then LiAlH4 (128 mg, 3.37 mmol) was added. The reaction was stirred for 1 min at rt then quenched by the addition of Na2SO4.10H2O. The solids were removed by filtration then the filtrate was diluted with 50 mL of water and extracted with EtOAc. The organic extracts were combined, washed with water, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:5) affording 150 mg (53%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H13O3 +: 253.1 (M+H); Found: 253.1. 1H NMR (DMSO-d6, 300 MHz): δ 9.89 (s, 1H), 7.96-7.93 (m, 1H), 7.64-7.55 (m, 2H), 7.52-7.48 (m, 2H), 7.43-7.31 (m, 4H), 5.63 (s, 3H).
- Using General Procedure C with reagents, starting materials, and conditions familiar to those skilled in the art, the following intermediates were prepared:
-
Interme- diate Name and Data 47 3,6-Dimethyl-1-benzofuran-2-carbaldehyde. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H11O2 +: 175.1 (M + H); Found: 175.0 48 7-Chloro-3-methylbenzofuran-2-carbaldehyde. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H8ClO2 +: 195.0 (M + H); Found: 195.0. - A. Ethyl 2-(2-Cyanophenoxy)acetate. To a 1000-mL round-bottom flask was placed a solution of 2-hydroxybenzonitrile (30 g, 251.85 mmol) in MeCN (500 mL) then K2CO3 (104 g, 747.05 mmol) and ethyl 2-bromoacetate (50 g, 299.40 mmol) were added. The resulting solution was stirred overnight at rt then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 46 g (89%) of the title compound as a light yellow solid.
- B. Ethyl 3-Amino-1-benzofuran-2-carboxylate. To a 2000-mL round-bottom flask was placed a solution of KOtBu (18 g, 160.41 mmol) in THF (600 mL) then a THF solution (400 mL) solution of ethyl 2-(2-cyanophenoxy)acetate (20 g, 97.46 mmol, as prepared in the previous step) was added dropwise with stirring. After completion of addition, the reaction was stirred at rt for 2 h, quenched by the addition of water, and extracted with EtOAc (3×200 mL). The organic extracts were combined, washed with brine (2×200 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 17 g of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H12NO3 +: 206.1 (M+H); Found: 206.1.
- C. Ethyl 3-[[(tert-Butoxy)carbonyl]amino]-1-benzofuran-2-carboxylate. To a 1000-mL round-bottom flask was placed a solution of ethyl 3-amino-1-benzofuran-2-carboxylate (5.5 g, 26.80 mmol, as prepared in the previous step), DMAP (3.3 g) and TEA (70 mL) in DCM (700 mL). To this solution was added Boc2O (8.8 g, 40.32 mmol) then the resulting solution was stirred for 6 h at 40° C. The reaction was washed with 1N HCl (3×300 mL), saturated aqueous NaHCO3 (3×300 mL), and brine (3×200 mL), then dried over Na2SO4 and concentrated under reduced pressure affording 9.2 g of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H20NO5 +: 306.1 (M+H); Found: 306.2.
- D. 3-[[(tert-Butoxy)carbonyl]amino]-1-benzofuran-2-carboxylic acid. To a 500-mL round-bottom flask was placed a solution of ethyl 3-[[(tert-butoxy)carbonyl]amino]-1-benzofuran-2-carboxylate (9.2 g, 30.13 mmol, as prepared in the previous step) in THF/H2O (10:1; 220 mL) then LiOH (2.2 g, 91.86 mmol) was added. The reaction was stirred at 40° C. for 5 h then diluted with 100 mL of H2O. The resulting mixture was concentrated under reduced pressure to 120 mL then washed with DCM (3×100 mL). The pH of the aqueous layer was adjusted to 4-5 with 1N HCl then the precipitate was isolated by filtration affording 4.8 g (57%) of the title compound as a light yellow solid. 1H NMR (400 MHz, DMSO-d6): δ 8.99 (s, 1H), 8.00 (d, J=8.0 Hz, 1H), 7.64 (d, J=8.4 Hz, 1H), 7.53 (m, 1H), 7.35 (m, 1H), 1.50 (s, 9H).
- E. tert-Butyl N-[2-[Methoxy(methyl)carbamoyl]-1-benzofuran-3-yl]carbamate. To a 500-mL round-bottom flask was placed a solution of 3-[[(tert-butoxy)carbonyl]amino]-1-benzofuran-2-carboxylic acid (2 g, 7.21 mmol, as prepared in the previous step) in DCM (50 mL) then DIEA (4.7 g), HATU (5.5 g), and methoxy(methyl)amine hydrochloride (1.06 g, 10.87 mmol) were added. The reaction was stirred at rt for 3 h, quenched by the addition of 50 mL of water, and extracted with DCM (3×30 mL). The organic extracts were combined, washed with brine (1×20 mL), and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:30) affording 1.9 g (82%) of the title compound as light yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H21N2O5 +: 321.1 (M+H); Found: 321.1.
- F. tert-Butyl N-(2-Formyl-1-benzofuran-3-yl)carbamate. To a 500-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl N-[2-[methoxy(methyl)carbamoyl]-1-benzofuran-3-yl]carbamate (1.22 g, 3.81 mmol, as prepared in the previous step) in THF (200 mL) then LiAlH4 (210 mg, 5.53 mmol) was added. The reaction was stirred at rt for 30 min then quenched by the addition of 3 g of Na2SO4.10H2O. The solids were removed by filtration then the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:30) affording 0.7 g (70%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H16NO4 +: 262.1 (M+H); Found: 262.1.
- A. 4-(Benzyloxy)-1H-indole. To a 250-mL round-bottom flask was placed a solution of 1H-indol-4-ol (3 g, 22.53 mmol) in acetone (100 mL), then K2CO3 (6.225 g, 45.04 mmol) and BnBr (3.471 g, 20.29 mmol) were added. The reaction was stirred for 20 h at 30° C. then the solids were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:20) affording 2.95 g (59%) of the title compound as a brown oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H14NO+: 224.1 (M+H); Found: 224.1.
- B. 4-(Benzyloxy)-2,3-dihydro-1H-indole-2,3-dione. To a 100-mL round-bottom flask was placed a solution of 4-(benzyloxy)-1H-indole (1 g, 4.48 mmol, as prepared in the previous step) in DMSO (20 mL), then I2 (1.36 g) and TBHP (2.02 g, 22.41 mmol) were added. The reaction was stirred at 80° C. for 16 h, quenched by the addition of 50 mL of aqueous Na2S2O3, and extracted with EtOAc. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:2) affording 801 mg (71%) of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H12NO3 +: 254.1 (M+H); Found: 254.1.
- A. 1-(Benzyloxy)-3-methyl-5-nitrobenzene. To a 100-mL round-bottom flask was placed a solution of 3-methyl-5-nitrophenol (1 g, 6.53 mmol) in acetone (10 mL) then K2CO3 (1.8 g, 13.02 mmol) and BnBr (1.34 g) were added. The reaction was stirred at 80° C. for 16 h, the solids were filtered out then the filtrate was diluted with 50 mL of water and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure affording 1.11 g (70%) of the title compound as a yellow oil.
- B. 3-(Benzyloxy)-5-methylaniline. To a 100-mL round-bottom flask was placed a solution of 1-(benzyloxy)-3-methyl-5-nitrobenzene (600 mg, 2.47 mmol, as prepared in the previous step) and Ni(OAc)2.4H2O (874 mg) in MeOH/THF 2:1 (9 mL), then the solution was cooled to 0° C. and NaBH4 (365 mg) was added in several portions over 5 min. The reaction was stirred at rt for 1 h, The solids were removed by filtration and the filtrate was concentrated under reduced pressure affording 527 mg of the title compound as a brown oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H16NO+: 214.1 (M+H); Found: 214.1.
- A. 1-(Benzyloxy)-2-methyl-3-nitrobenzene. To a 500-mL 3-necked round-bottom flask was placed a solution of 2-methyl-3-nitrophenol (10 g, 65.30 mmol) and K2CO3 (13 g, 94.06 mmol) in CH3CN (100 mL) then BnBr (13 g, 76.01 mmol) was added. The reaction was stirred at 90° C. for 2 h, cooled to rt, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography eluting with EtOAc/petroleum ether (1:9) affording 8.6 g of the title compound as a yellow oil.
- B. 3-(Benzyloxy)-2-methylaniline. To a 100-mL round-bottom flask purged and maintained with an inert atmosphere of N2, was placed a solution of 1-(benzyloxy)-2-methyl-3-nitrobenzene (8.6 g, 35.35 mmol, as prepared in the previous step) in MeOH (10 mL) then Raney Ni (1 g) was added. The solution was degassed and back-filled with H2, then stirred for 16 h at room temperature. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 4.4 g of the title compound as a light yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H16NO+: 214.1 (M+H); Found: 214.1.
- A. 1-Methyl-2-nitro-4-(2-phenylethoxy)benzene. To a 100-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (5 g, 32.65 mmol) in DMF (10 mL) then K2CO3 (13.5 g, 96.97 mmol, 3.00 equiv) and BnBr (6.05 g, 32.69 mmol) were added. The reaction was stirred at 130° C. overnight, cooled to rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:50) affording 2.45 g (29%) of the title compound as a yellow solid. 1H NMR (400 MHz, DMSO-d6): δ 7.54-7.51 (m, 1H), 7.42-7.30 (m, 5H), 7.26-7.21 (m, 1H), 4.28 (t, J=6.0 Hz, 2H), 3.05 (t, J=6.0 Hz, 2H), 2.42 (s, 3H).
- B. 2-Methyl-5-(2-phenylethoxy)aniline. To a 100-mL round-bottom flask purged and maintained with an inert atmosphere of N2, was placed a solution of 1-methyl-2-nitro-4-(2-phenylethoxy)benzene (1 g, 3.89 mmol, as prepared in the previous step) in MeOH (20 mL) then Pd on carbon (200 mg) was added. The resulting mixture was degassed and back-filled with H2, then stirred for 2 h at rt. The solids were removed by filtration then the filtrate was concentrated under reduced pressure affording 1 g of the title compound as a colorless oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H15NO+: 228.1 (M+H); Found: 228.1.
- A. 3-Phenylcyclobutan-1-ol. To a 50-mL round-bottom flask was placed a solution of 3-phenylcyclobutan-1-one (1 g, 6.64 mmol) in MeOH (5 mL) then NaBH4 (130 mg, 3.53 mmol) was added. The reaction was stiffed for 20 min at rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with water, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 1 g of the title compound as a colorless oil.
- B. 1-Methyl-2-nitro-4-(3-phenylcyclobutoxy)benzene. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-phenylcyclobutan-1-ol (484 mg, 3.27 mmol, as prepared in the previous step), 4-methyl-3-nitrophenol (500 mg, 3.27 mmol), and PPh3 (1.03 g, 3.93 mmol) in THF (10 mL) then DIAD (792 mg, 3.92 mmol) was added dropwise. The reaction was stirred for 2 h at rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:5) affording 300 mg (32%) of the title compound as a yellow oil.
- C. 2-Methyl-5-(3-phenylcyclobutoxy)aniline. To a 50-mL round-bottom flask purged and maintained with an inert atmosphere of N2, was placed a solution of 1-methyl-2-nitro-4-(3-phenylcyclobutoxy)benzene (300 mg, 1.06 mmol, as prepared in the previous step) in MeOH (5 mL) then Raney Ni (30 mg) was added. The solution was degassed and back-filled with H2 and stiffed for 1 h at rt. The solids were removed by filtration then the filtrate was concentrated under reduced pressure affording 220 mg (82%) of the title compound as a light yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C17H20NO+: 254.2 (M+H); Found: 254.2.
- Using General Procedure D with reagents, starting materials, and conditions familiar to those skilled in the art, the following intermediates were prepared:
-
Interme- diate Name and Data 26 2-Methyl-5-[(4-phenylcyclohexyl)oxy]aniline. Mass Spectrum (LCMS, ESI pos): Calcd. for C19H24NO+: 282.2 (M + H); Found: 282.2. 27 2-Methyl-5-[(3-phenylcyclohexyl)oxy]aniline. Mass Spectrum (LCMS, ESI pos): Calcd. for C19H24NO+: 282.2 (M + H); Found: 282.2. 50 5-(Cyclohexyloxy)-2-methylaniline. Mass Spectrum (LCMS, ESI pos): Calcd. for C13H20NO+: 206.2 (M + H); Found: 206.1. - A. 4-(Cyclohexyloxy)-1-methyl-2-nitrobenzene. To a 100-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (460 mg, 3.00 mmol), cyclohexanol (360 mg, 3.59 mmol), and PPh3 (1.18 g, 4.50 mmol, 1.50 equiv) in THF (15 mL) then DIAD (909 mg, 4.50 mmol) was added. The reaction was stirred for 2 h at rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:100) affording 307 mg (43%) of the title compound as a white solid. 1H NMR (300 MHz, CDCl3): δ 7.517.50 (m, 1H), 7.23-7.20 (d, J=8.5 Hz, 1H), 7.07-7.03 (m, 1H), 4.30-4.25 (m, 1H), 2.52 (s, 3H), 2.05-1.94 (m, 2H), 1.87-1.77 (m, 2H), 1.59-1.53 (m, 3H), 1.43-1.33 (m, 3H), 0.93-0.85 (m, 1H).
- B. 5-(Cyclohexyloxy)-2-methylaniline. To a 50-mL round-bottom flask purged and maintained with an inert atmosphere of N2, was placed a solution of 4-(cyclohexyloxy)-1-methyl-2-nitrobenzene (307 mg, 1.30 mmol, as prepared in the previous step) in MeOH (5 mL) then Pd on carbon (50 mg) and AcOH (0.1 mL) were added. The mixture was degassed and back-filled with H2 and stirred for 4 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 210 mg (78%) of the title compound as an orange oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C13H20NO+: 206.2 (M+H); Found: 206.1.
- A. 1-Methyl-2-nitro-4-phenoxybenzene. To a 30-mL sealed tube was placed a solution of 4-bromo-1-methyl-2-nitrobenzene (1.07 g, 4.95 mmol) in dioxane (18 mL) then phenol (470 mg, 4.99 mmol), Cs2CO3 (3.26 g, 10.01 mmol), and CuI (190 mg, 1.00 mmol) were added. The reaction was heated to 120° C. for 3 h under microwave irradiation, cooled to rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:100) affording 166 mg (15%) of the title compound as a light yellow oil. 1H NMR (400 MHz, CD3OD): δ 7.54-7.53 (d, J=2.7 Hz, 1H), 7.46-7.42 (t, J=8.1 Hz, 3H), 7.27-7.18 (m, 2H), 7.09-7.07 (d, J=7.9 Hz, 2H), 2.54 (s, 3H).
- B. 2-Methyl-5-phenoxyaniline. To a 50-mL round-bottom flask purged and maintained with an inert atmosphere of N2, was placed a solution of 1-methyl-2-nitro-4-phenoxybenzene (165 mg, 0.72 mmol, as prepared in the previous step) in MeOH (4 mL) then Pd on carbon (20 mg) was added. The solution was degassed and back-filled with H2, then stirred for 1 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording (98%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C13H14NO+: 200.1 (M+H); Found: 200.1.
- A. N-(4-Methyl-3-nitrophenyl)benzamide. To a solution of 4-methyl-3-nitroaniline (5 g, 32.86 mmol) and TEA (11.6 mL) in DCM (60 mL) was added benzoyl chloride (4 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at rt then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 7.8 g (93%) of the title compound as an off-white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H13N2O3 +: 257.1 (M+H); Found: 257.1.
- B. N-(3-Amino-4-methylphenyl)benzamide. To a solution of N-(4-methyl-3-nitrophenyl)benzamide (1 g, 3.90 mmol, as prepared in the previous step) in EtOH (20 mL) was added Pd on carbon (200 mg) under N2. The resulting solution was degassed and back-filled with H2 then the reaction was stirred for 16 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 650 mg (74%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H15N2O+: 227.1 (M+H); Found: 227.1.
- A. N-(4-Methyl-3-nitrophenyl)-2-phenylacetamide. To a solution of 4-methyl-3-nitroaniline (3 g, 19.72 mmol) and pyridine (1.78 mL) in THF (30 mL), was added 2-phenylacetyl chloride (2.66 mL) dropwise with stirring at 0° C. The reaction was stirred for 3 h at rt, quenched by the addition of 30 mL of aqueous NHaCl, and extracted with EtOAc (3×100 mL). The organic extracts were combined, washed with brine (2×100 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 5 g (94%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H15N2O3 +: 271.1 (M+H); Found: 271.1.
- B. N-(3-Amino-4-methylphenyl)-2-phenylacetamide. To a solution of N-(4-methyl-3-nitrophenyl)-2-phenylacetamide (2 g, 7.40 mmol, as prepared in the previous step) in EtOH (30 mL) was added Pd on carbon (200 mg) under nitrogen. The reaction was degassed and back-filled with H2, then stirred for 16 h at rt. The H2 was purged then the solids were removed by filtration, and the filtrate was concentrated under reduced pressure affording 1.7 g (96%) of the title compound as an off-white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H17N2O+: 241.1 (M+H); Found: 241.1.
- A. N-Methoxy-N-methyl-2,1-benzoxazole-3-carboxamide. To a 50-mL round-bottom flask was placed a solution of 2,1-benzoxazole-3-carboxylic acid (500 mg, 3.07 mmol) in DCM (20 mL) then HATU (2.33 g, 6.13 mmol), DIEA (2.4 g, 18.57 mmol), and methoxy(methyl)amine hydrochloride (598 mg, 6.13 mmol) were added. The reaction was stirred for 5 h at rt, quenched by the addition of 15 mL of water, and extracted with DCM (3×30 mL). The organic extracts were combined, washed with brine (1×20 mL), dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:20) affording 158 mg (25%) of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H11N2O3 +: 207.1 (M+H); Found: 207.1.
- B. 1-(2,1-Benzoxazol-3-yl)ethan-1-one. To a 25-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-methoxy-N-methyl-2,1-benzoxazole-3-carboxamide (158 mg, 0.77 mmol, as prepared in the previous step) in THF (10 mL). The solution was cooled to 0° C. then MeMgBr (1.54 mmol, 0.53 mL of 2.9 M THF solution) was added dropwise with stirring. The reaction was stirred for 15 min at 0° C. then quenched by the addition of 10 mL of saturated aqueous NH4Cl solution and extracted with EtOAc (3×20 mL). The organic extracts were combined, washed with brine (1×20 mL), dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:30) affording 98 mg (79%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H8NO2 +: 162.1 (M+H); Found: 162.0.
- A. 4-(Benzyloxy)-7-methyl-1H-indole. To a 500-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(benzyloxy)-1-methyl-2-nitrobenzene (10 g, 41.11 mmol, as prepared in Intermediate 13, Step A) in THF (50 mL) then the solution was cooled to −40° C. and ethenylmagnesium bromide (200 mL) was added dropwise with stirring. The resulting solution was stirred for 3 h at −40° C., quenched by the addition of saturated aqueous NH4Cl solution, and extracted with EtOAc. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:150) affording 2.3 g (24%) of the title compound as a brown oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H16NO+: 238.1 (M+H); Found: 238.1.
- B. 4-(Benzyloxy)-7-methyl-2,3-dihydro-1H-indole-2,3-dione. To a 250-mL round-bottom flask was placed a solution of 4-(benzyloxy)-7-methyl-1H-indole (4.4 g, 18.54 mmol, as prepared in the previous step) in DMSO (50 mL) then I2 (5.66 g, 22.30 mmol) was added followed by the dropwise addition of TBHP (8.36 g, 92.76 mmol). The reaction was stirred for 5 h at 80° C., quenched by the addition of water, and extracted with DCM. The organic extracts were combined, washed with aqueous Na2S2O3 solution, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:8) affording 2 g (40%) of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H14NO3 +: 268.1 (M+H); Found: 268.1.
- Using General Procedure E with reagents, starting materials, and conditions familiar to those skilled in the art, the following intermediates were prepared:
-
Interme- diate Name and Data 63 7-Methyl-4-(trifluoromethoxy)-2,3-dihydro-1H-indole-2,3- dione Mass Spectrum (LCMS, ESI pos): Calcd. for C10H7F3NO3 +: 246.0 (M + H); Found: 246.2. - A. N-(Oxo-[4]-sulfanylidene)methanesulfonamide. To a 100-mL round-bottom flask was placed a solution of methanesulfonamide (17.8 g, 187.13 mmol) in toluene (50 mL) then thionyl chloride (20 mL) was added. The reaction was stirred overnight at 90° C. then concentrated under reduced pressure affording 26.4 g of the title compound as a brown oil.
- B. N-(Chlorosulfinyl)-2-methylaniline. To a 100-mL round-bottom flask was placed a solution of 2-methylaniline (12.5 g, 117 mmol) in toluene (50 mL) then the solution was cooled to 0° C. and thionyl chloride (21 g, 177 mmol) was added dropwise with stirring. The reaction was heated to reflux for 5 h then cooled to rt and concentrated under reduced pressure affording 22.8 g of the title compound as a brown solid.
- C. 2,1-Benzothiazole. To a 250-mL round-bottom flask was placed a solution of N-(oxo-[4]-sulfanylidene)methanesulfonamide (25.4 g, 179.93 mmol, as prepared in Step A) and pyridine (9.5 g, 120.10 mmol) in toluene (50 mL), then a solution of N-(chlorosulfinyl)-2-methylaniline (22.8 g, 120.21 mmol, as prepared in the previous step) in toluene (20 mL) was added dropwise with stirring. The reaction was stirred overnight at 90° C. then cooled to rt and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:10). The product was further purified by Flash-Prep-HPLC (IntelFlash-1: Column, C18; mobile phase, MeCN/H2O (0.05% NH4HCO3)=20/80 increasing to MeCN/H2O (0.05% NH4HCO3)=95/5 within 20 min; Detector, uv 254 nm) affording 3.275 g (20%) of the title compound as a brown liquid. Mass Spectrum (LCMS, ESI pos): Calcd. for C7H6NS+: 136.0 (M+H); Found: 136.0.
- D. 2,1-Benzothiazole-3-carbaldehyde. To a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2,1-benzothiazole (3.275 g, 24.23 mmol, as prepared in the previous step) in THF (50 mL), then the solution was cooled to −78° C. and BuLi (19.4 mL of 2.5 M hexanes solution, 48.5 mmol) was added dropwise with stirring. The resulting solution was stirred for 30 min at −40° C. then DMF (3.542 g, 48.46 mmol) was added dropwise with stirring. The reaction was stirred at −40° C. for 2 h, quenched by the addition of saturated aqueous NH4Cl solution, and extracted with EtOAc. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:30) affording 1.846 g (47%) of the title compound as a brown solid.
- E. 1-(2,1-Benzothiazol-3-yl)ethan-1-ol. To a 100-mL 3-necked round-bottom flask was placed a solution of 2,1-benzothiazole-3-carbaldehyde (560 mg, 3.43 mmol, as prepared in the previous step) in THF (30 mL), then the solution was cooled to 0° C. and MeMgBr (3.44 mL of a 3 M THF solution, 10.3 mmol) was added dropwise with stirring. The reaction was stirred for 1 h at rt, quenched by the addition of saturated aqueous NH4Cl solution, and extracted with EtOAc. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:3) affording 414 mg (67%) of the title compound as a brown oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H10NOS+: 180.1 (M+H); Found: 180.0.
- F. 1-(2,1-Benzothiazol-3-yl)ethan-1-one. To a 100-mL round-bottom flask was placed a solution of 1-(2,1-benzothiazol-3-yl)ethan-1-ol (414 mg, 2.31 mmol, as prepared in the previous step) in DCM (20 mL) then Dess-Martin Periodinane (1.972 g, 4.65 mmol) was added. The reaction was stirred for 2 h at rt then the solids were removed by filtration. The filtrate was concentrated under reduced pressure then the residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:3) affording 322 mg (79%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H8NOS+: 178.0 (M+H); Found: 178.0.
- A. 1-(3-Methyl-1-benzothiophen-2-yl)ethan-1-one. To a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of AlCl3 (3.2 g) in DCM (20 mL) then AcCl (1.9 g, 24.20 mmol) was added. This was followed by the addition of 3-methyl-1-benzothiophene (1.2 g, 8.10 mmol) dropwise with stirring. The solution was stirred for 3 h at rt, quenched by the addition of 50 mL of water, and extracted with DCM (3×30 mL). The organic extracts were combined, washed with brine (2×30 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:80) affording 1.25 g (81%) of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H11OS+: 191.1 (M+H); Found: 191.1. 1H NMR (300 MHz, DMSO-d6): δ 8.00-7.97 (m, 2H), 7.55-7.43 (m, 2H), 2.60 (s, 3H), 2.60 (s, 3H).
- A. 4-(Benzyloxy)-1-chloro-2-nitrobenzene. To a 250-mL round-bottom flask was placed a solution of 4-chloro-3-nitrophenol (5 g, 28.81 mmol) and K2CO3 (6 g, 43.41 mmol) in MeCN (50 mL) then BnBr (4.9 g, 28.65 mmol) was added. The reaction was stirred for 16 h at 90° C., cooled to rt, and the solids were removed by filtration. The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (2%) affording 6.7 g of the title compound as a yellow solid.
- B. 4-(Benzyloxy)-1-cyclopropyl-2-nitrobenzene. To a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(benzyloxy)-1-chloro-2-nitrobenzene (1 g, 3.79 mmol, as prepared in the previous step) in dioxane/H2O (20:1, 50 mL) then cyclopropylboronic acid (640 mg, 7.45 mmol), Pd(OAc)2 (0.17 g), PCy3.HBF4 (0.27 g), and K2CO3 (4.7 g, 34.01 mmol) were added. The reaction was stirred for 4 h at 120° C., quenched by the addition of 15 mL of water, and extracted with EtOAc (2×30 mL). The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether (100%) affording 850 mg of the title compound as a yellow solid.
- C. 5-(Benzyloxy)-2-cyclopropylaniline. To a 25-mL round-bottom flask was placed a solution of 4-(benzyloxy)-1-cyclopropyl-2-nitrobenzene (500 mg, 1.86 mmol, as prepared in the previous step) in MeOH (5 mL) then Raney Ni (300 mg) was added. The solution was degassed and back-filled with H2 and stirred for 16 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 430 mg (97%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H18NO+: 240.1 (M+H); Found: 240.1.
- Using General Procedure F with reagents, starting materials, and conditions familiar to those skilled in the art, the following intermediates were prepared:
-
Interme- diate Name and Data 37 5-(Benzyloxy)-2-ethylaniline. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H18NO+: 228.1 (M + H); Found: 228.1. 38 5-(Benzyloxy)-2-(propan-2-yl)aniline. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H20NO+: 242.2 (M + H); Found: 242.1. - A. 4-(Benzyloxy)-1-fluoro-2-nitrobenzene. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-fluoro-3-nitrophenol (1 g, 6.37 mmol) in acetone (20 mL) then K2CO3 (2.64 g, 18.96 mmol) and BnBr (1.31 g, 7.66 mmol) were added. The reaction was stirred overnight at rt then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 1.1 g (70%) of the title compound as a light yellow solid.
- B. 5-(Benzyloxy)-2-fluoroaniline. To a 25-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(benzyloxy)-1-fluoro-2-nitrobenzene (200 mg, 0.81 mmol, as prepared in the previous step) and Ni(OAc)2.4H2O (287 mg, 2.44 mmol) in THF/MeOH (1:1, 6 mL). To this solution was added NaBH4 (123 mg, 3.34 mmol) in several portions. The reaction was stirred for 1 h at rt, quenched by the addition of ice water, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure affording 220 mg of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C13H13FNO+: 218.1 (M+H); Found: 218.1.
- A. 4-(Benzyloxy)-1-chloro-2-nitrobenzene. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-chloro-3-nitrophenol (1.7 g, 9.80 mmol) in acetone (10 mL) then K2CO3 (4.07 g, 29.24 mmol) and BnBr (2.02 g, 11.81 mmol) were added. The reaction was stirred overnight at rt then the solids were removed by filtration. The filtrate was concentrated under reduced pressure then the residue was triturated with petroleum ether and the solid was isolated by filtration affording 2.6 g of the title compound as a yellow solid. 1H NMR (400 MHz, DMSO-d6): δ 7.81-7.79 (d, J=8.0 Hz, 1H), 7.77-7.66 (m, 1H), 7.49-7.34 (m, 6H), 5.22 (s, 2H).
- B. 4-(Benzyloxy)-7-chloro-1H-indole. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(benzyloxy)-1-chloro-2-nitrobenzene (1 g, 3.79 mmol, as prepared in the previous step) in THF (15 mL), then the solution was cooled to −40° C. and ethenylmagnesium bromide (11.5 mL of 1 M THF solution, 11.5 mmol) was added. The reaction was stirred for 1 h at −40° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined and concentrated under vacuum. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:5) affording 260 mg (27%) of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H13ClNO+: 258.1 (M+H); Found: 258.1.
- C. 4-(Benzyloxy)-7-chloro-2,3-dihydro-1H-indole-2,3-dione. To a 25-mL round-bottom flask was placed a solution of 4-(benzyloxy)-7-chloro-1H-indole (260 mg, 1.01 mmol, as prepared in the previous step) in DMSO (5 mL) then I2 (305 mg, 1.20 mmol) and TBHP (450 mg, 4.99 mmol) were added. The reaction was stirred overnight at 80° C., quenched by the addition of aqueous Na2S2O3 solution, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:5) affording 100 mg (34%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H11ClNO3 +: 288.0 (M+H); Found: 288.0.
- A. 3-(4-Methyl-3-nitrophenoxymethyl)pyridine. To a 250-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (5 g, 32.65 mmol) and K2CO3 (6.5 g, 47.03 mmol, 1.50 equiv) in MeCN (50 mL) then 3-(bromomethyl)pyridine (6.5 g, 37.79 mmol) was added. The reaction was stirred for 16 h at 90° C., cooled to rt, and the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 3.7 g of the title compound as a yellow oil.
- B. 2-Methyl-5-(pyridin-3-ylmethoxy)aniline. To a 50-mL round-bottom flask purged and maintained with an inert atmosphere of N2, was placed a solution of 3-(4-methyl-3-nitrophenoxymethyl)pyridine (486 mg, 1.99 mmol, as prepared in the previous step) in MeOH (10 mL) then Raney Ni (1 g) was added and the solution was degassed and back-filled with H2. The reaction was stirred for 4 h at rt then the H2 was purged and the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 376 mg (88%) of the title compound as a colorless liquid. Mass Spectrum (LCMS, ESI pos): Calcd. for C13H15N2O+: 215.1 (M+H); Found: 215.1.
- Using General Procedure G with reagents, starting materials, and conditions familiar to those skilled in the art, the following intermediates were prepared:
-
Interme- diate Name and Data 42 2-Methyl-5-(pyridin-2-ylmethoxy)aniline. Mass Spectrum (LCMS, ESI pos): Calcd. for C13H15N2O+: 215.2 (M + H); Found: 215.1. 1H NMR (400 MHz, DMSO-d6): δ 8.57-8.56 (m, 1H), 7.84-7.80 (m, 1H), 7.47-7.45 (d, J = 8.0 Hz, 1H), 7.34-7.31 (m, 1H), 6.81-6.78 (d, J = 9.6 Hz, 1H), 6.29 (s, 1H), 6.14-6.12 (m, 1H), 5.05 (s, 2H), 4.85 (brs, 2H), 1.97 (s, 3H). - 4-(Difluoromethoxy)-1-methyl-2-nitrobenzene. To a 250-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (5 g, 32.65 mmol) in DMF (50 mL). To the solution were added Cs2CO3 (9 g, 65.14 mmol), ClF2COONa (10 g, 65.59 mmol). The resulting solution was stirred for 8 h at 100° C. in an oil bath. The solids were filtered out and the resulting solution was concentrated under vacuum to give 3.7 g (56%) of the title compound as yellow oil.
- 5-(Difluoromethoxy)-2-methylaniline. To a 100-mL round-bottom flask, was placed a solution of 4-(difluoromethoxy)-1-methyl-2-nitrobenzene (1 g, 4.92 mmol) in MeOH (7 mL). To the solution was added Raney Ni (100 mg, 1.69 mmol). The solution was degassed and back filled with hydrogen. The resulting solution was stirred for 2 h at room temperature. The solids were filtered out. The resulting solution was concentrated under vacuum to give 712 mg (84%) of the title compound as yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C8H10F2NO+: 174.1 (M+H); Found: 174.2.
- Using General Procedure H with reagents, starting materials, and conditions familiar to those skilled in the art, the following intermediates were prepared:
-
Interme- diate Name and Data 45 4-(Difluoromethoxy)-2-methylaniline. Mass Spectrum (LCMS, ESI pos): Calcd. for C8H10F2NO+: 174.1 (M + H); Found: 174.2. - 4-(2,2-Difluoroethoxy)-1-methyl-2-nitrobenzene. To a 250-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (3 g, 19.59 mmol) in DMF (50 mL) then 2-bromo-1,1-difluoroethane (3.54 g, 24.42 mmol) and Cs2CO3 (32 g, 98.21 mmol) were added. The reaction was stirred for 16 h at 90° C., cooled to rt, and filtered. The filtrate was diluted with water and extracted with EtOAc. The combined organic layers were concentrated under reduced pressure affording 4.6 g of the title compound as a yellow solid.
- 5-(2,2-Difluoroethoxy)-2-methylaniline. To a 50-mL round-bottom flask purged and maintained with an inert atmosphere of N2, was placed a solution of 4-(2,2-difluoroethoxy)-1-methyl-2-nitrobenzene (1 g, 4.60 mmol, as prepared in the previous step) in MeOH (10 mL) then Pd on carbon (200 mg) was added. The solution was degassed and back-filled with H2 and stirred for 16 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 682 mg (79%) of the title compound as a black solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H12F2NO+: 188.1 (M+H); Found: 188.1.
- Using General Procedure I with reagents, starting materials, and conditions familiar to those skilled in the art, the following intermediates were prepared:
-
Interme- diate Name and Data 46 4-(2,2-Difluoroethoxy)-2-methylaniline. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H12F2NO+: 188.1 (M + H); Found: 188.1. - A. 3-Methyl-1-benzofuran-7-ol. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 7-methoxy-3-methyl-1-benzofuran (400 mg, 2.47 mmol) in DCM (5 mL) then the solution was cooled to −78° C. and BBr3 (3.7 mL) was added. The reaction was stirred for 5 h over which time the temperature was allowed to increase to rt. The reaction was quenched by the addition of water and extracted with DCM. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:5) affording 320 mg (88%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H9O2 +: 149.1 (M+H); Found: 149.1.
- B. 7-(Benzyloxy)-3-methyl-1-benzofuran. To a 50-mL round-bottom flask was placed a solution of 3-methyl-1-benzofuran-7-ol (320 mg, 2.16 mmol, as prepared in the previous step) in acetone (10 mL) then K2CO3 (896 mg, 6.49 mmol) and BnBr (416 mg, 2.43 mmol) were added. The reaction was stirred overnight at rt then the solids were removed by filtration. The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:7) affording 490 mg (95%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H15O2 +: 239.1 (M+H); Found: 239.1.
- C. 7-(Benzyloxy)-3-methyl-1-benzofuran-2-carbaldehyde. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 7-(benzyloxy)-3-methyl-1-benzofuran (490 mg, 2.06 mmol, as prepared in the previous step) in THF (5 mL) then the solution was cooled to −78° C. and BuLi (0.9 mL of 2.5M THF solution) was added. The reaction was stirred for 1 h at −78° C. then DMF (300 mg, 4.11 mmol) was added. The reaction was stirred for 1 h at −78° C. then quenched by the addition of saturated aqueous NH4Cl solution and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:5) affording 300 mg (55%) of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C17H15O3 +: 267.1 (M+H); Found: 267.1.
- A. 1-Chloro-4-(cyclohexyloxy)-2-nitrobenzene. To a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-chloro-3-nitrophenol (5 g, 28.81 mmol), cyclohexanol (5.78 g, 57.71 mmol), and PPh3 (11.36 g, 43.31 mmol) in THF (50 mL) then the solution was cooled to 0° C. and DIAD (8.76 g, 43.32 mmol) was added dropwise with stirring. The reaction was stirred for 2 h at rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:100) affording 3.5 g (48%) of the title compound as a light yellow solid.
- B. 4-(Cyclohexyloxy)-1-ethenyl-2-nitrobenzene as yellow oil. To a 250-mL round-bottom flask was placed a solution of 1-chloro-4-(cyclohexyloxy)-2-nitrobenzene (2.8 g, 10.95 mmol, as prepared in the previous step) in dioxane/water (42 mL) then 2-ethenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.4 g, 22.08 mmol), K3PO4 (9.3 g, 43.81 mmol), PCy3.HBF4 (808 mg, 2.20 mmol), and Pd(OAc)2 (492 mg, 2.19 mmol) were added under nitrogen. The reaction was stirred for 1 h at 100° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:100) affording 2 g (74%) of the title compound as a yellow oil. 1H NMR (300 MHz, CDCl3): δ 7.53 (d, J=8.6 Hz, 1H), 7.42 (d, J=2.6 Hz, 1H), 7.17-7.01 (m, 2H), 5.64 (d, J=15 Hz, 1H), 5.38 (d, J=12 Hz, 1H), 4.36-4.28 (m, 1H), 1.97-1.80 (m, 4H), 1.62-1.35 (m, 6H).
- C. 5-(Cyclohexyloxy)-2-ethylaniline. To a 100-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(cyclohexyloxy)-1-ethenyl-2-nitrobenzene (2 g, as prepared in the previous step) in MeOH (15 mL) then Pd on carbon (200 mg) was added. The resulting solution was degassed and back-filled with H2 and stirred for 2 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure and the residue was purified by Flash-Prep-HPLC (IntelFlash-1: Column, C18; mobile phase, MeCN/H2O=5/95 increasing to MeCN/H2O=95/5 within 30 min; Detector, uv 254 nm) affording 900 mg of the title compound as light yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H22NO+: 220.2 (M+H); Found: 220.1.
- Using General Procedure J with reagents, starting materials, and conditions familiar to those skilled in the art, the following intermediates were prepared:
-
Interme- diate Name and Data 61 2-Ethyl-5-(1-phenylpropoxy)aniline. Mass Spectrum (LCMS, ESI pos): Calcd. for C17H22NO+: 256.2 (M + H); Found: 256.2. - A. 1-Methyl-2-nitro-4-(1-phenylethoxy)benzene. To a 50-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (1.5 g, 9.80 mmol) in acetone (20 mL) then K2CO3 (4.07 g, 29.49 mmol) and (1-bromoethyl)benzene (2 g, 10.81 mmol) were added. The reaction was stirred overnight at rt, the solids were removed by filtration, and concentrated under reduced pressure affording 2.8 g of the title compound as a yellow oil.
- B. 2-Methyl-5-(1-phenylethoxy)aniline. To a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 1-methyl-2-nitro-4-(1-phenylethoxy)benzene (500 mg, 1.94 mmol, as prepared in the previous step) in MeOH (10 mL) then Raney Ni (50 mg) was added. The solution was degassed and back-filled with H2 and stirred for 2 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 430 mg (97%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H18NO+: 228.1 (M+H); Found: 228.1.
- A. 4-tert-Butyl-2-ethenylaniline. To a 500-mL 3-necked round-bottom flask, was placed a solution of 2-bromo-4-tert-butylaniline (1.38 g, 6.05 mmol) in dioxane/water (120 mL) then Pd(OAc)2 (135 mg, 0.60 mmol), 2-ethenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.41 g, 9.15 mmol), PCy3.HBF4 (440 mg, 1.19 mmol), and K3PO4 (3.81 g, 17.97 mmol) were added under nitrogen. The reaction was stirred for 12 h at 110° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:80) affording 436 mg (41%) of the title compound as a colorless oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C12H18N+: 176.1 (M+H); Found: 176.1.
- B. 4-tert-Butyl-2-ethylaniline. To a 100-mL round-bottom flask was placed a solution of 4-tert-butyl-2-ethenylaniline (266 mg, 1.52 mmol, as prepared in the previous step) in MeOH (50 mL) then Pd on carbon (20 mg) was added. The solution was degassed and back-filled with H2 then stirred for 30 min at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 266 mg of the title compound as a colorless oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C12H20N+: 178.2 (M+H); Found: 178.2.
- A. 1-Ethyl-4-[(2-methylphenyl)methoxy]-2-nitrobenzene. To a 50-mL round-bottom flask was placed a solution of 4-ethyl-3-nitrophenol (600 mg, 3.59 mmol) in acetone (30 mL) then K2CO3 (1.48 g, 10.71 mmol) and 1-(bromomethyl)-2-methylbenzene (788 mg, 4.26 mmol) were added. The reaction was stirred for 4 h at 70° C. then cooled to rt and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:40) affording 300 mg (31%) of the title compound as a yellow oil.
- B. 2-Ethyl-5-[(2-methylphenyl)methoxy]aniline. To a 50-mL round-bottom flask was placed a solution of 1-ethyl-4-[(2-methylphenyl)methoxy]-2-nitrobenzene (300 mg, 1.11 mmol, as prepared in the previous step) in MeOH (10 mL) then Raney Ni (60 mg) was added. The solution was degassed and back-filled with H2 then stirred for 3 h at rt. The H2 was purged, the solids were removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:3) affording 160 mg (60%) of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H20NO+: 242.2 (M+H); Found: 242.1.
- Using General Procedure K with reagents, starting materials, and conditions familiar to those skilled in the art, the following intermediates were prepared:
-
Interme- diate Name and Data 55 2-Ethyl-5-[(3-methylphenyl)methoxy]aniline. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H20NO+: 242.2 (M + H); Found: 242.1. 56 2-Ethyl-5-[(4-methylphenyl)methoxy]aniline. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H20NO+: 242.2 (M + H); Found: 242.1. - A. 2-(4-Methyl-3-nitrophenoxy)ethan-1-ol. To a 100-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (1.53 g, 9.99 mmol) in NMP (40 mL) then Cs2CO3 (4.24 g, 13.01 mmol), NaI (1.5 g, 10.00 mmol), and (2-bromoethoxy)(tert-butyl)dimethylsilane (3.11 g, 13.00 mmol) were added. The reaction was stirred for 4 h at 100° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:5) affording 1 g (51%) of the title compound as a yellow solid. 1H NMR (300 MHz, DMSO-d6): δ 7.50 (d, J=2.7 Hz, 1H), 7.39 (d, J=8.5 Hz, 1H), 7.23 (dd, J=8.5, 2.7 Hz, 1H), 4.95-4.80 (m, 1H), 4.05 (t, J=4.9 Hz, 2H), 3.71 (t, J=4.9 Hz, 2H), 2.42 (s, 3H).
- B. 2-(3-Amino-4-methylphenoxy)ethan-1-ol. To a 100-mL round-bottom flask purged and maintained with an inert atmosphere of N2, was placed a solution of 2-(4-methyl-3-nitrophenoxy)ethan-1-ol (770 mg, 3.90 mmol, as prepared in the previous step) in MeOH (10 mL) then Raney Ni (150 mg) was added. The solution was degassed and back-filled with H2 then the reaction was stirred for 4 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 600 mg (92%) of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H14NO2 +: 168.1 (M+H); Found: 168.0.
- A. Ethyl 2-(2-Acetyl-3-methylphenoxy)acetate. To a 100-mL round-bottom flask was placed a solution of 1-(2-hydroxy-6-methylphenyl)ethan-1-one (2 g, 13.32 mmol) in acetone (50 mL) then ethyl 2-bromoacetate (2.43 g, 14.55 mmol) and K2CO3 (13 g, 39.90 mmol) were added. The reaction was stirred for 16 h at 90° C., cooled to rt, and the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 3.5 g of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C13H17O4 +: 237.1 (M+H); Found: 237.1.
- B. 2-(2-Acetyl-3-methylphenoxy)acetic acid. To a 100-mL round-bottom flask was placed a solution of ethyl 2-(2-acetyl-3-methylphenoxy)acetate (1.5 g, 6.35 mmol, as prepared in the previous step) in water (20 mL) then Na2CO3 (2 g, 19.06 mmol) was added. The resulting solution was stirred for 3 h at rt then the pH of the solution was adjusted to 5 with 6N HCl. The precipitate was isolated by filtration affording 989 mg (75%) of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H13O4 +: 209.1 (M+H); Found: 209.1.
- C. 3,4-Dimethyl-1-benzofuran. To a 100-mL round-bottom flask and maintained with an inert atmosphere of N2, was placed a solution of 2-(2-acetyl-3-methylphenoxy)acetic acid (1 g, 4.80 mmol, as prepared in the previous step) in Ac2O (20 mL) then NaOAc (2 g) was added. The reaction was stirred for 16 h at 140° C., cooled with an ice/salt bath, and the pH of the solution was adjusted to 8 with saturated aqueous Na2CO3 solution. The resulting mixture was extracted with EtOAc and the organic layers were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether (100%) affording 351 mg (50%) of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H11O+: 147.1 (M+H); Found: 147.1.
- D. 3,4-Dimethyl-1-benzofuran-2-carbaldehyde. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3,4-dimethyl-1-benzofuran (351 mg, 2.40 mmol, as prepared in the previous step) in THF (10 mL) then the solution was cooled to −78° C. and n-BuLi (1.2 mL of 2.4 M hexanes solution, 2.88 mmol) was added dropwise. The reaction was stirred for 30 min at −78° C. then DMF (350 mg, 4.79 mmol) was added. The reaction was stirred for 2 h at −40° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether/EtOAc (50:1) affording 206 mg (49%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H11O2 +: 175.1 (M+H); Found: 175.1.
- Using General Procedure L with reagents, starting materials, and conditions familiar to those skilled in the art, the following intermediates were prepared:
-
Interme- diate Name and Data 59 7-Fluoro-3-methyl-1-benzofuran-2-carbaldehyde. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H8FO2 +: 179.1 (M + H); Found: 179.0. 1H NMR (300 MHz, DMSO-d6): δ 10.05 (brs, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.53-7.35 (m, 2H), 2.62 (s, 1H). - A. 1-Bromo-2-nitro-4-(1-phenylethoxy)benzene. To a 50-mL round-bottom flask was placed a solution of 4-bromo-3-nitrophenol (2 g, 9.17 mmol) in acetone (20 mL) then K2CO3 (3.8 g, 27.54 mmol) and (1-bromoethyl)benzene (1.86 g, 10.05 mmol) were added. The reaction was stirred overnight at rt then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 3 g of the title compound as a yellow solid.
- B. 1-Ethenyl-2-nitro-4-(1-phenylethoxy)benzene. To a 100-mL round-bottom flask was placed a solution of 1-bromo-2-nitro-4-(1-phenylethoxy)benzene (1 g, 3.10 mmol, as prepared in the previous step) in dioxane/H2O (1:1, 21 mL) then Pd(OAc)2 (139 mg, 0.62 mmol), PCy3.HBF4 (229 mg, 0.62 mmol), K3PO4 (3.95 g, 18.61 mmol), and 2-ethenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (960 mg, 6.23 mmol) were added under nitrogen. The reaction was stirred overnight at 120° C. then concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:100) affording 490 mg (59%) of the title compound as a yellow oil.
- C. 2-Ethyl-5-(1-phenylethoxy)aniline. To a 50-mL round-bottom flask purged and maintained with an inert atmosphere of N2, was placed a solution of 1-ethenyl-2-nitro-4-(1-phenylethoxy)benzene (490 mg, 1.82 mmol, as prepared in the previous step) in MeOH (10 mL) then Raney Ni (49 mg) was added. The solution was degassed and back-filled with H2 then the solution was stirred for 1 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 380 mg (87%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H20NO+: 242.2 (M+H); Found: 242.1.
- A. Ethyl 4-(4-Methyl-3-nitrophenoxy)cyclohexane-1-carboxylate. To a 250-mL round-bottom flask was placed a solution of 4-methyl-3-nitrophenol (2 g, 13.06 mmol) in THF (100 mL) then ethyl 4-hydroxycyclohexane-1-carboxylate (2.5 g, 14.52 mmol), PPh3 (5.11 g, 19.48 mmol) were added. The solution was cooled to 0° C. then DIAD (4.04 g, 19.98 mmol) was added dropwise with stirring. The reaction was stirred for 16 h at rt then concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether/ethyl acetate (15:1) affording 2.1 g (52%) of the title compound as a yellow oil.
- B. 4-(4-Methyl-3-nitrophenoxy)cyclohexane-1-carbohydrazide. To a 50-mL round-bottom flask was placed a solution of ethyl 4-(4-methyl-3-nitrophenoxy)cyclohexane-1-carboxylate (300 mg, 0.98 mmol, as prepared in the previous step) in EtOH (10 mL) then hydrazine (156 mg, 4.87 mmol) was added. The reaction was stirred for 16 h at 90° C. then concentrated under reduced pressure affording 210 mg (73%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H20N3O4 +: 294.1 (M+H); Found: 294.1.
- C. 2-[4-(4-Methyl-3-nitrophenoxy)cyclohexyl]-1,3,4-oxadiazole. To a 20-mL vial was placed a solution of 4-(4-methyl-3-nitrophenoxy)cyclohexane-1-carbohydrazide (500 mg, 1.70 mmol, as prepared in the previous step) in toluene (12.5 mL) then TEOF (722.5 mg, 4.88 mmol), and TsOH (100 mg, 0.63 mmol) were added. The reaction was stirred for 1 h at 110° C. under microwave irradiation then concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether/ethyl acetate (20:1) affording 189 mg (37%) of the title compound as an off-white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H18N3O4 +: 304.1 (M+H); Found: 304.1.
- D. 2-Methyl-5-[[4-(1,3,4-oxadiazol-2-yl)cyclohexyl]oxy]aniline. To a 50-mL round-bottom flask was placed a solution of 2-[4-(4-methyl-3-nitrophenoxy)cyclohexyl]-1,3,4-oxadiazole (400 mg, 1.32 mmol, as prepared in the previous step) and Ni(OAc)2.4H2O (526 mg) in MeOH/THF (2:1) (10 mL) then the solution was cooled to 0° C. and NaBH4 (220 mg, 5.82 mmol) was added in small portions with stirring. The reaction was stirred for 1 min at rt, quenched with saturated aqueous NH4Cl solution, and extracted with EtOAc (3×30 mL). The organic extracts were combined and concentrated under reduced pressure 281 mg (78%) of the title compound as a colorless oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H20N3O2 +: 274.2 (M+H); Found: 274.1.
- A. Methyl 2-(Benzyloxy)-3-methoxybenzoate. To a 250-mL round-bottom flask was placed a solution of methyl 2-hydroxy-3-methoxybenzoate (10 g, 54.89 mmol) in DMF (100 mL) then NaH (1.6 g, 66.67 mmol) was added. The solution was stirred for 10 min at rt then BnBr (10.3 g, 60.22 mmol) was added dropwise with stirring. The reaction was stirred overnight at 70° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 17 g of the title compound as a yellow oil.
- B. 2-(Benzyloxy)-3-methoxybenzoic acid. To a 500-mL round-bottom flask was placed a solution of methyl 2-(benzyloxy)-3-methoxybenzoate (21 g, 53.99 mmol) in MeOH/THF/H2O (150 mL) then NaOH (9 g, 225.00 mmol) was added. The reaction was stirred overnight at 50° C. then cooled to 5° C., and the pH was adjusted to 5 with 6N HCl. The precipitate was collected by filtration affording 13 g (93%) of the title compound as a light yellow solid.
- C. 2-(Benzyloxy)-N,3-dimethoxy-N-methylbenzamide. To a 100-mL round-bottom flask was placed a solution of 2-(benzyloxy)-3-methoxybenzoic acid (3.2 g, 12.39 mmol, as prepared in the previous step) in DCM (20 mL) then methoxy(methyl)amine hydrochloride (1.44 g, 14.76 mmol), HATU (5.6 g, 14.73 mmol), and DIEA (4.8 g, 37.14 mmol) were added. The reaction was stirred for 2 h at rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 6 g of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C17H20NO4 +: 302.1 (M+H); Found: 302.2.
- D. 1-[2-(Benzyloxy)-3-methoxyphenyl]ethan-1-one. To a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-(benzyloxy)-N,3-dimethoxy-N-methylbenzamide (6.5 g, 21.6 mmol, as prepared in the previous step) in THF (60 mL) then the solution was cooled to −40° C. and MeMgBr (16 mL of 3M THF solution, 84 mmol) was added dropwise with stirring. The reaction was stirred for 1 h at 0° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:10) affording 3 g (55%) of the title compound as a light yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C16H17O3 +: 257.1 (M+H); Found: 257.1.
- E. 1-(2-Hydroxy-3-methoxyphenyl)ethan-1-one. To a 100-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 1-[2-(benzyloxy)-3-methoxyphenyl]ethan-1-one (3 g, 11.71 mmol, as prepared in the previous step) in MeOH (20 mL) then conc. HCl (0.1 mL) and Pd on carbon (300 mg) were added. The reaction was degassed and back-filled with H2 and stirred for 24 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 1.73 g (89%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H11O3 +: 167.1 (M+H); Found: 167.1. 1H NMR (300 MHz, CDCl3): δ 12.58 (s, 1H), 7.35 (d, J=8.2 Hz, 1H), 7.07 (d, J=7.9 Hz, 1H), 6.86 (t, J=8.1 Hz, 1H), 3.91 (s, 3H), 2.65 (s, 3H).
- F. Ethyl 2-(2-Acetyl-6-methoxyphenoxy)acetate. To a 100-mL round-bottom flask was placed a solution of 1-(2-hydroxy-3-methoxyphenyl)ethan-1-one (1.73 g, 10.41 mmol, as prepared in the previous step) in acetone (18 mL) then ethyl 2-bromoacetate (1.9 g, 11.38 mmol) and K2CO3 (4.3 g, 31.11 mmol) were added. The reaction was stirred for 2.5 h at 60° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure 2.5 g of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C13H17O5 +: 253.1 (M+H); Found: 253.1.
- G. 2-(2-Acetyl-6-methoxyphenoxy)acetic acid. To a 100-mL round-bottom flask was placed a solution of ethyl 2-(2-acetyl-6-methoxyphenoxy)acetate (2.5 g, as prepared in the previous step) in water (20 mL) then Na2CO3 (4.3 g, 40.19 mmol) was added. The reaction was stirred for 1.5 h at 95° C. then cooled to rt and the pH was adjusted to 6 with 6N HCl. The precipitate was collected by filtration affording 2 g of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H13O5 +: 225.1 (M+H); Found: 225.1.
- H. 7-Methoxy-3-methyl-1-benzofuran. To a 40-mL sealed tube was placed a solution of 2-(2-acetyl-6-methoxyphenoxy)acetic acid (2 g, 8.92 mmol, as prepared in the previous step) in Ac2O (20 mL) then NaOAc (5 g, 60.95 mmol) was added. The reaction was stirred overnight at 140° C., quenched by the addition of water/ice, the pH value of the solution was adjusted to 7-8 with 6M NaOH solution, and extracted with Et2O. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether affording 1.4 g (97%) of the title compound as a white solid. 1H NMR (400 MHz, CDCl3): δ 7.41 (s, 1H), 7.20-7.11 (m, 2H), 6.81 (d, J=4.5 Hz, 1H), 4.01 (s, 3H), 2.23 (s, 3H).
- I. 7-Methoxy-3-methyl-1-benzofuran-2-carbaldehyde. To a 50-mL 3-necked round-bottom flask was placed a solution of 7-methoxy-3-methyl-1-benzofuran (243 mg, 1.50 mmol, as prepared in the previous step) in THF (3 mL) then the solution was cooled to −78° C. and BuLi (0.72 mL of 2.5N hexanes solution, 1.8 mmol) was added dropwise with stirring. The solution was stirred for 30 min at −78° C. then warmed to −40° C. and DMF (219 mg, 3.00 mmol) was added dropwise with stirring. The reaction was stirred for 30 min at −40° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:7) affording 200 mg (70%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H11O3 +: 191.1 (M+H); Found: 191.0.
- A. 1-(1-Methanesulfonylpiperidin-4-yl)ethan-1-one. To a 250-mL round-bottom flask was placed a solution of 1-(piperidin-4-yl)ethan-1-one (4.5 g, 35.38 mmol) in DCM (100 mL) then TEA (8.35 g, 82.52 mmol) was added. To the reaction mixture was added a solution of MsCl (4.86 g, 42.45 mmol) in DCM (50 mL) dropwise with stirring. The reaction was stirred for 8 h at rt, quenched with water, and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 6.17 g (85%) of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C8H16NO3S+: 206.1 (M+H); Found: 206.1.
- B. 1-(1-Methanesulfonylpiperidin-4-yl)ethan-1-ol. To a 250-mL round-bottom flask was placed a solution of 1-(1-methanesulfonylpiperidin-4-yl)ethan-1-one (6.17 g, 30.06 mmol, as prepared in the previous step) in a mixture of MeOH (120 mL) and THF (30 mL) then NaBH4 (2.27 g, 60.01 mmol) was added. The reaction was stirred for 8 h at rt, quenched by the addition of water, and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 5.52 g (89%) of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C8H18NO3S+: 208.1 (M+H); Found: 208.1.
- A. N-Methoxy-N-methylpyrazolo[1,5-a]pyridine-5-carboxamide. To a 100-mL round-bottom flask was placed a solution of pyrazolo[1,5-a]pyridine-5-carboxylic acid (3.24 g, 19.98 mmol) in DCM (50 mL) then methoxy(methyl)amine hydrochloride (2.925 g, 29.99 mmol), HATU (11.4 g, 29.98 mmol), and DIEA (7.74 g, 59.89 mmol) were added. The reaction was stirred for 2 h at rt then concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:1) affording 5.594 g of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H12N3O2 +: 206.1 (M+H); Found: 206.1.
- B. Pyrazolo[1,5-a]pyridine-5-carbaldehyde. To a 250-mL round-bottom flask was placed a solution of N-methoxy-N-methylpyrazolo[1,5-a]pyridine-5-carboxamide (5.594 g, 27.26 mmol, as prepared in the previous step) in THF (60 mL) then the solution was cooled to 0° C. and LAH (3.11 g, 81.95 mmol) was added in several batches. The reaction was stirred for 1 h at rt, quenched by the addition of Na2SO4.10H2O, and the solids were removed by filtration. The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:5) affording 1.259 g (32%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C8H7N2O+: 147.1 (M+H); Found: 147.2.
- C. 1-[Pyrazolo[1,5-a]pyridin-5-yl]ethan-1-ol. To a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of pyrazolo[1,5-a]pyridine-5-carbaldehyde (1.259 g, 8.61 mmol, as prepared in the previous step) in THF (70 mL) then the solution was cooled to 0° C. and 3M MeMgBr (5.75 mL) was added dropwise. The reaction was stirred for 1 h at rt, quenched by the addition of saturated aqueous NH4Cl solution, and extracted with EtOAc (3×50 mL). The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:1) affording 1.1 g (79%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H11N2O+: 163.1 (M+H); Found: 163.2.
- A. 1,4-Bis(benzyloxy)-2-nitrobenzene. To a 100-mL round-bottom flask was placed a solution of 2-nitrobenzene-1,4-diol (1 g, 6.45 mmol) in acetone (15 mL) then K2CO3 (4.45 g, 32.20 mmol) and (bromomethyl)benzene (2.64 g, 15.48 mmol) were added. The reaction was stirred for 10 h at rt, filtered, and concentrated under reduced pressure affording 1.302 g (60%) of the title compound as a yellow solid.
- B. 2,5-Bis(benzyloxy)aniline. To a 100-mL 3-necked round-bottom flask was placed a solution of 1,4-bis(benzyloxy)-2-nitrobenzene (300 mg, 0.89 mmol, as prepared in the previous step) and Ni(OAc)2.4H2O (317 mg, 1.79 mmol) in MeOH/THF (1:1, 6 mL) then NaBH4 (132 mg, 3.49 mmol) was added. The reaction was stirred for 4 h at rt, quenched with water, and extracted with EtOAc. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 220 mg (81%) of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C20H20NO2 +: 306.1 (M+H); Found: 306.1.
- A. 1-(4-(Methylsulfonyl)phenyl)ethanol. To a 1000-mL 3-necked round-bottom flask was placed a solution of 1-(4-(methylsulfonyl)phenyl)ethanone (25 g, 126.26 mmol) in a mixture of THF (100 mL) and MeOH (200 mL) then the solution was cooled to 0° C. and NaBH4 (4.80 g, 126.26 mmol) was added. The reaction was allowed to warm to rt and stirred for 2 h, then quenched by the addition of water and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 22 g (87%) of the title compound as white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C9H13O3S+: 201.1 (M+H); Found: 201.1.
- A. (1s,3s)-3-Phenylcyclobutan-1-ol. To a 100-mL round-bottom flask was placed a solution of 3-phenylcyclobutan-1-one (1 g, 6.84 mmol) in MeOH (10 mL) then the solution was cooled to 0° C. and NaBH4 (130 mg, 3.42 mmol) was added. The reaction was stirred for 10 min at 0° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure affording 1.022 g of the title compound as a colorless oil.
- A. (1r,3r)-3-Phenylcyclobutyl 4-nitrobenzoate. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of (1s,3s)-3-phenylcyclobutan-1-ol (1 g, 6.75 mmol, Intermediate 70) in THF (30 mL) then 4-nitrobenzoic acid (1.13 g, 6.76 mmol) and Ph3P (2.66 g, 10.14 mmol) were added. The solution was cooled to 0° C. then DIAD (2.05 g, 10.15 mmol, 1.50 equiv) was added dropwise. The reaction was stirred for 30 min at rt then concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:50) affording 2.26 g of the title compound as a white solid.
- B. (1r,3r)-3-Phenylcyclobutan-1-ol. To a 100-mL round-bottom flask was placed a solution of (1r,3r)-3-phenylcyclobutyl 4-nitrobenzoate (2 g, 2.88 mmol, as prepared in the previous step) in MeOH/THF=2:1 (60 mL) then K2CO3 (1.4 g, 10.08 mmol) was added. The reaction was stirred for 8 h at 40° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 720 mg (72%) of the title compound as light yellow oil.
- A. 1-[4-(Oxetan-3-yl)phenyl]ethan-1-one. To a 10-mL sealed tube was placed a solution of (4-acetylphenyl)boronic acid (328 mg, 2.00 mmol) in IPA (2 mL) then 3-iodooxetane (184 mg, 1.00 mmol), NiI2 (18.6 mg, 0.10 mmol), (1R,2R)-2-aminocyclohexan-1-ol hydrochloride (15.2 mg, 0.10 mmol), and NaHMDS (2 mL, 2 mmol) were added under nitrogen. The reaction was irradiated with microwave radiation for 1 h at 85° C. then concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:3) affording 133 mg (38%) of the title compound as off-white oil.
- B. 1-[4-(Oxetan-3-yl)phenyl]ethan-1-ol. To a 100-mL round-bottom flask was placed a solution of 1-[4-(oxetan-3-yl)phenyl]ethan-1-one (1.62 g, 9.19 mmol, as prepared in the previous step) in MeOH (20 mL) then the solution was cooled to −18° C. and NaBH4 (700 mg, 18.50 mmol) was added in small portions. The reaction was stirred for 1 h at −18° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure affording 1.2 g (73%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H15O2 +: 179.1 (M+H); Found: 179.2.
- A. 1-(Tetrahydro-2H-pyran-4-yl)ethan-1-ol. To a 100-mL round-bottom flask was placed a solution of 1-(tetrahydro-2H-pyran-4-yl)ethan-1-one (10 g, 78.0 mmol) in THF (200 mL) then the solution was cooled to 0° C. and NaBH4 (1.50 g, 39.5 mmol) was added. The reaction was stirred for 30 min at 0° C., quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure affording 10 g (98%) of the title compound as colorless oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C7H15O2 +: 131.1 (M+H); Found: 131.2.
- A. Pentafluorophenyl 4-Acetylbenzenesulfonate. To a 100-mL round-bottom flask was placed a solution of 2,3,4,5,6-pentafluorophenol (900 mg, 4.89 mmol) in DCM (30 mL) then TEA (1.48 g, 14.67 mmol) was added. The solution was cooled to 0° C. then 4-acetylbenzene-1-sulfonyl chloride (1.28 g, 5.87 mmol) was added. The reaction was warmed to rt and stirred for 2 h then concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:50) affording 800 mg of the title compound as a yellow oil.
- B. Pentafluorophenyl 4-(1-Hydroxyethyl)benzenesulfonate. To a 50-mL round-bottom flask was placed a solution of pentafluorophenyl 4-acetylbenzenesulfonate (800 mg, 2.18 mmol, as prepared in the previous step) in MeOH (20 mL) then the solution was cooled to 0° C. and NaBH4 (1 g, 2.62 mmol) was added in several portions. The reaction was warmed to rt, stirred for 1 h, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:10) affording 552 mg (68%) of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H10F5O4S+: 369.0 (M+H); Found: 369.2.
- C. 4-(1-Hydroxyethyl)-N-methylbenzene-1-sulfonamide. To a 50-mL round-bottom flask was placed a solution of pentafluorophenyl 4-(1-hydroxyethyl)benzene-1-sulfonate (552 mg, 1.50 mmol) in THF (10 mL) then TEA (454.5 mg, 4.49 mmol) and a solution of 2M methylamine in THF (1.5 mL, 3.0 mmol) were added. The reaction was stirred for 2 h at rt then concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:1) affording 286 mg (89%) of the title compound as a yellow oil.
- A. 6,8-Dimethyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 100 mL round-bottom flask was placed a solution of 1-(3-methyl-1-benzofuran-2-yl)ethan-1-one (1 g, 5.74 mmol) in EtOH (20 mL) then 5,7-dimethyl-2,3-dihydro-1H-indole-2,3-dione (800 mg, 4.57 mmol) and KOH (800 mg) were added. The resulting solution was heated to 80° C. and stirred for 16 h. The reaction was cooled to rt and concentrated under reduced pressure. The residue was dissolved in 100 mL of H2O, washed with MTBE (3×50 mL), and the pH of the solution was adjusted to 2-3 with 2N HCL The resulting precipitate was isolated by filtration and washed with MeOH (3×50 mL) affording 485 mg (32%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C21H18NO3: 332.1 (M+H); Found: 332.0. 1H NMR (300 MHz, DMS-d6): δ 13.95 (s, 1H), 8.43 (s, 1H), 8.33 (s, 1H), 7.80-7.77 (d, J=7.5 Hz, 12H), 7.73-7.70 (d, J=8.1 Hz, 1H), 7.61 (s, 1H), 7.47-7.42 (t, J=7.5 Hz, 1H), 7.38-7.33 (t, J=7.5 Hz, 1H), 2.85 (s, 3H), 2.73 (s, 3H), 2.52 (s, 3H). HPLC purity (254 nm): 99.5%.
- Using the procedure described in Example 1, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 17 6-Chloro-8-methyl-2-(3-methylbenzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C20H15ClNO3 +: 352.1 (M + H); Found: 352.0. 1H NMR (300 MHz, DMSO-d6): δ 14.23 (s, 1H), 8.69 (s, 1H), 8.55 (s, 1H), 7.82-7.80 (m, 2H), 7.75-7.72 (d, J = 8.1 Hz, 1H), 7.49-7.43 (m, 1H), 7.39-7.37 (m, 1H), 2.85 (s, 3H), 2.81 (s, 3H). HPLC purity (254 nm): 98.3%. 18 6,8-Dimethyl-2-(3-methylbenzo[b]thiophen-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H18NO2S+: 348.1 (M + H); Found: 348.0. 1H NMR (300 MHz, DMSO-d6): δ 8.29-8.27 (d, J = 6.0 Hz, 2H), 8.04-8.01 (m, 1H), 7.96-7.93 (m, 1H), 7.60 (s, 1H), 7.48-7.45 (m, 2H), 2.83 (s, 3H), 2.78 (s, 3H), 2.50 (s, 3H). HPLC purity (254 nm): 95.1%. 19 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-6-(trifluoromethyl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H15F3NO3 +: 386.1 (M + H); Found: 386.1. 1H NMR (400 MHz, DMSO-d6): δ 9.03 (s, 1H), 8.58 (s, 1H), 7.99 (s, 1H), 7.81-7.79 (d, J = 7.6 Hz, 1H), 7.74-7.72 (d, J = 8.4 Hz, 1H), 7.50- 7.46 (m, 1H), 7.38-7.35 (t, J = 7.2 Hz, 1H), 2.51-2.50 (m, 6H). HPLC purity (254 nm): 98.9%. 20 6-Fluoro-8-methyl-2-(3-methylbenzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C20H15FNO3 +: 336.1 (M + H); Found: 336.0. 1H NMR (300 MHz, DMSO-d6): δ 8.55 (s, 1H), 8.38-8.33 (m, 1H), 7.80-7.77 (d, J = 7.5 Hz, 1H), 7.73-7.70 (d, J = 8.4 Hz, 2H), 7.48-7.43 (m, 1H), 7.38-7.33 (m, 1H), 2.83 (s, 3H), 2.73 (s, 3H). HPLC purity (254 nm): 97.1%. 21 6-Bromo-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylie acid Mass Spectrum (LCMS, ESI pos): Calcd. for C20H15BrNO3 +: 396.0 (M + H); Found: 395.8. 1H NMR (300 MHz, DMSO-d6): δ 14.33-14.30 (m, 1H), 8.88 (s, 1H), 8.52 (s, 1H), 7.91 (s, 1H), 7.80-7.70 (m, 2H), 7.49-7.44 (m, 1H), 7.38-7.34 (m, 1H), 2.80 (d, J = 9.0 Hz, 6H). HPLC purity (254 nm): 98.1%. 27 6-tert-Butyl-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C24H24NO3 +: 374.2 (M + H); Found: 374.3. 1H NMR (400 MHz, DMSO-d6): δ 13.93 (s, 1H), 8.52 (s, 1H), 8.43 (s, 1H), 7.88 (s, 1H), 7.78-7.77 (d, J = 7.2 Hz, 1H), 7.72-7.70 (d, J = 8.0 Hz, 1H), 7.46-7.42 (t, J = 8.0 Hz, 1H), 7.36-7.32 (t, J = 7.6 Hz, 1H), 2.84 (s, 3H), 2.81 (s, 3H), 1.39 (s, 9H). HPLC purity (254 nm): 98.4%. 31 5,8-Dimethyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H18NO3 +: 332.1 (M + H); Found: 332.1. 1H NMR (300 MHz, DMSO-d6): δ 14.10 (brs, 1H), 8.01 (s, 1H), 7.81- 7.78 (d, J = 7.8 Hz, 1H), 7.71-7.63 (m, 2H), 7.48-7.33 (m, 3H), 2.86 (s, 3H), 2.73 (s, 3H), 2.60 (s, 3H). HPLC purity (254 nm): 99.2%. 32 2-(3-Ethyl-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C22H20NO3 +: 346.1 (M + H); Found: 346.1. 1H NMR (400 MHz, DMSO-d6): δ 14.17 (s, 1H), 8.00 (s, 1H), 7.83-7.81 (d, J = 7.6 Hz, 1H), 7.71-7.69 (d, J = 8.0 Hz, 1H), 7.65-7.63 (d, J = 7.2 Hz, 1H), 7.47-7.34 (m, 3H), 3.47-3.42 (q, J = 7.6 Hz, 2H), 2.77 (s, 3H), 2.64 (s, 3H), 1.40- 1.36 (t, J = 7.6 Hz, 3H). HPLC purity (254 nm): 96.1%. 39 2-(3-Bromo-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C20H15BrNO3 +: 396.0 (M + H); Found: 395.9. 1H NMR (400 MHz, DMSO-d6): δ 8.09 (s, 1H), 7.81-7.79 (m, 1H), 7.70-7.64 (m, 2H), 7.57-7.53 (m, 1H), 7.48-7.44 (m, 2H), 2.82 (s, 3H), 2.64 (s, 3H). HPLC purity (254 nm): 99.7%. 59 5,8-Dimethyl-2-(3-phenyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H20NO3 +: 394.1 (M + H); Found: 394.3. 1H NMR (400 MHz, DMSO-d6): δ 14.12 (s, 1H), 7.95 (s, 1H), 7.82-7.80 (m, 1H), 7.64-7.62 (m, 2H), 7.57-7.45 (m, 6H), 7.39-7.35 (m, 2H), 2.61 (s, 3H), 2.18 (s, 3H). HPLC purity (254 nm): 95.5%. 67 5-(Benzyloxy)-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H20NO4 +: 410.1 (M + H); Found: 410.3. 1H NMR (300 MHz, DMSO-d6): δ 7.90 (s, 1H), 7.79-7.68 (m, 4H), 7.55 (d, J = 9.0 Hz, 2H), 7.22-6.52 (m, 1H), 5.36 (s, 2H), 2.84 (s, 3H). HPLC purity (254 nm): 97.8%. 85 2-(2,1-Benzoxazol-3-yl)-5-(benzyloxy)-8-methylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C25H19N2O4 +: 411.1 (M + H); Found: 411.0. 1H NMR (400 MHz, CD3OD): δ 8.50 (d, J = 8.8 Hz, 1H), 7.93 (s, 1H), 7.56-7.51 (m, 3H), 7.40-7.36 (m, 2H), 7.25 (d, J = 7.6 Hz, 2H), 7.17- 7.13 (m, 2H), 6.81 (d, J = 8.0 Hz, 1H), 5.25 (s, 2H), 2.68 (s, 3H). HPLC purity (254 nm): 94.7%. 104 6-Chloro-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C20H15ClNO2S+: 368.1 (M + H); Found: 367.8. 1H NMR (400 MHz, DMSO-d6): δ 8.67 (s, 1H), 8.43 (s, 1H), 8.05-8.03 (m, 1H), 7.98-7.96 (m, 1H), 7.83 (s, 1H), 7.51-7.46 (m, 2H), 2.85 (s, 3H), 2.82 (s, 3H). HPLC purity (254 nm): 99.2%. 111 5-(Benzyloxy)-8-chloro-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H19ClNO4 +: 444.1 (M + H); Found: 444.1. 1H NMR (300 MHz, DMSO-d6): δ 13.74 (brs, 1H), 8.00-7.95 (m, 2H), 7.82-7.79 (d, J = 7.8 Hz, 1H), 7.71-7.69 (d, J = 8.1 Hz, 1H), 7.57-7.54 (d, J = 7.2 Hz, 2H), 7.51-7.31 (m, 5H), 7.21-7.18 (d, J = 8.7 Hz, 1H), 5.38 (s, 2H), 2.93 (s, 3H). HPLC purity (254 nm): 97.2%. 121 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-(trifluoromethoxy)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H15F3NO4 +: 402.1 (M + H); 402.1. 1H NMR (400 MHz, CDCl3): δ 8.07 (s, 1H), 7.73 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.44-7.40 (m, 2H), 7.34 (t, J = 7.6 Hz, 1H), 2.92 (s, 3H), 2.85 (s, 3H). HPLC purity (254 nm): 97.5%. 125 2-(3,7-Dimethyl-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C22H20NO3 +: 346.1 (M + H); Found: 346.1. 1H NMR (300 MHz, DMSO-d6): δ 14.21 (brs, 1H), 8.04 (s, 1H), 7.64- 7.58 (m, 2H), 7.39 (d, J = 7.5 Hz, 1H), 7.26-7.21 (m, 1H), 2.84 (s, 3H), 2.76 (s, 3H), 2.64 (s, 3H), 2.59 (s, 3H). HPLC purity (254 nm): 96.5%. - A. 2-(1,3-Benzothiazol-2-yl)-6,8-dimethylquinoline-4-carboxylic acid. To a 10 mL sealed tube was placed a solution of 2,4-dimethylaniline (150 mg, 1.24 mmol) in EtOH (4.5 mL) then 1,3-benzothiazole-2-carbaldehyde (202 mg, 1.24 mmol) and 2-oxopropanoic acid (164 mg, 1.86 mmol) were added. The reaction mixture was heated to 100° C. for 3 h under microwave irradiation. The reaction was cooled to rt and the solids were isolated by filtration affording 41.7 mg (10%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C19H15N2O2S+: 335.1 (M+H); Found: 335.0. 1H NMR: (400 MHz, DMSO-d6): δ 8.76 (s, 1H), 8.40 (s, 1H), 8.23-8.16 (m, 2H), 7.67 (s, 1H), 7.63-7.52 (m, 2H), 2.83 (s, 3H), 2.51 (s, 3H). HPLC purity (254 nm): 98.1%.
- Using the procedure described in Example 2, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 3 2-(1,3-Benzoxazol-2-yl)-6,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C19H15N2O3 +: 319.1 (M + H); Found: 319.0. 1H NMR (300 MHz, DMSO-d6): δ 11.12-11.04 (m, 1H), 8.75 (s, 1H), 8.40 (s, 1H), 7.96-7.94 (d, 2H, J = 8.1 Hz), 7.69 (s, 1H), 7.57-7.47 (m, 2H), 2.85 (s, 3H), 2.55 (s, 3H). HPLC purity (254 nm): 98.7%. 5 6,8-Dimethyl-2-(2-methyl-1-benzofuran-3-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H18NO3 +: 332.1 (M + H); Found: 332.2. 1H NMR (400 MHz, CDCl3): δ 8.51 (s, 1H), 8.45 (s, 1H), 8.16-8.14 (m, 1H), 7.53-7.50 (m, 2H), 7.37-7.31 (m, 2H), 2.90-2.89 (m, 6H), 2.59 (s, 3H). HPLC purity (254 nm): 99.7%. 6 2-(1-Benzofuran-2-yl)-6,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C20H16NO3 +: 318.1; Found: 318.1. 1H NMR (300 MHz, DMSO-d6): δ 13.97 (s, 1H), 8.42 (s, 1H), 8.28 (s, 1H), 7.86 (s, 1H), 7.80-7.75 (m, 2H), 7.60 (s, 1H), 7.46-7.41 (m, 1H), 27.36-7.31 (m, 2H), 2.81 (s, 3H), 2.49 (s, 3H). HPLC purity (254 nm): 95.4%. 7 2-(1-Benzofuran-2-yl)-3,6,8-trimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H18NO3 +: 332.1 (M + H); Found: 332.1. 1H NMR (300 MHz, DMSO-d6): δ 7.81-7.78 (d, J = 7.5 Hz, 1H), 7.74- 7.71 (d, J = 8.1 Hz, 1H), 7.64 (s, 1H), 7.51 (s, 1H), 7.45-7.31 (m, 3H), 2.77 (s, 3H), 2.70 (s, 3H), 2.49 (s, 3H). HPLC purity (254 nm): 99.6%. 8 2-(1-Benzothiophen-3-yl)-6,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C20H16NO2S+: 334.1 (M + H); Found: 334.1. 1H NMR (300 MHz, DMSO-d6): δ 13.87 (s, 1H), 9.22-9.19 (d, J = 8.1 Hz, 1H), 8.74 (s, 1H), 8.43 (s, 1H), 8.23 (s, 1H), 8.13-8.10 (d, J = 8.1 Hz, 1H), 7.60-7.46 (m, 3H), 2.86 (s, 3H), 2.52 (s, 3H). HPLC purity (254 nm): 95.7%. 9 6,8-Dimethyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H18NO3 +: 332.1 (M + H); Found: 332.1. 1H NMR (400 MHz, DMSO-d6): δ 8.43 (s, 1H), 8.33 (s, 1H), 7.80-7.78 (d, J = 7.6 Hz, 1H), 7.73-7.71 (d, J = 8.0 Hz, 1H), 7.62 (s, 1H), 7.46-7.42 (m, 1H), 7.38-7.34 (m, 1H), 2.86 (s, 3H), 2.79 (s, 3H), 2.51-2.50 (m, 3H). HPLC purity (254 nm): 97.6%. 10 2-(1-Benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C20H16NO3 +: 318.1 (M + H); Found: 318.1. 1H NMR (300 MHz, DMSO-d6): δ 14.18 (brs, 1H), 8.09 (s, 1H), 7.91 (s, 1H), 7.81-7.83 (m, 2H), 7.63-7.61 (m, 1H), 7.46-7.31 (m, 3H), 2.85 (s, 3H), 2.70 (s, 3H). HPLC purity (254 nm): 97.3%. 11 2-(1-Benzofuran-2-yl)-6-methoxy-8-methylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C20H16NO4 +: 334.1 (M + H); Found: 334.1. 1H NMR (400 MHz, DMSO-d6): δ 8.20 (s, 1H), 8.10 (s, 1H), 7.77-7.68 (m, 3H), 7.42-7.38 (m, 1H), 7.31-7.29 (m, 2H), 7.15-7.10 (m, 2H), 3.86 (s, 3H), 2.76 (s, 3H). HPLC purity (254 nm): 95.5%. 13 2-(1-Benzothiophen-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C20H16NO2S+: 334.1 (M + H); Found: 334.0. 1H NMR (400 MHz, DMSO-d6): δ 8.47 (s, 1H), 8.16 (s, 1H), 8.05-8.03 (m, 1H), 7.91-7.89 (m, 1H), 7.60-7.58 (d, J = 7.6 Hz, 1H), 7.44-7.40 (m, 2H), 7.37-7.35 (d, J = 7.2 Hz, 1H), 2.76 (s, 3H), 2.64 (s, 3H). HPLC purity (254 nm): 97.8%. 14 2-(1-Benzofuran-2-yl)-5-methoxy-8-methylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C20H16NO4 +: 334.1 (M + H); Found: 334.1. 1H NMR (300 MHz, DMSO-d6): δ 13.44 (brs, 1H), 8.00 (s, 1H), 7.91 (s, 1H), 7.80-7.73 (m, 2H), 7.66-7.64 (m, 1H), 7.46-7.41 (m, 1H), 7.36-7.31 (m, 1H), 7.08-7.05 (d, J = 8.1 Hz, 1H), 3.90 (s, 3H), 2.73 (s, 3H). HPLC purity (254 nm): 97.5%. 15 2-(1-Benzofuran-2-yl)-5-(benzyloxy)-8-methylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H20NO4 +: 410.1 (M + H); Found: 410.1. 1H NMR (300 MHz, DMSO-d6): δ 13.51 (s, 1H), 8.02 (s, 1H), 7.92 (s, 1H), 7.81-7.73 (m, 2H), 7.62-7.53 (m, 3H), 7.47-7.29 (m, 5H), 7.13-7.10 (d, J = 8.1 Hz, 1H), 5.32 (s, 2H), 2.72 (s, 3H). HPLC purity (254 nm): 97.1%. 16 2-(1-Benzofuran-2-yl)-6-chloro-8-methylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C19H13ClNO3 +: 338.1 (M + H); Found: 338.0. 1H NMR (300 MHz, DMSO-d6): δ 14.26 (brs, 1H), 8.66 (s, 1H), 8.55 (s, 1H), 7.94 (s, 1H), 7.82-7.76 (m, 3H), 7.48-7.43 (m, 1H), 7.37-7.33 (m, 1H), 2.84 (s, 3H). HPLC purity (254 nm): 96.7%. 23 6-Methoxy-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H18NO4 +: 348.1 (M + H); Found: 343.1. 1H NMR (300 MHz, DMSO-d6): δ 13.91 (brs, 1H), 8.46 (s, 1H), 8.04 (s, 1H), 7.76-7.68 (m, 2H), 7.44-7.31 (m, 3H), 3.89 (s, 3H), 2.80 (s, 3H), 2.76 (s, 3H). HPLC purity (254 nm): 97.6%. 24 6-(Benzyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO4 +: 424.2 (M + H); Found: 424.2. 1H NMR (300 MHz, DMSO-d6): δ 13.91 (s, 1H), 8.47 (s, 1H), 8.16 (s, 1H), 7.77-7.69 (m, 2H), 7.55-7.53 (m, H), 7.45-7.31 (m, 5H), 5.24 (s, 1H), 2.82 (s, 3H), 2.77 (s, 3H). HPLC purity (254 nm): 97.6%. 30 5-(Benzyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO4 +: 424.2 (M + H); Found: 424.2. 1H NMR (400 MHz, DMSO-d6): δ 13.54 (s, 1H), 7.92 (s, 1H), 7.81-7.79 (d, J = 7.6 Hz, 1H), 7.70-7.68 (d, J = 8.0 Hz, 1H), 7.64-7.62 (d, J = 8.0 Hz, 1H), 7.56-7.55 (d, J = 7.2 Hz, 2H), 7.48-7.31 (m, 5H), 7.13-7.11 (d, J = 8.0 Hz, 1H), 5.33 (s, 2H), 2.86 (s, 3H), 2.69 (s, 3H). HPLC purity (254 nm): 96.5%. 33 5-(Benzyloxy)-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO3S+: 440.1 (M + H); Found: 440.0. 1H NMR (300 MHz, DMSO-d6): δ 13.47 (s, 1H), 8.04-8.01 (m, 2H), 7.97-7.94 (m, 1H), 7.81 (s, 1H), 7.62-7.60 (m, 1H), 7.56-7.54 (m, 2H), 7.51-7.49 (m, 2H), 7.47-7.29 (m, 3H), 7.12-7.10 (m, 1H) ,5.34 (s, 2H), 2.83 (s, 3H), 2.69 (s, 3H). HPLC purity (254 nm): 99.0%. 34 2-(1-Benzothiophen-2-yl)-5-(benzyloxy)-8-methylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H20NO3S+: 426.5 (M + H); Found: 425.8. 1H NMR (300 MHz, DMSO-d6): δ 13.48 (brs, 1H), 8.51 (s, 1H), 8.24 (s, 1H), 8.05-8.02 (m, 1H), 7.96-7.86 (m, 1H), 7.60-7.54 (m, 3H), 7.46-7.27 (m, 5H), 7.11-7.08 (m, 1H), 5.32 (s, 2H), 2.69 (s, 3H). HPLC purity (254 nm): 96.7%. 35 5-(Benzyloxy)-8-methyl-2-(2-methyl-1-benzofuran-3-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO4 +: 424.2 (M + H); Found: 424.0. 1H NMR (300 MHz, DMSO-d6): δ 13.42 (brs, 1H), 8.20-8.17 (m, 1H), 7.96 (s, 1H), 7.74-7.54 (m, 4H), 7.42-7.26 (m, 5H), 7.10-7.07 (d, J = 8.1 Hz, 1H), 5.35 (s, 1H), 2.85 (s, 3H), 2.71 (s, 3H). HPLC purity (254 nm): 98.8%. 38 2-(3-Chloro-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C20H15ClNO3 +: 352.1 (M + H); Found: 352.1. 1H NMR (300 MHz, DMSO-d6): δ 7.94-7.74 (m, 3H), 7.57-7.53 (m, 2H), 7.48-7.44 (m, 1H), 7.32-7.29 (m, 1H), 2.77 (s, 2H), 2.68 (s, 3H). HPLC purity (254 nm): 95.1%. 40 8-(Benzyloxy)-5-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO4 +: 424.2 (M + H); Found: 424.0. 1H NMR (400 MHz, DMSO-d6): δ 14.16 (s, 1H), 8.01 (s, 1H), 7.77-7.75 (d, J = 7.6 Hz, 1H), 7.69-7.63 (m, 3H), 7.47-7.41 (m, 4H), 7.39-7.32 (m, 3H), 5.35 (s, 2H), 2.85 (s, 3H), 2.59 (s, 3H). HPLC purity (254 nm): 98.9%. 41 7-(Benzyloxy)-6-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO4 +: 424.2 (M + H); Found: 424.1. 1H NMR (400 MHz, DMSO-d6): δ 13.95 (s, 1H), 8.52 (s, 1H), 8.30 (s, 1H), 7.77-7.69 (m, 2H), 7.58-7.56 (m, 3H), 7.42-7.42 (m, 3H), 7.39-7.33 (m, 2H), 5.38 (s, 1H), 2.86 (s, 3H), 2.44 (s, 3H). HPLC purity (254 nm): 96.9%. 56 5,8-Dimethyl-2-[3-(propan-2-yl)-1-benzofuran-2-yl]quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C23H22NO3 +: 360.2 (M + H); Found: 360.2. 1H NMR (400 MHz, DMSO-d6): δ 14.15 (s, 1H), 7.99-7.97 (m, 1H), 7.71-7.63 (m, 2H), 7.46-7.41 (m, 2H), 7.34-7.30 (m, 1H), 4.77-4.70 (m, 1H), 2.75 (s, 3H), 2.65 (s, 3H), 1.54-1.53 (d, J = 7.2 Hz, 6H). HPLC purity (254 nm): 98.3%. 57 2-(3-Cyclopropyl-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C23H20NO3 +: 358.1 (M + H); Found: 358.0. 1H NMR (400 MHz, DMSO-d6): δ 14.16 (s, 1H), 8.02 (s, 1H), 7.70-7.62 (m, 3H), 7.44-7.40 (m, 2H), 7.30-7.26 (m, 1H), 3.50-3.46 (m, 1H), 2.72 (s, 3H), 2.65 (s, 3H), 1.23-1.15 (m, 4H). HPLC purity (254 nm): 94.6%. 58 2-(3-Cyclohexyl-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H26NO3 +: 400.2 (M + H); 400.0. 1H NMR (300 MHz, DMSO-d6): δ 8.02-8.00 (m, 2H), 7.71-7.64 (m, 2H), 7.46- 7.42 (m, 2H), 7.35-7.30 (m, 1H), 4.59-4.54 (m, 1H), 2.80 (s, 3H), 2.64 (s, 3H), 2.07-2.05 (m, 2H), 1.92-1.81 (m, 5H), 1.47 (brs, 3H). HPLC purity (254 nm): 95.1%. 60 2-(3-Methoxy-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H18NO4 +: 348.1 (M + H); Found: 348.1. 1H NMR (300 MHz, DMSO-d6): δ 8.03 (s, 1H), 7.94-7.92 (d, J = 7.5 Hz, 1H), 7.72-7.70 (d, J = 8.1 Hz, 1H), 7.63-7.60 (d, J = 7.2 Hz, 1H), 7.50-7.45 (m, 1H), 7.40-7.33 (m, 2H), 4.27 (s, 3H), 2.78 (s, 3H), 2.63 (s, 3H). HPLC purity (254 nm): 97.5%. 61 2-[3-(Benzyloxy)-1-benzofuran-2-yl]-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO4 +: 424.2 (M + H); Found: 424.2. 1H NMR (400 MHz, DMSO-d6): δ 8.11 (s, 1H), 7.91-7.89 (d, J = 8.0 Hz, 1H), 7.72-7.70 (d, J = 8.0 Hz, 1H), 7.62-7.60 (d, J = 8.0 Hz, 1H), 7.54-7.49 (m, 2H), 7.47-7.45 (m, 1H), 7.40-7.32 (m, 5H), 5.59 (s, 2H), 2.75 (s, 3H), 2.63 (s, 3H). HPLC purity (254 nm): 96.2%. 68 5-(Benzyloxy)-7-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO4 +: 424.2 (M + H); Found: 424.1. 1H NMR (400 MHz, DMSO-d6): δ 7.82 (s, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.58-7.53 (m, 3H), 7.47-7.37 (m, 3H), 7.35-7.32 (m, 2H), 7.10 (s, 1H), 5.34 (s, 2H), 2.83 (s, 3H), 2.50 (s, 3H). HPLC purity (254 nm): 98.4%. 70 7-(Benzyloxy)-8-methyl-2-(3-methylbenzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO4 +: 424.2 (M + H); Found: 424.2. 1H NMR (300 MHz, DMSO-d6): δ 13.94 (brs, 1H), 8.58-8.55 (d, J = 9.6 Hz, 1H), 8.32 (s, 1H), 7.80-7.67 (m, 3H), 7.55-7.52 (m,2H), 7.48-7.33 (m, 5H), 5.38 (s, 2H), 2.86 (s, 3H), 2.71 (s, 3H). HPLC purity (254 nm): 98.6%. 71 7-(Benzyloxy)-8-methyl-2-(3-methylbenzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO4 +: 424.2 (M + H); Found: 424.2. 1H NMR (300 MHz, DMSO-d6): δ 13.94 (brs, 1H), 8.58-8.55 (d, J = 9.6 Hz, 1H), 8.32 (s, 1H), 7.80-7.67 (m, 3H), 7.55-7.52 (m,2H), 7.48-7.33 (m, 5H), 5.38 (s, 2H), 2.86 (s, 3H), 2.71 (s, 3H). HPLC purity (254 nm): 98.6%. 72 7-(Benzyloxy)-5-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO4 +: 424.2 (M + H); Found: 424.2. 1H NMR (400 MHz, DMSO-d6): δ 7.83 (s, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 7.2 Hz, 2H), 7.50-7.42 (m, 4H), 7.39- 7.34 (m, 2H), 7.28 (s, 1H), 5.34 (s, 2H), 2.84 (s, 3H), 2.64 (s, 3H). HPLC purity (254 nm): 99.2%. 73 8-methyl-2-(3-methyl-1-benzofuran-2-yl)-5-(2-phenylethoxy)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO4 +: 438.2 (M + H); Found: 438.2. 1H NMR (400 MHz, DMSO-d6): δ 13.49 (brs, 1H), 7.92 (s, 1H), 7.82- 7.80 (d, J = 8.0 Hz, 1H), 7.71-7.63 (m, 2H), 7.49-7.23 (m, 7H), 7.10-7.08 (d, J = 8.0 Hz, 1H), 4.35-4.31 (m, 2H), 3.19-3.15 (m, 2H), 2.86 (s, 3H), 2.70 (s, 3H). HPLC purity (254 nm): 98.7%. 75 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-(3-phenylcyclobutoxy)quinoline- 4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C30H26NO4 +: 464.2 (M + H); Found: 464.2. 1H NMR (300 MHz, DMSO-d6): δ 13.56 (brs, 1H), 7.93-7.90 (m, 1H), 7.81-7.79 (d, J = 7.5 Hz, 1H), 7.71-7.62 (m, 2H), 7.49-7.44 (t, J = 7.5 Hz, 1H), 7.39-7.32 (m, 5H), 7.25-7.21 (m, 1H), 6.87-6.85 (d, J = 7.8 Hz, 1H), 5.17-5.14 (m, 0.7H), 4.97-4.95 (m, 0.3H), 3.77-3.75 (m, 1H), 2.87 (s, 3H), 2.71 (s, 3H), 2.65-2.57 (m, 3H). HPLC purity (254 nm): 95.5%. 76 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[[(1r,4r)-4- phenylcyclohexyl]oxy]quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C32H30NO4 +: 492.2 (M + H); Found: 492.3. 1H NMR (400 MHz, DMSO-d6): δ 13.39 (s, 1H), 7.87 (s, 1H), 7.81-7.79 (d, J = 8.0 Hz, 1H), 7.70-7.64 (m, 2H), 7.46-7.42 (m, 1H), 7.38-7.27 (m, 5H), 7.20-7.14 (m, 2H), 4.67-4.65 (m, 1H), 2.86 (s, 3H), 2.71 (s, 3H), 2.59-2.57 (m, 1H), 2.28-2.25 (m, 2H), 1.91-1.89 (m, 2H), 1.70-1.64 (m, 4H). HPLC purity (254 nm): 97.7%. 77 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(3- phenylcyclohexyl)oxy]quinoline-4-carboxylic acid (cis, trans mixture) Mass Spectrum (LCMS, ESI pos): Calcd. for C32H30NO4 +: 492.2 (M + H); Found: 492.3. 1H NMR (400 MHz, DMSO-d6): δ 13.46 (brs, 1H), 7.92-7.86 (m, 1H), 7.81-7.78 (m, 1H), 7.72-7.67 (m, 1H), 7.63-7.61 (m, 1H), 7.48-7.45 (m, 1H), 7.38-7.32 (m, 1H), 7.30-7.28 (m, 4H), 7.21-7.15 (m, 1H), 7.08-7.03 (m, 1H), 4.99-4.98 (m, 0.7 H), 4.73-4.70 (m, 0.3H), 3.40-3.33 (m, 5H), 3.16 (m, 1H), 2.87-2.85 (m, 3H), 2.70 (s, 3H) ,2.35-2.20 (m, 1H), 2.19-1.90 (m, 3H), 1.90-1.80 (m, 1H), 1.80-1.60 (m, 3H), 1.60-1.56 (m, 6H), 1.38-1.36 (m, 1H). HPLC purity (254 nm): 99.8%. 79 5-(Cyclohexyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H26NO4 +: 416.2 (M + H); 416.2. 1H NMR (400 MHz, DMSO-d6): δ 13.34 (s, 1H), 7.86 (s, 1H), 7.80-7.78 (d, J = 7.6 Hz, 1H), 7.69-7.67 (d, J = 8.4 Hz, 1H), 7.63-7.61 (d, 7 = 8.4 Hz, 1H), 7.47- 7.43 (m, 1H), 7.38-7.34 (t, J = 7.2 Hz, 1H), 4.60-4.56 (m, 1H), 2.86 (s, 3H), 2.69 (s, 3H), 1.99-1.96 (m, 2H), 1.80-1.77 (m, 2H), 1.63-1.54 (m, 3H), 1.44-1.30 (m, 3H). HPLC purity (254 nm): 97.2%. 80 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-phenoxyquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H20NO4 +: 410.1 (M + H); Found: 410.1. 1H NMR (300 MHz, DMSO-d6): δ 13.54 (s, 1H), 7.99 (s, 1H), 7.82-7.80 (d, J = 7.5 Hz, 1H), 7.70-7.65 (t, J = 7.8 Hz, 2H), 7.49-7.34 (m, 4H), 7.22-7.17 (m, 1H), 7.11-7.08 (d, J = 7.8 Hz, 2H), 6.95-6.92 (d, J = 8.1 Hz, 1H), 2.88 (s, 3H), 2.76 (s, 3H). HPLC purity (254 nm): 97.2%. 82 5-Benzamido-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H21N2O4 +: 437.2 (M + H); Found: 437.3. 1H NMR (400 MHz, DMSO-d6): δ 8.04-8.03 (m, 3H), 7.81-7.76 (m, 2H), 7.00-7.68 (d, J = 8.0 Hz, 1H), 7.60-7.53 (m, 4H), 7.47-7.43 (m, 1H), 7.37-7.35 (m, 1H), 2.87 (s, 6H), 2.82 (s, 7H). HPLC purity (254 nm): 97.3%. 83 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-(2-phenylacetamido)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H23N2O4 +: 451.2 (M + H); Found: 451.3. 1H NMR (400 MHz, DMSO-d6): δ 9.90 (s, 1H), 8.02 (s, 1H), 7.81-7.79 (d, J = 7.6 Hz, 1H), 7.72-7.68 (m, 2H), 7.47-7.43 (m, 1H), 7.37-7.30 (m, 6H), 7.25-7.23 (m, 1H), 3.66 (s, 2H), 2.85 (s, 3H), 2.78 (s, 3H). HPLC purity (254 nm): 96.5%. 94 5-(Benzyloxy)-8-methyl-2-(2-methyl-1-benzothiophen-3-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO3S+: 440.1 (M + H); Found: 439.9. 1H NMR (400 MHz, DMSO-d6): δ 13.49 (s, 1H), 8.01-8.00 (d, J = 2.0 Hz, 1H), 7.99-7.91 (m, 1H), 7.65 (s, 1H), 7.62-7.55 (m, 3H), 7.43-7.32 (m, 5H), 7.13-7.11 (m, 1H), 5.36 (s, 1H), 2.71 (s, 3H), 2.65 (s, 3H). HPLC purity (254 nm): 98.7%. 95 2-(1-Benzothiophen-3-yl)-5-(benzyloxy)-8-methylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H20NO3S+: 426.1 (M + H); Found: 426.0. 1H NMR (400 MHz, DMSO-d6): δ 13.43 (s, 1H), 9.30-9.28 (d, J = 8.4 Hz, 1H), 8.85 (s, 1H), 8.13-8.11 (t, J = 4.0 Hz, 2H), 7.62-7.47 (m, 5H), 7.42-7.30 (m, 3H), 7.11-7.09 (d, J = 8.0 Hz, 1H), 5.34 (s, 2H), 2.77 (s, 3H). HPLC purity (254 nm): 99.5%. 97 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[[4-(1,3,4-oxadiazol-2- yl)cyclohexyl]oxy]quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H26N3O5 +: 484.2 (M + H); Found: 484.2. 1H NMR (400 MHz, DMSO-d6): δ 13.38 (s, 1H), 9.16 (s, 1H), 7.85 (s, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 4.82 (s, 1H), 3.17-3.15 (m, 1H), 2.86 (s, 3H), 2.70 (s, 3H), 2.15-2.03 (m, 4H), 1.94-1.83 (m, 4H). HPLC purity (254 nm): 98.3%. 103 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[[(1s,4s)-4- phenylcyclohexyl]oxy]quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C32H30NO4 +: 492.2 (M + H); Found: 492.3. 1H NMR (300 MHz, DMSO-d6): δ 13.44 (s, 1H), 7.91 (s, 1H), 7.80-7.78 (d, J = 7.5 Hz, 1H), 7.71-7.62 (m, 2H), 7.48-7.26 (m, 6H), 7.19-7.14 (m, 1H), 7.05-7.03 (d, J = 7.5 Hz, 1H), 4.90 (s, 1H), 2.86 (s, 3H), 2.70 (s, 3H), 2.64-2.56 (m, 1H), 2.20-2.16 (m, 2H), 2.07-1.96 (m, 2H), 1.79-1.70 (m, 2H), 1.59-1.55 (m, 2H). HPLC purity (254 nm): 98.2%. 106 5-(Benzyloxy)-8-cyclopropyl-2-(2-methyl-1-benzofuran-3-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C29H24NO4 +: 450.2 (M + H); Found: 450.0. 1H NMR (300 MHz, DMSO-d6): δ 13.42 (s, 1H), 8.24-8.18 (m, 1H), 7.76 (s, 1H), 7.64-7.60 (m, 1H), 7.55 (d, J = 7.2 Hz, 2H), 7.41-7.25 (m, 6H), 7.05 (d, J = 8.1 Hz, 1H), 5.33 (s, 2H), 3.02-2.92 (m, 1H), 2.85 (s, 3H), 1.08-1.02 (m, 2H), 1.02-0.79 (m, 2H). HPLC purity (254 nm): 95.3%. 107 5-(Benzyloxy)-8-cyclopropyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C29H24NO4 +: 450.2 (M + H); Found: 450.1. 1H NMR (400 MHz, DMSO-d6): δ 13.49 (brs, 1H), 7.92 (s, 1H), 7.78- 7.77 (d, J = 7.6 Hz, 1H), 7.69-7.67 (d, J = 8.0 Hz, 1H), 7.54-7.52 (d, J = 7.2 Hz, 2H), 7.46-7.28 (m, 6H), 7.09-7.07 (d, J = 8.4 Hz, 1H), 5.31 (s, 2H), 2.94-2.92 (m, 1H), 2.85 (s, 3H), 1.09-1.04 (m, 2H), 0.78-0.75 (m, 2H). HPLC purity (254 nm): 95.0%. 108 5-(Benzyloxy)-8-ethyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO4 +: 438.2 (M + H); Found: 438.1. 1H NMR (400 MHz, DMSO-d6): δ 13.51 (brs, 1H), 7.92 (s, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.56-7.55 (m, 2H), 7.48-7.31 (m, 5H), 7.14 (d, J = 8.0 Hz, 1H), 5.33 (s, 2H), 3.20 (q, J = 7.2 Hz, 2H), 2.86 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H). HPLC purity (254 nm): 97.1%. 109 5-(Benzyloxy)-2-(3-methyl-1-benzofuran-2-yl)-8-(propan-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO4 +: 452.2 (M + H); Found: 452.2. 1H NMR (400 MHz, DMSO-d6): δ 13.50 (brs, 1H), 7.92 (s, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.57-7.55 (m, 2H), 7.48-7.32 (m, 5H), 7.16 (d, J = 8.4 Hz, 1H), 5.33 (s, 2H), 4.21 (hept, J = 6.8 Hz, 1H), 2.86 (s, 3H), 1.36 (d, J = 6.8 Hz, 6H). HPLC purity (254 nm): 98.2%. 110 5-(Benzyloxy)-8-fluoro-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H19FNO4 +: 428.1 (M + H); Found: 428.3. 1H NMR (400 MHz, DMSO-d6): δ 13.71 (brs, 1H), 8.00 (s, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.64 (t, J = 8.8 Hz, 1H), 7.56- 7.54 (m, 2H), 7.48 (t, J = 7.2 Hz, 1H), 7.43-7.32 (m, 4H), 7.16-7.14 (m, 1H), 5.34 (s, 2H), 2.86 (s, 3H). HPLC purity (254 nm): 97.8%. 113 5-Ethyl-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C22H20NO3 +: 346.1 (M + H); Found: 346.3. 1H NMR (400 MHz, DMSO-d6): δ 14.18 (brs, 1H), 7.99 (s, 1H), 7.80- 7.82 (d, J = 7.6 Hz, 1H), 7.70-7.68 (d, J = 7.6 Hz, 2H), 7.47-7.44 (t, J = 6.4 Hz, 2H), 7.38-7.34 (t, J = 7.6 Hz, 1H), 3.08-3.02 (m, 2H), 2.85 (s, 3H), 2.77 (s, 3H), 1.28-1.23 (m, 3H). HPLC purity (254 nm): 99.1%. 114 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-(pyridin-3-ylmethoxy)quinoline- 4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H21N2O4 +: 425.2 (M + H); Found: 425.1. 1H NMR (400 MHz, DMSO-d6): δ 8.76 (s, 1H), 8.57-8.56 (d, J = 3.6 Hz, 1H), 7.98-7.93 (m, 2H), 7.81-7.79 (d, J = 7.6 Hz, 1H), 7.70-7.66 (m, 2H), 7.48-7.44 (m, 2H), 7.38-7.34 (m, 2H), 7.21-7.19 (d, J = 8.0 Hz, 2H), 5.37 (s, 2H), 2.86 (s, 3H), 2.71 (s, 3H). HPLC purity (254 nm): 96.8%. 115 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-(pyridin-2-ylmethoxy)quinoline- 4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H21N2O4 +: 425.2(M + H); Found: 425.3. 1H NMR (400 MHz, DMSO-d6): δ 8.53-8.52 (d, J = 4.4 Hz, 1H), 8.30-8.28 (d, J = 8.0 Hz, 1H), 7.89-7.85 (m, 1H), 7.79-7.77 (d, J = 7.6 Hz, 1H), 7.71-7.69 (m, 2H), 7.52-7.51 (d, J = 7.6 Hz, 1H), 7.46-7.42 (m, 1H), 7.38-7.31 (m, 2H), 6.94-6.92 (d, J = 7.6 Hz, 1H), 5.28 (s, 2H), 2.87 (s, 3H), 2.68 (s, 3H). HPLC purity (254 nm): 99.2%. 117 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-6-(trifluoromethoxy)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H15F3NO4 +: 402.1 (M + H); Found: 402.1. 1H NMR (300 MHz, DMSO-d6): δ 8.81 (s, 1H), 8.39 (s, 1H), 7.78 (d, J = 7.2 Hz, 1H), 7.71 (d, J = 8.7 Hz, 1H), 7.63 (s, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 2.84 (s, 3H), 2.81 (s, 3H). HPLC purity (254 nm): 97.0%. 118 6-(Difluoromethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H16F2NO4 +: 384.1 (M + H); Found: 384.1. 1H NMR (300 MHz, DMSO-d6): δ 8.49 (s, 1H), 8.42 (s, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.55 (s, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.36-7.18 (m, 2H), 2.84 (s, 3H), 2.80 (s, 3H). HPLC purity (254 nm): 98.8%. 119 6-(2,2-Difluoroethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C22H18F2NO4 +: 398.1 (M + H); Found: 398.1. 1H NMR (300 MHz, DMSO-d6): δ13.94 (s, 1H), 8.49 (s, 1H), 8.10 (s, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.54 (s, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 6.54 (dt, JH-H = 9.0 Hz, JH-F = 15.3 Hz, 1H), 4.52-4.42 (m, 1H), 2.86 (s, 3H), 2.79 (s, 3H). HPLC purity (254 nm): 99.5%. 120 5-(Difluoromethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H16F2NO4 +: 384.1 (M + H); Found: 384.1. 1H NMR (300 MHz, DMSO-d6): δ 7.87 (s, 1H), 7.82-7.77 (m, 1H), 7.69-7.66 (m, 2H), 7.45 (t, J = 7.5 Hz, 1H), 7.37-7.33 (m, 1H), 7.26-7.21 (m, 1H), 7.12-7.07 (m, 1H), 2.84(s, 3H), 2.74(s, 3H). HPLC purity (254 nm): 99.0%. 122 5-(2,2-Difluoroethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C22H18F2NO4 +: 398.1 (M + H); Found: 398.1. 1H NMR (, 300 MHz, DMSO-d6): δ (brs, 1H), 7.93 (s, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.68 (d, J = 7.8 Hz, 2H), 7.46 (t, J = 7.5 Hz, H),7.36 (t, J = 7.8 Hz, 1H), 7.17 (d, J = 7.8 Hz, 1H), 6.36 (tt, JH-F = 54.9 Hz, JH-H = 3.9 Hz, 1H), 4.53-4.43 (m, 2H), 2.86 (s, 1H), 2.72 (s, 1H). HPLC purity (254 nm): 98.1%. 123 5-(Difluoromethoxy)-8-methyl-2-(2-methyl-1-benzofuran-3-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H16F2NO4 +: 384.1 (M + H); Found: 384.2. 1H NMR (300 MHz, DMSO-d6): δ 8.21-8.18 (m, 1H), 7.87 (s, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.66-7.63 (m, 1H), 7.39-7.28 (m, 3H), 7.24 (t, JH-F = 63 Hz, 1H), 2.85 (s, 3H), 2.79 (s, 3H). HPLC purity (254 nm): 94.4%. 124 5-(2,2-Difluoroethoxy)-8-methyl-2-(2-methyl-1-benzofuran-3-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. For C22H18F2NO4 +: (M + H); 398.1; Found: 398.1. 1H NMR (300 MHz, DMSO-d6): δ 13.39 (brs, 1H), 8.20-8.18 (m, 1H), 7.76 (s, 1H), 6.68-6.62 (m, 2H), 7.38-7.36 (m, 2H), 7.17 (d, J = 7.8 Hz, 1H), 6.37 (tt, JH-F = 54.0 Hz, JH-H = 3.6 Hz, 1H), 4.48 (td, JH-F = 14.1 Hz, JH-H = 3.9 Hz, 2H), 2.85 (s, 3H), 2.74 (s, 3H). HPLC purity (24 nm): 95.5%. 126 2-(3,6-Dimethyl-1-benzofuran-2-yl)-5-hydroxy-8-methylquinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C22H20NO3 +: 346.1 (M + H); Found: 346.1. 1H NMR (400 MHz, DMSO-d6): δ 14.14 (s, 1H), 7.96 (s, 1H), 7.66-7.62 (m, 2H), 7.49 (s, 1H), 7.39 (d, J = 7.2 Hz, 1H), 7.18 (d, 7 = 8.0 Hz, 1H), 2.82 (s, 3H), 2.75 (s, 3H), 2.64 (s, 3H), 2.48 (s, 3H). HPLC purity (254 nm): 99.0%. 127 2-(3,5-Dimethylbenzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C22H20NO3 +: 346.1 (M + H); Found: 346.1. 1H NMR (400 MHz, DMSO-d6): δ 14.13 (brs, 1H), 7.98 (s, 1H), 7.64 (d, J = 7.2 Hz, 1H), 7.57-7.55 (m, 2H), 7.40 (d, J = 7.2 Hz, 1H), 7.26 (d, J = 8.8 Hz, 1H), 2.83 (s, 3H), 2.76 (s, 3H), 2.64 (s, 3H), 2.46 (s, 3H). HPLC purity (254 nm): 99.6%. 128 2-(3,4-Dimethyl-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C22H20NO3 +: 346.1 (M + H); Found: 346.1. 1H NMR (300 MHz, CD3OD): δ 7.94 (s, 1H), 7.47(d, J = 7.2 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.28-7.01 (m, 2H), 6.99 (d, J = 7.5 Hz, 1H), 3.18 (s, 3H), 2.84 (s, 3H), 2.77 (s, 6H). HPLC purity (254 nm): 93.1%. 129 2-(7-Chloro-3-methylbenzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H17ClNO3 +: 366.1. (M + H); Found: 366.0. 1H NMR (400 MHz, DMSO-d6): δ 7.97 (s, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 6.8 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.40-7.36 (m, 2H), 2.87 (s, 3H), 2.77 (s, 3H), 2.66 (s, 3H). HPLC purity (254 nm): 96.4%. 130 2-(7-Fluoro-3-methyl-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H17FNO3 +: 350.1 (M + H); Found: 350.1. 1H NMR (400 MHz, CD3OD): δ 7.97 (s, 1H), 7.52-7.50 (m, 2H), 7.34-7.26 (m, 2H), 7.19-7.15 (m, 1H), 2.92 (s, 3H), 2.87 (s, 3H), 2.80 (s, 3H). HPLC purity (254 nm): 96.9%. 131 2-(7-Methoxy-3-methyl-1-benzofuran-2-yl)-5,8-dimethylquinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C22H20NO4 +: 362.1 (M + H); Found: 362.1. 1H NMR (300 MHz, DMSO-d6): δ 7.95 (s, 1H), 7.65 (d, J = 7.2 Hz, 1H), 7.42-7.40 (d, J = 7.2 Hz, 1H), 7.36-7.25 (m, 2H), 7.07 (d, J = 6.6 Hz, 1H), 4.01 (s, 3H), 2.83 (s, 3H), 2.76 (s, 3H), 2.65 (s, 3H). HPLC purity (254 nm): 96.9%. 132 2-[7-(Benzyloxy)-3-methyl-1-benzofuran-2-yl]-5,8-dimethylquinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO4 +: 438.2 (M + H); Found: 438.2. 1H NMR (400 MHz, DMSO-d6): δ 14.16 (brs, 1H), 7.92 (s, 1H), 7.65 (d, J = 7.2 Hz, 1H), 7.57-7.56 (m, 2H), 7.45-7.35 (m, 5H), 7.25 (t, J = 8.0 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 5.40 (s, 2H), 2.83 (s, 3H), 2.76 (s, 3H), 2.64 (s, 3H). HPLC purity (254 nm): 97.9%. 134 5-(Cyclohexyloxy)-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H26NO3S+: 432.2 (M + H); Found: 432.1. 1H NMR(400 MHz, DMSO-d6): δ 13.29 (brs, 1H), 8.04-8.01 (m, 1H), 7.96-7.93 (m, 1H), 7.74 (s, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.50-7.44 (m, 2H), 7.07 (d, J = 8.4 Hz, 1H), 4.60-4.56 (m, 1H), 3.81 (s, 3H), 2.68 (s, 3H), 1.99- 1.97 (m, 2H), 1.80-1.77 (m, 2H), 1.62-1.53 (m, 3H), 1.44-1.38 (m, 3H). HPLC purity (254 nm): 96.6%. 135 5-(Cyclohexyloxy)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4- carboxylic acid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M + H); Found: 446.1. 1H NMR (400 MHz, DMSO-d6): δ 13.28 (brs, 1H), 8.04-8.02 (m, 1H), 7.95-7.93 (m, 1H), 7.75 (s, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.50-7.44 (m, 2H), 7.09 (d, J = 8.0 Hz, 1H), 4.62-4.56 (m, 1H), 3.18 (q, J = 1.2 Hz, 2H), 2.81 (s, 3H), 2.00-1.97 (m, 2H), 1.80-1.77 (m, 2H), 1.63-1.55 (m, 3H), 1.44-1.36 (m, 3H), 1.35 (t, J = 7.2 Hz, 3H). HPLC purity (254 nm): 99.5%. 146 5-(Benzyloxy)-8-ethyl-2-(3-methyl-1H-indol-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H25N2O3 +: 437.2 (M + H); Found: 437.2. 1H NMR (400 MHz, DMSO-d6): δ 13.50 (brs, 1H), 11.58 (s, 1H), 7.99 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.58-7.56 (m, 3H), 7.48-7.32 (m, 4H), 7.22 (t, J = 8.4 Hz, 1H), 7.10-7.06 (m, 2H), 5.34 (s, 2H), 3.24 (q, J = 7.6 Hz, 2H), 2.80 (s, 3H), 1.33 (t, J = 7.6 Hz, 3H). HPLC purity (254 nm): 95.0%. 147 5-(Benzyloxy)-2-(1,3-dimethyl-1H-indol-2-yl)-8-ethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C29H27N2O3 +: 451.2 (M + H); Found: 451.3. 1H NMR (400 MHz, DMSO-d6): δ 7.68(s, 1H), 7.65-7.54 (m, 5H), 7.42-7.38 (m, 2H), 7.34-7.26 (m, 2H), 7.15-7.11 (m, 2H), 5.36 (s, 2H), 3.93 (s, 3H), 3.17 (q, J = 7.6 Hz, 2H), 2.45 (s, 3H), 1.28 (t, J = 7.6 Hz, 3H). HPLC purity (254 nm): 99.0%. 158 2-(1-Benzothiophen-3-yl)-5-(benzyloxy)-8-ethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO3S+: 440.1 (M + H); Found: 440.1. 1H NMR (300 MHz, DMSO-d6): δ 13.40 (brs, 1H), 9.26 (d, J = 8.4 Hz, 1H), 8.85 (s, 1H), 8.14-8.12 (m, 2H), 7.61-7.29 (m, 8H), 7.13 (d, J = 8.1 Hz, 1H), 5.34 (s, 2H), 3.36 (q, J = 7.5 Hz, 2H), 1.36 (t, J = 7.5 Hz, 3H). HPLC purity (254 nm): 99.4%. 159 2-(1-Benzothiophen-3-yl)-5-(cyclohexyloxy)-8-ethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H26NO3S+: 432.2 (M + H); Found: 432.1. 1H NMR (300 MHz, DMSO-d6): δ 13.20 (brs, 1H), 9.27 (d, J = 7.8 Hz, 1H), 8.83 (s, 1H), 8.12 (d, J = 7.8 Hz, 1H), 8.05 (s, 1H), 7.61-7.45 (m, 3H), 7.08 (d, J = 8.1 Hz, 1H), 4.62-4.56 (m, 1H), 3.28 (q, J = 7.5 Hz, 2H), 2.00- 1.97 (m, 2H), 1.80-1.77 (m, 2H), 1.64-1.54 (m, 3H), 1.45-1.39 (m, 3H), 1.37 (t, J = 7.5 Hz, 3H). HPLC purity (254 nm): 99.7%. 161 2-(1-Benzothiophen-3-yl)-6-tert-butyl-8-ethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C24H24NO2S+: 390.2 (M + H); Found: 390.1. 1H NMR (300 MHz, DMSO-d6): δ 13.86 (brs, 1H), 9.17 (d, J = 8.1 Hz, 1H), 8.74 (s, 1H), 8.43-8.41 (m, 2H), 8.11 (d, J = 7.8 Hz, 1H), 7.84 (d, J = 1.8 Hz, 1H), 7.58-7.45 (m, 2H), 3.36 (q, J = 7.8 Hz, 2H), 1.42-1.37 (m, 12H). HPLC purity (254 nm): 99.4%. 169 2-(1-Benzofuran-3-yl)-5-(benzyloxy)-8-ethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO4 +: 424.2 (M + H); Found: 424.2. 1H NMR (400 MHz, DMSO-d6): δ 13.41 (brs, 1H), 9.16 (s, 1H), 8.78- 8.76 (m, 1H), 8.09 (s, 1H), 7.73-7.71 (m, 1H), 7.60-7.55 (m, 3H), 7.49-7.30 (m, 5H), 7.11 (d, J = 8.4 Hz, 1H), 5.33 (s, 2H), 3.32 (s, 1H), 3.28 (q, J = 7.6 Hz, 2H), 1.38 (t, J = 7.6 Hz, 3H). HPLC purity (254 nm): 98.1%. 170 2-(1-Benzofuran-3-yl)-5-(cyclohexyloxy)-8-ethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H26NO4 +: 416.2 (M + H); Found: 416.1. 1H NMR (300 MHz, DMSO-d6): δ 13.20 (brs, 1H), 9.13 (s, 1H), 8.79- 8.76 (m, 1H), 8.02 (s, 1H), 7.73-7.70 (m, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.50- 7.42 (m, 2H), 7.07 (d, J = 8.4 Hz, 1H), 4.61-4.55 (m, 1H), 3.28 (q, J = 8.1 Hz, 2H), 2.00-1.97 (m, 2H), 1.80-1.77 (m, 2H), 1.64-1.54 (m, 3H), 1.45-1.27 (m, 3H), 1.39 (t, J = 8.1 Hz, 3H). HPLC purity (254 nm): 99.5%. 172 2-(1-Benzofuran-3-yl)-6-tert-butyl-8-ethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C24H24NO3 +: 374.2 (M + H); Found: 374.1. 1H NMR (300 MHz, DMSO-d6): □ 13.85 (brs, 1 H), 9.11 (s, 1 H), 8.76- 8.74 (m, 1 H), 8.39-8.37 (m, 2 H), 7.83 (s, 1 H), 7.72-7.69 (m, 1H), 7.49-7.44 (m, 2 H), 3.39 (q, J = 7.2 Hz, 1.42 (t, J = 7.2 Hz, 3H), 1.39 (s, 9H). HPLC purity (254 nm): 97.5%. 173 5-(Benzyloxy)-8-ethyl-2-(2-methyl-1-benzofuran-3-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO4 +: 438.2 (M + H); Found: 438.1. 1H NMR (400 MHz, DMSO-d6): δ 13.43 (brs, 1H), 8.17-8.13 (m, 1H), 7.74 (s, 1H), 7.66-7.55 (m, 4H), 7.42-7.30 (m, 5H), 7.12 (d, J = 8.4 Hz, 1H), 5.35 (s, 2H), 3.21 (q, J = 7.2 Hz, 2H), 2.84 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H). HPLC purity (254 nm): 96.9%. 174 5-(Cyclohexyloxy)-8-ethyl-2-(2-methyl-1-benzofuran-3-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO4 +: 430.2 (M + H); Found: 430.1. 1H NMR (300 MHz, DMSO-d6): δ 13.21 (brs, 1H), 8.15-8.12 (m, 1H), 7.66 (s, 1H), 7.64-7.58 (m, 2H), 7.40-7.35 (m, 2H), 7.07 (d, J = 8.4 Hz, 1H), 4.62-4.56 (m, 1H), 3.25-3.16 (m, 2H), 2.83 (s, 3H), 2.00-1.97 (m, 2H), 1.80-1.77 (m, 2H), 1.64-1.54 (m, 3H), 1.45-1.27 (m, 6H). HPLC purity (254 nm): 99.5%. 178 6-tert-Butyl-8-ethyl-2-(2-methyl-1-benzofuran-3-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C25H26NO3 +: 388.2 (M + H); Found: 388.2. 1H NMR (300 MHz, DMSO-d6): □ 8.48 (s, 1 H), 8.18 (s, 2 H), 8.15- 8.13 (m, 1H), 7.83 (s, 1 H), 7.64-7.61 (m, 1 H), 7.37-7.34 (m, 2 H), 3.0 (s, 2 H), 2.84 (s, 3 H), 1.39 (s, 9H), 1.36-1.33 (m, 3 H). HPLC purity (254 nm): 99.1%. 185 2-(1-Benzothiophen-3-yl)-8-ethyl-5-[(2-methylphenyl)methoxy] quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO3S+: 454.2 (M + H); Found: 453.9. 1H NMR (400 MHz, DMSO-d6): δ 13.34 (s, 1H), 9.28 (d, J = 8.4 Hz, 1H), 8.85 (s, 1H), 8.16-8.08 (m, 2H), 7.66-7.45 (m, 4H), 7.30-7.19 (m, 3H), 7.16 (d, J = 8.1 Hz, 1H), 5.29 (s, 2H), 3.30 (q, J = 7.6 Hz, 2H), 2.38 (s, 3H), 1.37 (t, J = 7.4 Hz, 3H). HPLC purity (254 nm): 98.7%. 186 2-(1-Benzothiophen-3-yl)-8-ethyl-5-[(3-methylphenyl)methoxy]quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO3S+: 454.2 (M + H); Found: 453.9. 1H NMR (400 MHz, DMSO-d6): δ 13.42 (s, 1H), 9.27 (d, J = 8.2 Hz, 1H), 8.85 (s, 1H), 8.16-8.09 (m, 2H), 7.63-7.44 (m, 3H), 7.40-7.23 (m, 3H), 7.17-7.07 (m, 2H), 5.30 (s, 2H), 3.27 (q, J = 7.6 Hz, 2H), 2.33 (s, 3H), 1.36 (t, J = 7.4 Hz, 3H). HPLC purity (254 nm): 99.9%. 187 2-(1-Benzothiophen-3-yl)-8-ethyl-5-[(4-methylphenyl)methoxy]quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO3S+: 454.2 (M + H); Found: 454.1. 1H NMR (400 MHz, DMSO-d6): δ 9.21 (d, J = 8.1 Hz, 1H), 8.63 (s, 1H), 8.10 (d, J = 7.9 Hz, 1H), 7.76 (s, 1H), 7.65-7.42 (m, 6H), 7.15 (d, J = 7.8 Hz, 2H), 6.95 (d, J = 8.0 Hz, 1H), 5.22 (s, 2H), 3.23 (q, J = 7.4 Hz, 2H), 2.29 (s, 3H), 1.33 (t, J = 7.4 Hz, 3H). HPLC purity (254 nm): 99.3%. 227 2-(1-Benzofuran-2-yl)-5-(2-hydroxyethoxy)-8-methylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H18NO5 +: 364.1 (M + H); Found: 364.0. 1H NMR (400 MHz, DMSO-d6): δ 13.56 (brs, 1H), 8.01 (s, 1H), 7.92 (s, 1H), 7.81-7.79 (d, J = 7.6 Hz, 1H), 7.76-7.74 (d, J = 8.4 Hz, 1H), 7.65-7.63 (d, J = 8.0 Hz, 1H), 7.46-7.43 (t, J = 7.2 Hz, 1H), 7.36-7.33 (t, J = 7.2 Hz, 1H), 7.10-7.08 (d, J = 8.0 Hz, 1H), 4.17-4.14 (t, J = 5.6 Hz, 2H), 3.84-3.81 (t, J = 5.6 Hz, 2H), 2.73 (s, 3H). HPLC purity (254 nm): 98.1%. 273 6-(Difluoromethoxy)-8-methyl-2-(2-methyl-1-benzofuran-3-yl)quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C21H16F2NO4 +: 384.1 (M + H); Found: 384.0. 1H NMR (400 MHz, CDCl3): δ 8.55 (s, 1H), 8.52-8.51 (m, 1H), 8.14-8.12 (m, 1H), 7.54-7.49 (m, 2H), 7.38-7.32 (m, 2H), 6.73 (t, JH-F = 73.6 Hz, 1H), 2.92 (s, 3H), 2.90 (s, 3H). HPLC purity (254 nm): 96.4%. - A. 2-(1-Benzothiophene-2-amido)-3,5-dimethylbenzoic acid. To a 100-mL round-bottom flask was placed a solution of 1-benzothiophene-2-carboxylic acid (1.0 g, 5.61 mmol) in DCM (30 mL) followed by the dropwise addition of oxalyl chloride (1.426 g, 11.23 mmol) with stirring at 0° C. To the solution was added DMF (0.01 mL) then the reaction was stirred for 1 h at rt. The solvent was removed under reduced pressure affording 1.1 g of 1-benzothiophene-2-carbonyl chloride as a yellow solid.
- To a 100-mL 3-necked round-bottom flask was placed a solution of 2-amino-3,5-dimethylbenzoic acid (0.973 g, 5.89 mmol) in THF (20 mL) and a solution of Na2CO3 (1.79 g, 16.73 mmol) in water (20 mL). This was followed by the dropwise addition of 1-benzothiophene-2-carbonyl chloride (1.1 g, 5.59 mmol, as prepared above) in THF (20 mL) with stirring at 0° C. over 30 min. The resulting solution was stirred for 1 h at rt then the reaction was diluted with 20 mL of water and the pH was adjusted to 2 with aqueous 2N HCl. The resulting solution was extracted with EtOAc (3×30 mL) and the organic extracts were combined. The solution was washed with brine (2×20 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 1 g (55%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI neg): Calcd. for C18H16NO3S+: 324.1 (M−H); Found: 324.
- B. N-(2-Carbamoyl-4,6-dimethylphenyl)-1-benzothiophene-2-carboxamide. To a 100-mL round-bottom flask was placed a solution of 2-(1-benzothiophene-2-amido)-3,5-dimethylbenzoic acid (460 mg, 1.41 mmol, as prepared in the previous step), NH4HCO3 (560 mg, 7.09 mmol) and HATU (807 mg, 2.12 mmol) in DMF (10 mL). This was followed by the dropwise addition of DIEA (914 mg, 7.07 mmol) then the reaction was stirred for 18 h at rt. The solution was diluted with 60 mL of water/ice then the precipitate was isolated by filtration, washed with 30 mL water, and dried in an oven under reduced pressure affording 350 mg (76%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C18H17N2O2S+: 325.1 (M+H); Found: 325.1.
- C. 2-(1-Benzothiophen-2-yl)-6,8-dimethyl-3,4-dihydroquinazolin-4-one. To a 100-mL round-bottom flask was placed a solution of N-(2-carbamoyl-4,6-dimethylphenyl)-1-benzothiophene-2-carboxamide (350 mg, 1.08 mmol, as prepared in the previous step) in EtOH (20 mL) followed by the addition of 1M NaOH (40 mL). The reaction was stirred for 1 h at 80° C. then diluted with 50 mL of water/ice. The pH of the solution was adjusted to 6 with 2N HCl then the precipitate was isolated by filtration and dried in an oven under reduced pressure affording 300 mg (91%) of the title compound as an off-white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C18H15N2OS+: 307.1 (M+H); Found: 307.1.
- D. 2-(1-Benzothiophen-2-yl)-4-chloro-6,8-dimethylquinazoline. To a 100-mL round-bottom flask was placed a solution of 2-(1-benzothiophen-2-yl)-6,8-dimethyl-3,4-dihydroquinazolin-4-one (300 mg, 0.98 mmol, as prepared in the previous step) and POCl3 (3 mL) in toluene (10 mL). This was followed by the dropwise addition of DIEA (380 mg, 2.94 mmol) to the stirred solution at 0° C. The reaction was stirred for 12 h at 90° C. then quenched by the addition of 50 mL of water/ice. The resulting solution was extracted with EtOAc (3×30 mL) and the organic extracts were combined, washed with brine (3×20 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:5) affording 250 mg (79%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C18H14ClN2S+: 325.1 (M+H); Found: 324.8.
- E. 2-(1-Benzothiophen-2-yl)-6,8-dimethylquinazoline-4-carbonitrile. To an 8-mL vial was placed a solution of 2-(1-benzothiophen-2-yl)-4-chloro-6,8-dimethylquinazoline (100 mg, 0.31 mmol, as prepared in the previous step), CuCN (41.6 mg, 0.46 mmol) and CuI (5.87 mg, 0.03 mmol) in DMF (5 mL). The reaction stirred at 130° C. for 6 h under microwave irradiation then diluted with 30 mL of water/ice. The resulting solution was extracted with EtOAc (3×30 mL) and the organic extracts were combined, washed with brine (3×20 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:10) affording 80 mg (82.4%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C19H14N3S+: 316.1 (M+H); Found: 316.1.
- F. 2-(1-Benzothiophen-2-yl)-6,8-dimethylquinazoline-4-carboxylic acid (Compound 4). To a 20-mL sealed tube was placed a solution of 2-(1-benzothiophen-2-yl)-6,8-dimethylquinazoline-4-carbonitrile (80 mg, 0.25 mmol, as prepared in the previous step) in conc HCl (10 mL) then the resulting solution was stirred for 12 h at 100° C. The reaction was concentrated under reduced pressure then the crude product was purified by Prep-HPLC (Column, XBridge Prep Phenyl OBD Column, 19*150 mm 5 um 13 nm; mobile phase, Water (10 mmol/L NH4HCO3) and MeCN (20.0% MeCN up to 55.0% in 8 min); Detector, UV 220/254 nm) affording 35.5 mg (42%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C19H15N2O2S+: 335.1 (M+H); Found: 335.0. 1H NMR (400 MHz, CD3OD): δ 8.42 (s, 1H), 7.97 (s, 1H), 7.93-7.89 (m, 2H), 7.69 (s, 1H), 7.43-7.38 (m, 2H), 2.80 (s, 3H), 2.53 (s, 3H). HPLC purity (254 nm): 98.0%.
- A. Ethyl 2,6-Dichloro-8-methylquinoline-3-carboxylate. To a 25-mL round-bottom flask was placed a solution of 2,6-dichloro-8-methylquinoline-3-carbaldehyde (480 mg, 2.00 mmol) in EtOH (10 mL) then NIS (75 mg, 0.33 mmol) and K2CO3 (552 mg, 3.99 mmol) were added. The reaction was stirred for 2 h at 80° C., then diluted with 50 mL of H2O and extracted with EtOAc (2×50 mL). The organic extracts were combined, was washed with brine (2×50 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude product was purified by Prep-TLC (petroleum ether/EtOAc=4:1) affording 100 mg (18%) of the title compound as yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C13H12Cl2NO2 +: 284.0; Found: 284.0.
- B. Ethyl 2-(1-Benzofuran-2-yl)-6-chloro-8-methylquinoline-3-carboxylate. To a 25-mL round-bottom flask was placed a solution of ethyl 2,6-dichloro-8-methylquinoline-3-carboxylate (100 mg, 0.35 mmol, as prepared in the previous step) in 1,4-dioxane/H2O (2/0.1 mL), then Pd(PPh3)4 (46 mg, 0.04 mmol), K2CO3 (96.6 mg, 0.70 mmol), and (1-benzofuran-2-yl)boronic acid (85 mg, 0.52 mmol) were added. The reaction was purged with N2, then stirred for 16 h at 100° C. The resulting solution was diluted with 50 mL of H2O and extracted with EtOAc (2×50 mL). The organic extracts were combined, washed with brine (2×50 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude product was purified by Prep-TLC (petroleum ether/EtOAc=3:1) affording 65 mg (50%) of the title compound as yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C21H17ClNO3 +: 366.1 (M+H); Found: 366.1.
- C. 2-(1-Benzofuran-2-yl)-6-chloro-8-methylquinoline-3-carboxylic acid. To a 25-mL round-bottom flask was placed a solution of ethyl 2-(1-benzofuran-2-yl)-6-chloro-8-methylquinoline-3-carboxylate (90 mg, 0.25 mmol, as prepared in the previous step) in EtOH (3 mL), KOH (42 mg, 0.75 mmol), and water (1 mL). The reaction was stirred for 1 h at 80° C. then diluted with 20 mL of H2O. The pH of the solution was adjusted to 3-4 with conc HCl then the precipitate was isolated by filtration. The crude product was purified by Flash-Prep-HPLC (CombiFlash-1: Column, C18; mobile phase, X: H2O (0.5% TFA), Y: MeCN, X/Y=90/10 increasing to X/Y=20/80 within 30 min; Detector, UV 254 nm) affording 27 mg (32%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C19H13ClNO3 +: 338.1 (M+H); Found: 338.0. 1H NMR (300 MHz, DMSO-d6): δ 13.67 (s, 1H), 8.72 (s, 1H), 8.11 (s, 1H), 7.82-7.80 (m, 2H), 7.65-7.62 (m, 2H), 7.45-7.32 (m, 2H), 2.80 (s, 3H). HPLC purity (254 nm): 98.9%.
- A. 6-Cyano-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 10-mL sealed tube was placed a solution of 6-bromo-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (100 mg, 0.25 mmol, Compound 21) in DMF (3 mL) then Pd(PPh3)4 (29 mg, 0.03 mmol) and Zn(CN)2 (59 mg, 0.50 mmol) were added under nitrogen. The reaction was heated to 120° C. for 2 h under microwave irradiation then quenched by the addition of water. The solution was extracted with EtOAc, the organic extracts were combined, washed with water, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:1) affording 43.2 mg (50%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C21H15N2O3 +: 343.1 (M+H); Found: 343.1. 1H NMR (300 MHz, DMSO-d6): δ 14.44-14.41 (m, 1H), 9.06 (s, 1H), 8.54 (s, 1H), 8.01 (s, 1H), 7.81-7.79 (m, 1H), 7.73-7.71 (m, 1H), 7.51-7.46 (m, 1H), 7.39-7.34 (m, 1H), 2.82 (s, 3H), 2.80 (s, 3H). HPLC purity (254 nm): 95.1%.
- A. 6-[2-[(tert-Butyldimethylsilyl)oxy]ethoxy]-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 30-mL sealed tube was placed a solution of 4-[2-[(tert-butyldimethylsilyl)oxy]ethoxy]-2-methylaniline (798 mg, 2.84 mmol, Intermediate 5) in EtOH (10 mL) then 3-methyl-1-benzofuran-2-carbaldehyde (500 mg, 3.12 mmol) and 2-oxopropanoic acid (375 mg, 4.26 mmol) were added. The reaction was heated to 100° C. for 3 h under microwave irradiation then concentrated under reduced pressure. The crude product was purified by Flash-Prep-HPLC (IntelFlash-1: Column, Cis; mobile phase, MeCN/H2O=5:95 increasing to MeCN/H2O=95:5 within 30 min; Detector, UV 254 nm) affording 270 mg of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C28H34NO5Si+: 492.2 (M+H); Found: 492.3.
- B. 6-(2-Hydroxyethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 50-mL round-bottom flask was placed a solution of 6-[2-[(tert-butyldimethylsilyl)oxy]ethoxy]-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (200 mg, 0.41 mmol, as prepared in the previous step) in MeOH (5 mL) then py.HF (1 mL) was added. The reaction was stirred for 3 h at rt, quenched by the addition of water, and extracted with DCM. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (2:1) affording 35.1 mg (23%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C22H20NO5 +: 378.1 (M+H); Found: 378.0. 1H NMR (300 MHz, DMSO-d6): δ 8.46 (s, 1H), 8.07-8.06 (m, 1H), 7.78-7.69 (m, 2H), 7.45-7.32 (m, 3H), 4.95 (brs, 1H), 4.14-4.11 (m, 2H), 3.82-3.81 (m, 2H), 2.83 (s, 3H), 2.78 (s, 3H). HPLC purity (254 nm): 95.9%.
- A. 6-Ethenyl-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 10-mL sealed tube purged and maintained with an inert atmosphere of nitrogen was placed a solution of 6-bromo-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (90 mg, 0.23 mmol, Compound 21) in dioxane/H2O=20:1 (6 mL) then 2-ethenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (70 mg, 0.45 mmol), K3PO4 (289 mg, 1.36 mmol), Pd(OAc)2 (5.1 mg, 0.02 mmol), and PCy3.HBF4 (17 mg, 0.05 mmol) were added. The reaction was stirred at 100° C. overnight then concentrated under reduced pressure. The crude product was purified by Flash-Prep-HPLC (IntelFlash-1: Column, C18; mobile phase, MeCN/H2O=40:60 increasing to MeCN/H2O=95:5 within 30 min; Detector, UV 254 nm) affording 120 mg of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C22H18NO3 +: 344.1 (M+H); Found: 344.1.
- B. 6-Ethyl-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 50-mL round-bottom flask was placed a solution of 6-ethenyl-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (126 mg, 0.37 mmol, as prepared in the previous step) in MeOH (10 mL), then Pd on carbon (20 mg) was added. The solution was degassed and back filled with H2 then stirred for 30 min at rt under an atmosphere of H2. The atmosphere was purged with N2 then the solids were removed by filtration. The filtrate was concentrated under reduced pressure. The crude product was purified by Prep-HPLC (HPLC-10: Column, Gemini-NX C18 AXAI Packed, 21.2*150 mm 5 um; mobile phase, Water (0.05% TFA) and MeCN (75.0% MeCN up to 95.0% in 6 min); Detector, UV 254 nm) affording 20 mg (16%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C22H20NO3 +: 346.1 (M+H); Found: 346.1. 1H NMR (400 MHz, DMSO-d6): δ 13.99 (brs, 1H), 8.43 (s, 1H), 8.35 (s, 1H), 7.93-7.77 (m, 1H), 7.73-7.71 (m, 1H), 7.65 (s, 1H), 7.47-7.43 (t, J=7.6 Hz, 1H), 7.37-7.34 (t, J=7.6 Hz, 1H), 2.85-2.79 (m, 8H), 1.31-1.27 (t, J=7.6 Hz, 3H). HPLC purity (254 nm): 99.0%.
- Using the procedure described in Example 7, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 36 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-6-(propan-2-yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C23H22NO3 +: 360.2 (M + H); Found: 360.2. 1H NMR (400 MHz, DMSO-d6): δ 14.00 (s, 1H), 8.44 (s, 1H), 8.39 (s, 1H), 7.79-7.71 (m, 3H), 7.47-7.43 (m, 1H), 7.37-7.34 (t, J = 7.2 Hz, 1H), 3.12-3.05 (m, 1H), 2.85 (s, 3H), 2.80 (s, 3H), 1.33-1.31 (d, J = 6.8 Hz, 6H). HPLC purity (254 nm): 99.6%. - A. 6-Cyclopropyl-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 50-mL round-bottom flask was placed a solution of 6-bromo-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (100 mg, 0.25 mmol, Compound 21) in dioxane/H2O=20/1 (2.5 mL) then Pd(OAc)2 (20 mg, 0.09 mmol), PCy3.HBF4 (40 mg, 0.11 mmol), K3PO4 (320 mg, 1.51 mmol), and cyclopropylboronic acid (43 mg, 0.50 mmol) were added under nitrogen. The reaction was stirred at 120° C. overnight then quenched by the addition of water and extracted with DCM. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:10), followed by Prep-HPLC (HPLC-10: Column, Gemini-NX C18 AXAI Packed, 21.2*150 mm 5 um; mobile phase, Water (0.05% TFA) and MeCN (80.0% MeCN up to 95.0% in 6 min); Detector, UV 254 nm) affording 14.5 mg (16%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C23H20NO3 +: 358.1 (M+H); Found: 357.9. 1H NMR (300 MHz, DMSO-d6): δ 13.93 (s, 1H), 8.43 (s, 1H), 8.30 (s, 1H), 7.79-7.77 (d, J=7.5 Hz, 1H), 7.73-7.70 (d, J=8.1 Hz, 1H), 7.47-7.42 (m, 2H), 7.38-7.33 (m, 1H), 2.84 (s, 3H), 2.78 (s, 3H), 2.12-2.07 (m, 1H), 1.12-1.06 (m, 2H), 0.90-0.80 (m, 2H). HPLC purity (254 nm): 98.6%.
- Using the procedure described in Example 8, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 37 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-6-phenylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C26H20NO3 +: 394.1 (M + H); Found: 393.9. 1H NMR (400 MHz, DMSO-d6): δ 14.04 (s, 1H), 8.84 (s, 1H), 8.51 (s, 1H), 8.10 (s, 1H), 7.82-7.80 (m, 3H), 7.74-7.72 (d, J = 8.4 Hz, 1H), 7.57-7.53 (m, 2H), 7.46-7.44 (m, 2H), 7.39-7.36 (m, 1H), 2.88 (s, 3H), 2.87 (s, 3H). HPLC purity (254 nm): 98.9%. - A. [6,8-Dimethyl-2-(3-methyl-1-benzofuran-2-yl)quinolin-4-yl]methanol. To a 50-mL round-bottom flask was placed a solution of 6,8-dimethyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (100 mg, 0.30 mmol, Compound 9) in THF (5 mL) then NaBH4 (17 mg, 0.46 mmol) was added. The reaction was stirred at 50° C. overnight then quenched by the addition of water and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:1) affording 11.2 mg (12%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C21H20NO2 +: 318.2 (M+H); Found: 318.0. 1H NMR (300 MHz, DMSO-d6): δ 8.21 (s, 1H), 7.78-7.69 (m, 2H), 7.64 (s, 1H), 7.52 (s, 1H), 7.45-7.32 (m, 2H), 5.70-5.66 (m, 1H), 5.09-5.07 (m, 2H), 2.86 (s, 3H), 2.77 (s, 3H). HPLC purity (254 nm): 99.8%.
- A. tert-Butyl N-[2-[Methoxy(methyl)carbamoyl]-1-benzofuran-3-yl]-N-methylcarbamate. To a 100-mL round-bottom flask was placed a solution of tert-butyl N-[2-[methoxy(methyl)carbamoyl]-1-benzofuran-3-yl]carbamate (1.2 g, 3.75 mmol, as prepared in Intermediate 20, Step E) in MeCN (50 mL) then NaH (300 mg, 7.50 mmol) was added. The resulting solution was stirred for 20 min at rt then MeI (2.66 g, 18.74 mmol) was added. The reaction was stirred at rt for 2 h, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether/EtOAc (20:1) affording 0.585 g (47%) of the title compound as light yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C17H23N2O5 +: 335.2 (M+H); Found: 335.2.
- B. tert-Butyl N-(2-Formyl-1-benzofuran-3-yl)-N-methylcarbamate. To a 100-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of tert-butyl N-[2-[methoxy(methyl)carbamoyl]-1-benzofuran-3-yl]-N-methylcarbamate (585 mg, 1.75 mmol, as prepared in the previous step) in THF (50 mL) then LiAlH4 (67 mg, 1.77 mmol) was added. The reaction was stirred at rt for 10 min, then quenched by the addition of 5 g of Na2SO4.10H2O. The solids were removed by filtration then the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:30) affording 200 mg (42%) of the title compound as a light yellow solid.
- C. 2-(3-[[(tert-Butoxy)carbonyl](methyl)amino]-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid. To a 5-mL sealed tube was placed a solution of tert-butyl N-(2-formyl-1-benzofuran-3-yl)-N-methylcarbamate (200 mg, 0.73 mmol, as prepared in the previous step) in EtOH (2 mL) then 2-oxopropanoic acid (79 mg, 0.90 mmol) and 2,5-dimethylaniline (72 mg, 0.59 mmol) were added. The reaction was heated to 100° C. for 3 h under microwave irradiation. The crude product (3 mL) was purified by Flash-Prep-HPLC (IntelFlash-1: Column, C18; mobile phase, MeCN/H2O=30/70 increasing to MeCN/H2O=85/15 within 30 min; Detector, UV 254 nm) affording 26 mg (8%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C26H27N2O5 +: 447.2 (M+H); Found: 447.2.
- D. 5,8-Dimethyl-2-[3-(methylamino)-1-benzofuran-2-yl]quinoline-4-carboxylic acid. To a 25-mL round-bottom flask was placed a solution of 2-(3-[[(tert-butoxy)carbonyl](methyl)amino]-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid (26 mg, 0.06 mmol, as prepared in the previous step) in DCM (6 mL) then TFA (2 mL) was added. The reaction was stirred at 40° C. for 2 h then concentrated under reduced pressure. The residue was purified by Prep-HPLC (HPLC-10: Column, X Bridge C18 OBD Prep Column, 100 Å, 10 μm, 19 mm×250 mm; mobile phase, Water (0.05% TFA) and MeCN (80.0% MeCN up to 83.0% in 10 min); Detector, uv 254 nm) affording 6.8 mg (34%) of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C21H19N2O3 +: 347.1 (M+H); Found: 347.0. 1H NMR (400 MHz, DMSO-d6): δ 8.11-8.09 (d, J=8.0 Hz, 1H), 7.73 (s, 1H), 7.62-7.57 (m, 2H), 7.48-7.44 (t, J=7.2 Hz, 1H), 7.30-7.26 (m, 2H), 3.44 (s, 3H), 2.66 (s, 3H), 2.61 (s, 3H). HPLC purity (254 nm): 95.1%.
- Using the procedure described in Example 10, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 63 2-[3-(Benzylamino)-1-benzofuran-2-yl]-5,8-dimethylquinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H23N2O3 +: 423.2 (M + H); Found: 423.0. 1H NMR (400 MHz, DMSO-d6): δ 14.11 (brs, 1H), 8.07-8.05 (d, J = 8.0 Hz, 1H), 7.89-7.86 (m, 1H), 7.75 (s, 1H), 7.62-7.60 (d, J = 8.4 Hz, 1H), 7.52-7.42 (m, 4H), 7.36-7.32 (t, J = 7.6 Hz, 2H), 7.29-7.24 (m, 3H), 4.99-4.98 (d, J = 5.6 Hz, 2H), 2.60 (s, 3H), 2.29 (s, 3H). HPLC purity (254 nm): 98.0%. - A. 2-(3-[[(tert-Butoxy)carbonyl]amino]-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid. To a 5-mL sealed tube was placed a solution of tert-butyl N-(2-formyl-1-benzofuran-3-yl)carbamate (350 mg, 1.34 mmol, Intermediate 20) in EtOH (2 mL) then 2,5-dimethylaniline (118 mg, 0.97 mmol) and 2-oxopropanoic acid (135 mg, 1.53 mmol) were added. The reaction was heated to 100° C. for 3 h under microwave irradiation then the reaction was cooled to rt and the resulting solid was isolated by filtration affording 90 mg (16%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C25H25N2O5 +: 433.2 (M+H); Found: 433.2.
- B. 2-(3-Amino-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid. To a 100-mL round-bottom flask was placed a solution of 2-(3-[[(tert-butoxy)carbonyl]amino]-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid (80 mg, 0.18 mmol, as prepared in the previous step) in DCM (5 mL) then TFA (2 mL) was added. The resulting solution was stirred at rt for 3 h then concentrated under reduced pressure affording 76 mg of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C20H17N2O3 +: 333.1 (M+H); Found: 333.1.
- C. 5,8-Dimethyl-2-[3-[(phenoxycarbonyl)amino]-1-benzofuran-2-yl]quinoline-4-carboxylic acid. To a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of 2-(3-amino-1-benzofuran-2-yl)-5,8-dimethylquinoline-4-carboxylic acid (76 mg, 0.23 mmol, as prepared in the previous step) and TEA (70 mg) in DCM (20 mL). The solution was cooled to 0° C. then phenyl chloroformate (32 mg, 0.20 mmol) was added dropwise with stirring. The reaction was stirred at rt for 30 min, quenched by the addition of 50 mL of water, and extracted with DCM (3×20 mL). The organic extracts were combined, washed with brine (1×20 mL), and concentrated under reduced pressure. The crude product was purified by Prep-HPLC (HPLC-10: Column, X Bridge C18 OBD Prep Column, 5 um, 19 mm*250 mm; mobile phase, Water (0.05% TFA) and MeCN (80.0% MeCN up to 90.0% in 10 min); Detector, uv 254 nm) affording 16.8 mg (16%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H21N2O5 +: 453.1 (M+H); Found 453.0. 1H NMR (400 MHz, DMSO-d6): δ 14.30 (brs, 1H), 10.93 (s, 1H), 8.20-8.17 (m, 1H), 8.00 (s, 1H), 7.76-7.74 (d, J=8.0 Hz, 1H), 7.69-7.67 (d, J=7.6 Hz, 1H), 7.55-7.44 (m, 4H), 7.42-7.31 (m, 4H), 2.85 (s, 3H), 2.66 (s, 3H). HPLC purity (254 nm): 99.3%.
- A. 5-Hydroxy-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 100-mL round-bottom flask was placed a solution of 5-(benzyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (150 mg, 0.35 mmol, Compound 30) in MeOH (5 mL) then Pd on carbon (50 mg) was added. The resulting solution was degassed and back-filled with H2 then the reaction was stirred for 5 h at rt. The H2 was purged then the solid was removed by filtration. The filtrate was concentrated under reduced pressure affording 100 mg of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C20H16NO4 +: 334.1 (M+H); Found: 334.1.
- B. 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(phenylcarbamoyl)oxy]quinoline-4-carboxylic acid. To a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 5-hydroxy-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (100 mg, 0.30 mmol, as prepared in the previous step) and TEA (20 mg, 0.20 mmol) in DCM (2 mL) then isocyanatobenzene (53.6 mg, 0.45 mmol) was added. The reaction was stirred for 4 h at rt, quenched by the addition of water, and extracted with DCM. The organic extracts were combined and concentrated under reduced pressure. The crude product was purified by Flash-Prep-HPLC (IntelFlash-1: Column, C18; mobile phase, MeCN/H2O=5/95 increasing to MeCN/H2O=30/70 within 15 min; Detector, uv 254 nm) affording 11.5 mg (8%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H21N2O5 +: 453.1 (M+H); Found: 453.1. 1H NMR (300 MHz, DMSO-d6): δ 10.22 (brs, 1H), 8.04 (s, 1H), 7.83-7.78 (m, 2H), 7.69 (d, J=8.1 Hz, 1H), 7.55 (d, J=8.7 Hz, 2H), 7.49-7.30 (m, 6H), 7.08-7.05 (m, 1H), 2.88 (s, 3H), 2.81 (s, 3H). HPLC purity (254 nm): 97.2%.
- A. 2-(2,1-Benzothiazol-3-yl)-5-(benzyloxy)-8-methylquinoline-4-carboxylic acid. To a 50-mL round-bottom flask was placed a solution of 4-(benzyloxy)-7-methyl-2,3-dihydro-1H-indole-2,3-dione (160.2 mg, 0.60 mmol, Intermediate 33) in EtOH (6 mL) then 1-(2,1-benzothiazol-3-yl)ethan-1-one (106.2 mg, 0.60 mmol, Intermediate 34), KOH (50.4 mg, 0.90 mmol), and NaAuCl4.2H2O (68.4 mg, 0.18 mmol) were added. The reaction was stirred for 3 h at 80° C. then cooled to rt and concentrated under reduced pressure. The residue was purified by Prep-TLC with EtOAc/petroleum ether (1:1) and further purified by Prep-HPLC (HPLC-10: Column, T3 OBD Prep Column, 19*250 mm 10 um; mobile phase, Water (0.05% TFA) and MeCN (80.0% MeCN up to 85.0% in 10 min); Detector, uv 254 nm) affording 6 mg (2%) of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C25H19N2O3S+: 427.1 (M+H); Found: 427.1. 1H NMR (400 MHz, DMSO-d6): δ 8.80 (d, J=8.8 Hz, 1H), 8.06 (s, 1H), 7.88 (d, J=8.8 Hz, 1H), 7.68-7.60 (m, 4H), 7.54-7.35 (m, 4H), 7.15 (d, J=8.4 Hz, 1H), 5.38 (s, 2H), 2.85 (s, 3H). HPLC purity (254 nm): 95.5%.
- A. (3-Methyl-1-benzofuran-2-yl)boronic acid. To a 50-mL 3-necked round-bottom flask was placed a solution of 3-methyl-1-benzofuran (792 mg, 5.99 mmol) in THF (30 mL) then the solution was cooled to −78° C. and BuLi (3.6 mL of a 2.5 M hexanes solution, 9.00 mmol) was added dropwise with stirring over 10 min then the reaction was stirred for 30 min at −78° C. To this was added B(OMe)3 (1.2 g, 11.55 mmol) dropwise with stirring at −78° C. over 5 min then the reaction was stirred for 16 h at rt. The reaction was quenched by the addition of 150 mL of water and extracted with EtOAc (2×100 mL). The organic extracts were combined, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether/EtOAc (10:1) affording 520 mg (49%) of the title compound as a yellow solid.
- B. N-(2,4-Dimethylphenyl)acetamide. To a 50-mL round-bottom flask was placed a solution of 2,4-dimethylaniline (5 g, 41.26 mmol) in Ac2O (10 mL) then the reaction was stirred for 20 min at rt and quenched by the addition of 100 mL of water. The solids were isolated by filtration affording 6 g (89%) of the title compound as an off-white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C10H14NO+: 164.1 (M+H); Found: 164.1.
- C. 2-Chloro-6,8-dimethylquinoline-3-carbaldehyde. To a 50-mL round-bottom flask was placed DMF (2.5 g, 34.20 mmol) then the solution was cooled to 0° C. and POCl3 (13.1 g, 85.44 mmol) was added dropwise with stirring over 10 min. The resulting solution was stirred for 2 h at 100° C., then N-(2,4-dimethylphenyl)acetamide (1.4 g, 8.58 mmol, as prepared in the previous step) was added. The reaction was stirred for 16 h at 90° C. then quenched by the addition of 150 mL of water/ice. The solids were isolated by filtration and purified by column chromatography eluting with EtOAc/petroleum ether (1:100) affording 500 mg (27%) of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C12H11ClNO+: 220.1 (M+H); Found: 220.0.
- D. Ethyl 2-Chloro-6,8-dimethylquinoline-3-carboxylate. To a 50-mL round-bottom flask was placed a solution of 2-chloro-6,8-dimethylquinoline-3-carbaldehyde (500 mg, 2.28 mmol, as prepared in the previous step) in EtOH (20 mL) then NIS (765 mg, 3.40 mmol) and K2CO3 (635 mg, 4.59 mmol) were added. The reaction was stirred for 16 h at 80° C., quenched by the addition of 100 mL of water, and extracted with EtOAc (2×100 mL). The organic extracts were combined, washed with brine (2×100 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether/EtOAc (50:1) affording 340 mg (57%) of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H15ClNO2 +: 264.1 (M+H); Found: 264.0.
- E. 2-Chloro-6,8-dimethylquinoline-3-carboxylic acid. To a 50-mL round-bottom flask was placed a solution of ethyl 2-chloro-6,8-dimethylquinoline-3-carboxylate (340 mg, 1.29 mmol, as prepared in the previous step) in EtOH (15 mL) then KOH (217 mg, 3.87 mmol) and water (5 mL) were added. The reaction was stirred for 2 h at 80° C., quenched by the addition of 100 mL of water, and washed with EtOAc (1×100 mL). The pH of the aqueous layer was adjusted to 4-5 with concentrated HCl then the resulting solution was extracted with EtOAc (2×50 mL). The organic extracts were combined, washed with brine (2×50 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 145 mg (48%) of the title compound as yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C12H11ClNO2 +: 236.1 (M+H); Found: 236.0.
- F. 6,8-Dimethyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-3-carboxylic acid. To a 25-mL round-bottom flask was placed a solution of 2-chloro-6,8-dimethylquinoline-3-carboxylic acid (80 mg, 0.34 mmol, as prepared in the previous step) in dioxane/H2O (5/0.1 mL), then Pd(PPh3)4 (35 mg, 0.03 mmol), K2CO3 (94 mg, 0.68 mmol), and (3-methyl-1-benzofuran-2-yl)boronic acid (90 mg, 0.51 mmol, as prepared in Example 14, Step A) under nitrogen. The reaction was stirred for 3 h at 100° C., diluted with 50 mL of H2O, and extracted with EtOAc (2×50 mL). The organic extracts were combined, washed with brine (2×50 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude product was purified by Prep-HPLC (HPLC-10: Column, Gemini-NX C18 AXAI Packed, 21.2*150 mm 5 um; mobile phase, Water (0.05% TFA) and MeCN (65.0% MeCN up to 90.0% in 6 min); Detector, uv 254 nm) affording 8.6 mg (8%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C21H18NO3 +: 332.1 (M+H); Found: 332.2. 1H NMR (300 MHz, DMSO-d6): δ 13.34 (s, 1H), 8.62 (s, 1H), 7.77-7.74 (m, 2H), 7.63 (s, 1H), 7.56-7.53 (d, J=8.1 Hz, 1H), 7.42-7.32 (m, 2H), 2.71 (s, 3H), 2.61 (s, 3H), 2.50 (s, 3H). HPLC purity (254 nm): 99.8%.
- A. 5-(Benzyloxy)-8-bromo-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 100-mL round-bottom flask was placed a solution of 5-(benzyloxy)-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (200 mg, 0.49 mmol, Compound 67) in DCM (30 mL), then NBS (86 mg, 1.46 mmol) was added. The reaction was stirred for 1 h at rt then concentrated under reduced pressure. The residue was purified by column chromatography eluting with DCM/MeOH (15:1) affording 140 mg (85%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C26H19BrNO4 +: 488.1 (M+H); Found: 488.0.
- B. 5-(Benzyloxy)-8-cyano-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 10-mL sealed tube was placed a solution of 5-(benzyloxy)-8-bromo-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (140 mg, 0.29 mmol, as prepared in the previous step) in DMF (3 mL) then Pd(PPh3)4 (120 mg, 0.10 mmol) and Zn(CN)2 (72 mg, 0.62 mmol) were added under nitrogen. The reaction was heated to 120° C. for 2 h under microwave irradiation, then cooled to rt and the solids were removed by filtration. The filtrate was concentrated under reduced pressure then the residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:1). The resulting product was purified by Prep-HPLC (HPLC-10: Column, X Bridge C18 OBD Prep Column, 19 mm*250 mm; mobile phase, Water (0.05% TFA) and MeCN (60.0% MeCN up to 77.0% in 10 min); Detector, uv 254 nm) affording 12.5 mg (10%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H19N2O4 +: 435.1 (M+H); Found: 435.1. 1H NMR (300 MHz, DMSO-d6): δ 8.38 (d, J=8.1 Hz, 1H), 8.02 (s, 1H), 7.83 (d, J=8.1 Hz, 1H), 7.71 (d, J=8.1 Hz, 1H), 7.59-7.56 (m, 2H), 7.50 (t, J=7.2 Hz, 1H), 7.41-7.29 (m, 5H), 5.47 (s, 2H), 2.92 (s, 3H). HPLC purity (254 nm): 97.6%.
- A. 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1R)-1-phenylethoxy]quinoline-4-carboxylic acid and 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1S)-1-phenylethoxy]quinoline-4-carboxylic acid. To a 10-mL sealed tube was placed a solution of 2-methyl-5-(1-phenylethoxy)aniline (730 mg, 3.21 mmol, Intermediate 52) in EtOH (5 mL) then 3-methyl-1-benzothiophene-2-carbaldehyde (566 mg, 3.21 mmol) and 2-oxopropanoic acid (849 mg, 9.64 mmol) were added. The reaction was heated to 100° C. for 2 h under microwave irradiation, cooled to rt, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with DCM/MeOH (15:1). The resulting mixture was separated by Chiral-Prep-HPLC (Prep-HPLC-004: Column, CHIRALPAK ADH, 21.2*250 mm, 5 um; mobile phase, Hex (0.1% TFA) and IPA (hold 50.0% IPA in 19 min); Detector, uv 254 nm) affording 34.7 mg (2%) of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1R)-1-phenylethoxy]quinoline-4-carboxylic acid (Compound 137) as a yellow solid and 34.6 mg (2%) of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1S)-1-phenylethoxy]quinoline-4-carboxylic acid (Compound 138) as a yellow solid.
- 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1R)-1-phenylethoxy]quinoline-4-carboxylic add (Compound 137): Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO3S+: 454.2 (M+H); Found: 454.1. 1H NMR (400 MHz, DMSO-d6): δ 13.60 (brs 1H), 8.04-8.03 (m, 2H), 7.97-7.94 (m, 2H), 7.81 (s, 1H), 7.51-7.45 (m, 5H), 7.34-7.30 (m, 2H), 7.23 (t, J=7.2 Hz, 1H), 6.79 (d, J=8.0 Hz, 1H), 5.71 (q, J=6.4 Hz, 1H), 2.82 (s, 3H), 2.62 (s, 3H), 1.64 (d, J=6.4 Hz, 3H). HPLC purity (254 nm): 96.4%.
- 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1S)-1-phenylethoxy]quinoline-4-carboxylic add (Compound 138): Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO3S+: 454.2 (M+H); Found: 454.1. 1H NMR (400 MHz, DMSO-d6): δ 8.05-8.02 (m, 2H), 7.97-7.94 (m, 2H), 7.81 (s, 1H), 7.51-7.45 (m, 5H), 7.34-7.30 (m, 2H), 7.23 (t, J=7.2 Hz, 1H), 6.79 (d, J=8.0 Hz, 1H), 5.71 (q, J=6.4 Hz, 1H), 2.82 (s, 3H), 2.62 (s, 3H), 1.64 (d, J=6.4 Hz, 3H). HPLC purity (254 nm): 99.6%.
- Using the procedure described in Example 16, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 160 2-(1-Benzothiophen-3-yl)-8-methyl-5-[(1R)-1-phenylethoxy]quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO3S+: 440.1 (M + H); Found: 440.2. 1H NMR (300 MHz, DMSO-d6): δ 9.27 (d, J = 8.1 Hz, 1H), 8.85 (s, 1H), 8.13-8.11 (m, 2H), 7.58-7.44 (m, 5H), 7.35-7.21 (m, 3H), 6.78 (d, J = 8.1 Hz, 1H), 5.71 (q, J = 6.3 Hz, 1H), 2.70 (s, 3H), 1.64 (d, J = 6.3 Hz, 3H). HPLC purity (254 nm): 96.0%. 161 2-(1-Benzothiophen-3-yl)-8-methyl-5-[(1S)-1-phenylethoxy]quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C27H22NO3S+: 440.1 (M + H); Found: 440.0. 1H NMR (300 MHz, DMSO-d6): δ 9.27 (d, J = 8.1 Hz, 1H), 8.85 (s, 1H), 8.13-8.11 (m, 2H), 7.58-7.44 (m, 5H), 7.35-7.21 (m, 3H), 6.78 (d, J = 8.1 Hz, 1H), 5.71 (q, J = 6.3 Hz, 1H), 2.70 (s, 3H), 1.64 (d, J = 6.3 Hz, 3H). HPLC purity (254 nm): 95.5%. 163 2-(1-Benzothiophen-3-yl)-8-ethyl-5-[(1R)-1-phenylethoxy]quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO3S+: 454.2 (M + H); Found: 454.2. 1H NMR (400 MHz, DMSO-d6): δ 13.46 (br, 1H), 9.24 (d, J = 8.0 Hz, 1H), 8.85 (s, 1H), 8.13-8.11 (m, 2H), 7.57-7.44 (m, 5H), 7.33 (t, J = 6.8 Hz, 2H), 7.26-7.21 (m, 1H), 6.80 (d, J = 8.0 Hz, 1H), 5.71 (q, J = 6.0 Hz, 1H), 3.21 (q, J = 7.2 Hz, 2H), 1.64 (d, J = 6.4 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H). HPLC purity (254 nm): 96.8%. 164 2-(1-Benzothiophen-3-yl)-8-ethyl-5-[(1S)-1-phenylethoxy]quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO3S+: 454.2 (M + H); Found: 454.2. 1H NMR (400 MHz, DMSO-d6): δ 9.24 (d, J = 8.0 Hz, 1H), 8.85 (s, 1H), 8.13-8.11 (m, 2H), 7.57-7.44 (m, 5H), 7.33 (t, J = 6.8 Hz, 2H), 7.26-7.21 (m, 1H), 6.80 (d, J = 8.0 Hz, 1H), 5.71 (q, J = 6.0 Hz, 1H), 3.21 (q, J = 7.2 Hz, 2H), 1.64 (d, J = 6.4 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H). HPLC purity (254 nm): 96.1%. 171 2-(1-Benzofuran-3-yl)-8-ethyl-5-[(1R)-1-phenylethoxy]quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO4 +: 438.2 (M + H); Found: 438.2. 1H NMR (400 MHz, DMSO-d6): δ 13.51 (brs, 1H), 9.16 (s, 1H), 8.76-8.74 (m, 1H), 8.10 (s, 1H), 7.73-7.71 (m, 1H), 7.55-7.41 (m, 5H), 7.35-7.22 (m, 3H), 6.79 (d, J = 8.0 Hz, 1H), 5.72-5.67 (q, J = 6.4 Hz, 1H), 3.24 (q, J = 8.0 Hz, 2H), 1.64 (d, J = 6.4 Hz, 3H), 1.35-1.31 (t, J = 8.0 Hz, 3H). HPLC purity (254 nm): 96.4%. 172 2-(1-Benzofuran-3-yl)-8-ethyl-5-[(1S)-1-phenylethoxy]quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO4 +: 438.2 (M + H); Found: 438.1. 1H NMR (400 MHz, DMSO-d6): δ 13.50 (brs, 1H), 9.16 (s, 1H), 8.76-8.74 (m, 1H), 8.10 (s, 1H), 7.73-7.71 (m, 1H), 7.55-7.41 (m, 5H), 7.35-7.22 (m, 3H), 6.79 (d, J = 8.0 Hz, 1H), 5.72-5.67 (q, J = 6.4 Hz, 1H), 3.24 (q, J = 8.0 Hz, 2H), 1.64 (d, J = 6.4 Hz, 3H), 1.35-1.31 (t, J = 8.0 Hz, 3H). HPLC purity (254 nm): 97.5%. 183 2-(1-Benzothiophen-3-yl)-8-ethyl-5-[(1R)-1-phenylpropoxy]quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO3S+: 468.2 (M + H); Found: 468.1. 1H NMR (400 MHz, CD3OD): δ 9.23 (d, J = 8.0 Hz, 1H), 8.43 (s, 1H), 8.00-7.99 (m, 2H), 7.52-7.23 (m, 8H), 6.76 (d, J = 8.4 Hz, 1H), 5.37 (t, J = 6.2 Hz, 1H), 3.27 (q, J= 7.2 Hz, 2H), 2.28-2.17 (m, 1H), 2.02-1.91 (m, 1H), 1.38 (t, J = 7.6 Hz, 3H), 1.12 (t, J = 7.2 Hz, 3H). HPLC purity (254 nm): 98.8%. 185 2-(1-Benzothiophen-3-yl)-8-ethyl-5-[(1S)-1-phenylpropoxy]quinoline-4- carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO3S+: 468.2 (M + H); Found: 468.1. 1H NMR (400 MHz, CD3OD): δ 9.23 (d, J = 8.0 Hz, 1H), 8.43 (s, 1H), 8.00-7.99 (m, 2H), 7.52-7.23 (m, 8H), 6.76 (d, J = 8.4 Hz, 1H), 5.37 (t, J = 6.2 Hz, 1H), 3.27 (q, J = 7.2 Hz, 2H), 2.28-2.17 (m, 1H), 2.02-1.91 (m, 1H), 1.38 (t, J = 7.6 Hz, 3H), 1.10 (t, J = 7.2 Hz, 3H). HPLC purity (254 nm): 99.0%. - A. 5-(Benzyloxy)-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid. To a 5-ml, sealed tube was placed a solution of 1-(3-methyl-1-benzothiophen-2-yl)ethan-1-one (165 mg, 0.87 mmol) in EtOH (2 mL) then 4-(benzyloxy)-2,3-dihydro-1H-indole-2,3-dione (200 mg, 0.79 mmol, Intermediate 21) and KOH (88 mg, 1.57 mmol) were added. The reaction was stirred overnight at 80° C. then concentrated under reduced pressure. The residue was dissolved in 5 mL of H2O, the pH was adjusted to 4-5 with 2 N HCl, and the resulting solution was extracted with EtOAc (3×30 mL). The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:1) affording 78 mg (23%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C26H20NO3S+: 426.1 (M+H); Found: 426.1.
- B. 5-(Benzyloxy)-8-bromo-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid. To a 10-mL 3-necked round-bottom flask was placed a solution of 5-(benzyloxy)-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid (68 mg, 0.16 mmol, as prepared in the previous step) in DCM (1 mL) then NBS (26 mg, 0.15 mmol) in DCM (1 mL) was added. The reaction was stirred for 1 h at rt, quenched by the addition of 5 mL of water, and extracted with DCM (3×20 mL). The organic extracts were combined and concentrated under reduced pressure affording 90 mg of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C26H19BrNO3S+: 504.0 (M+H); Found: 504.4.
- C. 5-(Benzyloxy)-2-(3-methylbenzo[b]thiophen-2-yl)-8-vinylquinoline-4-carboxylic acid. To a 10-mL sealed tube was placed a solution of 5-(benzyloxy)-8-bromo-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid (90 mg, 0.18 mmol, as prepared in the previous step) in dioxane/H2O (20:1) (3 mL) then Pd(OAc)2 (8 mg, 0.04 mmol), PCy3.HBF4 (26 mg), and 2-ethenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (41 mg, 0.27 mmol) were added under nitrogen. The reaction was stirred for 4 h at 100° C., quenched by the addition of 10 mL of water, and extracted with EtOAc (3×20 mL). The organic extracts were combined, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:1) affording 78 mg (84%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C28H22NO3S+: 452.1 (M+H); Found: 452.1.
- D. 5-(Benzyloxy)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid. To a 25-mL round-bottom flask was placed a solution of 5-(benzyloxy)-8-ethenyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid (78 mg, 0.17 mmol, as prepared in the previous step) in MeOH (5 mL) then Pd on carbon (8 mg) was added. The solution was degassed and back-filled with H2 then stirred for 10 min at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure and the residue was purified by Prep-HPLC (HPLC-10: Column, Atlantis Prep T3 OBD Column, 19*250 mm 10 um; mobile phase, Water (0.05% TFA) and MeCN (hold 95.0% MeCN in 10 min); Detector, UV 254/220 nm) affording 5.7 mg (7%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO3S+: 454.2 (M+H); Found: 454.1. 1H NMR (400 MHz, DMSD-d6): δ 13.50 (s, 1H), 8.05-8.03 (m, 1H), 8.02-7.94 (m, 1H), 7.82 (s, 1H), 7.61-7.54 (m, 3H), 7.50-7.46 (m, 2H), 7.42-7.38 (m, 2H), 7.34-7.32 (m, 1H), 7.13 (d, J=8.0 Hz, 1H), 5.35 (s, 2H), 3.18 (q, J=7.2 Hz, 2H), 2.82 (s, 3H), 1.33 (t, J=7.2 Hz, 3H). HPLC purity (254 nm): 97.8%.
- A. 2-Amino-6-(benzyloxy)-3-methylbenzoic acid. To a 50-mL round-bottom flask was placed a solution of 4-(benzyloxy)-7-methyl-2,3-dihydro-1H-indole-2,3-dione (1 g, 3.74 mmol, Intermediate 33) in water (13 mL) then NaOH (780 mg, 19.50 mmol) was added. The resulting solution was stirred for 2 h at 50° C. then H2O2 (13 mL) was added dropwise with stirring at 50° C. The reaction was stirred for 3 h at 50° C. then cooled to room temperature and the pH was adjusted to 4-5 with 2N HCl. The precipitate was collected by filtration and dried affording 520 mg (54%) of the title compound as a gray solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H16NO3 +: 258.1 (M+H); Found: 258.1.
- B. 3-Methyl-1-benzofuran-2-carbonyl chloride. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-methyl-1-benzofuran-2-carboxylic acid (500 mg, 2.84 mmol) and DMF (0.1 mL) in DCM (10 mL) then the solution was cooled to 0° C. and oxalyl chloride (470 mg, 3.70 mmol) was added dropwise with stirring. The reaction was stirred for 2 h at 0° C. then concentrated under reduced pressure affording 500 mg (91%) of the title compound as an off-white solid.
- C. 6-(Benzyloxy)-3-methyl-2-(3-methyl-1-benzofuran-2-amido)benzoic acid. To a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-amino-6-(benzyloxy)-3-methylbenzoic acid (687 mg, 2.67 mmol, as prepared in Step A) in THF/H2O (2/1, 93 mL) then Na2CO3 (809.8 mg, 7.64 mmol) was added and the mixture was cooled to 0° C. A solution of 3-methyl-1-benzofuran-2-carbonyl chloride (494 mg, 2.54 mmol, as prepared in the previous step) in THF (10 mL) was added dropwise then the resulting solution was stirred for 30 min at rt. The reaction was diluted with H2O and the solids were isolated by filtration affording 498 mg (47%) of the title compound as a gray solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C25H22NO5 +: 416.2 (M+H); Found: 416.1.
- D. N-[3-(Benzyloxy)-2-carbamoyl-6-methylphenyl]-3-methyl-1-benzofuran-2-carboxamide. To a 50-mL round-bottom flask was placed a solution of 6-(benzyloxy)-3-methyl-2-(3-methyl-1-benzofuran-2-amido)benzoic acid (260 mg, 0.63 mmol, as prepared in the previous step) in DMF (12 mL) then HATU (476 mg, 1.25 mmol), NH4HCO3 (495 mg), and DIEA (404 mg, 3.13 mmol) were added. The reaction was stirred for 3 h at rt then quenched by the addition of water and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 223 mg (86%) of the title compound as a gray solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C25H23N2O4′: 415.2 (M+H); Found: 415.2.
- E. 5-(Benzyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazolin-4-ol. To a 50-mL round-bottom flask was placed a solution of N-[3-(benzyloxy)-2-carbamoyl-6-methylphenyl]-3-methyl-1-benzofuran-2-carboxamide (163 mg, 0.4 mmol, as prepared in the previous step) in EtOH (5 mL) then NaOH (47 mg, 1.17 mmol) was added. The reaction was stirred for 3 h at 80° C., then quenched by the addition of water. The precipitate was isolated by filtration and dried affording 150 mg (96%) of the title compound as a gray solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C25H21N2O3 +: 397.2 (M+H); Found: 397.1. 1H NMR (400 MHz, DMSO-d6): δ 7.69-7.63 (m, 2H), 7.59 (d, J=8.0 Hz, 1H), 7.44-7.19 (m, 7H), 6.60 (d, J=8.0 Hz, 1H), 5.14 (s, 2H), 2.77 (s, 3H), 2.44 (s, 6H).
- F. 5-(Benzyloxy)-4-chloro-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazoline. To a 25-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 5-(benzyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazolin-4-ol (120 mg, 0.30 mmol, as prepared in the previous step) in DCM (5 mL) then the solution was cooled to 0° C. and oxalyl chloride (50 mg, 0.39 mmol) was added dropwise. The resulting solution was stirred for 2 h at 0° C. then concentrated under reduced pressure affording 122 mg (97%) of the title compound as a gray solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C25H20ClN2O2 +: 415.1 (M+H); Found: 415.1.
- G. Methyl 5-(Benzyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazoline-4-carboxylate. To a 20-mL pressure tank reactor was placed a solution of 5-(benzyloxy)-4-chloro-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazoline (122 mg, 0.29 mmol, as prepared in the previous step), Pd(dppf)Cl2 (159 mg, 0.22 mmol), and NaOAc (122 mg) in MeOH (5 mL) under nitrogen then CO was introduced into the reactor. The reaction was stirred for 18 h at 120° C. under 40 atm of CO then the solution was concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:1) affording 28 mg (22%) of the title compound as a gray solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H23N2O4 +: 439.2 (M+H); Found: 439.2.
- H. 5-(Benzyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazoline-4-carboxylic acid. To a 25-mL round-bottom flask was placed a solution of methyl 5-(benzyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazoline-4-carboxylate (23 mg, 0.05 mmol, as prepared in the previous step) in THF/MeOH/H2O (10/10/1, 4.2 mL) then NaOH (8 mg, 0.20 mmol) was added. The reaction was stirred for 4 h at 100° C. then concentrated under reduced pressure. The pH of the solution was adjusted to 2-3 using 2N HCl then the precipitate was isolated by filtration affording 5.1 mg (23%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C26H21N2O4 +: 425.2 (M+H); Found: 425.1. 1H NMR (400 MHz, CD3OD): δ 7.74-7.55 (m, 5H), 7.45-7.21 (m, 5H), 6.94 (d, J=8.0 Hz, 1H), 5.37 (s, 2H), 2.88 (s, 3H), 2.68 (s, 3H). HPLC purity (254 nm): 96.9%.
- A. 5-(Benzyloxy)-6-bromo-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 50-mL round-bottom flask was placed a solution of 5-(benzyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (169.2 mg, 0.40 mmol, Compound 30) in DCM/THF (1:1, 10 mL) then the solution was cooled to −30° C. and NBS (71.2 mg, 0.40 mmol) was added in small portions. The cooling bath was removed then the reaction was stirred overnight. The resulting mixture was concentrated under reduced pressure and the residue was purified by Prep-TLC with ethyl acetate/petroleum ether (1:1) affording 120 mg (60%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H21BrNO4 +: 502.1 (M+H); Found: 502.4.
- B. 5-(Benzyloxy)-6,8-dimethyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To an 8-mL sealed tube purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 5-(benzyloxy)-6-bromo-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (60 mg, 0.12 mmol, as prepared in the previous step) in dioxane/H2O (20:1, 1 mL) then methylboronic acid (14 mg, 0.23 mmol), K3PO4 (128 mg, 0.60 mmol), Pd(OAc)2 (2 mg, 0.01 mmol), and PCy3.HBF4 (8 mg, 0.02 mmol) were added. The reaction was stirred overnight at 100° C. then concentrated under vacuum. The residue was purified by Prep-TLC with ethyl acetate/petroleum ether (1:1). The product was further purified by Prep-HPLC (HPLC-10: Column, X Bridge C18 OBD Prep Column, 100*10 μm, 19 mm*250 mm; mobile phase, Water (0.05% TFA) and MeCN (80.0% MeCN up to 95.0% in 6 min); Detector, uv 254 nm) affording 5 mg (10%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO4′: 438.2 (M+H); Found: 438.3. 1H NMR (400 MHz, CD3OD): δ 8.03 (s, 1H), 7.74 (d, J=8.0 Hz, 1H), 7.69-7.61 (m, 4H), 7.46-7.32 (m, 5H), 4.89 (s, 2H), 2.93 (s, 3H), 2.82 (s, 3H), 2.49 (s, 3H). HPLC purity (254 nm): 97.5%.
- A. 4-tert-Butyl-2-methylaniline. To a 1000-mL round-bottom flask was placed a solution of 2-bromo-4-tert-butylaniline (9.2 g, 40.33 mmol) in dioxane/water (500 mL) then Pd(OAc)2 (900 mg, 4.01 mmol), PCy3.HBF4 (2.95 g, 8.01 mmol), methylboronic acid (3.6 g, 60.14 mmol), and K3PO4 (26 g, 122.64 mmol) were added under nitrogen. The reaction was stirred for 12 h at 110° C. then quenched by the addition of water and extracted with DCM. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:80) affording 5.7 g (87%) of the title compound as a dark red oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H18N+: 164.1 (M+H); Found: 164.1.
- B. 2-Bromo-4-tert-butyl-6-methylaniline. To a 500-mL 3-necked round-bottom flask was placed a solution of 4-tert-butyl-2-methylaniline (2.37 g, 14.52 mmol, as prepared in the previous step) in DCM (300 mL) then the solution was cooled to −30° C. and NBS (2.96 g, 13.10 mmol) was added. The reaction was stirred for 3 h at −30° C., washed with H2O, dried over anhydrous Na2SO4, and concentrated under reduce pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:80) affording 3.4 g (97%) of the title compound as a dark red oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C11H17BrN+: 242.1 (M+H); Found: 242.1.
- C. 2-Amino-5-tert-butyl-3-methylbenzonitrile. To a 20-mL sealed tube was placed a solution of 2-bromo-4-tert-butyl-6-methylaniline (1.85 g, 7.64 mmol, as prepared in the previous step) in DMF (15 mL) then Pd(PPh3)4 (890 mg, 0.77 mmol) and ZnCN2 (1.61 g) were added under nitrogen. The reaction was heated to 130° C. for 2 h under microwave radiation then quenched by the addition of water and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:10) affording 0.99 g (69%) of the title compound as a dark red oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C12H17N2 +: 189.1 (M+H); Found: 189.1.
- D. 2-Amino-5-tert-butyl-3-methylbenzamide. To a 50-mL round-bottom flask was placed a solution of 2-amino-5-tert-butyl-3-methylbenzonitrile (510 mg, 2.71 mmol, as prepared in the previous step) in DMSO (10 mL) then H2O2 (2 mL) and K2CO3 (1.1 g, 7.96 mmol) were added. The reaction was stirred for 2 h at rt then quenched by the addition of aqueous NaHSO3 solution and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 0.48 g (86%) of the title compound as a colorless oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C12H19N2O+: 207.2 (M+H); Found: 207.1.
- E. N-(4-tert-Butyl-2-carbamoyl-6-methylphenyl)-3-methyl-1-benzofuran-2-carboxamide. To a 100-mL round-bottom flask was placed a solution of 3-methyl-1-benzofuran-2-carbonyl chloride (234 mg, 1.20 mmol, as prepared in Example 18, Step B) in DCM then 2-amino-5-tert-butyl-3-methylbenzamide (268 mg, 1.30 mmol, as prepared in the previous step) and TEA (1.0 mL) were added. The reaction was stirred for 30 min at rt, quenched by the addition of water, and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:3) affording 130 mg (30%) of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C22H25N2O3 +: 365.2 (M+H); Found: 365.2.
- F. 6-tert-Butyl-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazolin-4-ol. To a 50-mL round-bottom flask was placed a solution of N-(4-tert-butyl-2-carbamoyl-6-methylphenyl)-3-methyl-1-benzofuran-2-carboxamide (130 mg, 0.36 mmol, as prepared in the previous step) in EtOH then NaOH (44 mg, 1.10 mmol) was added. The reaction was stirred for 3 h at 80° C. then quenched by the addition of water, and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 124 mg of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C22H23N2O2 +: 347.2 (M+H); Found: 347.2.
- G. 6-tert-Butyl-4-chloro-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazoline. To a 50-mL round-bottom flask was placed a solution of 6-tert-butyl-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazolin-4-ol (124 mg, 0.36 mmol, as prepared in the previous step) in DCM then DMF (0.2 mL) and oxalyl chloride (91 mg, 0.72 mmol) were added. The reaction was stirred for 30 min at rt then quenched by the addition of ice-water and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 130 mg of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C22H22ClN2O+: 365.1 (M+H); Found: 365.1.
- H. 6-tert-Butyl-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazoline-4-carbonitrile. To a 25-mL round-bottom flask was placed a solution of 6-tert-butyl-4-chloro-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazoline (130 mg, 0.36 mmol, as prepared in the previous step) in DMF then ZnCN2 (76 mg) and Pd(PPh3)4 (41 mg, 0.04 mmol) were added under nitrogen. The reaction was heated to 130° C. for 2 h under microwave irradiation then quenched by the addition of water and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 110 mg (87%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C23H22N3O+: 356.2 (M+H); Found: 356.2.
- I. 6-tert-Butyl-8-methyl-2-(3-methylbenzofuran-2-yl)quinazoline-4-carboxamide. To a 100-mL round-bottom flask was placed a solution of 6-tert-butyl-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazoline-4-carbonitrile (100 mg, 0.28 mmol, as prepared in the previous step) in THF then K2CO3 (117 mg, 0.85 mmol) and H2O2 (4 mL) were added. The reaction was stirred for 3 h at rt then quenched by the addition of aqueous NaHSO3 solution and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 120 mg of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C23H24N3O2 +: 374.2 (M+H); Found: 374.2.
- J. 6-tert-Butyl-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinazoline-4-carboxylic acid. To a 100-mL round-bottom flask was placed a solution of the 6-tert-butyl-8-methyl-2-(3-methylbenzofuran-2-yl)quinazoline-4-carboxamide (105 mg, 0.280 mmol, as prepared in the previous step) in EtOH then NaOH (112 mg, 2.80 mmol) was added. The reaction was stirred for 5 h at 75° C. then quenched by the addition of water. The pH of the solution was adjusted to 3 with 2N HCl and the precipitate was isolated by filtration, washed with water, and dried affording 48 mg of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C23H23N2O3 +: 375.2 (M+H); Found: 375.0. 1H NMR (300 MHz, CD3OD): δ 8.09 (s, 1H), 7.97 (s, 1H), 7.71 (d, J=7.8 Hz, 1H), 7.60 (d, J=8.1 Hz, 1H), 7.41 (t, J=7.5 Hz, 1H), 7.32 (t, J=7.2 Hz, 1H), 2.89 (s, 3H), 2.83 (s, 3H), 1.44 (s, 9H). HPLC purity (254 nm): 95.0%.
- A. N-Benzyl-4-methyl-3-nitroaniline. To a 100-mL round-bottom flask was placed a solution of 4-methyl-3-nitroaniline (1 g, 6.57 mmol) and benzaldehyde (0.8 mL) in DCE (20 mL) then the solution was cooled to 0° C. and NaBH(OAc)3 (2.1 g, 9.91 mmol) was added in several portions with stirring. The reaction was stirred for 16 h at 60° C., quenched by the addition of water, and extracted with DCM. The organic extracts were combined, washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether/EtOAc (10:1) affording 760 mg (48%) of the title compound as a red solid.
- B. N1-Benzyl-4-methylbenzene-1,3-diamine. To a 25-mL round-bottom flask purged and maintained with an inert atmosphere of N2, was placed a solution of N-benzyl-4-methyl-3-nitroaniline (243 mg, 1.00 mmol, as prepared in the previous step) in MeOH (5 mL) then Pd on carbon (20 mg) was added. The solution was degassed and back-filled with H2 and stirred for 5 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 200 mg (94%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H17N2 +: 213.1 (M+H); Found: 213.1.
- C. 1-Benzyl-6-methyl-4-(3-methylbenzofuran-2-yl)pyrrolo[4,3,2-de]quinolin-2(1H)-one. To an 8-mL vial was placed a solution of N1-benzyl-4-methylbenzene-1,3-diamine (212 mg, 1.00 mmol, as prepared in the previous step) in EtOH (3 mL) then added 3-methyl-1-benzofuran-2-carbaldehyde (160 mg, 1.00 mmol) and 2-oxopropanoic acid (352 mg, 4.00 mmol) were added. The reaction was heated to 100° C. for 2 h under microwave irradiation, cooled to rt, and the precipitate was isolated by filtration affording 70 mg (17%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H21N2O2 +: 405.2 (M+H); Found: 405.2.
- D. 5-(Benzylamino)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 25-mL round-bottom flask was placed a solution of 1-benzyl-6-methyl-4-(3-methylbenzofuran-2-yl)pyrrolo[4,3,2-de]quinolin-2(1H)-one (15 mg, 0.04 mmol, as prepared in the previous step) in water (3 mL) then NaOH (15 mg, 0.38 mmol) was added. The reaction was stirred for 1 h at rt then concentrated under reduced pressure. The crude product was purified by Flash-Prep-HPLC (IntelFlash-1: Column, C18; mobile phase, MeCN/H2O=5% increasing to MeCN/H2O=30% within 9.6 min; Detector, UV 254 nm) and further purified by Prep-HPLC (Column: X Bridge C18 OBD Prep Column, 19 mm*250 mm; mobile phase, Water (0.05% NH4HCO3) and MeCN (40.0% MeCN up to 55.0% in 10 min; Detector, uv 254 nm) affording 9.8 mg (63%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H23N2O3 +: 423.2 (M+H); Found: 423.2. 1H NMR (300 MHz, DMSO-d6): δ 7.82 (s, 1H), 7.75 (d, J=7.5 Hz, 1H), 7.66 (d, J=8.7 Hz, 1H), 7.53-7.46 (m, 3H), 7.42-7.39 (m, 5H), 7.35-7.23 (m, 5H), 6.39 (d, J=7.2 Hz, 1H), 4.36 (s, 2H), 2.84 (s, 3H), 2.62 (s, 3H). HPLC purity (254 nm): 95.1%.
- A. 5-(Benzyloxy)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carbonyl chloride. To a 25-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 5-(benzyloxy)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid (71 mg, 0.16 mmol, Compound 133) and DMF (20 mg, 0.27 mmol) in DCM (5 mL) then the solution was cooled to and oxalyl chloride (20 mg, 0.16 mmol) was added dropwise with stirring. The reaction was stirred for 30 min at rt then concentrated under reduced pressure affording 78 mg of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C28H23ClNO2S+: 472.1 (M+H); Found: 473.0.
- B. Methyl 5-(Benzyloxy)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate. To a 25-mL round-bottom flask was placed 5-(benzyloxy)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carbonyl chloride (78 mg, 0.17 mmol, as prepared in the previous step) then MeOH (10 mL) was added. The resulting solution was stirred for 5 min at rt then concentrated under reduced pressure affording 73 mg (94%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO3S+: 468.2 (M+H); Found: 468.3.
- C. Methyl 8-Ethyl-5-hydroxy-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate. To a 50-mL round-bottom flask purged and maintained with an inert atmosphere of N2, was placed a solution of methyl 5-(benzyloxy)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate (94 mg, 0.20 mmol, as prepared in the previous step) in MeOH (10 mL) then Pd on carbon (20 mg) was added. The reaction was stirred for 10 h at rt under an atmosphere of H2 then the H2 was purged and the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 68 mg (90%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C22H20NO3S+: 378.1 (M+H); Found: 378.5.
- D. Methyl 8-Ethyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[2-(pyridin-3-yl)ethoxy]quinoline-4-carboxylate. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of methyl 8-ethyl-5-hydroxy-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate (50 mg, 0.13 mmol, as prepared in the previous step) in THF (10 mL) then 2-(pyridin-3-yl)ethan-1-ol (24.47 mg, 0.20 mmol), PPh3 (42 mg) were added. The solution was cooled to 0° C. then DIAD (32.3 mg) was added dropwise with stirring. The reaction was stirred for 2 h at rt, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:1) affording 53 mg (83%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C29H27N2O3S+: 483.2 (M+H); Found: 483.6.
- E. 8-Ethyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[2-(pyridin-3-yl)ethoxy]quinoline-4-carboxylic acid. To a 50-mL round-bottom flask was placed a solution of methyl 8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[2-(pyridin-3-yl)ethoxy]quinoline-4-carboxylate (53 mg, 0.11 mmol, as prepared in the previous step) in MeOH (5 mL) then KOH (38 mg, 0.68 mmol) was added. The reaction was stirred for 24 h at 100° C. then concentrated under vacuum. The crude product was purified by Flash-Prep-HPLC (IntelFlash-1: Column, C18; mobile phase, MeCN/H2O=60% increasing to MeCN/H2O=95% within 25 min; Detector, UV 254 nm) affording 5.8 mg (11%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C28H25N2O3S+: 469.2 (M+H); Found: 469.2. 1H NMR (400 MHz, DMSO-d6): δ 8.89 (s, 1H), 8.69 (d, J=5.2 Hz, 1H), 8.58 (d, J=8.4 Hz, 1H), 7.96-7.91 (m, 3H), 7.78 (s, 1H), 7.61 (d, J=8.0 Hz, 1H), 7.49-7.42 (m, 2H), 7.08 (d, J=8.0 Hz, 1H), 4.56 (t, J=5.6 Hz, 2H), 3.47 (t, J=5.6 Hz, 2H), 3.28 (q, J=7.2 Hz, 2H), 2.92 (s, 3H), 1.41 (t, J=7.2 Hz, 3H). HPLC purity (254 nm): 98.9%.
- A. 5-(Benzyloxy)-8-ethyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carbonyl chloride. To a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 5-(benzyloxy)-8-ethyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (500 mg, 1.14 mmol, Compound 108) and DMF (0.2 mL) in DCM (6 mL) then oxalyl chloride (189 mg, 1.49 mmol) was added dropwise with stirring. The reaction was stirred for 30 min at rt then concentrated under reduced pressure affording 485 mg of the title compound as a yellow solid.
- B. Methyl 5-(Benzyloxy)-8-ethyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate. To a 100-mL round-bottom flask was placed 5-(benzyloxy)-8-ethyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carbonyl chloride (1 g, 2.19 mmol, as prepared in the previous step) then MeOH (40 mL) was added. The resulting solution was stirred for 10 min at rt then concentrated under reduced pressure affording 900 mg (91%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO4 +: 452.2 (M+H); Found: 452.5.
- C. Methyl 8-Ethyl-5-hydroxy-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate. To a 250-mL round-bottom flask was placed a solution of methyl 5-(benzyloxy)-8-ethyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate (700 mg, 1.55 mmol, as prepared in the previous step) in MeOH (20 mL) then conc H2SO4 (4 mL) was added. The reaction was stirred for 12 h at 100° C. then quenched by the addition of water and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure affording 550 mg (98%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C22H20NO4 +: 362.1 (M+H); Found: 362.4.
- D. Methyl 8-Ethyl-5-[(3-methanesulfonylphenyl)methoxy]-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate. To a 100-mL round-bottom flask was placed a solution of methyl 8-ethyl-5-hydroxy-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate (140 mg, 0.39 mmol, as prepared in the previous step) in acetone (6 mL) then 1-(bromomethyl)-3-methanesulfonylbenzene (98 mg, 0.39 mmol) and K2CO3 (108 mg, 0.78 mmol) were added. The reaction was stirred for 3 h at 80° C. then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 100 mg (49%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C30H28NO6S+: 530.2 (M+H); Found: 530.6.
- E. 8-Ethyl-5-[(3-methanesulfonylphenyl)methoxy]-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 100-mL round-bottom flask was placed a solution of methyl 8-ethyl-5-[(3-methanesulfonylphenyl)methoxy]-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate (100 mg, 0.19 mmol, as prepared in the previous step) in MeOH/water (6 mL) then KOH (5 mg, 0.09 mmol) was added. The reaction was stirred for 12 h at 80° C. then concentrated under reduced pressure. The crude product was purified by Prep-HPLC (HPLC-10: Column, X Bridge C18 OBD Column 19*150 mm 5 um C-0013; mobile phase, Water (0.05% TFA) and ACN (60% ACN up to 95% in 15 min); Detector, 254 nm) affording 15.4 mg (16%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO6S+: 516.2 (M+H); Found: 516.2. 1H NMR (300 MHz, DMSO-d6): δ 13.48 (brs, 1H), 8.09 (s, 1H), 7.91 (s, 1H), 7.90-7.88 (m, 2H), 7.78 (d, J=7.2 Hz, 1H), 7.71-7.62 (m, 3H), 7.44 (t, J=6.3 Hz, 1H), 7.34 (t, J=7.2 Hz, 1H), 7.18 (d, J=8.1 Hz, 1H), 5.43 (s, 2H), 3.25 (s, 3H), 3.19 (q, J=7.5 Hz, 5H), 2.80 (s, 3H), 1.33 (t, J=7.5 Hz, 3H). HPLC purity (254 nm): 99.0%.
- A. Methyl 8-Ethyl-2-(3-methylbenzofuran-2-yl)-5-((3-(methylthio)benzyl)oxy)quinoline-4-carboxylate. To a 100-mL 3-necked round-bottom flask was placed a solution of methyl 8-ethyl-5-hydroxy-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate (300 mg, 0.83 mmol, as prepared in Example 23, Step C) in THF (5 mL) then [3-(methylthio)phenyl]methanol (153 mg, 0.99 mmol) and PPh3 (261 mg) were added. The solution was cooled to 0° C. then DIAD (201 mg) was added dropwise with stirring. The reaction was stirred for 2 h at rt then quenched by the addition of water and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:4) affording 280 mg (68%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C30H28NO4S+: 498.2 (M+H); Found: 498.6.
- B. Methyl 8-Ethyl-5-[(3-methanesulfinylphenyl)methoxy]-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate. To a 50-mL round-bottom flask was placed a solution of methyl 8-ethyl-2-(3-methylbenzofuran-2-yl)-5-((3-(methylthio)benzyl)oxy)quinoline-4-carboxylate (90 mg, 0.18 mmol, as prepared in the previous step) in DCM (3 mL) then the solution was cooled to 0° C. and mCPBA (35 mg) was added in several portions with stirring. The reaction was stirred for 5 min at 0° C. then quenched by the addition of water and extracted with EtOAc. The organic extracts were combined and concentrated under reduced pressure affording 40 mg (43%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C30H28NO5S+: 514.2 (M+H); Found: 514.6.
- C. 8-Ethyl-5-[(3-methanesulfinylphenyl)methoxy]-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 50-mL round-bottom flask was placed a solution of methyl 8-ethyl-5-[(3-methanesulfinylphenyl)methoxy]-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate (126 mg, 0.25 mmol, as prepared in the previous step) in MeOH/water (5 mL) then KOH (13 mg, 0.23 mmol) was added. The reaction was stirred for 12 h at 80° C. then concentrated under reduced pressure. The crude product was purified by Flash-Prep-HPLC (IntelFlash-1: Column, C18; mobile phase, ACN/H2O:10/90 increasing to ACN/H2O:95/5 within 20 min; Detector, UV 254 nm) affording 15.4 mg (13%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO5S+: 500.2 (M+H); Found: 500.2. 1H NMR (300 MHz, DMSO-d6): δ 13.53 (brs, 1H), 7.90 (s, 1.04), 7.83-7.77 (m, 2H), 7.68-7.59 (m, 5H), 7.44 (t, J=8.0 Hz, 1H), 7.34 (t, J=7.6 Hz, 1H), 7.16 (d, J=8.0 Hz, 1H), 5.39 (s, 2H), 3.19 (q, J=7.6 Hz, 2H), 2.85 (s, 3H), 2.78 (s, 3H), 1.32 (t, J=7.6 Hz, 3H). HPLC purity (254 nm): 99.8%.
- Using the procedure described in Example 24, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 144 8-Ethyl-5-[(4-methanesulfinylphenyl)methoxy]-2-(3-methyl-1-benzofuran-2- yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO5S+: 500.2 (M + H); Found: 500.2. 1H NMR (300 MHz, DMSO-d6): δ 13.55 (brs, 1H), 7.92 (s, 1H), 7.79-7.60 (m, 7H), 7.44 (t, J = 7.2 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.15 (d, J = 8.1 Hz, 1H), 5.38 (s, 1H), 3.18 (q, J = 6.9 Hz, 2H), 2.84 (s, 3H), 2.74-2.71 (s, 3H), 1.32 (t, J = 7.5 Hz, 3H). HPLC purity (254 nm): 98.8%. 145 8-Ethyl-5-[(4-methanesulfonylphenyl)methoxy]-2-(3-methyl-1-benzofuran-2- yl)quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO6S+: 516.2 (M + H); Found: 516.2. 1H NMR (300 MHz, DMSO-d6): δ 13.55 (brs, 1H), 7.97-7.93 (m, 3H), 7.81-7.77 (m, 3H), 7.69-7.61 (m, 2H), 7.44 (t, J = 7.8 Hz, 1H), 7.36 (t, J = 6.9 Hz, 1H), 7.15 (d, J = 7.8 Hz, 1H), 5.44 (s, 2H), 3.22 (s, 3H), 3.21-3.16 (m, 2H), 2.85 (s, 3H), 1.35-1.30 (t, J = 7.5 Hz, 3H). HPLC purity (254 nm): 95.8%. - A. 1-Chloro-4-[(3-methylcyclohexyl)oxy]-2-nitrobenzene. To a 500-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-chloro-3-nitrophenol (8.5 g, 48.98 mmol) in THF (300 mL) then 3-methylcyclohexan-1-ol (5.6 g, 49.04 mmol) and PPh3 (15.4 g, 58.71 mmol) were added. The solution was cooled to 0° C. and DIAD (11.9 g, 58.85 mmol) was added dropwise with stirring. The reaction was stirred for 2 h at 0° C. then concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1/16) affording 6.9 g (52%) of the title compound as a yellow solid.
- B. 1-Ethenyl-4-[(3-methylcyclohexyl)oxy]-2-nitrobenzene. To a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 1-chloro-4-[(3-methylcyclohexyl)oxy]-2-nitrobenzene (6.6 g, 24.47 mmol, as prepared in the previous step) in dioxane (40 mL) then 2-ethenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (8.24 g, 53.50 mmol), PCy3.HBF4 (7.2 g), K3PO4 (31.2 g, 146.98 mmol), and Pd(OAc)2 (2.2 g, 9.80 mmol) were added. The reaction was stirred for 3 h at 110° C. then concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether/EtOAc (15:1) affording 5.0 g (78%) of the title compound as a yellow solid.
- C. 2-Ethyl-5-[(3-methylcyclohexyl)oxy]aniline. To a 500-mL round-bottom flask was placed a solution of 1-ethenyl-4-[(3-methylcyclohexyl)oxy]-2-nitrobenzene (4.5 g, 17.22 mmol, as prepared in the previous step) in MeOH (150 mL) then Pd on carbon (500 mg) was added. The solution was degassed and back-filled with H2. The reaction was stirred for 2 h at rt then the H2 was purged and the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 3.8 g (95%) of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C15H24NO+: 234.2 (M+H); Found: 234.3.
- D. 2-(1-Benzothiophen-3-yl)-8-ethyl-5-[[(1S,3R)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid (Compound 181), 2-(Benzo[b]thiophen-3-yl)-8-ethyl-5-(((1R,3S)-3-methylcyclohexyl)oxy)quinoline-4-carboxylic acid (Compound 182), 2-(Benzo[b]thiophen-3-yl)-8-ethyl-5-(((1S,3S)-3-methylcyclohexyl) oxy)quinoline-4-carboxylic acid (Compound 183), and 2-(Benzo[b]thiophen-3-yl)-8-ethyl-5-(((1R,3R)-3-methylcyclohexyl)oxy)quinoline-4-carboxylic acid (Compound 184). To a 20-mL sealed tube purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-ethyl-5-[(3-methylcyclohexyl)oxy]aniline (1.0 g, 4.29 mmol, as prepared in the previous step) in EtOH (10 mL) then 2-oxopropanoic acid (1.13 g, 12.83 mmol) and 1-benzothiophene-3-carbaldehyde (626 mg, 3.86 mmol) were added. The reaction was stirred overnight at 120° C. then concentrated under reduced pressure. The crude product was purified by Flash-Prep-HPLC (IntelFlash-1: Column, C18; mobile phase, ACN, water (0.5% TFA) and ACN (80.0% ACN up to 95.0% in 15 min); Detector, UV 254 nm) then the isomers were separated by Prep-SFC (Prep SFC350-2: Column, CHIRALPAK AD-H SFC, 5*25 cm, 5 um; mobile phase, CO2 (50%), ethanol (2 mM NH3-MeOH); Detector, UV 254 nm) affording 56.7 mg (3%) of 2-(1-benzothiophen-3-yl)-8-ethyl-5-[[(1R,3S)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid (Compound 182) as a light yellow solid, 53.9 mg (4%) of 2-(1-benzothiophen-3-yl)-8-ethyl-5-[[(1R,3R)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid (Compound 184) as a light yellow solid and a mixture of Compound 181 and Compound 183. This mixture was separated by Chiral-Prep-HPLC (HPLC-09: Column: CHIRALPAK-AD-H-SL002, 20*250 mm; Mobile Phase A: Hex—HPLC, Mobile Phase B: IPA—HPLC; Flow rate: 15 mL/min; Gradient: 40 B to 40 B in 16 min; 254 nm) affording 55.7 mg (3%) of 2-(1-benzothiophen-3-yl)-8-ethyl-5-[[(1S,3R)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid (Compound 181) as a brown solid and 56.8 mg (3%) of 2-(1-benzothiophen-3-yl)-8-ethyl-5-[[(1S,3S)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid (Compound 183) as a brown solid.
- 2-(1-Benzothiophen-3-yl)-8-ethyl-5-[[(1S,3R)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid (Compound 181): Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M+H); Found: 446.2. 1H NMR (300 MHz, DMSO-d6): δ 13.14 (brs, 1H), 9.26 (d, J=7.5 Hz, 1H), 8.81 (s, 1H), 8.12 (d, J=7.8 Hz, 1H), 8.04 (s, 1H), 7.46-7.61 (m, 3H), 7.02 (d, J=8.1 Hz, 1H), 4.86-4.85 (m, 1H), 3.25 (q, J=7.5 Hz, 2H), 1.97-1.72 (m, 4H), 1.70-1.61 (m, 1H), 1.60-1.45 (m, 2H), 1.37 (t, J=7.5 Hz, 3H), 1.10-0.93 (m, 1H), 0.87 (d, J=6.3 Hz, 1H). HPLC purity (254 nm): 99.5%.
- 2-(Benzo[b]thiophen-3-yl)-8-ethyl-5-(((1R,3S)-3-methylcyclohexyl)oxy)quinoline-4-carboxylic acid (Compound 182): Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M+H); Found: 446.2. 1H NMR (300 MHz, DMSO-d6): δ 13.14 (brs, 1H), 9.26 (d, J=7.5 Hz, 1H), 8.81 (s, 1H), 8.12 (d, J=7.8 Hz, 1H), 8.04 (s, 1H), 7.46-7.61 (m, 3H), 7.02 (d, J=8.1 Hz, 1H), 4.86-4.85 (m, 1H), 3.25 (q, J=7.5 Hz, 2H), 1.97-1.72 (m, 4H), 1.70-1.61 (m, 1H), 1.60-1.45 (m, 2H), 1.37 (t, J=7.5 Hz, 3H), 1.10-0.93 (m, 1H), 0.87 (d, J=6.3 Hz, 1H). HPLC purity (254 nm): 99.7%.
- 2-(Benzo[b]thiophen-3-yl)-8-ethyl-5-(((1S,3S)-3-methylcyclohexyl)oxy)quinoline-4-carboxylic acid (Compound 183): Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M+H); Found: 446.2. 1H NMR (300 MHz, DMSO-d6): δ 13.14 (s, 1H), 9.27 (d, J=7.8 Hz, 1H), 8.81 (s, 1H), 8.12 (d, J=7.8 Hz, 1H), 8.04 (s, 1H), 7.46-7.61 (m, 3H), 7.11 (d, J=8.1 Hz, 1H), 4.50-4.57 (m, 1H), 3.24 (q, J=7.5 Hz, 2H), 2.10-2.13 (m, 2H), 1.47-1.80 (m, 3H), 1.29-1.43 (m, 5H), 1.10-1.28 (m, 1H), 0.94 (d, J=6.6 Hz, 3H), 0.79-0.89 (m, 1H). HPLC purity (254 nm): 99.6%.
- 2-(Benzo[b]thiophen-3-yl)-8-ethyl-5-(((1R,3R)-3-methylcyclohexyl)oxy)quinoline-4-carboxylic acid (Compound 184): Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M+H); Found: 446.2. 1H NMR (300 MHz, DMSO-d6): δ 13.14 (s, 1H), 9.27 (d, J=7.8 Hz, 1H), 8.81 (s, 1H), 8.12 (d, J=7.8 Hz, 1H), 8.04 (s, 1H), 7.46-7.61 (m, 3H), 7.11 (d, J=8.1 Hz, 1H), 4.50-4.57 (m, 1H), 3.24 (q, J=7.5 Hz, 2H), 2.10-2.13 (m, 2H), 1.47-1.80 (m, 3H), 1.29-1.43 (m, 5H), 1.10-1.28 (m, 1H), 0.94 (d, J=6.6 Hz, 3H), 0.79-0.89 (m, 1H). HPLC purity (254 nm): 99.7%.
- Using the procedure described in Example 25, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 214 Sodium 8-Ethyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1R,3S)-3- methylcyclohexyl]oxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C28H30NO3S+: 460.2 (M + H); Found: 460.3. 1H NMR (300 MHz, DMSO-d6): δ 8.02-7.99 (m, 1H), 7.92-7.89 (m, 1H), 7.48-7.40 (m, 3H), 7.38 (s, 1H), 6.77 (d, J = 8.1 Hz, 1H), 4.71 (br s, 1H), 3.14 (q, J = 7.2 Hz, 2H), 2.80 (s, 3H), 2.21-2.13 (m, 2H), 2.02-1.91 (m, 2H), 1.64-1.61 (m, 1H), 1.42-1.29 (m, 5H), 1.18-1.14 (m, 1H), 0.93-0.88 (m, 1H), 0.81 (d, J = 6.9 Hz, 3H). HPLC purity (254 nm): 98.2%. 215 Sodium 8-Ethyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1S,3R)-3- methylcyclohexyl]oxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C28H30NO3S+: 460.2 (M + H); Found: 460.2. 1H NMR (300 MHz, DMSO-d6): δ 8.02-7.99 (m, 1H), 7.92-7.88 (m, 1H), 7.48-7.40 (m, 3H), 7.37 (s, 1H), 6.77 (d, J = 8.1 Hz, 1H), 4.71 (br s, 1H), 3.13 (q, J = 7.5 Hz, 2H), 2.79 (s, 3H), 2.22-2.13 (m, 2H), 2.02-1.91 (m, 2H), 1.64-1.60 (m, 1H), 1.41-1.35 (m, 2H), 1.32 (t, J = 7.5 Hz, 3H), 1.18-1.13 (m, 1H), 0.92-0.87 (m, 1H), 0.81 (d, J = 6.9 Hz, 3H). HPLC purity (254 nm): 99.6%. 216 Sodium 8-Ethyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1S,3S)-3- methylcyclohexyl]oxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C28H30NO3S+: 460.2 (M + H); Found: 460.3. 1H NMR (300 MHz, DMSO-d6): δ 8.02-7.99 (m, 1H), 7.92-7.88 (m, 1H), 7.48-7.40 (m, 3H), 7.36 (s, 1H), 6.88 (d, J = 8.1 Hz, 1H), 4.35-4.33 (m, 1H), 3.14 (q, J = 7.5 Hz, 2H), 2.79 (s, 3H), 2.06-2.03 (m, 2H), 1.76-1.59 (m, 2H), 1.48-1.35 (m, 3H), 1.32 (t, J = 7.5 Hz, 3H), 1.26-1.18 (m, 1H), 0.93 (d, J = 6.6 Hz, 3H), 0.88-0.84 (m, 1H). HPLC purity (254 nm): 97.7%. 217 Sodium 8-Ethyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1R,3R)-3- methylcyclohexyl]oxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C28H30NO3S+: 460.2 (M + H); Found: 460.2. 1H NMR (300 MHz, DMSO-d6): δ 8.02-7.99 (m, 1H), 7.92-7.88 (m, 1H), 7.48-7.39 (m, 3H), 7.37 (s, 1H), 6.88 (d, J = 8.1 Hz, 1H), 4.36-4.29 (m, 1H), 3.14 (q, J = 7.5 Hz, 2H), 2.79 (s, 3H), 2.07-2.03 (m, 2H), 1.76-1.59 (m, 2H), 1.48-1.40 (m, 3H), 1.32 (t, J = 7.5 Hz, 6H), 1.26-1.18 (m, 1H), 0.93 (d, J = 6.6 Hz, 3H), 0.88-0.84 (m, 1H). HPLC purity (254 nm): 99.4%. - A. 4-(Cyclohexylsulfanyl)-1-ethyl-2-nitrobenzene. To a 500-ml, round-bottom flask was placed a solution of 4-ethyl-3-nitroaniline (12 g, 72.21 mmol) in conc. HCl (216 mL), then the solution was cooled to 0° C. and NaNO2 (5.2 g, 75.36 mmol) was added. The resulting solution was stirred for 30 min at 0° C., then cyclohexanethiol (8.8 g, 75.72 mmol), NaOH (41 g, 1.03 mol), and Cu (7.8 g) were added. The resulting solution was stiffed at 60° C. for 8 h. The resulting solution was diluted with water and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 6.33 g (33%) of the title compound as a light yellow solid.
- B. 5-(Cyclohexylsulfanyl)-2-ethylaniline. To a 500-mL round-bottom flask was placed a solution of 4-(cyclohexylsulfanyl)-1-ethyl-2-nitrobenzene (6.33 g, 23.85 mmol, as prepared in the previous step) in MeOH then SnCl2 (21.05 g, 111.01 mmol) was added. The resulting solution was stirred at 75° C. for 8 h then quenched by the addition of water. The pH value of the solution was adjusted to 10 with IM NaOH solution then extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 5.23 g (93%) of the title compound as a colorless oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H22NS+: 236.2 (M+H); Found: 236.1.
- C. 5-(Cyclohexylsulfanyl)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid. To a 25-mL sealed tube was placed a solution of 5-(cyclohexylsulfanyl)-2-ethylaniline (1.5 g, 6.37 mmol, as prepared in the previous step) in EtOH (15 mL) then 3-methyl-1-benzothiophene-2-carbaldehyde (1.24 g, 7.04 mmol) and 2-oxopropanoic acid (676 mg, 7.68 mmol) were added. The reaction was stirred at 110° C. for 12 h then quenched by the addition of water and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with DCM/MeOH (13:1) affording 200 mg (7%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO2S2 +: 462.2 (M+H); Found: 462.1.
- D. 5-(Cyclohexanesulfonyl)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid. To a 100-mL round-bottom flask was placed a solution of 5-(cyclohexylsulfanyl)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid (100 mg, 0.22 mmol, as prepared in the previous step) in DCM (15 mL) then m-CPBA (76 mg, 0.44 mmol) was added. The reaction was stirred for 2 h at rt then quenched by the addition of water and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with DCM/MeOH (13:1) affording 15 mg (14%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO4S2 +: 494.2 (M+H); Found: 494.3.
- E. Sodium 5-(Cyclohexanesulfonyl)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate (Compound 274). To a 50-mL round-bottom flask was placed a solution of 5-(cyclohexanesulfonyl)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid (15 mg, 0.03 mmol, as prepared in the previous step) in MeOH (10 mL) then 0.05 M NaOH (0.6 mL) was added. The reaction was stirred for 0.5 h at rt then the solvent was removed under reduced pressure affording 11.3 mg (72%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO4S2 +: 494.2 (M+H); Found: 494.3. 1H NMR (400 MHz, DMSO-d6): δ 8.04 (s, 1H), 8.03-8.01 (m, 2H), 7.95-7.94 (m, 1H), 7.73 (d, J=8.0 Hz, 1H), 7.47-7.45 (m, 2H), 4.91-4.85 (m, 1H), 3.32-3.30 (m, 2H), 2.84 (s, 1H), 2.09-2.05 (m, 2H), 1.86-1.83 (m, 2H), 1.68-1.67 (m, 1H), 1.52-1.49 (m, 2H), 1.38 (t, J=7.6 Hz, 3H), 1.26-1.20 (m, 3H). HPLC purity (254 nm): 97.0%.
- A. To a 50-mL round-bottom flask was placed a solution of 5-(cyclohexylsulfanyl)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid (70 mg, 0.15 mmol, as prepared in Example 26, Step C) in DCM (10 mL) then m-CPBA (25.8 mg, 0.15 mmol) was added. The reaction was stirred for 0.5 h at rt then quenched by the addition of water and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with DCM/MeOH (13:1) affording 30 mg (41%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S2 +: 478.2 (M+H); Found: 478.2.
- B. Sodium 5-(Cyclohexanesulfinyl)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate (Compound 275). To a 50-mL round-bottom flask was placed a solution of 5-(cyclohexanesulfinyl)-8-ethyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid (30 mg, 0.06 mmol, as prepared in the previous step) in MeOH (10 mL) then 0.05 M NaOH (1.3 mL) was added. The reaction was stirred for 0.5 h at rt then the solvent was removed under reduced pressure affording 6.9 mg (22%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S2 +: 478.2 (M+H); Found: 478.2. 1H NMR (400 MHz, DMSO-d6): δ 8.03-8.01 (m, 1H), 7.95-7.93 (m, 2H), 7.77 (d, J=7.6 Hz, 1H), 7.58 (s, 1H), 7.48-7.43 (m, 2H), 3.36-3.23 (m, 2H), 2.99-2.96 (m, 1H), 2.81 (s, 3H), 2.18-2.16 (m, 1H), 1.79-1.76 (m, 1H), 1.66-1.63 (m, 1H), 1.55-1.52 (m, 1H), 1.45-1.41 (m, 1H), 1.40 (t, J=7.8 Hz, 3H), 1.38-1.14 (m, 3H), 1.05-0.95 (m, 3H). HPLC purity (254 nm): 99.1%.
- A. Methyl 5-(Benzyloxy)-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate. To a 50-mL round-bottom flask was placed a solution of 5-(benzyloxy)-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid (310 mg, 0.71 mmol, Compound 33) in DCM (10 mL) then oxalyl chloride (108 mg, 0.85 mmol) and DMF (1 drop) were added. The reaction was stirred for 1 h at rt then concentrated under reduced pressure. The residue was dissolved in MeOH (10 mL) and 1 M NaOMe in MeOH (2 mL) was added. The resulting solution stirred for 3 h at rt then the solids were collected by filtration affording 209 mg (65%) of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO3S+: 454.1 (M+H); Found: 454.6.
- B. Methyl 5-Hydroxy-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate. To a 50-mL round-bottom flask was placed a solution of methyl 5-(benzyloxy)-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate (209 mg, 0.46 mmol, as prepared in the previous step) in MeOH (2 mL) then concentrated H2SO4 (4 mL) was added. The reaction was stirred overnight at 80° C. then concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:2) affording 100 mg (60%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C21H18NO3S+: 364.1 (M+H); Found: 364.3.
- C. Methyl 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[1-(4-methylphenyl)ethoxy]quinoline-4-carboxylate. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of methyl 5-hydroxy-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate (277 mg, 0.76 mmol, as prepared in the previous step) in THF (10 mL) then 1-(4-methylphenyl)ethan-1-ol (125 mg, 0.92 mmol) and PPh3 (185 mg, 0.71 mmol) were added. The solution was cooled to 0° C. then DIAD (240 mg, 1.19 mmol) was added dropwise with stirring. The reaction was stiffed for 3 h at rt then concentrated under reduced pressure. The residue was purified by Prep-TLC developing with EtOAc/petroleum ether (1:4) affording 100 mg (27%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C30H28NO3S+: 482.2 (M+H); Found: 482.7.
- D. 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[1-(4-methylphenyl)ethoxy]quinoline-4-carboxylic acid. To a 50-mL round-bottom flask was placed a solution of methyl 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[1-(4-methylphenyl)ethoxy]quinoline-4-carboxylate (100 mg, 0.21 mmol, as prepared in the previous step) in THF/MeOH (1:1, 10 mL) then NaOH (42 mg, 1.05 mmol) and H2O (2 mL) were added. The reaction was stirred for 2 h at 90° C., cooled to rt, and the pH value of the solution was adjusted to 2-3 with 2 M HCl solution. The resulting mixture was concentrated under reduced pressure. The residue was purified by Prep-TLC developed with EtOAc/petroleum ether (1:2) and by Flash-Prep-HPLC (IntelFlash-1: Column, C18; mobile phase, MeCN/H2O (0.05% TFA)=50:50 increasing to MeCN/H2O (0.05% TFA)=95:5 within 20 min; Detector, UV 254 nm) affording 86 mg (89%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO3S+: 468.2 (M+H); Found: 468.2.
- E. 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1R)-1-(4-methylphenyl)ethoxy]quinoline-4-carboxylic acid and 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1S)-1-(4-methylphenyl)ethoxy]quinoline-4-carboxylic acid. 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[1-(4-methylphenyl)ethoxy]quinoline-4-carboxylic acid (86 mg, 0.18 mmol, as prepared in the previous step) was purified by Chiral-Prep-HPLC (Prep-HPLC-009: Column, Chiralpak ID-2, 2*25 cm, 5 um; mobile phase, Hex (0.1% TFA) and EtOH (hold 5.0% EtOH in 19 min); Detector, UV 220/254 nm) affording 34 mg (40%) of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1R)-1-(4-methylphenyl)ethoxy]quinoline-4-carboxylic acid as a yellow solid and 33 mg (38%) of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1S)-1-(4-methylphenyl)ethoxy]quinoline-4-carboxylic acid as a yellow solid.
- F. Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1R)-1-(4-methylphenyl)ethoxy]quinoline-4-carboxylate (Compound 225). To a 10-mL round-bottom flask was placed a solution of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1R)-1-(4-methylphenyl)ethoxy]quinoline-4-carboxylic acid (34 mg, 0.07 mmol, as prepared in the previous step) in MeOH (2 mL) then 0.05M NaOH solution (1.5 mL) was added. The resulting solution was stirred for 30 min at rt then the solvent was removed under reduced pressure affording 24.2 mg (68%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO3S+: 468.2 (M+H); Found: 468.2. 1H NMR (400 MHz, DMSO-d6): δ 8.00 (d, J=6.8 Hz, 1H), 7.90 (d, J=6.8 Hz, 1H), 7.54 (d, J=8.0 Hz, 2H), 7.48-7.41 (m, 3H), 7.28 (d, J=7.6 Hz, 1H), 7.05 (d, J=8.0 Hz, 2H), 6.59 (d, J=8.0 Hz, 1H), 5.52 (q, J=5.6 Hz, 1H), 2.84 (s, 3H), 2.57 (s, 3H), 2.25 (s, 3H), 1.56 (d, J=6.0 Hz, 3H). HPLC purity (254 nm): 95.7%.
- G. Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1S)-1-(4-methylphenyl)ethoxy]quinoline-4-carboxylate (Compound 226). To a 10-mL round-bottom flask was placed a solution of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1S)-1-(4-methylphenyl)ethoxy]quinoline-4-carboxylic acid (13 mg, 0.03 mmol, as prepared in Step E) in MeOH (2 mL) then 0.01M NaOH solution (2.8 mL) was added. The resulting solution was stirred for 30 min at rt then the solvent was removed under reduced pressure affording 12.4 mg (97%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO3S+: 468.2 (M+H); Found: 468.2. 1H NMR (400 MHz, DMSO-d6): δ 8.02-8.00 (m, 1H), 7.94-7.92 (m, 1H), 7.65 (br s, 1H), 7.49-7.45 (m, 4H), 7.42-7.37 (m, 1H), 7.08 (d, J=8.0 Hz, 2H), 6.70 (d, J=8.0 Hz, 1H), 5.59 (q, J=6.0 Hz, 1H), 2.84 (s, 3H), 2.59 (s, 3H), 2.33 (s, 3H), 1.59 (d, J=6.0 Hz, 3H). HPLC purity (254 nm): 96.6%.
- Using the procedure described in Example 28, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 190 2-(l-Benzothiophen-3-yl)-8-ethyl-5-[[2-(pyrazin-2- yl)phenyl]methoxy]quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C31H24N3O3S+: 518.2 (M + H); Found: 518.2. 1H NMR (300 MHz, CD3OD): δ 9.21 (d , J = 8.4 Hz , 1H), 8.93 (s, 1H), 8.67-8.66 (m, 1H), 8.51 (d, J = 2.7 Hz, 1H), 8.39 (s, 1H), 8.02-7.97 (m, 1H), 7.93 (s, 1H), 7.84-7.81 (m, 1H), 7.65-7.62 (m, 1H), 7.59-7.42 (m, 5H), 6.89 (d, J = 8.1 Hz, 1H), 5.44 (s, 2H), 3.37-3.32 (m, 2H), 1.41 (t, J = 7.5 Hz, 3H). HPLC purity (254 nm): 92.1%. 191 2-(1-Benzothiophen-3-yl)-8-ethyl-5-[[3-(pyrazin-2- yl)phenyl]methoxy]quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C31H24N3O3S+: 518.2 (M + H); Found: 518.1. 1H NMR (400 MHz, DMSO-d6): 13.49 (brs, 1H), 9.38 (s, 1H), 9.27 (d, J = 8.0 Hz, 1H), 8.85 (s, 1H), 8.75 (s, 1H), 8.64 (s, 1H), 8.36 (s, 1H), 8.15-8.12 (m, 3H), 7.72-7.48 (m, 5H), 7.21 (d, J = 8.0 Hz, 1H), 5.46 (s, 2H), 3.28 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H). HPLC purity (254 nm): 98.7%. 192 2-(1-Benzothiophen-3-yl)-8-ethyl-5-[[4-(pyrazin-2- yl)phenyl]methoxy]quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C31H24N3O3S+: 518.2 (M + H); Found: 518.2. 1H NMR (400 MHz, DMSO-d6): δ 13.44 (s, 1H), 9.30 (s, 1H), 9.27 (d, J = 8.0 Hz, 2H), 8.86 (s, 1H), 8.74-8.73 (m, 1H), 8.62 (d, J = 2.4 Hz, 1H), 8.20-8.12 (m, 4H), 7.73 (d, J = 8.4 Hz, 2H), 7.63-7.55 (m, 2H), 7.51-7.47 (m, 1H), 7.22 (d, J = 8.4 Hz, 1H), 5.43 (s, 2H), 3.31-3.25 (m, 2H), 1.36 (t, J = 7.6 Hz, 3H). HPLC purity (254 nm): 98.1%. 193 2-(1-Benzothiophen-3-yl)-8-ethyl-5-[[4-(pyrazin-2- yl)phenyl]methoxy]quinoline-4-carboxylic acid Mass Spectrum (LCMS, ESI pos): Calcd. for C32H25N2O3S+: 517.2 (M + H); Found: 517.1. 1H NMR (400 MHz, CD3OD): δ 9.22 (d, J = 8.0 Hz, 1H), 8.91 (s, 1H), 8.64 (d, J = 5.2 Hz, 1H), 8.48 (d, J = 8.0 Hz, 1H), 8.39 (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.94 (s, 1H), 7.83-7.76 (m, 2H), 7.61-7.60 (m, 2H), 7.56-7.44 (m, 4H), 6.94 (d, J = 8.4 Hz, 1H), 5.10 (s, 2H), 3.37-3.35 (m, 2H), 1.41 (t, J = 7.6 Hz, 3H). HPLC purity (254 nm): 97.4%. 295 Sodium 5-(2H-1,3-Benzodioxol-5-ylmethoxy)-8-methyl-2-(3-methyl-1- benzothiophen-2-yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C28H2NO5S+: 484.1 (M + H); Found: 484.1. 1H NMR (400 MHz, DMSO-d6): δ 8.00 (d, J = 7.6 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.55 (s, 1H), 7.48-7.41 (m, 4H), 7.11 (d, J = 8.0 Hz, 1H), 6.87-6.83 (m, 2H), 5.97 (s, 2H), 5.15 (s, 2H), 2.82 (s, 3H), 2.63 (s, 3H). HPLC purity (254 nm): 98.9%. - A. 4-(1-(4-Methyl-3-nitrophenoxy)ethyl)tetrahydro-2H-pyran. To a 1000-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of 1-(tetrahydro-2H-pyran-4-yl)ethan-1-ol (10 g, 76.8 mmol, Intermediate 73) in THF (400 mL) then 4-methyl-3-nitrophenol (10.6 g, 69.2 mmol) and PPh3 (30.2 g, 115.1 mmol) were added. This was followed by the addition of DIAD (23.3 g, 115.2 mmol) at rt. The reaction was stirred for 5 h at rt and concentrated under reduced pressure. The residue was treated with water and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:50) affording 10 g (49%) of the title compound as a yellow oil.
- B. 2-Methyl-5-(1-(tetrahydro-2H-pyran-4-yl)ethoxy)aniline. To a 500-mL round-bottom flask purged and maintained with an inert atmosphere of N2 was placed a solution of 4-(1-(4-Methyl-3-nitrophenoxy)ethyl)tetrahydro-2H-pyran (3.00 g, 11.3 mmol, as prepared in the previous step) in MeOH (200 mL) then Raney Ni (300 mg) was added. The solution was degassed and back filled with hydrogen and stirred for 2 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 2.70 g of the title compound as a yellow oil. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H22NO2 +: 236.2 (M+H); Found: 236.2.
- C. 5-((1R)-1-(tetrahydro-2H-pyran-4-yl)ethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid and 5-((1S)-1-(tetrahydro-2H-pyran-4-yl)ethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 20-mL sealed tube was placed a solution of 2-methyl-5-(1-(tetrahydro-2H-pyran-4-yl)ethoxy)aniline (1.00 g, 4.26 mmol, as prepared in the previous step) in EtOH (10 mL) then 3-methyl-1-benzofuran-2-carbaldehyde (680 mg, 4.26 mmol) and 2-oxopropanoic acid (749 mg, 8.52 mmol) were added. The reaction was stirred overnight at 110° C. then the reaction was cooled to rt and the solids were collected by filtration. The isomers were separated by Prep-SFC (Column, EnantioPak-A1, 250 mm*50 mm, 5 um; mobile phase, CO2 (50%), MeOH Preparative (50%); Detector, UV 254 nm) affording 210 mg (11%) of 5-((1R)-1-(tetrahydro-2H-pyran-4-yl)ethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid as a yellow solid and 190 mg (10%) of 5-((1S)-1-(tetrahydro-2H-pyran-4-yl)ethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid as a yellow solid.
- D. Sodium 5-((1R)-1-(Tetrahydro-2H-pyran-4-yl)ethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate (Compound 245). To a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of 5-((1R)-1-(tetrahydro-2H-pyran-4-yl)ethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (210 mg, 0.45 mmol) in MeOH (1 mL) then 0.05N NaOH (9.0 mL, 0.45 mmol) was added. The reaction was stirred for 3 h at rt then the solvent was removed under reduced pressure affording 219.6 mg (99%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO5 +: 446.2 (M+H); Found: 446.2. 1H NMR (300 MHz, DMSO-d6): δ 7.74 (d, J=7.2 Hz, 1H), 7.66 (d, J=8.1 Hz, 1H), 7.56 (s, 1H), 7.45-7.30 (m, 3H), 6.80 (d, J=8.1 Hz, 1H), 4.36-4.34 (m, 1H), 3.91-3.84 (m, 2H), 3.30-3.26 (m, 2H), 2.84 (s, 3H), 2.64 (s, 3H), 1.99-1.92 (m, 2H), 1.79-1.74 (m, 1H), 1.39-1.31 (m, 2H), 1.20 (d, J=6.0 Hz, 3H). HPLC purity (254 nm): 99.3%.
- E. Sodium 5-((1S)-1-(Tetrahydro-2H-pyran-4-yl)ethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate (Compound 246). To a 25-mL round-bottom flask, was placed a solution of 5-((1S)-1-(tetrahydro-2H-pyran-4-yl)ethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (60 mg, 0.13 mmol, as prepared in Step C) in THF (0.5 mL) then 0.05N NaOH (2.7 mL, 0.13 mmol) was added. The reaction was stirred for 1 h at rt then concentrated under reduced pressure affording 55.9 mg (89%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO5 +: 446.2 (M+H); Found: 446.2. 1H NMR (400 MHz, DMSO-d6): δ 7.74 (d, J=7.6 Hz, 1H), 7.66 (d, J=8.0 Hz, 1H), 7.54 (s, 1H), 7.44-7.33 (m, 3H), 6.80 (d, J=8.0 Hz, 1H), 4.35-4.30 (m, 1H), 3.89-3.88 (m, 2H), 3.33-3.31 (m, 2H), 2.85 (s, 3H), 2.65 (s, 3H), 2.02-1.80 (m, 3H), 1.40-1.30 (m, 2H), 1.19 (d, J=6.0 Hz, 3H). HPLC purity (254 nm): 99.7%.
- Using the procedure described in Example 29, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 242 Sodium 5-((lR)-1-Cyclohexylethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2- yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C28H30NO4 +: 444.2 (M + H); Found: 444.3. 1H NMR (400 MHz, DMSO-d6): δ 7.74 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.55 (s, 1H), 7.43-7.39 (m, 2H), 7.32 (t, J = 7.6 Hz, 1H), 6.76 (d, J = 7.6 Hz, 1H), 4.34-4.32 (m, 1H), 2.85 (s, 3H), 2.64 (s, 3H), 1.95-1.87 (m, 2H), 1.70-1.63 (m, 4H), 1.12-1.15 (m, 8H). HPLC purity (254 nm): 98.2%. 243 Sodium 5-((1S)-1-Cyclohexylethoxy)-8-methyl-2-(3-methyl-1-benzofuran-2- yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C28H30NO4 +: 444.2 (M + H); Found: 444.3. 1H NMR (400 MHz, DMSO-d6): δ 7.74 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.54 (s, 1H), 7.43-7.39 (m, 2H), 7.32 (t, J = 7.6 Hz, 3H), 6.76 (d, J = 8.0 Hz, 1H), 4.34-4.32 (m, 1H), 2.84 (s, 3H), 2.64 (s, 3H), 1.95-1.87 (m, 2H), 1.69-1.62 (m, 4H), 1.19-1.15 (m, 8H). HPLC purity (254 nm): 97.7%. 202 Sodium 2-[Imidazo[1,2-a]pyridin-2-yl]-8-methyl-5-[(1R)-1- phenylethoxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C26H22N3O3 +: 424.2 (M + H); Found: 424.3. 1H NMR (400 MHz, CD3OD): δ 8.92 (s, 1H), 8.78 (d, J = 7.2 Hz, 1H), 8.13 (s, 1H), 7.95-7.87 (m, 2H), 7.52 (d, J = 7.6 Hz, 2H), 7.46-7.40 (m, 2H), 7.36-7.32 (m, 2H), 7.27-7.24 (m, 1H), 6.78 (d, J = 6.4 Hz, 1H), 5.63 (q, J = 6.4 Hz, 1H), 2.78 (s, 3H), 1.75 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 96.8%. 203 Sodium 2-[Imidazo[1,2-a]pyridin-2-yl]-8-methyl-5-[(1S)-1- phenylethoxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C26H22N3O3 +: 424.2 (M + H); Found: 424.3. 1H NMR (400 MHz, CD3OD): δ 8.89 (s, 1H), 8.76 (d, J = 6.8 Hz , 1H), 8.13 (s, 1H), 7.92-7.85 (m, 2H), 7.52 (d, J = 7.6 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.40-7.32 (m, 3H), 7.27-7.24 (m, 1H), 6.77 (d, J = 8.0 Hz, 1H), 5.62 (q, J = 6.4 Hz, 1H), 2.78 (s, 3H), 1.75 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 97.9%. 247 Sodium 5-[(1R)-1-(1-Methanesulfonylpiperidin-4-yl)ethoxy]-8-methyl-2-(3- methyl-1-benzofuran-2-yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C28H31N2O6S+: 523.2 (M + H); Found: 523.3. 1H NMR (400 MHz, DMSO-d6): δ 7.72 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.55 (s, 1H), 7.45-7.38 (m, 2H), 7.32 (t, J = 6.8 Hz, 1H), 6.81 (d, J = 7.6 Hz, 1H), 4.45-4.42 (m, 1H), 3.64-3.59 (m, 2H), 2.89 (s, 3H), 2.84 (s, 3H), 2.72-2.65 (m, 2H), 2.64 (s, 3H), 2.13-1.99 (m, 2H), 1.82-1.76 (m, 1H), 1.48-1.36 (m, 2H), 1.21 (d, J = 6.0 Hz, 3H). HPLC purity (254 nm): 99.8%. 248 Sodium 5-[(1S)-1-(1-Methanesulfonylpiperidin-4-yl)ethoxy]-8-methyl-2-(3- methyl-1-benzofuran-2-yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C28H31N2O6S+: 523.2 (M + H); Found: 523.3. 1H NMR (400 MHz, DMSO-d6): δ 7.74 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.59 (s, 1H), 7.46-7.39 (m, 2H), 7.33 (t, J = 7.2 Hz, 1H), 6.83 (d, J = 7.6 Hz, 1H), 4.46-4.42 (m, 1H), 3.64-3.59 (m, 2H), 2.87 (s, 3H), 2.84 (s, 3H), 2.73-2.65 (m, 2H), 2.65 (s, 3H), 2.13-2.10 (m, 1H), 2.02-1.98 (m, 1H), 1.85-1.78 (m, 1H), 1.45-1.39 (m, 2H), 1.21 (d, J = 6.0 Hz, 3H). HPLC purity (254 nm): 99.4%. 229 Sodium 5-[(1R)-1-(4-methanesulfonylphenyl)ethoxy]-8-methyl-2-(3-methyl-1- benzofuran-2-yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO6S+: 516.1 (M + H); Found: 516.2. 1H NMR (400 MHz, DMSO-d6): δ 8.06 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.0 Hz, 1H), 7.68-7.66 (m, 1H), 7.66 (s, 1H), 7.44-7.40 (m, 1H), 7.35-7.32 (m, 2H), 6.70 (d, J = 8.0 Hz, 1H), 5.78 (q, J = 6.4 Hz, 1H), 3.18 (s, 3H), 2.83 (s, 3H), 2.59 (s, 3H), 1.58 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 99.6%. 230 Sodium 5-[(1S)-1-(4-methanesulfonylphenyl)ethoxy]-8-methyl-2-(3-methyl-1- benzofuran-2-yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO6S+: 516.1 (M + H); Found: 516.3. 1H NMR (400 MHz, DMSO-d6): δ 8.05 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 7.6 Hz, 1H), 7.68 (s, 1H), 7.68-7.66 (m, 1H), 7.44-7.40 (m, 1H), 7.35-7.31 (m, 2H), 6.70 (d, J = 8.4 Hz, 1H), 5.78 (q, J = 6.4 Hz, 1H), 3.18 (s, 3H), 2.83 (s, 3H), 2.60 (s, 3H), 1.59 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 99.2%. 285 Sodium 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1R)-1-[4-(oxetan-3- yl)phenyl]ethoxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C31H28NO5 +: 494.2 (M + H); Found: 494.2. 1H NMR (300 MHz, DMSO-d6): δ 7.74 (d, J = 8.0 Hz, 1H), 7.70-7.66 (m, 3H), 7.64 (s, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 8.0 Hz, 3H), 6.62 (d, J = 8.0 Hz, 1H), 5.58 (q, J = 6.4 Hz, 1H), 4.90-4.86 (m, 2H), 4.60-4.56 (m, 2H), 4.22-4.15 (m, 1H), 2.83 (s, 3), 2.58 (s, 3H), 1.57 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 93.8%. 286 Sodium 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1S)-1-[4-(oxetan-3- yl)phenyl]ethoxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C31H28NO5 +: 494.2 (M + H); Found: 494.3. 1H NMR (400 MHz, DMSO-d6): δ 7.74 (d, J = 7.6 Hz, 1H), 7.71-7.66 (m, 3H), 7.63 (s, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.35-7.28 (m, 4H), 6.61 (d, J = 8.0 Hz, 1H), 5.57 (q, J = 6.0 Hz, 1H), 4.90-4.86 (m, 2H), 4.60-4.56 (m, 2H), 4.22-4.15 (m, 1H), 2.83 (s, 3), 2.58 (s, 3H), 1.57 (d, J = 6.0 Hz, 3H). HPLC purity (254 nm): 97.2%. 287 Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1R)-1-[4-(oxetan-3- yl)phenyl]ethoxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C31H28NO4S+: 510.2 (M + H); Found: 510.2. 1H NMR (400 MHz, DMSO-d6): δ 8.00 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.47-7.42 (m, 2H), 7.41 (s, 1H), 7.29-7.26 (m, 3H), 6.61 (d, J = 8.0 Hz, 1H), 5.57 (q, J = 6.0 Hz, 1H), 4.90-4.86 (m, 2H), 4.60-4.56 (m, 2H), 4.20-4.16 (m, 1H), 2.81 (s, 3H), 2.57 (s, 3H), 1.56 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 93.6%. 288 Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1S)-1-[4-(oxetan-3- yl)phenyl]ethoxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C31H28NO4S+: 510.2 (M + H); Found: 510.3. 1H NMR (300 MHz, DMSO-d6): δ 8.00 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.8 Hz, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.46-7.42 (m, 2H), 7.41 (s, 1H), 7.29-7.27 (m, 3H), 6.61 (d, J = 8.0 Hz, 1H), 5.57 (q, J = 6.0 Hz, 1H), 4.90-4.86 (m, 2H), 4.60-4.56 (m, 2H), 4.20-4.16 (m, 1H), 2.81 (s, 3H), 2.57 (s, 3H), 1.56 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 96.2%. 222 Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1S,2S)-2- methylcyclohexyl]oxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M + H); Found: 446.2. 1H NMR (400 MHz, DMSO-d6): δ 8.02-8.00 (m, 1H), 7.94-7.92 (m, 1H), 7.54-7.47 (m, 2H), 7.46-7.45 (m, 2H), 7.02-6.94 (m, 1H), 4.16-4.08 (m, 1H), 2.80 (s, 3H), 2.66 (s, 3H), 2.10-2.09 (m, 1H), 1.82-1.72 (m, 3H), 1.65-1.60 (m, 1H), 1.35-1.00 (m, 4H), 1.00 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 98.1%. 223 Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1S,2R)-2- methylcyclohexyl]oxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M + H); Found: 446.1. 1H NMR (400 MHz, DMSO-d6): δ 8.00 (d, J = 6.8 Hz, 1H), 7.91 (d, J = 7.2 Hz, 1H), 7.48-7.42 (m, 4H), 6.82-6.75 (m, 1H), 4.56-4.53 (m, 1H), 2.81 (s, 3H), 2.64 (m, 3H), 2.10-1.96 (m, 1H), 1.84-1.62 (m, 3H), 1.48-1.23 (m, 5H), 0.99 (d, J = 6.8 Hz, 3H). HPLC purity (254 nm): 98.0%. 224 Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1R,2R)-2- methylcyclohexyl]oxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M + H); Found: 446.2. 1H NMR (400 MHz, DMSO-d6): δ 8.02-8.00 (m, 1H), 7.94-7.92 (m, 1H), 7.74-7.58 (m, 2H), 7.48-7.46 (m, 2H), 7.02-6.94 (m, 1H), 4.16-4.08 (m, 1H), 2.81 (s, 3H), 2.68 (s, 3H), 2.10-2.09 (m, 1H), 1.82-1.72 (m, 3H), 1.65-1.60 (m, 1H), 1.35-1.04 (m, 4H), 1.00 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 98.8%. 225 Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1R,2S)-2- methylcyclohexyl]oxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M + H); Found: 446.2. 1H NMR (400 MHz, DMSO-d6): δ 8.00 (d, J = 6.8 Hz, 1H), 7.91 (d, J = 7.2 Hz, 1H), 7.48-7.42 (m, 4H), 6.83-6.80 (m, 1H), 4.57 (br s, 1H), 2.81 (s, 3H), 2.64 (s, 3H), 2.08-2.00 (m, 1H), 1.82-1.62 (m, 3H), 1.46-1.35 (m, 2H), 1.26-1.23 (m, 2H), 0.99 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 97.3%. 277* Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-(3- methylcyclobutoxy)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C25H24NO3S+: 418.1 (M + H); Found: 418.1. 1H NMR (400 MHz, DMSO-d6): δ 7.99-7.97 (m, 1H), 7.90-7.87 (m, 1H), 7.44-7.40 (m, 3H), 7.34 (s, 1H), 6.54-6.52 (m, 1H), 4.90-4.87 (m, 0.7 H), 4.56-4.52 (m, 0.3H), 2.79 (s, 3H), 2.61 (s, 3H), 2.60-2.48 (m, 1H), 2.40-2.26 (m, 2H), 2.05-1.90 (m, 1.4H), 1.82-1.73 (m, 0.6H), 1.16-1.08 (m, 3H). HPLC purity (254 nm): 98.8%. 281* Sodium 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1r,3r)-3- phenylcyclobutoxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C30H26NO4 +: 464.2 (M + H); Found: 464.2. 1H NMR (400 MHz, DMSO-d6): δ 7.75 (d, J = 7.2 Hz, 1H), 7.67-7.62 (m, 2H), 7.46-7.42 (m, 2H), 7.39-7.31 (m, 5H), 7.23-7.19 (m, 1H), 6.62 (d, J = 7.8 Hz, 1H), 5.05-4.95 (m, 1H), 3.83-3.78 (m, 1H), 2.85 (s, 3H), 2.73-2.66 (m, 5H), 2.54-2.49 (m, 2H). HPLC purity (254 nm): 98.8%. 282* Sodium 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1s,3s)-3- phenylcyclobutoxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): C30H26NO4 +: 464.2 (M + H); Found: 464.3. 1H NMR (400 MHz, DMSO-d6): δ 7.76 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 7.6 Hz, 1H), 7.44-7.28 (m, 6H), 7.20-7.17 (m, 1H), 6.82-6.80 (m, 1H), 4.88-4.84 (m, 1H), 3.15-3.11 (m, 1H), 2.90-2.85 (m, 2H), 2.84 (s, 3H), 2.66 (s, 3H), 2.33-2.27 (m, 2H). HPLC purity (254 nm): 98.2%. 283* Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1r,3r)-3- phenylcyclobutoxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C30H26NO3S+: 480.2 (M + H); Found: 480.2. 1H NMR (400 MHz, DMSO-d6): δ 8.00 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.8 Hz, 1H), 7.48-7.34 (m, 4H), 7.24-7.18 (m, 4H), 6.62 (d, J = 8.0 Hz, 1H), 5.03-4.98 (m, 1H), 3.81-3.77 (m, 1H), 2.82 (s, 3H), 2.71-2.67 (m, 2H), 2.65 (s, 3H), 2.54-2.50 (m, 2H). HPLC purity (254 nm): 95.3%. 284* Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[(1s,3s)-3- phenylcyclobutoxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C30H26NO3S+: 480.2 (M + H); Found: 480.2. 1H NMR (400 MHz, DMSO-d6): δ 7.90-7.86 (m, 2H), 7.69 (s, 1H), 7.49-7.37 (m, 5H), 7.31 (t, J = 8.7 Hz, 2H), 7.15 (t, J = 7.2 Hz, 1H), 6.81 (d, J= 8.1 Hz, 1H), 4.84-4.81 (m, 1H), 3.21-3.15 (m, 1H), 3.02-2.96 (m, 2H), 2.86 (s, 3H), 2.72 (s, 3H), 2.58-2.52 (m, 2H). HPLC purity (254 nm): 98.5%. 292* Sodium 5-[(2-Methoxyphenyl)methoxy]-8-methyl-2-(3-methyl-1-benzothiophen- 2-yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO4S+: 470.1 (M + H); Found: 470.2. 1H NMR (400 MHz, DMSO-d6): δ 8.11 (d, J = 7.6 Hz, 1H), 8.02-8.00 (m, 1H), 7.93-7.90 (m, 1H), 7.48-7.42 (m, 3H), 7.44 (s, 1H), 7.27-7.23 (t, J = 7.2 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.93 (t, J = 7.2 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 5.17 (s, 2H), 3.88 (s, 3H), 2.83 (s, 3H), 2.51 (s, 3H). HPLC purity (254 nm): 97.1%. *Chiral separation step was omitted. - A. 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1R)-1-phenylethoxy]quinoline-4-carbonyl chloride. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of 8-methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1R)-1-phenylethoxy]quinoline-4-carboxylic acid (100 mg, 0.23 mmol, Compound 211) in DCM (10 mL) then DMF (0.1 mL) was added and the solution was cooled to 0° C. Oxalyl chloride (37.7 mg, 0.30 mmol) was added dropwise with stirring then the reaction was stirred for 1 h at rt. The resulting mixture was concentrated under reduced pressure affording 95 mg (91%) of the title compound as a yellow solid.
- B. Ethyl 3-[8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1R)-1-phenylethoxy]quinolin-4-yl]-3-oxopropanoate. To a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of EtOAc (35 mg, 0.40 mmol) in THF (10 mL), then the solution was cooled to −78° C. and LiHMDS (0.45 mL, 0.8 mmol) was added dropwise with stirring. The reaction was stirred at −78° C. for 0.5 h, then a solution of 8-methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1R)-1-phenylethoxy]quinoline-4-carbonyl chloride (95 mg, 0.21 mmol, as prepared in the previous step) in THF (10 mL) was added dropwise. After completion of addition the reaction was warmed to rt and stirred for 1 h, then quenched by the addition of 1M aqueous NH4Cl solution, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure affording 78 mg (74%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C32H30NO5 +: 508.2 (M+H); Found: 508.2.
- C. 3-[8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1R)-1-phenylethoxy]quinolin-4-yl]-1H-pyrazol-5-ol. To a 25-mL round-bottom flask was placed a solution of ethyl 3-[8-methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1R)-1-phenylethoxy]quinolin-4-yl]-3-oxopropanoate (70 mg, 0.14 mmol, as prepared in the previous step) in EtOH (10 mL) then N2H4.H2O (43 mg) was added. The reaction was stirred at 95° C. for 12 h, cooled to rt, then the solvent was removed under reduced pressure. The residue was triturated with DCM/hexane (1/10) and the solid was collected by filtration affording 35.9 mg (55%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C30H26N3O3 +: 476.2 (M+H); Found: 476.3. 1H NMR (400 MHz, DMSO-d6): δ 11.83 (brs, 1H), 9.57 (brs, 1H), 7.89 (s, 1H), 7.78 (d, J=8.0 Hz, 1H), 7.68 (d, J=8.0 Hz, 1H), 7.44 (t, J=7.2 Hz, 2H), 7.37-7.26 (m, 5H), 7.22-7.19 (m, 1H), 6.72 (d, J=8.0 Hz, 1H), 5.77 (s, 1H), 5.44 (q, J=6.4 Hz, 1H), 2.85 (s, 3H), 2.65 (s, 3H), 1.26 (d, J=6.4 Hz, 3H). HPLC purity (254 nm): 95.1%.
- Using the procedure described in Example 30, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 275 3-[8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1R)-1-phenylethoxy]quinolin-4- yl]-1H-pyrazol-5-ol Mass Spectrum (LCMS, ESI pos): Calcd. for C30H26N3O3: 476.2 (M + H); Found: 476.3. 1H NMR (400 MHz, DMSO-d6): δ 11.81 (brs, 1H), 9.57 (brs, 1H), 7.88 (s, 1H), 7.77 (d, J = 7.2 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.44 (t, J = 7.2 Hz, 2H), 7.35-7.24 (m, 5H), 7.20-7.17 (m, 1H), 6.71 (d, J = 8.0 Hz, 1H), 5.75 (s, 1H), 5.42 (q, J = 6.4 Hz, 1H), 2.84 (s, 3H), 2.63 (s, 3H), 1.24 (d, J = 6.0 Hz, 3H). HPLC purity (254 nm): 96.1%. - A. Methyl 5-[(2-Cyanophenyl)methoxy]-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate. To a 100-mL round-bottom flask was placed a solution of methyl 5-hydroxy-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate (175 mg, 0.48 mmol, as prepared in Example 28, Step B) in MeCN (20 mL) then 2-(bromomethyl)benzonitrile (99 mg, 0.50 mmol) and K2CO3 (331 mg, 2.39 mmol) were added. The reaction was stirred for 5 h at rt, quenched by the addition of water, and extracted with DCM. The organic extracts were combined, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:10) affording 225 mg (98%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C29H23N2O3S+: 479.1 (M+H); Found: 479.1.
- B. 5-[(2-Cyanophenyl)methoxy]-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid. To a 25-mL sealed tube was placed a solution of methyl 5-[(2-cyanophenyl)methoxy]-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate (100 mg, 0.21 mmol, as prepared in the previous step) in MeOH (10 mL) and water (2 mL) then LiOH (225 mg, 9.39 mmol) was added. The reaction was stirred for 5 h at 80° C., cooled to rt, adjusted to pH 3 with 6N HCl, and extracted with DCM. The organic extracts were combined and concentrated under reduced pressure. The residue was purified by column chromatography eluting with DCM/MeOH (10:1) affording 90 mg (93%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C28H21N2O3S+: 465.1 (M+H); Found: 465.2.
- C. Sodium 5-[(2-Cyanophenyl)methoxy]-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylate. To a 50-mL round-bottom flask was placed a solution of 5-[(2-cyanophenyl)methoxy]-8-methyl-2-(3-methyl-1-benzothiophen-2-yl)quinoline-4-carboxylic acid (63 mg, 0.14 mmol, as prepared in the last step) in MeOH (5 mL) then 0.05M NaOH solution (2.8 mL) was added. The reaction was stirred for 15 min at rt then the solvent was removed under reduced pressure affording 50.9 mg (77%) of the title compound as a white solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C28H21N2O3S+: 465.1 (M+H); Found: 465.2. 1H NMR (400 MHz, DMSO-d6): δ 8.53 (d, J=7.6 Hz, 1H), 8.01 (d, J=6.8 Hz, 1H), 7.92 (d, J=8.4 Hz, 1H), 7.85 (d, J=8.0 Hz, 1H), 7.74 (t, J=8.0 Hz, 1H), 7.52-7.44 (m, 5H), 6.92 (d, J=8.0 Hz, 1H), 5.41 (s, 2H), 2.83 (s, 3H), 2.67 (s, 3H). HPLC purity (254 nm): 99.2%.
- Using the procedure described in Example 31, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 289 Sodium 5-[(2-Fluorophenyl)methoxy]-8-methyl-2-(3-methyl-1-benzothiophen-2- yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C27H21FNO3S+: 458.1 (M + H); Found: 458.2. 1H NMR (400 MHz, DMSO-d6): δ 8.31 (t, J = 7.2 Hz, 1H), 8.01 (d, J = 7.2 Hz, 1H), 7.92 (d, J = 7.2 Hz, 1H), 7.48-7.44 (m, 3H), 7.42 (s, 1H), 7.36-7.31 (m, 1H), 7.22-7.17 (m, 2H), 6.90 (d, J = 8.0 Hz, 1H), 5.28 (s, 2H), 2.83 (s, 3H), 2.65 (s, 3H). HPLC purity (254 nm): 98.4%. 290 Sodium 5-[(3-Fluorophenyl)methoxy]-8-methyl-2-(3-methyl-1-benzothiophen-2- yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C27H21FNO3S+: 458.1 (M + H); Found: 458.2. 1H NMR (400 MHz, DMSO-d6): δ 8.01 (d, J = 7.2 Hz, 1H), 7.92 (d, J = 7.2 Hz, 1H), 7.85 (d, J = 10.8 Hz, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.48-7.43 (m, 3H), 7.42 (s, 1H), 7.40-7.34 (m, 1H), 7.08-7.04 (m, 1H), 6.87 (d, J = 7.6 Hz, 1H), 5.26 (s, 2H), 2.83 (s, 3H), 2.64 (s, 3H). HPLC purity (254 nm): 98.8%. 291 Sodium 5-[(4-Fluorophenyl)methoxy]-8-methyl-2-(3-methyl-1-benzothiophen-2- yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C27H21FNO3S+: 458.1 (M + H); Found: 458.2. 1H NMR (400 MHz, DMSO-d6): δ 8.01 (d, J = 7.6 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.88-7.84 (m, 2H), 7.48-7.45 (m, 3H), 7.43 (s, 1H), 7.15 (t, J = 8.8 Hz, 2H), 6.88 (d, J = 8.0 Hz, 1H), 5.22 (s, 2H), 2.82 (s, 3H), 2.64 (s, 3H). HPLC purity (254 nm): 99.1%. 293 Sodium 5-[(3-Methoxyphenyl)methoxy]-8-methyl-2-(3-methyl-1-benzothiophen- 2-yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO4S+: 470.1 (M + H); Found: 470.2. 1H NMR (400 MHz, DMSO-d6): δ 8.01 (d, J = 7.2 Hz, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.71 (s, 1H), 7.48-7.41 (m, 4H), 7.21 (t, J = 7.6 Hz, 1H), 7.14 (d, J = 7.2 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 5.21 (s, 2H), 3.88 (s, 3H), 2.82 (s, 3H), 2.64 (s, 3H). HPLC purity (254 nm): 98.6%. 294 Sodium 5-[(2,6-Difluorophenyl)methoxy]-8-methyl-2-(3-methyl-1- benzothiophen-2-yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C27H20F2NO3S+: 476.1 (M + H); Found: 476.2. 1H NMR (400 MHz, DMSO-d6): δ 8.01 (d, J = 7.2 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.55-7.42 (m, 5H), 7.15 (t, J = 7.6 Hz, 2H), 6.90-6.85 (m, 1H), 5.16 (s, 2 H), 2.80 (s, 3H), 2.67 (s, 3H). HPLC purity (254 nm): 96.6%. 298 Sodium 5-[(3-Cyanophenyl)methoxy]-8-methyl-2-(3-methyl-1-benzothiophen-2- yl)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C28H21N2O3S+: 465.1 (M + H); Found: 465.2. 1H NMR (300 MHz, DMSO-d6): δ 8.45 (s, 1H), 8.14 (d, J = 8.4 Hz, 1H), 8.03-8.00 (m, 1H), 7.93-7.90 (m, 1H), 7.72 (d, J = 7.5 Hz, 1H), 7.55 (t, J = 8.4 Hz, 1H), 7.48-7.43 (m, 4H), 6.91 (d, J = 8.4 Hz, 1H), 5.28 (s, 2H), 2.83 (s, 3H), 2.65 (s, 3H). HPLC purity (254 nm): 99.7%. - A. 2-[8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-(1-phenylethoxy)quinolin-4-yl]acetic acid. To a 100-ml, round-bottom flask was placed a solution of 2-methyl-5-(1-phenylethoxy)aniline (1 g, 4.40 mmol, Intermediate 52) in THF (30 mL) then 3-methyl-1-benzofuran-2-carbaldehyde (700 mg, 4.37 mmol), CuCl (430 mg, 4.39 mmol), and but-3-ynoic acid (300 mg, 3.57 mmol) were added. The reaction was stirred at 80° C. for 12 h, quenched by the addition of water, and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude product was purified by Prep-HPLC (Column, X Bridge™ Prep C18 5 um OBD™ 19*100 mm; mobile phase, water with 0.05% TFA and CH3CN (10.0% CH3CN up to 85.0% in 10 min, up to 95.0% in 1.5 min, down to 10.0% in 1.5 min); Detector, uv 254 nm) affording 11 mg (1%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C29H26NO4 +: 452.2 (M+H); Found: 452.2. 1H NMR (400 MHz, DMSO-d6): δ 12.48 (brs, 1H), 7.95 (s, 1H), 7.78 (d, J=7.6 Hz, 1H), 7.67 (d, J=8.4 Hz, 1H), 7.47-7.43 (m, 3H), 7.37-7.31 (m, 4H), 7.26-7.23 (m, 1H), 6.64 (d, J=8.4 Hz, 1H), 5.61 (q, J=6.0 Hz, 1H), 4.56 (d, J=16.8 Hz, 1H), 4.39 (d, J=16.8 Hz, 1H), 2.84 (s, 3H), 2.61 (s, 3H), 1.69 (d, J=6.0 Hz, 3H). HPLC purity (254 nm): 98.7%.
- A. 1-Methyl-4-[(3-methylcyclohexyl)oxy]-2-nitrobenzene. To a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of 4-methyl-3-nitrophenol (5 g, 32.65 mmol) in THF (100 mL) then 3-methylcyclohexan-1-ol (3.7 g, 32.40 mmol) and PPh3 (17.3 g, 65.96 mmol) were added. The solution was stirred at rt and DIAD (13.3 g, 65.77 mmol) was added dropwise then stirring was continued at rt for 5 h. The reaction was quenched by the addition of water and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:10) affording 6.6 g (81%) of the title compound as yellow oil.
- B. 2-Methyl-5-[(3-methylcyclohexyl)oxy]aniline. To a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of 1-methyl-4-[(3-methylcyclohexyl)oxy]-2-nitrobenzene (6 g, 24.07 mmol, as prepared in the previous step) in MeOH (100 mL) then Raney Ni (600 mg) was added. The solution was degassed and back filled with hydrogen and stirred for 5 h at rt. The H2 was purged then the solids were removed by filtration. The filtrate was concentrated under reduced pressure affording 4.7 g of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C14H22NO+: 220.2 (M+H); Found: 220.2.
- C. 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1R,3S)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid, 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1S,3R)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid, 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1S,3S)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic, and 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1R,3R)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid. To a 30-mL vial was placed a solution of 2-methyl-5-[(3-methylcyclohexyl)oxy]aniline (2.5 g, 11.40 mmol, as prepared in the previous step) in EtOH (10 mL) then 3-methyl-1-benzothiophene-2-carbaldehyde (2 g, 11.35 mmol) and 2-oxopropanoic acid (2 g, 22.71 mmol) were added. The reaction was stiffed overnight at 130° C. then cooled to rt and concentrated under reduced pressure. The crude product was purified by Flash-Prep-HPLC (Column, C18 silica gel; mobile phase, ACN/H2O=60% increasing to ACN/H2O=100% within 15 min; Detector, UV 254 nm) affording 804 mg (16%) of the title compound as a yellow solid. The isomers were separated by Prep-SFC (Column, Chiralpak AD-H, 2*25 cm (5 um); mobile phase, CO2 (50%), EtOH— (50%); Detector, UV 254 nm) affording 150 mg (19%) of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1R,3S)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid as a yellow solid, 76 mg (10%) of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1S,3R)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid as a yellow solid, 86 mg (11%) of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1S,3S)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid as a yellow solid and 60 mg (8%) of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1R,3R)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid as a yellow solid.
- D. Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1R,3S)-3-methylcyclohexyl]oxy]quinoline-4-carboxylate (Compound 218). To a 50-mL round-bottom flask was placed a solution of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1R,3S)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid (60 mg, 0.13 mmol, as prepared in the previous step) in MeOH (3 mL) then NaOH (5.4 mg, 0.14 mmol) and H2O (20 mL) were added. The reaction was stirred for 2 min at rt then the solvent was removed under reduced pressure affording 50.8 mg (81%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M+H); Found: 446.3. 1H NMR (300 MHz, DMSO-d6): δ 8.01-7.98 (m, 1H), 7.92-7.89 (m, 1H), 7.48-7.41 (m, 3H), 7.36 (s, 1H), 6.75 (d, J=8.1 Hz, 1H), 4.71-4.68 (m, 1H), 2.81 (s, 3H), 2.63 (s, 3H), 2.21-2.13 (m, 2H), 2.02-1.91 (m, 2H), 1.64-1.61 (m, 1H), 1.46-1.33 (m, 2H), 1.17-1.09 (m, 1H), 0.96-0.89 (m, 1H), 0.86 (d, J=6.6 Hz, 3H). HPLC purity (254 nm): 99.2%.
- E. Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1S,3R)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid (Compound 219). To a 50-mL round-bottom flask was placed a solution of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1S,3R)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid (60 mg, 0.13 mmol, as prepared in Step C) in MeOH (3 mL), then NaOH (5.4 mg, 0.14 mmol) and H2O (20 mL) were added. The reaction was stirred for 2 min at rt then the solvent was removed under reduced pressure affording 42.3 mg (72%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M+H); Found: 446.3. 1H NMR (300 MHz, DMSO-d6): δ 8.00 (d, J=6.6 Hz, 1H), 7.90 (d, J=6.9 Hz, 1H), 7.48-7.42 (m, 3H), 7.37 (s, 1H), 6.76 (d, J=8.1 Hz, 1H), 4.71-4.70 (m, 1H), 2.81 (s, 3H), 2.73 (s, 3H), 2.26-2.12 (m, 2H), 2.02-1.91 (m, 2H), 1.64-1.61 (m, 1H), 1.46-1.36 (m, 2H), 1.23-1.11 (m, 1H), 0.96-0.89 (m, 1H), 0.86 (d, J=6.6 Hz, 3H). HPLC purity (254 nm): 97.5%.
- F. Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1S,3S)-3-methylcyclohexyl]oxy]quinoline-4-carboxylate (Compound 220). To a 50-mL round-bottom flask was placed a solution of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1S,3S)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid (60 mg, 0.13 mmol, as prepared in Step C) in MeOH (3 mL), then NaOH (5.4 mg, 0.14 mmol) and H2O (20 mL) were added. The reaction was stirred for 2 min at rt then the solvent was removed under reduced pressure affording 56.2 mg (82%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M+H); Found: 446.2. 1H NMR (300 MHz, DMSO-d6): δ 8.01-7.98 (m, 1H), 7.91-7.89 (m, 1H), 7.48-7.42 (m, 3H), 7.33 (s, 1H), 6.84 (d, J=8.1 Hz, 1H), 4.37-4.30 (m, 1H), 2.80 (s, 3H), 2.72 (s, 3H), 2.04-2.01 (m, 2H), 1.76-1.72 (m, 1H), 1.63-1.59 (m, 1H), 1.52-1.14 (m, 4H), 0.94 (d, J=6.6 Hz, 3H), 0.93-0.82 (m, 1H). HPLC purity (254 nm): 98.8%.
- G. Sodium 8-Methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1R,3R)-3-methylcyclohexyl]oxy]quinoline-4-carboxylate (Compound 221). To a 50-mL round-bottom flask was placed a solution of 8-methyl-2-(3-methyl-1-benzothiophen-2-yl)-5-[[(1R,3R)-3-methylcyclohexyl]oxy]quinoline-4-carboxylic acid (60 mg, 0.13 mmol, as prepared in Step C) in MeOH (3 mL), then NaOH (5.4 mg, 0.14 mmol) and H2O (20 mL) were added. The reaction was stirred for 2 min at rt then the solvent was removed under reduced pressure affording 50 mg (77%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C27H28NO3S+: 446.2 (M+H); Found: 446.2. 1H NMR (300 MHz, DMSO-d6): δ 8.01-7.98 (m, 1H), 7.92-7.89 (m, 1H), 7.48-7.40 (m, 3H), 7.33 (s, 1H), 6.85 (d, J=7.8 Hz, 1H), 4.37-4.30 (m, 1H), 2.80 (s, 3H), 2.64 (s, 3H), 2.06-2.01 (m, 2H), 1.76-1.72 (m, 1H), 1.63-1.60 (m, 1H), 1.52-1.14 (m, 4H), 0.92 (d, J=6.6 Hz, 3H), 0.90-0.82 (m, 1H). HPLC purity (254 nm): 97.0%.
- A. Methyl 5-(Benzyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate. To a 100-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of 5-(benzyloxy)-2-methylaniline (5 g, 23.45 mmol, Intermediate 13) in EtOH (50 mL) then methyl 2-oxopropanate (7.2 g, 81.5 mmol), and 3-methyl-1-benzofuran-2-carbaldehyde (3.75 g, 23.45 mmol) were added. The reaction was stirred for 12 h at 120° C. then concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:1) affording 4.25 g (43%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C28H24NO4 +: 438.2 (M+H); Found: 438.5.
- B. Methyl 5-Hydroxy-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate. To a 250-mL round-bottom flask was placed a solution of methyl 5-(benzyloxy)-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate (2.2 g, 5.03 mmol, as prepared in the previous step) in MeOH (30 mL) then conc. H2SO4 (10 mL) was added. The reaction was stirred for 6 h at 80° C. then quenched by the addition of water/ice. The solids were collected by filtration affording 1.4 g (80%) of the title compound as a brown solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C21H18NO4 +: 348.1 (M+H); Found: 348.3.
- C. Methyl 5-[1-[4-(tert-Butylsulfamoyl)phenyl]ethoxy]-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate. To a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of methyl 5-hydroxy-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate (500 mg, 1.44 mmol, as prepared in the previous step) in THF (20 mL) then PPh3 (566 mg, 2.16 mmol), N-tert-butyl-4-(1-hydroxyethyl)benzene-1-sulfonamide (407 mg, 1.58 mmol) were added. DIAD (436 mg, 2.16 mmol) was added dropwise then the reaction was stirred for 3 h at rt and concentrated under reduced pressure. The residue was purified by column chromatography eluting with EtOAc/petroleum ether (1:4) affording 250 mg (30%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C33H35N2O6S+: 587.2 (M+H); Found: 587.5.
- D. 5-[1-[4-(tert-Butylsulfamoyl)phenyl]ethoxy]-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid. To a 40-mL sealed tube was placed a solution of methyl 5-[1-[4-(tert-butylsulfamoyl)phenyl]ethoxy]-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylate (250 mg, 0.43 mmol, as prepared in the previous step) in MeOH (20 mL) then NaOH (171 mg, 4.28 mmol) and water (2 mL) were added. The reaction was stirred for 6 h at 100° C. then concentrated under reduced pressure. Then the pH of the aqueous layer was adjusted to 3 with IN HCl and the solid was collected by filtration affording 190 mg (78%) of the title compound as a light yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C32H32N2O6S+: 573.2 (M+H); Found: 573.2.
- E. 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1R)-1-(4-sulfamoylphenyl)ethoxy]quinoline-4-carboxylic acid and 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1S)-1-(4-sulfamoylphenyl)ethoxy]quinoline-4-carboxylic acid. To a 25-mL round-bottom flask was placed a solution of 5-[1-[4-(tert-butylsulfamoyl)phenyl]ethoxy]-8-methyl-2-(3-methyl-1-benzofuran-2-yl)quinoline-4-carboxylic acid (190 mg, 0.33 mmol, as prepared in the previous step) in DCM (3 mL) then TFA (1 mL) was added. The reaction was stirred for 3 h at rt then the solvent was removed under reduced pressure. The residue was purified by column chromatography eluting with DCM/MeOH (25:1). The isomers were separated by Chiral-Prep-HPLC (Prep-HPLC-004: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, Hex (0.1% TFA) and EtOH (hold 30.0% EtOH— in 24 min); Detector, uv 254 nm) affording 47 mg (28%) of 8-methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1R)-1-(4-sulfamoylphenyl)ethoxy]quinoline-4-carboxylic acid as a yellow solid and 44 mg (26%) of 8-methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1S)-1-(4-sulfamoylphenyl)ethoxy]quinoline-4-carboxylic acid as a yellow solid.
- F. Sodium 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1R)-1-(4-sulfamoylphenyl)ethoxy]quinoline-4-carboxylate (Compound 237). To a 25-mL round-bottom flask was placed a solution of 8-methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1R)-1-(4-sulfamoylphenyl)ethoxy]quinoline-4-carboxylic acid (47 mg, 0.09 mmol, as prepared in the previous step) in MeOH (1 mL) then NaOH (3.6 mg, 0.09 mmol) was added. The reaction was stiffed for 2 h at rt then the solvent was removed under reduced pressure affording 39.1 mg (80%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C28H25N2O6S+: 517.1 (M+H); Found: 517.1. 1H NMR (300 MHz, DMSO-d6): δ 7.86 (s, 1H), 7.78-7.72 (m, 3H), 7.68-7.65 (m, 3H), 7.46-7.41 (m, 2H), 7.36-7.31 (m, 1H), 6.73 (d, J=7.8 Hz, 1H), 5.76 (q, J=6.6 Hz, 1H), 2.82 (s, 3H), 2.60 (s, 3H), 1.61 (d, J=6.0 Hz, 3H). HPLC purity (254 nm): 97.2%.
- G. Sodium 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1S)-1-(4-sulfamoylphenyl)ethoxy]quinoline-4-carboxylate (Compound 238). To a 25-mL round-bottom flask was placed a solution of 8-methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1S)-1-(4-sulfamoylphenyl)ethoxy]quinoline-4-carboxylic acid (44 mg, 0.09 mmol, as prepared in Step E) in MeOH (1 mL) then NaOH (3.4 mg, 0.09 mmol) was added. The reaction was stirred for 2 h at rt then the solvent was removed under reduced pressure affording 40.3 mg (88%) of the title compound as a yellow solid. Mass Spectrum (LCMS, ESI pos): Calcd. for C28H25N2O6S+: 517.1 (M+H); Found: 517.3. 1H NMR (300 MHz, DMSO-d6): δ 7.95 (s, 1H), 7.81-7.77 (m, 3H), 7.72-7.67 (m, 3H), 7.57-7.55 (m, 2H), 7.47-7.39 (m, 1H), 6.79 (d, J=8.1 Hz, 1H), 5.84 (q, J=6.3 Hz, 1H), 2.74 (s, 3H), 2.64 (s, 3H), 1.65 (d, J=6.3 Hz, 3H). HPLC purity (254 nm): 98.0%.
- Using the procedure described in Example 34, with reagents, starting materials, and conditions familiar to those skilled in the art, the following compounds representative of the disclosure were prepared:
-
Compound Name and Data 239 Sodium 8-Methyl-2-(3-methyl-l-benzofuran-2-yl)-5-[(1R)-1-[4- (methylsulfamoyl)phenyl]ethoxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C29H27N2O6S+: 531.2 (M + H); Found: 531.2. 1H NMR (400 MHz, CD3OD): δ 7.98 (s, 1H), 7.85-7.79 (m, 4H), 7.71 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 7.38-7.30 (m, 2H), 6.62 (d, J = 8.0 Hz, 1H), 5.69 (q, J = 6.4 Hz, 1H), 2.89 (s, 3H), 2.68 (s, 3H), 2.50 (s, 3H), 1.80 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 97.6%. 240 Sodium 8-Methyl-2-(3-methyl-1-benzofuran-2-yl)-5-[(1S)-1-[4- (methylsulfamoyl)phenyl]ethoxy]quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C29H27N2O6S+: 531.2 (M + H); Found: 531.2. 1H NMR (400 MHz, CD3OD): δ 7.97 (s, 1H), 7.87-7.79 (m, 4H), 7.70 (d, J = 7.6 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 7.33-7.30 (m, 2H), 6.61 (d, J = 8.0 Hz, 1H), 5.68 (q, J = 6.4 Hz, 1H), 2.90 (s, 3H), 2.68 (s, 3H), 2.50 (s, 3H), 1.79 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 96.9%. 257 Sodium 8-Methyl-2-((1R)-3-methyl-1-benzofuran-2-yl)-5-(1-[pyrazolo[1,5- a]pyridin-5-yl]ethoxy)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C29H24N3O4 +: 478.2 (M + H); Found: 478.3. 1H NMR (400 MHz, DMSO-d6): δ 8.53 (d, J = 7.2 Hz, 1H), 8.01 (s, 1H), 7.93 (s, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.69-7.64 (m, 2H), 7.44-7.40 (m, 2H), 7.36-7.32 (m, 2H), 6.74 (d, J = 8.0 Hz, 1H), 6.49 (s, 1H), 5.69 (q, J = 6.4 Hz, 1H), 2.83 (s, 3H), 2.59 (s, 3H), 1.61 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 98.3%. 258 Sodium 8-Methyl-2-((1S)-3-methyl-1-benzofuran-2-yl)-5-(1-[pyrazolo[1,5- a]pyridin-5-yl]ethoxy)quinoline-4-carboxylate Mass Spectrum (LCMS, ESI pos): Calcd. for C29H24N3O4 +: 478.2 (M + H); Found: 478.3. 1H NMR (400 MHz, DMSO-d6): δ 8.55 (d, J = 7.2 Hz, 1H), 7.96-7.93 (m, 2H), 7.75 (d, J = 7.6 Hz, 1H), 7.71-7.66 (m, 2H), 7.43 (t, J = 7.6 Hz, 1H), 7.36-7.32 (m, 3H), 6.76 (d, J = 8.0 Hz, 1H), 6.51 (s, 1H), 5.70 (q, J = 6.4 Hz, 1H), 2.83 (s, 3H), 2.59 (s, 3H), 1.62 (d, J = 6.4 Hz, 3H). HPLC purity (254 nm): 98.8%. - i. Ussing Measurements
- As discussed above, Ussing measurements are used to measure CFTR activity. In this method, primary lung epithelial cells (hBEs) homozygous for the Cystic Fibrosis-causing ΔF508 mutation are differentiated for a minimum of 4 weeks in an air-liquid interface on SnapWell filter plates prior to the Ussing measurements. Cells are apically mucus-washed for 30 minutes prior to treatment with compounds. The basolateral media is removed and replaced with media containing the compound of interest diluted to its final concentration from DMSO stocks. Treated cells are incubated at 37° C. and 5% CO2 for 24 hours. At the end of the treatment period, the cells on filters are transferred to the Ussing chamber and equilibrated for 30 minutes. The short-circuit current is measured in voltage clamp-mode (Vhold=0 mV), and the entire assay is conducted at a temperature of 36° C.-36.5° C. Once the voltages are stabilized, the chambers are clamped, and data is recorded by pulse readings every 5 seconds. Following baseline current stabilization, the following additions can be applied and the changes in current and resistance of the cells can be monitored:
-
- 1. Benzamil to the apical chamber to inhibit ENaC sodium channel.
- 2. Forskolin to both chambers to activate ΔF508-CFTR by phosphorylation.
- 3. VX-770 to the apical chamber to potentiate ΔF508-CFTR channel opening.
- 4. CFTRinh-172 to the apical chamber to inhibit ΔF508-CFTR Cl— conductance.
- The inhibitable current (that current that is blocked by CFTRinh-172) is measured as the specific activity of the ΔF508-CFTR channel, and increases in response to compound in this activity over that observed in vehicle-treated samples are identified as the correction of ΔF508-CFTR function imparted by the compound tested.
- ii. hBE Equivalent Current (Ieq) Assay
- Primary lung epithelial cells homozygous for the Cystic Fibrosis-causing ΔF508 mutation were differentiated for a minimum of 4 weeks in an air-liquid interface on Costar 24 well HTS filter plates prior to the equivalent current (Ieq) measurements. Cells were apically mucus-washed for 30 minutes 24 h prior to treatment with compounds. The basolateral media was removed and replaced with media containing the compound of interest diluted to its final concentration from DMSO stocks. Treated cells were incubated at 37° C. and 5% CO2 for 24 hours. At the end of the treatment period, the media was changed to the Ieq experimental solution for 2 hours before the experiment and plates are maintained in a CO2-free incubator during this period. The plates containing the cells were then placed in pre-warmed heating blocks at 36° C.±0.5 for 15 minutes before measurements are taken. The transepithelial voltage (VT) and conductance (GT) were measured using a custom 24 channel current clamp (TECC-24) with 24 well electrode manifold. The Ieq assay measurements were made following additions with standardized time periods:
-
- 1. The baseline VT and GT values were measured for approximately 20 minutes.
- 2. Benzamil was added to block ENaC for 15 minutes.
- 3. Forskolin plus VX-770 were added to maximally activate ΔF508-CFTR for 27 minutes.
- 4. Bumetanide was added to inhibit the NaK2Cl cotransporter and shut-off secretion of chloride.
- The activity data captured was the area under the curve (AUC) for the traces of the equivalent chloride current. The AUC was collected from the time of the forskolin/VX-770 addition until the inhibition by bumetanide addition. Correction in response to compound treatment was scored as the increase in the AUC for compound-treated samples over that of vehicle-treated samples.
- The results are shown below in Table 1. (+ indicates activity <50% of an CFTR amplifier (Compound A)+VX-809 (3 uM) with compound at 10 uM and Compound A at 3 uM; ++ indicates activity >50% of CFTR amplifier+VX-809 (3 uM) with compound at 10 uM and Compound A at 3 uM.
-
TABLE 1 Compound # Structure Activity 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ++ 10 + 11 + 12 + 13 + 14 + 15 ++ 16 + 17 ++ 18 + 19 ++ 20 ++ 21 ++ 22 + 23 ++ 24 ++ 25 + 26 ++ 27 ++ 28 ++ 29 + 30 ++ 31 ++ 32 ++ 33 ++ 34 ++ 35 ++ 36 ++ 37 ++ 38 + 39 + 40 + 41 + 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ++ 74 75 ++ 76 ++ 77 ++ 78 79 ++ 80 81 + 82 83 84 85 86 ++ 87 88 89 90 91 92 93 94 95 ++ 96 97 ++ 98 99 100 101 ++ 102 103 ++ 104 ++ 105 + 106 ++ 107 ++ 108 ++ 109 ++ 110 ++ 111 + 112 ++ 113 + 114 + 115 + 116 ++ 117 ++ 118 ++ 119 + 120 ++ 121 + 122 ++ 123 + 124 + 125 ++ 126 ++ 127 ++ 128 + 129 + 130 + 131 132 ++ 133 ++ 134 ++ 135 ++ 136 137 ++ 138 ++ 139 140 ++ 141 + 142 ++ 143 ++ 144 ++ 145 ++ 146 ++ 147 + 148 149 150 151 152 153 154 155 156 157 158 ++ 159 ++ 160 161 ++ 162 ++ 163 ++ 164 165 ++ 166 ++ 167 168 169 ++ 170 ++ 171 172 173 ++ 174 ++ 175 ++ 176 ++ 177 178 ++ 179 180 ++ 181 ++ 182 ++ 183 ++ 184 ++ 185 ++ 186 ++ 187 ++ 188 ++ 189 ++ 190 191 192 ++ 193 194 + 195 ++ 196 ++ 197 ++ 198 199 200 + 201 ++ 202 + 203 + 204 205 206 207 208 ++ 209 + 210 211 212 ++ 213 ++ 214 ++ 215 ++ 216 ++ 217 ++ 218 ++ 219 ++ 220 ++ 221 ++ 222 ++ 223 ++ 224 ++ 225 ++ 226 ++ 227 ++ 228 229 ++ 230 ++ 231 232 233 ++ 234 ++ 235 ++ 236 ++ 237 + 238 ++ 239 ++ 240 ++ 241 242 243 ++ 244 ++ 245 ++ 246 ++ 247 ++ 248 ++ 249 ++ 250 251 252 253 ++ 254 255 256 257 ++ 258 ++ 259 260 261 262 263 ++ 264 ++ 265 ++ 266 ++ 267 268 269 270 271 272 273 274 + 275 + 276 ++ 277 ++ 278 279 280 ++ 281 ++ 282 ++ 283 ++ 284 ++ 285 ++ 286 ++ 287 288 289 ++ 290 ++ 291 ++ 292 ++ 293 ++ 294 ++ 295 ++ 296 ++ 297 ++ 298 ++ 299 ++ 300 ++ 301 ++ 302 ++ 303 ++ 304 ++ 305 ++ 306 ++ 307 ++ 308 ++ 309 ++ 310 ++ 311 ++ 312 ++ 313 ++ 314 ++ 315 ++ 316 317 318 ++ 319 ++ 320 ++ 321 ++ 322 ++ 323 ++ 324 ++ 325 ++ 326 ++ 327 ++ 328 ++ 329 ++ 330 ++ 331 ++ 332 ++ 333 ++ 334 ++ 335 ++ 336 ++ 337 ++ 338 ++ 339 340 341 342 343 ++ 344 345 346 ++ 347 + 348 349 350 ++ 351 352 ++ 353 ++ 354 ++ 355 ++ 356 ++ 357 ++ 358 ++ 359 ++ 360 ++ 361 ++ 362 + 363 364 365 366 367 ++ 368 ++ 369 ++ 370 ++ 371 372 ++ 373 ++ 374 ++ 375 ++ 376 ++ 377 ++ 378 379 380 381 382 383 384 ++ 385 386 387 ++ 388 ++ 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 + - While this disclosure has been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the disclosure encompassed by the appended claims.
- All publications and patents mentioned herein, including those items listed below, are hereby incorporated by reference in their entirety for all purposes as if each individual publication or patent was specifically and individually incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.
- While specific embodiments of the subject disclosure have been discussed, the above specification is illustrative and not restrictive. Many variations of the disclosure will become apparent to those skilled in the art upon review of this specification. The full scope of the disclosure should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.
- Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present disclosure.
Claims (59)
1. A compound represented by Formula I:
or a pharmaceutically acceptable salt, prodrug, or stereoisomer thereof, wherein:
A is a 8-10 membered bicyclic heteroaryl having 1, 2, or 3 heteroatoms each selected from the group consisting of O, N, and S; wherein the bicyclic heteroaryl may optionally be substituted by one, two or three substituents each independently selected from RA1:
X1 is selected from the group consisting of N and C(RX1);
X2 is selected from the group consisting of N and C(RX2);
X3 is selected from the group consisting of N and C(RX3);
wherein only one of X1, X2 or X3 can be N;
R1 is selected from the group consisting of hydrogen; —C(O)OH, —C(O)OC1-6alkyl, —C(O)—C(O)OH, —P(O)(OH)2, C1-6alkyl, and a 5-6 membered monocyclic heteroaryl having one, two, three, or four heteroatoms each selected from the group consisting of O, N, and S; wherein C1-6 alkyl may optionally be substituted by one, two, or three substituents each selected independently from the group consisting of halogen, hydroxyl, C(O)OH, —P(O)(OH)2, and —C(O)OC1-6alkyl; and wherein said heteroaryl may optionally be substituted by one or two substituents each independently selected from the group consisting of halogen, hydroxyl, and C1-4alkyl;
R2 is selected from the group consisting of hydrogen, halogen, cyano, C1-6alkyl, C1-6alkoxy, and C3-6cycloalkyl; wherein C1-6alkyl, C1-6alkoxy, and C3-6cycloalkyl may optionally be substituted by one or more substituents each independently selected from the group consisting of halogen, hydroxyl, and phenyl; and wherein phenyl may optionally be substituted by one or more substituents each independently selected from Rp;
R3 is selected from the group consisting of hydrogen, halogen, hydroxyl, C1-6alkyl, C1-6alkoxy, —S(O)w—C1-6alkyl (where w is 0, 1, or 2), —NRa—C1-6alkyl, C3-6cycloalkoxy, —S(O)w—C3-6 cycloalkyl (where w is 0, 1, or 2), —NRa—C3-6cycloalkyl, —O-phenyl, —S(O)w-phenyl (where w is 0, 1, or 2), —NRa-phenyl, C8-12benzocycloalkoxy, —NRaRb, —OC(O)NRa-phenyl, —NRa—C(O)—O— phenyl, —NRa—C(O)—C1-6alkyl-phenyl, —C1-4alkyl-NRa-phenyl, —NRa—C1-6alkyl-phenyl, and a 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclyloxy, heterocyclyl-NRa—, or heterocyclyl-S(O)w— moiety (where w is 0, 1, or 2) having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclyloxy, heterocyclyl-NRa—, or heterocyclyl-S(O)w— ring contains an —NH moiety, that nitrogen may optionally be substituted by a substituent selected from the group consisting of C1-6alkyl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, and —S(O)w—C1-3alkyl (where w is 0, 1, or 2); and wherein said heterocyclyloxy, heterocyclyl-NRa—, and heterocyclyl-S(O)w may optionally be substituted by one, two, three, or four substituents each independently selected from Rf; and wherein said phenyl moiety of —O-phenyl, —S(O)w-phenyl, —NRa-phenyl, —OC(O)NRa-phenyl, —NRa—C(O)—O-phenyl, —NRa—C(O)—C1-6alkyl-phenyl, —C1-6alkyl-NRa-phenyl and —NRa—C1-6alkyl-phenyl may optionally be substituted by one, two, or three substituents each independently selected from Rp; and wherein C1-6alkoxy, —S(O)—C1-6alkyl (where w is 0, 1, or 2), —NRa—C1-6alkyl, C3-6cycloalkoxy, —S(O)w—C3-6cycloalkyl (where w is 0, 1, or 2), and —NRa—C3-6cycloalkyl may optionally be substituted by one, two, or three substituents each independently selected from Rgg;
Rff is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NRaRb, oxo, C1-6alkyl and C1-6alkoxy;
Rgg is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NRaRb, C1-6alkyl, C1-6alkoxy, C3-6cycloalkyl (optionally substituted by one, two or three substituents independently selected from the group consisting of halogen, hydroxyl, C1-3 alkyl and C1-3alkoxy (optionally substituted by one, two or three fluorine atoms)), phenyl, a 5-6 membered monocyclic or 8-10 membered bicyclic heteroaryl having one, two or three heteroatoms each independently selected from the group consisting of O, N, and S, and a 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclic ring contains an —NH moiety, that nitrogen may optionally be substituted by a substituent selected from the group consisting of C1-6alkyl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, and —S(O)w—C1-3alkyl (where w is 0, 1, or 2); and wherein phenyl may optionally be substituted by one, two, or three substituents each independently selected from Rhh; and wherein said 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclic ring may optionally be substituted by one, two, three, or four substituents each independently selected from Rii;
Rhh is independently selected for each occurrence from the group consisting of halogen, cyano, C1-6alkyl, C1-6alkoxy, S(O)w—C1-3alkyl, —S(O)w—NRaRb, —NRa—S(O)w—C1-3alkyl (where w is 0, 1, or 2), a 5-6 membered monocyclic heteroaryl having one, two or three heteroatoms each independently selected from the group consisting of O, N, and S, and a 4-7 membered heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein C1-6alkoxy and S(O)w—C1-3alkyl may optionally be substituted by one, two, or three halogens;
Rii is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NRaRb, oxo, C1-6alkyl and C1-6alkoxy;
RA1 is independently for each occurrence selected from the group consisting of hydrogen, halogen, C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C1-6alkoxy, C3-C6cycloalkyl, phenyl, —NRaRb, —O—C(O)—NRa-phenyl, —NRa—C(O)-phenyl, and —NRa—C1-4alkyl-phenyl; wherein C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C1-6alkoxy, C3-6cycloalkyl and phenyl may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and —NRaRb;
RX1 is selected from the group consisting of hydrogen, —C(O)OH, and C1-6alkyl; wherein C1-6alkyl may optionally be substituted by one, two or three halogens;
RX2 is selected from the group consisting of hydrogen, halogen, C1-6alkyl, C1-6alkoxy, and —C1-6alkoxy-phenyl; wherein phenyl may optionally be substituted by one or more substituents selected from Rp;
RX3 is selected from the group consisting of hydrogen, halogen, cyano, C1-6alkyl, C1-6alkoxy, —C1-6alkoxy-phenyl, C3-6cycloalkyl, C3-6cycloalkoxy, and phenyl; wherein C1-6alkyl and C1-6alkoxy may optionally be substituted by one, two, or three substituents selected from the group consisting of hydroxyl and halogen; and wherein phenyl may optionally be substituted by one or more substituents selected from Rp;
Ra and Rb are each independently selected from the group consisting of hydrogen, C1-6 alkyl, phenyl, —C(O)-phenyl, and —C(O)—C1-6alkyl; or
Ra and Rb taken together with the nitrogen to which they are attached form a heterocyclic ring; and
Rp is independently selected for each occurrence from the group consisting of halogen, hydroxyl, cyano, C1-6alkyl, C3-6cycloalkyl, C1-6alkoxy, phenyl, C3-6cycloalkoxy, —S(O)w—C1-3alkyl (where w is 0, 1, or 2), —S(O)w—NRaRb, and —NRaRb.
2. The compound of claim 1 , wherein A is selected from the group consisting of:
wherein:
X4 is independently for each occurrence selected from the group consisting of O, S, and N(R4);
X5 is selected from the group consisting of N and C(RX5);
RA1 is independently for each occurrence selected from the group consisting of hydrogen, halogen, C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C1-6alkoxy, C3-6cycloalkyl, phenyl, —NRaRb, —OC(O)NRaRb, —NRa—C(O)-phenyl, and —O—C(O)—NRa-phenyl; wherein C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C1-6alkoxy, C3-6cycloalkyl, phenyl, —OC(O)NRaRb, —NRa—C(O)-phenyl, and —O—C(O)—NRa-phenyl may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and NRaRb;
RA2 is selected from the group consisting of hydrogen and C1-6alkyl;
RA3 and RA4 are each independently selected from the group consisting of hydrogen, halogen, C1-6alkyl, C1-6alkoxy, and NRaRb wherein C1-6alkyl and C1-6alkoxy may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and NRaRb;
R4 is selected from the group consisting of hydrogen, C1-6alkyl, C3-6cycloalkyl, phenyl, heterocycle, C1-6alkyl-S(O)2—, and phenyl-S(O)2—; wherein C1-6alkyl, C3-6cycloalkyl, phenyl, and heterocycle may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and NRaRb;
and RX5 is selected from the group consisting of hydrogen, halogen, and C1-6alkyl.
3. The compound of claim 1 or 2 , wherein R1 is —C(O)OH.
4. The compound of claims 1 or 2 , wherein R1 is selected from the group consisting of:
6. The compound of any one of claims 1 -5 , wherein R2 is selected from the group consisting of hydrogen, C1-6alkyl, C1-6cycloalkyl, and halogen.
7. The compound of claim 6 , wherein R2 is methyl or ethyl.
8. The compound of any one of claims 1 -7 , wherein R3 is C3-6cycloalkoxy; wherein C3-6cycloalkoxy may be optionally substituted by one or two substituents selected from RU.
11. The compound of any one of claims 1 -7 , wherein R3 is C1-6alkoxy, wherein C1-6alkoxy may be optionally substituted by one, two or three substituents selected from Rgg.
12. The compound of claim 11 , wherein Rgg is selected from the group consisting of: halogen, hydroxyl, C1-6alkoxy, C3-6cycloalkyl (optionally substituted by one or two substituents independently selected from the group consisting of hydroxyl, C1-3alkyl and C1-3alkoxy), phenyl,
wherein R11, R22, R33 and R44 are independently selected for each occurrence from the group consisting of hydrogen, hydroxyl, C1-6alkyl, C1-3alkoxy and oxo; and wherein RN is selected from the group consisting of hydrogen and —S(O)2—C1-3alkyl; and wherein phenyl may be optionally substituted by on one two substituents selected from Rhh.
14. The compound of claim 12 , wherein Rhh is selected from the group consisting of: halogen, C1-3alkyl, C1-3alkoxy, cyano, —S(O)w—C1-3alkyl (where w is 0, 1, or 2), —S(O)w—NRaRb, —NRa—S(O)w—C1-3alkyl,
wherein Ra is hydrogen or methyl; and wherein C1-3alkoxy and S(O)w—C1-3alkyl may optionally be substituted by one, two, or three fluorine atoms.
15. The compound of any one of claims 1 -7 , wherein R3 is monocyclic, spirocyclic, or bridged bicyclic heterocyclyloxy.
16. The compound of claim 15 , wherein R3 is selected from the group consisting of:
wherein R11, R22, R33 and R44 are independently selected for each occurrence from the group consisting of hydrogen, hydroxyl, C1-6alkyl, C1-3alkoxy and oxo; and wherein RN is selected from the group consisting of hydrogen and —S(O)2—C1-3alkyl.
18. The compound of any one of claims 1 -17 , wherein X1 is C(RX1), X2 is C(RX2), and X3 is C(RX3).
21. The compound of claim 1 , represented by:
wherein
X is O or S;
RA1 is selected from the group consisting of hydrogen and C1-6alkyl;
R1 is selected from the group consisting of —C(O)OH and a 5-6 membered monocyclic heteroaryl having one, two, three, or four heteroatoms each selected from the group consisting of O, N, and S; wherein said heteroaryl may optionally be substituted by one or two substituents each independently selected from the group consisting of halogen, hydroxyl, and C1-4alkyl;
R2 is selected from the group consisting of hydrogen, halogen, cyano, C1-6alkyl, C1-6alkoxy, and C3-6cycloalkyl;
Y is O or S(O)w (where w is 0, 1 or 2);
R25 and R26 are each independently selected from the group consisting of hydrogen and C1-4alkyl;
p is 0 or 1; and
B is a 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclic ring contains an —NH moiety, that nitrogen may optionally be substituted by a substituent selected from the group consisting of C1-6alkyl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, and —S(O)w—C1-3alkyl (where w is 0, 1, or 2); and wherein said heterocyclic ring may optionally be substituted by one, two, three, or four substituents each independently selected from hydroxyl, C1-6alkyl, C1-6alkoxy, and oxo.
22. The compound of claim 21 , wherein X is O.
23. The compound of claim 21 or 22 , wherein RA1 is methyl.
24. The compound of any one of claims 21 -23 , wherein R1 is —C(O)OH.
25. The compound of any one of claims 21 -24 , wherein p is 1.
27. The compound of any one of claims 21 -26 , wherein Y is O.
28. The compound of any one of claims 15 -27 , wherein R2 is C1-6alkyl.
29. A compound represented by Formula II, III, IV, or V:
and pharmaceutically acceptable salts thereof, wherein:
X1 is selected from the group consisting of N and C(RX1);
X2 is selected from the group consisting of N and C(RX2);
X3 is selected from the group consisting of N and C(RX3);
wherein only one of X1, X2 or X3 can be N;
R2 is selected from the group consisting of hydrogen, halogen, cyano, C1-6alkyl, C1-6alkoxy, and C3-6cycloalkyl; wherein C1-6alkyl, C1-6alkoxy, and C3-6cycloalkyl may optionally be substituted by one or more substituents each independently selected from the group consisting of halogen, hydroxyl, and phenyl; and wherein phenyl may optionally be substituted by one or more substituents each independently selected from Rp;
R3 is selected from the group consisting of hydrogen, halogen, hydroxyl, C1-6alkyl, C1-6alkoxy, —S(O)w—C1-6alkyl (where w is 0, 1, or 2), —NRa—C1-6alkyl, C3-cycloalkoxy, —S(O)w—C3-6 cycloalkyl (where w is 0, 1, or 2), —NRa—C3-6cycloalkyl, —O-phenyl, —S(O)w-phenyl (where w is 0, 1, or 2), —NRa-phenyl, C8-12benzocycloalkoxy, —NRaRb, —OC(O)NRa-phenyl, —NRa—C(O)—O— phenyl, —NRa—C(O)—C1-6alkyl-phenyl, —C1-6alkyl-NRa-phenyl, —NRa—C1-6alkyl-phenyl, and a 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclyloxy, heterocyclyl-NRa—, or heterocyclyl-S(O)w— moiety (where w is 0, 1, or 2) having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclyloxy, heterocyclyl-NRa—, or heterocyclyl-S(O)w— ring contains an —NH moiety, that nitrogen may optionally be substituted by a substituent selected from the group consisting of C1-6alkyl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, and —S(O)w—C1-3alkyl (where w is 0, 1, or 2); and wherein said heterocyclyloxy, heterocyclyl-NRa—, and heterocyclyl-S(O)w may optionally be substituted by one, two, three, or four substituents each independently selected from R1; and wherein said phenyl moiety of —O-phenyl, —S(O)w-phenyl, —NRa-phenyl, —OC(O)NRa-phenyl, —NRa—C(O)—O-phenyl, —NRa—C(O)—C1-6alkyl-phenyl, —C1-6alkyl-NRa-phenyl and —NRa—C1-6alkyl-phenyl may optionally be substituted by one, two, or three substituents each independently selected from Rp; and wherein C1-6alkoxy, —S(O)w—C1-6alkyl (where w is 0, 1, or 2), —NRa—C1-6alkyl, C3-6cycloalkoxy, —S(O)w—C3-6cycloalkyl (where w is 0, 1, or 2), and —NRa—C3-6cycloalkyl may optionally be substituted by one, two, or three substituents each independently selected from Rgg;
Rff is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NRaRb, oxo, C1-6alkyl and C1-6alkoxy;
Rgg is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NRaRb, C1-6alkyl, C1-6alkoxy, C3-6cycloalkyl (optionally substituted by one, two or three substituents independently selected from the group consisting of halogen, hydroxyl, C1-3 alkyl and C1-3alkoxy (optionally substituted by one, two or three fluorine atoms)), phenyl, a 5-6 membered monocyclic or 8-10 membered bicyclic heteroaryl having one, two or three heteroatoms each independently selected from the group consisting of O, N, and S, and a 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein if said heterocyclic ring contains an —NH moiety, that nitrogen may optionally be substituted by a substituent selected from the group consisting of C1-6alkyl, —C(O)—C1-6alkyl, —C(O)—O—C1-6alkyl, and —S(O)w—C1-3alkyl (where w is 0, 1, or 2); and wherein phenyl may optionally be substituted by one, two, or three substituents each independently selected from Rhh; and wherein said 4-10 membered monocyclic, bridged bicyclic, or spirocyclic heterocyclic ring may optionally be substituted by one, two, three, or four substituents each independently selected from Rgg;
Rhh is independently selected for each occurrence from the group consisting of halogen, cyano, C1-6alkyl, C1-6alkoxy, S(O)w—C1-3alkyl, —S(O)w—NRaRb, —NRa—S(O)w—C1-3alkyl (where w is 0, 1, or 2), a 5-6 membered monocyclic heteroaryl having one, two or three heteroatoms each independently selected from the group consisting of O, N, and S, and a 4-7 membered heterocyclic ring having one or two heteroatoms each independently selected from the group consisting of O, N, and S; wherein C1-6alkoxy and S(O)w—C1-3alkyl may optionally be substituted by one, two, or three halogens;
Rii is independently selected for each occurrence from the group consisting of halogen, hydroxyl, —NRaRb, oxo, C1-6alkyl and C1-6alkoxy;
RA1 is independently for each occurrence selected from the group consisting of hydrogen, halogen, C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C1-6alkoxy, C3-6cycloalkyl, phenyl, —NRaRb, —O—C(O)—NRa-phenyl, —NRa—C(O)-phenyl, and —NRa—C1-4alkyl-phenyl; wherein C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C1-6alkoxy, C3-6cycloalkyl and phenyl may optionally be substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, phenyl, and —NRaRb;
RX1 is selected from the group consisting of hydrogen, —C(O)OH, and C1-6alkyl; wherein C1-6alkyl may optionally be substituted by one, two or three halogens;
RX2 is selected from the group consisting of hydrogen, halogen, C1-6alkyl, C1-6alkoxy, and —C1-6alkox-phenyl; wherein phenyl may optionally be substituted by one or more substituents selected from Rp;
RX3 is selected from the group consisting of hydrogen, halogen, cyano, C1-6alkyl, C1-6 alkoxy, —C1-6alkoxy-phenyl, C3-6cycloalkyl, C3-6cycloalkoxy, and phenyl; wherein C1-6alkyl and C1-6alkoxy may optionally be substituted by one, two, or three substituents selected from the group consisting of hydroxyl and halogen; and wherein phenyl may optionally be substituted by one or more substituents selected from Rp;
Ra and Rb are each independently selected from the group consisting of hydrogen, C1-6 alkyl, phenyl, —C(O)-phenyl, and —C(O)—C1-6alkyl; or
Ra and Rb taken together with the nitrogen to which they are attached form a heterocyclic ring; and
Rp is independently selected, for each occurrence, from the group consisting of halogen, hydroxyl, cyano, C1-6alkyl, C3-6cycloalkyl, C1-6alkoxy, phenyl, C3-6cycloalkoxy, —S(O)w—C1-3alkyl (where w is 0, 1, or 2), —S(O)w—NRaRb, and —NRaRb.
30. The compound of claim 29 , wherein R2 is selected from the group consisting of hydrogen, C1-6alkyl, C1-6cycloalkyl, and halogen.
31. The compound of claim 15 , wherein R2 is methyl or ethyl.
32. The compound of any one of claims 29 -31 , wherein R3 is C3-6cycloalkoxy; wherein C3-6 cycloalkoxy may be optionally substituted by one or two substituents selected from Rgg.
35. The compound of any one of claims 29 -31 , wherein R3 is C1-6alkoxy, wherein C1-6alkoxy may be optionally substituted by one, two or three substituents selected from Rgg.
36. The compound of claim 35 , wherein Rgg is selected from the group consisting of: halogen, hydroxyl, C1-6alkoxy, C3-6cycloalkyl (optionally substituted by one or two substituents independently selected from the group consisting of hydroxyl, C1-3alkyl and C1-3alkoxy), phenyl,
wherein R11, R22, R33 and R44 are independently selected for each occurrence from the group consisting of hydrogen, hydroxyl, C1-6alkyl, C1-3alkoxy and oxo; and wherein RN is selected from the group consisting of hydrogen and —S(O)2—C1-3alkyl; and wherein phenyl may be optionally substituted by on one two substituents selected from Rhh.
38. The compound of claim 36 , wherein Rhh is selected from the group consisting of: halogen, C1-3alkyl, C1-3alkox, cyano, —S(O)w—C1-3alkyl (where w is 0, 1, or 2), —S(O)w—NRaRb, —NRa—S(O)w—C1-3alkyl
wherein Ra is hydrogen or methyl; and wherein C1-3alkoxy and S(O)w—C1-3alkyl may optionally be substituted by one, two, or three fluorine atoms.
39. The compound of any one of claims 29 -31 , wherein R3 is monocyclic, spirocyclic, or bridged bicyclic heterocyclyloxy.
40. The compound of claim 39 , wherein R3 is selected from the group consisting of:
wherein R11, R22, R33 and R44 are independently selected for each occurrence from the group consisting of hydrogen, hydroxyl, C1-6alkyl, C1-3alkoxy and oxo; and wherein RN is selected from the group consisting of hydrogen and —S(O)2—C1-3alkyl.
43. A pharmaceutical composition comprising a compound of any one of claims 1 to 42 and a pharmaceutically acceptable excipient.
44. The pharmaceutical composition of claim 43 , wherein the composition further comprises at least one additional CFTR modulator.
45. The pharmaceutical composition of claim 44 , wherein the composition further comprises two, three, four or more additional CFTR modulators.
46. A method of enhancing cystic fibrosis transmembrane conductance regulator (CFTR) activity in a subject in need thereof comprising administering to said subject an effective amount of a compound of any one of claims 1 to 42 .
47. The method of claim 46 , wherein the cellular processing of a mutant CFTR is enhanced.
48. The method of claim 47 , wherein the mutant CFTR is selected from the group consisting ΔF508, S549N, G542X, G551D, R117H, N1303K, W1282X, R553X, 621+1G>T, 1717-1G>A, 3849+10kbC>T, 2789+5G>A, 3120+1G>A, I507del, R1162X, 1898+1G>A, 3659delC, G85E, DI 152H, R560T, R347P, 2184insA, A455E, R334W, Q493X, and 2184delA CFTR.
49. The method of claim 48 , wherein ΔF508 CFTR activity is enhanced.
50. The method of any one of claims 46 -49 , wherein the subject is suffering from a disease associated with decreased CFTR activity.
51. The method of claim 50 , wherein the disease is selected from the group consisting of cystic fibrosis, congenital bilateral absence of vas deferens (CBAVD), acute, recurrent, or chronic pancreatitis, disseminated bronchiectasis, asthma, allergic pulmonary aspergillosis, chronic obstructive pulmonary disease (COPD), chronic sinusitis, dry eye disease, protein C deficiency, A-β-lipoproteinemia, lysosomal storage disease, type 1 chylomicronemia, mild pulmonary disease, lipid processing deficiencies, type 1 hereditary angioedema, coagulation-fibrinolyis, hereditary hemochromatosis, CFTR-related metabolic syndrome, chronic bronchitis, constipation, pancreatic insufficiency, hereditary emphysema, Sjogren's syndrome, familial hypercholesterolemia, I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, nephrogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear palsy, Pick's disease, Huntington's disease, spinocerebellar ataxia type I, spinal and bulbar muscular atrophy, dentatorubral pallidoluysian, myotonic dystrophy, hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease, and Straussler-Scheinker syndrome.
52. The method of claim 51 , wherein the disease is cystic fibrosis.
53. The method of any one of claims 46 -52 , wherein the subject is a human patient.
54. The method of any one of claims 46 -53 , further comprising administering at least one or two additional CFTR modulators.
55. The method of claim 54 , wherein one, two, three or four or more additional CFTR modulators are administered.
56. The method of any one of claims 54 or 55 , wherein at least one CFTR modulator is an additional CFTR corrector or potentiator.
57. The method of claim 56 , wherein at least one CFTR corrector or potentiator is independently selected from the group consisting of VX-152, VX-440, VX-770 (ivacaftor), VX-809 (lumacaftor) (3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid, VX-661 ((R)-1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropane-1-carboxamide), VX-983, QBW251, GLPG2222, GLPG2851, GLPG2665, GLPG2737, FDL169, GLPG2451, GLPG1837, and genistein.
58. The method of claim 57 , wherein the CFTR corrector is selected from the group consisting of VX-809, VX-661, VX-152, VX-440, GLPG2222 and VX-983 and the CFTR potentiator is selected from the group consisting of GLPG2451, GLPG1837, ivacaftor and genistein.
59. A method of treating cystic fibrosis in a patient in need thereof, comprising administering an effective amount of compound of any one of claims 1 -42 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/411,682 US20220227739A1 (en) | 2015-10-06 | 2021-08-25 | Compounds, compositions, and methods for modulating cftr |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562237887P | 2015-10-06 | 2015-10-06 | |
US201662277600P | 2016-01-12 | 2016-01-12 | |
US201662319433P | 2016-04-07 | 2016-04-07 | |
PCT/US2016/055693 WO2017062581A1 (en) | 2015-10-06 | 2016-10-06 | Compounds, compositions, and methods for modulating cftr |
US201815766667A | 2018-04-06 | 2018-04-06 | |
US16/716,765 US11136313B2 (en) | 2015-10-06 | 2019-12-17 | Compounds, compositions, and methods for modulating CFTR |
US17/411,682 US20220227739A1 (en) | 2015-10-06 | 2021-08-25 | Compounds, compositions, and methods for modulating cftr |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/716,765 Continuation US11136313B2 (en) | 2015-10-06 | 2019-12-17 | Compounds, compositions, and methods for modulating CFTR |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220227739A1 true US20220227739A1 (en) | 2022-07-21 |
Family
ID=57145069
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/766,667 Active US10550106B2 (en) | 2015-10-06 | 2016-10-06 | Compounds, compositions, and methods for modulating CFTR |
US16/716,765 Active US11136313B2 (en) | 2015-10-06 | 2019-12-17 | Compounds, compositions, and methods for modulating CFTR |
US17/411,682 Abandoned US20220227739A1 (en) | 2015-10-06 | 2021-08-25 | Compounds, compositions, and methods for modulating cftr |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/766,667 Active US10550106B2 (en) | 2015-10-06 | 2016-10-06 | Compounds, compositions, and methods for modulating CFTR |
US16/716,765 Active US11136313B2 (en) | 2015-10-06 | 2019-12-17 | Compounds, compositions, and methods for modulating CFTR |
Country Status (17)
Country | Link |
---|---|
US (3) | US10550106B2 (en) |
EP (1) | EP3359536B1 (en) |
JP (1) | JP6929276B2 (en) |
KR (1) | KR20180093882A (en) |
CN (1) | CN108430994B (en) |
AU (2) | AU2016336437B2 (en) |
BR (1) | BR112018007021B1 (en) |
CA (1) | CA3000483C (en) |
HK (1) | HK1258811A1 (en) |
IL (1) | IL258486B (en) |
MA (1) | MA49357A (en) |
MX (1) | MX2018004290A (en) |
NZ (1) | NZ741093A (en) |
RU (1) | RU2752567C2 (en) |
SA (1) | SA518391268B1 (en) |
SG (1) | SG11201802798WA (en) |
WO (1) | WO2017062581A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2952862A1 (en) * | 2014-06-19 | 2015-12-23 | Proteostasis Therapeutics, Inc. | Compounds, compositions and methods of increasing cftr activity |
MA41253A (en) | 2014-12-23 | 2017-10-31 | Proteostasis Therapeutics Inc | COMPOUNDS, COMPOSITIONS AND PROCESSES TO INCREASE THE ACTIVITY OF CFTR |
EP3325474A1 (en) | 2015-07-24 | 2018-05-30 | Proteostasis Therapeutics, Inc. | Compounds, compositions and methods of increasing cftr activity |
JP6929276B2 (en) | 2015-10-06 | 2021-09-01 | プロテオステイシス セラピューティクス,インコーポレイテッド | Compounds, pharmaceutically acceptable salts or stereoisomers thereof and pharmaceutical compositions |
WO2017112853A1 (en) * | 2015-12-22 | 2017-06-29 | Proteostasis Therapeutics, Inc. | Methods of treating pulmonary diseases and disorders |
EP3440057B1 (en) | 2016-04-07 | 2021-09-22 | Proteostasis Therapeutics, Inc. | Silicone atoms containing ivacaftor analogues |
EP3455624A1 (en) | 2016-05-09 | 2019-03-20 | Proteostasis Therapeutics, Inc. | Methods of identifying cftr modulators |
US10899751B2 (en) | 2016-06-21 | 2021-01-26 | Proteostasis Therapeutics, Inc. | Compounds, compositions, and methods for increasing CFTR activity |
WO2018201126A1 (en) * | 2017-04-28 | 2018-11-01 | Proteostasis Therapeutics, Inc. | 4-sulfonylaminocarbonylquinoline derivatives for increasing cftr activity |
EP3691638A1 (en) | 2017-10-06 | 2020-08-12 | Proteostasis Therapeutics, Inc. | Compounds, compositions and methods for increasing cftr activity |
CN107778282B (en) * | 2017-11-03 | 2020-04-10 | 中山大学 | Quinoline-indole derivative and application thereof in preparation of medicine for treating Alzheimer disease |
WO2020006269A1 (en) | 2018-06-27 | 2020-01-02 | Proteostasis Therapeutics, Inc. | Proteasome activity enhancing compounds |
CN109663129B (en) * | 2019-02-27 | 2021-05-11 | 四川大学华西第二医院 | Dilated cardiomyopathy treatment medicine and application thereof |
CN114621130A (en) * | 2019-11-01 | 2022-06-14 | Fmc公司 | Efficient novel method for synthesizing 2-amino-5-chloro-N, 3-dimethyl benzamide |
CR20230120A (en) | 2020-08-07 | 2023-09-01 | Vertex Pharma | Modulators of cystic fibrosis transmembrane conductance regulator |
KR20230052954A (en) | 2020-08-20 | 2023-04-20 | 더 보드 오브 트러스티스 오브 더 리랜드 스탠포드 쥬니어 유니버시티 | Methods for the treatment of respiratory diseases characterized by mucus hypersecretion |
CN112300009A (en) * | 2020-10-29 | 2021-02-02 | 山东兴强化工产业技术研究院有限公司 | Preparation method of m-phenylenediamine |
CN112279773B (en) * | 2020-10-29 | 2022-01-07 | 山东兴强化工产业技术研究院有限公司 | Synthesis method of high-quality m-phenylenediamine |
CN112142615B (en) * | 2020-10-29 | 2021-11-23 | 山东兴强化工产业技术研究院有限公司 | Preparation method of isophthalimide |
KR20240144973A (en) | 2022-02-03 | 2024-10-04 | 버텍스 파마슈티칼스 인코포레이티드 | How to treat cystic fibrosis |
WO2023150236A1 (en) | 2022-02-03 | 2023-08-10 | Vertex Pharmaceuticals Incorporated | Methods of preparing and crystalline forms of (6a,12a)-17-amino-12-methyl-6,15-bis(trifluoromethyl)-13,19-dioxa-3,4,18-triazatricyclo[ 12.3.1.12,5]nonadeca-1(18),2,4,14,16-pentaen-6-ol |
WO2023154291A1 (en) | 2022-02-08 | 2023-08-17 | Vertex Pharmaceuticals Incorporated | Modulators of cystic fibrosis transmembrane conductance regulator |
CN114436864A (en) * | 2022-02-17 | 2022-05-06 | 浙江鼎龙科技股份有限公司 | Preparation method of 2-methyl-5-aminophenol |
AU2023273614A1 (en) | 2022-05-16 | 2024-11-07 | Vertex Pharmaceuticals Incorporated | Methods of treatment for cystic fibrosis |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870712A (en) * | 1972-03-17 | 1975-03-11 | Lilly Co Eli | Cinchoninic acid derivatives |
US5523408A (en) * | 1994-03-25 | 1996-06-04 | The Dupont Merck Pharmaceutical Company | 2-carbocyclic and 2-heterocyclic quinoline-4-carboxylic acids and salts thereof useful as immunosuppressive agents |
WO1998057931A2 (en) * | 1997-06-19 | 1998-12-23 | Sepracor Inc. | Quinoline-indole antimicrobial agents, uses and compositions related thereto |
US10550106B2 (en) * | 2015-10-06 | 2020-02-04 | Proteostasis Therapeutics, Inc. | Compounds, compositions, and methods for modulating CFTR |
Family Cites Families (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3812225A1 (en) | 1988-04-13 | 1989-10-26 | Basf Ag | Isoxazole (ISOTHIAZOL) -5-carboxamides |
US5888941A (en) | 1995-08-02 | 1999-03-30 | J. Uriach & Cia. S.A. | Carbozamides with antifungal activity |
EP0761654B1 (en) | 1995-08-24 | 2003-06-18 | Basf Aktiengesellschaft | Isoxazole- and isothiazole-5-carboxamide derivatives, their preparation and their use as herbicides |
US6207679B1 (en) | 1997-06-19 | 2001-03-27 | Sepracor, Inc. | Antimicrobial agents uses and compositions related thereto |
ATE228119T1 (en) | 1998-04-15 | 2002-12-15 | Pfizer Prod Inc | HETEROCYCLIC CARBOXAMIDES |
WO2002000651A2 (en) | 2000-06-27 | 2002-01-03 | Bristol-Myers Squibb Pharma Company | Factor xa inhibitors |
HUP0301093A2 (en) * | 2000-09-15 | 2003-09-29 | Anormed Inc. | Chemokine receptor binding heterocyclic compounds, pharmaceutical compositions containing them and their use |
CA2484209C (en) | 2002-05-03 | 2013-06-11 | Exelixis, Inc. | Protein kinase modulators and methods of use |
WO2005035514A2 (en) | 2003-10-08 | 2005-04-21 | Vertex Pharmaceuticals Incorporated | Modulators of atp-binding cassette transporters containing cycloalkyl or pyranyl groups |
NZ547220A (en) | 2003-11-14 | 2009-12-24 | Vertex Pharma | Thiazoles and oxazoles useful as modulators of ATP-binding cassette transporters |
WO2005077345A1 (en) | 2004-02-03 | 2005-08-25 | Astrazeneca Ab | Compounds for the treatment of gastro-esophageal reflux disease |
WO2005077373A2 (en) | 2004-02-03 | 2005-08-25 | Astrazeneca Ab | Treatment of gastro-esophageal reflux disease (gerd) |
WO2006078287A2 (en) | 2004-05-06 | 2006-07-27 | Plexxikon, Inc. | Pde4b inhibitors and uses therefor |
SE0401969D0 (en) | 2004-08-02 | 2004-08-02 | Astrazeneca Ab | Piperidine derivatives |
WO2006031806A2 (en) | 2004-09-10 | 2006-03-23 | Atherogenics, Inc. | 2-thiopyrimidinones as therapeutic agents |
DE102004051277A1 (en) | 2004-10-21 | 2006-04-27 | Merck Patent Gmbh | Heterocyclic carbonyl compounds |
JP2006176443A (en) | 2004-12-22 | 2006-07-06 | Shionogi & Co Ltd | Melanin-concentrating hormone receptor antagonist |
CA2607499C (en) | 2005-06-22 | 2010-11-30 | Pfizer Products Inc. | Histamine-3 receptor antagonists |
WO2007075896A2 (en) | 2005-12-22 | 2007-07-05 | Kemia, Inc. | Heterocyclic cytokine inhibitors |
KR101394245B1 (en) | 2005-12-30 | 2014-05-14 | 에스케이바이오팜 주식회사 | Isoxazole Derivatives and Use thereof |
WO2007086584A1 (en) | 2006-01-30 | 2007-08-02 | Meiji Seika Kaisha, Ltd. | NOVEL INHIBITOR OF FabK AND FabI/K |
TW200815351A (en) | 2006-05-02 | 2008-04-01 | Astrazeneca Ab | Novel compounds |
US8193225B2 (en) | 2006-10-13 | 2012-06-05 | The Board Of Regents Of The University Of Texas System | Isoxazole amides, derivatives and methods of chemical induction of neurogenesis |
WO2008046072A2 (en) | 2006-10-13 | 2008-04-17 | The Board Of Regents Of The University Of Texas System | Chemical inducers of neurogenesis |
US7678792B2 (en) | 2006-10-20 | 2010-03-16 | Irm Llc | Compositions and methods for modulating c-kit and PDGFR receptors |
WO2008070739A1 (en) | 2006-12-06 | 2008-06-12 | Cytokinetics, Inc. | Ksp activators |
JP5311075B2 (en) | 2007-06-29 | 2013-10-09 | エスケー バイオファーマスティカルズ カンパニー リミテッド | Pharmaceutical composition for prevention and treatment of restenosis, comprising isoxazole derivative |
WO2009011850A2 (en) | 2007-07-16 | 2009-01-22 | Abbott Laboratories | Novel therapeutic compounds |
ATE524450T1 (en) | 2007-08-02 | 2011-09-15 | Organon Nv | 5-PHENYL-ISOXAZOLE-3-CARBOXAMIDE DERIVATIVES AS TRPV1 MODULATORS |
ES2422741T3 (en) * | 2007-12-13 | 2013-09-13 | Vertex Pharma | Modulators of cystic fibrosis transmembrane conductance regulator |
WO2009086303A2 (en) | 2007-12-21 | 2009-07-09 | University Of Rochester | Method for altering the lifespan of eukaryotic organisms |
WO2009131951A2 (en) | 2008-04-21 | 2009-10-29 | Institute For Oneworld Health | Compounds, compositions and methods comprising isoxazole derivatives |
US20090318429A1 (en) | 2008-04-28 | 2009-12-24 | Institute For Oneworld Health | Compounds, Compositions and Methods Comprising Heteroaromatic Derivatives |
US20120095002A1 (en) | 2009-02-04 | 2012-04-19 | N.V. Organon | Isoxazole-5-carboxamide derivatives |
CN102421784B (en) | 2009-03-11 | 2015-09-30 | 杏林制药株式会社 | As the 7-cycloalkyl amino quinolone of GSK-3 inhibitor |
GB0910003D0 (en) | 2009-06-11 | 2009-07-22 | Univ Leuven Kath | Novel compounds for the treatment of neurodegenerative diseases |
IN2012DN00352A (en) | 2009-06-16 | 2015-08-21 | Bikam Pharmaceuticals Inc | |
WO2011008931A2 (en) | 2009-07-15 | 2011-01-20 | Cystic Fibrosis Foundation Therapeutics, Inc. | Arylpyrimidine compounds and combination therapy comprising same for treating cystic fibrosis & related disorders |
US9212177B2 (en) | 2009-08-05 | 2015-12-15 | Versitech Limited | Antiviral compounds and methods of making and using thereof |
GB2474120B (en) | 2009-10-01 | 2011-12-21 | Amira Pharmaceuticals Inc | Compounds as Lysophosphatidic acid receptor antagonists |
WO2012007500A2 (en) | 2010-07-15 | 2012-01-19 | Bayer Cropscience Ag | New heterocyclic compounds as pesticides |
MX342958B (en) | 2011-03-10 | 2016-10-18 | Daiichi Sankyo Co Ltd | Dispiropyrrolidine derivative. |
CA2736441A1 (en) | 2011-04-06 | 2012-10-06 | The Regents Of The University Of California | Pyrazolylthiazole compounds as .delta.f508-cystic fibrosis transmembrane conductance regulator correctors |
MX350442B (en) | 2011-07-29 | 2017-09-06 | Karyopharm Therapeutics Inc | Nuclear transport modulators and uses thereof. |
FR2980212A1 (en) | 2011-09-16 | 2013-03-22 | Agronomique Inst Nat Rech | INCREASE IN MEIOTIC RECOMBINATION IN PLANTS BY INHIBITION OF FANCM PROTEIN |
WO2013038386A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Heterocyclic compounds for the treatment of cystic fibrosis |
EP2755652B1 (en) | 2011-09-16 | 2021-06-02 | Novartis AG | N-substituted heterocyclyl carboxamides |
WO2013038381A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine/pyrazine amide derivatives |
WO2013038373A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine amide derivatives |
US8623860B2 (en) | 2011-12-30 | 2014-01-07 | Boehringer Ingelheim International Gmbh | Azetidine derivatives, pharmaceutical compositions and uses thereof |
WO2013123349A1 (en) | 2012-02-16 | 2013-08-22 | Dow Agrosciences Llc | Methods of producing sulfilimine compounds |
UA110436C2 (en) | 2012-03-06 | 2015-12-25 | Zoetis Llc | Antibacterial phenol compounds |
WO2013146970A1 (en) | 2012-03-29 | 2013-10-03 | 第一三共株式会社 | Novel quinoline derivative |
EP2968987A4 (en) | 2013-03-15 | 2017-04-26 | Vertex Pharmaceuticals Inc. | Correctors acting through msd1 of cftr protein |
WO2014181287A1 (en) | 2013-05-09 | 2014-11-13 | Piramal Enterprises Limited | Heterocyclyl compounds and uses thereof |
US20160151335A1 (en) | 2013-06-26 | 2016-06-02 | Proteostasis Therapeutics, Inc. | Methods of modulating cftr activity |
US9920073B2 (en) | 2013-10-04 | 2018-03-20 | Drexel University | Compositions useful for inhibiting HIV-1 infection and methods using same |
EP3116501A1 (en) | 2014-03-13 | 2017-01-18 | Proteostasis Therapeutics, Inc. | Compounds, compositions, and methods for increasing cftr activity |
CA2942387A1 (en) | 2014-03-13 | 2015-09-17 | Proteostasis Therapeutics, Inc. | Compounds, compositions and methods of increasing cftr actvity |
US10351527B2 (en) | 2014-04-09 | 2019-07-16 | The University Of British Columbia | Binding function 3 (BF3) site compounds as therapeutics and methods for their use |
CA2952862A1 (en) | 2014-06-19 | 2015-12-23 | Proteostasis Therapeutics, Inc. | Compounds, compositions and methods of increasing cftr activity |
US9855249B2 (en) | 2014-10-02 | 2018-01-02 | Flatley Discovery Lab, Llc | Isoxazole compounds and methods for the treatment of cystic fibrosis |
MA41253A (en) | 2014-12-23 | 2017-10-31 | Proteostasis Therapeutics Inc | COMPOUNDS, COMPOSITIONS AND PROCESSES TO INCREASE THE ACTIVITY OF CFTR |
WO2016105468A1 (en) | 2014-12-23 | 2016-06-30 | Proteostasis Therapeutics, Inc. | Derivatives of 3-heteroarylisoxazol-5-carboxylic amide useful for the treatment of inter alia cystic fibrosis |
US10392378B2 (en) | 2014-12-23 | 2019-08-27 | Proteostasis Therapeutics, Inc. | Derivatives of 5-phenyl- or 5-heteroarylathiazol-2-carboxylic amide useful for the treatment of inter alia cystic fibrosis |
CA2971855A1 (en) | 2014-12-23 | 2016-06-30 | Proteostasis Therapeutics, Inc. | Derivatives of 5-(hetero)arylpyrazol-3-carboxylic amide or 1-(hetero)aryltriazol-4-carboxylic amide useful for the treatment of inter alia cystic fibrosis |
US20180147187A1 (en) | 2015-01-12 | 2018-05-31 | Proteostasis Therapeutics, Inc. | Compounds, compositions, and methods for increasing cftr activity |
EP3325474A1 (en) | 2015-07-24 | 2018-05-30 | Proteostasis Therapeutics, Inc. | Compounds, compositions and methods of increasing cftr activity |
US20190022071A1 (en) | 2015-08-31 | 2019-01-24 | Proteostasis Therapeutics, Inc. | Methods of treating pulmonary diseases and disorders |
WO2017112853A1 (en) | 2015-12-22 | 2017-06-29 | Proteostasis Therapeutics, Inc. | Methods of treating pulmonary diseases and disorders |
EP3440057B1 (en) | 2016-04-07 | 2021-09-22 | Proteostasis Therapeutics, Inc. | Silicone atoms containing ivacaftor analogues |
EP3455624A1 (en) | 2016-05-09 | 2019-03-20 | Proteostasis Therapeutics, Inc. | Methods of identifying cftr modulators |
US10899751B2 (en) | 2016-06-21 | 2021-01-26 | Proteostasis Therapeutics, Inc. | Compounds, compositions, and methods for increasing CFTR activity |
CA3041676A1 (en) | 2016-10-26 | 2018-05-03 | Daniel Parks | Pyridazine derivatives, compositions and methods for modulating cftr |
CA3041675A1 (en) | 2016-10-26 | 2018-05-03 | Proteostasis Therapeutics, Inc. | N-phenyl-2-(3-phenyl-6-oxo-1,6-dihydropyridazin-1-yl)acetamide derivatives for treating cystic fibrosis |
US20190248779A1 (en) | 2016-10-26 | 2019-08-15 | Proteostasis Therapeutics, Inc. | Compounds, compositions, and methods for increasing cftr activity |
WO2018201126A1 (en) | 2017-04-28 | 2018-11-01 | Proteostasis Therapeutics, Inc. | 4-sulfonylaminocarbonylquinoline derivatives for increasing cftr activity |
WO2019133854A1 (en) | 2017-12-29 | 2019-07-04 | Proteostasis Therapeutics, Inc. | Methods of quantifying cftr protein expression |
-
2016
- 2016-10-06 JP JP2018517564A patent/JP6929276B2/en active Active
- 2016-10-06 KR KR1020187012487A patent/KR20180093882A/en not_active Application Discontinuation
- 2016-10-06 CN CN201680069588.3A patent/CN108430994B/en active Active
- 2016-10-06 SG SG11201802798WA patent/SG11201802798WA/en unknown
- 2016-10-06 MX MX2018004290A patent/MX2018004290A/en unknown
- 2016-10-06 MA MA049357A patent/MA49357A/en unknown
- 2016-10-06 AU AU2016336437A patent/AU2016336437B2/en active Active
- 2016-10-06 EP EP16782380.6A patent/EP3359536B1/en active Active
- 2016-10-06 NZ NZ741093A patent/NZ741093A/en unknown
- 2016-10-06 WO PCT/US2016/055693 patent/WO2017062581A1/en active Application Filing
- 2016-10-06 US US15/766,667 patent/US10550106B2/en active Active
- 2016-10-06 BR BR112018007021-1A patent/BR112018007021B1/en active IP Right Grant
- 2016-10-06 RU RU2018116569A patent/RU2752567C2/en active
- 2016-10-06 CA CA3000483A patent/CA3000483C/en active Active
-
2018
- 2018-04-02 IL IL258486A patent/IL258486B/en unknown
- 2018-04-03 SA SA518391268A patent/SA518391268B1/en unknown
-
2019
- 2019-01-23 HK HK19101188.9A patent/HK1258811A1/en unknown
- 2019-12-17 US US16/716,765 patent/US11136313B2/en active Active
-
2020
- 2020-09-18 AU AU2020233776A patent/AU2020233776A1/en not_active Abandoned
-
2021
- 2021-08-25 US US17/411,682 patent/US20220227739A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870712A (en) * | 1972-03-17 | 1975-03-11 | Lilly Co Eli | Cinchoninic acid derivatives |
US5523408A (en) * | 1994-03-25 | 1996-06-04 | The Dupont Merck Pharmaceutical Company | 2-carbocyclic and 2-heterocyclic quinoline-4-carboxylic acids and salts thereof useful as immunosuppressive agents |
WO1998057931A2 (en) * | 1997-06-19 | 1998-12-23 | Sepracor Inc. | Quinoline-indole antimicrobial agents, uses and compositions related thereto |
US10550106B2 (en) * | 2015-10-06 | 2020-02-04 | Proteostasis Therapeutics, Inc. | Compounds, compositions, and methods for modulating CFTR |
US11136313B2 (en) * | 2015-10-06 | 2021-10-05 | Proteostasis Therapeutics, Inc. | Compounds, compositions, and methods for modulating CFTR |
Non-Patent Citations (3)
Title |
---|
Ardashev, Kimiya Geterotsiklicheskikh Soedinenii, VOl 2, 202-203, 1968, abstract only CA69;106504. (Year: 1968) * |
Buu-Hoi, J Chem Soc, 173-176, 1 January 1964. (Year: 1964) * |
Mehariya, Chem & BIology Interface, Vol 5(2), 128-136, 2015. (Year: 2015) * |
Also Published As
Publication number | Publication date |
---|---|
AU2020233776A1 (en) | 2020-10-15 |
AU2016336437B2 (en) | 2020-06-18 |
MA49357A (en) | 2020-04-22 |
BR112018007021A2 (en) | 2018-10-16 |
WO2017062581A1 (en) | 2017-04-13 |
NZ741093A (en) | 2022-12-23 |
RU2752567C2 (en) | 2021-07-29 |
US20200385365A1 (en) | 2020-12-10 |
AU2016336437A1 (en) | 2018-04-19 |
JP6929276B2 (en) | 2021-09-01 |
CA3000483C (en) | 2024-02-13 |
JP2018537413A (en) | 2018-12-20 |
RU2018116569A3 (en) | 2020-02-21 |
BR112018007021B1 (en) | 2024-01-09 |
HK1258811A1 (en) | 2019-11-22 |
EP3359536B1 (en) | 2021-08-04 |
US11136313B2 (en) | 2021-10-05 |
CA3000483A1 (en) | 2017-04-13 |
SA518391268B1 (en) | 2021-06-08 |
KR20180093882A (en) | 2018-08-22 |
US10550106B2 (en) | 2020-02-04 |
IL258486B (en) | 2022-03-01 |
US20180291006A1 (en) | 2018-10-11 |
IL258486A (en) | 2018-05-31 |
SG11201802798WA (en) | 2018-05-30 |
CN108430994B (en) | 2022-04-12 |
MX2018004290A (en) | 2018-08-09 |
CN108430994A (en) | 2018-08-21 |
RU2018116569A (en) | 2019-11-07 |
EP3359536A1 (en) | 2018-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11136313B2 (en) | Compounds, compositions, and methods for modulating CFTR | |
US11248010B2 (en) | Compounds, compositions, and methods for modulating CFTR | |
US10738011B2 (en) | Derivatives of 5-(hetero)arylpyrazol-3-carboxylic amide or 1-(hetero)aryltriazol-4-carboxylic amide useful for the treatment of inter alia cystic fibrosis | |
US10392378B2 (en) | Derivatives of 5-phenyl- or 5-heteroarylathiazol-2-carboxylic amide useful for the treatment of inter alia cystic fibrosis | |
US20210369749A1 (en) | Compounds, compositions, and methods for increasing cftr activity | |
US20190248779A1 (en) | Compounds, compositions, and methods for increasing cftr activity | |
US20190256474A1 (en) | N-phenyl-2-(3-phenyl-6-oxo-1,6-dihydropyridazin-1-yl)acetamide derivatives for treating cystic fibrosis | |
US20190248765A1 (en) | Compounds, compositions, and methods for increasing cftr activity | |
US10344023B2 (en) | Derivatives of 3-heteroarylisoxazol-5-carboxylic amide useful for the treatment of inter alia cystic fibrosis | |
US20200010461A1 (en) | Compounds, compositions, and methods for increasing cftr activity | |
US20200055844A1 (en) | 4-sulfonylaminocarbonylquinoline derivatives for increasing cftr activity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |