US20220211629A1 - Cannabinoid formulations - Google Patents
Cannabinoid formulations Download PDFInfo
- Publication number
- US20220211629A1 US20220211629A1 US17/406,401 US202117406401A US2022211629A1 US 20220211629 A1 US20220211629 A1 US 20220211629A1 US 202117406401 A US202117406401 A US 202117406401A US 2022211629 A1 US2022211629 A1 US 2022211629A1
- Authority
- US
- United States
- Prior art keywords
- mol
- cbd
- microparticulate
- cannabinoids
- formulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003557 cannabinoid Substances 0.000 title claims abstract description 190
- 229930003827 cannabinoid Natural products 0.000 title claims abstract description 188
- 239000000203 mixture Substances 0.000 title claims description 272
- 238000009472 formulation Methods 0.000 title description 208
- 229920000642 polymer Polymers 0.000 claims abstract description 120
- 229940065144 cannabinoids Drugs 0.000 claims abstract description 75
- 230000001419 dependent effect Effects 0.000 claims abstract description 52
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 claims description 144
- QHMBSVQNZZTUGM-ZWKOTPCHSA-N cannabidiol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-ZWKOTPCHSA-N 0.000 claims description 142
- 229950011318 cannabidiol Drugs 0.000 claims description 142
- QHMBSVQNZZTUGM-UHFFFAOYSA-N Trans-Cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-UHFFFAOYSA-N 0.000 claims description 137
- PCXRACLQFPRCBB-ZWKOTPCHSA-N dihydrocannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)C)CCC(C)=C1 PCXRACLQFPRCBB-ZWKOTPCHSA-N 0.000 claims description 137
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 56
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 48
- 229960004242 dronabinol Drugs 0.000 claims description 46
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 claims description 44
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 claims description 44
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 36
- -1 ethylenediamino tetraacetic acid Chemical compound 0.000 claims description 35
- 239000003963 antioxidant agent Substances 0.000 claims description 34
- 235000006708 antioxidants Nutrition 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 33
- 239000000080 wetting agent Substances 0.000 claims description 29
- 229920000639 hydroxypropylmethylcellulose acetate succinate Polymers 0.000 claims description 27
- 239000000843 powder Substances 0.000 claims description 24
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 22
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 claims description 21
- ZUAAPNNKRHMPKG-UHFFFAOYSA-N acetic acid;butanedioic acid;methanol;propane-1,2-diol Chemical compound OC.CC(O)=O.CC(O)CO.OC(=O)CCC(O)=O ZUAAPNNKRHMPKG-UHFFFAOYSA-N 0.000 claims description 20
- 229940087168 alpha tocopherol Drugs 0.000 claims description 20
- 229960000984 tocofersolan Drugs 0.000 claims description 20
- 239000002076 α-tocopherol Substances 0.000 claims description 20
- 235000004835 α-tocopherol Nutrition 0.000 claims description 20
- 239000002775 capsule Substances 0.000 claims description 19
- 235000011187 glycerol Nutrition 0.000 claims description 19
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 18
- 239000000375 suspending agent Substances 0.000 claims description 18
- 229920001285 xanthan gum Polymers 0.000 claims description 18
- 235000010493 xanthan gum Nutrition 0.000 claims description 18
- 239000000230 xanthan gum Substances 0.000 claims description 18
- 229940082509 xanthan gum Drugs 0.000 claims description 18
- ZROLHBHDLIHEMS-HUUCEWRRSA-N (6ar,10ar)-6,6,9-trimethyl-3-propyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCC)=CC(O)=C3[C@@H]21 ZROLHBHDLIHEMS-HUUCEWRRSA-N 0.000 claims description 16
- ZLYNXDIDWUWASO-UHFFFAOYSA-N 6,6,9-trimethyl-3-pentyl-8,10-dihydro-7h-benzo[c]chromene-1,9,10-triol Chemical compound CC1(C)OC2=CC(CCCCC)=CC(O)=C2C2=C1CCC(C)(O)C2O ZLYNXDIDWUWASO-UHFFFAOYSA-N 0.000 claims description 16
- ZROLHBHDLIHEMS-UHFFFAOYSA-N Delta9 tetrahydrocannabivarin Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCC)=CC(O)=C3C21 ZROLHBHDLIHEMS-UHFFFAOYSA-N 0.000 claims description 16
- 239000007787 solid Substances 0.000 claims description 15
- 239000008187 granular material Substances 0.000 claims description 13
- REOZWEGFPHTFEI-JKSUJKDBSA-N Cannabidivarin Chemical compound OC1=CC(CCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 REOZWEGFPHTFEI-JKSUJKDBSA-N 0.000 claims description 12
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 claims description 12
- 229920001213 Polysorbate 20 Polymers 0.000 claims description 11
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims description 11
- 239000003755 preservative agent Substances 0.000 claims description 11
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims description 10
- 235000010323 ascorbic acid Nutrition 0.000 claims description 9
- 229960005070 ascorbic acid Drugs 0.000 claims description 9
- 239000011668 ascorbic acid Substances 0.000 claims description 9
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 claims description 9
- 229910000397 disodium phosphate Inorganic materials 0.000 claims description 9
- 235000019800 disodium phosphate Nutrition 0.000 claims description 9
- 229940100688 oral solution Drugs 0.000 claims description 9
- IQSYWEWTWDEVNO-ZIAGYGMSSA-N (6ar,10ar)-1-hydroxy-6,6,9-trimethyl-3-propyl-6a,7,8,10a-tetrahydrobenzo[c]chromene-2-carboxylic acid Chemical compound C([C@H]1C(C)(C)O2)CC(C)=C[C@H]1C1=C2C=C(CCC)C(C(O)=O)=C1O IQSYWEWTWDEVNO-ZIAGYGMSSA-N 0.000 claims description 8
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 claims description 8
- AAXZFUQLLRMVOG-UHFFFAOYSA-N 2-methyl-2-(4-methylpent-3-enyl)-7-propylchromen-5-ol Chemical compound C1=CC(C)(CCC=C(C)C)OC2=CC(CCC)=CC(O)=C21 AAXZFUQLLRMVOG-UHFFFAOYSA-N 0.000 claims description 8
- UCONUSSAWGCZMV-HZPDHXFCSA-N Delta(9)-tetrahydrocannabinolic acid Chemical compound C([C@H]1C(C)(C)O2)CC(C)=C[C@H]1C1=C2C=C(CCCCC)C(C(O)=O)=C1O UCONUSSAWGCZMV-HZPDHXFCSA-N 0.000 claims description 8
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 claims description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 8
- HRHJHXJQMNWQTF-UHFFFAOYSA-N cannabichromenic acid Chemical compound O1C(C)(CCC=C(C)C)C=CC2=C1C=C(CCCCC)C(C(O)=O)=C2O HRHJHXJQMNWQTF-UHFFFAOYSA-N 0.000 claims description 8
- WVOLTBSCXRRQFR-DLBZAZTESA-N cannabidiolic acid Chemical compound OC1=C(C(O)=O)C(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 WVOLTBSCXRRQFR-DLBZAZTESA-N 0.000 claims description 8
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 239000002953 phosphate buffered saline Substances 0.000 claims description 8
- 235000010241 potassium sorbate Nutrition 0.000 claims description 8
- 239000004302 potassium sorbate Substances 0.000 claims description 8
- 229940069338 potassium sorbate Drugs 0.000 claims description 8
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 claims description 8
- 235000010234 sodium benzoate Nutrition 0.000 claims description 8
- 239000004299 sodium benzoate Substances 0.000 claims description 8
- VBGLYOIFKLUMQG-UHFFFAOYSA-N Cannabinol Chemical compound C1=C(C)C=C2C3=C(O)C=C(CCCCC)C=C3OC(C)(C)C2=C1 VBGLYOIFKLUMQG-UHFFFAOYSA-N 0.000 claims description 7
- QXACEHWTBCFNSA-SFQUDFHCSA-N cannabigerol Chemical compound CCCCCC1=CC(O)=C(C\C=C(/C)CCC=C(C)C)C(O)=C1 QXACEHWTBCFNSA-SFQUDFHCSA-N 0.000 claims description 7
- 229960003453 cannabinol Drugs 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000002552 dosage form Substances 0.000 claims description 7
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 6
- 230000003232 mucoadhesive effect Effects 0.000 claims description 6
- 229940100692 oral suspension Drugs 0.000 claims description 6
- 239000006174 pH buffer Substances 0.000 claims description 6
- UVOLYTDXHDXWJU-UHFFFAOYSA-N Cannabichromene Chemical compound C1=CC(C)(CCC=C(C)C)OC2=CC(CCCCC)=CC(O)=C21 UVOLYTDXHDXWJU-UHFFFAOYSA-N 0.000 claims description 5
- 229930003427 Vitamin E Natural products 0.000 claims description 5
- QXACEHWTBCFNSA-UHFFFAOYSA-N cannabigerol Natural products CCCCCC1=CC(O)=C(CC=C(C)CCC=C(C)C)C(O)=C1 QXACEHWTBCFNSA-UHFFFAOYSA-N 0.000 claims description 5
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 claims description 5
- 229940046009 vitamin E Drugs 0.000 claims description 5
- 235000019165 vitamin E Nutrition 0.000 claims description 5
- 239000011709 vitamin E Substances 0.000 claims description 5
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 claims description 4
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 claims description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical class OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 claims description 4
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 claims description 4
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 claims description 4
- IGHTZQUIFGUJTG-QSMXQIJUSA-N O1C2=CC(CCCCC)=CC(O)=C2[C@H]2C(C)(C)[C@@H]3[C@H]2[C@@]1(C)CC3 Chemical compound O1C2=CC(CCCCC)=CC(O)=C2[C@H]2C(C)(C)[C@@H]3[C@H]2[C@@]1(C)CC3 IGHTZQUIFGUJTG-QSMXQIJUSA-N 0.000 claims description 4
- 235000010385 ascorbyl palmitate Nutrition 0.000 claims description 4
- 229960001305 cysteine hydrochloride Drugs 0.000 claims description 4
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical class COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 claims description 4
- 235000010445 lecithin Nutrition 0.000 claims description 4
- 239000000787 lecithin Substances 0.000 claims description 4
- 229940067606 lecithin Drugs 0.000 claims description 4
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 claims description 4
- 229940068977 polysorbate 20 Drugs 0.000 claims description 4
- 239000000473 propyl gallate Substances 0.000 claims description 4
- 235000010388 propyl gallate Nutrition 0.000 claims description 4
- 229940075579 propyl gallate Drugs 0.000 claims description 4
- 235000010378 sodium ascorbate Nutrition 0.000 claims description 4
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 claims description 4
- 229960005055 sodium ascorbate Drugs 0.000 claims description 4
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 claims description 4
- 229910000342 sodium bisulfate Inorganic materials 0.000 claims description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 4
- 239000001509 sodium citrate Substances 0.000 claims description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 4
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 claims description 4
- 229940001584 sodium metabisulfite Drugs 0.000 claims description 4
- 235000010262 sodium metabisulphite Nutrition 0.000 claims description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 4
- 235000011152 sodium sulphate Nutrition 0.000 claims description 4
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 claims description 4
- 229920001400 block copolymer Polymers 0.000 claims description 3
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 claims description 2
- 229960004106 citric acid Drugs 0.000 claims 1
- 229960005150 glycerol Drugs 0.000 claims 1
- 229940100996 sodium bisulfate Drugs 0.000 claims 1
- 229960001790 sodium citrate Drugs 0.000 claims 1
- 229960003010 sodium sulfate Drugs 0.000 claims 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 71
- 239000003814 drug Substances 0.000 description 48
- 229940079593 drug Drugs 0.000 description 43
- 239000000725 suspension Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 31
- 229920001577 copolymer Polymers 0.000 description 29
- 239000002904 solvent Substances 0.000 description 29
- 239000011859 microparticle Substances 0.000 description 28
- 239000003826 tablet Substances 0.000 description 26
- 230000003078 antioxidant effect Effects 0.000 description 24
- 229960004756 ethanol Drugs 0.000 description 22
- 229920002678 cellulose Polymers 0.000 description 21
- 229920003139 Eudragit® L 100 Polymers 0.000 description 20
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 20
- 239000001913 cellulose Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 235000010980 cellulose Nutrition 0.000 description 19
- 229920001993 poloxamer 188 Polymers 0.000 description 19
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 18
- 229920003141 Eudragit® S 100 Polymers 0.000 description 18
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 18
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 16
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 15
- 239000007921 spray Substances 0.000 description 15
- 229920002472 Starch Polymers 0.000 description 14
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 14
- 239000004005 microsphere Substances 0.000 description 14
- 239000003921 oil Substances 0.000 description 14
- 235000019198 oils Nutrition 0.000 description 14
- 229920003134 Eudragit® polymer Polymers 0.000 description 13
- 229920002301 cellulose acetate Polymers 0.000 description 13
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 12
- 230000000112 colonic effect Effects 0.000 description 12
- 239000008194 pharmaceutical composition Substances 0.000 description 12
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 239000008107 starch Substances 0.000 description 12
- 235000019698 starch Nutrition 0.000 description 12
- 229940032147 starch Drugs 0.000 description 12
- 239000000872 buffer Substances 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 229920000609 methyl cellulose Polymers 0.000 description 11
- 235000010981 methylcellulose Nutrition 0.000 description 11
- 238000001694 spray drying Methods 0.000 description 11
- CTKXFMQHOOWWEB-UHFFFAOYSA-N Ethylene oxide/propylene oxide copolymer Chemical compound CCCOC(C)COCCO CTKXFMQHOOWWEB-UHFFFAOYSA-N 0.000 description 10
- 235000010443 alginic acid Nutrition 0.000 description 10
- 229920000615 alginic acid Polymers 0.000 description 10
- 239000000969 carrier Substances 0.000 description 10
- 239000003085 diluting agent Substances 0.000 description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 10
- 238000013265 extended release Methods 0.000 description 10
- 239000000499 gel Substances 0.000 description 10
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 10
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 10
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 10
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 10
- 239000001923 methylcellulose Substances 0.000 description 10
- 229960002900 methylcellulose Drugs 0.000 description 10
- 229940044519 poloxamer 188 Drugs 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 210000002784 stomach Anatomy 0.000 description 10
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 9
- 241000218236 Cannabis Species 0.000 description 9
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 9
- 239000008186 active pharmaceutical agent Substances 0.000 description 9
- SHWNNYZBHZIQQV-UHFFFAOYSA-L calcium;disodium;2-[2-[bis(carboxylatomethyl)azaniumyl]ethyl-(carboxylatomethyl)azaniumyl]acetate Chemical compound [Na+].[Na+].[Ca+2].[O-]C(=O)C[NH+](CC([O-])=O)CC[NH+](CC([O-])=O)CC([O-])=O SHWNNYZBHZIQQV-UHFFFAOYSA-L 0.000 description 9
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 9
- 210000001072 colon Anatomy 0.000 description 9
- 235000003599 food sweetener Nutrition 0.000 description 9
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 9
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- 235000002639 sodium chloride Nutrition 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000003765 sweetening agent Substances 0.000 description 9
- WBRXESQKGXYDOL-DLBZAZTESA-N 5-butyl-2-[(1r,6r)-3-methyl-6-prop-1-en-2-ylcyclohex-2-en-1-yl]benzene-1,3-diol Chemical compound OC1=CC(CCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 WBRXESQKGXYDOL-DLBZAZTESA-N 0.000 description 8
- 239000001856 Ethyl cellulose Substances 0.000 description 8
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 239000000783 alginic acid Substances 0.000 description 8
- 229960001126 alginic acid Drugs 0.000 description 8
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 8
- 229940095629 edetate calcium disodium Drugs 0.000 description 8
- 235000019325 ethyl cellulose Nutrition 0.000 description 8
- 229920001249 ethyl cellulose Polymers 0.000 description 8
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 8
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 7
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 7
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 7
- 239000013543 active substance Substances 0.000 description 7
- 239000000839 emulsion Substances 0.000 description 7
- 210000000936 intestine Anatomy 0.000 description 7
- 239000008101 lactose Substances 0.000 description 7
- 229960001375 lactose Drugs 0.000 description 7
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 7
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 6
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 206010021750 Infantile Spasms Diseases 0.000 description 6
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 201000006791 West syndrome Diseases 0.000 description 6
- 150000004781 alginic acids Chemical class 0.000 description 6
- REOZWEGFPHTFEI-UHFFFAOYSA-N cannabidivarine Natural products OC1=CC(CCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 REOZWEGFPHTFEI-UHFFFAOYSA-N 0.000 description 6
- 150000001720 carbohydrates Chemical class 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 239000007884 disintegrant Substances 0.000 description 6
- 239000003937 drug carrier Substances 0.000 description 6
- 229940088679 drug related substance Drugs 0.000 description 6
- 239000003995 emulsifying agent Substances 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 230000002496 gastric effect Effects 0.000 description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 6
- 239000002207 metabolite Substances 0.000 description 6
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 6
- 229940016286 microcrystalline cellulose Drugs 0.000 description 6
- 239000008108 microcrystalline cellulose Substances 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 6
- 239000000600 sorbitol Substances 0.000 description 6
- 235000010356 sorbitol Nutrition 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 239000001993 wax Substances 0.000 description 6
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 5
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 5
- 206010010904 Convulsion Diseases 0.000 description 5
- 241000195493 Cryptophyta Species 0.000 description 5
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 229930195725 Mannitol Natural products 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 229920001800 Shellac Polymers 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 5
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 239000006184 cosolvent Substances 0.000 description 5
- 239000008380 degradant Substances 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 239000002621 endocannabinoid Substances 0.000 description 5
- 239000000796 flavoring agent Substances 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 5
- 239000000594 mannitol Substances 0.000 description 5
- 235000010355 mannitol Nutrition 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920001983 poloxamer Polymers 0.000 description 5
- 239000004208 shellac Substances 0.000 description 5
- 229940113147 shellac Drugs 0.000 description 5
- 235000013874 shellac Nutrition 0.000 description 5
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 125000005591 trimellitate group Chemical group 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 229920002261 Corn starch Polymers 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 229920002907 Guar gum Polymers 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 150000001200 N-acyl ethanolamides Chemical class 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 4
- 229920002494 Zein Polymers 0.000 description 4
- IYKJEILNJZQJPU-UHFFFAOYSA-N acetic acid;butanedioic acid Chemical compound CC(O)=O.OC(=O)CCC(O)=O IYKJEILNJZQJPU-UHFFFAOYSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 4
- 239000002738 chelating agent Substances 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 235000010417 guar gum Nutrition 0.000 description 4
- 239000000665 guar gum Substances 0.000 description 4
- 229960002154 guar gum Drugs 0.000 description 4
- 238000009474 hot melt extrusion Methods 0.000 description 4
- 239000012943 hotmelt Substances 0.000 description 4
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 229920002744 polyvinyl acetate phthalate Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 235000010413 sodium alginate Nutrition 0.000 description 4
- 239000000661 sodium alginate Substances 0.000 description 4
- 229940005550 sodium alginate Drugs 0.000 description 4
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 4
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 150000005846 sugar alcohols Polymers 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 239000006188 syrup Substances 0.000 description 4
- 235000020357 syrup Nutrition 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- 235000012222 talc Nutrition 0.000 description 4
- 239000005019 zein Substances 0.000 description 4
- 229940093612 zein Drugs 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical class OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- 241000416162 Astragalus gummifer Species 0.000 description 3
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 3
- 201000007547 Dravet syndrome Diseases 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 3
- 229920002148 Gellan gum Polymers 0.000 description 3
- 201000006792 Lennox-Gastaut syndrome Diseases 0.000 description 3
- 229920000881 Modified starch Polymers 0.000 description 3
- 208000036572 Myoclonic epilepsy Diseases 0.000 description 3
- 206010073677 Severe myoclonic epilepsy of infancy Diseases 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229920001615 Tragacanth Polymers 0.000 description 3
- 208000026911 Tuberous sclerosis complex Diseases 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 235000010419 agar Nutrition 0.000 description 3
- 239000008365 aqueous carrier Substances 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical group COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 3
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- WZNRVWBKYDHTKI-UHFFFAOYSA-N cellulose, acetate 1,2,4-benzenetricarboxylate Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.OC(=O)C1=CC(C(=O)O)=CC=C1C(=O)OCC1C(OC2C(C(OC(=O)C=3C(=CC(=CC=3)C(O)=O)C(O)=O)C(OC(=O)C=3C(=CC(=CC=3)C(O)=O)C(O)=O)C(COC(=O)C=3C(=CC(=CC=3)C(O)=O)C(O)=O)O2)OC(=O)C=2C(=CC(=CC=2)C(O)=O)C(O)=O)C(OC(=O)C=2C(=CC(=CC=2)C(O)=O)C(O)=O)C(OC(=O)C=2C(=CC(=CC=2)C(O)=O)C(O)=O)C(OC(=O)C=2C(=CC(=CC=2)C(O)=O)C(O)=O)O1 WZNRVWBKYDHTKI-UHFFFAOYSA-N 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 239000007891 compressed tablet Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229960004667 ethyl cellulose Drugs 0.000 description 3
- 235000013355 food flavoring agent Nutrition 0.000 description 3
- 235000010492 gellan gum Nutrition 0.000 description 3
- 239000000216 gellan gum Substances 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 3
- 235000019359 magnesium stearate Nutrition 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 3
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 239000012457 nonaqueous media Substances 0.000 description 3
- 150000002482 oligosaccharides Polymers 0.000 description 3
- 239000006186 oral dosage form Substances 0.000 description 3
- 239000008203 oral pharmaceutical composition Substances 0.000 description 3
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 229920000193 polymethacrylate Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 229940069328 povidone Drugs 0.000 description 3
- 230000002335 preservative effect Effects 0.000 description 3
- WSVLPVUVIUVCRA-KPKNDVKVSA-N Alpha-lactose monohydrate Chemical compound O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O WSVLPVUVIUVCRA-KPKNDVKVSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- UIERETOOQGIECD-UHFFFAOYSA-N Angelic acid Natural products CC=C(C)C(O)=O UIERETOOQGIECD-UHFFFAOYSA-N 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 2
- 235000003911 Arachis Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010003805 Autism Diseases 0.000 description 2
- 208000020706 Autistic disease Diseases 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- WVOLTBSCXRRQFR-SJORKVTESA-N Cannabidiolic acid Natural products OC1=C(C(O)=O)C(CCCCC)=CC(O)=C1[C@@H]1[C@@H](C(C)=C)CCC(C)=C1 WVOLTBSCXRRQFR-SJORKVTESA-N 0.000 description 2
- 241000206575 Chondrus crispus Species 0.000 description 2
- 229920002785 Croscarmellose sodium Polymers 0.000 description 2
- 235000017788 Cydonia oblonga Nutrition 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 208000001654 Drug Resistant Epilepsy Diseases 0.000 description 2
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 229920000569 Gum karaya Polymers 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 208000035899 Infantile spasms syndrome Diseases 0.000 description 2
- 206010071082 Juvenile myoclonic epilepsy Diseases 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- 229920000161 Locust bean gum Polymers 0.000 description 2
- 235000019759 Maize starch Nutrition 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 208000007101 Muscle Cramp Diseases 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 208000028017 Psychotic disease Diseases 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 208000005392 Spasm Diseases 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 241000934878 Sterculia Species 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 2
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 230000002082 anti-convulsion Effects 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229960001631 carbomer Drugs 0.000 description 2
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 229960000913 crospovidone Drugs 0.000 description 2
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000007922 dissolution test Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 206010015037 epilepsy Diseases 0.000 description 2
- 238000007046 ethoxylation reaction Methods 0.000 description 2
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 2
- 229940093471 ethyl oleate Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000019264 food flavour enhancer Nutrition 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 229920003121 gastrosoluble polymer Polymers 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 239000008172 hydrogenated vegetable oil Chemical class 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 229920013818 hydroxypropyl guar gum Polymers 0.000 description 2
- 208000034287 idiopathic generalized susceptibility to 7 epilepsy Diseases 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 230000000366 juvenile effect Effects 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 235000010494 karaya gum Nutrition 0.000 description 2
- 239000000231 karaya gum Substances 0.000 description 2
- 229940039371 karaya gum Drugs 0.000 description 2
- 235000010420 locust bean gum Nutrition 0.000 description 2
- 239000000711 locust bean gum Substances 0.000 description 2
- 229960001855 mannitol Drugs 0.000 description 2
- 230000002906 microbiologic effect Effects 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229940097496 nasal spray Drugs 0.000 description 2
- 239000007922 nasal spray Substances 0.000 description 2
- 208000004296 neuralgia Diseases 0.000 description 2
- 208000021722 neuropathic pain Diseases 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 229940079938 nitrocellulose Drugs 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 150000002895 organic esters Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 235000010987 pectin Nutrition 0.000 description 2
- 239000001814 pectin Substances 0.000 description 2
- 229920001277 pectin Polymers 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 2
- 229920000120 polyethyl acrylate Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 2
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 2
- 208000028173 post-traumatic stress disease Diseases 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 229920001592 potato starch Polymers 0.000 description 2
- 229920003124 powdered cellulose Polymers 0.000 description 2
- 235000019814 powdered cellulose Nutrition 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- 229940002612 prodrug Drugs 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 201000000980 schizophrenia Diseases 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229940083542 sodium Drugs 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 2
- 229920003109 sodium starch glycolate Polymers 0.000 description 2
- 239000008109 sodium starch glycolate Substances 0.000 description 2
- 229940079832 sodium starch glycolate Drugs 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000008137 solubility enhancer Substances 0.000 description 2
- 238000012430 stability testing Methods 0.000 description 2
- 229920003179 starch-based polymer Polymers 0.000 description 2
- 239000004628 starch-based polymer Substances 0.000 description 2
- 230000009747 swallowing Effects 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 229920003176 water-insoluble polymer Polymers 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 239000000811 xylitol Substances 0.000 description 2
- 235000010447 xylitol Nutrition 0.000 description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 2
- 229960002675 xylitol Drugs 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- LQHAPFLIUQWVJR-DLBZAZTESA-N (3R,4R)-3-(2,6-dihydroxy-4-pentylphenyl)-4-prop-1-en-2-ylcyclohexene-1-carboxylic acid Chemical compound OC1=C(C(=CC(=C1)CCCCC)O)[C@@H]1C=C(CC[C@H]1C(=C)C)C(=O)O LQHAPFLIUQWVJR-DLBZAZTESA-N 0.000 description 1
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 1
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- HZLCGUXUOFWCCN-UHFFFAOYSA-N 2-hydroxynonadecane-1,2,3-tricarboxylic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)C(O)(C(O)=O)CC(O)=O HZLCGUXUOFWCCN-UHFFFAOYSA-N 0.000 description 1
- GKVOVXWEBSQJPA-UONOGXRCSA-N 5-methyl-2-[(1r,6r)-3-methyl-6-prop-1-en-2-ylcyclohex-2-en-1-yl]benzene-1,3-diol Chemical compound CC(=C)[C@@H]1CCC(C)=C[C@H]1C1=C(O)C=C(C)C=C1O GKVOVXWEBSQJPA-UONOGXRCSA-N 0.000 description 1
- ZELUXPWDPVXUEI-UHFFFAOYSA-N 7-Hydroxy-cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CCC(CO)=C1 ZELUXPWDPVXUEI-UHFFFAOYSA-N 0.000 description 1
- ZELUXPWDPVXUEI-ZWKOTPCHSA-N 7-hydroxycannabidiol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(CO)=C1 ZELUXPWDPVXUEI-ZWKOTPCHSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-DCSYEGIMSA-N Beta-Lactose Chemical compound OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-DCSYEGIMSA-N 0.000 description 1
- 102000009132 CB1 Cannabinoid Receptor Human genes 0.000 description 1
- 108010073366 CB1 Cannabinoid Receptor Proteins 0.000 description 1
- 102000009135 CB2 Cannabinoid Receptor Human genes 0.000 description 1
- 108010073376 CB2 Cannabinoid Receptor Proteins 0.000 description 1
- UVOLYTDXHDXWJU-NRFANRHFSA-N Cannabichromene Natural products C1=C[C@](C)(CCC=C(C)C)OC2=CC(CCCCC)=CC(O)=C21 UVOLYTDXHDXWJU-NRFANRHFSA-N 0.000 description 1
- 102000018208 Cannabinoid Receptor Human genes 0.000 description 1
- 108050007331 Cannabinoid receptor Proteins 0.000 description 1
- 102100036214 Cannabinoid receptor 2 Human genes 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- PTHCMJGKKRQCBF-UHFFFAOYSA-N Cellulose, microcrystalline Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC)C(CO)O1 PTHCMJGKKRQCBF-UHFFFAOYSA-N 0.000 description 1
- 239000004859 Copal Substances 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- ORKZJYDOERTGKY-UHFFFAOYSA-N Dihydrocannabichromen Natural products C1CC(C)(CCC=C(C)C)OC2=CC(CCCCC)=CC(O)=C21 ORKZJYDOERTGKY-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229920000926 Galactomannan Polymers 0.000 description 1
- 241000782205 Guibourtia conjugata Species 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 239000004376 Sucralose Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 241000736873 Tetraclinis articulata Species 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 102100038968 WAP four-disulfide core domain protein 1 Human genes 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- UTKBLLDLHPDWDU-ODZAUARKSA-N acetic acid;(z)-but-2-enedioic acid Chemical compound CC(O)=O.OC(=O)\C=C/C(O)=O UTKBLLDLHPDWDU-ODZAUARKSA-N 0.000 description 1
- ZNPLZHBZUSCANM-UHFFFAOYSA-N acetic acid;benzene-1,3-dicarboxylic acid Chemical compound CC(O)=O.OC(=O)C1=CC=CC(C(O)=O)=C1 ZNPLZHBZUSCANM-UHFFFAOYSA-N 0.000 description 1
- AEMQUICCWRPKDB-UHFFFAOYSA-N acetic acid;cyclohexane-1,2-dicarboxylic acid Chemical compound CC(O)=O.OC(=O)C1CCCCC1C(O)=O AEMQUICCWRPKDB-UHFFFAOYSA-N 0.000 description 1
- FMTQGBMMIVVKSN-UHFFFAOYSA-N acetic acid;terephthalic acid Chemical compound CC(O)=O.OC(=O)C1=CC=C(C(O)=O)C=C1 FMTQGBMMIVVKSN-UHFFFAOYSA-N 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 229940040563 agaric acid Drugs 0.000 description 1
- 150000001323 aldoses Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229920003144 amino alkyl methacrylate copolymer Polymers 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000019658 bitter taste Nutrition 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 150000004648 butanoic acid derivatives Chemical class 0.000 description 1
- VHEMBTYWURNBQQ-UHFFFAOYSA-N butanoic acid;phthalic acid Chemical compound CCCC(O)=O.OC(=O)C1=CC=CC=C1C(O)=O VHEMBTYWURNBQQ-UHFFFAOYSA-N 0.000 description 1
- 239000001201 calcium disodium ethylene diamine tetra-acetate Substances 0.000 description 1
- 235000011188 calcium disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- XAAHAAMILDNBPS-UHFFFAOYSA-L calcium hydrogenphosphate dihydrate Chemical compound O.O.[Ca+2].OP([O-])([O-])=O XAAHAAMILDNBPS-UHFFFAOYSA-L 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001531 copovidone Polymers 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- HEBKCHPVOIAQTA-NGQZWQHPSA-N d-xylitol Chemical compound OC[C@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-NGQZWQHPSA-N 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 229960000935 dehydrated alcohol Drugs 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229940096516 dextrates Drugs 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229940095079 dicalcium phosphate anhydrous Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- CRVGKGJPQYZRPT-UHFFFAOYSA-N diethylamino acetate Chemical compound CCN(CC)OC(C)=O CRVGKGJPQYZRPT-UHFFFAOYSA-N 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000005095 gastrointestinal system Anatomy 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 229940049654 glyceryl behenate Drugs 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- FBPFZTCFMRRESA-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexol Chemical compound OCC(O)C(O)C(O)C(O)CO FBPFZTCFMRRESA-UHFFFAOYSA-N 0.000 description 1
- 238000009478 high shear granulation Methods 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- 229960003943 hypromellose Drugs 0.000 description 1
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000000905 isomalt Substances 0.000 description 1
- 235000010439 isomalt Nutrition 0.000 description 1
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 1
- 150000002584 ketoses Chemical class 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 229960001021 lactose monohydrate Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229920005684 linear copolymer Polymers 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- 229940057948 magnesium stearate Drugs 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 150000003272 mannan oligosaccharides Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000008185 minitablet Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 235000019629 palatability Nutrition 0.000 description 1
- 150000002943 palmitic acids Chemical class 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000006920 protein precipitation Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- JZCPYUJPEARBJL-UHFFFAOYSA-N rimonabant Chemical compound CC=1C(C(=O)NN2CCCCC2)=NN(C=2C(=CC(Cl)=CC=2)Cl)C=1C1=CC=C(Cl)C=C1 JZCPYUJPEARBJL-UHFFFAOYSA-N 0.000 description 1
- 229960003015 rimonabant Drugs 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000007962 solid dispersion Substances 0.000 description 1
- 239000012439 solid excipient Substances 0.000 description 1
- 238000000807 solvent casting Methods 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 238000005563 spheronization Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 1
- 235000019408 sucralose Nutrition 0.000 description 1
- 125000000185 sucrose group Chemical group 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 235000019640 taste Nutrition 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 229940001496 tribasic sodium phosphate Drugs 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
- LGUDZTGJDWUGDV-HXUWFJFHSA-N win 55212 Chemical compound C([C@H]1CC(=O)C=2C=CC=C3C(C(=O)C=4C5=CC=CC=C5C=CC=4)=C(N1C3=2)C)N1CCOCC1 LGUDZTGJDWUGDV-HXUWFJFHSA-N 0.000 description 1
- 125000001020 α-tocopherol group Chemical group 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1652—Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
- A61K31/05—Phenols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/192—Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0087—Galenical forms not covered by A61K9/02 - A61K9/7023
- A61K9/0095—Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1617—Organic compounds, e.g. phospholipids, fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1635—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/205—Polysaccharides, e.g. alginate, gums; Cyclodextrin
- A61K9/2054—Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4808—Preparations in capsules, e.g. of gelatin, of chocolate characterised by the form of the capsule or the structure of the filling; Capsules containing small tablets; Capsules with outer layer for immediate drug release
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4841—Filling excipients; Inactive ingredients
- A61K9/4858—Organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4841—Filling excipients; Inactive ingredients
- A61K9/4866—Organic macromolecular compounds
Definitions
- Cannabinoids are lipophilic substances that are known to be poorly soluble in water (less than 1 ⁇ g/mL), and consequently have low bioavailability.
- cannabidiol CBD
- DMSO dimethyl sulfoxide
- cannabinoids in medicine has necessitated finding more effective ways of delivering these poorly soluble compounds.
- cannabinoids are also known to have limited bioavailability and poor stability in formulations.
- cannabinoids are required to be provided at relatively high doses (in daily amounts of up to 2000 mg) and/or in challenging patient groups, e.g. young children, and/or for particular indications this can create further challenges.
- cannabinoid formulations utilize alcohol and/or oil based excipients.
- alcohol e.g., cannabidiol
- cannabinoids e.g., cannabidiol
- Current recommendations suggest that children should not have a blood alcohol concentration (BAC) which exceeds 0.25 g/L following a dose of an alcohol-containing medication.
- BAC blood alcohol concentration
- oil in formulations causes gastrointestinal side effects such as diarrhoea which can be so severe it may cause the patient to discontinue use of the medication.
- cannabinoid containing oral formulations In addition to the problems with the use of ethanol, or an oil-based excipient, in cannabinoid containing oral formulations, the strong bitter taste of cannabinoids provides a further problem which needs to be overcome when producing an oral cannabinoid formulation.
- sweeteners are generally polar, and therefore are not soluble in the oil required to solubilize the cannabinoid. High amounts of ethanol are required to solubilize the sweetener and formulate a homogenous composition.
- Cannabinoids are also known to metabolise quickly, particularly when delivered as an oral solution.
- CBD cannabinoid cannabidiol
- 7-OH CBD 7-hydroxy cannabidiol
- 7-COOH CBD 7-carboxy cannabidiol
- epilepsy it is known that the 7-OH metabolite is active but the 7-COOH metabolite (which is the final metabolite) is inactive, and as such the rapid degradation from CBD to 7-COOH CBD is unwanted and requires more active to be provided to successfully treat a patient.
- the approaches for colon specific drug delivery are to utilize excipients that interact with one or more aspects of the gastrointestinal system.
- the formulation must be able to resist digestion within the stomach.
- An object of the present invention was to develop alternative cannabinoid containing formulations which were gastric resistant and able to deliver cannabinoids to the enteric or colonic areas. Such formulations must provide good bioavailability and stability of the cannabinoid active in order to be viable for drug development.
- microparticulates comprising cannabinoids.
- the microparticulates include a component which enables targeted delivery to the colon or intestines and avoid digestion (or degradation) in the stomach.
- the invention provides a formulation in the form of a suspension comprising microparticulates which comprise the active agent of a cannabinoid in addition to excipients which enable targeted delivery to the colon or intestines and avoid digestion in the stomach.
- the invention provides a formulation which comprises a granulate.
- the granulate comprises the cannabinoid microparticulate but may be used to produce alternative dosage forms such as tablets, disintegrating tablets, filled capsules and sprinkles.
- a microparticulate cannabinoid containing formulation comprising one or more cannabinoids and a pH dependent release polymer (also referred to herein as a “enteric polymer”).
- the one or more cannabinoids may be selected from the group consisting of: cannabichromene (CBC), cannabichromenic acid (CBCV), cannabidiol (CBD), cannabidiolic acid (CBDA), cannabidivarin (CBDV), cannabigerol (CBG), cannabigerol propyl variant (CBGV), cannabicyclol (CBL), cannabinol (CBN), cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarin (THCV) and tetrahydrocannabivarinic acid (THCVA).
- CBC cannabichromene
- CBCV cannabichromenic acid
- CBD cannabidiol
- CBDA cannabidiolic acid
- CBDDV cann
- the one or more cannabinoids may be a pure, isolated or synthetic cannabinoid. Alternatively, the one or more cannabinoids may be present as a botanical drug substance.
- the one or more cannabinoids are present as a mixture of a purified, isolated or synthetic cannabinoid and a botanical drug substance.
- the pH dependent release polymer is selected from the group consisting of: a copolymer of methacrylic acid and methacrylate, a copolymer of methacrylic acid and methyl methacrylate (Eudragit), a copolymer of methacrylic acid and ethylacrylate, hydroxypropyl methyl cellulose acetate succinate (HPMCAS), hydroxypropyl methyl cellulose phthalate (HPMCP), polyvinyl acetate phthalate (PVAP), a copolymer of methyl vinyl ether and maleic anhydride, cellulose acetate phthalate (CAP), cellulose acetate butyrate (CAB), cellulose acetate trimellitate (CAT), cellulose acetate succinate (CAS), ethyl cellulose, methyl cellulose, shellac, gellan gum, zein, alginic acid and waxes.
- HPMCAS hydroxypropyl methyl cellulose acetate succinate
- HPMCP hydroxy
- the pH dependent release polymer is HPMCAS or Eudragit.
- the pH dependent release polymer is taken from the group consisting of: HPMCAS-L; HPMCAS-M; HPMCAS-H; Eudragit S100; Eudragit L100.
- the microparticulate cannabinoid containing formulation further comprises one or more wetting agents.
- the one or more wetting agents is taken from the group consisting of: poloxamers; poloxamer 188; and sodium carbonate.
- the formulation further comprises one or more suspending agents.
- one or more suspending agents are taken from the group consisting of: polysorbate 20; glycerol; and xanthan gum.
- the formulation further comprises one or more pH buffers.
- the one or more pH buffers are taken from the group consisting of: citric acid; sodium phosphate dibasic; sodium hydroxide; and phosphate buffered saline.
- the formulation further comprises one or more preservatives.
- the one or more preservatives are taken from the group consisting of: potassium sorbate; and sodium benzoate.
- the formulation further comprises one or more antioxidants.
- the one or more antioxidants are taken from the group consisting of: butylated hydroxyltoluene; butylated hydroxylanisole; alpha-tocopherol (Vitamin E); ascorbyl palmitate; ascorbic acid; sodium ascorbate; ethylenediamino tetraacetic acid; cysteine hydrochloride; citric acid; sodium citrate; sodium bisulfate; sodium metabisulfite; lecithin; propyl gallate; sodium sulfate; monothioglycerol and mixtures thereof.
- the formulation further comprises one or more solvents.
- the one or more solvents is taken from the group consisting of: water; ethanol and acetone.
- the one or more cannabinoids are present in an amount of from about 10 to 50 wt %, based on the pharmaceutical formulation, preferably from about 10 to 30 wt %, more preferably from about 20 to 30 wt %.
- a plurality of microparticulates are formulated as an oral dosage form.
- formulation is an oral dosage form selected from the group consisting of a mucoadhesive gel; a tablet; a powder; a liquid gel capsule; a solid capsule; an oral solution; an oral suspension; a granulate; and an extrudate.
- microparticulate cannabinoid containing formulation is for use in the treatment of conditions requiring the administration of a neuroprotectant or anti-convulsive medication.
- the formulation is for use in the treatment of seizures.
- the formulation is for use in the treatment of Dravet syndrome, Lennox Gastaut syndrome, myoclonic seizures, juvenile myoclonic epilepsy, refractory epilepsy, schizophrenia, juvenile spasms, West syndrome, infantile spasms, refractory infantile spasms, tuberous sclerosis complex, brain tumours, neuropathic pain, cannabis use disorder, post-traumatic stress disorder, anxiety, early psychosis, Alzheimer's disease, and autism.
- a method of preparing a microparticulate cannabinoid containing formulation comprising: Preparing a mixture of the cannabinoid and pH dependent release polymer; Producing an intermediate powder blend; Processing the intermediate powder blend through a hot melt extruder; Pelleting the extrudates; and Milling the pellets to 250-500 ⁇ m.
- an antioxidant and/or a disintegrant is added after preparing the mixture of the cannabinoid and pH dependent release polymer.
- a fourth aspect of the present invention there is provided method of treating a subject comprising administering a microparticulate cannabinoid containing formulation to the subject.
- the subject is a human.
- FIG. 1 is a graph depicting the area under the curve (AUC) for the 7-COOH CBD metabolite from the bioavailability study.
- “Cannabinoids” are a group of compounds including the endocannabinoids, the phytocannabinoids and those which are neither endocannabinoids or phytocannabinoids, hereinafter “syntho-cannabinoids”.
- Endocannabinoids are endogenous cannabinoids, which are high affinity ligands of CB1 and CB2 receptors.
- phytocannabinoids are cannabinoids that originate in nature and can be found in the cannabis plant.
- the phytocannabinoids can be present in an extract including a botanical drug substance, isolated, or reproduced synthetically.
- “Syntho-cannabinoids” are those compounds capable of interacting with the cannabinoid receptors (CB1 and/or CB2) but are not found endogenously or in the cannabis plant. Examples include WIN 55212 and rimonabant.
- An “isolated phytocannabinoid” is one which has been extracted from the cannabis plant and purified to such an extent that all the additional components such as secondary and minor cannabinoids and the non-cannabinoid fraction have been removed.
- a “synthetic cannabinoid” is one which has been produced by chemical synthesis. This term includes modifying an isolated phytocannabinoid, by, for example, forming a pharmaceutically acceptable salt thereof or by the process of producing a pro-drug of a cannabinoid by the addition of one or more groups to the cannabinoid molecule to render the molecule inactive until it is metabolised within the body.
- a “substantially pure” cannabinoid is defined as a cannabinoid which is present at greater than 95% (w/w) pure, e.g., greater than 96% (w/w) through 97% (w/w) thorough 98% (w/w) to 99% % (w/w) and greater.
- w/w refers to the weight of the cannabinoid relative to the total weight of the cannabinoids, e.g., in the extract.
- a “highly purified” cannabinoid is defined as a cannabinoid that has been extracted from the cannabis plant and purified to the extent that other cannabinoids and non-cannabinoid components that are co-extracted with the cannabinoids have been substantially removed, such that the highly purified cannabinoid is greater than or equal to 95% (w/w) pure.
- a “botanical drug substance” or “BDS” is defined in the Guidance for Industry Botanical Drug Products Draft Guidance, August 2000, US Department of Health and Human Services, Food and Drug Administration Centre for Drug Evaluation and Research as: “A drug derived from one or more plants, algae, or microscopic fungi. It is prepared from botanical raw materials by one or more of the following processes: pulverisation, decoction, expression, aqueous extraction, ethanolic extraction or other similar processes.”
- a botanical drug substance does not include a highly purified or chemically modified substance derived from natural sources.
- BDS derived from cannabis plants do not include highly purified cannabinoids.
- weight percent is calculated based on the weight gain resulting from the addition of a particular component. For example, when a cannabinoid containing particle is coated with a pH dependent release polymer at 70% w/w, the pH dependent polymer adds 70% weight to the cannabinoid containing particle.
- microparticle or “microparticulate” refers to particle ranging from about 1 ⁇ m and about 1000 ⁇ m in size (e.g., diameter), for example, about 1 ⁇ m, about 2 ⁇ m, about 3 ⁇ m, about 4 ⁇ m, about 5 ⁇ m, about 6 ⁇ m, about 7 ⁇ m, about 8 ⁇ m, about 9 ⁇ m, about 10 ⁇ m, about 11 ⁇ m, about 12 ⁇ m, about 13 ⁇ m, about 14 ⁇ m, about 15 ⁇ m, about 16 ⁇ m, about 17 ⁇ m, about 18 ⁇ m, about 19 ⁇ m, about 20 ⁇ m, about 21 ⁇ m, about 22 ⁇ m, about 23 ⁇ m, about 24 ⁇ m, about 25 ⁇ m, about 26 ⁇ m, about 27 ⁇ m, about 28 ⁇ m, about 29 ⁇ m, about 30 ⁇ m, about 31 ⁇ m, about 32 ⁇ m, about 33 ⁇ m, about 34 ⁇ m, about 35 ⁇ m,
- the microparticle may have a diameter ranging from about 1 ⁇ m and about 500 ⁇ m in size, ranging from about 5 ⁇ m and about 400 ⁇ m in size, ranging from about 5 ⁇ m and about 300 ⁇ m in size, ranging from about 5 ⁇ m and about 200 ⁇ m in size, or ranging from about 5 ⁇ m and about 100 ⁇ m in size, ranging from about 5 ⁇ m and about 50 ⁇ m in size, including all values and ranges between these values.
- a microparticulate comprises an active agent such as a cannabinoid in addition to one or more pH dependent release polymers.
- microsphere and “microparticulate” or “microparticle” may be used interchangeably herein to refer to a particle comprising a pH dependent release particle and cannabinoid. These terms encompass microcapsules and micromatricies. Microcapsules are particles in which an entrapped substance (e.g., cannabinoid) is substantially surrounded by distinct capsule wall. Micromatrices are particles in which entrapped substance is dispersed throughout the matrix.
- an entrapped substance e.g., cannabinoid
- formulation encompasses the term “composition.” Accordingly, formulation may refer to a composition containing one or more cannabinoids, such as a microparticle. Additionally or alternatively, formulation may refer to a composition containing one or more cannabinoids, such as a microparticle, together with one or more pharmaceutically acceptable excipients.
- a “unit dose” of refers to an amount of a formulation which is administered to a patient in a single dose and which contains a therapeutically effective amount of the one or more cannabinoids.
- a unit dose may be one tablet or one capsule containing a formulation disclosed herein.
- the unit dose and formulation may be used interchangeably.
- a unit dose may also refer to an aliquot of a liquid composition or a plurality of sprinkles that are mixed with food.
- the unit dose refers to the total amount of sprinkles.
- terapéuticaally effective refers to a dosage sufficient to treat a disease or condition for which a drug is prescribed.
- the terms “treating,” “treatment” and “treat” include (i) preventing a particular disease or disorder from occurring in a subject who may be predisposed to the disease or disorder but has not yet been diagnosed as having it; (ii) curing, treating, or inhibiting the disease, i.e., arresting its development; or (iii) ameliorating the disease by reducing or eliminating symptoms, conditions, and/or by causing regression of the disease.
- “treating,” “treatment” and “treat” may include administering a therapeutically effective regimen as defined herein.
- therapeutically effective doses of CBD to treating seizures in Lennox Gastaut Syndrome, Dravet Syndrome, or Tuberous Sclerosis Complex range from 5-25 mg/kg/day
- the disclosure provides improved cannabinoid containing formulations.
- the formulation comprises a microparticulate comprising one or more cannabinoids, and one or more pharmaceutically acceptable excipients.
- the cannabinoid is selected from the group consisting of: cannabichromene (CBC), cannabichromenic acid (CBCV), cannabidiol (CBD), cannabidiolic acid (CBDA), cannabidivarin (CBDV), Cannabidiol-C1 (CBD-C1) also known as cannabidiorcol, Cannabidiol-C4 (CBD-C4) also known as nor-cannabidiol, cannabidiol-C6 (CBD-C6), cannabigerol (CBG), cannabigerol propyl variant (CBGV), cannabicyclol (CBL), cannabinol (CBN), cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarin (THCV
- cannabinoids which are identified in the present application for reference. So far, over 100 different cannabinoids have been identified and these cannabinoids can be split into different groups as follows: Phytocannabinoids; Endocannabinoids; and Synthetic cannabinoids.
- the formulation according to the present invention may also comprise at least one cannabinoid selected from those disclosed in Handbook of Cannabis, Roger Pertwee, Chapter 1, pages 3 to 15.
- the formulation comprises one or more cannabinoids, which are preferably selected from the group consisting of, cannabidiol (CBD) or cannabidivarin (CBDV), tetrahydrocannabinol (THC), tetrahydrocannabivarin (THCV), cannabigerol (CBG) and cannabidiolic acid (CBDA) or a combination thereof.
- CBD cannabidiol
- CBDDV cannabidivarin
- THC tetrahydrocannabinol
- THCV tetrahydrocannabivarin
- CBG cannabigerol
- CBDA cannabidiolic acid
- the formulation comprises cannabidiol (CBD) and/or cannabidivarin (CBDV).
- the formulation comprises at least two cannabinoids.
- the at least two cannabinoids are selected from the group consisting of, cannabidiol (CBD), tetrahydrocannabinol (THC), tetrahydrocannabivarin (THCV), cannabigerol (CBG) and cannabidiolic acid (CBDA).
- the one or more cannabinoids are present in a microparticle in an amount of from about 0.1 (% w/w) to about 50 (% w/w), based on total weight of the microparticle, e.g., about 0.1 (% w/w), about 0.2 (% w/w), about 0.3 (% w/w), about 0.4 (% w/w), about 0.5 (% w/w), about 0.6 (% w/w), about 0.7 (% w/w), about 0.8 (% w/w), about 0.9 (% w/w), about 1 (% w/w), about 2 (% w/w), about 3 (% w/w), about 4 (% w/w), about 5 (% w/w), about 6 (% w/w), about 7 (% w/w), about 8 (% w/w), about 9 (% w/w), about 10 % w/w), about 11 (% w/w), about 12 (
- the one or more cannabinoids comprises about 10 to about 30 (% w/v) of the microparticle. In embodiments, the one or more cannabinoids comprises about 15 (% w/w) of the microparticle. In embodiments, the one or more cannabinoids comprises about 20 (% w/w) of the microparticle.
- Microparticles comprising the cannabinoid may be prepared in any of the formulations described herein (e.g., a liquid composition such as a suspension, or a solid composition such as a tablet or sprinkles).
- the one or more cannabinoids are present in an amount of from about 0.1 (% w/v) to about 30 (% w/v), based on the total formulation, about 0.1 (% w/v), about 0.2 (% w/v), about 0.3 (% w/v), about 0.4 (% w/v), about 0.5 (% w/v), about 0.6 (% w/v), about 0.7 (% w/v), about 0.8 (% w/v), about 0.9 (% w/v), about 1 (% w/v), about 2 (% w/v), about 2.5 (%w/v), about 3 (% w/v), about 4 (% w/v), about 5 (% w/v), about 6 (% w/v), about 7
- the one or more cannabinoids comprises about 1 to about 5 (% w/v) of the total formulation, or about 2-5 (% w/v) of the total formulation. In embodiments, the one or more cannabinoids comprises about 3 (% w/v) of the total formulation. In embodiments, the one or more cannabinoids comprises about 2.5 (% w/v) of the total formulation.
- the one or more cannabinoids are present in an amount of from about 0.1 (% w/w) to about 30 (% w/w), based on the total formulation, about 0.1 (% w/w), about 0.2 (% w/w), about 0.3 (% w/w), about 0.4 (% w/w), about 0.5 (% w/w), about 0.6 (% w/w), about 0.7 (% w/w), about 0.8 (% w/w), about 0.9 (% w/w), about 1 (% w/w), about 2 (% w/w), about 2.5 (%w/w), about 3 (% w/w), about 4 (% w/w), about 5 (% w/w), about 6 (% w/w), about 7 (% w/w), about 8 (% w/w), about 9 (% w/w), about 10 (% w/w), about 11 (% w/w), about 12 (% w/w), about 13
- the one or more cannabinoid is synthetic or highly purified from its natural source (for example, plant derived recrystallized form). When a highly purified source is used, it is purified such that the one or more cannabinoid is present at greater than 95%, more preferably 98% of the total extract (w/w).
- the CBD has a purity of greater than 95% (w/w) CBD.
- the CBD has a purity of greater than 98% (w/w) CBD.
- the THCV has a purity of greater than 95% (w/w) THCV. In embodiments, the THCV has a purity of greater than 98% (w/w) THCV.
- compositions of the disclosure comprise CBD, at purity of at least 95% w/w (e.g., 98% w/w, or 99% w/w), and one or more of CBDA, CBDV, THC and CBD-C4.
- the CBDA is present in an amount of about 0.15% w/w or less, e.g., about 0.15% w/w, about 0.1% w/w, about 0.05% w/w, or about 0.01% w/w, inclusive of all values and ranges between these values.
- CBDV is present in an amount of about 1.0% w/w or less, e.g., about 1.0% w/w or less, about 0.9% w/w, about 0.8% w/w, about 0.7% w/w, about 0.6% w/w, about 0.5% w/w, about 0.4% w/w, about 0.3% w/w, about 0.2% w/w, about 0.1% w/w, about 0.09% w/w, about 0.08% w/w, about 0.07% w/w, about 0.06% w/w, about 0.05% w/w, about 0.04% w/w, about 0.03% w/w, about 0.02% w/w, about 0.01% w/w, inclusive of all values and ranges between these values.
- THC is present in an amount of about 0.15% w/w or less, e.g., about 0.15% w/w, about 0.1% w/w, about 0.05% w/w, or about 0.01% w/w, inclusive of all values and ranges between these values.
- CBD-C4 is present in an amount of about 0.5% w/w or less, e.g., about 0.5% w/w, about 0.4% w/w, about 0.3% w/w, about 0.2% w/w, about 0.1% w/w, about 0.09% w/w, about 0.08% w/w, about 0.07% w/w, about 0.06% w/w, about 0.05% w/w, about 0.04% w/w, about 0.03% w/w, about 0.02% w/w, about 0.01% w/w, inclusive of all values and ranges between these values.
- Other cannabinoids may also be present.
- the one or more cannabinoids are present as a complex mixture or as a botanical drug substance (BDS).
- BDS botanical drug substance
- the major cannabinoid is present in addition to all the other cannabinoid and non-cannabinoid components that are co-extracted with the major cannabinoid.
- THC BDS and CBD BDS have been characterized in the patent application WO 2007/083098 which is incorporated by reference herein in its entirety.
- the formulation comprises a mixture of a cannabinoid which is present as a highly purified (>96%, or >98%) or synthetic form, in combination with a cannabinoid which is present as a complex mixture or a BDS.
- the oral formulation (e.g., liquid composition such as a slurry or suspension) comprises from about 0.001 to about 350 mg/mL of cannabinoid, for example, about 0.001 mg/mL, about 0.005 mg/mL, about 0.01 mg/mL, about 0.015 mg/mL, about 0.02 mg/mL, about 0.025 mg/mL, about 0.03 mg/mL, about 0.035 mg/mL, about 0.04 mg/mL, about 0.045 mg/mL, about 0.05 mg/mL, about 0.055 mg/mL, about 0.06 mg/mL, about 0.065 mg/mL, about 0.07 mg/mL, about 0.075 mg/mL, about 0.08 mg/mL, about 0.085 mg/mL, about 0.09 mg/mL, about 0.095 mg/mL, about 0.1 mg/mL, about 0.2 mg/mL, about 0.3 mg/mL, about 0.4 mg/mL, about 0.5 mg/mL
- the unit dose comprises ranging from about 5 mg and about 5000 mg of cannabinoid, for example, about 5 mg, about 10 mg, about 20 mg, about 30 mg, about 40 mg, about 50 mg, about 60 mg, about 70 mg, about 80 mg, about 90 mg, about 100 mg, about 110 mg, about 120 mg, about 130 mg, about 140 mg, about 150 mg, about 160 mg, about 170 mg, about 180 mg, about 190 mg, about 200 mg, about 210 mg, about 220 mg, about 230 mg, about 240 mg, about 250 mg, about 260 mg, about 270 mg, about 280 mg, about 290 mg, about 300 mg, about 310 mg, about 320 mg, about 330 mg, about 340 mg, about 350 mg, about 360 mg, about 370 mg, about 380 mg, about 390 mg, about 400 mg, about 410 mg, about 420 mg, about 430 mg, about 440 mg, about 450 mg, about 460 mg, about 470 mg, about 480 mg, about 490 mg,
- a cannabinoid in a formulation of the present disclosure e.g. about 1.0 mg/kg/day, about 2.0 mg/kg/day, about 2.5 mg/kg/day, about 3.0 mg/kg/day, about 3.5 mg/kg/day, about 4.0 mg/kg/day, about 5.0 mg/kg/day, about 6.0 mg/kg/day, about 7.5 mg/kg/day, about 8 mg/kg/day, about 9 mg/kg/day, about 10 mg/kg/day, about 11 mg/kg/day, about 12 mg/kg/day, about 13 mg/kg/day, about 14 mg/kg/day, about 15 mg/kg/day, about 16 mg/kg/day, about 17 mg/kg/day, about 18 mg/kg/day, about 19 mg/kg/day, about 20 mg/kg/day, about 21 mg/kg/day, about 22 mg/kg/day, about 23 mg/kg/day, about 24 mg/
- the AUC t1-t2 is about 25 ng*hr/mL, about 50 ng*hr/mL, about 75 ng*hr/mL, about 100 ng*hr/mL, about 125 ng*hr/mL, about 150 ng*hr/mL, about 175 ng*hr/mL, about 200 ng*hr/mL, about 225 ng*hr/mL, about 250 ng*hr/mL, about 275 ng*hr/mL, about 300 ng*hr/mL, about 325 ng*hr/mL, about 350 ng*hr/mL, about 375 ng*hr/mL, and about 400 ng*hr/mL, about 500 ng*hr/mL, about 600 ng*hr/mL, about 700 ng*hr/mL, about 800 ng*hr/mL, about 900 ng*hr/mL, about
- the unit dose of the present disclosure comprises a dose of CBD that is equivalent to 25 mg/kg.
- the AUC t1-t2 ranges from about 80% to about 125% of about 2520 (52.4%) ng*hr/mL (reported as a geometric mean (% coefficient of variation)).
- the patient has an AUC t1-t2 ranges from about 2000 ng*hr/mL to about 3500 ng*hr/mL, for example, about 2000 ng*hr/mL, about 2100 ng*hr/mL, about 2200 ng*hr/mL, about 2300 ng*hr/mL, about 2400 ng*hr/mL, about 2500 ng*hr/mL, about 2600 ng*hr/mL, about 2700 ng*hr/mL, about 2800 ng*hr/mL, about 2900 ng*hr/mL, about 3000 ng*hr/mL, about 3100 ng*hr/mL, about 3200 ng*hr/mL, about 3300 ng*hr/mL, about 3400 ng*hr/mL, or about 3500 ng*hr/mL, including all values and ranges in between.
- the AUC t1-t2 is less than or equal to AUC t1-t2 of 50 mg/kg of CBD—i.e., less than or equal to 2730 (87.2%) ng*hr/mL (e.g., less than 2700 ng*hr/mL, 2600 ng*hr/mL, 2500 ng*hr/mL, 2400 ng*hr/mL, 2300 ng*hr/mL, 2200 ng*hr/mL, 2100 ng*hr/mL, 2000 ng*hr/mL, 1900 ng*hr/mL, 1800 ng*hr/mL, 1700 ng*hr/mL, 1600 ng*hr/mL, 1500 ng*hr/mL, 1400 ng*hr/mL, 1300 ng*hr/mL, 1200 ng*hr/mL, 1100 ng*hr/mL, or
- the unit dose of the present disclosure comprises a dose of CBD that is equivalent to 5 mg/kg.
- the steady state AUC from time zero to the last detectable dose (t) ranges from about 80% to about 125% of about 241 (101) ng*hr/mL.
- the AUCo-t is ranges from about 170 ng*hr/mL to about 350 ng*hr/mL, for example, about 170 ng*hr/mL, about 180 ng*hr/mL, about 190 ng*hr/mL, about 200 ng*hr/mL, about 210 ng*hr/mL, about 220 ng*hr/mL, about 230 ng*hr/mL, about 240 ng*hr/mL, about 250 ng*hr/mL, about 260 ng*hr/mL, about 270 ng*hr/mL, about 280 ng*hr/mL, about 290 ng*hr/mL, about 300 ng*hr/mL, about 310 ng*hr/mL, about 320 ng*hr/mL, about 330 ng*hr/mL, about 340 ng*hr/mL, and about
- the unit dose of the present disclosure comprises a dose of CBD that is equivalent to 10 mg/kg.
- the patient after administration of a dose equivalent to 10 mg/kg, the patient has an AUC 0-t ranging from about 80% to about 125% of about 722 (79.9) ng*hr/mL.
- the patient has an AUC 0-t ranging from about 550 ng*hr/mL to about 950 ng*hr/mL, for example, about 550 ng*hr/mL, about 570 ng*hr/mL, about 590 ng*hr/mL, about 610 ng*hr/mL, about 630 ng*hr/mL, about 650 ng*hr/mL, about 670 ng*hr/mL, about 690 ng*hr/mL, about 710 ng*hr/mL, about 730 ng*hr/mL, about 750 ng*hr/mL, about 770 ng*hr/mL, about 790 ng*hr/mL, about 810 ng*hr/mL, about 830 ng*hr/mL, about 850 ng*hr/mL, about 870 ng*hr/mL, about 890 ng*h
- the unit dose of the present disclosure comprises a dose of CBD that is equivalent to 20 mg/kg.
- the patient after administration of a dose equivalent to 20 mg/kg, the patient has an AUCo-t that ranges from about 80% to about 125% of about 963 (93.4) ng*hr/mL.
- the patient has an AUCo-t ranging from about 700 ng*hr/mL to about 1300 ng*hr/mL, for example, about 700 ng*hr/mL, about 720 ng*hr/mL, about 740 ng*hr/mL, about 760 ng*hr/mL, about 780 ng*hr/mL, about 800 ng*hr/mL, about 820 ng*hr/mL, about 840 ng*hr/mL, about 860 ng*hr/mL, about 880 ng*hr/mL, about 900 ng*hr/mL, about 920 ng*hr/mL, about 940 ng*hr/mL, about 960 ng*hr/mL, about 980 ng*hr/mL, about 1000 ng*hr/mL, about 1020 ng*hr/mL, about 1040 ng*hr/mL, about 1040
- the dosage form provides a pharmacokinetic profile that is bioequivalent to Epidiolex. In some embodiments, the dosage form provides an AUC that is within about 80%-125% of the AUC of an equivalent dose of Epidiolex®.
- the dosage form of claim 9 or 10 comprising CBD, wherein after administration, the dosage form provides an AUC that is within about 80%-125% of the Cmax of an equivalent dose of Epidiolex®.
- Epidiolex® is an immediate release formulation containing CBD. Epidiolex® is currently available as an oral solution, which comprises about 100 mg/mL CBD.
- the formulation comprises dehydrated alcohol (e.g., ethanol), sesame oil, a flavorant (e.g., strawberry flavour), and a sweetener (e.g., sucralose).
- dehydrated alcohol e.g., ethanol
- sesame oil e.g., sesame oil
- a flavorant e.g., strawberry flavour
- a sweetener e.g., sucralose
- concentration of ethanol may range from about 71.1 mg/mL to about 86.9 mg/mL
- the concentration of the sweetener may range from about 0.45 mg/mL to about 0.55 mg/mL
- the concentration of flavoring may range from about 0.18 mg/mL to about 0.22 mg/mL
- sesame oil is added, q.s. to about 1.0 mL.
- compositions described herein can include one or more pharmaceutically acceptable excipients.
- pharmaceutically acceptable excipients include pH dependent release polymer, extended release polymer, adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier.
- Pharmaceutically acceptable excipients may be described in Remington's Pharmaceutical Sciences, 18 th Edition, which is herein incorporated by reference in its entirety.
- the microparticulate comprises one or more of the following excipients.
- the cannabinoid formulations described herein comprise one or more pH dependent polymers or copolymers thereof.
- the formulations described herein comprise from about 5 w/w to about 85 w/w of a pH dependent release polymer or copolymer thereof, for example, about 5% w/w, about 10% w/w, about 15% w/w, about 20% w/w, about 25% w/w, about 30% w/w, about 35% w/w, about 40% w/w, about 45% w/w, about 50% w/w, about 55% w/w, about 60% w/w, about 65% w/w, about 70% w/w, about 75% w/w, about 80% w/w, or about 85% w/w, including all values and ranges there between, based on the weight of the microparticle.
- the cannabinoid formulations described herein comprise one or more pH dependent polymers or copolymers thereof. In embodiments, the formulations described herein comprise from about 10% w/w to about 80% w/w of a pH dependent release polymer or copolymer thereof, In embodiments, the formulations comprise about 75% w/w of a pH dependent release polymer. In embodiments, the formulations comprise about 78% w/w of a pH dependent release polymer. In embodiments, the formulations comprise about 80% of a pH dependent release polymer. In embodiments, the formulations comprise about 63% of a pH dependent release polymer. In embodiments, the formulations comprise about 11% of a pH dependent release polymer. In embodiments, the formulations comprise about 13% of a pH dependent release polymer.
- pH dependent release polymers of the present invention are used to enable release of the active agent at a pH of either pH 6 (intestines) or pH 7 (colon) rather than at an acidic pH (such as occurs in the stomach). pH dependent release polymers may be selected to begin releasing the cannabinoid around pH 5.5, 6.0 or 7.0.
- the polymers are selected from polymethacrylate derivatives (such as a copolymer of methacrylic acid and methacrylate, a copolymer of methacrylic acid and methyl methacrylate or a copolymer of methacrylic acid and ethylacrylate); hypromellose derivatives (such as hydroxypropyl methyl cellulose acetate succinate (HPMCAS) and hydroxypropyl methyl cellulose phthalate (HPMCP)); polyvinylacetate derivatives (such as polyvinyl acetate phthalate (PVAP)); polyvinylether derivatives (such as a copolymer of methyl vinyl ether and maleic anhydride); cellulose derivatives (such as cellulose acetate phthalate (CAP), cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate butyrate (CAB), cellulose acetate trimellitate (CAT), cellulose acetate succinate (CAS),
- the pH dependent polymer is HPMCAS. In embodiments, the pH dependent polymer is a copolymer of methacrylic acid and methyl methacrylate. In embodiments, the ratio of methacrylic acid to methyl methacrylate is ranges from about 1:10 to about 10:1, for example, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1,or about 10:1 by weight.
- the copolymer of methacrylic acid and methyl methacrylate is known under the tradename Eudragit®. Two forms of Eudragit are known: L100 and S100. The L100 is a copolymer of the two compounds in a 1:1 ratio and the S100 additionally comprises 0.3% sodium laurylsulfate.
- the formulation comprises Eudragit L100. In embodiments, the formulation comprises Eudragit S100.
- HPMCAS Hydroxypropyl Methylcellulose Acetate Succinate
- HPMCAS is a cellulose derived polymer containing acetyl and succinoyl groups. It is an enteric polymer which dissolves at a pH range of from about 5.5 to about 6.5 depending on the ratio of acetyl and succinoyl groups found within the polymer.
- HPMCAS-L Three grades of HPMCAS are available; HPMCAS-L, HPMCAS-M and HPMCAS-H, these polymers dissolve at pH 5.5, 6.0 and 6.5 respectively.
- the pH dependent polymer is HPMCAS-L.
- the pH dependent polymer is HPMCAS-M.
- the pH dependent polymer is HPMCAS-H.
- Eudragit L100 is a copolymer comprised of methacrylic acid and methyl methacrylate in a 1:1 ratio. The ratio of methacrylic acid to methyl methacrylate controls the pH at which the polymer dissolves.
- formulations comprising Eudragit L100 releases the cannabinoid at a pH of 6.0 and above, for example, at about pH 6, pH 6.1, pH 6.2, pH 6.3, pH 6.4, pH 6.5, pH 6.6,pH 6.7, pH 6.8, pH 6.9, pH 7, pH 7.1, pH 7.2, pH 7.3, pH 7.4, pH 7.5, pH 7.6, pH 7.7, pH 7.8, pH 7.9, or pH 8
- Eudragit L100 is a solubility enhancer.
- Eudragit L100 is a copolymer comprised of methacrylic acid and methyl methacrylate in a 1:2 ratio.
- formulations comprising Eudragit S100 release cannabinoid at a pH of 7.0 and above, for example, pH 7, pH 7.1 , pH 7.2, pH 7.3, pH 7.4, pH 7.5, pH 7.6, pH 7.7, pH 7.8, pH 7.9 , or pH 8.
- aqueous base It is most commonly dispersed in an aqueous base to be spray coated onto tablets or capsules to give them a colonic coating. It can also be used as a solubility enhancer for poorly water-soluble drugs when formulated into a solid dispersion along with an API.
- the oral formulations comprise a wetting agent.
- the wetting agent is selected from the group consisting of poloxamers (polyoxyethylene-polyoxypropylene block copolymers); polysorbate 80 (polyoxyethylene (20) sorbitan monooleate; sodium carbonate; polyethylene glycols (PEG, e.g., Mw 1500-20,000); and hydrophilic colloids such as acacia, alginates, methycellulose; alcohols; and glycerin.
- the wetting agent is PEG with a molecular weight ranging from about 100 mg/mol to about 20,000 g/mol, for example, about 100 g/mol, about 200 g/mol, about 300 g/mol, about 400 g/mol, about 500 g/mol, about 600 g/mol, about 700 g/mol, about 800 g/mol, about 900 g/mol, about 1000 g/mol, about 1100 g/mol, about 1200 g/mol, about 1300 g/mol, about 1400 g/mol, about 1500 g/mol, about 1600 g/mol, about 1700 g/mol, about 1800 g/mol, about 1900 g/mol, about 2000 g/mol, about 2100 g/mol, about 2200 g/mol, about 2300 g/mol, about 2400 g/mol, about 2500 g/mol, about 2600 g/mol, about 2700 g/mol, about 2800 g/mol, about 2900 g/mol, about 200
- the formulations described herein comprise from about 0.1% w/w to about 30% w/w of a wetting agent, for example, about 0.1% w/w, about 0.2% w/w, about 0.3% w/w, about 0.4% w/w, about 0.5% w/w, about 0.6% w/w, about 0.7% w/w, about 0.8% w/w, about 0.9% w/w, about 1% w/w, about 1.5% w/w, about 2% w/w, about 2.5% w/w, about 3% w/w, about 3.5% w/w, about 4% w/w, about 4.5% w/w, about 5% w/w, about 5.5% w/w, about 6% w/w, about 6.5% w/w, about 7% w/w, about 8% w/w, about 8.5% w/w, about 9% w/w, about 10% w/w about 11% w
- a wetting agent for example, about
- the formulations comprise about 5% w/w of a wetting agent. In embodiments, the formulations comprise about 20% w/w of a wetting agent. In embodiments, the formulations comprise about 0.75% w/w of a wetting agent.
- the wetting agent is a nonionic triblock copolymers composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)). These block copolymers may be referred as poloxamers. In some embodiments, the poloxamer is poloxamer 188.
- Poloxamer 188 is a nonionic linear copolymer having an average molecular weight of 8400 Daltons. Poloxamer 188 is an amphiphilic co-polymer that has multifunctionality. In embodiments, poloxamer 188 in the formulations described herein serves as a solubilizer, emulsifier, or as a wetting agent. Poloxamer 188 has an HLB value of 29 meaning it is highly hydrophilic.
- the formulations described herein comprise one or more suspending agents.
- the formulations described herein include anionic, cationic, and nonionic polymers.
- Non-limiting examples of such polymers include but are not limited to vinyl polymers such as cross linked acrylic acid polymers with the CTFA name Carbomer, cellulose derivatives and modified cellulose polymers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, nitro cellulose, sodium cellulose sulfate, sodium carboxymethyl cellulose, crystalline cellulose, cellulose powder, polyvinylpyrrolidone, polyvinyl alcohol, guar gum, hydroxypropyl guar gum, xanthan gum, arabia gum, tragacanth, galactan, carob gum, guar gum, karaya gum, carrageen, pectin, agar, quince seed ( Cyclonia oblonga Mill), starch (rice, corn, potato,
- the formulations described herein comprise from about 0.1% w/w to about 50% w/w of a suspending agent, for example, about 0.1% w/w, about 0.2% w/w, about 0.3% w/w, about 0.4% w/w, about 0.5% w/w, about 0.6% w/w, about 0.7% w/w, about 0.8% w/w, about 0.9% w/w, about 1% w/w, about 2% w/w, about 3% w/w, about 4% w/w, about 5% w/w, about 6% w/w, about 7% w/w, about 8% w/w, about 9% w/w, about 10% w/w, about 11% w/w, about 12% w/w, about 13% w/w, about 14% w/w, about w/w, about 16% w/w, about 17% w/w, about 18% w/w, about 19% w/w/
- formulations comprise Tween 20.
- Tween 20 serves as an emulsifier, wetting, agent, solubilizer, or suspending agent.
- Tween 20 is a nonionic surfactant that has multifunctionality. It is formed by the ethoxylation of sorbitol. As the name suggests the ethoxylation process leaves the excipient with 20 repeating units. These repeating units are comprised of polyethylene glycol.
- Tween 20 has an HLB value of 16.7 meaning it is a hydrophilic surfactant.
- the formulations described herein comprise glycerol.
- Glycerol is a colorless and odorless viscous liquid. It is widely used as a sweetener and humectant in the food and pharmaceutical industry.
- the formulations comprise from about 5% w/w to about 30% w/w glycerol, for example, about 5% w/w, about 10% w/w, about 15% w/w, about 20% w/w, about 25% w/w, or about 30% w/w glycerol, including all values and ranges there between.
- the formulations comprise about 20% w/w glycerol.
- the formulations described herein comprise xanthan gum.
- Xanthan gum is commonly used as a food additive and in the pharmaceutical industry as an agent that increases the viscosity of a liquid.
- the formulations comprise from about 0.01% w/w to about 0.5% w/w xanthan gum, for example, about 0.01% w/w, about 0.05% w/w, about 0.10% w/w, about 0.15% w/w, about 0.20% w/w, about 0.25% w/w, about 0.30% w/w, about 0.35% w/w, about 0.40% w/w, about 0.45% w/w, or about 0.50% w/w xanthan gum, including all values and ranges there between.
- the formulations comprise about 0.2% w/w xanthan gum.
- the formulations comprise one or more antioxidants.
- the antioxidants are selected from the group consisting of butylated hydroxyltoluene; butylated hydroxylanisole; alpha-tocopherol (Vitamin E); ascorbyl palmitate; ascorbic acid; sodium ascorbate; ethylenediamino tetraacetic acid; cysteine hydrochloride; citric acid; sodium citrate; sodium bisulfate; sodium metabisulfite; lecithin; propyl gallate; sodium sulfate; and monothioglycerol.
- the formulations described herein comprise from about 0.01% w/w to about 50% w/w of an antioxidant, for example, about 0.01% w/w, about 0.02% w/w, about 0.03% w/w, about 0.04% w/w, about 0.05% w/w, about 0.06% w/w, about 0.07% w/w, about 0.08% w/w, about 0.09% w/w, about 0.1% w/w, about 0.2% w/w, about 0.3% w/w, about 0.4% w/w, about 0.5% w/w, about 0.6% w/w, about 0.7% w/w, about 0.8% w/w, about 0.9% w/w, about 1% w/w, about 2% w/w, about 3% w/w, about 4% w/w, about 0.5% w/w, about 0.6% w/w, about 0.7% w/w, about 0.8% w/w, about 0.9% w/w
- the formulations described herein comprise from about 0.01% w/w to about 2% w/w antioxidant, for example, about 0.01% w/w, about 0.02% w/w, about 0.03% w/w, about 0.04% w/w, about 0.05% w/w, about 0.06% w/w, about 0.07% w/w, about 0.08% w/w, about 0.09% w/w, about 0.1% w/w, about 0.2% w/w, about 0.3% w/w, about 0.4% w/w, about 0.5% w/w, about 0.6% w/w, about 0.7% w/w, about 0.8% w/w, about 0.9% w/w, about 1% w/w, or about 2% w/w antioxidant.
- the formulations described herein comprise about 0.2% w/w antioxidant.
- the formulations described herein comprise about 0.03% w/w antioxidant.
- the formulations described herein comprise about 0.03% w/w
- the antioxidant is alpha tocopherol.
- Alpha Tocopherol is a derivative if Vitamin E. It is commonly used as an antioxidant in pharmaceutical formulations.
- the formulations described herein comprise about 0.2% w/w alpha tocopherol. In embodiments, the formulations described herein comprise about 0.03% w/w alpha tocopherol.
- the antioxidant is BHT.
- BHT is a crystalline antioxidant commonly used in pharmaceutical formulations.
- the antioxidant is BHA.
- BHA is a crystalline antioxidant commonly used in pharmaceutical formulations.
- the formulations comprise one or more pH modulating agents.
- a pH modulating agents is any agent utilized to modulate the pH of a formulation.
- the pH modulating agent is a buffer.
- the pH modulating agent is sodium hydroxide.
- Sodium hydroxide is an alkali commonly used as a pH adjusting agent.
- the formulations described herein comprise from about 0.1% w/w to about 5% w/w sodium hydroxide, for example, about 0.1%, about 0.2% w/w, about 0.3% w/w, about 0.4% w/w, about 0.5% w/w, about 0.6% w/w/, about 0.7% w/w, about 0.8% w/w, about 0.9% w/w, about 1% w/w, about 1.5% w/w, about 2% w/w, about 2.5% w/w, about 3% w/w, about 3.5% w/w, about 4% w/w, about 4.5% w/w, or about 5% w/w sodium hydroxide.
- the formulations comprise about 1.5% w/w sodium hydroxide.
- PBS Phosphate Buffered Saline
- the pH modulating agent is PBS.
- PBS is a buffer solution comprising of Sodium chloride, Potassium chloride, Disodium phosphate and Monopotassium phosphate.
- the pH of PBS is 7.4.
- the formulations comprise a chelating agent.
- the chelating agent is EDTA.
- EDTA is a commonly used as chelating agent in pharmaceutical formulations.
- a chelating agent “mops” up free radicals therefore enhancing the stability of a pharmaceutical formulation.
- the formulations comprise one or more pharmaceutically solvents or cosolvents.
- solvent and “cosolvent” are used to refer to the liquid carrier used in formulations comprising the microparticles described herein.
- Liquid carriers can be used in preparing solutions, suspensions, emulsions, syrups, elixirs and pressurized compounds.
- the active ingredient can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats.
- the liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators.
- Such pharmaceutically acceptable solvent can be aqueous or non-aqueous solutions, suspensions and emulsions.
- non-aqueous carriers include, but are not limited to, propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
- aqueous carriers include, but are not limited to, water, ethanol, alcoholic/aqueous solutions, glycerol, emulsions or suspensions, including saline and buffered media.
- Oral carriers can be elixirs, syrups, capsules, tablets and the like.
- Liquid carriers include, but are not limited to, water (partially containing additives as above, e.g. cellulose derivatives), alcohols (including monohydric alcohols and polyhydric alcohols, e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil).
- water partially containing additives as above, e.g. cellulose derivatives
- alcohols including monohydric alcohols and polyhydric alcohols, e.g. glycols
- oils e.g. fractionated coconut oil and arachis oil
- water is a cosolvent for formulations comprising a copolymer of methacrylic acid and methyl methacrylate.
- acetone is a cosolvent or solvent for formulations comprising HPMCAS.
- Cellulose polymers are hard to dissolve to yield solutions, more toxic solvents such as DMSO can dissolve HPMCAS however the trouble comes when having to reduce the solvent concentration to acceptable levels.
- ethanol is a cosolvent for formulations comprising a copolymer of methacrylic acid and methyl methacrylate.
- Ethanol is capable of solubilizes L100 completely but only forms suspensions of S100. Addition of water to a S100 ethanol suspension yields a clear solution.
- the microparticles may also be coated with one or more extended release polymers.
- Extended release polymers may be combined with the pH-dependent release polymers, or the extended release polymers may be used without the pH-dependent release polymers.
- the polymers may be present as a mixture (e.g., in the same layer disposed over the drug or in a matrix), or the polymers may be applied in separate layers.
- extended release may be achieved by appropriately coating a drug-containing component with one or more suitable extended release polymers (also referred to as a controlled release polymer or rate-controlling polymer) or embedding the drug in a matrix comprising one or more suitable extended release polymers.
- the extended release polymer may be a pharmaceutically acceptable water-insoluble polymers (also referred to as hydrophobic polymers), pharmaceutically acceptable water-soluble polymers (also referred to as hydrophilic polymers), pharmaceutically acceptable gastrosoluble polymers, pharmaceutically acceptable enteric polymers (also referred to as pH-dependent release polymers), and combinations thereof.
- Non-limiting examples of pharmaceutically acceptable water-insoluble polymers include acrylic polymers, methacrylic acid polymers, acrylic copolymers, such as a methacrylic acid-ethyl acrylate copolymer available under the trade name of EUDRAGIT® (type L, RL, RS and NE30D), and their respective esters, zein, waxes, shellac and hydrogenated vegetable oil, cellulose derivatives, such as ethyl cellulose, cellulose acetate, cellulose acetate butyrate, and the like.
- EUDRAGIT® type L, RL, RS and NE30D
- Non-limiting examples of pharmaceutically acceptable water-soluble polymers include homopolymers and copolymers of N-vinyl lactams, including homopolymers and copolymers of N-vinyl pyrrolidone, e.g. polyvinylpyrrolidone (PVP), copolymers of N-vinyl pyrrolidone and vinyl acetate or vinyl propionate, cellulose esters and cellulose ethers, in particular methylcellulose and ethylcellulose, hydroxyalkylcelluloses, in particular hydroxypropylcellulose, hydroxyalkylalkylcelluloses, and hydroxypropylmethylcellulose, cellulose phthalates, succinates, butyrates, or trimellitates, in particular cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose succinate, and hydroxypropylmethylcellulose acetate succinate; high molecular polyalkylene oxides such as polyethylene oxide and polypropylene oxide and copo
- gastrosoluble polymers include maltrin, an aminoalkyl methacrylate copolymer available under the trade name of EUDRAGIT® (type E100 or EPO), polyvinylacetal diethylaminoacetate e.g., AEA® available from Sankyo Company Limited, Tokyo (Japan), and the like.
- Non-limiting examples of such enteric polymers include carboxymethylethylcellulose, cellulose acetate phthalate (CAP), cellulose acetate succinate, methylcellulose phthalate, hydroxymethylethylcellulose phthalate, hydroxypropylmethylcellulose phthalate (HPMCP), hydroxypropylmethylcellulose acetate succinate (HPMCAS), polyvinyl alcohol phthalate, polyvinyl butyrate phthalate, polyvinyl acetal phthalate (PVAP), a copolymer of vinyl acetate/maleic anhydride, a copolymer of vinylbutylether/maleic anhydride, a copolymer of styrene/maleic acid monoester, a copolymer of methyl acrylate/methacrylic acid, a copolymer of styrene/acrylic acid, a copolymer of methyl acrylate/methacrylic acid/octyl acrylate, a copolymer
- enteric polymers include synthetic resin bearing carboxyl groups.
- enteric polymer as used herein is defined to mean a polymeric substance that when used in an enteric coat formulation, is substantially insoluble and/or substantially stable under acidic conditions at a pH of less than about 5 and which are substantially soluble or can decompose under conditions exhibiting a pH of about 5 or more.
- hydrophilic polymers include hydroxypropyl celluloses (HPC), hydroxypropyl methylcelluloses, methylcelluloses, polyethylene oxides, sodium carboxymethyl celluloses, and the like, or combinations thereof.
- the delayed release coating may comprise about 10 wt % to about 95 wt % of any of pharmaceutically acceptable polymers listed above (e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, and about 95%, inclusive of all values and subranges therebetween) and about 5 wt % to about 60 wt % plasticizer (e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, inclusive of all values and subranges therebetween) based on the total weight of the polymer coating.
- the relative proportions of ingredients, notably the ratio of the enteric polymer to plasticizer can be varied according to methods known to those of skill in the art of pharmaceutical formulation.
- the microparticulates described herein may be formulated in any suitable formulation.
- the formulation may be, but not limited to, an oral solution, an oral suspension, a formulation comprising granules, a formulation comprising sprinkles to be mixed with food, a compressed tablet, a mucoadhesive gel, a tablet, a powder, a liquid gel capsule, a solid powder filled capsule, an extrudate, a nasal spray or an injectable formulation.
- the pharmaceutical compositions of the present disclosure comprise at least one pharmaceutically acceptable carrier, diluent, and/or excipient.
- Pharmaceutically acceptable carriers, diluents or excipients include without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier.
- Suitable pharmaceutically acceptable carriers include, but are not limited to, inert solid fillers or diluents and sterile aqueous or organic solutions.
- Pharmaceutically acceptable carriers for liquid compositions are well known to those skilled in the art and include, but are not limited to, aqueous and non-aqueous solutions.
- Pharmaceutically acceptable carriers can be aqueous or non-aqueous solutions, suspensions and emulsions.
- non-aqueous solvents suitable for use in the present application include, but are not limited to, propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
- Aqueous carriers suitable for use in the present application include, but are not limited to, water, ethanol, alcoholic/aqueous solutions, glycerol, emulsions or suspensions, including saline and buffered media.
- Liquid carriers suitable for use in the present application include, but are not limited to, water, alcohols (including monohydric alcohols and polyhydric alcohols, e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil).
- Liquid carriers suitable for use in the present application can be used in preparing solutions, suspensions, emulsions, syrups, elixirs and pressurized compounds.
- the active ingredient can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats.
- the liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators.
- Solid carriers suitable for use in the present application include, but are not limited to, inactive substances such as lactose, starch, glucose, methyl-cellulose, magnesium stearate, dicalcium phosphate, mannitol and the like.
- a solid carrier can further include one or more substances acting as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders or tablet-disintegrating agents; it can also be an encapsulating material.
- the carrier can be a finely divided solid which is in admixture with the finely divided active compound.
- the active compound is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired.
- the powders and tablets may contain up to 99% of the active compound.
- Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, polyvinylpyrrolidone, low melting waxes and ion exchange resins.
- a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free flowing form such as a powder or granules, optionally mixed with a binder (e.g., povidone, gelatin, hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (e.g., sodium starch glycolate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose) surface active or dispersing agent.
- Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets may optionally coated or scored and may be formulated so as to provide delayed of the active ingredient therein using, for example, one or more pH dependent release polymers described herein in varying proportions to provide the desired release profile. Tablets provided with a coating comprising a pH dependent release polymer provide releases in parts of the gut other than the stomach.
- Carriers suitable for use in the present application can be mixed as needed with disintegrants, diluents, granulating agents, lubricants, binders and the like using conventional techniques known in the art.
- the carriers can also be sterilized using methods that do not deleteriously react with the compounds, as is generally known in the art.
- Diluents may be added to the formulations described herein. Diluents increase the bulk of a solid pharmaceutical composition and/or combination, and may make a pharmaceutical dosage form containing the composition and/or combination easier for the patient and care giver to handle.
- diluents for solid compositions include, for example, microcrystalline cellulose (e.g., AVICEL), microfine cellulose, lactose, starch, pregelatinized starch, calcium carbonate, calcium sulfate, sugar, dextrates, dextrin, dextrose, dibasic calcium phosphate dihydrate, tribasic calcium phosphate, kaolin, magnesium carbonate, magnesium oxide, maltodextrin, mannitol, polymethacrylates (e.g., EUDRAGIT®), potassium chloride, powdered cellulose, sodium chloride, sorbitol, and talc, and/or mixtures of any of the foregoing.
- microcrystalline cellulose e.g., AVICE
- microcrystalline cellulose examples include those sold under the Trademark Avicel (FMC Corp., Philadelphia, Pa.), for example, AvicelTM pH101, AvicelTM pH102 and AvicelTM pH112; lactose include lactose monohydrate, lactose anhydrous and Pharmatose DCL21; dibasic calcium phosphate includes Emcompress.
- Avicel FMC Corp., Philadelphia, Pa.
- lactose include lactose monohydrate, lactose anhydrous and Pharmatose DCL21
- dibasic calcium phosphate includes Emcompress.
- Lubricants are used to facilitate tablet manufacture, promoting powder flow and preventing particle capping (i.e., particle breakage) when pressure is relieved.
- Useful lubricants include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, glyceryl behenate, talc, colloidal silicon dioxide such as AerosilTM 200, mineral oil (in PEG), hydrogenated vegetable oil (e.g., comprised of hydrogenated and refined triglycerides of stearic and palmitic acids), and combinations thereof.
- Binders are used to impart cohesive qualities to a tablet, and thus ensure that the tablet or tablet layer remains intact after compression.
- Suitable binder materials include, but are not limited to, starch (including corn starch and pregelatinized starch), gelatin, sugars (including sucrose, glucose, dextrose and lactose), polyethylene glycol, polyvinyl alcohol, waxes, and natural and synthetic gums, e.g., acacia sodium alginate, polyvinylpyrrolidone, cellulosic polymers (including hydroxypropyl cellulose, hydroxypropyl methylcellulose, methyl cellulose, microcrystalline cellulose, ethyl cellulose, hydroxyethyl cellulose, and the like), and Veegum, and combinations thereof.
- examples of polyvinylpyrrolidone include povidone, copovidone and crospovidone.
- Fillers include, for example, materials such as silicon dioxide, titanium dioxide, alumina, talc, kaolin, powdered cellulose, microcrystalline cellulose, urea, sodium chloride, as well as saccharides, or combinations thereof Any suitable saccharide may be used in the composition of the present invention.
- saccharides or combinations thereof Any suitable saccharide may be used in the composition of the present invention.
- the “saccharides” used in the invention include sugar alcohols, monosaccharides, disaccharides, and oligosaccharides.
- Exemplary sugar alcohols include, but not limited to, xylitol, mannitol, sorbitol, erythritol, lactitol, pentitol, and hexitol.
- Exemplary monosaccharides include, but are not limited to, glucose, fructose, aldose and ketose.
- Exemplary disaccharides include, but are not limited to, sucrose, isomalt, lactose, trehalose, and maltose.
- Exemplary oligosaccharides include, but are not limited to, fructo-oligosaccharides, inulin, galacto-ologosaccharides, and mannan-oligosaccharides.
- the saccharide is sorbitol, mannitol, or xylitol.
- the saccharide is sorbitol.
- the saccharide is sucrose.
- Disintegrants are used to facilitate disintegration of the tablet, thereby increasing the erosion rate relative to the dissolution rate, and are generally starches, clays, celluloses, algins, gums, or crosslinked polymers (e.g., crosslinked polyvinyl pyrrolidone).
- suitable disintegrants include, for example, lightly crosslinked polyvinyl pyrrolidone, corn starch, potato starch, maize starch and modified starches, croscarmellose sodium, crospovidone, sodium starch glycolate, and combinations and mixtures thereof.
- the cannabinoid-containing microparticulate may be formulated in any suitable form in which the pH dependent release polymer(s) substantially prevents release of cannabinoid in the acidic environment of the stomach, such as, but not limited to, drug-coated core particles, solid blends comprising the drug, mini-tablets, microcapsules, pellets, microspheres, microemulsion, and matrices.
- the microparticulate is in the form of particles that contain the cannabinoid layered on the core.
- the core may comprise different oxides, celluloses, organic polymers and other materials, alone or in mixtures, or water soluble seeds comprising different inorganic salts, sugars, nonpareil cores and other materials, alone or in mixtures.
- the core may be a sphere comprising sugar, microcrystalline cellulose (MCC), polyol, carnauba wax, silica, lactose-starch, or lactose-cellulose.
- the core may be a buffer crystal or an encapsulated buffer crystal, such as calcium carbonate, sodium bicarbonate, fumaric acid, tartaric acid, etc. Buffer crystals are useful to alter the microenvironment.
- the microparticles may be prepared by rotogranulation, high-shear granulation, spray congealing, extrusion-spheronization and/or compression of the cannabinoid, and one or more excipients described herein (e.g., pH dependent release polymer).
- the pH dependent release polymer may be applied by spraying a solution containing the component (e.g., dispersing or solution containing the drug or enteric polymer) using e.g., a fluid bed coater.
- a solution containing the component e.g., dispersing or solution containing the drug or enteric polymer
- a fluid bed coater e.g., a fluid bed coater
- the microparticulate is in the form of a matrix.
- a matrix refers to a composition in which the cannabinoid is distributed or dispersed in one or more pH dependent release polymers.
- the size of the microparticles of the disclosure may be selected to improve palatability. Large particles can have a gritty or rough feeling, while smaller particles were discovered to have improved organoleptic properties.
- the microparticles of the present disclosure have a particle size less than about 300 ⁇ m, e.g., less than about 250 ⁇ m, less than 200 ⁇ m, e.g., about 200 ⁇ m, about 150 ⁇ m, about 100 ⁇ m, or about 50 ⁇ m or less, including all values ranges in between.
- the microparticles described herein have a particle size from about 1 ⁇ m to 200 ⁇ m, about 1 ⁇ m to about 100 ⁇ m, about 1 ⁇ m to about 50 ⁇ m, about 1 ⁇ m to about 25 ⁇ m, or from about 5 ⁇ m to about 10 ⁇ m including all values ranges in between. In some embodiments, the microparticles described herein have a particle size from about 5 ⁇ m to about 10 ⁇ m
- compositions of the present invention may be prepared by any well-known methods in the art, such as mixing, spray-drying, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, fluid-bed coating, or lyophilizing processes.
- the compositions of the present disclosure may include one or more pharmaceutically acceptable carriers such as excipients and adjuvants that facilitate processing of active molecules into preparations for pharmaceutical use.
- compositions for oral use may be obtained as solid excipients, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable adjuvants, if desired, to obtain tablets or dragee cores.
- Such oral pharmaceutical compositions may also be prepared by milling or melt extrusion.
- Suitable excipients may be any of those disclosed herein and, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose formulation such as maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropyl methylcellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP) formulation.
- disintegrating agents may be employed, such as cross-linked polyvinylpyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Wetting agents, such as sodium dodecyl sulfate and the like, may be added.
- parenteral includes subcutaneous, intravenous, intramuscular, and intraarterial injections with a variety of infusion techniques.
- the pH dependent release polymers prevent release of the cannabinoid (or cannabinoids) in the acidic environment of the stomach, and enable release in the pH of the lower intestines (after the drug traverse the stomach) or the colon.
- the intestines In the intestines is roughly pH 6, the colon is roughly pH 7.
- drug release is measured as described in Example 2.
- the USP 711 Dissolution test may be used to measure the dissolution (release) of the cannabinoid from the microparticle under different conditions. Examples of such tests include USP Apparatus 1 (basket) or 2 (paddle).
- the USP 711 Dissolution test is described in, e.g., The United States Pharmacopeial Convention, 2011.
- the USP Apparatus 1 uses the following 2-stage buffer conditions: Paddle, 100RPM, Stage-1: 750 mL 0.1N HC1 (2 h) and equilibrate to 37 ⁇ 0.5° C.; Stage-2: Add 250 mL of 0.2 M tribasic sodium phosphate to make pH 6.8 (30 minute) and equilibrate to 37 ⁇ 0.5° C.
- release is measured within about 30 minutes, about 40 minutes, about 50 minutes, 1 hour, about 1.1 hours, about 1.2 hours, about 1.3 hours, about 1.4 hours, 1.5 hours, about 1.6 hours, about 1.7 hours, about 1.8 hours, about 1.9 hours, 2 hours, about 2.1 hours, about 2.2 hours, about 2.3 hours, about 2.4 hours, 2.5 hours, about 2.6 hours, about 2.7 hours, about 2.8 hours, about 2.9 hours, 3 hour, or more.
- substantially no drug (e.g., less than 10%, or less than 5%) is released within about 30 minutes, about 45 minutes, about 50 minutes, about 1 hour, about 1.1 hours, about 1.2 hours, about 1.3 hours, about 1.4 hours, 1.5 hours, about 1.6 hours, about 1.7 hours, about 1.8 hours, about 1.9 hours, 2 hours, about 2.1 hours, about 2.2 hours, about 2.3 hours, about 2.4 hours, 2.5 hours, about 2.6 hours, about 2.7 hours, about 2.8 hours, about 2.9 hours, 3 hour, or more.
- the remainder of the drug is released within about 30 minutes, about 45 minutes, about 50 minutes, about 1 hour, about 1.1 hours, about 1.2 hours, about 1.3 hours, about 1.4 hours, 1.5 hours, about 1.6 hours, about 1.7 hours, about 1.8 hours, about 1.9 hours, 2 hours, about 2.1 hours, about 2.2 hours, about 2.3 hours, about 2.4 hours, 2.5 hours, about 2.6 hours, about 2.7 hours, about 2.8 hours, about 2.9 hours, 3 hours, about 3.1 hours, about 3.2 hours, about 3.3 hours, about 3.4 hours, 3.5 hours, about 3.6 hours, about 3.7 hours, about 3.8 hours, about 3.9 hours, 4 hours, about 4.1 hours, about 4.2 hours, about 4.3 hours, about 4.4 hours, 4.5 hours, about 4.6 hours, about 4.7 hours, about 4.8 hours, about 4.9 hours, 5 hours, about 5.1 hours, about 5.2 hours, about 5.3 hours, about 5.4 hours, 5.5 hours, about 5.6 hours
- Embodiment 1 A microparticulate cannabinoid containing formulation comprising one or more cannabinoids and a pH dependent release polymer.
- Embodiment 2 A microparticulate cannabinoid containing formulation according to embodiment 1, wherein the one or more cannabinoids are taken from the group consisting of: cannabichromene (CBC), cannabichromenic acid (CBCV), cannabidiol (CBD), cannabidiolic acid (CBDA), cannabidivarin (CBDV), cannabigerol (CBG), cannabigerol propyl variant (CBGV), cannabicyclol (CBL), cannabinol (CBN), cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarin (THCV) and tetrahydrocannabivarinic acid (THCVA).
- CBC cannabichromene
- CBCV cannabichromenic acid
- Embodiment 3 A microparticulate cannabinoid containing formulation according to embodiment 1, wherein the pH dependent release polymer is taken from the group consisting of: a copolymer of methacrylic acid and methacrylate, a copolymer of methacrylic acid and methyl methacrylate (Eudragit), a copolymer of methacrylic acid and ethylacrylate, hydroxypropyl methyl cellulose acetate succinate (HPMCAS), hydroxypropyl methyl cellulose phthalate (HPMCP), polyvinyl acetate phthalate (PVAP), a copolymer of methyl vinyl ether and maleic anhydride, cellulose acetate phthalate (CAP), cellulose acetate butyrate (CAB), cellulose acetate trimellitate (CAT), cellulose acetate succinate (CAS), ethyl cellulose, methyl cellulose, shellac, gellan gum, zein, alginic acid and waxes.
- Embodiment 4 A microparticulate cannabinoid containing formulation according to embodiment 3, wherein the pH dependent release polymer is HPMCAS or Eudragit.
- Embodiment 5 A microparticulate cannabinoid containing formulation according to embodiment 4, wherein the pH dependent release polymer is taken from the group consisting of: HPMCAS-L; HPMCAS-M; HPMCAS-H; Eudragit S100; Eudragit L100.
- Embodiment 6 A microparticulate cannabinoid containing formulation according to any of preceding claims, further comprising one or more wetting agents.
- Embodiment 7 A microparticulate cannabinoid containing formulation according to embodiment 6, wherein the one or more wetting agents are taken from the group consisting of: poloxamers; poloxamer 188; and sodium carbonate.
- Embodiment 8 A microparticulate cannabinoid containing formulation according to any of preceding embodiment, further comprising one or more suspending agents.
- Embodiment 9 A microparticulate cannabinoid containing formulation according to embodiment 8, wherein the one or more suspending agents are taken from the group consisting of: polysorbate 20; glycerol; and xanthan gum.
- Embodiment 10 A microparticulate cannabinoid containing formulation according to any of the preceding embodiment, further comprising one or more pH buffers.
- Embodiment 11 A microparticulate cannabinoid containing formulation according to claim 10 , wherein the one or more pH buffers are taken from the group consisting of: citric acid; sodium phosphate dibasic; sodium hydroxide; and phosphate buffered saline.
- Embodiment 12 A microparticulate cannabinoid containing formulation according to any of the preceding embodiment, further comprising one or more preservatives.
- Embodiment 13 A microparticulate cannabinoid containing formulation according to embodiment 12, wherein the one or more preservatives are taken from the group consisting of: potassium sorbate; and sodium benzoate.
- Embodiment 14 A microparticulate cannabinoid containing formulation according to any of the preceding embodiments, further comprising one or more antioxidants.
- Embodiment 15 A microparticulate cannabinoid containing formulation according to embodiments 14, wherein the one or more antioxidants are taken from the group consisting of: butylated hydroxyltoluene; butylated hydroxylanisole; alpha-tocopherol (Vitamin E); ascorbyl palmitate; ascorbic acid; sodium ascorbate; ethylenediamino tetraacetic acid; cysteine hydrochloride; citric acid; sodium citrate; sodium bisulfate; sodium metabisulfite; lecithin; propyl gallate; sodium sulfate; monothioglycerol and mixtures thereof.
- the one or more antioxidants are taken from the group consisting of: butylated hydroxyltoluene; butylated hydroxylanisole; alpha-tocopherol (Vitamin E); ascorbyl palmitate; ascorbic acid; sodium ascorbate; ethylenediamino tetraacetic
- Embodiment 16 A microparticulate cannabinoid containing formulation according to any of the preceding embodiments, further comprising one or more solvents.
- Embodiment 17 A microparticulate cannabinoid containing formulation according to embodiment 16, wherein the one or more solvents is taken from the group consisting of: water; ethanol and acetone.
- Embodiment 18 A microparticulate cannabinoid containing formulation according to any of the preceding embodiments, wherein the one or more cannabinoids are present in an amount of from about 10 to 50 wt %, based on the pharmaceutical formulation, preferably from about 10 to 30 wt %, more preferably from about 20 to 30 wt %.
- Embodiment 19 A microparticulate cannabinoid containing formulation according to any of the preceding embodiments, wherein the formulation is an oral dosage form selected from the group consisting of: a mucoadhesive gel; a tablet; a powder; a liquid gel capsule; a solid capsule; an oral solution; an oral suspension; a granulate; and an extrudate.
- the formulation is an oral dosage form selected from the group consisting of: a mucoadhesive gel; a tablet; a powder; a liquid gel capsule; a solid capsule; an oral solution; an oral suspension; a granulate; and an extrudate.
- Embodiment 20 A microparticulate cannabinoid containing formulation according to any of the preceding embodiments, for use in the treatment of conditions requiring the administration of a neuroprotectant or anti-convulsive medication.
- Embodiment 21 A microparticulate cannabinoid containing formulation for use according to embodiment 20, for use in the treatment of seizures.
- Embodiment 22 A microparticulate cannabinoid containing formulation for use according to embodiment 20, for use in the treatment of Dravet syndrome, Lennox Gastaut syndrome, myoclonic seizures, juvenile myoclonic epilepsy, refractory epilepsy, schizophrenia, juvenile spasms, West syndrome, infantile spasms, refractory infantile spasms, tuberous sclerosis complex, brain tumours, neuropathic pain, cannabis use disorder, post-traumatic stress disorder, anxiety, early psychosis, Alzheimer's disease, and autism.
- Embodiment 23 A method of preparing a microparticulate cannabinoid containing formulation according to any of the preceding embodiments, comprising spray drying the formulation.
- Embodiment 24 A method of preparing a microparticulate cannabinoid containing formulation according to any of the preceding embodiments, comprising:
- Embodiment 25 A method according to embodiment 24, wherein an antioxidant is added after step (i).
- Embodiment 26 A method according to embodiment 24, wherein a disintegrant is added after step (i).
- Embodiment 27 A method of treating a subject comprising administering a microparticulate cannabinoid containing formulation according to any of claims 1 to 19 to the subject.
- Embodiment 29 A method according to embodiment 27, wherein the subject is a human.
- Embodiment 30 The microparticulate or unit dose according to any of the preceding embodiments, wherein the microparticulate or unit dose is formulated as a mucoadhesive gel; a tablet; a powder; a liquid gel capsule; a solid capsule; an oral solution; an oral suspension; a granulate; an extrudate; or a sprinkle.
- the microparticulate cannabinoid formulation according to the invention is able to minimize cannabinoid metabolism.
- Polymeric microspheres have the potential to reduce the metabolism via two different mechanisms.
- microparticles with a size ranging from 5-10 ⁇ M can be engulfed as a whole particle by the intestinal cell wall therefore protecting the entrapped drug from degradative enzymes.
- controlled release polymers can be used to deliver the entrapped drug to different parts of the GI tract such as the colon; this turn may alter the metabolic profile of the entrapped cannabinoid.
- cannabinoid microspheres The following are representative cannabinoid microspheres.
- the active agent is provided as cannabidiol, however the microspheres may be produced using any natural or synthetic cannabinoid, their salts or prodrugs.
- CBD 20 (% w/w) HPMCAS-L 74.8 (% w/w) Kolliphor P188 5 (% w/w) Alpha Tocopherol 0.2 (% w/w)
- CBD 15 (% w/w) HPMCAS-M 79.8 (% w/w) Kolliphor P188 5 (% w/w) Alpha Tocopherol 0.2 (% w/w)
- CBD 20 (% w/w) Eudragit L100 78.28 (% w/w) Calcium Disodium EDTA 1.52 (% w/w) Alpha Tocopherol 0.2 (% w/w)
- CBD 15 (% w/w) Eudragit L100 78.28 (% w/w) Kolliphor P188 5 (% w/w) Sodium Hydroxide 1.52 (% w/w) Alpha Tocopherol 0.2 (% w/w)
- CBD 15 (% w/w) Eudragit L100 63.28 (% w/w) Kolliphor P188 20 (% w/w) Sodium Hydroxide 1.52 (% w/w) Alpha Tocopherol 0.2 (% w/w)
- the cannabinoid was added at a concentration of 15% and 20% to produce the microspheres, however concentrations may be used of from 0.1% to 30% cannabinoid.
- concentrations may be used of from 0.1% to 30% cannabinoid.
- concentration of the cannabinoid will depend on the cannabinoid used and the therapeutic indication for which the microsphere is to be used to treat.
- Tables 2 to 6 below illustrate example formulations suitable for colonic or enteric release.
- the cannabinoid microspheres described above have been formulated to produce a suspension.
- the cannabinoids used in these example formulations are cannabidiol (CBD) or a combination of highly purified CBD and a CBD BDS, here there is a mixture of major cannabinoids in the formulation, namely CBD and THC in addition to the other minor cannabinoids and non-cannabinoids which occur in a BDS.
- CBD cannabidiol
- THC in addition to the other minor cannabinoids and non-cannabinoids which occur in a BDS.
- cannabinoids or combinations of purified and BDS can be utilized to prepare colonic or enteric release formulations.
- compositions Component (% w/w) (mg/mL) Cannabidiol (CBD) 3 30.00 AQOAT HPMCAS-L 11.22 112.20 Kolliphor P188 0.75 7.50 Alpha-Tocopherol 0.03 0.30 Glycerol 20 200.00 Xanthan Gum 0.2 2.00 Citric Acid 0.25 2.50 Sodium Phosphate Dibasic 0.12 1.20 Potassium Sorbate 0.10 1.00 Sodium Benzoate 0.10 1.00 Ascorbic Acid 0.20 2.00 Water Q.S to 100% Q.S. to 100%
- the formulations as described above in Tables 2 to 5 are suitable for administration as a medicament.
- the medicament may be an oral solution, an oral suspension, a formulation comprising granules, a formulation comprising sprinkles to be mixed with food, a compressed tablet, a mucoadhesive gel, a tablet, a powder, a liquid gel capsule, a solid powder filled capsule, an extrudate, a nasal spray or an injectable formulation.
- Different forms of administration may be utilized, including (but not limited to) oral, parenteral, inhalation topical.
- the formulation When provided as a suspension or an oral solution, the formulation may be dispensed in bottles optionally with syringes such that an accurate dose may be provided to the patient based on an amount of cannabinoid (in mg) per weight of patient (in kg).
- the formulation may be prepared in alternative means such as a spray, a drink or in a small volume such as 30 mL of solution that is administered to the patient before swallowing.
- Example 2 Selection of Excipients to Produce an Enteric-Release and a Colonic-Release Microparticulate Formulation
- Polymer films comprising of API, polymer and wetting agents (if applicable) were manufactured using a solvent casting method.
- the produced films were then hydrated in a pH 7.0 buffer and drug release from the polymer films was assessed.
- CBE I is an oxidation derived degradant of CBD which in turn further degrades to CBE II.
- Samples were manufactured and stored at 40° C./75%RH for a period of 28 days.
- the samples containing Eudragit L100 and Eudragit S100 behaved differently than the HPMCAS based samples.
- the addition of the antioxidant reduced the levels of CBE I and CBE II to below the level of quantification over the course of the study, however large quantities of THC were seen in the samples regardless of whether or not an antioxidant was present.
- the antioxidant had no effect on the formation of THC. This is because the degradation of CBD to THC is an acidic mechanism and not an oxidation mechanism.
- Example 3 Method of Manufacture for an Enteric-Release and a Colonic-Release Microparticulate Formulation
- HPMCAS-L was spray dried with CBD using the following conditions:
- the Eudragit S100 was spray dried with CBD using the following conditions:
- Acetone was chosen as the solvent for spray drying due to its ability to solubilise cannabinoids and HPMCAS. Additionally, it is an FDA Class III solvent because of its limited toxicity. In Acetone HPMCAS dissolves to yield a fine suspension.
- Ethanol was chosen as it is a suitable solvent for cannabinoids and Eudragit L100. It is also an FDA Class III solvent because of its limited toxicity.
- the EDTA was required as it helped to stabilise the final CBD L100 polymer system.
- the Ethanol and EDTA solution were completely miscible.
- the solvent mix comprised of an 80:20 ratio of Ethanol to EDTA solution. Further optimisation could be performed to increase the Ethanol content further, a higher Ethanol content is advantageous because it is more volatile than water
- the resulting spray dried powder generated in the experiments above can then be further formulated to provide a pharmaceutically acceptable formulation.
- the spray dried powder may be mixed with a solvent such as water or glycerol to produce a suspension which may be administered orally as a solution.
- the spray dried powder may alternatively be compressed into tablets of filled in capsules to be swallowed by a patient.
- microparticulate formulation of the invention An alternative means of administration of the microparticulate formulation of the invention is provided. Using the technique of holt melt extrusion a microparticulate granule is produced. Such granules may be used as an additive to food as a sprinkle. Such dosage options are of benefit to younger patients and those patients that may have difficulty swallowing a tablet.
- Hot melt extrusion is a process which uses heat and pressure to melt the polymer and active agent. It is solvent free and may increase the solubility and bioavailability of an active agent.
- the polymer and cannabinoid are mixed together.
- an antioxidant and/or a distintegrant may be added after this stage.
- the blend is mixed to form an intermediate powder blend which is then processed through the hot melt extruder.
- the extrudates are then pelletised and further milled to the required size.
- a pellet size of 500 ⁇ m/250 ⁇ m is preferred.
- the stability of the hot melt extruded polymers was tested over a 12 week period and there were no significant increase of CBD related degradants over the time period nor any changes in the particle size.
- Example 4 Stability of an Enteric-Release and a Colonic-Release Microparticulate Formulation
- Tests were undertaken at the various time points to determine the following: appearance; cannabinoid assay; differential scanning calorimetry (DSC) and particle size via the dry dispersion method.
- this formulation contains a mixture of highly purified CBD and CBD BDS.
- concentration of the major cannabinoids in the formulation namely CBD and THC were determined along with the degradation products.
- formulations comprising microparticles of cannabinoid and a polymer are stable and allow a shelf life of 6 months.
- Example 5 Particle Size of an Enteric-Release and a Colonic-Release Microparticulate Formulation
- this formulation contains a mixture of highly purified CBD and CBD BDS.
- the particle size of the cannabinoid containing microparticulate formulations did not alter considerably over the course of the stability study meaning that during storage of the formulation there will not be any degradation of the particle size.
- Example 1 In order to determine whether the colonic-release (CR) formulations detailed in Example 1 were able to provide suitable bioavailability a PK study using rats was undertaken.
- the active used was CBD for the Type I oil-based formulation and the colonic-release and the enteric-release formulations were tested with two different actives; CBD alone or a combination of THC and CBD.
- the design of the study was to measure the plasma pharmacokinetics of CBD and THC and their metabolites (hydroxy-CBD, carboxy CBD, hydroxy-THC and carboxy-THC) following oral administration to the rat.
- the sampling times were: 0, 1, 2, 4, 8, 12 and 24 h post-dose.
- the determination of CBD, THC and their respective metabolites was performed by protein precipitation with reverse phase liquid chromatography with tandem mass spectrometric detection.
- the LLOQ of CBD was 1 ng/mL and all metabolites had an LLOQ of 0.5 ng/mL.
- HED human equivalent dose
- HED Animal ⁇ ⁇ dose ⁇ ⁇ ( mg ⁇ / ⁇ kg ) ⁇ ⁇ multiplied ⁇ ⁇ by ⁇ ⁇ Animal ⁇ ⁇ K m Human ⁇ ⁇ K m
- the Km for a rat is 6 and the Km for a human is 37.
- a 10 mg/kg dose in a rat equates to a human dose of about 1.6 mg/kg.
- Table 16 details the bioavailability of the different formulations tested and FIG. 1 details the AUC of the non-active metabolite of CBD, 7-COOH CBD.
- FIG. 1 details the AUC of the non-active metabolite of CBD, 7-COOH CBD.
- results demonstrate a significant decrease in the amount of the inactive carboxy-CBD metabolite in the colonic-release and the enteric-release formulations in comparison to the Type I oil-based formulation. This is very beneficial as it means that a lower dose of the active can be administered to enable the same effect.
- the suspension containing a mixture of highly purified CBD and CBD BDS in HPMCAS-L was taken forward into a long-term stability study as shown in Table 17.
- concentration of the major cannabinoids in the formulation namely CBD and THC were determined along with the degradation products.
- Tests were undertaken at the various time points to determine the following: appearance; cannabinoid assay; and particle size via the dry dispersion method.
- formulations comprising microparticles of cannabinoid and a polymer are stable and allow a shelf life of at least 6 months.
- the particle size of the cannabinoid containing microparticulate formulations did not alter considerably over the course of the stability study meaning that during long-term storage of the formulation there will not be any degradation of the particle size.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 17/068,326, filed Oct. 12, 2020, which is hereby incorporated by reference in its entirety.
- Cannabinoids are lipophilic substances that are known to be poorly soluble in water (less than 1 μg/mL), and consequently have low bioavailability. In contrast, and by way of example, cannabidiol (CBD) is soluble in ethanol at 36 mg/mL and the polar solvent dimethyl sulfoxide (DMSO) at 60 mg/mL.
- The contemporary use of cannabinoids in medicine has necessitated finding more effective ways of delivering these poorly soluble compounds. In addition to poor aqueous solubility cannabinoids are also known to have limited bioavailability and poor stability in formulations.
- If cannabinoids are required to be provided at relatively high doses (in daily amounts of up to 2000 mg) and/or in challenging patient groups, e.g. young children, and/or for particular indications this can create further challenges.
- Due to the lack of solubility, available cannabinoid formulations utilize alcohol and/or oil based excipients. The presence of alcohol in formulations is problematic, because cannabinoids (e.g., cannabidiol) are currently prescribed for rare forms of epilepsy in children. Current recommendations suggest that children should not have a blood alcohol concentration (BAC) which exceeds 0.25 g/L following a dose of an alcohol-containing medication. Furthermore, the use of oil in formulations causes gastrointestinal side effects such as diarrhoea which can be so severe it may cause the patient to discontinue use of the medication.
- Clearly there is a need to have oral formulations (as opposed to injectables which are not designed for, nor indeed suitable for, oral delivery) which are more bioavailable, and which can deliver sufficient amounts of cannabinoids (greater than 0.5%, more preferably still at least 1% by wt) in a patient friendly formulation.
- In addition to the problems with the use of ethanol, or an oil-based excipient, in cannabinoid containing oral formulations, the strong bitter taste of cannabinoids provides a further problem which needs to be overcome when producing an oral cannabinoid formulation. Children prefer sweet, flavoured products, such as syrups, to mask the taste of bitter drugs. However, sweeteners are generally polar, and therefore are not soluble in the oil required to solubilize the cannabinoid. High amounts of ethanol are required to solubilize the sweetener and formulate a homogenous composition.
- As mentioned above, for paediatric products aimed at younger children, it is desirable to have low or no ethanol formulations.
- Cannabinoids are also known to metabolise quickly, particularly when delivered as an oral solution. For example, the cannabinoid cannabidiol (CBD) quickly degrades in the body to 7-hydroxy cannabidiol (7-OH CBD) which then subsequently degrades to 7-carboxy cannabidiol (7-COOH CBD). In the treatment of epilepsy, it is known that the 7-OH metabolite is active but the 7-COOH metabolite (which is the final metabolite) is inactive, and as such the rapid degradation from CBD to 7-COOH CBD is unwanted and requires more active to be provided to successfully treat a patient.
- Consequently, slowing down the metabolism of the cannabinoid would enable a medicament that produces better bioavailability and would allow for lower doses of medicine to be provided.
- Specifically, drug delivery to the colon or intestines is desirable.
- The approaches for colon specific drug delivery are to utilize excipients that interact with one or more aspects of the gastrointestinal system. In addition, the formulation must be able to resist digestion within the stomach.
- An object of the present invention was to develop alternative cannabinoid containing formulations which were gastric resistant and able to deliver cannabinoids to the enteric or colonic areas. Such formulations must provide good bioavailability and stability of the cannabinoid active in order to be viable for drug development.
- Described herein are microparticulates comprising cannabinoids. In embodiments, the microparticulates include a component which enables targeted delivery to the colon or intestines and avoid digestion (or degradation) in the stomach.
- In one embodiment the invention provides a formulation in the form of a suspension comprising microparticulates which comprise the active agent of a cannabinoid in addition to excipients which enable targeted delivery to the colon or intestines and avoid digestion in the stomach.
- In a further embodiment the invention provides a formulation which comprises a granulate. The granulate comprises the cannabinoid microparticulate but may be used to produce alternative dosage forms such as tablets, disintegrating tablets, filled capsules and sprinkles.
- In accordance with a first aspect of the present invention there is provided a microparticulate cannabinoid containing formulation comprising one or more cannabinoids and a pH dependent release polymer (also referred to herein as a “enteric polymer”).
- The one or more cannabinoids may be selected from the group consisting of: cannabichromene (CBC), cannabichromenic acid (CBCV), cannabidiol (CBD), cannabidiolic acid (CBDA), cannabidivarin (CBDV), cannabigerol (CBG), cannabigerol propyl variant (CBGV), cannabicyclol (CBL), cannabinol (CBN), cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarin (THCV) and tetrahydrocannabivarinic acid (THCVA).
- The one or more cannabinoids may be a pure, isolated or synthetic cannabinoid. Alternatively, the one or more cannabinoids may be present as a botanical drug substance.
- In a further aspect of the invention the one or more cannabinoids are present as a mixture of a purified, isolated or synthetic cannabinoid and a botanical drug substance.
- In embodiments, the pH dependent release polymer is selected from the group consisting of: a copolymer of methacrylic acid and methacrylate, a copolymer of methacrylic acid and methyl methacrylate (Eudragit), a copolymer of methacrylic acid and ethylacrylate, hydroxypropyl methyl cellulose acetate succinate (HPMCAS), hydroxypropyl methyl cellulose phthalate (HPMCP), polyvinyl acetate phthalate (PVAP), a copolymer of methyl vinyl ether and maleic anhydride, cellulose acetate phthalate (CAP), cellulose acetate butyrate (CAB), cellulose acetate trimellitate (CAT), cellulose acetate succinate (CAS), ethyl cellulose, methyl cellulose, shellac, gellan gum, zein, alginic acid and waxes.
- In embodiments, the pH dependent release polymer is HPMCAS or Eudragit.
- In embodiments, the pH dependent release polymer is taken from the group consisting of: HPMCAS-L; HPMCAS-M; HPMCAS-H; Eudragit S100; Eudragit L100.
- In embodiments, the microparticulate cannabinoid containing formulation further comprises one or more wetting agents.
- In embodiments, the one or more wetting agents is taken from the group consisting of: poloxamers; poloxamer 188; and sodium carbonate.
- In embodiments, the formulation further comprises one or more suspending agents.
- In embodiments, one or more suspending agents are taken from the group consisting of: polysorbate 20; glycerol; and xanthan gum.
- In embodiments, the formulation further comprises one or more pH buffers.
- In embodiments, the one or more pH buffers are taken from the group consisting of: citric acid; sodium phosphate dibasic; sodium hydroxide; and phosphate buffered saline.
- In embodiments, the formulation further comprises one or more preservatives.
- In embodiments, the one or more preservatives are taken from the group consisting of: potassium sorbate; and sodium benzoate.
- In embodiments, the formulation further comprises one or more antioxidants.
- In embodiments, the one or more antioxidants are taken from the group consisting of: butylated hydroxyltoluene; butylated hydroxylanisole; alpha-tocopherol (Vitamin E); ascorbyl palmitate; ascorbic acid; sodium ascorbate; ethylenediamino tetraacetic acid; cysteine hydrochloride; citric acid; sodium citrate; sodium bisulfate; sodium metabisulfite; lecithin; propyl gallate; sodium sulfate; monothioglycerol and mixtures thereof.
- In embodiments, the formulation further comprises one or more solvents.
- In embodiments, the one or more solvents is taken from the group consisting of: water; ethanol and acetone.
- In embodiments, the one or more cannabinoids are present in an amount of from about 10 to 50 wt %, based on the pharmaceutical formulation, preferably from about 10 to 30 wt %, more preferably from about 20 to 30 wt %.
- In embodiments, a plurality of microparticulates are formulated as an oral dosage form. In embodiments, formulation is an oral dosage form selected from the group consisting of a mucoadhesive gel; a tablet; a powder; a liquid gel capsule; a solid capsule; an oral solution; an oral suspension; a granulate; and an extrudate.
- In a further aspect of the present invention the microparticulate cannabinoid containing formulation is for use in the treatment of conditions requiring the administration of a neuroprotectant or anti-convulsive medication.
- In embodiments, the formulation is for use in the treatment of seizures.
- In embodiments, the formulation is for use in the treatment of Dravet syndrome, Lennox Gastaut syndrome, myoclonic seizures, juvenile myoclonic epilepsy, refractory epilepsy, schizophrenia, juvenile spasms, West syndrome, infantile spasms, refractory infantile spasms, tuberous sclerosis complex, brain tumours, neuropathic pain, cannabis use disorder, post-traumatic stress disorder, anxiety, early psychosis, Alzheimer's disease, and autism.
- In a second aspect of the present invention there is provided a method of preparing a microparticulate cannabinoid containing formulation according to any of the preceding claims, comprising spray drying the formulation.
- In a third aspect of the present invention there is provided a method of preparing a microparticulate cannabinoid containing formulation according to any of the preceding claims, comprising: Preparing a mixture of the cannabinoid and pH dependent release polymer; Producing an intermediate powder blend; Processing the intermediate powder blend through a hot melt extruder; Pelleting the extrudates; and Milling the pellets to 250-500 μm.
- In embodiments, an antioxidant and/or a disintegrant is added after preparing the mixture of the cannabinoid and pH dependent release polymer.
- In a fourth aspect of the present invention there is provided method of treating a subject comprising administering a microparticulate cannabinoid containing formulation to the subject.
- In embodiments, the subject is a human.
-
FIG. 1 is a graph depicting the area under the curve (AUC) for the 7-COOH CBD metabolite from the bioavailability study. - “Cannabinoids” are a group of compounds including the endocannabinoids, the phytocannabinoids and those which are neither endocannabinoids or phytocannabinoids, hereinafter “syntho-cannabinoids”.
- “Endocannabinoids” are endogenous cannabinoids, which are high affinity ligands of CB1 and CB2 receptors.
- “Phytocannabinoids” are cannabinoids that originate in nature and can be found in the cannabis plant. The phytocannabinoids can be present in an extract including a botanical drug substance, isolated, or reproduced synthetically.
- “Syntho-cannabinoids” are those compounds capable of interacting with the cannabinoid receptors (CB1 and/or CB2) but are not found endogenously or in the cannabis plant. Examples include WIN 55212 and rimonabant.
- An “isolated phytocannabinoid” is one which has been extracted from the cannabis plant and purified to such an extent that all the additional components such as secondary and minor cannabinoids and the non-cannabinoid fraction have been removed.
- A “synthetic cannabinoid” is one which has been produced by chemical synthesis. This term includes modifying an isolated phytocannabinoid, by, for example, forming a pharmaceutically acceptable salt thereof or by the process of producing a pro-drug of a cannabinoid by the addition of one or more groups to the cannabinoid molecule to render the molecule inactive until it is metabolised within the body.
- A “substantially pure” cannabinoid is defined as a cannabinoid which is present at greater than 95% (w/w) pure, e.g., greater than 96% (w/w) through 97% (w/w) thorough 98% (w/w) to 99% % (w/w) and greater. In this situation, w/w refers to the weight of the cannabinoid relative to the total weight of the cannabinoids, e.g., in the extract.
- A “highly purified” cannabinoid is defined as a cannabinoid that has been extracted from the cannabis plant and purified to the extent that other cannabinoids and non-cannabinoid components that are co-extracted with the cannabinoids have been substantially removed, such that the highly purified cannabinoid is greater than or equal to 95% (w/w) pure.
- A “botanical drug substance” or “BDS” is defined in the Guidance for Industry Botanical Drug Products Draft Guidance, August 2000, US Department of Health and Human Services, Food and Drug Administration Centre for Drug Evaluation and Research as: “A drug derived from one or more plants, algae, or microscopic fungi. It is prepared from botanical raw materials by one or more of the following processes: pulverisation, decoction, expression, aqueous extraction, ethanolic extraction or other similar processes.”
- A botanical drug substance does not include a highly purified or chemically modified substance derived from natural sources. Thus, in the case of cannabis, BDS derived from cannabis plants do not include highly purified cannabinoids.
- All weight percentages (i.e., “% by weight” and “wt. %” and “w/w”) referenced herein, unless otherwise indicated, are measured relative to the total weight of the formulation or microparticle, depending on the context. In some embodiments, the weight percent is calculated based on the weight gain resulting from the addition of a particular component. For example, when a cannabinoid containing particle is coated with a pH dependent release polymer at 70% w/w, the pH dependent polymer adds 70% weight to the cannabinoid containing particle.
- The term “microparticle” or “microparticulate” refers to particle ranging from about 1 μm and about 1000 μm in size (e.g., diameter), for example, about 1 μm, about 2 μm, about 3 μm, about 4 μm, about 5 μm, about 6 μm, about 7 μm, about 8 μm, about 9 μm, about 10 μm, about 11 μm, about 12 μm, about 13 μm, about 14 μm, about 15 μm, about 16 μm, about 17 μm, about 18 μm, about 19 μm, about 20 μm, about 21 μm, about 22 μm, about 23 μm, about 24 μm, about 25 μm, about 26 μm, about 27 μm, about 28 μm, about 29 μm, about 30 μm, about 31 μm, about 32 μm, about 33 μm, about 34 μm, about 35 μm, about 36 μm, about 37 μm, about 38 μm, about 39 μm, about 40 μm, about 41 μm, about 42 μm, about 43 μm, about 44 μm, about 45 μm, about 46 μm, about 47 μm, about 48 μm, about 49 μm, about 50 μm, about 51 μm, about 52 μm, about 53 μm, about 54 μm, about 55 μm, about 56 μm, about 57 μm, about 58 μm, about 59 μm, about 60 μm, about 61 μm, about 62 μm, about 63 μm, about 64 μm, about 65 μm, about 66 μm, about 67 μm, about 68 μm, about 69 μm, about 70 μm, about 71 μm, about 72 μm, about 73 μm, about 74 μm, about 75 μm, about 76 μm, about 77 μm, about 78 μm, about 79 μm, about 80 μm, about 81 μm, about 82 μm, about 83 μm, about 84 μm, about 85 μm, about 86 μm, about 87 μm, about 88 μm, about 89 μm, about 90 μm, about 91 μm, about 92 μm, about 93 μm, about 94 μm, about 95 μm, about 96 μm, about 97 μm, about 98 μm, about 99 μm, about 100 μm, about 105 μm, about 110 μm, about 115 μm, about 120 μm, about 125 μm, about 130 μm, about 135 μm, about 140 μm, about 145 μm, about 150 μm, about 155 μm, about 160 μm, about 165 μm, about 170 μm, about 175 μm, about 180 μm, about 185 μm, about 190 μm, about 195 μm, about 200 μm, about 205 μm, about 210 μm, about 215 μm, about 220 μm, about 225 μm, about 230 μm, about 235 μm, about 240 μm, about 245 μm, about 250 μm, about 255 μm, about 260 μm, about 265 μm, about 270 μm, about 275 μm, about 280 μm, about 285 μm, about 290 μm, about 295 μm, about 300 μm, about 305 μm, about 310 μm, about 315 μm, about 320 μm, about 325 μm, about 330 μm, about 335 μm, about 340 μm, about 345 μm, about 350 μm, about 355 μm, about 360 μm, about 365 μm, about 370 μm, about 375 μm, about 380 μm, about 385 μm, about 390 μm, about 395 μm, about 400 μm, about 405 μm, about 410 μm, about 415 μm, about 420 μm, about 425 μm, about 430 μm, about 435 μm, about 440 μm, about 445 μm, about 450 μm, about 455 μm, about 460 μm, about 465 μm, about 470 μm, about 475 μm, about 480 μm, about 485 μm, about 490 μm, about 495 μm, about 500 μm, about 505 μm, about 510 μm, about 515 μm, about 520 μm, about 525 μm, about 530 μm, about 535 μm, about 540 μm, about 545 μm, about 550 μm, about 555 μm, about 560 μm, about 565 μm, about 570 μm, about 575 μm, about 580 μm, about 585 μm, about 590 μm, about 595 μm, about 600 μm, about 605 μm, about 610 μm, about 615 μm, about 620 μm, about 625 μm, about 630 μm, about 635 μm, about 640 μm, about 645 μm, about 650 μm, about 655 μm, about 660 μm, about 665 μm, about 670 μm, about 675 μm, about 680 μm, about 685 μm, about 690 μm, about 695 μm, about 700 μm, about 705 μm, about 710 μm, about 715 μm, about 720 μm, about 725 μm, about 730 μm, about 735 μm, about 740 μm, about 745 μm, about 750 μm, about 755 μm, about 760 μm, about 765 μm, about 770 μm, about 775 μm, about 780 μm, about 785 μm, about 790 μm, about 795 μm, about 800 μm, about 805 μm, about 810 μm, about 815 μm, about 820 μm, about 825 μm, about 830 μm, about 835 μm, about 840 μm, about 845 μm, about 850 μm, about 855 μm, about 860 μm, about 865 μm, about 870 μm, about 875 μm, about 880 μm, about 885 μm, about 890 μm, about 895 μm, about 900 μm, about 905 μm, about 910 μm, about 915 μm, about 920 μm, about 925 μm, about 930 μm, about 935 μm, about 940 μm, about 945 μm, about 950 μm, about 955 μm, about 960 μm, about 965 μm, about 970 μm, about 975 μm, about 980 μm, about 985 μm, about 990 μm, about 995 μm, or about 1000 μm, including all values and ranges in between. In embodiments, the microparticle may have a diameter ranging from about 1 μm and about 500 μm in size, ranging from about 5 μm and about 400 μm in size, ranging from about 5 μm and about 300 μm in size, ranging from about 5 μm and about 200 μm in size, or ranging from about 5 μm and about 100 μm in size, ranging from about 5 μm and about 50 μm in size, including all values and ranges between these values. In the terms of the present invention a microparticulate comprises an active agent such as a cannabinoid in addition to one or more pH dependent release polymers.
- The term “microsphere” and “microparticulate” or “microparticle” may be used interchangeably herein to refer to a particle comprising a pH dependent release particle and cannabinoid. These terms encompass microcapsules and micromatricies. Microcapsules are particles in which an entrapped substance (e.g., cannabinoid) is substantially surrounded by distinct capsule wall. Micromatrices are particles in which entrapped substance is dispersed throughout the matrix.
- “Formulation” as used herein encompasses the term “composition.” Accordingly, formulation may refer to a composition containing one or more cannabinoids, such as a microparticle. Additionally or alternatively, formulation may refer to a composition containing one or more cannabinoids, such as a microparticle, together with one or more pharmaceutically acceptable excipients.
- A “unit dose” of refers to an amount of a formulation which is administered to a patient in a single dose and which contains a therapeutically effective amount of the one or more cannabinoids. For example, a unit dose may be one tablet or one capsule containing a formulation disclosed herein. In this example, the unit dose and formulation may be used interchangeably. A unit dose may also refer to an aliquot of a liquid composition or a plurality of sprinkles that are mixed with food. In embodiments in which the oral formulation contains sprinkles which are administered with food, the unit dose refers to the total amount of sprinkles.
- The term “therapeutically effective” refers to a dosage sufficient to treat a disease or condition for which a drug is prescribed. As used herein, the terms “treating,” “treatment” and “treat” include (i) preventing a particular disease or disorder from occurring in a subject who may be predisposed to the disease or disorder but has not yet been diagnosed as having it; (ii) curing, treating, or inhibiting the disease, i.e., arresting its development; or (iii) ameliorating the disease by reducing or eliminating symptoms, conditions, and/or by causing regression of the disease. In some embodiments, “treating,” “treatment” and “treat” may include administering a therapeutically effective regimen as defined herein. For example, therapeutically effective doses of CBD to treating seizures in Lennox Gastaut Syndrome, Dravet Syndrome, or Tuberous Sclerosis Complex range from 5-25 mg/kg/day
- In embodiments, the disclosure provides improved cannabinoid containing formulations. As discussed herein, the formulation comprises a microparticulate comprising one or more cannabinoids, and one or more pharmaceutically acceptable excipients.
- In embodiments, the cannabinoid is selected from the group consisting of: cannabichromene (CBC), cannabichromenic acid (CBCV), cannabidiol (CBD), cannabidiolic acid (CBDA), cannabidivarin (CBDV), Cannabidiol-C1 (CBD-C1) also known as cannabidiorcol, Cannabidiol-C4 (CBD-C4) also known as nor-cannabidiol, cannabidiol-C6 (CBD-C6), cannabigerol (CBG), cannabigerol propyl variant (CBGV), cannabicyclol (CBL), cannabinol (CBN), cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarin (THCV) and tetrahydrocannabivarinic acid (THCVA). This list is not exhaustive and merely details the cannabinoids which are identified in the present application for reference. So far, over 100 different cannabinoids have been identified and these cannabinoids can be split into different groups as follows: Phytocannabinoids; Endocannabinoids; and Synthetic cannabinoids.
- In embodiments, the formulation according to the present invention may also comprise at least one cannabinoid selected from those disclosed in Handbook of Cannabis, Roger Pertwee, Chapter 1, pages 3 to 15.
- In embodiments, the formulation comprises one or more cannabinoids, which are preferably selected from the group consisting of, cannabidiol (CBD) or cannabidivarin (CBDV), tetrahydrocannabinol (THC), tetrahydrocannabivarin (THCV), cannabigerol (CBG) and cannabidiolic acid (CBDA) or a combination thereof. In embodiments, the formulation comprises cannabidiol (CBD) and/or cannabidivarin (CBDV).
- In a further embodiment, the formulation comprises at least two cannabinoids. In embodiments, the at least two cannabinoids are selected from the group consisting of, cannabidiol (CBD), tetrahydrocannabinol (THC), tetrahydrocannabivarin (THCV), cannabigerol (CBG) and cannabidiolic acid (CBDA).
- In embodiments, the one or more cannabinoids are present in a microparticle in an amount of from about 0.1 (% w/w) to about 50 (% w/w), based on total weight of the microparticle, e.g., about 0.1 (% w/w), about 0.2 (% w/w), about 0.3 (% w/w), about 0.4 (% w/w), about 0.5 (% w/w), about 0.6 (% w/w), about 0.7 (% w/w), about 0.8 (% w/w), about 0.9 (% w/w), about 1 (% w/w), about 2 (% w/w), about 3 (% w/w), about 4 (% w/w), about 5 (% w/w), about 6 (% w/w), about 7 (% w/w), about 8 (% w/w), about 9 (% w/w), about 10 % w/w), about 11 (% w/w), about 12 (% w/w), about 13 (% w/w), about 14 (% w/w), about 15 (% w/w), about 16 (% w/w), about 17 (% w/w), about 18 (% w/w), about 19 (% w/w), about 20 (% w/w), about 21 (% w/w), about 22 (% w/w), about 23 (% w/w), about 24 (% w/w), about 25 (% w/w), about 26 (% w/w), about 27 (% w/w), about 28 (% w/w), about 29 (% w/w), about 30 (% w/w), about 31 (% w/w), about 32 (% w/w), about 33 (% w/w), about 34 (% w/w), about 35 (% w/w), about 36 (% w/w), about 37 (% w/w), about 38 (% w/w), about 39 (% w/w), about 40 (% w/w), about 41 (% w/w), about 42 (% w/w), about 43 (% w/w), about 44 (% w/w), about 45 (% w/w), about 46 (% w/w), about 47 (% w/w), about 48 (% w/w), about 49 (% w/w), about 50 (% w/w), inclusive of all values and range between these values. In embodiments, the one or more cannabinoids comprises about 10 to about 30 (% w/v) of the microparticle. In embodiments, the one or more cannabinoids comprises about 15 (% w/w) of the microparticle. In embodiments, the one or more cannabinoids comprises about 20 (% w/w) of the microparticle.
- Microparticles comprising the cannabinoid may be prepared in any of the formulations described herein (e.g., a liquid composition such as a suspension, or a solid composition such as a tablet or sprinkles). In embodiments, the one or more cannabinoids are present in an amount of from about 0.1 (% w/v) to about 30 (% w/v), based on the total formulation, about 0.1 (% w/v), about 0.2 (% w/v), about 0.3 (% w/v), about 0.4 (% w/v), about 0.5 (% w/v), about 0.6 (% w/v), about 0.7 (% w/v), about 0.8 (% w/v), about 0.9 (% w/v), about 1 (% w/v), about 2 (% w/v), about 2.5 (%w/v), about 3 (% w/v), about 4 (% w/v), about 5 (% w/v), about 6 (% w/v), about 7 (% w/v), about 8 (% w/v), about 9 (% w/v), about 10 (% w/v), about 11 (% w/v), about 12 (% w/v), about 13 (% w/v), about 14 (% w/v), about 15 (% w/v), about 16 (% w/v), about 17 (% w/v), about 18 (% w/v), about 19 (% w/v), about 20 (% w/v), about 21 (% w/v), about 22 (% w/v), about 23 (% w/v), about 24 (% w/v), about 25 (% w/v), about 26 (% w/v), about 27 (% w/v), about 28 (% w/v), about 29 (% w/v), about 30 (% w/v) of the formulation. In embodiments, the one or more cannabinoids comprises about 1 to about 5 (% w/v) of the total formulation, or about 2-5 (% w/v) of the total formulation. In embodiments, the one or more cannabinoids comprises about 3 (% w/v) of the total formulation. In embodiments, the one or more cannabinoids comprises about 2.5 (% w/v) of the total formulation.
- In embodiments, the one or more cannabinoids are present in an amount of from about 0.1 (% w/w) to about 30 (% w/w), based on the total formulation, about 0.1 (% w/w), about 0.2 (% w/w), about 0.3 (% w/w), about 0.4 (% w/w), about 0.5 (% w/w), about 0.6 (% w/w), about 0.7 (% w/w), about 0.8 (% w/w), about 0.9 (% w/w), about 1 (% w/w), about 2 (% w/w), about 2.5 (%w/w), about 3 (% w/w), about 4 (% w/w), about 5 (% w/w), about 6 (% w/w), about 7 (% w/w), about 8 (% w/w), about 9 (% w/w), about 10 (% w/w), about 11 (% w/w), about 12 (% w/w), about 13 (% w/w), about 14 (% w/w), about 15 (% w/w), about 16 (% w/w), about 17 (% w/w), about 18 (% w/w), about 19 (% w/w), about 20 (% w/w), about 21 (% w/w), about 22 (% w/w), about 23 (% w/w), about 24 (% w/w), about 25 (% w/w), about 26 (% w/w), about 27 (% w/w), about 28 (% w/w), about 29 (% w/w), about 30 (% w/w), of the formulation. In embodiments, the one or more cannabinoids comprises about 3 (% w/w) of the total formulation. In embodiments, the one or more cannabinoids comprises about 2.5 (% w/w) of the total formulation.
- In embodiments, the one or more cannabinoid is synthetic or highly purified from its natural source (for example, plant derived recrystallized form). When a highly purified source is used, it is purified such that the one or more cannabinoid is present at greater than 95%, more preferably 98% of the total extract (w/w). In embodiments, the CBD has a purity of greater than 95% (w/w) CBD. In embodiments, the CBD has a purity of greater than 98% (w/w) CBD. In embodiments, the THCV has a purity of greater than 95% (w/w) THCV. In embodiments, the THCV has a purity of greater than 98% (w/w) THCV.
- In some embodiments, the compositions of the disclosure comprise CBD, at purity of at least 95% w/w (e.g., 98% w/w, or 99% w/w), and one or more of CBDA, CBDV, THC and CBD-C4. In some embodiments, the CBDA is present in an amount of about 0.15% w/w or less, e.g., about 0.15% w/w, about 0.1% w/w, about 0.05% w/w, or about 0.01% w/w, inclusive of all values and ranges between these values. In some embodiments, CBDV is present in an amount of about 1.0% w/w or less, e.g., about 1.0% w/w or less, about 0.9% w/w, about 0.8% w/w, about 0.7% w/w, about 0.6% w/w, about 0.5% w/w, about 0.4% w/w, about 0.3% w/w, about 0.2% w/w, about 0.1% w/w, about 0.09% w/w, about 0.08% w/w, about 0.07% w/w, about 0.06% w/w, about 0.05% w/w, about 0.04% w/w, about 0.03% w/w, about 0.02% w/w, about 0.01% w/w, inclusive of all values and ranges between these values. In some embodiments, THC is present in an amount of about 0.15% w/w or less, e.g., about 0.15% w/w, about 0.1% w/w, about 0.05% w/w, or about 0.01% w/w, inclusive of all values and ranges between these values. In some embodiments, CBD-C4 is present in an amount of about 0.5% w/w or less, e.g., about 0.5% w/w, about 0.4% w/w, about 0.3% w/w, about 0.2% w/w, about 0.1% w/w, about 0.09% w/w, about 0.08% w/w, about 0.07% w/w, about 0.06% w/w, about 0.05% w/w, about 0.04% w/w, about 0.03% w/w, about 0.02% w/w, about 0.01% w/w, inclusive of all values and ranges between these values. Other cannabinoids may also be present.
- In a further embodiment, the one or more cannabinoids are present as a complex mixture or as a botanical drug substance (BDS). When present as such as mixture the major cannabinoid is present in addition to all the other cannabinoid and non-cannabinoid components that are co-extracted with the major cannabinoid. THC BDS and CBD BDS have been characterized in the patent application WO 2007/083098 which is incorporated by reference herein in its entirety.
- In a further embodiment the formulation comprises a mixture of a cannabinoid which is present as a highly purified (>96%, or >98%) or synthetic form, in combination with a cannabinoid which is present as a complex mixture or a BDS.
- In embodiments, the oral formulation (e.g., liquid composition such as a slurry or suspension) comprises from about 0.001 to about 350 mg/mL of cannabinoid, for example, about 0.001 mg/mL, about 0.005 mg/mL, about 0.01 mg/mL, about 0.015 mg/mL, about 0.02 mg/mL, about 0.025 mg/mL, about 0.03 mg/mL, about 0.035 mg/mL, about 0.04 mg/mL, about 0.045 mg/mL, about 0.05 mg/mL, about 0.055 mg/mL, about 0.06 mg/mL, about 0.065 mg/mL, about 0.07 mg/mL, about 0.075 mg/mL, about 0.08 mg/mL, about 0.085 mg/mL, about 0.09 mg/mL, about 0.095 mg/mL, about 0.1 mg/mL, about 0.2 mg/mL, about 0.3 mg/mL, about 0.4 mg/mL, about 0.5 mg/mL, about 0.6 mg/mL, about 0.7 mg/mL, about 0.8 mg/mL, about 0.9 mg/mL, about 1 mg/mL, about 2 mg/mL, about 3 mg/mL, about 4 mg/mL, about 5 mg/mL, about 6 mg/mL, about 7 mg/mL, about 8 mg/mL, about 9 mg/mL, about 10 mg/mL, about 11 mg/mL, about 12 mg/mL, about 13 mg/mL, about 14 mg/mL, about 15 mg/mL, about 16 mg/mL, about 17 mg/mL, about 18 mg/mL, about 19 mg/mL, about 20 mg/mL, about 21 mg/mL, about 22 mg/mL, about 23 mg/mL, about 24 mg/mL, about 25 mg/mL, about 26 mg/mL, about 27 mg/mL, about 28 mg/mL, about 29 mg/mL, about 30 mg/mL, about 31 mg/mL, about 32 mg/mL, about 33 mg/mL, about 34 mg/mL, about 35 mg/mL, about 36 mg/mL, about 37 mg/mL, about 38 mg/mL, about 39 mg/mL, about 40 mg/mL, about 41 mg/mL, about 42 mg/mL, about 43 mg/mL, about 44 mg/mL, about 45 mg/mL, about 46 mg/mL, about 47 mg/mL, about 48 mg/mL, about 49 mg/mL, about 50 mg/mL, about 51 mg/mL, about 52 mg/mL, about 53 mg/mL, about 54 mg/mL, about 55 mg/mL, about 56 mg/mL, about 57 mg/mL, about 58 mg/mL, about 59 mg/mL, about 60 mg/mL, about 61 mg/mL, about 62 mg/mL, about 63 mg/mL, about 64 mg/mL, about 65 mg/mL, about 66 mg/mL, about 67 mg/mL, about 68 mg/mL, about 69 mg/mL, about 70 mg/mL, about 71 mg/mL, about 72 mg/mL, about 73 mg/mL, about 74 mg/mL, about 75 mg/mL, about 76 mg/mL, about 77 mg/mL, about 78 mg/mL, about 79 mg/mL, about 80 mg/mL, about 81 mg/mL, about 82 mg/mL, about 83 mg/mL, about 84 mg/mL, about 85 mg/mL, about 86 mg/mL, about 87 mg/mL, about 88 mg/mL, about 89 mg/mL, about 90 mg/mL, about 91 mg/mL, about 92 mg/mL, about 93 mg/mL, about 94 mg/mL, about 95 mg/mL, about 96 mg/mL, about 97 mg/mL, about 98 mg/mL, about 99 mg/mL, about 100 mg/mL, about 105 mg/mL, about 110 mg/mL, about 115 mg/mL, about 120 mg/mL, about 125 mg/mL, about 130 mg/mL, about 135 mg/mL, about 140 mg/mL, about 145 mg/mL, about 150 mg/mL, about 155 mg/mL, about 160 mg/mL, about 165 mg/mL, about 170 mg/mL, about 175 mg/mL, about 180 mg/mL, about 185 mg/mL, about 190 mg/mL, about 195 mg/mL, about 200 mg/mL, about 205 mg/mL, about 210 mg/mL, about 215 mg/mL, about 220 mg/mL, about 225 mg/mL, about 230 mg/mL, about 235 mg/mL, about 240 mg/mL, about 245 mg/mL, about 250 mg/mL, about 255 mg/mL, about 260 mg/mL, about 265 mg/mL, about 270 mg/mL, about 275 mg/mL, about 280 mg/mL, about 285 mg/mL, about 290 mg/mL, about 295 mg/mL, about 300 mg/mL, about 305 mg/mL, about 310 mg/mL, about 315 mg/mL, about 320 mg/mL, about 325 mg/mL, about 330 mg/mL, about 335 mg/mL, about 340 mg/mL, about 345 mg/mL, or about 350 mg/mL. In embodiments, the oral pharmaceutical formulation comprises about 1 mg/mL to about 350 mg/mL of cannabinoids. In embodiments, the oral pharmaceutical formulation comprises between about 25 mg/mL and about 100 mg/mL of cannabinoids.
- In embodiments, the unit dose comprises ranging from about 5 mg and about 5000 mg of cannabinoid, for example, about 5 mg, about 10 mg, about 20 mg, about 30 mg, about 40 mg, about 50 mg, about 60 mg, about 70 mg, about 80 mg, about 90 mg, about 100 mg, about 110 mg, about 120 mg, about 130 mg, about 140 mg, about 150 mg, about 160 mg, about 170 mg, about 180 mg, about 190 mg, about 200 mg, about 210 mg, about 220 mg, about 230 mg, about 240 mg, about 250 mg, about 260 mg, about 270 mg, about 280 mg, about 290 mg, about 300 mg, about 310 mg, about 320 mg, about 330 mg, about 340 mg, about 350 mg, about 360 mg, about 370 mg, about 380 mg, about 390 mg, about 400 mg, about 410 mg, about 420 mg, about 430 mg, about 440 mg, about 450 mg, about 460 mg, about 470 mg, about 480 mg, about 490 mg, about 500 mg, about 510 mg, about 520 mg, about 530 mg, about 540 mg, about 550 mg, about 560 mg, about 570 mg, about 580 mg, about 590 mg, about 600 mg, about 610 mg, about 620 mg, about 630 mg, about 640 mg, about 650 mg, about 660 mg, about 670 mg, about 680 mg, about 690 mg, about 700 mg, about 710 mg, about 720 mg, about 730 mg, about 740 mg, about 750 mg, about 760 mg, about 770 mg, about 780 mg, about 790 mg, about 800 mg, about 810 mg, about 820 mg, about 830 mg, about 840 mg, about 850 mg, about 860 mg, about 870 mg, about 880 mg, about 890 mg, about 900 mg, about 910 mg, about 920 mg, about 930 mg, about 940 mg, about 950 mg, about 960 mg, about 970 mg, about 980 mg, about 990 mg, about 1000 mg, about 1010 mg, about 1020 mg, about 1030 mg, about 1040 mg, about 1050 mg, about 1060 mg, about 1070 mg, about 1080 mg, about 1090 mg, about 1100 mg, about 1110 mg, about 1120 mg, about 1130 mg, about 1140 mg, about 1150 mg, about 1160 mg, about 1170 mg, about 1180 mg, about 1190 mg, about 1200 mg, about 1210 mg, about 1220 mg, about 1230 mg, about 1240 mg, about 1250 mg, about 1260 mg, about 1270 mg, about 1280 mg, about 1290 mg, about 1300 mg, about 1310 mg, about 1320 mg, about 1330 mg, about 1340 mg, about 1350 mg, about 1360 mg, about 1370 mg, about 1380 mg, about 1390 mg, about 1400 mg, about 1410 mg, about 1420 mg, about 1430 mg, about 1440 mg, about 1450 mg, about 1460 mg, about 1470 mg, about 1480 mg, about 1490 mg, about 1500 mg, about 1510 mg, about 1520 mg, about 1530 mg, about 1540 mg, about 1550 mg, about 1560 mg, about 1570 mg, about 1580 mg, about 1590 mg, about 1600 mg, about 1610 mg, about 1620 mg, about 1630 mg, about 1640 mg, about 1650 mg, about 1660 mg, about 1670 mg, about 1680 mg, about 1690 mg, about 1700 mg, about 1710 mg, about 1720 mg, about 1730 mg, about 1740 mg, about 1750 mg, about 1760 mg, about 1770 mg, about 1780 mg, about 1790 mg, about 1800 mg, about 1810 mg, about 1820 mg, about 1830 mg, about 1840 mg, about 1850 mg, about 1860 mg, about 1870 mg, about 1880 mg, about 1890 mg, about 1900 mg, about 1910 mg, about 1920 mg, about 1930 mg, about 1940 mg, about 1950 mg, about 1960 mg, about 1970 mg, about 1980 mg, about 1990 mg, about 2000 mg, 201about 2110 mg, about 2120 mg, about 2130 mg, about 2140 mg, about 2150 mg, about 2160 mg, about 2170 mg, about 2180 mg, about 2190 mg, about 2200 mg, about 2210 mg, about 2220 mg, about 2230 mg, about 2240 mg, about 2250 mg, about 2260 mg, about 2270 mg, about 2280 mg, about 2290 mg, about 2300 mg, about 2310 mg, about 2320 mg, about 2330 mg, about 2340 mg, about 2350 mg, about 2360 mg, about 2370 mg, about 2380 mg, about 2390 mg, about 2400 mg, about 2410 mg, about 2420 mg, about 2430 mg, about 2440 mg, about 2450 mg, about 2460 mg, about 2470 mg, about 2480 mg, about 2490 mg, about 2500 mg, about 2510 mg, about 2520 mg, about 2530 mg, about 2540 mg, about 2550 mg, about 2560 mg, about 2570 mg, about 2580 mg, about 2590 mg, about 2600 mg, about 2610 mg, about 2620 mg, about 2630 mg, about 2640 mg, about 2650 mg, about 2660 mg, about 2670 mg, about 2680 mg, about 2690 mg, about 2700 mg, about 2710 mg, about 2720 mg, about 2730 mg, about 2740 mg, about 2750 mg, about 2760 mg, about 2770 mg, about 2780 mg, about 2790 mg, about 2800 mg, about 2810 mg, about 2820 mg, about 2830 mg, about 2840 mg, about 2850 mg, about 2860 mg, about 2870 mg, about 2880 mg, about 2890 mg, about 2900 mg, about 2910 mg, about 2920 mg, about 2930 mg, about 2940 mg, about 2950 mg, about 2960 mg, about 2970 mg, about 2980 mg, about 2990 mg, about 3000 mg, about 3100 mg, about 3200 mg, about 3300 mg, about 3400 mg, about 3500 mg, about 3600 mg, about 3700 mg, about 3800 mg, about 3900 mg, about 4000 mg, about 4100 mg, about 4200 mg, about 4300 mg, about 4400 mg, about 4500 mg, about 4600 mg, about 4700 mg, about 4800 mg, about 4900 mg, or about 5000 mg cannabinoid, including all values and ranges in between. In embodiments, a unit of the oral cannabinoid formulation comprises about 10 mg to about 1000 mg of cannabinoid. In embodiments, a unit of the oral cannabinoid formulation comprises from about 50 mg to about 500 mg of cannabinoid.
- In embodiments, after administering between about 1 mg/kg/day and about 25 mg/kg/day of a cannabinoid in a formulation of the present disclosure (e.g. about 1.0 mg/kg/day, about 2.0 mg/kg/day, about 2.5 mg/kg/day, about 3.0 mg/kg/day, about 3.5 mg/kg/day, about 4.0 mg/kg/day, about 5.0 mg/kg/day, about 6.0 mg/kg/day, about 7.5 mg/kg/day, about 8 mg/kg/day, about 9 mg/kg/day, about 10 mg/kg/day, about 11 mg/kg/day, about 12 mg/kg/day, about 13 mg/kg/day, about 14 mg/kg/day, about 15 mg/kg/day, about 16 mg/kg/day, about 17 mg/kg/day, about 18 mg/kg/day, about 19 mg/kg/day, about 20 mg/kg/day, about 21 mg/kg/day, about 22 mg/kg/day, about 23 mg/kg/day, about 24 mg/kg/day, or about 25 mg/kg/day), the patient has an steady state area under the concentration time curve from time zero (t1) to five hours (t2) (AUCt1-t2) between 25 ng*hr/mL and 4000 ng*hr/mL. In some embodiments, the AUCt1-t2 is about 25 ng*hr/mL, about 50 ng*hr/mL, about 75 ng*hr/mL, about 100 ng*hr/mL, about 125 ng*hr/mL, about 150 ng*hr/mL, about 175 ng*hr/mL, about 200 ng*hr/mL, about 225 ng*hr/mL, about 250 ng*hr/mL, about 275 ng*hr/mL, about 300 ng*hr/mL, about 325 ng*hr/mL, about 350 ng*hr/mL, about 375 ng*hr/mL, and about 400 ng*hr/mL, about 500 ng*hr/mL, about 600 ng*hr/mL, about 700 ng*hr/mL, about 800 ng*hr/mL, about 900 ng*hr/mL, about 1000 ng*hr/mL, about 1100 ng*hr/mL, about 1200 ng*hr/mL, about 1300 ng*hr/mL, about 1400 ng*hr/mL, about 1500 ng*hr/mL, about 1600 ng*hr/mL, about 1700 ng*hr/mL, about 1800 ng*hr/mL, about 1900 ng*hr/mL, about 2000 ng*hr/mL, about 2100 ng*hr/mL, about 2200 ng*hr/mL, about 2300 ng*hr/mL, about 2400 ng*hr/mL, about 2500 ng*hr/mL, about 2600 ng*hr/mL, about 2700 ng*hr/mL, about 2800 ng*hr/mL, about 2900 ng*hr/mL, about 3000 ng*hr/mL, about 3100 ng*hr/mL, about 3200 ng*hr/mL, about 3300 ng*hr/mL, about 3400 ng*hr/mL, about 3500 ng*hr/mL, about 3600 ng*hr/mL, about 3700 ng*hr/mL, about 3800 ng*hr/mL, about 3900 ng*hr/mL, about or about 4000 ng*hr/mL, including all ranges and values in between. In some embodiments, the AUCt1-t2 is ranges from about 80% to about 125% of the aforementioned values.
- In some embodiments, the unit dose of the present disclosure comprises a dose of CBD that is equivalent to 25 mg/kg. In such embodiments, after administration of a dose equivalent to 25 mg/kg, the AUCt1-t2 ranges from about 80% to about 125% of about 2520 (52.4%) ng*hr/mL (reported as a geometric mean (% coefficient of variation)). In some embodiments, the patient has an AUCt1-t2 ranges from about 2000 ng*hr/mL to about 3500 ng*hr/mL, for example, about 2000 ng*hr/mL, about 2100 ng*hr/mL, about 2200 ng*hr/mL, about 2300 ng*hr/mL, about 2400 ng*hr/mL, about 2500 ng*hr/mL, about 2600 ng*hr/mL, about 2700 ng*hr/mL, about 2800 ng*hr/mL, about 2900 ng*hr/mL, about 3000 ng*hr/mL, about 3100 ng*hr/mL, about 3200 ng*hr/mL, about 3300 ng*hr/mL, about 3400 ng*hr/mL, or about 3500 ng*hr/mL, including all values and ranges in between. In some embodiments, after administration of CBD, the AUCt1-t2 is less than or equal to AUCt1-t2 of 50 mg/kg of CBD—i.e., less than or equal to 2730 (87.2%) ng*hr/mL (e.g., less than 2700 ng*hr/mL, 2600 ng*hr/mL, 2500 ng*hr/mL, 2400 ng*hr/mL, 2300 ng*hr/mL, 2200 ng*hr/mL, 2100 ng*hr/mL, 2000 ng*hr/mL, 1900 ng*hr/mL, 1800 ng*hr/mL, 1700 ng*hr/mL, 1600 ng*hr/mL, 1500 ng*hr/mL, 1400 ng*hr/mL, 1300 ng*hr/mL, 1200 ng*hr/mL, 1100 ng*hr/mL, or 1000 ng*hr/mL, etc).
- In some embodiments, the unit dose of the present disclosure comprises a dose of CBD that is equivalent to 5 mg/kg. In such embodiments, after administration of a dose equivalent to 5 mg/kg, the steady state AUC from time zero to the last detectable dose (t) (AUC0-t) ranges from about 80% to about 125% of about 241 (101) ng*hr/mL. In some embodiments, the AUCo-t is ranges from about 170 ng*hr/mL to about 350 ng*hr/mL, for example, about 170 ng*hr/mL, about 180 ng*hr/mL, about 190 ng*hr/mL, about 200 ng*hr/mL, about 210 ng*hr/mL, about 220 ng*hr/mL, about 230 ng*hr/mL, about 240 ng*hr/mL, about 250 ng*hr/mL, about 260 ng*hr/mL, about 270 ng*hr/mL, about 280 ng*hr/mL, about 290 ng*hr/mL, about 300 ng*hr/mL, about 310 ng*hr/mL, about 320 ng*hr/mL, about 330 ng*hr/mL, about 340 ng*hr/mL, and about 350 ng*hr/mL, including all values and ranges in between.
- In some embodiments, the unit dose of the present disclosure comprises a dose of CBD that is equivalent to 10 mg/kg. In such embodiments, after administration of a dose equivalent to 10 mg/kg, the patient has an AUC0-t ranging from about 80% to about 125% of about 722 (79.9) ng*hr/mL. In such embodiments, the patient has an AUC0-t ranging from about 550 ng*hr/mL to about 950 ng*hr/mL, for example, about 550 ng*hr/mL, about 570 ng*hr/mL, about 590 ng*hr/mL, about 610 ng*hr/mL, about 630 ng*hr/mL, about 650 ng*hr/mL, about 670 ng*hr/mL, about 690 ng*hr/mL, about 710 ng*hr/mL, about 730 ng*hr/mL, about 750 ng*hr/mL, about 770 ng*hr/mL, about 790 ng*hr/mL, about 810 ng*hr/mL, about 830 ng*hr/mL, about 850 ng*hr/mL, about 870 ng*hr/mL, about 890 ng*hr/mL, about 910 ng*hr/mL, about 930 ng*hr/mL, or about 950 ng*hr/mL, including all values and ranges in between.
- In some embodiments, the unit dose of the present disclosure comprises a dose of CBD that is equivalent to 20 mg/kg. In such embodiments, after administration of a dose equivalent to 20 mg/kg, the patient has an AUCo-t that ranges from about 80% to about 125% of about 963 (93.4) ng*hr/mL. In such embodiments, the patient has an AUCo-t ranging from about 700 ng*hr/mL to about 1300 ng*hr/mL, for example, about 700 ng*hr/mL, about 720 ng*hr/mL, about 740 ng*hr/mL, about 760 ng*hr/mL, about 780 ng*hr/mL, about 800 ng*hr/mL, about 820 ng*hr/mL, about 840 ng*hr/mL, about 860 ng*hr/mL, about 880 ng*hr/mL, about 900 ng*hr/mL, about 920 ng*hr/mL, about 940 ng*hr/mL, about 960 ng*hr/mL, about 980 ng*hr/mL, about 1000 ng*hr/mL, about 1020 ng*hr/mL, about 1040 ng*hr/mL, about 1060 ng*hr/mL, about 1080 ng*hr/mL, about 1100 ng*hr/mL, about 1120 ng*hr/mL, about 1140 ng*hr/mL, about 1160 ng*hr/mL, about 1180 ng*hr/mL, about 1200 ng*hr/mL, about 1220 ng*hr/mL, about 1240 ng*hr/mL, about 1260 ng*hr/mL, about 1280 ng*hr/mL, or about 1300 ng*hr/mL, including all values and ranges in between.
- In some embodiments, the dosage form provides a pharmacokinetic profile that is bioequivalent to Epidiolex. In some embodiments, the dosage form provides an AUC that is within about 80%-125% of the AUC of an equivalent dose of Epidiolex®. The dosage form of claim 9 or 10, comprising CBD, wherein after administration, the dosage form provides an AUC that is within about 80%-125% of the Cmax of an equivalent dose of Epidiolex®. Epidiolex® is an immediate release formulation containing CBD. Epidiolex® is currently available as an oral solution, which comprises about 100 mg/mL CBD. The formulation comprises dehydrated alcohol (e.g., ethanol), sesame oil, a flavorant (e.g., strawberry flavour), and a sweetener (e.g., sucralose). The concentration of ethanol may range from about 71.1 mg/mL to about 86.9 mg/mL; the concentration of the sweetener may range from about 0.45 mg/mL to about 0.55 mg/mL; the concentration of flavoring may range from about 0.18 mg/mL to about 0.22 mg/mL; and sesame oil is added, q.s. to about 1.0 mL.
- The compositions described herein can include one or more pharmaceutically acceptable excipients. Non-limiting examples of pharmaceutically acceptable excipients include pH dependent release polymer, extended release polymer, adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier. Pharmaceutically acceptable excipients may be described in Remington's Pharmaceutical Sciences, 18th Edition, which is herein incorporated by reference in its entirety.
- In embodiments, the microparticulate comprises one or more of the following excipients.
- In embodiments, the cannabinoid formulations described herein comprise one or more pH dependent polymers or copolymers thereof. In embodiments, the formulations described herein comprise from about 5 w/w to about 85 w/w of a pH dependent release polymer or copolymer thereof, for example, about 5% w/w, about 10% w/w, about 15% w/w, about 20% w/w, about 25% w/w, about 30% w/w, about 35% w/w, about 40% w/w, about 45% w/w, about 50% w/w, about 55% w/w, about 60% w/w, about 65% w/w, about 70% w/w, about 75% w/w, about 80% w/w, or about 85% w/w, including all values and ranges there between, based on the weight of the microparticle. In embodiments, the cannabinoid formulations described herein comprise one or more pH dependent polymers or copolymers thereof. In embodiments, the formulations described herein comprise from about 10% w/w to about 80% w/w of a pH dependent release polymer or copolymer thereof, In embodiments, the formulations comprise about 75% w/w of a pH dependent release polymer. In embodiments, the formulations comprise about 78% w/w of a pH dependent release polymer. In embodiments, the formulations comprise about 80% of a pH dependent release polymer. In embodiments, the formulations comprise about 63% of a pH dependent release polymer. In embodiments, the formulations comprise about 11% of a pH dependent release polymer. In embodiments, the formulations comprise about 13% of a pH dependent release polymer.
- The pH dependent release polymers of the present invention are used to enable release of the active agent at a pH of either pH 6 (intestines) or pH 7 (colon) rather than at an acidic pH (such as occurs in the stomach). pH dependent release polymers may be selected to begin releasing the cannabinoid around pH 5.5, 6.0 or 7.0.
- In embodiments, the polymers are selected from polymethacrylate derivatives (such as a copolymer of methacrylic acid and methacrylate, a copolymer of methacrylic acid and methyl methacrylate or a copolymer of methacrylic acid and ethylacrylate); hypromellose derivatives (such as hydroxypropyl methyl cellulose acetate succinate (HPMCAS) and hydroxypropyl methyl cellulose phthalate (HPMCP)); polyvinylacetate derivatives (such as polyvinyl acetate phthalate (PVAP)); polyvinylether derivatives (such as a copolymer of methyl vinyl ether and maleic anhydride); cellulose derivatives (such as cellulose acetate phthalate (CAP), cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate butyrate (CAB), cellulose acetate trimellitate (CAT), cellulose acetate succinate (CAS), ethyl cellulose, methyl cellulose); shellac, gellan gum, zein, alginic acid, waxes and mixtures thereof.
- In embodiments, the pH dependent polymer is HPMCAS. In embodiments, the pH dependent polymer is a copolymer of methacrylic acid and methyl methacrylate. In embodiments, the ratio of methacrylic acid to methyl methacrylate is ranges from about 1:10 to about 10:1, for example, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1,or about 10:1 by weight. The copolymer of methacrylic acid and methyl methacrylate is known under the tradename Eudragit®. Two forms of Eudragit are known: L100 and S100. The L100 is a copolymer of the two compounds in a 1:1 ratio and the S100 additionally comprises 0.3% sodium laurylsulfate. In embodiments, the formulation comprises Eudragit L100. In embodiments, the formulation comprises Eudragit S100.
- HPMCAS is a cellulose derived polymer containing acetyl and succinoyl groups. It is an enteric polymer which dissolves at a pH range of from about 5.5 to about 6.5 depending on the ratio of acetyl and succinoyl groups found within the polymer.
- Three grades of HPMCAS are available; HPMCAS-L, HPMCAS-M and HPMCAS-H, these polymers dissolve at pH 5.5, 6.0 and 6.5 respectively. In embodiments, the pH dependent polymer is HPMCAS-L. In embodiments, the pH dependent polymer is HPMCAS-M. In embodiments, the pH dependent polymer is HPMCAS-H.
- Eudragit L100 is a copolymer comprised of methacrylic acid and methyl methacrylate in a 1:1 ratio. The ratio of methacrylic acid to methyl methacrylate controls the pH at which the polymer dissolves. In embodiments, formulations comprising Eudragit L100 releases the cannabinoid at a pH of 6.0 and above, for example, at about pH 6, pH 6.1, pH 6.2, pH 6.3, pH 6.4, pH 6.5, pH 6.6,pH 6.7, pH 6.8, pH 6.9, pH 7, pH 7.1, pH 7.2, pH 7.3, pH 7.4, pH 7.5, pH 7.6, pH 7.7, pH 7.8, pH 7.9, or pH 8
- It is most commonly dispersed in an aqueous base to be spray coated onto tablets or capsules to give them an enteric coating. In embodiments, Eudragit L100 is a solubility enhancer.
- Eudragit L100 is a copolymer comprised of methacrylic acid and methyl methacrylate in a 1:2 ratio. In embodiments, formulations comprising Eudragit S100 release cannabinoid at a pH of 7.0 and above, for example, pH 7, pH 7.1 , pH 7.2, pH 7.3, pH 7.4, pH 7.5, pH 7.6, pH 7.7, pH 7.8, pH 7.9 , or pH 8.
- It is most commonly dispersed in an aqueous base to be spray coated onto tablets or capsules to give them a colonic coating. It can also be used as a solubility enhancer for poorly water-soluble drugs when formulated into a solid dispersion along with an API.
- In embodiments, the oral formulations comprise a wetting agent. In embodiments, the wetting agent is selected from the group consisting of poloxamers (polyoxyethylene-polyoxypropylene block copolymers); polysorbate 80 (polyoxyethylene (20) sorbitan monooleate; sodium carbonate; polyethylene glycols (PEG, e.g., Mw 1500-20,000); and hydrophilic colloids such as acacia, alginates, methycellulose; alcohols; and glycerin. In some embodiments, the wetting agent is PEG with a molecular weight ranging from about 100 mg/mol to about 20,000 g/mol, for example, about 100 g/mol, about 200 g/mol, about 300 g/mol, about 400 g/mol, about 500 g/mol, about 600 g/mol, about 700 g/mol, about 800 g/mol, about 900 g/mol, about 1000 g/mol, about 1100 g/mol, about 1200 g/mol, about 1300 g/mol, about 1400 g/mol, about 1500 g/mol, about 1600 g/mol, about 1700 g/mol, about 1800 g/mol, about 1900 g/mol, about 2000 g/mol, about 2100 g/mol, about 2200 g/mol, about 2300 g/mol, about 2400 g/mol, about 2500 g/mol, about 2600 g/mol, about 2700 g/mol, about 2800 g/mol, about 2900 g/mol, about 3000 g/mol, about 3100 g/mol, about 3200 g/mol, about 3300 g/mol, about 3400 g/mol, about 3500 g/mol, about 3600 g/mol, about 3700 g/mol, about 3800 g/mol, about 3900 g/mol, about 4000 g/mol, about 4100 g/mol, about 4200 g/mol, about 4300 g/mol, about 4400 g/mol, about 4500 g/mol, about 4600 g/mol, about 4700 g/mol, about 4800 g/mol, about 4900 g/mol, about 5000 g/mol, about 5100 g/mol, about 5200 g/mol, about 5300 g/mol, about 5400 g/mol, about 5500 g/mol, about 5600 g/mol, about 5700 g/mol, about 5800 g/mol, about 5900 g/mol, about 6000 g/mol, about 6100 g/mol, about 6200 g/mol, about 6300 g/mol, about 6400 g/mol, about 6500 g/mol, about 6600 g/mol, about 6700 g/mol, about 6800 g/mol, about 6900 g/mol, about 7000 g/mol, about 7100 g/mol, about 7200 g/mol, about 7300 g/mol, about 7400 g/mol, about 7500 g/mol, about 7600 g/mol, about 7700 g/mol, about 7800 g/mol, about 7900 g/mol, about 8000 g/mol, about 8100 g/mol, about 8200 g/mol, about 8300 g/mol, about 8400 g/mol, about 8500 g/mol, about 8600 g/mol, about 8700 g/mol, about 8800 g/mol, about 8900 g/mol, about 9000 g/mol, about 9100 g/mol, about 9200 g/mol, about 9300 g/mol, about 9400 g/mol, about 9500 g/mol, about 9600 g/mol, about 9700 g/mol, about 9800 g/mol, about 9900 g/mol, about 10000 g/mol, about 10100 g/mol, about 10200 g/mol, about 10300 g/mol, about 10400 g/mol, about 10500 g/mol, about 10600 g/mol, about 10700 g/mol, about 10800 g/mol, about 10900 g/mol, about 11000 g/mol, about 11100 g/mol, about 11200 g/mol, about 11300 g/mol, about 11400 g/mol, about 11500 g/mol, about 11600 g/mol, about 11700 g/mol, about 11800 g/mol, about 11900 g/mol, about 12000 g/mol, about 12100 g/mol, about 12200 g/mol, about 12300 g/mol, about 12400 g/mol, about 12500 g/mol, about 12600 g/mol, about 12700 g/mol, about 12800 g/mol, about 12900 g/mol, about 13000 g/mol, about 13100 g/mol, about 13200 g/mol, about 13300 g/mol, about 13400 g/mol, about 13500 g/mol, about 13600 g/mol, about 13700 g/mol, about 13800 g/mol, about 13900 g/mol, about 14000 g/mol, about 14100 g/mol, about 14200 g/mol, about 14300 g/mol, about 14400 g/mol, about 14500 g/mol, about 14600 g/mol, about 14700 g/mol, about 14800 g/mol, about 14900 g/mol, about 15000 g/mol, about 15100 g/mol, about 15200 g/mol, about 15300 g/mol, about 15400 g/mol, about 15500 g/mol, about 15600 g/mol, about 15700 g/mol, about 15800 g/mol, about 15900 g/mol, about 16000 g/mol, about 16100 g/mol, about 16200 g/mol, about 16300 g/mol, about 16400 g/mol, about 16500 g/mol, about 16600 g/mol, about 16700 g/mol, about 16800 g/mol, about 16900 g/mol, about 17000 g/mol, about 17100 g/mol, about 17200 g/mol, about 17300 g/mol, about 17400 g/mol, about 17500 g/mol, about 17600 g/mol, about 17700 g/mol, about 17800 g/mol, about 17900 g/mol, about 18000 g/mol, about 18100 g/mol, about 18200 g/mol, about 18300 g/mol, about 18400 g/mol, about 18500 g/mol, about 18600 g/mol, about 18700 g/mol, about 18800 g/mol, about 18900 g/mol, about 19000 g/mol, about 19100 g/mol, about 19200 g/mol, about 19300 g/mol, about 19400 g/mol, about 19500 g/mol, about 19600 g/mol, about 19700 g/mol, about 19800 g/mol, about 19900 g/mol, or about 20000 g/mol,
- In embodiments, the formulations described herein comprise from about 0.1% w/w to about 30% w/w of a wetting agent, for example, about 0.1% w/w, about 0.2% w/w, about 0.3% w/w, about 0.4% w/w, about 0.5% w/w, about 0.6% w/w, about 0.7% w/w, about 0.8% w/w, about 0.9% w/w, about 1% w/w, about 1.5% w/w, about 2% w/w, about 2.5% w/w, about 3% w/w, about 3.5% w/w, about 4% w/w, about 4.5% w/w, about 5% w/w, about 5.5% w/w, about 6% w/w, about 6.5% w/w, about 7% w/w, about 8% w/w, about 8.5% w/w, about 9% w/w, about 9.5% w/w, about 10% w/w about 11% w/w, about 12% w/w, about 13% w/w, about 14% w/w, about 15% w/w, about 16% w/w, about 17% w/w, about 18% w/w, about 19% w/w, about 20% w/w, about 21% w/w, about 22% w/w, about 23% w/w, about 24% w/w, about 25% w/w, about 26% w/w, about 27% w/w, about 28% w/w, about 29% w/w, or about 30% w/w of a wetting agent. In embodiments, the formulations comprise about 5% w/w of a wetting agent. In embodiments, the formulations comprise about 20% w/w of a wetting agent. In embodiments, the formulations comprise about 0.75% w/w of a wetting agent.
- In embodiments, the wetting agent is a nonionic triblock copolymers composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)). These block copolymers may be referred as poloxamers. In some embodiments, the poloxamer is poloxamer 188.
- Poloxamer 188 is a nonionic linear copolymer having an average molecular weight of 8400 Daltons. Poloxamer 188 is an amphiphilic co-polymer that has multifunctionality. In embodiments, poloxamer 188 in the formulations described herein serves as a solubilizer, emulsifier, or as a wetting agent. Poloxamer 188 has an HLB value of 29 meaning it is highly hydrophilic.
- In embodiments, the formulations described herein comprise one or more suspending agents. In embodiments, the formulations described herein include anionic, cationic, and nonionic polymers. Non-limiting examples of such polymers include but are not limited to vinyl polymers such as cross linked acrylic acid polymers with the CTFA name Carbomer, cellulose derivatives and modified cellulose polymers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, nitro cellulose, sodium cellulose sulfate, sodium carboxymethyl cellulose, crystalline cellulose, cellulose powder, polyvinylpyrrolidone, polyvinyl alcohol, guar gum, hydroxypropyl guar gum, xanthan gum, arabia gum, tragacanth, galactan, carob gum, guar gum, karaya gum, carrageen, pectin, agar, quince seed (Cyclonia oblonga Mill), starch (rice, corn, potato, wheat), algae colloids (algae extract), microbiological polymers such as dextran, succinoglucan, pulleran, starch-based polymers such as carboxymethyl starch, methylhydroxypropyl starch, alginic acid-based polymers such as sodium alginate, alginic acid propylene glycol esters, acrylate polymers such as sodium polyacrylate, polyethylacrylate, polyacrylamide, polyethyleneimine, long chain amine oxides, ethylene glycol esters of fatty acids, vinyl polymers such as cross linked acrylic acid polymers with the CTFA name Carbomer, cellulose derivatives and modified cellulose polymers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, nitro cellulose, sodium cellulose sulfate, sodium carboxymethyl cellulose, crystalline cellulose, cellulose powder, polyvinylpyrrolidone, polyvinyl alcohol, guar gum, hydroxypropyl guar gum, xanthan gum, arabia gum, tragacanth, galactan, carob gum, guar gum, karaya gum, carrageen, pectin, agar, quince seed (Cyclonia oblonga Mill), starch (rice, corn, potato, wheat), algae colloids (algae extract), microbiological polymers such as dextran, succinoglucan, pulleran, starch-based polymers such as carboxymethyl starch, methylhydroxypropyl starch, alginic acid-based polymers such as sodium alginate, alginic acid propylene glycol esters, acrylate polymers such as sodium polyacrylate, polyethylacrylate, polyacrylamide, and polyethyleneimine, N,N-dihydrocarbyl amido benzoic acid, PS20, glycerol, and xanthan gum.
- In embodiments, the formulations described herein comprise from about 0.1% w/w to about 50% w/w of a suspending agent, for example, about 0.1% w/w, about 0.2% w/w, about 0.3% w/w, about 0.4% w/w, about 0.5% w/w, about 0.6% w/w, about 0.7% w/w, about 0.8% w/w, about 0.9% w/w, about 1% w/w, about 2% w/w, about 3% w/w, about 4% w/w, about 5% w/w, about 6% w/w, about 7% w/w, about 8% w/w, about 9% w/w, about 10% w/w, about 11% w/w, about 12% w/w, about 13% w/w, about 14% w/w, about w/w, about 16% w/w, about 17% w/w, about 18% w/w, about 19% w/w, about 20% w/w, about 21% w/w, about 22% w/w, about 23% w/w, about 24% w/w, about 25% w/w, about 26% w/w, about 27% w/w, about 28% w/w, about 29% w/w, about 30% w/w, about 31% w/w, about 32% w/w, about 33% w/w, about 34% w/w, about 35% w/w, about 36% w/w, about 37% w/w, about 38% w/w, about 39% w/w, about 40% w/w, about 41% w/w, about 42% w/w, about 43% w/w, about 44% w/w, about 45% w/w, about 46% w/w, about 47% w/w, about 48% w/w, about 49% w/w, or about 50% w/w of a suspending agent. In embodiments, the formulations comprise about 0.2% w/w suspending agent. In embodiments, the formulations comprise about 20% w/w suspending agent.
- In embodiments, formulations comprise Tween 20. In embodiments, Tween 20 serves as an emulsifier, wetting, agent, solubilizer, or suspending agent. Tween 20 is a nonionic surfactant that has multifunctionality. It is formed by the ethoxylation of sorbitol. As the name suggests the ethoxylation process leaves the excipient with 20 repeating units. These repeating units are comprised of polyethylene glycol. Tween 20 has an HLB value of 16.7 meaning it is a hydrophilic surfactant.
- In embodiments, the formulations described herein comprise glycerol. Glycerol is a colorless and odorless viscous liquid. It is widely used as a sweetener and humectant in the food and pharmaceutical industry. In embodiments, the formulations comprise from about 5% w/w to about 30% w/w glycerol, for example, about 5% w/w, about 10% w/w, about 15% w/w, about 20% w/w, about 25% w/w, or about 30% w/w glycerol, including all values and ranges there between. In embodiments, the formulations comprise about 20% w/w glycerol.
- In embodiments, the formulations described herein comprise xanthan gum. Xanthan gum is commonly used as a food additive and in the pharmaceutical industry as an agent that increases the viscosity of a liquid. . In embodiments, the formulations comprise from about 0.01% w/w to about 0.5% w/w xanthan gum, for example, about 0.01% w/w, about 0.05% w/w, about 0.10% w/w, about 0.15% w/w, about 0.20% w/w, about 0.25% w/w, about 0.30% w/w, about 0.35% w/w, about 0.40% w/w, about 0.45% w/w, or about 0.50% w/w xanthan gum, including all values and ranges there between.In embodiments, the formulations comprise about 0.2% w/w xanthan gum.
- In embodiments, the formulations comprise one or more antioxidants. In embodiments, the antioxidants are selected from the group consisting of butylated hydroxyltoluene; butylated hydroxylanisole; alpha-tocopherol (Vitamin E); ascorbyl palmitate; ascorbic acid; sodium ascorbate; ethylenediamino tetraacetic acid; cysteine hydrochloride; citric acid; sodium citrate; sodium bisulfate; sodium metabisulfite; lecithin; propyl gallate; sodium sulfate; and monothioglycerol. In embodiments, the formulations described herein comprise from about 0.01% w/w to about 50% w/w of an antioxidant, for example, about 0.01% w/w, about 0.02% w/w, about 0.03% w/w, about 0.04% w/w, about 0.05% w/w, about 0.06% w/w, about 0.07% w/w, about 0.08% w/w, about 0.09% w/w, about 0.1% w/w, about 0.2% w/w, about 0.3% w/w, about 0.4% w/w, about 0.5% w/w, about 0.6% w/w, about 0.7% w/w, about 0.8% w/w, about 0.9% w/w, about 1% w/w, about 2% w/w, about 3% w/w, about 4% w/w, about 5% w/w, about 6% w/w, about 7% w/w, about 8% w/w, about 9% w/w, about 10% w/w, about 11% w/w, about 12% w/w, about 13% w/w, about 14% w/w, about 15% w/w, about 16% w/w, about 17% w/w, about 18% w/w, about 19% w/w, about 20% w/w, about 21% w/w, about 22% w/w, about 23% w/w, about 24% w/w, about 25% w/w, about 26% w/w, about 27% w/w, about 28% w/w, about 29% w/w, about 30% w/w, about 31% w/w, about 32% w/w, about 33% w/w, about 34% w/w, about 35% w/w, about 36% w/w, about 37% w/w, about 38% w/w, about 39% w/w, about 40% w/w, about 41% w/w, about 42% w/w, about 43% w/w, about 44% w/w, about 45% w/w, about 46% w/w, about 47% w/w, about 48% w/w, about 49% w/w, or about 50% w/w of an antioxidant. In embodiments, the formulations described herein comprise from about 0.01% w/w to about 2% w/w antioxidant, for example, about 0.01% w/w, about 0.02% w/w, about 0.03% w/w, about 0.04% w/w, about 0.05% w/w, about 0.06% w/w, about 0.07% w/w, about 0.08% w/w, about 0.09% w/w, about 0.1% w/w, about 0.2% w/w, about 0.3% w/w, about 0.4% w/w, about 0.5% w/w, about 0.6% w/w, about 0.7% w/w, about 0.8% w/w, about 0.9% w/w, about 1% w/w, or about 2% w/w antioxidant. In embodiments, the formulations described herein comprise about 0.2% w/w antioxidant. In embodiments, the formulations described herein comprise about 0.03% w/w antioxidant. In embodiments, the formulations described herein comprise about 1.2% w/w antioxidant.
- In embodiments, the antioxidant is alpha tocopherol. Alpha Tocopherol is a derivative if Vitamin E. It is commonly used as an antioxidant in pharmaceutical formulations. In embodiments, the formulations described herein comprise about 0.2% w/w alpha tocopherol. In embodiments, the formulations described herein comprise about 0.03% w/w alpha tocopherol.
- In embodiments, the antioxidant is BHT. BHT is a crystalline antioxidant commonly used in pharmaceutical formulations.
- In embodiments, the antioxidant is BHA. BHA is a crystalline antioxidant commonly used in pharmaceutical formulations.
- In embodiments, the formulations comprise one or more pH modulating agents. A pH modulating agents is any agent utilized to modulate the pH of a formulation. In embodiments, the pH modulating agent is a buffer.
- In embodiments, the pH modulating agent is sodium hydroxide. Sodium hydroxide is an alkali commonly used as a pH adjusting agent. In embodiments, the formulations described herein comprise from about 0.1% w/w to about 5% w/w sodium hydroxide, for example, about 0.1%, about 0.2% w/w, about 0.3% w/w, about 0.4% w/w, about 0.5% w/w, about 0.6% w/w/, about 0.7% w/w, about 0.8% w/w, about 0.9% w/w, about 1% w/w, about 1.5% w/w, about 2% w/w, about 2.5% w/w, about 3% w/w, about 3.5% w/w, about 4% w/w, about 4.5% w/w, or about 5% w/w sodium hydroxide. In embodiments, the formulations comprise about 1.5% w/w sodium hydroxide.
- In embodiments, the pH modulating agent is PBS. PBS is a buffer solution comprising of Sodium chloride, Potassium chloride, Disodium phosphate and Monopotassium phosphate. The pH of PBS is 7.4.
- In embodiments, the formulations comprise a chelating agent. In embodiments, the chelating agent is EDTA. EDTA is a commonly used as chelating agent in pharmaceutical formulations. A chelating agent “mops” up free radicals therefore enhancing the stability of a pharmaceutical formulation.
- In embodiments, the formulations comprise one or more pharmaceutically solvents or cosolvents. The terms “solvent” and “cosolvent” are used to refer to the liquid carrier used in formulations comprising the microparticles described herein.
- Liquid carriers can be used in preparing solutions, suspensions, emulsions, syrups, elixirs and pressurized compounds. The active ingredient can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats. The liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators.
- Such pharmaceutically acceptable solvent (or carriers) can be aqueous or non-aqueous solutions, suspensions and emulsions. Examples of non-aqueous carriers include, but are not limited to, propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
- Examples of aqueous carriers include, but are not limited to, water, ethanol, alcoholic/aqueous solutions, glycerol, emulsions or suspensions, including saline and buffered media. Oral carriers can be elixirs, syrups, capsules, tablets and the like.
- Liquid carriers include, but are not limited to, water (partially containing additives as above, e.g. cellulose derivatives), alcohols (including monohydric alcohols and polyhydric alcohols, e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil).
- In embodiments, water is a cosolvent for formulations comprising a copolymer of methacrylic acid and methyl methacrylate.
- In embodiments, acetone is a cosolvent or solvent for formulations comprising HPMCAS.
- Cellulose polymers are hard to dissolve to yield solutions, more toxic solvents such as DMSO can dissolve HPMCAS however the trouble comes when having to reduce the solvent concentration to acceptable levels.
- In embodiments, ethanol is a cosolvent for formulations comprising a copolymer of methacrylic acid and methyl methacrylate. Ethanol is capable of solubilizes L100 completely but only forms suspensions of S100. Addition of water to a S100 ethanol suspension yields a clear solution.
- The microparticles may also be coated with one or more extended release polymers. Extended release polymers may be combined with the pH-dependent release polymers, or the extended release polymers may be used without the pH-dependent release polymers. When one or more extended release polymers are combined with one or more pH-dependent release polymers, the polymers may be present as a mixture (e.g., in the same layer disposed over the drug or in a matrix), or the polymers may be applied in separate layers.
- In embodiments, extended release may be achieved by appropriately coating a drug-containing component with one or more suitable extended release polymers (also referred to as a controlled release polymer or rate-controlling polymer) or embedding the drug in a matrix comprising one or more suitable extended release polymers. In embodiments, the extended release polymer may be a pharmaceutically acceptable water-insoluble polymers (also referred to as hydrophobic polymers), pharmaceutically acceptable water-soluble polymers (also referred to as hydrophilic polymers), pharmaceutically acceptable gastrosoluble polymers, pharmaceutically acceptable enteric polymers (also referred to as pH-dependent release polymers), and combinations thereof.
- Non-limiting examples of pharmaceutically acceptable water-insoluble polymers include acrylic polymers, methacrylic acid polymers, acrylic copolymers, such as a methacrylic acid-ethyl acrylate copolymer available under the trade name of EUDRAGIT® (type L, RL, RS and NE30D), and their respective esters, zein, waxes, shellac and hydrogenated vegetable oil, cellulose derivatives, such as ethyl cellulose, cellulose acetate, cellulose acetate butyrate, and the like.
- Non-limiting examples of pharmaceutically acceptable water-soluble polymers include homopolymers and copolymers of N-vinyl lactams, including homopolymers and copolymers of N-vinyl pyrrolidone, e.g. polyvinylpyrrolidone (PVP), copolymers of N-vinyl pyrrolidone and vinyl acetate or vinyl propionate, cellulose esters and cellulose ethers, in particular methylcellulose and ethylcellulose, hydroxyalkylcelluloses, in particular hydroxypropylcellulose, hydroxyalkylalkylcelluloses, and hydroxypropylmethylcellulose, cellulose phthalates, succinates, butyrates, or trimellitates, in particular cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose succinate, and hydroxypropylmethylcellulose acetate succinate; high molecular polyalkylene oxides such as polyethylene oxide and polypropylene oxide and copolymers of ethylene oxide and propylene oxide, polyacrylates and polymethacrylates such as methacrylic acid/ethyl acrylate copolymers, methacrylic acid/methyl methacrylate copolymers, butyl methacrylate/2-dimethylaminoethyl methacrylate copolymers, poly(hydroxyalkyl acrylates), poly(hydroxyalkyl methacrylates), polyacrylamides, vinyl acetate polymers such as copolymers of vinyl acetate and crotonic acid, partially hydrolyzed polyvinyl acetate (also referred to as partially saponified “polyvinyl alcohol”), polyvinyl alcohol, polyethylene glycol oligo- and polysaccharides such as carrageenans, galactomannans and xanthan gum, or mixtures of one or more thereof.
- Non-limiting examples of gastrosoluble polymers include maltrin, an aminoalkyl methacrylate copolymer available under the trade name of EUDRAGIT® (type E100 or EPO), polyvinylacetal diethylaminoacetate e.g., AEA® available from Sankyo Company Limited, Tokyo (Japan), and the like.
- Non-limiting examples of such enteric polymers include carboxymethylethylcellulose, cellulose acetate phthalate (CAP), cellulose acetate succinate, methylcellulose phthalate, hydroxymethylethylcellulose phthalate, hydroxypropylmethylcellulose phthalate (HPMCP), hydroxypropylmethylcellulose acetate succinate (HPMCAS), polyvinyl alcohol phthalate, polyvinyl butyrate phthalate, polyvinyl acetal phthalate (PVAP), a copolymer of vinyl acetate/maleic anhydride, a copolymer of vinylbutylether/maleic anhydride, a copolymer of styrene/maleic acid monoester, a copolymer of methyl acrylate/methacrylic acid, a copolymer of styrene/acrylic acid, a copolymer of methyl acrylate/methacrylic acid/octyl acrylate, a copolymer of methacrylic acid/methyl methacrylate, cellulose acetate hexahydrophthalate, hydroxypropyl methylcellulose hexahydrophthalate, hydroxypropyl methylcellulose phthalate, cellulose propionate phthalate, cellulose acetate maleate, cellulose acetate trimellitate, cellulose acetate butyrate, cellulose acetate propionate, methacrylic acid/methacrylate polymer (
acid number 300 to 330 and also known as EUDRAGIT L), methacrylic acid-methyl methacrylate copolymer, ethyl methacrylate-methylmethacrylate-chlorotrimethylammonium ethyl methacrylate copolymer, and the like, and combinations comprising one or more of the foregoing enteric polymers. Other examples include natural resins, such as shellac, SANDARAC, copal collophorium, and combinations comprising one or more of the foregoing polymers. Yet other examples of enteric polymers include synthetic resin bearing carboxyl groups. The term “enteric polymer” as used herein is defined to mean a polymeric substance that when used in an enteric coat formulation, is substantially insoluble and/or substantially stable under acidic conditions at a pH of less than about 5 and which are substantially soluble or can decompose under conditions exhibiting a pH of about 5 or more. - Non-limiting examples of hydrophilic polymers include hydroxypropyl celluloses (HPC), hydroxypropyl methylcelluloses, methylcelluloses, polyethylene oxides, sodium carboxymethyl celluloses, and the like, or combinations thereof.
- In some embodiments, the delayed release coating may comprise about 10 wt % to about 95 wt % of any of pharmaceutically acceptable polymers listed above (e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, and about 95%, inclusive of all values and subranges therebetween) and about 5 wt % to about 60 wt % plasticizer (e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, inclusive of all values and subranges therebetween) based on the total weight of the polymer coating. The relative proportions of ingredients, notably the ratio of the enteric polymer to plasticizer can be varied according to methods known to those of skill in the art of pharmaceutical formulation.
- The microparticulates described herein may be formulated in any suitable formulation. In some embodiments, the formulation may be, but not limited to, an oral solution, an oral suspension, a formulation comprising granules, a formulation comprising sprinkles to be mixed with food, a compressed tablet, a mucoadhesive gel, a tablet, a powder, a liquid gel capsule, a solid powder filled capsule, an extrudate, a nasal spray or an injectable formulation.
- In embodiments, the pharmaceutical compositions of the present disclosure, comprise at least one pharmaceutically acceptable carrier, diluent, and/or excipient. Pharmaceutically acceptable carriers, diluents or excipients include without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier.
- Suitable pharmaceutically acceptable carriers include, but are not limited to, inert solid fillers or diluents and sterile aqueous or organic solutions. Pharmaceutically acceptable carriers for liquid compositions are well known to those skilled in the art and include, but are not limited to, aqueous and non-aqueous solutions. Pharmaceutically acceptable carriers can be aqueous or non-aqueous solutions, suspensions and emulsions. Examples of non-aqueous solvents suitable for use in the present application include, but are not limited to, propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers suitable for use in the present application include, but are not limited to, water, ethanol, alcoholic/aqueous solutions, glycerol, emulsions or suspensions, including saline and buffered media.
- Liquid carriers suitable for use in the present application include, but are not limited to, water, alcohols (including monohydric alcohols and polyhydric alcohols, e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil).
- Liquid carriers suitable for use in the present application can be used in preparing solutions, suspensions, emulsions, syrups, elixirs and pressurized compounds. The active ingredient can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats. The liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators.
- Solid carriers suitable for use in the present application include, but are not limited to, inactive substances such as lactose, starch, glucose, methyl-cellulose, magnesium stearate, dicalcium phosphate, mannitol and the like. A solid carrier can further include one or more substances acting as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders or tablet-disintegrating agents; it can also be an encapsulating material. In powders, the carrier can be a finely divided solid which is in admixture with the finely divided active compound. In tablets, the active compound is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. The powders and tablets may contain up to 99% of the active compound. Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, polyvinylpyrrolidone, low melting waxes and ion exchange resins. A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free flowing form such as a powder or granules, optionally mixed with a binder (e.g., povidone, gelatin, hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (e.g., sodium starch glycolate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose) surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally coated or scored and may be formulated so as to provide delayed of the active ingredient therein using, for example, one or more pH dependent release polymers described herein in varying proportions to provide the desired release profile. Tablets provided with a coating comprising a pH dependent release polymer provide releases in parts of the gut other than the stomach.
- Carriers suitable for use in the present application can be mixed as needed with disintegrants, diluents, granulating agents, lubricants, binders and the like using conventional techniques known in the art. The carriers can also be sterilized using methods that do not deleteriously react with the compounds, as is generally known in the art.
- Diluents may be added to the formulations described herein. Diluents increase the bulk of a solid pharmaceutical composition and/or combination, and may make a pharmaceutical dosage form containing the composition and/or combination easier for the patient and care giver to handle. In various embodiments, diluents for solid compositions include, for example, microcrystalline cellulose (e.g., AVICEL), microfine cellulose, lactose, starch, pregelatinized starch, calcium carbonate, calcium sulfate, sugar, dextrates, dextrin, dextrose, dibasic calcium phosphate dihydrate, tribasic calcium phosphate, kaolin, magnesium carbonate, magnesium oxide, maltodextrin, mannitol, polymethacrylates (e.g., EUDRAGIT®), potassium chloride, powdered cellulose, sodium chloride, sorbitol, and talc, and/or mixtures of any of the foregoing. Specific examples of: microcrystalline cellulose include those sold under the Trademark Avicel (FMC Corp., Philadelphia, Pa.), for example, Avicel™ pH101, Avicel™ pH102 and Avicel™ pH112; lactose include lactose monohydrate, lactose anhydrous and Pharmatose DCL21; dibasic calcium phosphate includes Emcompress.
- Lubricants are used to facilitate tablet manufacture, promoting powder flow and preventing particle capping (i.e., particle breakage) when pressure is relieved. Useful lubricants include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, glyceryl behenate, talc, colloidal silicon dioxide such as
Aerosil™ 200, mineral oil (in PEG), hydrogenated vegetable oil (e.g., comprised of hydrogenated and refined triglycerides of stearic and palmitic acids), and combinations thereof. - Binders are used to impart cohesive qualities to a tablet, and thus ensure that the tablet or tablet layer remains intact after compression. Suitable binder materials include, but are not limited to, starch (including corn starch and pregelatinized starch), gelatin, sugars (including sucrose, glucose, dextrose and lactose), polyethylene glycol, polyvinyl alcohol, waxes, and natural and synthetic gums, e.g., acacia sodium alginate, polyvinylpyrrolidone, cellulosic polymers (including hydroxypropyl cellulose, hydroxypropyl methylcellulose, methyl cellulose, microcrystalline cellulose, ethyl cellulose, hydroxyethyl cellulose, and the like), and Veegum, and combinations thereof. Examples of polyvinylpyrrolidone include povidone, copovidone and crospovidone.
- Fillers include, for example, materials such as silicon dioxide, titanium dioxide, alumina, talc, kaolin, powdered cellulose, microcrystalline cellulose, urea, sodium chloride, as well as saccharides, or combinations thereof Any suitable saccharide may be used in the composition of the present invention. As used herein, the “saccharides” used in the invention include sugar alcohols, monosaccharides, disaccharides, and oligosaccharides. Exemplary sugar alcohols include, but not limited to, xylitol, mannitol, sorbitol, erythritol, lactitol, pentitol, and hexitol. Exemplary monosaccharides include, but are not limited to, glucose, fructose, aldose and ketose. Exemplary disaccharides include, but are not limited to, sucrose, isomalt, lactose, trehalose, and maltose. Exemplary oligosaccharides include, but are not limited to, fructo-oligosaccharides, inulin, galacto-ologosaccharides, and mannan-oligosaccharides. In some embodiments, the saccharide is sorbitol, mannitol, or xylitol. In some embodiments, the saccharide is sorbitol. In some embodiments, the saccharide is sucrose.
- Disintegrants are used to facilitate disintegration of the tablet, thereby increasing the erosion rate relative to the dissolution rate, and are generally starches, clays, celluloses, algins, gums, or crosslinked polymers (e.g., crosslinked polyvinyl pyrrolidone). Other non-limiting examples of suitable disintegrants include, for example, lightly crosslinked polyvinyl pyrrolidone, corn starch, potato starch, maize starch and modified starches, croscarmellose sodium, crospovidone, sodium starch glycolate, and combinations and mixtures thereof.
- The cannabinoid-containing microparticulate may be formulated in any suitable form in which the pH dependent release polymer(s) substantially prevents release of cannabinoid in the acidic environment of the stomach, such as, but not limited to, drug-coated core particles, solid blends comprising the drug, mini-tablets, microcapsules, pellets, microspheres, microemulsion, and matrices. In embodiments, the microparticulate is in the form of particles that contain the cannabinoid layered on the core.
- The core may comprise different oxides, celluloses, organic polymers and other materials, alone or in mixtures, or water soluble seeds comprising different inorganic salts, sugars, nonpareil cores and other materials, alone or in mixtures. In embodiments, the core may be a sphere comprising sugar, microcrystalline cellulose (MCC), polyol, carnauba wax, silica, lactose-starch, or lactose-cellulose. In embodiments, the core may be a buffer crystal or an encapsulated buffer crystal, such as calcium carbonate, sodium bicarbonate, fumaric acid, tartaric acid, etc. Buffer crystals are useful to alter the microenvironment.
- In embodiments, the microparticles may be prepared by rotogranulation, high-shear granulation, spray congealing, extrusion-spheronization and/or compression of the cannabinoid, and one or more excipients described herein (e.g., pH dependent release polymer).
- The pH dependent release polymer may be applied by spraying a solution containing the component (e.g., dispersing or solution containing the drug or enteric polymer) using e.g., a fluid bed coater.
- In embodiments, the microparticulate is in the form of a matrix. A matrix refers to a composition in which the cannabinoid is distributed or dispersed in one or more pH dependent release polymers.
- The size of the microparticles of the disclosure may be selected to improve palatability. Large particles can have a gritty or rough feeling, while smaller particles were discovered to have improved organoleptic properties. In some embodiments, the microparticles of the present disclosure have a particle size less than about 300 μm, e.g., less than about 250 μm, less than 200 μm, e.g., about 200 μm, about 150 μm, about 100 μm, or about 50 μm or less, including all values ranges in between. In some embodiments, the microparticles described herein have a particle size from about 1 μm to 200 μm, about 1 μm to about 100 μm, about 1 μm to about 50 μm, about 1 μm to about 25 μm, or from about 5 μm to about 10 μm including all values ranges in between. In some embodiments, the microparticles described herein have a particle size from about 5 μm to about 10 μm
- The pharmaceutical formulation of the present invention may be prepared by any well-known methods in the art, such as mixing, spray-drying, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, fluid-bed coating, or lyophilizing processes. As mentioned above, the compositions of the present disclosure may include one or more pharmaceutically acceptable carriers such as excipients and adjuvants that facilitate processing of active molecules into preparations for pharmaceutical use.
- Pharmaceutical compositions for oral use may be obtained as solid excipients, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable adjuvants, if desired, to obtain tablets or dragee cores. Such oral pharmaceutical compositions may also be prepared by milling or melt extrusion. Suitable excipients may be any of those disclosed herein and, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose formulation such as maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropyl methylcellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP) formulation. Also, disintegrating agents may be employed, such as cross-linked polyvinylpyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Wetting agents, such as sodium dodecyl sulfate and the like, may be added.
- Different forms of administration may be utilized to deliver the formulations described herein, including (but not limited to) oral, parenteral, inhalation topical. The term parenteral as used here includes subcutaneous, intravenous, intramuscular, and intraarterial injections with a variety of infusion techniques.
- The pH dependent release polymers prevent release of the cannabinoid (or cannabinoids) in the acidic environment of the stomach, and enable release in the pH of the lower intestines (after the drug traverse the stomach) or the colon. In the intestines is roughly pH 6, the colon is roughly pH 7.
- In embodiments, drug release is measured as described in Example 2.
- The USP 711 Dissolution test may be used to measure the dissolution (release) of the cannabinoid from the microparticle under different conditions. Examples of such tests include USP Apparatus 1 (basket) or 2 (paddle). The USP 711 Dissolution test is described in, e.g., The United States Pharmacopeial Convention, 2011. For example, the USP Apparatus 1 uses the following 2-stage buffer conditions: Paddle, 100RPM, Stage-1: 750 mL 0.1N HC1 (2 h) and equilibrate to 37±0.5° C.; Stage-2: Add 250 mL of 0.2 M tribasic sodium phosphate to make pH 6.8 (30 minute) and equilibrate to 37±0.5° C.
- In embodiments, the microparticles and formulations described herein display minimal (e.g., less than 10% or less than 5%) in the acid phase (e.g., HCl 0.1N) of the USP test but release occurs in the buffer phase (pH=6.8) of the USP test. Release in the buffer phase may be greater than about 90% (e.g. about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 100%). In embodiments, release is measured within about 30 minutes, about 40 minutes, about 50 minutes, 1 hour, about 1.1 hours, about 1.2 hours, about 1.3 hours, about 1.4 hours, 1.5 hours, about 1.6 hours, about 1.7 hours, about 1.8 hours, about 1.9 hours, 2 hours, about 2.1 hours, about 2.2 hours, about 2.3 hours, about 2.4 hours, 2.5 hours, about 2.6 hours, about 2.7 hours, about 2.8 hours, about 2.9 hours, 3 hour, or more.
- In embodiments, substantially no drug (e.g., less than 10%, or less than 5%) is released within about 30 minutes, about 45 minutes, about 50 minutes, about 1 hour, about 1.1 hours, about 1.2 hours, about 1.3 hours, about 1.4 hours, 1.5 hours, about 1.6 hours, about 1.7 hours, about 1.8 hours, about 1.9 hours, 2 hours, about 2.1 hours, about 2.2 hours, about 2.3 hours, about 2.4 hours, 2.5 hours, about 2.6 hours, about 2.7 hours, about 2.8 hours, about 2.9 hours, 3 hour, or more.
- In embodiments, after the initial delay period in which substantially no drug is released, the remainder of the drug is released within about 30 minutes, about 45 minutes, about 50 minutes, about 1 hour, about 1.1 hours, about 1.2 hours, about 1.3 hours, about 1.4 hours, 1.5 hours, about 1.6 hours, about 1.7 hours, about 1.8 hours, about 1.9 hours, 2 hours, about 2.1 hours, about 2.2 hours, about 2.3 hours, about 2.4 hours, 2.5 hours, about 2.6 hours, about 2.7 hours, about 2.8 hours, about 2.9 hours, 3 hours, about 3.1 hours, about 3.2 hours, about 3.3 hours, about 3.4 hours, 3.5 hours, about 3.6 hours, about 3.7 hours, about 3.8 hours, about 3.9 hours, 4 hours, about 4.1 hours, about 4.2 hours, about 4.3 hours, about 4.4 hours, 4.5 hours, about 4.6 hours, about 4.7 hours, about 4.8 hours, about 4.9 hours, 5 hours, about 5.1 hours, about 5.2 hours, about 5.3 hours, about 5.4 hours, 5.5 hours, about 5.6 hours, about 5.7 hours, about 5.8 hours, about 5.9 hours, 6 hours, about 6.1 hours, about 6.2 hours, about 6.3 hours, about 6.4 hours, 6.5 hours, about 6.6 hours, about 6.7 hours, about 6.8 hours, about 6.9 hours, 7 hours, or more.
- Embodiment 1. A microparticulate cannabinoid containing formulation comprising one or more cannabinoids and a pH dependent release polymer.
- Embodiment 2. A microparticulate cannabinoid containing formulation according to embodiment 1, wherein the one or more cannabinoids are taken from the group consisting of: cannabichromene (CBC), cannabichromenic acid (CBCV), cannabidiol (CBD), cannabidiolic acid (CBDA), cannabidivarin (CBDV), cannabigerol (CBG), cannabigerol propyl variant (CBGV), cannabicyclol (CBL), cannabinol (CBN), cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarin (THCV) and tetrahydrocannabivarinic acid (THCVA).
- Embodiment 3. A microparticulate cannabinoid containing formulation according to embodiment 1, wherein the pH dependent release polymer is taken from the group consisting of: a copolymer of methacrylic acid and methacrylate, a copolymer of methacrylic acid and methyl methacrylate (Eudragit), a copolymer of methacrylic acid and ethylacrylate, hydroxypropyl methyl cellulose acetate succinate (HPMCAS), hydroxypropyl methyl cellulose phthalate (HPMCP), polyvinyl acetate phthalate (PVAP), a copolymer of methyl vinyl ether and maleic anhydride, cellulose acetate phthalate (CAP), cellulose acetate butyrate (CAB), cellulose acetate trimellitate (CAT), cellulose acetate succinate (CAS), ethyl cellulose, methyl cellulose, shellac, gellan gum, zein, alginic acid and waxes.
- Embodiment 4. A microparticulate cannabinoid containing formulation according to embodiment 3, wherein the pH dependent release polymer is HPMCAS or Eudragit.
- Embodiment 5. A microparticulate cannabinoid containing formulation according to embodiment 4, wherein the pH dependent release polymer is taken from the group consisting of: HPMCAS-L; HPMCAS-M; HPMCAS-H; Eudragit S100; Eudragit L100.
- Embodiment 6. A microparticulate cannabinoid containing formulation according to any of preceding claims, further comprising one or more wetting agents.
- Embodiment 7. A microparticulate cannabinoid containing formulation according to embodiment 6, wherein the one or more wetting agents are taken from the group consisting of: poloxamers; poloxamer 188; and sodium carbonate.
- Embodiment 8. A microparticulate cannabinoid containing formulation according to any of preceding embodiment, further comprising one or more suspending agents.
- Embodiment 9. A microparticulate cannabinoid containing formulation according to embodiment 8, wherein the one or more suspending agents are taken from the group consisting of: polysorbate 20; glycerol; and xanthan gum.
- Embodiment 10. A microparticulate cannabinoid containing formulation according to any of the preceding embodiment, further comprising one or more pH buffers.
- Embodiment 11. A microparticulate cannabinoid containing formulation according to claim 10, wherein the one or more pH buffers are taken from the group consisting of: citric acid; sodium phosphate dibasic; sodium hydroxide; and phosphate buffered saline.
- Embodiment 12. A microparticulate cannabinoid containing formulation according to any of the preceding embodiment, further comprising one or more preservatives.
- Embodiment 13. A microparticulate cannabinoid containing formulation according to embodiment 12, wherein the one or more preservatives are taken from the group consisting of: potassium sorbate; and sodium benzoate.
- Embodiment 14. A microparticulate cannabinoid containing formulation according to any of the preceding embodiments, further comprising one or more antioxidants.
- Embodiment 15. A microparticulate cannabinoid containing formulation according to embodiments 14, wherein the one or more antioxidants are taken from the group consisting of: butylated hydroxyltoluene; butylated hydroxylanisole; alpha-tocopherol (Vitamin E); ascorbyl palmitate; ascorbic acid; sodium ascorbate; ethylenediamino tetraacetic acid; cysteine hydrochloride; citric acid; sodium citrate; sodium bisulfate; sodium metabisulfite; lecithin; propyl gallate; sodium sulfate; monothioglycerol and mixtures thereof.
- Embodiment 16. A microparticulate cannabinoid containing formulation according to any of the preceding embodiments, further comprising one or more solvents.
- Embodiment 17. A microparticulate cannabinoid containing formulation according to embodiment 16, wherein the one or more solvents is taken from the group consisting of: water; ethanol and acetone.
- Embodiment 18. A microparticulate cannabinoid containing formulation according to any of the preceding embodiments, wherein the one or more cannabinoids are present in an amount of from about 10 to 50 wt %, based on the pharmaceutical formulation, preferably from about 10 to 30 wt %, more preferably from about 20 to 30 wt %.
- Embodiment 19. A microparticulate cannabinoid containing formulation according to any of the preceding embodiments, wherein the formulation is an oral dosage form selected from the group consisting of: a mucoadhesive gel; a tablet; a powder; a liquid gel capsule; a solid capsule; an oral solution; an oral suspension; a granulate; and an extrudate.
- Embodiment 20. A microparticulate cannabinoid containing formulation according to any of the preceding embodiments, for use in the treatment of conditions requiring the administration of a neuroprotectant or anti-convulsive medication.
- Embodiment 21. A microparticulate cannabinoid containing formulation for use according to embodiment 20, for use in the treatment of seizures.
- Embodiment 22. A microparticulate cannabinoid containing formulation for use according to embodiment 20, for use in the treatment of Dravet syndrome, Lennox Gastaut syndrome, myoclonic seizures, juvenile myoclonic epilepsy, refractory epilepsy, schizophrenia, juvenile spasms, West syndrome, infantile spasms, refractory infantile spasms, tuberous sclerosis complex, brain tumours, neuropathic pain, cannabis use disorder, post-traumatic stress disorder, anxiety, early psychosis, Alzheimer's disease, and autism.
- Embodiment 23. A method of preparing a microparticulate cannabinoid containing formulation according to any of the preceding embodiments, comprising spray drying the formulation.
- Embodiment 24. A method of preparing a microparticulate cannabinoid containing formulation according to any of the preceding embodiments, comprising:
-
- 1. Preparing a mixture of the cannabinoid and pH dependent release polymer;
- 2. Producing an intermediate powder blend;
- 3. Processing the intermediate powder blend through a hot melt extruder
- 4. Pelleting the extrudates; and
- 5. Milling the pellets to 250-500 μm.
- Embodiment 25. A method according to embodiment 24, wherein an antioxidant is added after step (i).
- Embodiment 26. A method according to embodiment 24, wherein a disintegrant is added after step (i).
- Embodiment 27. A method of treating a subject comprising administering a microparticulate cannabinoid containing formulation according to any of claims 1 to 19 to the subject.
- Embodiment 29. A method according to embodiment 27, wherein the subject is a human.
- Embodiment 30. The microparticulate or unit dose according to any of the preceding embodiments, wherein the microparticulate or unit dose is formulated as a mucoadhesive gel; a tablet; a powder; a liquid gel capsule; a solid capsule; an oral solution; an oral suspension; a granulate; an extrudate; or a sprinkle.
- In embodiments, the microparticulate cannabinoid formulation according to the invention is able to minimize cannabinoid metabolism.
- Polymeric microspheres have the potential to reduce the metabolism via two different mechanisms. First, microparticles with a size ranging from 5-10 μM can be engulfed as a whole particle by the intestinal cell wall therefore protecting the entrapped drug from degradative enzymes.
- Secondly controlled release polymers can be used to deliver the entrapped drug to different parts of the GI tract such as the colon; this turn may alter the metabolic profile of the entrapped cannabinoid.
- The following are representative cannabinoid microspheres. Here the active agent is provided as cannabidiol, however the microspheres may be produced using any natural or synthetic cannabinoid, their salts or prodrugs.
- 20% CBD HPMCAS-L 5% P188 Microspheres
-
CBD 20 (% w/w) HPMCAS-L 74.8 (% w/w) Kolliphor P188 5 (% w/w) Alpha Tocopherol 0.2 (% w/w) - 15% HPMCAS-M 5% P188 Microspheres
-
CBD 15 (% w/w) HPMCAS-M 79.8 (% w/w) Kolliphor P188 5 (% w/w) Alpha Tocopherol 0.2 (% w/w) - 20% CBD L100 Microspheres
-
CBD 20 (% w/w) Eudragit L100 78.28 (% w/w) Calcium Disodium EDTA 1.52 (% w/w) Alpha Tocopherol 0.2 (% w/w) - 15% CBD S100 5% P188 Microspheres
-
CBD 15 (% w/w) Eudragit L100 78.28 (% w/w) Kolliphor P188 5 (% w/w) Sodium Hydroxide 1.52 (% w/w) Alpha Tocopherol 0.2 (% w/w) - 15% CBD S100 20% P188 Microspheres
-
CBD 15 (% w/w) Eudragit L100 63.28 (% w/w) Kolliphor P188 20 (% w/w) Sodium Hydroxide 1.52 (% w/w) Alpha Tocopherol 0.2 (% w/w) - As is described above, the cannabinoid was added at a concentration of 15% and 20% to produce the microspheres, however concentrations may be used of from 0.1% to 30% cannabinoid. The concentration of the cannabinoid will depend on the cannabinoid used and the therapeutic indication for which the microsphere is to be used to treat.
- Tables 2 to 6 below illustrate example formulations suitable for colonic or enteric release. Here the cannabinoid microspheres described above have been formulated to produce a suspension. The cannabinoids used in these example formulations are cannabidiol (CBD) or a combination of highly purified CBD and a CBD BDS, here there is a mixture of major cannabinoids in the formulation, namely CBD and THC in addition to the other minor cannabinoids and non-cannabinoids which occur in a BDS. Clearly other cannabinoids or combinations of purified and BDS can be utilized to prepare colonic or enteric release formulations.
-
TABLE 2 Example formulation for 30 mg/mL CBD Enteric Release (ER) suspension Composition Compositions Component (% w/w) (mg/mL) Cannabidiol (CBD) 3 30.00 AQOAT HPMCAS-L 11.22 112.20 Kolliphor P188 0.75 7.50 Alpha-Tocopherol 0.03 0.30 Glycerol 20 200.00 Xanthan Gum 0.2 2.00 Citric Acid 0.25 2.50 Sodium Phosphate Dibasic 0.12 1.20 Potassium Sorbate 0.10 1.00 Sodium Benzoate 0.10 1.00 Ascorbic Acid 0.20 2.00 Water Q.S to 100% Q.S. to 100% -
TABLE 3 Example formulation for 25 mg/mL CBD Colonic Release (CR) suspension 5% P188 Composition Compositions Component (% w/w) (mg/mL) Cannabidiol (CBD) 2.50 25.00 Eudragit S100 13.00 130.00 Kolliphor P188 0.75 7.50 Alpha-Tocopherol 0.03 0.30 Sodium Hydroxide 0.25 2.50 Glycerol 20.00 200.00 Xanthan Gum 0.20 2.00 Citric Acid 1 10.00 Sodium Phosphate Dibasic 0.48 4.80 Potassium Sorbate 0.10 1.00 Sodium Benzoate 0.10 1.00 Ascorbic Acid 0.20 2.00 Water Q.S to 100% Q.S. to 100% -
TABLE 4 Example formulation for 25 mg/mL CBD Colonic Release (CR) suspension 20% P188 Composition Compositions Component (% w/w) (mg/mL) Cannabidiol (CBD) 2.50 25.00 Eudragit S100 10.75 107.50 Kolliphor P188 3 30 Alpha-Tocopherol 0.03 0.30 Sodium Hydroxide 0.25 2.50 Glycerol 20.00 200.00 Xanthan Gum 0.20 2.00 Citric Acid 1 10.00 Sodium Phosphate Dibasic 0.48 4.80 Potassium Sorbate 0.10 1.00 Sodium Benzoate 0.10 1.00 Ascorbic Acid 0.20 2.00 Water Q.S to 100% Q.S. to 100% -
TABLE 5 Example formulation for 24 mg/mL CBD 0.6 mg/mL THC Enteric Release (ER) suspension Composition Compositions Component (% w/w) (mg/mL) CBD Pure 1 10.00 CBD BDS 2 20.00 AQOAT HPMCAS-L 11.22 112.2 Kolliphor P188 0.75 7.50 Alpha-Tocopherol 0.03 0.30 Glycerol 20 200.00 Xanthan Gum 0.2 2.00 Citric Acid 0.25 2.50 Sodium Phosphate Dibasic 0.12 1.20 Potassium Sorbate 0.10 1.00 Sodium Benzoate 0.10 1.00 Ascorbic Acid 0.20 2.00 Water Q.S to 100% Q.S to 100% -
TABLE 6 Example formulation for 20 mg/mL CBD 0.5 mg/mL THC Colonic Release (CR) suspension Composition Compositions Component (% w/w) (mg/mL) CBD Pure 0.825 8.25 CBD BDS 1.665 16.67 Eudragit S100 13.00 130.00 Kolliphor P188 0.75 7.50 Alpha-Tocopherol 0.03 0.30 Sodium Hydroxide 0.25 2.5 Glycerol 20.00 200.00 Xanthan Gum 0.20 2.00 Citric Acid 1 10.00 Sodium Phosphate Dibasic 0.48 4.80 Potassium Sorbate 0.10 1 Sodium Benzoate 0.10 1 Ascorbic Acid 0.20 2 Water Q.S to 100% Q.S. to 100% - The formulations as described above in Tables 2 to 5 are suitable for administration as a medicament. The medicament may be an oral solution, an oral suspension, a formulation comprising granules, a formulation comprising sprinkles to be mixed with food, a compressed tablet, a mucoadhesive gel, a tablet, a powder, a liquid gel capsule, a solid powder filled capsule, an extrudate, a nasal spray or an injectable formulation. Different forms of administration may be utilized, including (but not limited to) oral, parenteral, inhalation topical.
- When provided as a suspension or an oral solution, the formulation may be dispensed in bottles optionally with syringes such that an accurate dose may be provided to the patient based on an amount of cannabinoid (in mg) per weight of patient (in kg).
- In addition, the formulation may be prepared in alternative means such as a spray, a drink or in a small volume such as 30 mL of solution that is administered to the patient before swallowing.
- The Examples that follow describe the development of the formulations comprising cannabinoid microspheres. Such formulations are designed to release their active agent in either the intestines (enteric) or in the colon. Enteric or colonic delivery of cannabinoids which are known to undergo rapid metabolism to inactive metabolites in the body provides a surprisingly efficient way of drug delivery.
- In vitro experimentation assessing drug release from a polymer matrix is important to ensure drug release is achieved from a microparticle in vivo.
- Polymer films comprising of API, polymer and wetting agents (if applicable) were manufactured using a solvent casting method.
- The produced films were then hydrated in a pH 7.0 buffer and drug release from the polymer films was assessed.
- Five different polymers were assessed during drug hydration: Eudragit L100; Eudragit S100; HPMCAS-L; HPMCAS-M and HPMCAS-H.
- Two different wetting agents, Poloxamer 188 and Tween 20 were also assessed.
- Results of experimentation indicated that a wetting agent is required to aid drug release for all polymers except for the Eudragit L100 polymer. Additionally, it was found that Poloxamer 188 is a more effective wetting agent than Tween 20.
- Once hydrated the films formed turbid emulsion. The drug release from the HPMCAS-H polymer was poor at differing drug and wetting agent concentrations.
- The following drug and wetting agent concentrations were decided upon and taken forward for further development:
-
- 20% CBD; HPMCAS-L; 5% P188
- 15% CBD; HPMCAS-M; 5% P188
- 20% CBD; Eudragit L100
- 15% CBD; Eudragit S100; 20% P188
- With the inclusion of wetting agent into the polymer matrices for 3 of the 4 polymers there is a risk that drug release may occur at a pH value consistent with stomach pH. The pH of the stomach is approximately 4.0.
- Therefore, films at the above drug and wetting agent concentrations were tested for hydration in a buffer with a pH of 4.0. Drug release, as measured under USP 711, at this pH was less than 0.5% for all of the polymer systems tested showing that the inclusion of P188 as a wetting agent did not modify the pH at which the polymer matrix should release the drug as is shown in Table 7 below.
-
TABLE 7 Percentage drug release at intended and gastric pH % Drug release % Drug release Formulation at intended pH at gastric pH 20% CBD; HPMCAS-L; 5% P188 96 0 15% CBD; HPMCAS-M; 5% P188 93 0 20% CBD; Eudragit L100 96 0.3 20% CBD; Eudragit S100; 20% 95 0 P188 - It was necessary to include an antioxidant into the CBD/Polymer system as it was observed that the cannabinoid CBE-I was being formed. CBE I is an oxidation derived degradant of CBD which in turn further degrades to CBE II.
- 3 different antioxidants were screened, all at a concentration of 0.2% w/w:
-
- Alpha-Tocopherol
- Butylated Hydroxytoluene
- Butylated Hydroxyanisole
- These were included in 4 different polymer matrices each with a nominal CBD drug loading of 15%:
-
- HPMCAS-L
- HPMCAS-M
- Eudragit L100
- Eudragit S100
- Samples were manufactured and stored at 40° C./75%RH for a period of 28 days.
- Results indicated that for both HPMCAS-L and HPMCAS-M an antioxidant is required as the addition of antioxidant also significantly reduced the number of unknown degradants that were formed in the samples.
- The samples containing Eudragit L100 and Eudragit S100 behaved differently than the HPMCAS based samples. The addition of the antioxidant reduced the levels of CBE I and CBE II to below the level of quantification over the course of the study, however large quantities of THC were seen in the samples regardless of whether or not an antioxidant was present. The antioxidant had no effect on the formation of THC. This is because the degradation of CBD to THC is an acidic mechanism and not an oxidation mechanism.
- From these experiments it was concluded that all four polymer systems would benefit from the addition of an antioxidant.
- Two alternative methods of manufacture for an enteric-release and a colonic-release microparticulate formulation have been developed. Firstly, spray drying which provides a fine powder which can be further formulated into a suspension or tablet and secondly a hot melt extrusion process whereby a granulate is produced which may be used as an additive or sprinkle. The two processes are described in further detail below.
- It was determined whether it was possible to spray dry formulations comprising HPMCAS-L (Table 2) and Eudragit S100 (Table 4) containing CBD to form dry powders. Both polymers were spray dried with a nominal drug concentration of 15%.
- The HPMCAS-L was spray dried with CBD using the following conditions:
-
- Drug concentration: 15%
- Solid concentration: 5%
- Inlet temperature: 85° C.
- Outlet temperature: 55° C.
- Aspirator: 75%
- Pump: 5%
- Solvent: Acetone
- The Eudragit S100 was spray dried with CBD using the following conditions:
-
- Drug concentration: 15%
- Solid concentration: 3%
- Inlet temperature: 100° C.
- Outlet temperature: 62° C.
- Aspirator: 100%
- Pump: 5%
- Solvent: Ethanol:Water 50:50 ratio.
- The above conditions produced spray dried powders for both polymers tested showing it is possible to create spray dried powders comprising of HPMCAS and CBD and Eudragit S100 and CBD.
- Because of the chemical similarities between the different grades on HPMCAS a positive result for HPMCAS-L would indicate a positive result for the other grades. Eudragit S100 and Eudragit L100 also share similar chemical structures which would indicate that spray drying CBD with L100 would give a positive result.
- The following configuration spray dryer is preferred:
-
- Two fluid nozzles with 0.7 mm nozzle tip
- Drying gas: Nitrogen
- Negative pressure mode
- Use of High-performance cyclone instead of standard cyclone
- Long drying chamber used with waste collection attachment
- Spray drying of HPMCAS-L and HPMCAS-M was interchangeable and as such the same process could be used for HPMCAS-L and HPMCAS-M.
- Acetone was chosen as the solvent for spray drying due to its ability to solubilise cannabinoids and HPMCAS. Additionally, it is an FDA Class III solvent because of its limited toxicity. In Acetone HPMCAS dissolves to yield a fine suspension.
- A mixture of Ethanol and 0.5% w/w EDTA solution was chosen as the solvent mix for the spray drying of the Eudragit L100 polymer. Ethanol was chosen as it is a suitable solvent for cannabinoids and Eudragit L100. It is also an FDA Class III solvent because of its limited toxicity. The EDTA was required as it helped to stabilise the final CBD L100 polymer system. The Ethanol and EDTA solution were completely miscible. The solvent mix comprised of an 80:20 ratio of Ethanol to EDTA solution. Further optimisation could be performed to increase the Ethanol content further, a higher Ethanol content is advantageous because it is more volatile than water
- A mixture of Ethanol and 0.1M Sodium hydroxide was chosen as the solvent mix for the spray drying of the Eudragit S100 polymer for the reasons stated above. 0.1M NaOH was the stabiliser of choice for the S100 polymer system.
- The resulting spray dried powder generated in the experiments above can then be further formulated to provide a pharmaceutically acceptable formulation.
- The spray dried powder may be mixed with a solvent such as water or glycerol to produce a suspension which may be administered orally as a solution. The spray dried powder may alternatively be compressed into tablets of filled in capsules to be swallowed by a patient.
- An alternative means of administration of the microparticulate formulation of the invention is provided. Using the technique of holt melt extrusion a microparticulate granule is produced. Such granules may be used as an additive to food as a sprinkle. Such dosage options are of benefit to younger patients and those patients that may have difficulty swallowing a tablet.
- Hot melt extrusion is a process which uses heat and pressure to melt the polymer and active agent. It is solvent free and may increase the solubility and bioavailability of an active agent.
- The process is as follows:
- The polymer and cannabinoid are mixed together. Optionally an antioxidant and/or a distintegrant may be added after this stage. The blend is mixed to form an intermediate powder blend which is then processed through the hot melt extruder. The extrudates are then pelletised and further milled to the required size. A pellet size of 500 μm/250 μm is preferred.
- Samples of hot melt extrusion produced sprinkles were tested to determine they would release at their intended pH rather than at gastric pH and all formulations tested released ranging from 93-96% of their active at the intended pH. None released any active at gastric pH.
- The stability of the hot melt extruded polymers was tested over a 12 week period and there were no significant increase of CBD related degradants over the time period nor any changes in the particle size.
- Two different formulations prepared by spray drying and further formulating into a suspension were put into a short-term stability study as described in Table 8 below.
-
TABLE 8 Formulation and storage conditions for stability testing Formulation with Time Num- microparticulates points Storage ber containing: (days) conditions 1 30 mg/mL CBD; HPMCAS-L 0, 7, 21, 42 5° C./25° C./30° C. 2 25 mg/mL CBD; Eudragit 0, 7, 21, 42 25° C./40° C. S100, 20% P188 3 25 mg/mL CBD, Eudragit 0, 7, 21, 42 40° C. 75% RH S100, 5% P188 4 24 mg/mL CBD 0.6 mg/mL 0, 7, 28 5° C./30° C. THC HPMCAS-L - Tests were undertaken at the various time points to determine the following: appearance; cannabinoid assay; differential scanning calorimetry (DSC) and particle size via the dry dispersion method.
- In the case of formulation number 4, this formulation contains a mixture of highly purified CBD and CBD BDS. In order to determine the stability of this formulation the concentration of the major cannabinoids in the formulation, namely CBD and THC were determined along with the degradation products.
- Tables 9 to 12 below demonstrate the data obtained from the stability study.
-
TABLE 9 Stability study outcomes of a 30 mg/mL HPMCAS-L Suspension % of Active Timepoint 5° C. 25° C. 30° C. CBD Initial 100.0 100.0 100.0 1 week 97.5 98.4 97.4 3 week 100.9 99.1 98.9 6 week 101.5 101.8 101.0 CBD-C4 Initial 0.3 0.3 0.3 1 week 0.3 0.3 0.3 3 week 0.3 0.3 0.3 6 week 0.3 0.3 0.3 CBDV Initial 0.2 0.2 0.2 1 week 0.3 0.3 0.3 3 week 0.3 0.3 0.3 6 week 0.3 0.3 0.3 RRT 0.54 Initial 0.0 0.0 0.0 1 week 0.0 0.1 0.0 3 week 0.0 0.0 0.0 6 week 0.0 0.0 0.0 RRT 0.52 Initial 0.0 0.0 0.0 1 week 0.0 0.0 0.0 3 week 0.0 0.0 0.0 6 week 0.0 0.0 0.0 -
TABLE 10 Stability study outcomes of a 25 mg/mL CBD S100 with 20% p188 Suspension Timepoint % of Active (weeks) 25° C. 40° C. CBD 0 100.00 100.00 1 102.40 97.74 3 105.94 106.88 6 105.64 105.15 CBD-C4 0 0.31 0.31 1 0.31 0.30 3 0.33 0.33 6 0.32 0.32 CBDV 0 0.31 0.31 1 0.33 0.31 3 0.33 0.33 6 0.33 0.33 THC 0 0 0 1 0 0 3 0 0 6 0 0 -
TABLE 11 Stability study outcomes of a 25 mg/mL CBD S100 with 5% p188 Suspension Timepoint % of Active (weeks) 40° C. CBD 0 100.00 1 101.09 3 99.35 6 100.13 CBD-C4 0 0.30 1 0.29 3 0.31 6 0.32 CBDV 0 0.32 1 0.33 3 0.32 6 0.33 THC 0 0.00 1 0.00 3 0.00 6 <BLQ CBD-C1 0 0.05 1 0.04 3 0.05 6 0.04 -
TABLE 12 Stability study outcomes of a 24 mg/mL CBD 0.6 mg/mL THC HPMCAS-L Suspension Time point % of Active Assay (weeks) 5° C. 30° C. 65% RH CBD Initial 104.6 104.6 2 weeks 105.8 105.3 4 weeks 106.6 106.7 THC Initial 99.2 99.2 2 weeks 101.3 101.0 4 weeks 102.0 102.2 CBE I Initial 0.2 0.2 2 weeks 0.2 0.2 4 weeks 0.2 0.2 CBD-C4 Initial 0.3 0.3 2 weeks 0.3 0.3 4 weeks 0.3 0.3 CBG Initial 1.4 1.4 2 weeks 1.4 1.4 4 weeks 1.4 1.4 CBN Initial 0.1 0.1 2 weeks 0.2 0.2 4 weeks 0.1 0.1 CBC Initial 2.9 2.9 2 weeks 2.9 2.9 4 weeks 2.9 2.9 OH-CBD Initial 0.6 0.6 2 weeks 0.6 0.6 4 weeks 0.6 0.6 CBDV Initial 0.8 0.8 2 weeks 0.8 0.8 4 weeks 0.8 0.8 - The results presented in Tables 9 to 12 demonstrate that over a period of 1 month at the accelerated conditions there are no major increases in the degradants or decreases in the amount of CBD.
- In conclusion the formulations comprising microparticles of cannabinoid and a polymer are stable and allow a shelf life of 6 months.
- The different formulations from the short-term stability study as described in Example 4 above were tested to measure the particle size of the microparticles.
- In the case the formulation described in Table 15, this formulation contains a mixture of highly purified CBD and CBD BDS. I
- Tables 13 to 15 below describe these data.
-
TABLE 13 Particle size of 30 mg/mL HPMCAS-L Suspension Time point D10 (μm) D50 (μm) D90 (μm) (weeks) 5° C. 25° C. 30° C. 5° C. 25° C. 30° C. 5° C. 25° C. 30° C. 0 3.03 3.03 3.03 7.14 7.14 7.14 21.3 21.3 21.3 1 3.09 3.31 3.02 7.34 9.17 6.26 42.5 20.7 14.2 3 2.94 3.04 3.16 6.16 6.33 6.2 14.3 14.7 14.4 6 3.12 3.21 3.33 7.42 6.89 7.08 33.7 22.7 87.4 -
TABLE 14 Particle size of 25 mg/mL CBD S100 Suspension Time point D10 (μm) D50 (μm) D90 (μm) (weeks) 25° C. 40° C. 25° C. 40° C. 25° C. 40° C. 0 3.72 3.72 9.33 9.33 20.1 20.1 1 3.79 4.01 9.04 10.9 21.7 48.4 3 3.80 3.80 8.75 9.81 18.6 36.7 6 3.83 3.49 8.87 9.64 18.5 23.9 -
TABLE 15 Particle size of 24 mg/mL CBD 0.6 mg/mL THC HPMCAS-L Suspension Time point D10 (μm) D50 (μm) D90 (μm) (weeks) 25° C. 25° C. 25° C. 0 4.10 11.1 29.1 1 4.01 10.3 24.7 4 3.92 10.4 26.6 - As can be seen the particle size of the cannabinoid containing microparticulate formulations did not alter considerably over the course of the stability study meaning that during storage of the formulation there will not be any degradation of the particle size.
- In order to determine whether the colonic-release (CR) formulations detailed in Example 1 were able to provide suitable bioavailability a PK study using rats was undertaken.
- These formulations were compared with a Type I oil-based formulation.
- The active used was CBD for the Type I oil-based formulation and the colonic-release and the enteric-release formulations were tested with two different actives; CBD alone or a combination of THC and CBD.
- The design of the study was to measure the plasma pharmacokinetics of CBD and THC and their metabolites (hydroxy-CBD, carboxy CBD, hydroxy-THC and carboxy-THC) following oral administration to the rat.
- Male han wistar rats (n=3) per group were fasted prior to dosing and fed at 4 hours post dosing.
- The sampling times were: 0, 1, 2, 4, 8, 12 and 24 h post-dose. The determination of CBD, THC and their respective metabolites was performed by protein precipitation with reverse phase liquid chromatography with tandem mass spectrometric detection. The LLOQ of CBD was 1 ng/mL and all metabolites had an LLOQ of 0.5 ng/mL.
- The human equivalent dose (HED) can be estimated using the following formula:
-
- The Km for a rat is 6 and the Km for a human is 37.
- Thus, for a human a 10 mg/kg dose in a rat equates to a human dose of about 1.6 mg/kg.
- Table 16 details the bioavailability of the different formulations tested and
FIG. 1 details the AUC of the non-active metabolite of CBD, 7-COOH CBD. As can be seen in the graph in both the CBD microparticulate suspension and the suspension containing a mixture of highly purified CBD and CBD BDS there is one result which is an outlier suggesting that the actual concentration of 7-COOH CBD was much lower than the mean AUC recorded in the table. -
TABLE 16 Estimation of bioavailability (using AUC(0-t) data) Analyte Ratios Analyte Ratios AUC 0-t OH- COOH- OH- COOH- OH- COOH- OH- COOH- (H/ng/ml/mg) CBD CBD CBD CBD CBD CBD THC THC THC THC THC THC Type I (oil-based) 386 61.4 290 1 0.16 0.75 CR (CBD) 338 53.8 146 1 0.16 0.43 CR (pure CBD + CBD BDS) 187 27.6 164 1 0.15 0.88 1470 148 218 1 0.10 0.15 - The results demonstrate a significant decrease in the amount of the inactive carboxy-CBD metabolite in the colonic-release and the enteric-release formulations in comparison to the Type I oil-based formulation. This is very beneficial as it means that a lower dose of the active can be administered to enable the same effect.
- The suspension containing a mixture of highly purified CBD and CBD BDS in HPMCAS-L was taken forward into a long-term stability study as shown in Table 17. In order to determine the stability of this formulation the concentration of the major cannabinoids in the formulation, namely CBD and THC were determined along with the degradation products.
-
TABLE 17 Formulation and storage conditions for stability testing Formulation with microparticulates Time points Storage containing: (weeks) conditions 25 mg/mL CBD 0.6 mg/mL THC; 0, 3, 6, 12, 24 5° C./25° C./30° C. HPMCAS-L - Tests were undertaken at the various time points to determine the following: appearance; cannabinoid assay; and particle size via the dry dispersion method.
- Table 18 below demonstrates the data obtained from the stability study.
-
TABLE 18 Stability study outcomes of a 25 mg/mL CBD 0.6 mg/mL THC HPMCAS-L Suspension % of Active Timepoint 5° C. 25° C. 30° C. CBD Initial 100.0 100.0 100.0 3 week 100.06 101.44 101.42 6 week 98.12 96.15 96.34 12 week 99.96 98.56 98.96 24 week 99.32 98.29 97.53 THC Initial 100.00 100.00 100.00 3 week 98.19 99.74 99.83 6 week 98.36 97.93 97.50 12 week 100.34 99.14 99.57 24 week 101.12 100.17 98.62 CBE I Initial 0.30 0.31 0.30 3 week 0.31 0.31 0.31 6 week 0.31 0.32 0.31 12 week 0.30 0.30 0.30 24 week 0.31 0.32 0.30 OH-CBD Initial 0.55 0.56 0.55 3 week 0.54 0.58 0.55 6 week 0.50 0.52 0.51 12 week 0.56 0.58 0.56 24 week 0.55 0.57 0.59 CBN Initial 0.12 0.12 0.12 3 week 0.12 0.13 0.13 6 week 0.10 0.10 0.10 12 week 0.13 0.13 0.13 24 week 0.12 0.12 0.13 - The results presented in Table 18 demonstrate that over a period of 6 months at differing temperatures there are no major increases in the degradants (CBE-I, OH-CBD, CBN) or decreases in the amount of the major cannabinoids CBD or THC.
- In conclusion the formulations comprising microparticles of cannabinoid and a polymer are stable and allow a shelf life of at least 6 months.
- The formulation from the long-term stability study as described in Example 7 above was tested to measure the particle size of the microparticles.
- Table 19 below describes this data.
-
TABLE 19 Particle size of pure CBD + CBD BDS (25 mg/mL CBD 0.6 mg/mL THC) HPMCAS-L Suspension Time point D10 (μm) D50 (μm) D90 (μm) (weeks) 5° C. 25° C. 30° C. 5° C. 25° C. 30° C. 5° C. 25° C. 30° C. 0 3.25 3.35 3.35 7.24 7.24 7.24 17.3 17.3 17.3 3 3.65 3.22 3.11 8.25 6.98 6.50 18.6 16.8 15.7 6 3.67 3.24 3.06 8.37 6.94 6.37 18.2 17.3 15.5 12 3.77 3.25 3.09 8.71 6.87 6.20 19.4 18.9 14.1 24 3.61 3.19 3.06 7.99 6.61 6.22 17.0 15.9 15.2 - As can be seen the particle size of the cannabinoid containing microparticulate formulations did not alter considerably over the course of the stability study meaning that during long-term storage of the formulation there will not be any degradation of the particle size.
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/406,401 US20220211629A1 (en) | 2020-10-12 | 2021-08-19 | Cannabinoid formulations |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/068,326 US11160757B1 (en) | 2020-10-12 | 2020-10-12 | pH dependent release coated microparticle cannabinoid formulations |
US17/406,401 US20220211629A1 (en) | 2020-10-12 | 2021-08-19 | Cannabinoid formulations |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/068,326 Continuation US11160757B1 (en) | 2020-10-12 | 2020-10-12 | pH dependent release coated microparticle cannabinoid formulations |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220211629A1 true US20220211629A1 (en) | 2022-07-07 |
Family
ID=78331325
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/068,326 Active US11160757B1 (en) | 2020-10-12 | 2020-10-12 | pH dependent release coated microparticle cannabinoid formulations |
US17/406,401 Pending US20220211629A1 (en) | 2020-10-12 | 2021-08-19 | Cannabinoid formulations |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/068,326 Active US11160757B1 (en) | 2020-10-12 | 2020-10-12 | pH dependent release coated microparticle cannabinoid formulations |
Country Status (1)
Country | Link |
---|---|
US (2) | US11160757B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11633369B2 (en) | 2014-10-14 | 2023-04-25 | GW Research Limited | Use of cannabinoids in the treatment of epilepsy |
US11766411B2 (en) | 2014-06-17 | 2023-09-26 | GW Research Limited | Use of cannabinoids in the treatment of epilepsy |
US11806319B2 (en) | 2018-01-03 | 2023-11-07 | GW Research Limited | Pharmaceutical composition comprising a cannabinoid |
US12064399B2 (en) | 2015-06-17 | 2024-08-20 | Jazz Pharmaceuticals Research Uk Limited | Use of cannabinoids in the treatment of epilepsy |
US12064398B2 (en) | 2016-07-01 | 2024-08-20 | Jazz Pharmaceuticals Research Uk Limited | Parenteral formulations |
US12102619B2 (en) | 2020-02-27 | 2024-10-01 | Jazz Pharmaceuticals Research Uk Limited | Methods of treating tuberous sclerosis complex with cannabidiol and everolimus |
US12121499B2 (en) | 2011-09-29 | 2024-10-22 | Gw Pharma Ltd. | Pharmaceutical composition comprising the phytocannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2527599A (en) | 2014-06-27 | 2015-12-30 | Gw Pharma Ltd | Use of 7-OH-Cannabidiol (7-OH-CBD) and/or 7-OH-Cannabidivarin (7-OH-CBDV) in the treatment of epilepsy |
GB2541191A (en) | 2015-08-10 | 2017-02-15 | Gw Pharma Ltd | Use of cannabinoids in the treatment of epilepsy |
GB2559774B (en) | 2017-02-17 | 2021-09-29 | Gw Res Ltd | Oral cannabinoid formulations |
GB201806953D0 (en) | 2018-04-27 | 2018-06-13 | Gw Res Ltd | Cannabidiol Preparations |
GB201916977D0 (en) | 2019-11-21 | 2020-01-08 | Gw Res Ltd | Cannibidol-type cannabinoid compound |
US11160757B1 (en) * | 2020-10-12 | 2021-11-02 | GW Research Limited | pH dependent release coated microparticle cannabinoid formulations |
US20240041782A1 (en) * | 2020-12-11 | 2024-02-08 | Michael Ogburn | Oral Capsule Cannabinoid Formulations |
WO2023168316A1 (en) * | 2022-03-04 | 2023-09-07 | Michael Ogburn | Enteric coated dry powdered cannabinoid formulations |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5958873A (en) * | 1997-06-09 | 1999-09-28 | University Of Cincinnati | Oral formulation for treatment of bacteria-induced diseases of the colon |
US20070116768A1 (en) * | 2003-12-09 | 2007-05-24 | Michael Chorny | Sustained release preparations composed of biocompatible complex microparticles |
US20120231083A1 (en) * | 2010-11-18 | 2012-09-13 | The Board Of Trustees Of The University Of Illinois | Sustained release cannabinoid medicaments |
US20190082171A1 (en) * | 2017-08-04 | 2019-03-14 | International Business Machines Corporation | Context aware midair projection display |
US11160757B1 (en) * | 2020-10-12 | 2021-11-02 | GW Research Limited | pH dependent release coated microparticle cannabinoid formulations |
Family Cites Families (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6403126B1 (en) | 1999-05-26 | 2002-06-11 | Websar Innovations Inc. | Cannabinoid extraction method |
US6949582B1 (en) | 1999-05-27 | 2005-09-27 | Wallace Walter H | Method of relieving analgesia and reducing inflamation using a cannabinoid delivery topical liniment |
DE10051427C1 (en) | 2000-10-17 | 2002-06-13 | Adam Mueller | Process for the production of an extract containing tetrahydrocannabinol and cannabidiol from cannabis plant material and cannabis extracts |
CZ306277B6 (en) | 2001-02-14 | 2016-11-09 | Gw Pharma Limited | Pump-action spray formulation |
GB2381450B (en) | 2001-10-31 | 2006-05-31 | Gw Pharma Ltd | Compositions for administration of natural or synthetic cannabinoids by vaporisation |
GB0202385D0 (en) | 2002-02-01 | 2002-03-20 | Gw Pharma Ltd | Compositions for the treatment of nausea,vomiting,emesis,motion sicknes or like conditions |
ITPD20020138A1 (en) | 2002-05-24 | 2003-11-24 | Matteo Bevilacqua | COMPOSITION OF TERPENIC-BASED SUBSTANCES, METHOD OF PREPARATION AND METHOD OF DISPERSION IN THE ENVIRONMENT OF THE SAME. |
DE10226494A1 (en) | 2002-06-14 | 2004-01-08 | Lts Lohmann Therapie-Systeme Ag | Film-shaped mucoadhesive dosage forms for administration of cannabis active ingredients |
EP1536810B1 (en) | 2002-08-14 | 2012-08-01 | GW Pharma Limited | Extraction of pharmaceutically active cannabinoids from plant materials |
MXPA05001567A (en) | 2002-08-14 | 2005-04-25 | Gw Pharma Ltd | Cannabinoid liquid formulations for mucosal amdinistration. |
GB0222077D0 (en) | 2002-09-23 | 2002-10-30 | Gw Pharma Ltd | Methods of preparing cannabinoids from plant material |
US20040110828A1 (en) | 2002-11-27 | 2004-06-10 | Chowdhury Dipak K. | Tetrahydrocannabinol compositions and methods of manufacture and use thereof |
GB0425248D0 (en) | 2004-11-16 | 2004-12-15 | Gw Pharma Ltd | New use for cannabinoid |
CA2586358C (en) | 2004-11-16 | 2015-11-24 | Gw Pharma Limited | Use of tetrahydrocannabivarin (thcv) as neutral antagonist of the cb1 cannabinoid receptor |
TWI366460B (en) | 2005-06-16 | 2012-06-21 | Euro Celtique Sa | Cannabinoid active pharmaceutical ingredient for improved dosage forms |
US20070060638A1 (en) | 2005-08-26 | 2007-03-15 | Olmstead Mary C | Methods and therapies for potentiating therapeutic activities of a cannabinoid receptor agonist via administration of a cannabinoid receptor antagonist |
WO2007032962A2 (en) | 2005-09-09 | 2007-03-22 | University Of Kentucky | Compositions and methods for intranasal delivery of tricyclic cannabinoids |
GB2434312B (en) | 2006-01-18 | 2011-06-29 | Gw Pharma Ltd | Cannabinoid-containing plant extracts as neuroprotective agents |
US9877928B2 (en) | 2006-05-30 | 2018-01-30 | Air Systems, Inc. | Gear drive damper |
GB2438682A (en) | 2006-06-01 | 2007-12-05 | Gw Pharma Ltd | New use for cannabinoids |
US20080112895A1 (en) | 2006-08-04 | 2008-05-15 | Insys Therapeutics Inc. | Aqueous dronabinol formulations |
WO2008021394A2 (en) | 2006-08-15 | 2008-02-21 | Theraquest Biosciences, Llc | Pharmaceutical formulations of cannabinoids and method of use |
WO2008024490A2 (en) | 2006-08-24 | 2008-02-28 | Theraquest Biosciences, Inc. | Oral pharmaceutical formulations of abuse deterrent cannabinoids and method of use |
US7923026B2 (en) | 2006-10-20 | 2011-04-12 | Solvay Pharmaceuticals B.V. | Embedded micellar nanoparticles |
US20080188461A1 (en) | 2007-02-01 | 2008-08-07 | Regents Of The University Of Michigan | Compositions and methods for detecting, preventing and treating seizures and seizure related disorders |
CN101040855A (en) | 2007-04-12 | 2007-09-26 | 杨喜鸿 | Compound including rimonabant and poloxamer, solid dispersion and the preparation and the application of the medicine |
GB2448535A (en) | 2007-04-19 | 2008-10-22 | Gw Pharma Ltd | New use for cannabinoid-containing plant extracts |
US9084771B2 (en) | 2007-05-17 | 2015-07-21 | Sutter West Bay Hospitals | Methods and compositions for treating cancer |
GB2449691A (en) | 2007-05-31 | 2008-12-03 | Gw Pharma Ltd | A reference plant lacking medicinal active compound expression |
EP2023121A1 (en) | 2007-07-06 | 2009-02-11 | Bp Oil International Limited | Optical cell |
GB2450753B (en) | 2007-07-06 | 2012-07-18 | Gw Pharma Ltd | New Pharmaceutical formulation |
CN101815697A (en) | 2007-07-30 | 2010-08-25 | 奥特兰兹公司 | Prodrugs of cannabidiol, compositions comprising prodrugs of cannabidiol and methods of using the same |
WO2009020666A1 (en) | 2007-08-06 | 2009-02-12 | Insys Therapeutics Inc. | Oral cannabinoid liquid formulations and methods of treatment |
GB2456183A (en) | 2008-01-04 | 2009-07-08 | Gw Pharma Ltd | Anti-psychotic composition comprising cannabinoids and anti-psychotic medicament |
GB2459637B (en) | 2008-01-21 | 2012-06-06 | Gw Pharma Ltd | New use for cannabinoids |
WO2009120080A1 (en) | 2008-03-26 | 2009-10-01 | Mareda Holding Bv | Chewing gum compositions comprising cannabinoids |
GB2478074B (en) | 2008-06-04 | 2012-12-26 | Gw Pharma Ltd | Anti-tumoural effects of cannabinoid combinations |
GB2478072B (en) | 2008-06-04 | 2012-12-26 | Gw Pharma Ltd | Anti-tumoural effects of cannabinoid combinations |
EP2341903A1 (en) | 2008-07-31 | 2011-07-13 | Bionorica Research GmbH | Cannabinoids for use in treating or preventing cognitive impairment and dementia |
CA2760128A1 (en) | 2009-04-29 | 2010-11-04 | University Of Kentucky Research Foundation | Cannabinoid-containing compositions and methods for their use |
KR101701544B1 (en) | 2009-06-29 | 2017-02-01 | 벤더 아날리티컬 홀딩 비.브이. | Drug delivery system comprising polyoxazoline and a bioactive agent |
GB2471523A (en) | 2009-07-03 | 2011-01-05 | Gw Pharma Ltd | Use of tetrahydrocannibivarin (THCV) and optionally cannabidiol (CBD) in the treatment of epilepsy |
US8735374B2 (en) | 2009-07-31 | 2014-05-27 | Intelgenx Corp. | Oral mucoadhesive dosage form |
GB2478595B (en) | 2010-03-12 | 2018-04-04 | Gw Pharma Ltd | Phytocannabinoids in the treatment of glioma |
GB2479153B (en) | 2010-03-30 | 2014-03-19 | Gw Pharma Ltd | The phytocannabinoid cannabidivarin (CBDV) for use in the treatment of epilepsy |
TWI583374B (en) | 2010-03-30 | 2017-05-21 | Gw伐瑪有限公司 | Use of the phytocannabinoid cannabidivarin (cbdv) in the treatment of epilepsy |
LT2600851T (en) | 2010-08-04 | 2018-06-25 | Grünenthal GmbH | Pharmaceutical dosage form comprising 6`-fluoro-(n-methyl- or n,n-dimethyl-)-4-phenyl-4`,9`-dihydro-3`h-spiro[cyclohexane-1,1`-pyrano[3,4,b]indol]-4-amine for the treatment of neuropathic pain |
WO2012033478A1 (en) | 2010-09-07 | 2012-03-15 | Murty Pharmaceuticals, Inc. | An improved oral dosage form of tetrahydrocannabinol and a method of avoiding and/or suppressing hepatic first pass metabolism via targeted chylomicron/lipoprotein delivery |
US8895537B2 (en) | 2010-10-29 | 2014-11-25 | Infirst Healthcare Ltd. | Compositions and methods for treating cardiovascular diseases |
GB2487712B (en) | 2011-01-04 | 2015-10-28 | Otsuka Pharma Co Ltd | Use of the phytocannabinoid cannabidiol (CBD) in combination with a standard anti-epileptic drug (SAED) in the treatment of epilepsy |
CA2737447A1 (en) | 2011-04-27 | 2012-10-27 | Antony Paul Hornby | Hayley's comet |
GB201111261D0 (en) | 2011-07-01 | 2011-08-17 | Gw Pharma Ltd | Cannabinoids for use in the treatment of neuro-degenerative diseases or disorders |
US9750747B2 (en) | 2011-08-26 | 2017-09-05 | Bail-Portela & Ca, S.A. | Treatments involving eslicarbazepine acetate or eslicarbazepine |
GB2495118B (en) | 2011-09-29 | 2016-05-18 | Otsuka Pharma Co Ltd | A pharmaceutical composition comprising the phytocannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) |
GB2496687A (en) | 2011-11-21 | 2013-05-22 | Gw Pharma Ltd | Tetrahydrocannabivarin (THCV) in the protection of pancreatic islet cells |
US9254272B2 (en) | 2011-11-30 | 2016-02-09 | Sutter West Bay Hospitals | Resorcinol derivatives |
DE102012105063C5 (en) | 2012-06-12 | 2023-09-14 | Thc Pharm Gmbh The Health Concept | Stabilization of cannabinoids and their pharmaceutical preparations |
US9345771B2 (en) | 2012-10-04 | 2016-05-24 | Insys Development Company, Inc. | Oral cannabinoid formulations |
US9478484B2 (en) | 2012-10-19 | 2016-10-25 | Infineon Technologies Austria Ag | Semiconductor packages and methods of formation thereof |
CN103110582A (en) | 2013-03-04 | 2013-05-22 | 上海医药工业研究院 | Cannabinol compound micro-emulsion and preparation method thereof |
US9095554B2 (en) | 2013-03-15 | 2015-08-04 | Biotech Institute LLC | Breeding, production, processing and use of specialty cannabis |
ES2781756T3 (en) | 2013-03-19 | 2020-09-07 | Univ Pompeu Fabra | Cannabinoid CB1 receptor antagonists for use in the treatment of diseases associated with neuronal dendritic abnormalities |
US9549909B2 (en) | 2013-05-03 | 2017-01-24 | The Katholieke Universiteit Leuven | Method for the treatment of dravet syndrome |
US20150181924A1 (en) | 2013-10-31 | 2015-07-02 | Michael R. Llamas | Cannabidiol liquid composition for smoking |
US9259449B2 (en) | 2014-01-07 | 2016-02-16 | Joshua Michael Raderman | Method for modifying THC content in a lipid-based extract of cannabis |
US10052339B2 (en) | 2014-03-21 | 2018-08-21 | Bodybio Inc. | Methods and compositions for treating symptoms of diseases related to imbalance of essential fatty acids |
MX2016015636A (en) | 2014-05-29 | 2017-08-02 | Insys Pharma Inc | Stable cannabinoid formulations. |
US11331279B2 (en) | 2014-05-29 | 2022-05-17 | Radius Pharmaceuticals, Inc. | Stable cannabinoid formulations |
GB2530001B (en) | 2014-06-17 | 2019-01-16 | Gw Pharma Ltd | Use of cannabidiol in the reduction of convulsive seizure frequency in treatment-resistant epilepsy |
WO2016022936A1 (en) | 2014-08-07 | 2016-02-11 | Murty Pharmaceuticals, Inc. | An improved oral gastrointestinal dosage form delivery system of cannabinoids and/or standardized marijuana extracts |
CA2859934A1 (en) | 2014-09-22 | 2016-03-22 | A. Paul Hornby | Hayley's comet ii |
GB2531281A (en) | 2014-10-14 | 2016-04-20 | Gw Pharma Ltd | Use of cannabidiol in the treatment of intractable epilepsy |
GB2531282A (en) | 2014-10-14 | 2016-04-20 | Gw Pharma Ltd | Use of cannabinoids in the treatment of epilepsy |
GB2531278A (en) | 2014-10-14 | 2016-04-20 | Gw Pharma Ltd | Use of cannabidiol in the treatment of intractable epilepsy |
GB2531280A (en) | 2014-10-14 | 2016-04-20 | Gw Pharma Ltd | Use of cannabidiol in the treatment of intractable epilepsy |
BR112017008301B1 (en) | 2014-10-21 | 2021-12-07 | United Cannabis Corp | CANNABIS EXTRACTS AND METHODS OF THEIR PREPARATION AND USE |
EP3223804A4 (en) | 2014-11-26 | 2018-07-25 | One World Cannabis Ltd. | Synergistic use of cannabis for treating multiple myeloma |
US10172786B2 (en) | 2014-12-16 | 2019-01-08 | Axim Biotechnologies, Inc. | Oral care composition comprising cannabinoids |
US10751300B2 (en) | 2015-01-25 | 2020-08-25 | India Globalization Capital, Inc. | Composition and method for treating seizure disorders |
EP3265081A4 (en) | 2015-03-02 | 2018-11-21 | Afgin Pharma, Llc | Topical regional neuro-affective therapy with cannabinoids |
CA2982250A1 (en) | 2015-03-19 | 2016-09-22 | One World Cannabis Ltd. | Preparations of cannabis emulsions and methods thereof |
WO2016199148A1 (en) | 2015-06-11 | 2016-12-15 | One World Cannabis Ltd | Novel cannabinoid combination therapies for multiple myeloma (mm) |
GB2539472A (en) | 2015-06-17 | 2016-12-21 | Gw Res Ltd | Use of cannabinoids in the treatment of epilepsy |
GB2541191A (en) | 2015-08-10 | 2017-02-15 | Gw Pharma Ltd | Use of cannabinoids in the treatment of epilepsy |
GB2548873B (en) | 2016-03-31 | 2020-12-02 | Gw Res Ltd | Use of Cannabidiol in the Treatment of SturgeWeber Syndrome |
GB2551987A (en) | 2016-07-01 | 2018-01-10 | Gw Res Ltd | Oral cannabinoid formulations |
GB2551985B (en) | 2016-07-01 | 2019-01-30 | Gw Res Ltd | Novel formulation |
GB2551986A (en) | 2016-07-01 | 2018-01-10 | Gw Res Ltd | Parenteral formulations |
US20190201350A1 (en) | 2016-08-15 | 2019-07-04 | Corr-Jensen Inc. | Time release of fat-soluble actives |
GB2553139A (en) | 2016-08-25 | 2018-02-28 | Gw Res Ltd | Use of cannabinoids in the treatment of multiple myeloma |
WO2019082171A1 (en) | 2017-10-27 | 2019-05-02 | Alvit Pharma | Oral cannabinoid compositions with improved bioavailability |
WO2019159174A1 (en) | 2018-02-16 | 2019-08-22 | Icdpharma Ltd. | Colonic delivery of cannabinoids in solid solution compositions |
GB2584341B (en) | 2019-05-31 | 2023-03-01 | Gw Res Ltd | Cannabinoid formulations |
-
2020
- 2020-10-12 US US17/068,326 patent/US11160757B1/en active Active
-
2021
- 2021-08-19 US US17/406,401 patent/US20220211629A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5958873A (en) * | 1997-06-09 | 1999-09-28 | University Of Cincinnati | Oral formulation for treatment of bacteria-induced diseases of the colon |
US20070116768A1 (en) * | 2003-12-09 | 2007-05-24 | Michael Chorny | Sustained release preparations composed of biocompatible complex microparticles |
US20120231083A1 (en) * | 2010-11-18 | 2012-09-13 | The Board Of Trustees Of The University Of Illinois | Sustained release cannabinoid medicaments |
US20190082171A1 (en) * | 2017-08-04 | 2019-03-14 | International Business Machines Corporation | Context aware midair projection display |
US11160757B1 (en) * | 2020-10-12 | 2021-11-02 | GW Research Limited | pH dependent release coated microparticle cannabinoid formulations |
Non-Patent Citations (1)
Title |
---|
Ecologix : at https://web.archive.org/web/20190419075737/https://www.ecologixsystems.com/resources-calculators-mesh-micron/ (Year: 2019) * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12121499B2 (en) | 2011-09-29 | 2024-10-22 | Gw Pharma Ltd. | Pharmaceutical composition comprising the phytocannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) |
US11766411B2 (en) | 2014-06-17 | 2023-09-26 | GW Research Limited | Use of cannabinoids in the treatment of epilepsy |
US11963937B2 (en) | 2014-06-17 | 2024-04-23 | GW Research Limited | Use of cannabinoids in the treatment of epilepsy |
US11633369B2 (en) | 2014-10-14 | 2023-04-25 | GW Research Limited | Use of cannabinoids in the treatment of epilepsy |
US12064399B2 (en) | 2015-06-17 | 2024-08-20 | Jazz Pharmaceuticals Research Uk Limited | Use of cannabinoids in the treatment of epilepsy |
US12064398B2 (en) | 2016-07-01 | 2024-08-20 | Jazz Pharmaceuticals Research Uk Limited | Parenteral formulations |
US11806319B2 (en) | 2018-01-03 | 2023-11-07 | GW Research Limited | Pharmaceutical composition comprising a cannabinoid |
US12102619B2 (en) | 2020-02-27 | 2024-10-01 | Jazz Pharmaceuticals Research Uk Limited | Methods of treating tuberous sclerosis complex with cannabidiol and everolimus |
Also Published As
Publication number | Publication date |
---|---|
US11160757B1 (en) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11160757B1 (en) | pH dependent release coated microparticle cannabinoid formulations | |
US20220233495A1 (en) | Cannabinoid formulations | |
TWI741106B (en) | Oral preparation of glucokinase activator and preparation method thereof | |
ES2739888T3 (en) | Compositions and pharmaceutical tablets with compressible coating and manufacturing methods | |
US9616025B2 (en) | Compressed tablet containing Δ9-tetrahydrocannabinol, method for its manufacture and use of such tablet in oral treatment | |
CN106389367B (en) | Perampanel coated tablet pharmaceutical composition | |
IL149030A (en) | Pharmaceutical compositions containing rifampicin, isoniazid or combinations thereof | |
US11026893B2 (en) | Taste masking drug formulations | |
US20220175677A1 (en) | Methods of improving pharmaceutical substance solubilization and products thereof | |
US10888519B2 (en) | Immediate release pharmaceutical composition of iron chelating agents | |
US20210353546A1 (en) | Dual release pharmaceutical compositions comprising the combination of a beta-3 adrenoreceptor agonist and a muscarinic receptor antagonist | |
EP4213812A1 (en) | Multiparticulate dosage forms comprising deutetrabenazine | |
CA3190856A1 (en) | Solid dosage forms of palbociclib | |
US20100317642A1 (en) | Pharmaceutical composition of orlistat | |
US20240050377A1 (en) | Oral solid cannabinoid oil composition for treating central nervous system disorders | |
JP2023547736A (en) | Pharmaceutical composition containing meloxicam | |
JP2024535862A (en) | Multiparticulate dosage forms containing deutetrabenazine | |
BRPI0607372B1 (en) | MEDICINAL PRODUCT FOR ORAL ADMINISTRATION UNDERSTANDING A CYCLOOXYGENASE-2 INHIBITOR AND PREPARATION METHOD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GW RESEARCH LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILKHU, JITINDER;SILCOCK, ALAN;SIGNING DATES FROM 20201110 TO 20201112;REEL/FRAME:057600/0314 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: U.S. BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS COLLATERAL TRUSTEE, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNORS:CAVION, INC.;CELATOR PHARMACEUTICALS, INC.;GW PHARMA LIMITED;AND OTHERS;REEL/FRAME:068173/0155 Effective date: 20240724 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: JAZZ PHARMACEUTICALS RESEARCH UK LIMITED, UNITED KINGDOM Free format text: CHANGE OF NAME;ASSIGNOR:GW RESEARCH LIMITED;REEL/FRAME:068889/0345 Effective date: 20231120 |