US20220184215A1 - Stable cannabinoid formulations - Google Patents
Stable cannabinoid formulations Download PDFInfo
- Publication number
- US20220184215A1 US20220184215A1 US17/559,155 US202117559155A US2022184215A1 US 20220184215 A1 US20220184215 A1 US 20220184215A1 US 202117559155 A US202117559155 A US 202117559155A US 2022184215 A1 US2022184215 A1 US 2022184215A1
- Authority
- US
- United States
- Prior art keywords
- cannabidiol
- formulations
- bql
- present
- patient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims description 286
- 229930003827 cannabinoid Natural products 0.000 title abstract description 42
- 239000003557 cannabinoid Substances 0.000 title abstract description 42
- 238000009472 formulation Methods 0.000 title description 276
- 229950011318 cannabidiol Drugs 0.000 claims abstract description 226
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 claims abstract description 207
- QHMBSVQNZZTUGM-ZWKOTPCHSA-N cannabidiol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-ZWKOTPCHSA-N 0.000 claims abstract description 202
- QHMBSVQNZZTUGM-UHFFFAOYSA-N Trans-Cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-UHFFFAOYSA-N 0.000 claims abstract description 201
- PCXRACLQFPRCBB-ZWKOTPCHSA-N dihydrocannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)C)CCC(C)=C1 PCXRACLQFPRCBB-ZWKOTPCHSA-N 0.000 claims abstract description 199
- 238000000034 method Methods 0.000 claims abstract description 88
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 83
- 239000003963 antioxidant agent Substances 0.000 claims description 25
- 235000006708 antioxidants Nutrition 0.000 claims description 25
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 claims description 19
- 230000003078 antioxidant effect Effects 0.000 claims description 17
- 150000002632 lipids Chemical class 0.000 claims description 17
- 206010021750 Infantile Spasms Diseases 0.000 claims description 16
- 201000006791 West syndrome Diseases 0.000 claims description 16
- 229940087168 alpha tocopherol Drugs 0.000 claims description 9
- 229960000984 tocofersolan Drugs 0.000 claims description 9
- 239000002076 α-tocopherol Substances 0.000 claims description 9
- 235000004835 α-tocopherol Nutrition 0.000 claims description 9
- 208000035899 Infantile spasms syndrome Diseases 0.000 claims description 5
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 claims description 2
- 150000003626 triacylglycerols Chemical class 0.000 claims description 2
- 239000006193 liquid solution Substances 0.000 claims 1
- 125000001020 α-tocopherol group Chemical group 0.000 claims 1
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 9
- 239000012535 impurity Substances 0.000 description 74
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 48
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 48
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 47
- 239000000796 flavoring agent Substances 0.000 description 37
- 206010010904 Convulsion Diseases 0.000 description 36
- 238000011282 treatment Methods 0.000 description 36
- XXGMIHXASFDFSM-UHFFFAOYSA-N Delta9-tetrahydrocannabinol Natural products CCCCCc1cc2OC(C)(C)C3CCC(=CC3c2c(O)c1O)C XXGMIHXASFDFSM-UHFFFAOYSA-N 0.000 description 35
- 238000012360 testing method Methods 0.000 description 34
- 238000003556 assay Methods 0.000 description 33
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 32
- 241000699670 Mus sp. Species 0.000 description 30
- 241001465754 Metazoa Species 0.000 description 25
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 230000000694 effects Effects 0.000 description 21
- 229940100688 oral solution Drugs 0.000 description 21
- 235000019634 flavors Nutrition 0.000 description 19
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 18
- 235000013355 food flavoring agent Nutrition 0.000 description 18
- 208000024891 symptom Diseases 0.000 description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 16
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 16
- 208000004296 neuralgia Diseases 0.000 description 16
- 208000021722 neuropathic pain Diseases 0.000 description 16
- 239000002953 phosphate buffered saline Substances 0.000 description 16
- 229920001223 polyethylene glycol Polymers 0.000 description 16
- 229930003427 Vitamin E Natural products 0.000 description 15
- 235000003599 food sweetener Nutrition 0.000 description 15
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 15
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 15
- 239000003765 sweetening agent Substances 0.000 description 15
- 229940046009 vitamin E Drugs 0.000 description 15
- 235000019165 vitamin E Nutrition 0.000 description 15
- 239000011709 vitamin E Substances 0.000 description 15
- 229920000609 methyl cellulose Polymers 0.000 description 14
- 239000001923 methylcellulose Substances 0.000 description 14
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- 229930012538 Paclitaxel Natural products 0.000 description 13
- 229960001592 paclitaxel Drugs 0.000 description 13
- 238000011002 quantification Methods 0.000 description 13
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 13
- 206010028980 Neoplasm Diseases 0.000 description 12
- 239000002202 Polyethylene glycol Substances 0.000 description 12
- 229960004242 dronabinol Drugs 0.000 description 12
- 239000008389 polyethoxylated castor oil Substances 0.000 description 12
- 235000010323 ascorbic acid Nutrition 0.000 description 11
- 229960005070 ascorbic acid Drugs 0.000 description 11
- 239000011668 ascorbic acid Substances 0.000 description 11
- 239000003623 enhancer Substances 0.000 description 11
- 230000000638 stimulation Effects 0.000 description 11
- -1 amandamide Chemical compound 0.000 description 10
- 241000218236 Cannabis Species 0.000 description 9
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 9
- VTAJIXDZFCRWBR-UHFFFAOYSA-N Licoricesaponin B2 Natural products C1C(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2)C(O)=O)C)(C)CC2)(C)C2C(C)(C)CC1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O VTAJIXDZFCRWBR-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 208000035475 disorder Diseases 0.000 description 9
- 206010015037 epilepsy Diseases 0.000 description 9
- 208000005017 glioblastoma Diseases 0.000 description 9
- LPLVUJXQOOQHMX-UHFFFAOYSA-N glycyrrhetinic acid glycoside Natural products C1CC(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2=O)C(O)=O)C)(C)CC2)(C)C2C(C)(C)C1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O LPLVUJXQOOQHMX-UHFFFAOYSA-N 0.000 description 9
- 239000001685 glycyrrhizic acid Substances 0.000 description 9
- 229960004949 glycyrrhizic acid Drugs 0.000 description 9
- UYRUBYNTXSDKQT-UHFFFAOYSA-N glycyrrhizic acid Natural products CC1(C)C(CCC2(C)C1CCC3(C)C2C(=O)C=C4C5CC(C)(CCC5(C)CCC34C)C(=O)O)OC6OC(C(O)C(O)C6OC7OC(O)C(O)C(O)C7C(=O)O)C(=O)O UYRUBYNTXSDKQT-UHFFFAOYSA-N 0.000 description 9
- 235000019410 glycyrrhizin Nutrition 0.000 description 9
- LPLVUJXQOOQHMX-QWBHMCJMSA-N glycyrrhizinic acid Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@@H]1C([C@H]2[C@]([C@@H]3[C@@]([C@@]4(CC[C@@]5(C)CC[C@@](C)(C[C@H]5C4=CC3=O)C(O)=O)C)(C)CC2)(C)CC1)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O LPLVUJXQOOQHMX-QWBHMCJMSA-N 0.000 description 9
- 239000003002 pH adjusting agent Substances 0.000 description 9
- YCBKSSAWEUDACY-IAGOWNOFSA-N 11-hydroxy-Delta(9)-tetrahydrocannabinol Chemical compound C1=C(CO)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 YCBKSSAWEUDACY-IAGOWNOFSA-N 0.000 description 8
- 229960003965 antiepileptics Drugs 0.000 description 8
- 230000000366 juvenile effect Effects 0.000 description 8
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 8
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 8
- 229960002216 methylparaben Drugs 0.000 description 8
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 8
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 8
- 229960003415 propylparaben Drugs 0.000 description 8
- 235000016623 Fragaria vesca Nutrition 0.000 description 7
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 7
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 7
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 7
- 240000007651 Rubus glaucus Species 0.000 description 7
- 235000011034 Rubus glaucus Nutrition 0.000 description 7
- 235000009122 Rubus idaeus Nutrition 0.000 description 7
- 239000001961 anticonvulsive agent Substances 0.000 description 7
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 7
- 210000000481 breast Anatomy 0.000 description 7
- 229940065144 cannabinoids Drugs 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 206010006187 Breast cancer Diseases 0.000 description 6
- 208000026310 Breast neoplasm Diseases 0.000 description 6
- VBGLYOIFKLUMQG-UHFFFAOYSA-N Cannabinol Chemical compound C1=C(C)C=C2C3=C(O)C=C(CCCCC)C=C3OC(C)(C)C2=C1 VBGLYOIFKLUMQG-UHFFFAOYSA-N 0.000 description 6
- 206010008342 Cervix carcinoma Diseases 0.000 description 6
- 206010014733 Endometrial cancer Diseases 0.000 description 6
- 206010014759 Endometrial neoplasm Diseases 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- ILRKKHJEINIICQ-OOFFSTKBSA-N Monoammonium glycyrrhizinate Chemical compound N.O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@H]1CC[C@]2(C)[C@H]3C(=O)C=C4[C@@H]5C[C@](C)(CC[C@@]5(CC[C@@]4(C)[C@]3(C)CC[C@H]2C1(C)C)C)C(O)=O)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O ILRKKHJEINIICQ-OOFFSTKBSA-N 0.000 description 6
- 206010033128 Ovarian cancer Diseases 0.000 description 6
- 206010061535 Ovarian neoplasm Diseases 0.000 description 6
- CWRVKFFCRWGWCS-UHFFFAOYSA-N Pentrazole Chemical compound C1CCCCC2=NN=NN21 CWRVKFFCRWGWCS-UHFFFAOYSA-N 0.000 description 6
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 6
- 150000003863 ammonium salts Chemical group 0.000 description 6
- 230000001773 anti-convulsant effect Effects 0.000 description 6
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 6
- 229960003453 cannabinol Drugs 0.000 description 6
- 201000010881 cervical cancer Diseases 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000002357 endometrial effect Effects 0.000 description 6
- 208000028173 post-traumatic stress disease Diseases 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000001509 sodium citrate Substances 0.000 description 6
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 6
- 239000004376 Sucralose Substances 0.000 description 5
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 206010013663 drug dependence Diseases 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000003755 preservative agent Substances 0.000 description 5
- 235000010378 sodium ascorbate Nutrition 0.000 description 5
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 5
- 229960005055 sodium ascorbate Drugs 0.000 description 5
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 235000019408 sucralose Nutrition 0.000 description 5
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 229960004964 temozolomide Drugs 0.000 description 5
- ZROLHBHDLIHEMS-HUUCEWRRSA-N (6ar,10ar)-6,6,9-trimethyl-3-propyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCC)=CC(O)=C3[C@@H]21 ZROLHBHDLIHEMS-HUUCEWRRSA-N 0.000 description 4
- AOYYFUGUUIRBML-IAGOWNOFSA-N (6ar,10ar)-6,6-dimethyl-9-methylidene-3-pentyl-7,8,10,10a-tetrahydro-6ah-benzo[c]chromen-1-ol Chemical compound C1C(=C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 AOYYFUGUUIRBML-IAGOWNOFSA-N 0.000 description 4
- YCBKSSAWEUDACY-UHFFFAOYSA-N 7-Hydroxy-Delta1-THC Natural products C1=C(CO)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 YCBKSSAWEUDACY-UHFFFAOYSA-N 0.000 description 4
- 208000024827 Alzheimer disease Diseases 0.000 description 4
- 208000019901 Anxiety disease Diseases 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 206010003805 Autism Diseases 0.000 description 4
- 208000020706 Autistic disease Diseases 0.000 description 4
- 208000003174 Brain Neoplasms Diseases 0.000 description 4
- ZROLHBHDLIHEMS-UHFFFAOYSA-N Delta9 tetrahydrocannabivarin Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCC)=CC(O)=C3C21 ZROLHBHDLIHEMS-UHFFFAOYSA-N 0.000 description 4
- 201000007547 Dravet syndrome Diseases 0.000 description 4
- CYQFCXCEBYINGO-DLBZAZTESA-N Dronabinol Natural products C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@H]21 CYQFCXCEBYINGO-DLBZAZTESA-N 0.000 description 4
- 208000001654 Drug Resistant Epilepsy Diseases 0.000 description 4
- 240000009088 Fragaria x ananassa Species 0.000 description 4
- 201000006792 Lennox-Gastaut syndrome Diseases 0.000 description 4
- 235000014766 Mentha X piperi var citrata Nutrition 0.000 description 4
- 244000007703 Mentha citrata Species 0.000 description 4
- 235000007421 Mentha citrata Nutrition 0.000 description 4
- 235000008660 Mentha x piperita subsp citrata Nutrition 0.000 description 4
- 235000002431 Monarda citriodora Nutrition 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 208000007101 Muscle Cramp Diseases 0.000 description 4
- 208000036572 Myoclonic epilepsy Diseases 0.000 description 4
- 208000028017 Psychotic disease Diseases 0.000 description 4
- 208000034189 Sclerosis Diseases 0.000 description 4
- 206010073677 Severe myoclonic epilepsy of infancy Diseases 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 208000005392 Spasm Diseases 0.000 description 4
- 235000009754 Vitis X bourquina Nutrition 0.000 description 4
- 235000012333 Vitis X labruscana Nutrition 0.000 description 4
- 240000006365 Vitis vinifera Species 0.000 description 4
- 235000014787 Vitis vinifera Nutrition 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 230000036506 anxiety Effects 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 230000008512 biological response Effects 0.000 description 4
- 239000004359 castor oil Substances 0.000 description 4
- 235000019438 castor oil Nutrition 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 4
- HCAWPGARWVBULJ-IAGOWNOFSA-N delta8-THC Chemical compound C1C(C)=CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 HCAWPGARWVBULJ-IAGOWNOFSA-N 0.000 description 4
- 235000013399 edible fruits Nutrition 0.000 description 4
- 125000005456 glyceride group Chemical group 0.000 description 4
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 238000007917 intracranial administration Methods 0.000 description 4
- 239000007928 intraperitoneal injection Substances 0.000 description 4
- FFVXQGMUHIJQAO-BFKQJKLPSA-N levonantradol Chemical compound C([C@@H](C)OC=1C=C(OC(C)=O)C=2[C@@H]3C[C@H](O)CC[C@H]3[C@H](C)NC=2C=1)CCC1=CC=CC=C1 FFVXQGMUHIJQAO-BFKQJKLPSA-N 0.000 description 4
- 229950005812 levonantradol Drugs 0.000 description 4
- 210000003141 lower extremity Anatomy 0.000 description 4
- 239000008368 mint flavor Substances 0.000 description 4
- GECBBEABIDMGGL-RTBURBONSA-N nabilone Chemical compound C1C(=O)CC[C@H]2C(C)(C)OC3=CC(C(C)(C)CCCCCC)=CC(O)=C3[C@@H]21 GECBBEABIDMGGL-RTBURBONSA-N 0.000 description 4
- 229960002967 nabilone Drugs 0.000 description 4
- 231100000189 neurotoxic Toxicity 0.000 description 4
- 230000002887 neurotoxic effect Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 201000000980 schizophrenia Diseases 0.000 description 4
- 235000011803 sesame oil Nutrition 0.000 description 4
- 239000008159 sesame oil Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 3
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 3
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 3
- 102100026423 Adhesion G protein-coupled receptor E5 Human genes 0.000 description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 3
- 108010011485 Aspartame Proteins 0.000 description 3
- 239000005711 Benzoic acid Substances 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical class OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 235000019499 Citrus oil Nutrition 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 244000307700 Fragaria vesca Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101000718243 Homo sapiens Adhesion G protein-coupled receptor E5 Proteins 0.000 description 3
- 235000019501 Lemon oil Nutrition 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 235000019502 Orange oil Nutrition 0.000 description 3
- 208000002193 Pain Diseases 0.000 description 3
- 208000037012 Psychomotor seizures Diseases 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 235000019486 Sunflower oil Nutrition 0.000 description 3
- PPWHTZKZQNXVAE-UHFFFAOYSA-N Tetracaine hydrochloride Chemical compound Cl.CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 PPWHTZKZQNXVAE-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000001099 ammonium carbonate Substances 0.000 description 3
- 235000012501 ammonium carbonate Nutrition 0.000 description 3
- 230000000202 analgesic effect Effects 0.000 description 3
- 239000000605 aspartame Substances 0.000 description 3
- 235000010357 aspartame Nutrition 0.000 description 3
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 3
- 229960003438 aspartame Drugs 0.000 description 3
- 235000010233 benzoic acid Nutrition 0.000 description 3
- 229960004365 benzoic acid Drugs 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 239000007958 cherry flavor Substances 0.000 description 3
- 239000010630 cinnamon oil Substances 0.000 description 3
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 3
- 229960004316 cisplatin Drugs 0.000 description 3
- 229960004106 citric acid Drugs 0.000 description 3
- 239000010500 citrus oil Substances 0.000 description 3
- 230000002566 clonic effect Effects 0.000 description 3
- 208000028502 clonic seizure Diseases 0.000 description 3
- 235000005687 corn oil Nutrition 0.000 description 3
- 239000002285 corn oil Substances 0.000 description 3
- 229960001305 cysteine hydrochloride Drugs 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 231100000517 death Toxicity 0.000 description 3
- 125000003074 decanoyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 230000002996 emotional effect Effects 0.000 description 3
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 229960001031 glucose Drugs 0.000 description 3
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical class COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 239000000787 lecithin Substances 0.000 description 3
- 235000010445 lecithin Nutrition 0.000 description 3
- 229940067606 lecithin Drugs 0.000 description 3
- 239000010501 lemon oil Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 229960001855 mannitol Drugs 0.000 description 3
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 3
- 239000001683 mentha spicata herb oil Substances 0.000 description 3
- 229940041616 menthol Drugs 0.000 description 3
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000010502 orange oil Substances 0.000 description 3
- 238000010979 pH adjustment Methods 0.000 description 3
- 235000019477 peppermint oil Nutrition 0.000 description 3
- 208000033808 peripheral neuropathy Diseases 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 3
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical group [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 235000010388 propyl gallate Nutrition 0.000 description 3
- 239000000473 propyl gallate Substances 0.000 description 3
- 229940075579 propyl gallate Drugs 0.000 description 3
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 3
- 235000019204 saccharin Nutrition 0.000 description 3
- 229940081974 saccharin Drugs 0.000 description 3
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 3
- 235000010234 sodium benzoate Nutrition 0.000 description 3
- 239000004299 sodium benzoate Substances 0.000 description 3
- 229960003885 sodium benzoate Drugs 0.000 description 3
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 3
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 3
- 229940100996 sodium bisulfate Drugs 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 229960001790 sodium citrate Drugs 0.000 description 3
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 3
- 229940001584 sodium metabisulfite Drugs 0.000 description 3
- 235000010262 sodium metabisulphite Nutrition 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 229960003010 sodium sulfate Drugs 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 235000010199 sorbic acid Nutrition 0.000 description 3
- 239000004334 sorbic acid Substances 0.000 description 3
- 229940075582 sorbic acid Drugs 0.000 description 3
- 235000012424 soybean oil Nutrition 0.000 description 3
- 239000003549 soybean oil Substances 0.000 description 3
- 235000019721 spearmint oil Nutrition 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 229960004793 sucrose Drugs 0.000 description 3
- 239000002600 sunflower oil Substances 0.000 description 3
- 230000001256 tonic effect Effects 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 210000003135 vibrissae Anatomy 0.000 description 3
- 239000000811 xylitol Substances 0.000 description 3
- 235000010447 xylitol Nutrition 0.000 description 3
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 3
- 229960002675 xylitol Drugs 0.000 description 3
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 2
- 208000002874 Acne Vulgaris Diseases 0.000 description 2
- 208000029197 Amphetamine-Related disease Diseases 0.000 description 2
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 2
- 206010009346 Clonus Diseases 0.000 description 2
- 208000022497 Cocaine-Related disease Diseases 0.000 description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 2
- 208000003698 Heroin Dependence Diseases 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 2
- 206010028347 Muscle twitching Diseases 0.000 description 2
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- 206010057852 Nicotine dependence Diseases 0.000 description 2
- 208000026251 Opioid-Related disease Diseases 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 206010061334 Partial seizures Diseases 0.000 description 2
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 2
- 206010041250 Social phobia Diseases 0.000 description 2
- 208000025569 Tobacco Use disease Diseases 0.000 description 2
- 206010000496 acne Diseases 0.000 description 2
- 229940034982 antineoplastic agent Drugs 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 229960004562 carboplatin Drugs 0.000 description 2
- 229960005243 carmustine Drugs 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 239000012829 chemotherapy agent Substances 0.000 description 2
- 229960003920 cocaine Drugs 0.000 description 2
- 201000006145 cocaine dependence Diseases 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 2
- 229960004397 cyclophosphamide Drugs 0.000 description 2
- 229960000684 cytarabine Drugs 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 229960002069 diamorphine Drugs 0.000 description 2
- 208000037765 diseases and disorders Diseases 0.000 description 2
- 229960003668 docetaxel Drugs 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 2
- 229960005420 etoposide Drugs 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 2
- 229960001101 ifosfamide Drugs 0.000 description 2
- 231100001231 less toxic Toxicity 0.000 description 2
- 229960002247 lomustine Drugs 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 231100000324 minimal toxicity Toxicity 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 230000003387 muscular Effects 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 201000001119 neuropathy Diseases 0.000 description 2
- 230000007823 neuropathy Effects 0.000 description 2
- 229960002715 nicotine Drugs 0.000 description 2
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- IRMPFYJSHJGOPE-UHFFFAOYSA-N olivetol Chemical compound CCCCCC1=CC(O)=CC(O)=C1 IRMPFYJSHJGOPE-UHFFFAOYSA-N 0.000 description 2
- 238000001543 one-way ANOVA Methods 0.000 description 2
- 229940005483 opioid analgesics Drugs 0.000 description 2
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 2
- 229960001756 oxaliplatin Drugs 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 2
- 229960000624 procarbazine Drugs 0.000 description 2
- GHBFNMLVSPCDGN-UHFFFAOYSA-N rac-1-monooctanoylglycerol Chemical compound CCCCCCCC(=O)OCC(O)CO GHBFNMLVSPCDGN-UHFFFAOYSA-N 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229960002494 tetracaine hydrochloride Drugs 0.000 description 2
- 229930003799 tocopherol Natural products 0.000 description 2
- 239000011732 tocopherol Substances 0.000 description 2
- 235000010384 tocopherol Nutrition 0.000 description 2
- 229960001295 tocopherol Drugs 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000048 toxicity data Toxicity 0.000 description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 2
- 229960004528 vincristine Drugs 0.000 description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- WECGLUPZRHILCT-GSNKCQISSA-N 1-linoleoyl-sn-glycerol Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OC[C@@H](O)CO WECGLUPZRHILCT-GSNKCQISSA-N 0.000 description 1
- KRQUFUKTQHISJB-YYADALCUSA-N 2-[(E)-N-[2-(4-chlorophenoxy)propoxy]-C-propylcarbonimidoyl]-3-hydroxy-5-(thian-3-yl)cyclohex-2-en-1-one Chemical compound CCC\C(=N/OCC(C)OC1=CC=C(Cl)C=C1)C1=C(O)CC(CC1=O)C1CCCSC1 KRQUFUKTQHISJB-YYADALCUSA-N 0.000 description 1
- IKOKHHBZFDFMJW-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(2-morpholin-4-ylethoxy)pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)OCCN1CCOCC1 IKOKHHBZFDFMJW-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- IOJPUZYGYNQZBZ-UHFFFAOYSA-N 5-methyl-2-propan-2-ylcyclohexa-1,5-dien-1-ol Chemical compound CC(C)C1=C(O)C=C(C)CC1 IOJPUZYGYNQZBZ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- DXABPPFZTKQJKV-OAMYOWMRSA-N C=C(C)C1C=CC(C)(O)CC1.CCCCCc1cc(O)cc(O)c1.[H][C@@]1(C(=C)C)CCC(C)=C[C@@]1([H])c1c(O)cc(CCCCC)cc1O Chemical compound C=C(C)C1C=CC(C)(O)CC1.CCCCCc1cc(O)cc(O)c1.[H][C@@]1(C(=C)C)CCC(C)=C[C@@]1([H])c1c(O)cc(CCCCC)cc1O DXABPPFZTKQJKV-OAMYOWMRSA-N 0.000 description 1
- 235000019492 Cashew oil Nutrition 0.000 description 1
- 208000009132 Catalepsy Diseases 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 208000002033 Myoclonus Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 206010034620 Peripheral sensory neuropathy Diseases 0.000 description 1
- 235000019774 Rice Bran oil Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 208000032140 Sleepiness Diseases 0.000 description 1
- 206010041349 Somnolence Diseases 0.000 description 1
- 208000010513 Stupor Diseases 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 235000019498 Walnut oil Nutrition 0.000 description 1
- 206010047853 Waxy flexibility Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 230000002082 anti-convulsion Effects 0.000 description 1
- 230000000573 anti-seizure effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000006736 behavioral deficit Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 235000019519 canola oil Nutrition 0.000 description 1
- 239000000828 canola oil Substances 0.000 description 1
- 239000010467 cashew oil Substances 0.000 description 1
- 229940059459 cashew oil Drugs 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000021824 exploration behavior Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 210000003194 forelimb Anatomy 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 229940087068 glyceryl caprylate Drugs 0.000 description 1
- 239000000380 hallucinogen Substances 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 208000013403 hyperactivity Diseases 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 210000001847 jaw Anatomy 0.000 description 1
- 125000002669 linoleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 125000002801 octanoyl group Chemical group C(CCCCCCC)(=O)* 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 125000002811 oleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 210000004129 prosencephalon Anatomy 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000008165 rice bran oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 201000005572 sensory peripheral neuropathy Diseases 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000012430 stability testing Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000008170 walnut oil Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
- A61K31/05—Phenols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/658—Medicinal preparations containing organic active ingredients o-phenolic cannabinoids, e.g. cannabidiol, cannabigerolic acid, cannabichromene or tetrahydrocannabinol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/14—Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/22—Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/44—Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
- A61P25/34—Tobacco-abuse
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
- A61P25/36—Opioid-abuse
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- the present invention is generally directed to substantially pure cannabidiol, stable cannabinoid pharmaceutical formulations, and methods of their use.
- Cannabinoids are chemicals that are produced by cannabis flowers. Cannabinoids imitate endogenous compounds in humans.
- Cannabinoids include cannabinol, cannabidiol, dronabinol (delta-9-tetrahydrocannabinol), delta-8-tetrahydrocannabinol, 11-hydroxy-tetrahydrocannabinol, 11-hydroxy-delta9-tetrahydrocannabinol, levonantradol, delta-11-tetrahydrocannabinol, tetrahydrocannabivarin, amandamide, nabilone, and acids and analogs thereof. It is now possible to synthesize many cannabinoids in a laboratory thereby eliminating the need to grow cannabis for extraction of the compounds.
- cannabidiol ( ⁇ )-trans-2-p-mentha-1,8-di en-3 -yl-5-pentylresorcinol, is non-psychoactive and has shown promise in treating numerous diseases and disorders.
- Synthetic cannabidiol has the same structure as naturally occurring cannabidiol.
- cannabidiol is usually contaminated with delta 9-tetrahydrocannabinol.
- the presence of delta-9-tetrahydrocannabinol can be a concern because delta-9-tetrahydrocannabinol is regulated by the United States Drug Enforcement Administration as a Schedule I Drug. Having a higher Schedule number could result in easier access for patients to cannabidiol treatments.
- delta-9-tetrahydrocannabinol is a hallucinogen and patients receiving cannabidiol wish to avoid this undesirable side effect of the delta-9-tetrahydrocannabinol contaminant. Therefore, there is a need for a substantially pure synthetically synthesized cannabidiol that does not contain delta-9-tetrahydrocannabinol.
- Cannnabinoids including cannabidiol
- Cannnabinoids may be suitable for the treatment of diseases or disorders, or symptoms of diseases or disorders, such as Dravet Syndrome, Lennox Gastaut Syndrome, mycolonic seizures, juvenile mycolonic epilepsy, refractory epilepsy, schizophrenia, juvenile spasms, West syndrome, refractory infantile spasms, infantile spasms, tubular sclerosis complex, brain tumors, neuropathic pain, cannabis use disorder, post-traumatic stress disorder, anxiety, early psychosis, Alzheimer's Disease autism, and withdrawal from opioids, cocaine, heroin, amphetamines, and nicotine.
- diseases or disorders such as Dravet Syndrome, Lennox Gastaut Syndrome, mycolonic seizures, juvenile mycolonic epilepsy, refractory epilepsy, schizophrenia, juvenile spasms, West syndrome, refractory infantile spasms, infantile spasms, tubular sclerosis complex, brain tumors, neuropathic pain, cannabis use
- the present invention is directed to stable pharmaceutical formulations for oral administration comprising from about 0.1 to about 50% of a cannabinoid, from about 0.1 to about 40% of a polyethylene glycol, from about 0.1 to about 50% of propylene glycol, and from about 0.1 to about 20% of water, wherein the formulation does not contain alcohol and the formulation has a pH of from about 5 to about 8.
- the present invention is directed to stable pharmaceutical formulations for oral administration comprising from about 0.1 to about 40% of a cannabinoid, from about 0.1 to about 25% of a polyethylene glycol, from about 0.1 to about 40% of propylene glycol, optionally from about 0.1 to about 50% of water; and from about 0.1 to about 70% of alcohol, wherein the formulation has a pH of from about 5 to about 8.
- the present invention is directed to stable pharmaceutical formulations for oral administration comprising from about 0.1 to about 40% of a cannabinoid and from about 10 to about 95% of a lipid.
- the invention is directed to methods of using a cannabinoid or substantially pure, synthetically synthesized cannabidiol: to treat diseases or disorders, or symptoms of diseases or disorders, such as Dravet Syndrome, Lennox Gastaut Syndrome, mycolonic seizures, juvenile mycolonic epilepsy, refractory epilepsy, schizophrenia, juvenile spasms, West syndrome, infantile spasms, refractory infantile spasms, tubular sclerosis complex, brain tumors, neuropathic pain, cannabis use disorder, post-traumatic stress disorder, anxiety, early psychosis, Alzheimer's Disease, and autism; to assist with withdrawal from opioids, cocaine, heroin, amphetamines and nicotine; and as an analgesic or to assist with handling of adverse emotional stimuli.
- diseases or disorders such as Dravet Syndrome, Lennox Gastaut Syndrome, mycolonic seizures, juvenile mycolonic epilepsy, refractory epilepsy, schizophrenia, juvenile spasms, West syndrome, infantile spasms, refractory
- FIG. 1 shows the results from the study detailed in Example 7 and illustrates the advantages of administration of substantially pure, synthetically synthesized, cannabidiol formulations for treatment of neuropathic pain.
- FIG. 2 shows the results from the study detailed in Example 9 and illustrates the advantages of administration of substantially pure, synthetically synthesized, cannabidiol formulations for treatment of glioblastoma multiforme.
- Applicant unexpectedly created new storage stable formulations containing cannabinoids.
- Applicant determined that a pH of from about 5 to about 8 is critical for the formulations to remain stable, preferably from about 6 to about 7.
- the alcohol-free formulations #AF3 and #AF4 exhibited excellent stability for four weeks regardless of the temperature and humidity conditions.
- the alcohol containing formulations #A7 and #A8 exhibited excellent stability for at least 12 months regardless of the temperature and humidity conditions.
- Applicant also determined that an antioxidant is important to maintain stability during long-term storage.
- Applicant created stable formulations with and without alcohol (see Examples 1 and 3).
- the formulations that do not contain alcohol are especially suitable for administration to children.
- the alcohol-free formulations are especially suitable for patients in recovery from drug and alcohol addiction.
- substantially pure cannabidiol formulations are especially suitable for treatment of epilepsy (see Examples 8, 10 and 11), neuropathic pain (see Example 7 and FIG. 1 ), and glioblastoma multiforme (see Example 9 and FIG. 2 ).
- the present invention is directed to stable pharmaceutical formulation for oral administration comprising from about 0.1 to about 50% of a cannabinoid, from about 0.1 to about 40% of a polyethylene glycol, from about 0.1 to about 50% of propylene glycol, and from about 0.1 to about 20% of water, wherein the formulation does not contain alcohol and the formulation has a pH of from about 5 to about 8.
- the formulations contain from about 1 to about 40% of a cannabinoid. In more preferred embodiments, the formulations contain from about 5 to about 35%, from about 20 to about 35% or from about 30 to 35% of a cannabinoid.
- the formulations contain a cannabinoid selected from group consisting of cannabinol, cannabidiol, dronabinol (delta-9-tetrahydrocannabinol), delta-8-tetrahydrocannabinol, 11-hydroxy-tetrahydrocannabinol, 11-hydroxy-delta-9-tetrahydrocannabinol, levonantradol, delta-11-tetrahydrocannabinol, tetrahydrocannabivarin, amandamide, nabilone, acids, analogs, and synthetic derivatives thereof.
- the cannabinoid is cannabidiol.
- the formulations contain from about 1 to about 40% of a cannabidiol. In more preferred embodiments, the formulations contain from about 5 to about 35%, from about 20 to about 35% or from about 30 to 35% of a cannabidiol.
- the formulations contain cannabidiol that is substantially pure and synthetically synthesized which has a purity of greater than 98%. In a more preferred embodiment, the cannabidiol is greater than 99% pure. In an even more preferred embodiment, the cannabidiol is greater than 99.5% pure. In a most preferred embodiment, the cannabidiol formulation contains less than 0.3% delta-9-tetrahydrocannabinol.
- the formulations contain from about 0.001 to about 1% of an antioxidant. In a preferred embodiment, the formulations contain from about 0.01 to about 1% antioxidant. In a more preferred embodiment, the formulations contain from about 0.02 to about 0.5% antioxidant.
- Suitable antioxidants include butylated hydroxyltoluene, butylated hydroxyl anisole, alpha-tocopherol (Vitamin E), ascorbyl palmitate, ascorbic acid, sodium ascorbate, ethylenediamino tetraacetic acid, cysteine hydrochloride, citric acid, sodium citrate, sodium bisulfate, sodium metabisulfite, lecithin, propyl gallate, sodium sulfate, monothioglycerol and combinations thereof.
- the formulations contain alpha-tocopherol (Vitamin E), ascorbic acid, sodium ascorabte, ascobyl palminate or combinations thereof
- the formulations contain from about 1 to about 40% of a polyethylene glycol. In a preferred embodiment, the formulations contain from about 1 to about 35%, from about 5 to about 35%, from about 20 to about 30%, or from about 25 to about 30% polyethylene glycol.
- Suitable polyethylene glycols include low molecular weight polyethylene glycols with an average molecular weight of between 200 and 10,000.
- One preferred polyethylene glycol that can be used is polyethylene glycol 400.
- the formulations contain from about 1 to about 40% of polyethylene glycol 400. In a preferred embodiment, the formulations contain from about 1 to about 35%, from about 5 to about 35%, from about 20 to about 30%, or from about 25 to about 30% polyethylene glycol 400.
- the formulations contain from about 1 to about 50% of propylene glycol. In a preferred embodiment, the formulations contain from about 1 to about 40%, from about 5 to about 35%, from about 20 to about 35%, or from about 30 to about 35% propylene glycol.
- the formulations contain water.
- the formulations can contain 0% water. If the formulations contain water, they can include from about 1 to about 15% water, from about 1 to about 10% water, or from about 4 to about 8% water.
- the pH of the formulations may be modified using any pharmaceutically acceptable means.
- the pH of the formulation is from about 5 to about 8.
- the pH of the formulations is from about 6 to about 7.
- the pH of the formulations is from about 6.2 to about 6.7.
- the formulations of the present invention may also contain sweeteners, sweetener enhancers, preservatives, pH modifiers, and flavoring agents.
- Suitable sweeteners include, but are not limited to, sucrose, aspartame, saccharin, dextrose, mannitol, xylitol, and combinations thereof.
- the formulations contain a sweetener
- the formulations preferably contain from about 0.001 to about 1% sweetener.
- the formulations contain a sweetness enhancer
- the formulations preferably contain from about 0.001 to about 1% sweetness enhancer.
- Suitable sweetness enhancers include, but are not limited to, the ammonium salt forms of crude and refined Glycyrrhizic Acid.
- Magnasweet® products (available from Mafco Worldwide Corporation, Magnasweet is a registered trademark of Mafco Worldwide Corporation) use the ammonium salt forms of crude and refined Glycyrrhizic Acid.
- Glycyrrhizic Acid is also available as a pure derivative in the sodium and potassium salt forms.
- Suitable pH modifiers include, but are not limited to, hydrochloric acid, ascorbic acid, citric acid, sodium citrate, fumaric acid, sodium hydroxide, sodium bicarbonate, sodium carbonate, ammonium carbonate, and combinations thereof.
- Suitable preservatives include, but are not limited to, methyl paraben, propyl paraben, benzyl alcohol, benzoic acid, sodium benzoate, sorbic acid, and combinations thereof.
- Suitable flavoring agents include, but are not limited to, raspberry, peppermint oil, grape flavor, menthol, spearmint oil, citrus oil, cinnamon oil, strawberry flavor, cherry flavor, raspberry flavor, orange oil, lemon oil, lemon mint flavor, fruit punch flavor, and combinations thereof.
- the formulations contain strawberry flavor.
- the formulations contain a flavoring agent
- the formulations preferably contain from about 0.001 to about 1% flavoring agent. In a more preferred embodiment, the formulations contain from about 0.005 to about 0.5% of the flavoring agent.
- the formulations are suitable for oral, buccal, sublingual, inhalation or intravenous/intramuscular administration.
- the formulations are liquids administered orally.
- the invention is directed to stable pharmaceutical formulation for oral administration comprising from about 0.1 to about 40% of a cannabinoid, from about 0.1 to about 25% of a polyethylene glycol, from about 0.1 to about 40% of propylene glycol, optionally from about 0.1 to about 50% of water, and from about 0.1 to about 70% of alcohol, wherein the formulation has a pH of from about 5 to about 8.
- the formulations contain from about 1 to about 35% of a cannabinoid. In a more preferred embodiment, the formulations contain from about 1 to about 15%, from about 5 to about 12% or from about 7 to about 11% cannabinoid. Alternatively, the formulations may contain from about 20 to about 35% or from about 30 to about 35% cannabinoid.
- the formulations contain a cannabinoid selected from group consisting of cannabinol, cannabidiol, dronabinol (delta-9-tetrahydrocannabinol), delta-8-tetrahydrocannabinol, 11-hydroxy-tetrahydrocannabinol, 11-hydroxy-delta-9-tetrahydrocannabinol, levonantradol, delta-11-tetrahydrocannabinol, tetrahydrocannabivarin, amandamide, nabilone, acids, analogs, and synthetic derivatives thereof.
- the cannabinoid is cannabidiol.
- the formulations contain from about 1 to about 35% of a cannabidiol. In a more preferred embodiment, the formulations contain from about 1 to about 15%, from about 5 to about 12% or from about 7 to about 11% cannabidiol. Alternatively, the formulations may contain from about 20 to about 35% or from about 30 to about 35% cannabidiol.
- the formulations contain cannabidiol that is substantially pure and synthetically synthesized which has a purity of greater than 98%. In a more preferred embodiment, the cannabidiol is greater than 99% pure. In an even more preferred embodiment, the cannabidiol is greater than 99.5% pure. In a most preferred embodiment, the cannabidiol formulation contains less than 0.3% delta-9-tetrahydrocannabinol.
- the formulations contain from about 0.001 to about 1% of an antioxidant. In a preferred embodiment, the formulations contain from about 0.01 to about 1% antioxidant. In a more preferred embodiment, the formulations contain from about 0.02 to about 0.5% antioxidant.
- Suitable antioxidants include butylated hydroxyltoluene, butylated hydroxyl anisole, alpha-tocopherol (Vitamin E), ascorbyl palmitate, ascorbic acid, sodium ascorbate, ethylenediamino tetraacetic acid, cysteine hydrochloride, citric acid, sodium citrate, sodium bisulfate, sodium metabisulfite, lecithin, propyl gallate, sodium sulfate, and combinations thereof.
- the formulations contain alpha-tocopherol (Vitamin E), ascorbic acid, sodium ascorabte, ascobyl palminate or combinations thereof.
- the formulations contain from about 1 to about 20% of propylene glycol. In a preferred embodiment, the formulations contain from about 1 to about 15% or from about 5 to about 10% propylene glycol.
- the formulations contain from about 20 to about 50% of propylene glycol. In a preferred embodiment, the formulations contain from about 30 to about 40% or from about 30 to about 35% propylene glycol.
- the formulations contain from about 1 to about 20% of a polyethylene glycol. In a preferred embodiment, the formulations contain from about 1 to about 10% or from about 1 to about 5% polyethylene glycol.
- the formulations contain from about 10 to about 20% of a polyethylene glycol. In a preferred alternative embodiment, the formulations contain from about 15 to about 20% polyethylene glycol.
- Suitable polyethylene glycols include low molecular weight polyethylene glycols with an average molecular weight of between 200 and 10,000.
- One preferred polyethylene glycol that can be used is polyethylene glycol 400.
- the formulations contain from about 1 to about 20% of polyethylene glycol 400. In a preferred embodiment, the formulations contain from about 1 to about 10% or from about 1 to about 5% polyethylene glycol 400.
- the formulations contain from about 10 to about 20% of polyethylene glycol 400. In a preferred alternative embodiment, the formulations contain from about 15 to about 20% polyethylene glycol 400.
- the formulations contain water.
- the formulations can contain 0% water. If the formulations contain water, they can include from about 1 to about 40% water, from about 5 to about 40% water, from about 10 to about 35% water or from about 25 to about 35% water.
- the formulations contain from about 1 to about 65% alcohol. In a preferred embodiment, the formulations contain from about 10 to about 65%, from about 15 to about 60%, or from about 30 to 55% alcohol.
- the formulations contain from about 1 to about 20% alcohol. In a preferred alternative embodiment, the formulations contain from about 1 to about 10% or from about 3 to about 7% alcohol.
- the pH of the formulations may be modified using any pharmaceutically acceptable means.
- the pH of the formulations is from about 6 to about 7.
- the pH of the formulations is from about 6.2 to about 6.7.
- the formulations of the present invention may also contain sweeteners, sweetener enhancers, pH modifiers, preservatives, and flavoring agents.
- Suitable sweeteners include, but are not limited to, sucrose, aspartame, saccharin, dextrose, mannitol, xylitol, and combinations thereof.
- the formulations contain a sweetener
- the formulations preferably contain from about 0.001 to about 1% sweetener.
- Suitable sweetness enhancers include, but are not limited to, the ammonium salt forms of crude and refined Glycyrrhizic Acid.
- Magnasweet® products (available from Mafco Worldwide Corporation, Magnasweet is a registered trademark of Mafco Worldwide Corporation) use the ammonium salt forms of crude and refined Glycyrrhizic Acid.
- Glycyrrhizic Acid is also available as a pure derivative in the sodium and potassium salt forms.
- the formulations contain a sweetness enhancer
- the formulations preferably contain from about 0.001 to about 1% sweetness enhancer.
- Suitable pH modifiers include, but are not limited to, hydrochloric acid, ascorbic acid, citric acid, sodium citrate, fumaric acid, sodium hydroxide, sodium bicarbonate, sodium carbonate, ammonium carbonate, and combinations thereof
- Suitable preservatives include, but are not limited to, methyl paraben, propyl paraben, benzyl alcohol, benzoic acid, sodium benzoate, sorbic acid, and combinations thereof.
- Suitable flavoring agents include, but are not limited to, raspberry, peppermint oil, grape flavor, menthol, spearmint oil, citrus oil, cinnamon oil, strawberry flavor, cherry flavor, raspberry flavor, orange oil, lemon oil, lemon mint flavor, fruit punch flavor, and combinations thereof.
- the formulations contain fruit punch flavor, raspberry flavor, grape flavor, or lemon mint flavor.
- the formulations contain a flavoring agent
- the formulations preferably contain from about 0.001 to about 1% flavoring agent. In a more preferred embodiment, the formulations contain from about 0.005 to about 0.5% of the flavoring agent.
- the formulations are suitable for oral, buccal, sublingual, inhalation or intravenous/intramuscular administration.
- the formulations are liquids administered orally.
- the invention is directed to stable pharmaceutical formulation for oral administration comprising from about 0.1 to about 40% of a cannabinoid and from about 10 to about 95% of a lipid.
- the lipid is selected from the group consisting of sesame oil, olive oil, corn oil, sunflower oil, safflower oil, flaxseed oil, almond oil, peanut oil, walnut oil, cashew oil, castor oil, coconut oil, palm oil, soybean oil, canola oil, vegetable oil, rice bran oil, medium chain glycerides, decanoyl glycerides, octanoyl glycerides, caprylic/capric triglycerides, oleoyl polyoxyl-6 glycerides, linoleoyl polyoxyl-6 glycerides, polyglyceryl-3 dioleate, glyceryl monolinoleate, glyceryl monocaprylate, oleic acid, and a combination thereof.
- the lipid is selected from the group consisting of sesame oil, sunflower oil, soybean oil, corn oil, a mixture of decanoyl glycerides and octanoyl glycerides, and a combination thereof.
- Suitable commercial sources for the lipid include Miglyol® 812N containing a proprietary mixture of decanoyl and octanoyl glycerides (fatty acid esters) and Miglyol® 810N also containing a proprietary mixture of decanoyl and octanoyl fatty acids from coconut oil (Miglyol is available from and a registered trademark of Cremer Oleo GmbH & Co.).
- the formulations contain a cannabinoid selected from group consisting of cannabinol, cannabidiol, dronabinol (delta-9-tetrahydrocannabinol), delta-8-tetrahydrocannabinol, 11-hydroxy-tetrahydrocannabinol, 11-hydroxy-delta-9-tetrahydrocannabinol, levonantradol, delta-11-tetrahydrocannabinol, tetrahydrocannabivarin, amandamide, nabilone, acids, analogs, and synthetic derivatives thereof.
- the cannabinoid is cannabidiol.
- the formulations contain cannabidiol that is substantially pure and synthetically synthesized which has a purity of greater than 98%. In a more preferred embodiment, the cannabidiol is greater than 99% pure. In an even more preferred embodiment, the cannabidiol is greater than 99.5% pure. In a most preferred embodiment, the cannabidiol formulation contains less than 0.3% delta-9-tetrahydrocannabinol.
- the formulations contain from about 1 to about 35% of a cannabidiol. In a more preferred embodiment, the formulations contain from about 10 to about 32% cannabidiol. In a most preferred embodiment, the formulations contain from about 17 to about 29% cannabidiol.
- the formulations contain from about 20 to about 90% of lipids. In a more preferred embodiment, the formulations contain from about 50 to about 90% lipids. In a most preferred embodiment, the formulations contain from about 60 to about 85% lipids.
- the formulations contain alcohol.
- the formulations can contain 0% alcohol. If the formulations contain alcohol, they can include from about 0.1 to about 20% alcohol. In a preferred embodiment, the formulations contain from about 3 to about 17% alcohol. In a more preferred embodiment, the formulations contain from about 5 to about 15% alcohol.
- the formulations contain an antioxidant.
- the formulations can contain 0% antioxidant. If the formulations contain antioxidant, they can include from about 0.01 to about 1% of an antioxidant. In a preferred embodiment, the formulations contain from about 0.02 to about 0.5% antioxidant. In a more preferred embodiment, the formulations contain from about 0.03 to about 0.1% antioxidant.
- Suitable antioxidants include butylated hydroxyltoluene, butylated hydroxyl anisole, alpha-tocopherol (Vitamin E), ascorbyl palmitate, ascorbic acid, sodium ascorbate, ethylenediamino tetraacetic acid, cysteine hydrochloride, citric acid, sodium citrate, sodium bisulfate, sodium metabisulfite, lecithin, propyl gallate, sodium sulfate, and combinations thereof.
- the formulations contain alpha-tocopherol (Vitamin E), ascorbic acid, sodium ascorabte, ascobyl palminate or combinations thereof.
- Suitable sweeteners include, but are not limited to, sucrose, aspartame, saccharin, dextrose, mannitol, xylitol, and combinations thereof.
- the formulations preferably contain from about 0.1 to about 2% sweetener. In a more preferred embodiment, the formulations contain from about 0.1 to about 0.8% sweetener. In a most preferred embodiment, the formulations contain from about 0.2 to about 0.5% sweetener.
- Suitable sweetness enhancers include, but are not limited to, the ammonium salt forms of crude and refined Glycyrrhizic Acid.
- Magnasweet® products (available from Mafco Worldwide Corporation, Magnasweet is a registered trademark of Mafco Worldwide Corporation) use the ammonium salt forms of crude and refined Glycyrrhizic Acid.
- Glycyrrhizic Acid is also available as a pure derivative in the sodium and potassium salt forms.
- the formulations contain a sweetness enhancer
- the formulations preferably contain from about 0.001 to about 1% sweetness enhancer.
- Suitable pH modifiers include, but are not limited to, hydrochloric acid, ascorbic acid, citric acid, sodium citrate, fumaric acid, sodium hydroxide, sodium bicarbonate, sodium carbonate, ammonium carbonate, and combinations thereof.
- Suitable preservatives include, but are not limited to, methyl paraben, propyl paraben, benzyl alcohol, benzoic acid, sodium benzoate, sorbic acid, and combinations thereof.
- Suitable flavoring agents include, but are not limited to, raspberry, peppermint oil, grape flavor, menthol, spearmint oil, citrus oil, cinnamon oil, strawberry flavor, cherry flavor, raspberry flavor, orange oil, lemon oil, lemon mint flavor, fruit punch flavor, and combinations thereof.
- the formulations contain a flavoring agent
- the formulations preferably contain from about 0.01 to about 1% flavoring agent. In a more preferred embodiment, the formulations contain from about 0.005 to about 0.5% of the flavoring agent.
- the formulations are suitable for oral, buccal, sublingual, inhalation or intravenous/intramuscular administration.
- the formulations are liquids administered orally.
- compositions of the present invention are especially suitable for treatment of many diseases or disorders or symptoms of diseases and disorders. Further, cannabidiol which is synthetically synthesized and substantially pure will be even more effective and suitable for the treatment of diseases or symptoms of these diseases.
- cannadbidiol by combining p-menthadienol and olivetol in toluene or dichloromethane or hexane with a p-toluene sulfonic acid catalyst to produce cannabidiol (see diagram below).
- the present invention is directed to methods for treating a brain tumor comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating a brain tumor comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating glioma comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating glioma comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating glioblastoma multiforme comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating glioblastoma multiforme comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating Dravet Syndrome comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating Dravet Syndrome comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating Lennox Gastaut Syndrome comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating Lennox Gastaut Syndrome comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof
- the present invention is directed to methods for treating Mycolonic Seizures comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations contain substantially pure cannabidiol.
- the present invention is directed to methods for treating Mycolonic Seizures comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof
- the present invention is directed to methods for treating Juvenile Mycolonic Epilepsy comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- the present invention is directed to methods for treating Juvenile Mycolonic Epilepsy comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating Refractory Epilepsy comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- the present invention is directed to methods for treating Refractory Epilepsy comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating juvenile spasms comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- the present invention is directed to methods for treating juvenile spasms comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating West Syndrome comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- the present invention is directed to methods for treating West Syndrome comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating infantile spasms comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- the present invention is directed to methods for treating infantile spasms comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating refractory infantile spasms comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- the present invention is directed to methods for treating refractory infantile spasms comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating tubular sclerosis complex comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- the present invention is directed to methods for treating tubular sclerosis complex comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating neuropathic pain comprising administering the formulations of the present invention to a patient in need thereof.
- the neuropathic pain is caused by neurotoxic chemotherapy agents such as Paclitaxel, Docetaxel, Cisplatin, Oxaliplatin, Carboplatin, Vincristine, Methotrexate, Cytarabine, Fluorouracil, Ifosfamide, Cyclophosphamide, Procarbazine, etoposide, Carmustine, and Lomustine.
- the neuropathic pain is caused by Paclitaxel and the patient is receiving Paclitaxel due to a diagnosis of breast, cervical, endometrial and/or ovarian cancer.
- the breast, cervical, endometrial and/or ovarian cancer is platinum-resistant.
- the breast, cervical, endometrial and/or ovarian cancer is recurrent.
- the present invention is directed to methods for treating neuropathic pain comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the neuropathic pain is caused by neurotoxic chemotherapy agents such as Paclitaxel, Docetaxel, Cisplatin, Oxaliplatin, Carboplatin, Vincristine, Methotrexate, Cytarabine, Fluorouracil, Ifosfamide, Cyclophosphamide, Procarbazine, etoposide, Carmustine, and Lomustine.
- neurotoxic chemotherapy agents such as Paclitaxel, Docetaxel, Cisplatin, Oxaliplatin, Carboplatin, Vincristine, Methotrexate, Cytarabine, Fluorouracil, Ifosfamide, Cyclophosphamide, Procarbazine, etoposide, Carmustine, and Lomustine.
- the neuropathic pain is caused by Paclitaxel and the patient is receiving Paclitaxel due to a diagnosis of breast, cervical, endometrial and/or ovarian cancer.
- the breast, cervical, endometrial and/or ovarian cancer is platinum-resistant.
- the breast, cervical, endometrial and/or ovarian cancer is recurrent.
- the present invention is directed to methods for using cannabidiol as an analgesic comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for using cannabidiol as an analgesic comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating opioid addiction withdrawal comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- the present invention is directed to methods for treating opioid addiction withdrawal comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating cocaine addiction withdrawal comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- the present invention is directed to methods for treating cocaine addiction withdrawal comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating heroin addiction withdrawal comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- the present invention is directed to methods for treating heroin addiction withdrawal comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating nicotine addiction withdrawal comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- the present invention is directed to methods for treating nicotine addiction withdrawal comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating amphetamine addiction withdrawal comprising administering the formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- the present invention is directed to methods for treating amphetamine addiction withdrawal comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating acne comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating acne comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating Parkinson's disease comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating Parkinson's disease comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof
- the present invention is directed to methods for treating schizophrenia comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating schizophrenia comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating social anxiety disorder comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating social anxiety disorder comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating depression comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating depression comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating patients encountering adverse emotional stimuli comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating patients encountering adverse emotional stimuli comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating nausea comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating nausea comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the present invention is directed to methods for treating multiple sclerosis comprising administering the formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating multiple sclerosis comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the invention is directed to methods for treating symptoms of cannabis use disorder comprising administering formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- the present invention is directed to methods for treating symptoms of cannabis use disorder comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the invention is directed to methods for treating symptoms of early psychosis comprising administering formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating symptoms of early psychosis comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the invention is directed to methods for treating symptoms of Alzheimer' s Disease comprising administering formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating symptoms of Alzheimer's Disease comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the invention is directed to methods for treating symptoms of post-traumatic stress disorder (“PTSD”) comprising administering formulations of the present invention to a patient in need thereof.
- PTSD post-traumatic stress disorder
- the present invention is directed to methods for treating symptoms of post-traumatic stress disorder PTSD comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the invention is directed to methods for treating symptoms of anxiety comprising administering formulations of the present invention to a patient in need thereof.
- the present invention is directed to methods for treating anxiety comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- the invention is directed to methods for treating symptoms of autism comprising administering formulations of the present invention to a patient in need thereof.
- the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- the present invention is directed to methods for treating symptoms of autism comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- a “patient” refers to a single patient and not a patient population.
- “synthetic” refers to the chemical synthesis of cannabidiol does not refer to cannabidiol that is extracted from cannabis plant material.
- substantially pure refers to a preparation having chromatographical purity of cannabidiol of greater than 98%, preferably greater than 98.5%, more preferably greater than 99.0%, and most preferably greater than 99.5%.
- substantially free of delta-9-tetrahydrocannabinol refers to a preparation of cannabidiol having less than 0.3% of delta-9-tetrahydrocannabinol as determined by HPLC.
- the preparation contains less than 0.25% of delta-9-tetrahydrocannabinol, more preferably 0.2%, and most preferably less than 0.1% of delta-9-tetrahydrocannabinol.
- liquid refers to a flowable, fluid pharmaceutical formulation. This type of formulation is not a powder to solid.
- the term “effective amount” refers to the amount necessary to treat a patient in need thereof.
- pharmaceutically acceptable refers to ingredients that are not biologically or otherwise undesirable in an oral dosage form.
- qs means a sufficient quantity of that component to reach a desired volume or concentration.
- the formulations in Table 1 below were prepared as follows. All the solvents are purged with nitrogen before using in manufacturing. Vitamin E, methyl paraben, propyl paraben were dissolved in propylene glycol. Polyethylene glycol 400 (PEG400) and a flavoring agent were added to the propylene glycol solution and mixed thoroughly. The water phase was prepared by dissolving sucralose and sodium ascorbate in water. Next, the solutions were combined and pH adjusted using a pH modifier. The cannabinoid was added to the excipient solution and mixed until dissolved.
- PEG400 Polyethylene glycol 400
- a flavoring agent were added to the propylene glycol solution and mixed thoroughly.
- the water phase was prepared by dissolving sucralose and sodium ascorbate in water. Next, the solutions were combined and pH adjusted using a pH modifier. The cannabinoid was added to the excipient solution and mixed until dissolved.
- the formulations listed in Table 1 were subjected to stability at 55° C. 2° C., 40° C. ⁇ 2° C. under 75% ⁇ 5% relative humidity, and 25° C. ⁇ 2° C. under 60% ⁇ 5% relative humidity. Stability of the formulations was analyzed at specified time points by evaluating for their potency (assay value) and impurity levels. Assay and impurities were detected using high-performance liquid chromatography with an ultraviolet detector. The assay was performed at 228 nm and indicated as a % of initial concentration. For all impurities, analysis was performed at 228 nm and expressed as a % area. Amounts of particular impurities are listed in Tables 2 to 13 as a percentage of area of each formulation along with amount of total impurities. Relative retention time (RRT) is given for each impurity.
- RRT Relative retention time
- Control formulation (#AF1) showed significant increase in levels of total impurities and decrease in the assay value. Adjusting the pH of formulation (#AF2) in the range of from about 6 to about 7 increased the stability of the formulation in comparison to control formulation. This illustrates the critical role that pH plays in cannabinoid formulations' stability. Applicant determined that the pH should be from about 6 to about 7 for optimal stability. Addition of antioxidants along with pH adjustment further increased the stability of the cannabinoid formulation. For example, formulations #AF3 and #AF4, containing antioxidant(s) and pH modifiers, showed excellent stability for four weeks regardless of temperature and humidity conditions.
- Tables 14 and 15 below were prepared as follows. All the solvents were purged with nitrogen before using in manufacturing. Vitamin E, ascorbyl palmitate, methyl paraben, propyl paraben, sucralose were dissolved in ethanol. Propylene glycol, polyethylene glycol 400, glycerol, flavoring agent, and water were added to the solution and mixed thoroughly. Then, if applicable, the pH of the solution was adjusted using a pH modifier. The cannabinoid was added to the excipient solution and mixed until completely dissolved.
- the formulations listed in Table 14 and Table 15 were subjected to stability at 25° C. ⁇ 2° C. under 60% ⁇ 5% relative humidity and 40° C. ⁇ 2° C. under 75% ⁇ 5% relative humidity. Stability of the formulations was analyzed at specified time points by evaluating for their potency (assay value) and impurity levels. Assay and impurities were detected using high-performance liquid chromatography with an ultraviolet detector. The assay was performed at 228 nm and indicated as a % of initial concentration. For all impurities, analysis was performed at 228 nm and expressed as a % area. Amounts of particular impurities are listed in Table 16 to 22 as a percentage of area of each formulation along with amount of total impurities. Relative retention time (RRT) is given for each impurity.
- RRT Relative retention time
- Control formulation (#A5) showed significant increase in levels of total impurities and decrease in the assay value.
- the addition of antioxidants, Vitamin E and ascorbyl palmitate (see #A6) significantly increased the stability of formulation. These results illustrate the critical role of antioxidants in stabilizing cannabinoid formulations.
- Antioxidants Vitamin E and ascorbic acid (or its salt) show excellent synergism as ascorbic acid (or its salt) strongly inhibits the depletion of Vitamin E by regenerating it.
- pH modifiers to adjust the pH to the range of 6 to 7 resulted in exceptionally stable formulations (#A7 and #A8).
- the stability testing data illustrates that the pH range of from about 6 to about 7 is critical. Formulations #A9 and #A10 also showed good stability after four weeks.
- Table 24 The formulations in Table 24 were created by mixing all the solid and liquid excipients in the lipid. Cannabidiol was then dissolved. Synthetically synthesized, substantially pure, cannabidiol used as the source of the cannabinoid. Strawberry was used as the source of flavoring.
- Formulation #LF1 was subjected to stability at 25° C. ⁇ 2° C. under 60% 5% relative humidity and 40° C. ⁇ 2° C. under 75% ⁇ 5% relative humidity.
- the stability of the formulation was analyzed at specified time points by evaluating the potency (assay value) and impurity levels. Assay and impurities were detected using high-performance liquid chromatography with an ultraviolet detector. The assay was performed at 228 nm and indicated as a % of initial concentration. For all impurities, analysis was performed at 228 nm and expressed as a % area. Amounts of particular impurities are listed in Table 25 as a percentage of area of each formulation along with amount of total impurities. Relative retention time (RRT) is given for each impurity.
- RRT Relative retention time
- formulation #LF1 with sesame oil showed good stability after 3 months at both storage conditions 25° C. ⁇ 2°C./60% ⁇ 5% relative humidity and 40° C. ⁇ 2° C./75% ⁇ 5% relative humidity.
- Paclitaxel is an antineoplastic agent that has activity against several types of cancer including ovary, breast, lung and the head and neck. Paclitaxel works by promoting microtubule assembly which results in neuropathy as a toxic side effect. Peripheral sensory neuropathy is the most commonly reported neurotoxic side effect of paclitaxel and it limits treatment with high and cumulative doses of paclitaxel when given alone or in combination with other neurotoxic antineoplastic agents such as cisplatin. Currently there is not a highly effective treatment for this type of pain. Therefore, there is a need for a highly effective treatment to relieve the symptoms of paclitaxel induced neuropathy.
- mice study was conducted in order to determine the effects of cannabidiol, delta-9-tetrahydrocannabinol, and cannabidiol plus delta-9-tetrahydrocannabinol combinations to alleviate neuropathic pain caused by chemotherapy-induced peripheral neuropathy.
- the cannadidiol administered to the mice was substantially pure, synthetically synthesized, cannabidiol which had a purity greater than 98%.
- FIG. 1 A detailed explanation of FIG. 1 is as follows.
- the Y-axes represent the threshold sensitivity to mechanical stimulation, expressed as a percent of baseline sensitivity.
- the X-axes represent the dose of drug mg/kg administered intraperitoneally.
- the dotted lines represent withdrawal threshold level to mechanical stimulation of saline controls
- the dashed lines represent paclitaxel-treated animals.
- the points along the dashed line indicate neuropathic pain while points along the dotted line represent protection from neuropathic pain.
- the data shown are mean +SEM sensitivity measured on Day 21 post treatment. *p ⁇ 0.05 from saline control as determined by one-way ANOVA.
- Applicant found (as illustrated in FIG. 1 ) that cannabidiol when administered alone provided the most effective level of alleviating chemotherapy-induced neuropathic pain compared to delta-9-tetrahydrocannabinol.
- the presence of delta-9-tetrahydrocannabinol depending on its concentration can inhibit the ability of cannabidiol to alleviate neuropathic pain.
- the ability of delta-9-tetrahydrocannabinol to block the pain alleviating activity of cannabidiol is also dependent of the concentration of cannabidiol. This test illustrates that a substantially pure cannabidiol formulation is highly desirable.
- the maximal electroshock test is a model for generalized tonic-clonic seizures and provides an indication of a compound's ability to prevent seizure spread when all neuronal circuits in the brain are maximally active. These seizures are highly reproducible and are electrophysiologically consistent with human seizures.
- 60Hz of alternating current 50 mA in mice, 150 in rats
- an electrolyte solution containing an anesthetic agent (0.5% tetracaine HCl).
- the mice were tested at various intervals following doses of 10, 30 and 100 mg/kg of cannabidiol given by intraperitoneal injection of a volume of 0.01 mL/g.
- An animal was considered “protected” from maximal electroshock-induced seizures upon abolition of the hindlimb tonic extensor component of the seizure.
- the minimal motor impairment test was used to determine the compounds' undesirable side effects or toxicity. During this test, the animals were monitored for overt signs of impaired neurological or muscular function. The rotorod procedure was used to disclose minimal muscular or neurological impairment. When a control mouse is placed on a rod that rotates at a speed of 6 rpm, the animal can maintain its equilibrium for long periods of time. The animal was considered toxic if it fell off this rotating rod three times during a 60 second period. In addition to minimal motor impairment, the animals may have exhibited a circular or zigzag gait, abnormal body posture and spread of the legs, tremors, hyperactivity, lack of exploratory behavior, somnolence, stupor, catalepsy, loss of placing response and changes in muscle tone.
- the third test was the minimal clonic seizure (6 Hz) test.
- the minimal clonic seizure (6 Hz) test is used to assess a compound's efficacy against electrically induced seizures but uses a lower frequency (6 Hz) and longer duration of stimulation (3 s).
- Cannabidiol was pre-administered to mic e via intraperitoneal injection.
- individual mice four per time point
- Untreated mice will display seizures characterized by a minimal clonic phase followed by stereotyped, automatistic behaviors described originally as being similar to the aura of human patients with partial seizures. Animals not displaying this behavior are considered protected.
- mice were euthanized when the external tumors measured greater than 5mm as assessed by callipers. Additionally, mice with tumors measuring >500 ⁇ 10 6 radiance where removed from the study even if symptoms were not observed to assure spontaneous deaths related to seizures did not occur do to the existence of the large intracranial tumor.
- the cannabinoids were dissolved in a mixture of 3% ethanol, 3% surfactant and 94% saline, and temozolomide was dissolved in 30% dimethyl sulfoxide and 70% saline.
- Cannabidiol that was synthetically synthesized and substantially pure was used in this study.
- the treatments were initiated 9 days after the injection of the tumor cells. Mice were imaged the morning before the first injection to determine initial tumor size and then groups were organized to have equal distribution of tumor size before the initiation of the first injection. Mice were treated once a day for five days with temozolomide.
- mice were treated once a day, 5 days a week (Monday through Friday), with the cannabinoids until the completion of the study, except for the first week of the study where mice were injected over the weekend. All mice were administered the treatments via intraperitoneal injection. There were 12 mice per group, for a total of 72 mice. The treatment rates were as follows: cannabidiol (15 mg/kg); cannabidiol/delta-9-tetrahydrocannabinol (1:1, together @ 15mg/kg); and temozolomide (2 mg/kg intraperitoneal injection.
- FIG. 2 A detailed explanation of FIG. 2 is as follows.
- the X-axis represents the number of days after treatment and the Y-axis represents the survival rates.
- cannabidiol alone or cannabidiol/delta-9-tetrahydrocannabinol (1:1) did not inhibit glioblastoma multiforme progression, it enhanced the antitumor activity of suboptimal doses of temozolomide leading to a significant increase in survival. Further, the substantially pure, synthetically synthesized, cannabidiol produced full regression of 20% of tumors. This effect was not observed following the 1:1 cannabidiol:delta-9-tetrahydrocannabinol treatments.
- mice weighing 18 to 25 g were pretreated intraperitoneally with the cannabidiol at a dose of 100 mg/kg.
- the cannabidiol administered to the mice was substantially pure, synthetically synthesized, cannabidiol which had a purity greater than 98%.
- the cannabidiol was dissolved in 0.5% methylcellulose or a 1:1:18 ratio of ethanol:polyethoxylated castor oil:PBS.
- each mouse received a drop of 0.5% tetracaine hydrochloride applied to each eye.
- the mouse was then challenged with the low-frequency (6 Hz) stimulation for 3 seconds delivered through corneal electrodes.
- the low-frequency, long-duration stimuli was initially delivered at 32 mA intensity. Animals were manually restrained and released immediately following the stimulations and observed for seizure activity. If the test compound was effective in the 32 mA screen, an additional assay wherein the stimulation current is increased to 44 mA is employed using the same protocol as described above. Additionally, a dose response curve can be generated at the time of peak effect (TPE) at the specific stimulation intensity.
- TPE time of peak effect
- the 6 Hz stimulation results in a seizure characterized by a minimal clonic phase that is followed by stereotyped, automatistic behaviors, including twitching of the vibrissae, and Straub-tail. Animals not displaying such behaviors were considered protected. Data was analyzed by Mann-Whitney U test, with p ⁇ 0.05 determined to be statistically significant.
- results are expressed as the total number of animals protected out of the number of animals tested over time (i.e., 2/4 represents 2 out of 4 mice tested were protected).
- cannabidiol in both solvents showed comparable median effective doses that inhibited seizures in 50% of animals (ED50s) in the 100 mg/kg range. While cannabidiol dissolved in the methylcellulose solvent had an ED50 of 103.75 mg/kg (95% Confidence Interval of 53.89 mg/kg to 163.84 mg/kg), it showed an ED50 of 121.52 mg/kg when dissolved in the 1:1:18 ethanol:polyethoxylated castor oil:PBS solvent (95% Confidence Interval of 87.83 mg/kg to 152.96 mg/kg).
- TD50 median toxicity dose where toxicity is observed in 50% of animals
- the TD50 was determined to be 262.37 mg/kg (95% Confidence Interval of 232.64 to 301.78) with cannabidiol dissolved in the 1:1:18 ethanol:polyethoxylated castor oil:PBS solvent. Death was reported at 24 hours at 300 mg/kg and at 6 and 24 hours for 500 mg/kg with the with the 1:1:18 ethanol:polyethoxylated castor oil:PBS solvent.
- cannabidiol is likely to be effective in humans for the treatment of epilepsy and other conditions. Further, synthetically synthesized cannabidiol will likely be less toxic than cannabidiol that is derived from plants and not substantially pure.
- the maximal electroshock seizure (“MES”) and subcutaneous Metrazol (“sc Met”) tests have been the two most widely employed preclinical seizure models for the early identification and high through-put screening of investigational anti-seizure drugs. These tests have been extremely effective in identifying new anti-seizure drugs that may be useful for the treatment of human generalized tonic-clonic seizures and generalized myoclonic seizures.
- the IVIES test provides an indication of CBD's ability to prevent seizure spread when all neuronal circuits in the brain are maximally active.
- the s.c. Met test detects the ability of CBD to raise the chemoconvulsant-induced seizure threshold of an animal and, thus, protect it from exhibiting a clonic, forebrain seizure.
- a dose of Metrazol (85 mg/kg in mice) will induce convulsions in 97% of mice (CD97).
- the CD97 dose of Metrazol is injected into a loose fold of skin in the midline of the neck.
- the CD97 doses for Metrazol are confirmed annually in mice. It is administered to mice at a volume of 0.01 ml/g body weight. The animals are then placed in isolation cages to minimize stress and continuously monitored for the next 30 min for the presence or absence of a seizure. An episode of clonic spasms, approximately 3 to 5 seconds, of the fore and/or hind limbs, jaws, or vibrissae is taken as the endpoint. Animals not displaying fore and/or hind limb clonus, jaw chomping, or vibrissae twitching are considered protected.
- mice All quantitative in vivo antiseizure/behavioral impairment studies are typically conducted at the previously determined TPE. Groups of at least 8 mice were tested with various doses of cannabidiol until at least two points are established between the limits of 100% protection or minimal toxicity and 0% protection or minimal toxicity. The dose of drug required to produce the desired endpoint in 50% of animals (ED50 or TD50) in each test, the 95% confidence interval, the slope of the regression line, and the standard error of the mean (S.E.M.) of the slope is then calculated by probit analysis.
- the cannabidiol administered to the mice was substantially pure, synthetically synthesized, cannabidiol which had a purity greater than 98%.
- the cannabidiol was dissolved in 0.5% methylcellulose or a 1:1:18 ratio of ethanol:polyethoxylated castor oil:PBS.
- the maximal electric shock (MES) and subsucanteous Metrazol (“sc MET”) are the most widely used preclinical seizure models for the early identification and screening of new antiepileptic drugs.
- the ED50 in the MES model for cannabidiol dissolved in the methylcellulose solvent could not be calculated due to a U shaped dose response (1/4 protected at 0.5 hr, 1/4 at 1 hr, 4/8 at 2hr and 2/4 at 4hr).
- the ED50 for cannabidiol dissolved in the 1:1:18 ethanol:polyethoxlated castor oil:PBS solvent is 92.21 mg/kg (95% Confidence Interval of 78.4 mg/kg to 104.63 mg/kg).
- the ED50 was 241.03 mg/kg (95% Confidence Interval of 182.23 to 311.87) for cannabidiol dissolved in the methylcellulose solvent and 198.51 mg/kg (95% Confidence Interval of 167.76 mg/kg to 232.58 mg/kg) for cannabidiol dissolved in the 1:1:18 ethanol:polyethoxlated castor oil:PBS solvent. Based on the toxicity data for cannabidiol dissolved in the methylcellulose solvent the TD50 was determined to exceed 500 mg/kg, the highest dose tested.
- Myoclonic jerks were reported in at 1 hour with 200 mg/kg dose and at 2 hours with 360 mg/kg dose.
- the TD50 was determined to be 266.76 mg/kg (95% Confidence Interval of 222.28 mg/kg to 317.42 mg/kg) with the cannabidiol dissolved in the 1:1:18 ethanol:polyethoxlated castor oil:PBS solvent.
- cannabidiol is likely to be effective in humans for the treatment of epilepsy and other conditions. Further, synthetically synthesized cannabidiol will likely be less toxic than cannabidiol that is derived from plants and not substantially pure.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Addiction (AREA)
- Psychiatry (AREA)
- Pain & Pain Management (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- This application is a divisional of U.S. application Ser. No. 14/724,351, filed May 28, 2015, now U.S. Pat. No. 11,224,660, issued Jan. 18, 2022, which claims priority to U.S. Provisional Patent Application Nos. 62/004,495, filed May 29, 2014, and 62/154,660, filed Apr. 29, 2015. The entire contents of each application are incorporated herein by reference.
- The present invention is generally directed to substantially pure cannabidiol, stable cannabinoid pharmaceutical formulations, and methods of their use.
- Cannabinoids are chemicals that are produced by cannabis flowers. Cannabinoids imitate endogenous compounds in humans.
- Cannabinoids include cannabinol, cannabidiol, dronabinol (delta-9-tetrahydrocannabinol), delta-8-tetrahydrocannabinol, 11-hydroxy-tetrahydrocannabinol, 11-hydroxy-delta9-tetrahydrocannabinol, levonantradol, delta-11-tetrahydrocannabinol, tetrahydrocannabivarin, amandamide, nabilone, and acids and analogs thereof. It is now possible to synthesize many cannabinoids in a laboratory thereby eliminating the need to grow cannabis for extraction of the compounds.
- One cannabinoid, cannabidiol, (−)-trans-2-p-mentha-1,8-di en-3 -yl-5-pentylresorcinol, is non-psychoactive and has shown promise in treating numerous diseases and disorders. Synthetic cannabidiol has the same structure as naturally occurring cannabidiol.
- Commercially available cannabidiol is usually contaminated with delta 9-tetrahydrocannabinol. The presence of delta-9-tetrahydrocannabinol can be a concern because delta-9-tetrahydrocannabinol is regulated by the United States Drug Enforcement Administration as a Schedule I Drug. Having a higher Schedule number could result in easier access for patients to cannabidiol treatments. Further, delta-9-tetrahydrocannabinol is a hallucinogen and patients receiving cannabidiol wish to avoid this undesirable side effect of the delta-9-tetrahydrocannabinol contaminant. Therefore, there is a need for a substantially pure synthetically synthesized cannabidiol that does not contain delta-9-tetrahydrocannabinol.
- Cannnabinoids, including cannabidiol, may be suitable for the treatment of diseases or disorders, or symptoms of diseases or disorders, such as Dravet Syndrome, Lennox Gastaut Syndrome, mycolonic seizures, juvenile mycolonic epilepsy, refractory epilepsy, schizophrenia, juvenile spasms, West syndrome, refractory infantile spasms, infantile spasms, tubular sclerosis complex, brain tumors, neuropathic pain, cannabis use disorder, post-traumatic stress disorder, anxiety, early psychosis, Alzheimer's Disease autism, and withdrawal from opioids, cocaine, heroin, amphetamines, and nicotine.
- Accordingly, there is a need for new stable cannabinoid formulations. There is also a need for substantially pure cannabidiol.
- In one aspect, the present invention is directed to stable pharmaceutical formulations for oral administration comprising from about 0.1 to about 50% of a cannabinoid, from about 0.1 to about 40% of a polyethylene glycol, from about 0.1 to about 50% of propylene glycol, and from about 0.1 to about 20% of water, wherein the formulation does not contain alcohol and the formulation has a pH of from about 5 to about 8.
- In another aspect, the present invention is directed to stable pharmaceutical formulations for oral administration comprising from about 0.1 to about 40% of a cannabinoid, from about 0.1 to about 25% of a polyethylene glycol, from about 0.1 to about 40% of propylene glycol, optionally from about 0.1 to about 50% of water; and from about 0.1 to about 70% of alcohol, wherein the formulation has a pH of from about 5 to about 8.
- In yet another aspect, the present invention is directed to stable pharmaceutical formulations for oral administration comprising from about 0.1 to about 40% of a cannabinoid and from about 10 to about 95% of a lipid.
- In another aspect, the invention is directed to methods of using a cannabinoid or substantially pure, synthetically synthesized cannabidiol: to treat diseases or disorders, or symptoms of diseases or disorders, such as Dravet Syndrome, Lennox Gastaut Syndrome, mycolonic seizures, juvenile mycolonic epilepsy, refractory epilepsy, schizophrenia, juvenile spasms, West syndrome, infantile spasms, refractory infantile spasms, tubular sclerosis complex, brain tumors, neuropathic pain, cannabis use disorder, post-traumatic stress disorder, anxiety, early psychosis, Alzheimer's Disease, and autism; to assist with withdrawal from opioids, cocaine, heroin, amphetamines and nicotine; and as an analgesic or to assist with handling of adverse emotional stimuli.
-
FIG. 1 shows the results from the study detailed in Example 7 and illustrates the advantages of administration of substantially pure, synthetically synthesized, cannabidiol formulations for treatment of neuropathic pain. -
FIG. 2 shows the results from the study detailed in Example 9 and illustrates the advantages of administration of substantially pure, synthetically synthesized, cannabidiol formulations for treatment of glioblastoma multiforme. - Applicant unexpectedly created new storage stable formulations containing cannabinoids. Applicant determined that a pH of from about 5 to about 8 is critical for the formulations to remain stable, preferably from about 6 to about 7. For example, as seen in Example 2 below, the alcohol-free formulations #AF3 and #AF4 exhibited excellent stability for four weeks regardless of the temperature and humidity conditions. Further, in Example 4, Applicant unexpectedly found that the alcohol containing formulations #A7 and #A8 exhibited excellent stability for at least 12 months regardless of the temperature and humidity conditions. Applicant also determined that an antioxidant is important to maintain stability during long-term storage. These results were not expected because formulation science is incredibly difficult to predict and many otherwise suitable formulations for pharmaceutical use are not stable during storage.
- As indicated above, Applicant created stable formulations with and without alcohol (see Examples 1 and 3). The formulations that do not contain alcohol are especially suitable for administration to children. Further, the alcohol-free formulations are especially suitable for patients in recovery from drug and alcohol addiction.
- In addition, Applicant created stable formulations lipid formulations (see Example 5). These formulations were also unexpectedly stable during storage (see Example 6).
- Further, Applicant unexpectedly found that substantially pure cannabidiol formulations are especially suitable for treatment of epilepsy (see Examples 8, 10 and 11), neuropathic pain (see Example 7 and
FIG. 1 ), and glioblastoma multiforme (see Example 9 andFIG. 2 ). - In one embodiment, the present invention is directed to stable pharmaceutical formulation for oral administration comprising from about 0.1 to about 50% of a cannabinoid, from about 0.1 to about 40% of a polyethylene glycol, from about 0.1 to about 50% of propylene glycol, and from about 0.1 to about 20% of water, wherein the formulation does not contain alcohol and the formulation has a pH of from about 5 to about 8.
- In a preferred embodiment, the formulations contain from about 1 to about 40% of a cannabinoid. In more preferred embodiments, the formulations contain from about 5 to about 35%, from about 20 to about 35% or from about 30 to 35% of a cannabinoid.
- In yet another embodiment, the formulations contain a cannabinoid selected from group consisting of cannabinol, cannabidiol, dronabinol (delta-9-tetrahydrocannabinol), delta-8-tetrahydrocannabinol, 11-hydroxy-tetrahydrocannabinol, 11-hydroxy-delta-9-tetrahydrocannabinol, levonantradol, delta-11-tetrahydrocannabinol, tetrahydrocannabivarin, amandamide, nabilone, acids, analogs, and synthetic derivatives thereof. In a preferred embodiment, the cannabinoid is cannabidiol.
- In a preferred embodiment, the formulations contain from about 1 to about 40% of a cannabidiol. In more preferred embodiments, the formulations contain from about 5 to about 35%, from about 20 to about 35% or from about 30 to 35% of a cannabidiol.
- In yet another embodiment, the formulations contain cannabidiol that is substantially pure and synthetically synthesized which has a purity of greater than 98%. In a more preferred embodiment, the cannabidiol is greater than 99% pure. In an even more preferred embodiment, the cannabidiol is greater than 99.5% pure. In a most preferred embodiment, the cannabidiol formulation contains less than 0.3% delta-9-tetrahydrocannabinol.
- In another embodiment, the formulations contain from about 0.001 to about 1% of an antioxidant. In a preferred embodiment, the formulations contain from about 0.01 to about 1% antioxidant. In a more preferred embodiment, the formulations contain from about 0.02 to about 0.5% antioxidant.
- Suitable antioxidants include butylated hydroxyltoluene, butylated hydroxyl anisole, alpha-tocopherol (Vitamin E), ascorbyl palmitate, ascorbic acid, sodium ascorbate, ethylenediamino tetraacetic acid, cysteine hydrochloride, citric acid, sodium citrate, sodium bisulfate, sodium metabisulfite, lecithin, propyl gallate, sodium sulfate, monothioglycerol and combinations thereof. In a preferred embodiment, the formulations contain alpha-tocopherol (Vitamin E), ascorbic acid, sodium ascorabte, ascobyl palminate or combinations thereof
- In another embodiment, the formulations contain from about 1 to about 40% of a polyethylene glycol. In a preferred embodiment, the formulations contain from about 1 to about 35%, from about 5 to about 35%, from about 20 to about 30%, or from about 25 to about 30% polyethylene glycol.
- Suitable polyethylene glycols include low molecular weight polyethylene glycols with an average molecular weight of between 200 and 10,000. One preferred polyethylene glycol that can be used is polyethylene glycol 400.
- In another embodiment, the formulations contain from about 1 to about 40% of polyethylene glycol 400. In a preferred embodiment, the formulations contain from about 1 to about 35%, from about 5 to about 35%, from about 20 to about 30%, or from about 25 to about 30% polyethylene glycol 400.
- In another embodiment, the formulations contain from about 1 to about 50% of propylene glycol. In a preferred embodiment, the formulations contain from about 1 to about 40%, from about 5 to about 35%, from about 20 to about 35%, or from about 30 to about 35% propylene glycol.
- In a further embodiment, the formulations contain water. The formulations can contain 0% water. If the formulations contain water, they can include from about 1 to about 15% water, from about 1 to about 10% water, or from about 4 to about 8% water.
- The pH of the formulations may be modified using any pharmaceutically acceptable means. Preferably the pH of the formulation is from about 5 to about 8. In a more preferred embodiment, the pH of the formulations is from about 6 to about 7. In a most preferred embodiment, the pH of the formulations is from about 6.2 to about 6.7.
- The formulations of the present invention may also contain sweeteners, sweetener enhancers, preservatives, pH modifiers, and flavoring agents.
- Suitable sweeteners include, but are not limited to, sucrose, aspartame, saccharin, dextrose, mannitol, xylitol, and combinations thereof.
- If the formulations contain a sweetener, the formulations preferably contain from about 0.001 to about 1% sweetener.
- If the formulations contain a sweetness enhancer, the formulations preferably contain from about 0.001 to about 1% sweetness enhancer.
- Suitable sweetness enhancers include, but are not limited to, the ammonium salt forms of crude and refined Glycyrrhizic Acid. Magnasweet® products (available from Mafco Worldwide Corporation, Magnasweet is a registered trademark of Mafco Worldwide Corporation) use the ammonium salt forms of crude and refined Glycyrrhizic Acid. Glycyrrhizic Acid is also available as a pure derivative in the sodium and potassium salt forms.
- Suitable pH modifiers include, but are not limited to, hydrochloric acid, ascorbic acid, citric acid, sodium citrate, fumaric acid, sodium hydroxide, sodium bicarbonate, sodium carbonate, ammonium carbonate, and combinations thereof.
- Suitable preservatives include, but are not limited to, methyl paraben, propyl paraben, benzyl alcohol, benzoic acid, sodium benzoate, sorbic acid, and combinations thereof.
- Suitable flavoring agents include, but are not limited to, raspberry, peppermint oil, grape flavor, menthol, spearmint oil, citrus oil, cinnamon oil, strawberry flavor, cherry flavor, raspberry flavor, orange oil, lemon oil, lemon mint flavor, fruit punch flavor, and combinations thereof. In a preferred embodiment, the formulations contain strawberry flavor.
- If the formulations contain a flavoring agent, the formulations preferably contain from about 0.001 to about 1% flavoring agent. In a more preferred embodiment, the formulations contain from about 0.005 to about 0.5% of the flavoring agent.
- The formulations are suitable for oral, buccal, sublingual, inhalation or intravenous/intramuscular administration. Preferably, the formulations are liquids administered orally.
- In another embodiment, the invention is directed to stable pharmaceutical formulation for oral administration comprising from about 0.1 to about 40% of a cannabinoid, from about 0.1 to about 25% of a polyethylene glycol, from about 0.1 to about 40% of propylene glycol, optionally from about 0.1 to about 50% of water, and from about 0.1 to about 70% of alcohol, wherein the formulation has a pH of from about 5 to about 8.
- In a preferred embodiment, the formulations contain from about 1 to about 35% of a cannabinoid. In a more preferred embodiment, the formulations contain from about 1 to about 15%, from about 5 to about 12% or from about 7 to about 11% cannabinoid. Alternatively, the formulations may contain from about 20 to about 35% or from about 30 to about 35% cannabinoid.
- In yet another embodiment, the formulations contain a cannabinoid selected from group consisting of cannabinol, cannabidiol, dronabinol (delta-9-tetrahydrocannabinol), delta-8-tetrahydrocannabinol, 11-hydroxy-tetrahydrocannabinol, 11-hydroxy-delta-9-tetrahydrocannabinol, levonantradol, delta-11-tetrahydrocannabinol, tetrahydrocannabivarin, amandamide, nabilone, acids, analogs, and synthetic derivatives thereof. In a preferred embodiment, the cannabinoid is cannabidiol.
- In a preferred embodiment, the formulations contain from about 1 to about 35% of a cannabidiol. In a more preferred embodiment, the formulations contain from about 1 to about 15%, from about 5 to about 12% or from about 7 to about 11% cannabidiol. Alternatively, the formulations may contain from about 20 to about 35% or from about 30 to about 35% cannabidiol.
- In yet another embodiment, the formulations contain cannabidiol that is substantially pure and synthetically synthesized which has a purity of greater than 98%. In a more preferred embodiment, the cannabidiol is greater than 99% pure. In an even more preferred embodiment, the cannabidiol is greater than 99.5% pure. In a most preferred embodiment, the cannabidiol formulation contains less than 0.3% delta-9-tetrahydrocannabinol.
- In another embodiment, the formulations contain from about 0.001 to about 1% of an antioxidant. In a preferred embodiment, the formulations contain from about 0.01 to about 1% antioxidant. In a more preferred embodiment, the formulations contain from about 0.02 to about 0.5% antioxidant.
- Suitable antioxidants include butylated hydroxyltoluene, butylated hydroxyl anisole, alpha-tocopherol (Vitamin E), ascorbyl palmitate, ascorbic acid, sodium ascorbate, ethylenediamino tetraacetic acid, cysteine hydrochloride, citric acid, sodium citrate, sodium bisulfate, sodium metabisulfite, lecithin, propyl gallate, sodium sulfate, and combinations thereof. In a preferred embodiment, the formulations contain alpha-tocopherol (Vitamin E), ascorbic acid, sodium ascorabte, ascobyl palminate or combinations thereof.
- In another embodiment, the formulations contain from about 1 to about 20% of propylene glycol. In a preferred embodiment, the formulations contain from about 1 to about 15% or from about 5 to about 10% propylene glycol.
- In an alternative embodiment, the formulations contain from about 20 to about 50% of propylene glycol. In a preferred embodiment, the formulations contain from about 30 to about 40% or from about 30 to about 35% propylene glycol.
- In another embodiment, the formulations contain from about 1 to about 20% of a polyethylene glycol. In a preferred embodiment, the formulations contain from about 1 to about 10% or from about 1 to about 5% polyethylene glycol.
- In an alternative embodiment, the formulations contain from about 10 to about 20% of a polyethylene glycol. In a preferred alternative embodiment, the formulations contain from about 15 to about 20% polyethylene glycol.
- Suitable polyethylene glycols include low molecular weight polyethylene glycols with an average molecular weight of between 200 and 10,000. One preferred polyethylene glycol that can be used is polyethylene glycol 400.
- In another embodiment, the formulations contain from about 1 to about 20% of polyethylene glycol 400. In a preferred embodiment, the formulations contain from about 1 to about 10% or from about 1 to about 5% polyethylene glycol 400.
- In an alternative embodiment, the formulations contain from about 10 to about 20% of polyethylene glycol 400. In a preferred alternative embodiment, the formulations contain from about 15 to about 20% polyethylene glycol 400.
- In a further embodiment, the formulations contain water. The formulations can contain 0% water. If the formulations contain water, they can include from about 1 to about 40% water, from about 5 to about 40% water, from about 10 to about 35% water or from about 25 to about 35% water.
- In yet another embodiment, the formulations contain from about 1 to about 65% alcohol. In a preferred embodiment, the formulations contain from about 10 to about 65%, from about 15 to about 60%, or from about 30 to 55% alcohol.
- In an alternative embodiment, the formulations contain from about 1 to about 20% alcohol. In a preferred alternative embodiment, the formulations contain from about 1 to about 10% or from about 3 to about 7% alcohol.
- The pH of the formulations may be modified using any pharmaceutically acceptable means. Preferably the pH of the formulations is from about 6 to about 7. In a more preferred embodiment, the pH of the formulations is from about 6.2 to about 6.7.
- The formulations of the present invention may also contain sweeteners, sweetener enhancers, pH modifiers, preservatives, and flavoring agents.
- Suitable sweeteners include, but are not limited to, sucrose, aspartame, saccharin, dextrose, mannitol, xylitol, and combinations thereof.
- If the formulations contain a sweetener, the formulations preferably contain from about 0.001 to about 1% sweetener.
- Suitable sweetness enhancers include, but are not limited to, the ammonium salt forms of crude and refined Glycyrrhizic Acid. Magnasweet® products (available from Mafco Worldwide Corporation, Magnasweet is a registered trademark of Mafco Worldwide Corporation) use the ammonium salt forms of crude and refined Glycyrrhizic Acid. Glycyrrhizic Acid is also available as a pure derivative in the sodium and potassium salt forms.
- If the formulations contain a sweetness enhancer, the formulations preferably contain from about 0.001 to about 1% sweetness enhancer.
- Suitable pH modifiers include, but are not limited to, hydrochloric acid, ascorbic acid, citric acid, sodium citrate, fumaric acid, sodium hydroxide, sodium bicarbonate, sodium carbonate, ammonium carbonate, and combinations thereof
- Suitable preservatives include, but are not limited to, methyl paraben, propyl paraben, benzyl alcohol, benzoic acid, sodium benzoate, sorbic acid, and combinations thereof.
- Suitable flavoring agents include, but are not limited to, raspberry, peppermint oil, grape flavor, menthol, spearmint oil, citrus oil, cinnamon oil, strawberry flavor, cherry flavor, raspberry flavor, orange oil, lemon oil, lemon mint flavor, fruit punch flavor, and combinations thereof. In a preferred embodiment, the formulations contain fruit punch flavor, raspberry flavor, grape flavor, or lemon mint flavor.
- If the formulations contain a flavoring agent, the formulations preferably contain from about 0.001 to about 1% flavoring agent. In a more preferred embodiment, the formulations contain from about 0.005 to about 0.5% of the flavoring agent.
- The formulations are suitable for oral, buccal, sublingual, inhalation or intravenous/intramuscular administration. Preferably, the formulations are liquids administered orally.
- In another embodiment, the invention is directed to stable pharmaceutical formulation for oral administration comprising from about 0.1 to about 40% of a cannabinoid and from about 10 to about 95% of a lipid.
- In a preferred embodiment, the lipid is selected from the group consisting of sesame oil, olive oil, corn oil, sunflower oil, safflower oil, flaxseed oil, almond oil, peanut oil, walnut oil, cashew oil, castor oil, coconut oil, palm oil, soybean oil, canola oil, vegetable oil, rice bran oil, medium chain glycerides, decanoyl glycerides, octanoyl glycerides, caprylic/capric triglycerides, oleoyl polyoxyl-6 glycerides, linoleoyl polyoxyl-6 glycerides, polyglyceryl-3 dioleate, glyceryl monolinoleate, glyceryl monocaprylate, oleic acid, and a combination thereof. In a preferred embodiment, the lipid is selected from the group consisting of sesame oil, sunflower oil, soybean oil, corn oil, a mixture of decanoyl glycerides and octanoyl glycerides, and a combination thereof.
- Suitable commercial sources for the lipid include Miglyol® 812N containing a proprietary mixture of decanoyl and octanoyl glycerides (fatty acid esters) and Miglyol® 810N also containing a proprietary mixture of decanoyl and octanoyl fatty acids from coconut oil (Miglyol is available from and a registered trademark of Cremer Oleo GmbH & Co.).
- In yet another embodiment, the formulations contain a cannabinoid selected from group consisting of cannabinol, cannabidiol, dronabinol (delta-9-tetrahydrocannabinol), delta-8-tetrahydrocannabinol, 11-hydroxy-tetrahydrocannabinol, 11-hydroxy-delta-9-tetrahydrocannabinol, levonantradol, delta-11-tetrahydrocannabinol, tetrahydrocannabivarin, amandamide, nabilone, acids, analogs, and synthetic derivatives thereof. In a preferred embodiment, the cannabinoid is cannabidiol.
- In yet another embodiment, the formulations contain cannabidiol that is substantially pure and synthetically synthesized which has a purity of greater than 98%. In a more preferred embodiment, the cannabidiol is greater than 99% pure. In an even more preferred embodiment, the cannabidiol is greater than 99.5% pure. In a most preferred embodiment, the cannabidiol formulation contains less than 0.3% delta-9-tetrahydrocannabinol.
- In a preferred embodiment, the formulations contain from about 1 to about 35% of a cannabidiol. In a more preferred embodiment, the formulations contain from about 10 to about 32% cannabidiol. In a most preferred embodiment, the formulations contain from about 17 to about 29% cannabidiol.
- In a preferred embodiment, the formulations contain from about 20 to about 90% of lipids. In a more preferred embodiment, the formulations contain from about 50 to about 90% lipids. In a most preferred embodiment, the formulations contain from about 60 to about 85% lipids.
- In yet another embodiment, the formulations contain alcohol. The formulations can contain 0% alcohol. If the formulations contain alcohol, they can include from about 0.1 to about 20% alcohol. In a preferred embodiment, the formulations contain from about 3 to about 17% alcohol. In a more preferred embodiment, the formulations contain from about 5 to about 15% alcohol.
- In another embodiment, the formulations contain an antioxidant. The formulations can contain 0% antioxidant. If the formulations contain antioxidant, they can include from about 0.01 to about 1% of an antioxidant. In a preferred embodiment, the formulations contain from about 0.02 to about 0.5% antioxidant. In a more preferred embodiment, the formulations contain from about 0.03 to about 0.1% antioxidant.
- Suitable antioxidants include butylated hydroxyltoluene, butylated hydroxyl anisole, alpha-tocopherol (Vitamin E), ascorbyl palmitate, ascorbic acid, sodium ascorbate, ethylenediamino tetraacetic acid, cysteine hydrochloride, citric acid, sodium citrate, sodium bisulfate, sodium metabisulfite, lecithin, propyl gallate, sodium sulfate, and combinations thereof. In a preferred embodiment, the formulations contain alpha-tocopherol (Vitamin E), ascorbic acid, sodium ascorabte, ascobyl palminate or combinations thereof.
- Suitable sweeteners include, but are not limited to, sucrose, aspartame, saccharin, dextrose, mannitol, xylitol, and combinations thereof.
- If the formulations contain a sweetener, the formulations preferably contain from about 0.1 to about 2% sweetener. In a more preferred embodiment, the formulations contain from about 0.1 to about 0.8% sweetener. In a most preferred embodiment, the formulations contain from about 0.2 to about 0.5% sweetener.
- Suitable sweetness enhancers include, but are not limited to, the ammonium salt forms of crude and refined Glycyrrhizic Acid. Magnasweet® products (available from Mafco Worldwide Corporation, Magnasweet is a registered trademark of Mafco Worldwide Corporation) use the ammonium salt forms of crude and refined Glycyrrhizic Acid. Glycyrrhizic Acid is also available as a pure derivative in the sodium and potassium salt forms.
- If the formulations contain a sweetness enhancer, the formulations preferably contain from about 0.001 to about 1% sweetness enhancer.
- Suitable pH modifiers include, but are not limited to, hydrochloric acid, ascorbic acid, citric acid, sodium citrate, fumaric acid, sodium hydroxide, sodium bicarbonate, sodium carbonate, ammonium carbonate, and combinations thereof.
- Suitable preservatives include, but are not limited to, methyl paraben, propyl paraben, benzyl alcohol, benzoic acid, sodium benzoate, sorbic acid, and combinations thereof.
- Suitable flavoring agents include, but are not limited to, raspberry, peppermint oil, grape flavor, menthol, spearmint oil, citrus oil, cinnamon oil, strawberry flavor, cherry flavor, raspberry flavor, orange oil, lemon oil, lemon mint flavor, fruit punch flavor, and combinations thereof.
- If the formulations contain a flavoring agent, the formulations preferably contain from about 0.01 to about 1% flavoring agent. In a more preferred embodiment, the formulations contain from about 0.005 to about 0.5% of the flavoring agent.
- The formulations are suitable for oral, buccal, sublingual, inhalation or intravenous/intramuscular administration. Preferably, the formulations are liquids administered orally.
- Exemplary Uses of Formulations of the Present Invention (Alcohol-Containing, Alcohol-Free, and Lipid) and Synthetically Synthesized, Substantially Pure, Cannabidiol
- The formulations of the present invention are especially suitable for treatment of many diseases or disorders or symptoms of diseases and disorders. Further, cannabidiol which is synthetically synthesized and substantially pure will be even more effective and suitable for the treatment of diseases or symptoms of these diseases.
- As first explained in U.S. Patent Application No. 62/004,495, Applicant unexpectedly created a new synthetic pathway for creating cannabidiol. This new process eliminated the need to grow cannabis in order to extract cannabidiol. Applicant's cannabidiol has a high purity level and is substantially free of Schedule I drugs, including delta-9-tetrahydrocannabinol.
- Applicant chemically synthesized cannadbidiol by combining p-menthadienol and olivetol in toluene or dichloromethane or hexane with a p-toluene sulfonic acid catalyst to produce cannabidiol (see diagram below).
- In an embodiment, the present invention is directed to methods for treating a brain tumor comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating a brain tumor comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating glioma comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating glioma comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating glioblastoma multiforme comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating glioblastoma multiforme comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating Dravet Syndrome comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating Dravet Syndrome comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In yet another embodiment, the present invention is directed to methods for treating Lennox Gastaut Syndrome comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating Lennox Gastaut Syndrome comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof
- In a further embodiment, the present invention is directed to methods for treating Mycolonic Seizures comprising administering the formulations of the present invention to a patient in need thereof. In a more preferred embodiment, the alcohol-free formulations contain substantially pure cannabidiol.
- In another embodiment, the present invention is directed to methods for treating Mycolonic Seizures comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof
- In a further embodiment, the present invention is directed to methods for treating Juvenile Mycolonic Epilepsy comprising administering the formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- In another embodiment, the present invention is directed to methods for treating Juvenile Mycolonic Epilepsy comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating Refractory Epilepsy comprising administering the formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- In another embodiment, the present invention is directed to methods for treating Refractory Epilepsy comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating juvenile spasms comprising administering the formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- In another embodiment, the present invention is directed to methods for treating juvenile spasms comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating West Syndrome comprising administering the formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- In another embodiment, the present invention is directed to methods for treating West Syndrome comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating infantile spasms comprising administering the formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- In another embodiment, the present invention is directed to methods for treating infantile spasms comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating refractory infantile spasms comprising administering the formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- In another embodiment, the present invention is directed to methods for treating refractory infantile spasms comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating tubular sclerosis complex comprising administering the formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to young patients in need of treatment.
- In another embodiment, the present invention is directed to methods for treating tubular sclerosis complex comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In a further embodiment, the present invention is directed to methods for treating neuropathic pain comprising administering the formulations of the present invention to a patient in need thereof. In a further embodiment, the neuropathic pain is caused by neurotoxic chemotherapy agents such as Paclitaxel, Docetaxel, Cisplatin, Oxaliplatin, Carboplatin, Vincristine, Methotrexate, Cytarabine, Fluorouracil, Ifosfamide, Cyclophosphamide, Procarbazine, etoposide, Carmustine, and Lomustine. In yet another embodiment, the neuropathic pain is caused by Paclitaxel and the patient is receiving Paclitaxel due to a diagnosis of breast, cervical, endometrial and/or ovarian cancer. In a further embodiment, the breast, cervical, endometrial and/or ovarian cancer is platinum-resistant. In another embodiment, the breast, cervical, endometrial and/or ovarian cancer is recurrent.
- In another embodiment, the present invention is directed to methods for treating neuropathic pain comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof. In a further embodiment, the neuropathic pain is caused by neurotoxic chemotherapy agents such as Paclitaxel, Docetaxel, Cisplatin, Oxaliplatin, Carboplatin, Vincristine, Methotrexate, Cytarabine, Fluorouracil, Ifosfamide, Cyclophosphamide, Procarbazine, etoposide, Carmustine, and Lomustine. In yet another embodiment, the neuropathic pain is caused by Paclitaxel and the patient is receiving Paclitaxel due to a diagnosis of breast, cervical, endometrial and/or ovarian cancer. In a further embodiment, the breast, cervical, endometrial and/or ovarian cancer is platinum-resistant. In another embodiment, the breast, cervical, endometrial and/or ovarian cancer is recurrent.
- In a further embodiment, the present invention is directed to methods for using cannabidiol as an analgesic comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for using cannabidiol as an analgesic comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In a further embodiment, the present invention is directed to methods for treating opioid addiction withdrawal comprising administering the formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- In another embodiment, the present invention is directed to methods for treating opioid addiction withdrawal comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In yet another embodiment, the present invention is directed to methods for treating cocaine addiction withdrawal comprising administering the formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- In another embodiment, the present invention is directed to methods for treating cocaine addiction withdrawal comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In a further embodiment, the present invention is directed to methods for treating heroin addiction withdrawal comprising administering the formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- In another embodiment, the present invention is directed to methods for treating heroin addiction withdrawal comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In a further embodiment, the present invention is directed to methods for treating nicotine addiction withdrawal comprising administering the formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- In another embodiment, the present invention is directed to methods for treating nicotine addiction withdrawal comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In a further embodiment, the present invention is directed to methods for treating amphetamine addiction withdrawal comprising administering the formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- In another embodiment, the present invention is directed to methods for treating amphetamine addiction withdrawal comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating acne comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating acne comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating Parkinson's disease comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating Parkinson's disease comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof
- In an embodiment, the present invention is directed to methods for treating schizophrenia comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating schizophrenia comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating social anxiety disorder comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating social anxiety disorder comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In a further embodiment, the present invention is directed to methods for treating depression comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating depression comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In a further embodiment, the present invention is directed to methods for treating patients encountering adverse emotional stimuli comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating patients encountering adverse emotional stimuli comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating nausea comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating nausea comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the present invention is directed to methods for treating multiple sclerosis comprising administering the formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating multiple sclerosis comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the invention is directed to methods for treating symptoms of cannabis use disorder comprising administering formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- In another embodiment, the present invention is directed to methods for treating symptoms of cannabis use disorder comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In another embodiment, the invention is directed to methods for treating symptoms of early psychosis comprising administering formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating symptoms of early psychosis comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In another embodiment, the invention is directed to methods for treating symptoms of Alzheimer' s Disease comprising administering formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating symptoms of Alzheimer's Disease comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In yet another embodiment, the invention is directed to methods for treating symptoms of post-traumatic stress disorder (“PTSD”) comprising administering formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating symptoms of post-traumatic stress disorder PTSD comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In an embodiment, the invention is directed to methods for treating symptoms of anxiety comprising administering formulations of the present invention to a patient in need thereof.
- In another embodiment, the present invention is directed to methods for treating anxiety comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- In a further embodiment, the invention is directed to methods for treating symptoms of autism comprising administering formulations of the present invention to a patient in need thereof. In a preferred embodiment, the alcohol-free formulations of the present invention are administered to the patient in need of treatment.
- In another embodiment, the present invention is directed to methods for treating symptoms of autism comprising administering synthetically synthesized, substantially pure, cannabidiol to a patient in need thereof.
- As used herein, a “patient” refers to a single patient and not a patient population.
- As used herein, “synthetic” refers to the chemical synthesis of cannabidiol does not refer to cannabidiol that is extracted from cannabis plant material.
- As used herein, “substantially pure” refers to a preparation having chromatographical purity of cannabidiol of greater than 98%, preferably greater than 98.5%, more preferably greater than 99.0%, and most preferably greater than 99.5%.
- As used herein, “substantially free of delta-9-tetrahydrocannabinol” refers to a preparation of cannabidiol having less than 0.3% of delta-9-tetrahydrocannabinol as determined by HPLC. Preferably, the preparation contains less than 0.25% of delta-9-tetrahydrocannabinol, more preferably 0.2%, and most preferably less than 0.1% of delta-9-tetrahydrocannabinol.
- As used herein, all numerical values relating to amounts, weights, and the like, that are defined as “about” each particular value is plus or minus 10%. For example, the phrase “about 10% w/w” is to be understood as “9% w/w to 11% w/w.” Therefore, amounts within 10% of the claimed value are encompassed by the scope of the claims.
- As used here, “liquid” refers to a flowable, fluid pharmaceutical formulation. This type of formulation is not a powder to solid.
- All weights herein refer to % w/w or percent weight of the total formulation.
- As used herein the term “effective amount” refers to the amount necessary to treat a patient in need thereof.
- As used herein the term “pharmaceutically acceptable” refers to ingredients that are not biologically or otherwise undesirable in an oral dosage form.
- As used herein, “qs” means a sufficient quantity of that component to reach a desired volume or concentration.
- The disclosed embodiments are simply exemplary embodiments of the inventive concepts disclosed herein and should not be considered as limiting, unless the claims expressly state otherwise.
- The following examples are intended to illustrate the present invention and to teach one of ordinary skill in the art how to use the formulations of the invention. They are not intended to be limiting in any way.
- All claims, aspects and embodiments of the invention, and specific examples thereof, are intended to encompass equivalents thereof.
- The formulations in Table 1 below were prepared as follows. All the solvents are purged with nitrogen before using in manufacturing. Vitamin E, methyl paraben, propyl paraben were dissolved in propylene glycol. Polyethylene glycol 400 (PEG400) and a flavoring agent were added to the propylene glycol solution and mixed thoroughly. The water phase was prepared by dissolving sucralose and sodium ascorbate in water. Next, the solutions were combined and pH adjusted using a pH modifier. The cannabinoid was added to the excipient solution and mixed until dissolved.
- Synthetically synthesized, substantially pure, cannabidiol was used as the cannabinoid.
- Strawberry flavor was used as the flavoring agent.
-
TABLE 1 Alcohol-free Formulations Formulation # AF1 # AF2 # AF3 # AF4 Cannabinoid 32 32 32 32 PEG400 28 28 27.9 28.4 Propylene Glycol 34 34 34 34 Water 6 6 6 6 Vitamin E (Alpha- 0.05 Tocopherol) Sodium Ascorbate 0.1 0.1 Methyl Paraben 0.1 Propyl Paraben 0.02 Sucralose 0.05 Flavoring 0.3 pH adjustment None pH adjusted pH adjusted pH adjusted to 6 to 7 to 6 to 7 to 6 to 7 Final pH of formulation 8.7 6.7 6.4 6.6 - The formulations listed in Table 1 were subjected to stability at 55° C. 2° C., 40° C.±2° C. under 75%±5% relative humidity, and 25° C.±2° C. under 60%±5% relative humidity. Stability of the formulations was analyzed at specified time points by evaluating for their potency (assay value) and impurity levels. Assay and impurities were detected using high-performance liquid chromatography with an ultraviolet detector. The assay was performed at 228 nm and indicated as a % of initial concentration. For all impurities, analysis was performed at 228 nm and expressed as a % area. Amounts of particular impurities are listed in Tables 2 to 13 as a percentage of area of each formulation along with amount of total impurities. Relative retention time (RRT) is given for each impurity.
-
TABLE 2 Stability Data for Cannabidiol Oral Solution Formulation # AF1 stored at 55° C. ± 2° C. 55° C.- 0 1 2 3 4 Formulation # AF1 RRT Week Week Weeks Weeks Weeks Assay (% of 100.00 97.11 97.30 94.47 87.91 initial concentration) % Cis-cannabidiol 1.440 0.01 0.02 0.02 0.02 0.02 % Delta-9- 1.729 ND ND 0.01 ND 0.02 tetrahydro- cannabinol % Trans- 1.840 0.05 0.03 0.03 0.03 0.02 (1R, 6R)-3'- methyl-cannabidiol % Unknown 0.328 ND BQL BQL BQL 0.06 Impurity 0.345 ND BQL BQL BQL 0.07 0.385 ND BQL BQL BQL 0.05 0.404 ND 0.08 0.13 0.23 0.38 0.460 ND 0.05 0.07 0.10 0.17 0.486 ND 0.42 0.65 1.23 2.73 0.505 BQL 0.22 0.22 0.19 ND 0.526 ND 0.10 0.14 0.13 0.17 0.610 ND ND BQL 0.05 0.08 0.702 ND BQL BQL 0.07 0.08 0.742 ND BQL BQL 0.05 0.07 0.774 0.07 0.06 0.06 ND ND 0.796 ND 0.58 1.04 2.13 3.80 0.830 BQL 0.31 0.39 0.59 0.87 0.933 ND BQL 0.06 0.17 0.37 1.881 ND 0.06 0.09 0.06 0.06 2.025 ND BQL BQL 0.34 0.39 2.291 ND 0.06 ND ND ND Total Impurities 0.13 1.99 2.91 5.39 9.41 (% Area) ND—Not Detected BQL—Below Quantification Limit, for unknown impurity only -
TABLE 3 Stability Data for Cannabidiol Oral Solution Formulation # AF2 stored at 55° C. ± 2° C. 55° C.- 0 1 2 3 4 Formulation # AF2 RRT Week Week Weeks Weeks Weeks Assay (% of 100.00 100.31 99.90 95.15 96.85 initial concentration) % Cis-cannabidiol 1.440 0.01 0.01 0.01 0.01 0.01 % Delta-9- 1.730 ND ND 0.01 0.03 0.06 tetrahydro- cannabinol % Trans- 1.840 0.05 0.07 0.05 0.05 0.04 (1R, 6R)-3'- methyl-cannabidiol % Unknown 0.340 ND BQL BQL 0.05 0.07 Impurity 0.404 ND BQL BQL BQL 0.08 0.462 ND BQL BQL BQL 0.05 0.486 ND BQL 0.22 0.35 0.94 0.506 ND 0.07 0.13 0.15 ND 0.584 ND BQL BQL 0.05 0.11 0.776 0.07 0.07 0.06 0.05 ND 0.795 ND BQL 0.30 0.50 1.09 0.830 BQL BQL 0.10 0.14 0.22 0.932 ND BQL 0.07 0.10 0.18 2.034 ND ND BQL 0.09 BQL Total Impurities 0.13 0.22 0.95 1.57 2.85 (% Area) ND—Not Detected BQL—Below Quantification Limit, for unknown impurity only -
TABLE 4 Stability Data for Cannabidiol Oral Solution Formulation # AF3 stored at 55° C. ± 2° C. 55° C.- 0 1 2 3 4 Formulation # AF3 RRT Week Week Weeks Weeks Weeks Assay (% of 100.00 99.25 98.60 98.28 96.12 initial concentration) % Cis-cannabidiol 1.440 0.01 0.01 0.01 0.01 0.01 % Delta-9- 1.736 ND ND ND 0.01 0.02 tetrahydro- cannabinol % Trans-(1R, 6R)-3'- 1.840 0.05 0.05 0.05 0.05 0.05 methyl-cannabidiol % Unknown 0.484 ND ND ND BQL 0.14 Impurity 0.502 ND BQL BQL 0.05 0.09 0.775 0.06 0.09 0.10 0.06 0.05 0.793 ND ND ND 0.06 0.27 0.830 BQL BQL BQL BQL 0.06 0.951 ND BQL ND BQL 0.05 1.158 ND 0.06 0.08 0.12 0.05 Total Impurities 0.12 0.21 0.24 0.36 0.79 (% Area) ND—Not Detected BQL—Below Quantification Limit, for unknown impurity only -
TABLE 5 Stability Data for Cannabidiol Oral Solution Formulation # AF4 stored at 55° C. ± 2° C. 55° C.- 0 1 2 3 4 Formulation # AF4 RRT Week Week Weeks Weeks Weeks Assay (% of 100.00 100.92 99.27 100.16 98.10 initial concentration) % Cis-cannabidiol 1.440 0.01 0.01 0.01 0.01 0.01 % Trans- 1.840 0.05 0.05 0.05 0.06 0.07 (1R, 6R)-3'- methyl-cannabidiol % Unknown 0.403 ND BQL BQL BQL 0.06 Impurity 0.485 ND BQL 0.06 0.18 0.38 0.505 ND BQL 0.05 0.08 0.12 0.524 ND ND BQL BQL 0.07 0.776 0.07 0.08 0.05 0.06 ND 0.794 ND ND 0.07 0.31 0.70 0.822 ND ND BQL 0.10 0.15 0.931 ND ND ND BQL 0.06 1.159 ND BQL 0.08 0.10 ND 1.774 ND ND ND 0.05 0.11 Total Impurities 0.13 0.14 0.37 0.95 1.73 (% Area) ND—Not Detected BQL—Below Quantification Limit, for unknown impurity only -
TABLE 6 Stability Data for Cannabidiol Oral Solution Formulation # AF1 stored at 40° C. ± 2° C. under 75% ± 5% relative humidity 40° C.-Formulation # AF1 RRT 0 Week 2 Weeks 4 Weeks Assay (% of initial concentration) 100.00 100.18 95.64 % Cis-cannabidiol 1.440 0.01% 0.01% 0.01% % Trans-(1R,6R)-3′-methyl- 1.846 0.05% 0.05% 0.03% cannabidiol % Unknown Impurity 0.404 ND BQL 0.12% 0.460 ND 0.07% 0.08% 0.486 ND 0.23% 0.87% 0.505 BQL 0.30% 0.30% 0.526 ND 0.05% 0.14% 0.702 ND BQL 0.06% 0.774 0.07% 0.07% ND 0.796 ND 0.25% 1.31% 0.830 BQL 0.12% 0.44% 0.931 ND ND 0.06% Total Impurities (% Area) 0.13% 1.15% 3.42% ND—Not Detected BQL—Below Quantification Limit, for unknown impurity only -
TABLE 7 Stability Data for Cannabidiol Oral Solution Formulation # AF2 stored at 40° C. ± 2° C. under 75% ± 5% relative humidity 40° C.-Formulation # AF2 RRT 0 Week 2 Weeks 4 Weeks Assay (% of initial concentration) 100.00 100.08 98.77 % Cis-cannabidiol 1.442 0.01% 0.01% 0.01% % Trans-(1R,6R)-3′-methyl- 1.848 0.05% 0.05% 0.04% cannabidiol % Unknown Impurity 0.484 ND ND 0.08% 0.506 ND BQL 0.11% 0.776 0.07% 0.07% 0.06% 0.794 ND ND 0.09% 0.830 BQL BQL 0.05% Total Impurities (% Area) 0.13% 0.13% 0.44% ND—Not Detected BQL—Below Quantification Limit, for unknown impurity only -
TABLE 8 Stability Data for Cannabidiol Oral Solution Formulation #AF3 stored at 40° C. ± 2° C. under 75% ± 5% relative humidity 40° C.-Formulation # AF3 RRT 0 Week 2 Week 4 Week Assay (% of initial concentration) 100.00 98.47 96.90 % Cis-cannabidiol 1.442 0.01% 0.01% 0.01% % Trans-(1R,6R)-3′-methyl- 1.846 0.05% 0.05% 0.05% cannabidiol % Unknown Impurity 0.775 0.06% 0.08% 0.10% 1.160 ND ND 0.05% Total Impurities (% Area) 0.12% 0.14% 0.21% ND—Not Detected -
TABLE 9 Stability Data for Cannabidiol Oral Solution Formulation # AF4 stored at 40° C. ± 2° C. under 75% ± 5% relative humidity 40° C.-Formulation # AF4 RRT 0 Week 2 Weeks 4 Weeks Assay (% of initial concentration) 100.00 99.63 99.50 % Cis-cannabidiol 1.437 0.01% 0.01% 0.01% % Trans-(1R,6R)-3′-methyl- 1.840 0.05% 0.05% 0.06% cannabidiol % Unknown Impurity 0.776 0.07% 0.07% 0.08% Total Impurities (% Area) 0.13% 0.13% 0.15% -
TABLE 10 Stability Data for Cannabidiol Oral Solution Formulation # AF1 stored at 25° C. ± 2° C. under 60% ± 5% relative humidity 25° C.-Formulation # AF1 RRT 0 Week 4 Weeks Assay (% of initial concentration) 100.00 101.24 % Cis-cannabidiol 1.440 0.01% 0.01% % Trans-(1R,6R)-3′-methyl- 1.846 0.05% 0.04% cannabidiol % Unknown Impurity 0.459 ND 0.09% 0.483 ND 0.11% 0.505 BQL 0.27% 0.774 0.07% 0.06% 0.796 ND 0.10% 0.836 BQL 0.06% Total Impurities (% Area) 0.13% 0.74% ND—Not Detected BQL—Below Quantification Limit, for unknown impurity only -
TABLE 11 Stability Data for Cannabidiol Oral Solution Formulation # AF2 stored at 25° C. ± 2° C. under 60% ± 5% relative humidity 25° C.-Formulation # AF2 RRT 0 Week 4 Weeks Assay (% of initial concentration) 100.00 100.22 % Cis-cannabidiol 1.442 0.01% 0.01% % Trans-(1R,6R)-3′-methyl- 1.848 0.05% 0.05% cannabidiol % Unknown Impurity 0.776 0.07% 0.07% Total Impurities (% Area) 0.13% 0.13% -
TABLE 12 Stability Data for Cannabidiol Oral Solution Formulation # AF3 stored at 25° C. ± 2° C. under 60% ± 5% relative humidity 25° C.-Formulation # AF3 RRT 0 Week 4 Weeks Assay (% of initial concentration) 100.00 97.52 % Cis-cannabidiol 1.442 0.01% 0.01% % Trans-(1R,6R)-3′-methyl- 1.846 0.05% 0.05% cannabidiol % Unknown Impurity 0.775 0.06% 0.08% Total Impurities (% Area) 0.12% 0.14% -
TABLE 13 Stability Data for Cannabidiol Oral Solution Formulation # AF4 stored at 25° C. ± 2° C. under 60% ± 5% relative humidity 25° C.-Formulation # AF4 RRT T = 0 4 Weeks Assay (% of initial concentration) 100.00 99.26 % Cis-cannabidiol 1.437 0.01% 0.01% % Trans-(1R,6R)-3′-methyl- 1.840 0.05% 0.06% cannabidiol % Unknown Impurity 0.776 0.07% 0.07% Total Impurities (% Area) 0.13% 0.14% - Control formulation (#AF1) showed significant increase in levels of total impurities and decrease in the assay value. Adjusting the pH of formulation (#AF2) in the range of from about 6 to about 7 increased the stability of the formulation in comparison to control formulation. This illustrates the critical role that pH plays in cannabinoid formulations' stability. Applicant determined that the pH should be from about 6 to about 7 for optimal stability. Addition of antioxidants along with pH adjustment further increased the stability of the cannabinoid formulation. For example, formulations #AF3 and #AF4, containing antioxidant(s) and pH modifiers, showed excellent stability for four weeks regardless of temperature and humidity conditions.
- The formulations in Tables 14 and 15 below were prepared as follows. All the solvents were purged with nitrogen before using in manufacturing. Vitamin E, ascorbyl palmitate, methyl paraben, propyl paraben, sucralose were dissolved in ethanol. propylene glycol, polyethylene glycol 400, glycerol, flavoring agent, and water were added to the solution and mixed thoroughly. Then, if applicable, the pH of the solution was adjusted using a pH modifier. The cannabinoid was added to the excipient solution and mixed until completely dissolved.
- Synthetically synthesized, substantially pure, cannabidiol was used as the cannabinoid. Strawberry flavor was used as the flavoring agent.
-
TABLE 14 Formulations with Alcohol Formulation # A5 # A6 # A7 # A8 Cannabinoid 9.1 9.1 9.1 8.8 Polyethylene glycol 400 3 3 3 3 Propylene Glycol 7.5 7.5 7.5 7.5 Ethanol 50.3 50.2 50.2 49.7 Water 30 30 30 30.5 Vitamin E (Alpha- 0.05 0.05 0.05 Tocopherol) Ascorbyl Palmitate 0.1 0.1 0.1 Sucralose 0.05 0.05 0.05 0.05 Methyl Paraben 0.02 0.02 0.02 0.02 Propyl Paraben 0.02 0.02 0.02 0.02 Flavoring 0.3 pH adjustment None None pH adjusted pH adjusted to 6 to 7 to 6 to 7 Final pH of formulation 6.06 4.9 6.5 6.4 -
TABLE 15 Additional Formulations with Alcohol Formulation # A9 # A10 Cannabinoid 32 32 Polyethylene glycol 400 18.8 23.8 Propylene Glycol 39 39 Glycerol 5 Ethanol 5 5 Vitamin E (Alpha Tocopherol) 0.05 0.05 Ascorbyl Palmitate 0.1 0.1 Sucralose 0.05 0.05 Methyl Paraben 0.02 0.02 Propyl Paraben 0.02 0.02 - The formulations listed in Table 14 and Table 15 were subjected to stability at 25° C.±2° C. under 60%±5% relative humidity and 40° C.±2° C. under 75%±5% relative humidity. Stability of the formulations was analyzed at specified time points by evaluating for their potency (assay value) and impurity levels. Assay and impurities were detected using high-performance liquid chromatography with an ultraviolet detector. The assay was performed at 228 nm and indicated as a % of initial concentration. For all impurities, analysis was performed at 228 nm and expressed as a % area. Amounts of particular impurities are listed in Table 16 to 22 as a percentage of area of each formulation along with amount of total impurities. Relative retention time (RRT) is given for each impurity.
-
TABLE 16 Stability Data for Cannabidiol Oral Solution Formulation # A5 stored at 25° C. ± 2° C. under 60% ± 5% relative humidity 25° C.- 0 3 6 9 12 Formulation # A5 RRT Month Months Months Months Months Assay (% of initial 100.00 92.97 83.87 77.31 68.92 concentration) % Cannabinol 1.400 ND ND ND 0.01 ND % Cis-cannabidiol 1.455 0.01 0.01 0.01 0.02 0.02 % Delta-9- 1.761 ND ND 0.01 0.15 0.17 tetrahydrocannabinol % Unknown 0.319 ND 0.08 0.18 0.34 0.39 Impurity 0.337 ND BQL BQL BQL 0.05 0.370 ND BQL 0.07 0.08 0.08 0.389 ND 0.11 0.24 0.42 0.54 0.448 ND 0.18 0.23 0.24 0.25 0.479 ND 0.78 1.65 2.66 3.49 0.494 ND 0.50 0.72 0.82 0.88 0.522 ND 0.05 BQL BQL BQL 0.600 ND BQL 0.05 0.09 0.15 0.678 ND BQL 0.10 0.16 0.21 0.697 ND BQL 0.08 0.08 0.09 0.713 ND ND ND 0.06 0.10 0.770 0.05 ND ND ND ND 0.790 ND 0.99 2.28 4.19 5.55 0.819 ND 0.39 0.87 1.44 1.97 0.930 ND 0.05 0.21 0.38 0.56 1.189 ND ND ND BQL 0.09 2.053 ND 0.07 ND BQL 0.14 3.192 ND ND ND ND 0.09 3.256 ND ND ND 0.08 0.08 3.650 ND ND ND ND 0.13 Total Impurities 0.06 3.21 6.70 11.22 15.03 (% Area) ND—Not Detected BQL—Below Quantification Limit, for unknown impurity only -
TABLE 17 Stability Data for Cannabidiol Oral Solution Formulation # A6 stored at 25° C. ± 2° C. under 60% ± 5% relative humidity 25° C.- 0 3 6 9 12 Formulation # A6 RRT Month Months Months Months Months Assay (% of initial 100.00 97.49 94.25 91.14 87.53 concentration) % Cannabinol 1.400 ND ND ND 0.01 ND % Cis-cannabidiol 1.455 0.01 0.01 0.01 0.01 ND % Delta-9- 1.761 ND 0.06 0.23 0.68 0.82 tetrahydrocannabinol % Unknown 0.390 ND BQL 0.05 0.10 0.14 Impurity 0.479 ND BQL 0.08 0.17 0.25 0.496 ND 0.20 0.87 1.80 2.41 0.577 ND BQL BQL 0.08 0.10 0.721 ND ND BQL BQL 0.05 0.770 0.05 0.05 BQL BQL BQL 0.790 ND 0.05 0.11 0.25 0.43 0.834 BQL BQL BQL 0.05 0.07 0.961 ND 0.06 0.33 0.71 0.97 1.197 ND ND ND ND 0.06 1.869 BQL BQL BQL 0.06 0.27 2.066 ND 0.07 0.42 0.59 0.86 3.247 ND ND ND 0.07 0.08 3.655 ND ND ND ND 0.11 Total Impurities 0.06 0.50 2.10 4.58 6.62 (% Area) ND—Not Detected BQL—Below Quantification Limit, for unknown impurity only -
TABLE 18 Stability Data for Cannabidiol Oral Solution Formulation # A7 stored at 25° C. ± 2° C. under 60% ± 5% relative humidity 25° C.- 0 3 6 9 12 Formulation #A7 RRT Month Months Months Months Months Assay (% of initial 100.00 98.69 96.52 96.30 96.54 concentration) % Cis-cannabidiol 1.455 0.01 0.01 0.01 0.01 0.01 % Delta-9- 1.761 ND 0.01 0.02 0.03 0.05 tetrahydro- cannabinol % Unknown 0.479 ND BQL BQL BQL 0.07 Impurity 0.495 ND BQL 0.06 0.14 0.20 0.770 0.05 0.05 0.05 0.05 BQL 0.793 ND BQL 0.06 0.06 0.10 0.958 ND ND ND BQL 0.06 1.160 ND BQL 0.05 BQL 0.05 1.883 ND ND ND ND 0.06 2.057 ND ND BQL BQL 0.06 3.652 ND ND ND ND 0.05 Total Impurities 0.06 0.07 0.25 0.29 0.71 (% Area) ND—Not Detected BQL—Below Quantification Limit, for unknown impurity only -
TABLE 19 Stability Data for Cannabidiol Oral Solution Formulation # A8 stored at 25° C. ± 2° C. under 60% ± 5% relative humidity 25° C.-Formulation # A8 RRT 0 Month 3 Months 6 Months Assay (% of initial 100.00 100.51 100.14 concentration) % Cis-cannabidiol 1.454 0.04 0.04 0.04 % Delta-9- 1.762 0.03 0.04 0.05 tetrahydrocannabinol % Unknown Impurity 0.501 BQL BQL 0.07 1.162 ND BQL 0.07 1.198 ND ND 0.05 Total Impurities (% Area) 0.07 0.08 0.28 ND-Not Detected BQL-Below Quantification Limit, for unknown impurity only -
TABLE 20 Stability Data for Cannabidiol Oral Solution Formulation # A7 stored at 40° C. ± 2° C. under 75 % ± 5% relative humidity 40° C.-Formulation # A7 RRT 0 Month 3 Months 6 Months Assay (% of initial 100.00 95.22 89.72 concentration) % Cis-cannabidiol 1.451 0.01 0.01 0.01 % Delta-9- 1.753 0.01 0.06 0.16 tetrahydrocannabinol % Unknown Impurity 0.390 ND 0.05 0.15 0.450 ND BQL 0.06 0.476 BQL 0.23 0.75 0.501 BQL 0.30 0.80 0.609 ND BQL 0.05 0.675 ND BQL 0.05 0.772 0.05 BQL ND 0.791 ND 0.36 1.35 0.830 BQL 0.12 0.37 0.934 ND BQL 0.25 0.958 ND BQL 0.18 1.333 ND ND 0.05 1.982 ND ND 0.17 2.062 BQL 0.05 0.32 3.253 ND BQL 0.09 3.744 ND ND 0.13 Total Impurities (% Area) 0.07 1.18 4.94 ND-Not Detected BQL-Below Quantification Limit, for unknown impurity only -
TABLE 21 Stability Data for Cannabidiol Oral Solution Formulation # A8 stored at 40° C. ± 2° C. under 75% ± 5% relative humidity 40° C.-Formulation # A8 RRT 0 Month 3 Months 6 Months Assay (% of initial concentration) 100.00 96.57 92.84 % Cis-cannabidiol 1.454 0.04 0.03 0.03 % Delta-9-tetrahydrocannabinol 1.762 0.03 0.13 0.62 % Unknown Impurity 0.392 ND 0.06 0.14 0.478 ND 0.22 0.64 0.501 BQL 0.41 0.84 0.610 ND BQL 0.05 0.670 ND BQL 0.05 0.792 ND 0.38 1.15 0.821 ND 0.12 0.30 0.931 ND 0.05 0.19 0.956 ND 0.09 0.21 2.068 BQL 0.11 0.23 3.251 ND BQL 0.09 3.754 ND ND 0.13 Total Impurities (% Area) 0.07 1.60 4.67 ND-Not Detected BQL-Below Quantification Limit, for unknown impurity only -
TABLE 22 Stability Data for Cannabidiol Oral Solution Formulation # A9 stored at 40° C. ± 2° C. under 75% ± 5% relative humidity 40° C.-Formulation # A9 RRT 0 Week 2 Weeks 4 Weeks Assay (% of initial concentration) 100.00 99.77 100.65 % Cis-cannabidiol 1.440 0.01 0.01 0.01 % Trans-(1R, 6R)-3′-methyl- 1.841 0.05 0.06 0.05 cannabidiol % Unknown Impurity 0.770 0.06 0.07 0.08 Total Impurities (% Area) 0.12 0.14 0.14 -
TABLE 23 Stability Data for Cannabidiol Oral Solution Formulation # A10 stored at 40° C. ± 2° C. under 75 % ± 5% relative humidity 40° C.-Formulation # A10 RRT 0 Week 2 Weeks 4 Weeks Assay (% of initial concentration) 100.00 101.25 100.78 % Cis-cannabidiol 1.440 0.01 0.01 0.01 % Delta-9-tetrahydrocannabinol 1.723 ND ND 0.01 % Trans-(1R, 6R)-3′-methyl- 1.842 0.05 0.05 0.05 cannabidiol % Unknown Impurity 0.770 0.07 0.07 0.06 Total Impurities (% Area) 0.13 0.13 0.13 ND-Not Detected - Control formulation (#A5) showed significant increase in levels of total impurities and decrease in the assay value. The addition of antioxidants, Vitamin E and ascorbyl palmitate (see #A6) significantly increased the stability of formulation. These results illustrate the critical role of antioxidants in stabilizing cannabinoid formulations. Antioxidants Vitamin E and ascorbic acid (or its salt) show excellent synergism as ascorbic acid (or its salt) strongly inhibits the depletion of Vitamin E by regenerating it. Along with the antioxidants, the addition of pH modifiers to adjust the pH to the range of 6 to 7 resulted in exceptionally stable formulations (#A7 and #A8). The stability testing data illustrates that the pH range of from about 6 to about 7 is critical. Formulations #A9 and #A10 also showed good stability after four weeks.
- The formulations in Table 24 were created by mixing all the solid and liquid excipients in the lipid. Cannabidiol was then dissolved. Synthetically synthesized, substantially pure, cannabidiol used as the source of the cannabinoid. Strawberry was used as the source of flavoring.
-
TABLE 24 Formulations with Lipids Formulation # LF1 # LF2 # LF3 # LF4 # LF5 # LF6 # LF7 Cannabinoid 24.60 19.50 19.50 19.50 19.50 18.00 28.0 Vitamin E 0.05 0.05 0.05 0.05 0.05 0.05 (Alpha Tocopherol) Flavor 0.30 0.30 0.30 0.30 0.30 Sesame oil 75.40 80.15 70.15 Sunflower oil 80.45 Soybean oil 81.95 Corn Oil 80.45 A mixure of 61.95 decanoyl and octanoyl glycerides (fatty acid esters) Ethanol 10.00 10.00 - Formulation #LF1 was subjected to stability at 25° C.±2° C. under 60% 5% relative humidity and 40° C.±2° C. under 75%±5% relative humidity. The stability of the formulation was analyzed at specified time points by evaluating the potency (assay value) and impurity levels. Assay and impurities were detected using high-performance liquid chromatography with an ultraviolet detector. The assay was performed at 228 nm and indicated as a % of initial concentration. For all impurities, analysis was performed at 228 nm and expressed as a % area. Amounts of particular impurities are listed in Table 25 as a percentage of area of each formulation along with amount of total impurities. Relative retention time (RRT) is given for each impurity.
-
TABLE 25 Three Month Stability Data for Cannabidiol Oral Solution Formulation # LF1 stored at 40° C. ± 2° C. under 75% ± 5% relative humidity and stored at 25° C. ± 2° C. under 60% ± 5% relative humidity 3 Months- 3 Months- Formulation # LF1 RRT 0 Month 40° C. 25° C. Assay (% of initial concentration) 100.00 100.87 100.72 % Cis-cannabidiol 1.437 0.03 0.04 0.04 % Delta 9-THC 1.736 0.06 0.06 0.08 % Trans-(1R, 6R)-3′-methyl- 1.840 0.02 0.06 0.02 cannabidiol Total Impurities (% Area) 0.11 0.16 0.14 - As seen in Table 25 above, formulation #LF1 with sesame oil showed good stability after 3 months at both
storage conditions 25° C.±2°C./60%±5% relative humidity and 40° C.±2° C./75%±5% relative humidity. - Paclitaxel is an antineoplastic agent that has activity against several types of cancer including ovary, breast, lung and the head and neck. Paclitaxel works by promoting microtubule assembly which results in neuropathy as a toxic side effect. Peripheral sensory neuropathy is the most commonly reported neurotoxic side effect of paclitaxel and it limits treatment with high and cumulative doses of paclitaxel when given alone or in combination with other neurotoxic antineoplastic agents such as cisplatin. Currently there is not a highly effective treatment for this type of pain. Therefore, there is a need for a highly effective treatment to relieve the symptoms of paclitaxel induced neuropathy.
- A mouse study was conducted in order to determine the effects of cannabidiol, delta-9-tetrahydrocannabinol, and cannabidiol plus delta-9-tetrahydrocannabinol combinations to alleviate neuropathic pain caused by chemotherapy-induced peripheral neuropathy. The cannadidiol administered to the mice was substantially pure, synthetically synthesized, cannabidiol which had a purity greater than 98%.
- A detailed explanation of
FIG. 1 is as follows. The Y-axes represent the threshold sensitivity to mechanical stimulation, expressed as a percent of baseline sensitivity. The X-axes represent the dose of drug mg/kg administered intraperitoneally. Whereas the dotted lines represent withdrawal threshold level to mechanical stimulation of saline controls, the dashed lines represent paclitaxel-treated animals. The points along the dashed line indicate neuropathic pain while points along the dotted line represent protection from neuropathic pain. The data shown are mean +SEM sensitivity measured on Day 21 post treatment. *p<0.05 from saline control as determined by one-way ANOVA. - Specific doses of agents producing similar overt behavioral effects when added to together should produce the additive effect level.
-
-
- 1) If 1.25 mg/kg cannabidiol produces 100% alleviation of pain effect and 1.25 mg/kg delta-9-tetrahydrocannabinol produces 0% effect, then those doses added together should be fully effective (as should the 2.5 mg/kg cannabidiol+2.5 mg/kg delta-9-tetrahydrocannabinol).
- 2) If 0.625 mg/kg cannabidiol and 0.625 delta-9-tetrahydrocannabinol produce 0% effect, then those doses in combination should be ineffective.
- Applicant found (as illustrated in
FIG. 1 ) that cannabidiol when administered alone provided the most effective level of alleviating chemotherapy-induced neuropathic pain compared to delta-9-tetrahydrocannabinol. The presence of delta-9-tetrahydrocannabinol depending on its concentration can inhibit the ability of cannabidiol to alleviate neuropathic pain. The ability of delta-9-tetrahydrocannabinol to block the pain alleviating activity of cannabidiol is also dependent of the concentration of cannabidiol. This test illustrates that a substantially pure cannabidiol formulation is highly desirable. - This study was conducted as follows according to standard models for anticonvulsant screening including the maximal electroshock test (“MES”), the minimal clonic seizure (“6 Hz”) test and evaluations of toxicity (“TOX”). The data was recorded as number of animals protected (N) out of the number of animals tested (F), see Tables 26 to 29 below. The test was repeated one time. The cannabidiol administered to the mice and rats was substantially pure, synthetically synthesized, cannabidiol which had a purity greater than 98%. The cannabidiol was dissolved in 0.5% methylcellulose or a 1:1:18 ratio of ethanol:polyethoxylated castor oil:phosphate buffered saline (“PBS”).
- The maximal electroshock test is a model for generalized tonic-clonic seizures and provides an indication of a compound's ability to prevent seizure spread when all neuronal circuits in the brain are maximally active. These seizures are highly reproducible and are electrophysiologically consistent with human seizures. For all tests based on maximal electroshock convulsions, 60Hz of alternating current (50 mA in mice, 150 in rats) was delivered for 0.2s by corneal electrodes which were primed with an electrolyte solution containing an anesthetic agent (0.5% tetracaine HCl). The mice were tested at various intervals following doses of 10, 30 and 100 mg/kg of cannabidiol given by intraperitoneal injection of a volume of 0.01 mL/g. An animal was considered “protected” from maximal electroshock-induced seizures upon abolition of the hindlimb tonic extensor component of the seizure.
- The minimal motor impairment test was used to determine the compounds' undesirable side effects or toxicity. During this test, the animals were monitored for overt signs of impaired neurological or muscular function. The rotorod procedure was used to disclose minimal muscular or neurological impairment. When a control mouse is placed on a rod that rotates at a speed of 6 rpm, the animal can maintain its equilibrium for long periods of time. The animal was considered toxic if it fell off this rotating rod three times during a 60 second period. In addition to minimal motor impairment, the animals may have exhibited a circular or zigzag gait, abnormal body posture and spread of the legs, tremors, hyperactivity, lack of exploratory behavior, somnolence, stupor, catalepsy, loss of placing response and changes in muscle tone.
- The third test was the minimal clonic seizure (6 Hz) test. Like the maximal electroshock test, the minimal clonic seizure (6 Hz) test is used to assess a compound's efficacy against electrically induced seizures but uses a lower frequency (6 Hz) and longer duration of stimulation (3 s). Cannabidiol was pre-administered to mic e via intraperitoneal injection. At varying times, individual mice (four per time point) were challenged with sufficient current delivered through corneal electrodes to elicit a psychomotor seizure in 97% of animals (32 mA for 3 s). Untreated mice will display seizures characterized by a minimal clonic phase followed by stereotyped, automatistic behaviors described originally as being similar to the aura of human patients with partial seizures. Animals not displaying this behavior are considered protected.
-
TABLE 26 Anticonvulsant Screening, Mice, Methylcellulose Time (Hours) 0.5 1.0 2.0 Test Dose N/F N/F N/ F 6HZ 10 0/4 0/4 0/4 6HZ 30 0/4 0/4 0/4 6HZ 100 1/4 0/4 0/4 MES 10 0/4 0/4 0/4 MES 30 0/4 0/4 0/4 MES 100 0/4 1/4 2/4 TOX 10 0/8 0/8 0/8 TOX 30 0/8 0/8 0/ 8 TOX 100 0/8 0/8 0/8 -
TABLE 27 Anticonvulsant Screening, Mice, Ethanol:Polyethoxylated castor oil:PBS Time (Hours) 0.5 1.0 2.0 Test Dose N/F N/F N/ F 6HZ 10 0/4 0/4 0/4 6HZ 30 0/4 0/4 0/4 6HZ 100 2/4 0/4 0/4 MES 10 0/4 0/4 0/4 MES 30 0/4 1/4 0/4 MES 100 0/4 2/4 1/4 TOX 10 0/8 0/8 0/8 TOX 30 0/8 0/8 0/ 8 TOX 100 0/8 0/8 0/8 -
TABLE 28 Anticonvulsant Screening, Rats, Methylcellulose Time (Hours) 1.0 2.0 4.0 Test Dose N/F N/F N/F MES 30 0/4 0/4 0/4 MES 100 0/4 0/4 0/4 TOX 30 0/4 0/4 0/ 4 TOX 100 0/4 0/4 0/4 -
TABLE 29 Anticonvulsant Screening, Rats, Ethanol:Polyethoxylated castor oil:PBS Time (Hours) 1.0 2.0 4.0 Test Dose N/F N/F N/F MES 30 0/4 0/4 0/4 MES 100 1/4 0/4 0/4 TOX 30 0/4 0/4 0/ 4 TOX 100 0/4 0/4 0/4 - As seen in Tables 26 to 29 above, Applicant found that cannabidiol protected the mice and rats from epilepsy.
- A study was conducted in order to determine the extent to which systemic administration of cannabidiol or cannabidiol plus delta-9-tetrahydrocannabinol (cannabidiol/delta-9-tetrahydrocannabinol 1:1) can inhibit glioblastoma multiforme progression and enhance the activity of temozolomide, a chemotherapy drug, in an orthotopic mouse model of glioblastoma multiforme utilizing U87 cells. It was previously suggested that the combination of cannabidiol plus delta-9-tetrahydrocannabinol is the most effective treatment for targeting tumors derived from U87 serum-derived glioblastoma multiforme cells.
- The study was conducted as follows. Human U87 luciferase labeled cells were grown in Roswell Park Memorial Institute media with 10% fetal bovine serum and then harvested from dishes while in their exponential growth phase in culture with 0.1% trypsin/ethylenediaminetetraacetic acid and washed twice with serum-free Roswell Park Memorial Institute media. For the intracranial model, tumors were generated in female athymic nu/nu mice by the intracranial injection of 0.3×106 U87 cells in 4 μl of Roswell Park Memorial Institute media. Using this model, you can assess drug efficacy (in vivo imaging) as well as survival in the same group of animals. Survival studies were carried out in accordance with the National Institutes of Health's guidelines involving experimental neoplasia and our approved Institutional Animal Care and Use Committees protocol. Animals in all groups are removed from the study when they demonstrate any single sign indicative of significant tumor burden development, including hunched back, sustained decreased general activity, or a significant decrease in weight. In limited cases where tumors were able to escape the intracranial space, the mice were euthanized when the external tumors measured greater than 5mm as assessed by callipers. Additionally, mice with tumors measuring >500×106 radiance where removed from the study even if symptoms were not observed to assure spontaneous deaths related to seizures did not occur do to the existence of the large intracranial tumor.
- The cannabinoids were dissolved in a mixture of 3% ethanol, 3% surfactant and 94% saline, and temozolomide was dissolved in 30% dimethyl sulfoxide and 70% saline. Cannabidiol that was synthetically synthesized and substantially pure was used in this study. The treatments were initiated 9 days after the injection of the tumor cells. Mice were imaged the morning before the first injection to determine initial tumor size and then groups were organized to have equal distribution of tumor size before the initiation of the first injection. Mice were treated once a day for five days with temozolomide. Mice were treated once a day, 5 days a week (Monday through Friday), with the cannabinoids until the completion of the study, except for the first week of the study where mice were injected over the weekend. All mice were administered the treatments via intraperitoneal injection. There were 12 mice per group, for a total of 72 mice. The treatment rates were as follows: cannabidiol (15 mg/kg); cannabidiol/delta-9-tetrahydrocannabinol (1:1, together @ 15mg/kg); and temozolomide (2 mg/kg intraperitoneal injection.
- Significant differences were determined using a one-way ANOVA. Bonferroni-Dunn post-hoc analyses were conducted when appropriate. Survival between groups was compared using a long-rank Mantel-Cox test. P values <0.05 defined statistical significance.
- A detailed explanation of
FIG. 2 is as follows. The X-axis represents the number of days after treatment and the Y-axis represents the survival rates. - As seen in
FIG. 2 , while 15 mg/kg of cannabidiol alone or cannabidiol/delta-9-tetrahydrocannabinol (1:1) did not inhibit glioblastoma multiforme progression, it enhanced the antitumor activity of suboptimal doses of temozolomide leading to a significant increase in survival. Further, the substantially pure, synthetically synthesized, cannabidiol produced full regression of 20% of tumors. This effect was not observed following the 1:1 cannabidiol:delta-9-tetrahydrocannabinol treatments. It was unexpected that substantially pure, synthetically synthesized, cannabidiol would have these effects because previously it was thought that a 1:1 ratio of cannabidiol (that was extracted from cannabis and not substantially pure):delta-9-tetrahydrocannabinol would produce better effects than cannabidiol alone. However, this study again illustrates the superiority of Applicant's substantially pure, synthetically synthesized, cannabidiol. - This study was conducted in order to determine the ability of synthetically-syntheisized, substantially pure cannabidiol to block a psychomotor seizure induced by long-duration frequency (6 Hz) stimulation. This is a study model for therapy-resistant partial seizures.
- Adult male CF1 mice (weighing 18 to 25 g) were pretreated intraperitoneally with the cannabidiol at a dose of 100 mg/kg. The cannabidiol administered to the mice was substantially pure, synthetically synthesized, cannabidiol which had a purity greater than 98%. The cannabidiol was dissolved in 0.5% methylcellulose or a 1:1:18 ratio of ethanol:polyethoxylated castor oil:PBS.
- Each treatment group (n=4 mice/group) was examined for anticonvulsive effects at one of five time points (¼, ½, 1, 2, and 4 hours) following treatment with cannabidiol. Following pretreatment, each mouse received a drop of 0.5% tetracaine hydrochloride applied to each eye. The mouse was then challenged with the low-frequency (6 Hz) stimulation for 3 seconds delivered through corneal electrodes. The low-frequency, long-duration stimuli was initially delivered at 32 mA intensity. Animals were manually restrained and released immediately following the stimulations and observed for seizure activity. If the test compound was effective in the 32 mA screen, an additional assay wherein the stimulation current is increased to 44 mA is employed using the same protocol as described above. Additionally, a dose response curve can be generated at the time of peak effect (TPE) at the specific stimulation intensity.
- Typically, the 6 Hz stimulation results in a seizure characterized by a minimal clonic phase that is followed by stereotyped, automatistic behaviors, including twitching of the vibrissae, and Straub-tail. Animals not displaying such behaviors were considered protected. Data was analyzed by Mann-Whitney U test, with p<0.05 determined to be statistically significant.
- For each time group, the results are expressed as the total number of animals protected out of the number of animals tested over time (i.e., 2/4 represents 2 out of 4 mice tested were protected).
-
TABLE 30 ED50 Biological Response, Methylcellulose Time (Hours) 0.5 Test Dose N/F 6 Hz 30 0/8 6 Hz 65 5/8 6 Hz 130 5/8 6 Hz 160 8/16 6 Hz 190 7/8 -
TABLE 31 Time to Peak Effect, Methylcellulose Time (Hours) 0.25 0.5 1 2 4 6 24 Test Dose N/F N/F N/F N/F N/F N/F N/F 6 Hz 300 1/8 0/8 0/8 0/8 0/8 0/8 0/8 6 Hz 500 1/8 0/8 0/8 0/8 0/8 0/8 2/8 -
TABLE 32 ED50 Biological Response, Ethanol:Polyethoxylated castor oil:PBS Test Dose Time N/F 6 Hz 50 0.5 1/8 6 Hz 100 0.5 1/8 6 Hz 130 0.5 4/8 6 Hz 170 0.5 6/8 6 Hz 200 0.5 8/8 TOX 200 2 0/8 TOX 250 2 4/8 TOX 300 2 6/8 TOX 500 2 8/8 -
TABLE 33 Time to Peak Effect, Ethanol:Polyethoxylated castor oil:PBS Time (Hours) 0.25 0.5 1 2 4 6 8 24 Test Dose N/F N/F N/F N/F N/F N/F N/F N/F TOX 200 — — — 0/8 0/8 — — — TOX 250 — — — 4/8 3/8 — — — TOX 300 — — — 6/8 7/8 4/8 2/8 1/8 TOX 500 0/8 0/8 0/8 8/8 8/8 8/8 — 4/7 - As seen in Tables 30 to 33, cannabidiol in both solvents showed comparable median effective doses that inhibited seizures in 50% of animals (ED50s) in the 100 mg/kg range. While cannabidiol dissolved in the methylcellulose solvent had an ED50 of 103.75 mg/kg (95% Confidence Interval of 53.89 mg/kg to 163.84 mg/kg), it showed an ED50 of 121.52 mg/kg when dissolved in the 1:1:18 ethanol:polyethoxylated castor oil:PBS solvent (95% Confidence Interval of 87.83 mg/kg to 152.96 mg/kg). Based on the toxicity data for the cannabidiol in the methylcellulose solvent, the median toxicity dose where toxicity is observed in 50% of animals (“TD50”) was determined to exceed 500 mg/kg at 0.5 hours post administration. Diarrhea at 24 hours and 1 death was reported at 24 hours at 500 mg/kg, the highest dose tested.
- The TD50 was determined to be 262.37 mg/kg (95% Confidence Interval of 232.64 to 301.78) with cannabidiol dissolved in the 1:1:18 ethanol:polyethoxylated castor oil:PBS solvent. Death was reported at 24 hours at 300 mg/kg and at 6 and 24 hours for 500 mg/kg with the with the 1:1:18 ethanol:polyethoxylated castor oil:PBS solvent.
- These results further illustrate that cannabidiol is likely to be effective in humans for the treatment of epilepsy and other conditions. Further, synthetically synthesized cannabidiol will likely be less toxic than cannabidiol that is derived from plants and not substantially pure.
- The maximal electroshock seizure (“MES”) and subcutaneous Metrazol (“sc Met”) tests have been the two most widely employed preclinical seizure models for the early identification and high through-put screening of investigational anti-seizure drugs. These tests have been extremely effective in identifying new anti-seizure drugs that may be useful for the treatment of human generalized tonic-clonic seizures and generalized myoclonic seizures. The IVIES test provides an indication of CBD's ability to prevent seizure spread when all neuronal circuits in the brain are maximally active. The s.c. Met test detects the ability of CBD to raise the chemoconvulsant-induced seizure threshold of an animal and, thus, protect it from exhibiting a clonic, forebrain seizure.
- For the IVIES test, 60 Hz of alternating current is delivered by corneal electrodes for 0.2 seconds. Supra-maximal seizures are elicited with a current intensity five times that necessary to evoke a threshold tonic extension seizure, i.e., 50 mA in mice and 150 mA in rats. A drop of anesthetic solution, 0.5% tetracaine hydrochloride, is placed on the eyes of each animal just before the corneal electrodes are applied to the eyes to elicit electrical stimulation. The animals are restrained by hand and released immediately following stimulation to allow observation of the entire seizure. Inhibition of the hind leg tonic extensor component is taken as the endpoint for the IVIES test.
- A dose of Metrazol (85 mg/kg in mice) will induce convulsions in 97% of mice (CD97). The CD97 dose of Metrazol is injected into a loose fold of skin in the midline of the neck. The CD97 doses for Metrazol are confirmed annually in mice. It is administered to mice at a volume of 0.01 ml/g body weight. The animals are then placed in isolation cages to minimize stress and continuously monitored for the next 30 min for the presence or absence of a seizure. An episode of clonic spasms, approximately 3 to 5 seconds, of the fore and/or hind limbs, jaws, or vibrissae is taken as the endpoint. Animals not displaying fore and/or hind limb clonus, jaw chomping, or vibrissae twitching are considered protected.
- All quantitative in vivo antiseizure/behavioral impairment studies are typically conducted at the previously determined TPE. Groups of at least 8 mice were tested with various doses of cannabidiol until at least two points are established between the limits of 100% protection or minimal toxicity and 0% protection or minimal toxicity. The dose of drug required to produce the desired endpoint in 50% of animals (ED50 or TD50) in each test, the 95% confidence interval, the slope of the regression line, and the standard error of the mean (S.E.M.) of the slope is then calculated by probit analysis.
- The cannabidiol administered to the mice was substantially pure, synthetically synthesized, cannabidiol which had a purity greater than 98%. The cannabidiol was dissolved in 0.5% methylcellulose or a 1:1:18 ratio of ethanol:polyethoxylated castor oil:PBS. The maximal electric shock (MES) and subsucanteous Metrazol (“sc MET”) are the most widely used preclinical seizure models for the early identification and screening of new antiepileptic drugs.
-
TABLE 34 ED50 Biological Response, Methylcellulose Test Dose Time N/F MES 200 2 5/8 MES 250 2 4/8 MES 300 2 4/8 MES 350 2 3/8 MES 400 2 3/8 MES 450 2 6/8 MES 500 2 8/8 Sc MET 150 2 1/8 Sc MET 200 2 3/8 Sc MET 300 2 5/8 Sc MET 360 2 7/8 TOX 500 2 0/8 -
TABLE 35 Time to Peak Effect, Methylcellulose Time (Hours) 0.25 0.5 1 2 4 Test Dose N/F N/F N/F N/F N/F MES 300 0/4 1/4 1/4 4/8 2/4 Sc MET 200 0/4 0/4 2/8 3/8 — TOX 300 0/4 0/4 0/4 0/4 0/4 -
TABLE 36 ED50 Biological Response, Ethanol:Polyethoxylated castor oil:PBS Test Dose Time N/ F MES 75 2 1/8 MES 95 2 5/8 MES 120 2 7/8 MES 150 2 8/8 Sc MET 120 2 0/8 Sc MET 160 2 2/8 Sc MET 220 2 5/8 Sc MET 260 2 7/8 TOX 175 2 0/8 TOX 250 2 4/8 TOX 325 2 6/8 TOX 500 2 8/8 -
TABLE 37 Time to Peak Effect, Ethanol:Polyethoxylated castor oil:PBS Time (Hours) 0.25 0.5 1 2 4 6 8 Test Dose N/F N/F N/F N/F N/F N/F N/F TOX 500 0/8 0/8 0/8 8/8 7/8 7/8 4/8 - The ED50 in the MES model for cannabidiol dissolved in the methylcellulose solvent could not be calculated due to a U shaped dose response (1/4 protected at 0.5 hr, 1/4 at 1 hr, 4/8 at 2hr and 2/4 at 4hr). However, the ED50 for cannabidiol dissolved in the 1:1:18 ethanol:polyethoxlated castor oil:PBS solvent is 92.21 mg/kg (95% Confidence Interval of 78.4 mg/kg to 104.63 mg/kg).
- For the MET model, the ED50 was 241.03 mg/kg (95% Confidence Interval of 182.23 to 311.87) for cannabidiol dissolved in the methylcellulose solvent and 198.51 mg/kg (95% Confidence Interval of 167.76 mg/kg to 232.58 mg/kg) for cannabidiol dissolved in the 1:1:18 ethanol:polyethoxlated castor oil:PBS solvent. Based on the toxicity data for cannabidiol dissolved in the methylcellulose solvent the TD50 was determined to exceed 500 mg/kg, the highest dose tested.
- Myoclonic jerks were reported in at 1 hour with 200 mg/kg dose and at 2 hours with 360 mg/kg dose. The TD50 was determined to be 266.76 mg/kg (95% Confidence Interval of 222.28 mg/kg to 317.42 mg/kg) with the cannabidiol dissolved in the 1:1:18 ethanol:polyethoxlated castor oil:PBS solvent.
- These results further illustrate that cannabidiol is likely to be effective in humans for the treatment of epilepsy and other conditions. Further, synthetically synthesized cannabidiol will likely be less toxic than cannabidiol that is derived from plants and not substantially pure.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/559,155 US20220184215A1 (en) | 2014-05-29 | 2021-12-22 | Stable cannabinoid formulations |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462004495P | 2014-05-29 | 2014-05-29 | |
US201562154660P | 2015-04-29 | 2015-04-29 | |
US14/724,351 US11224660B2 (en) | 2014-05-29 | 2015-05-28 | Stable cannabinoid formulations |
US17/559,155 US20220184215A1 (en) | 2014-05-29 | 2021-12-22 | Stable cannabinoid formulations |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/724,351 Division US11224660B2 (en) | 2014-05-29 | 2015-05-28 | Stable cannabinoid formulations |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220184215A1 true US20220184215A1 (en) | 2022-06-16 |
Family
ID=54700061
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/724,351 Active US11224660B2 (en) | 2014-05-29 | 2015-05-28 | Stable cannabinoid formulations |
US17/367,876 Pending US20210330797A1 (en) | 2014-05-29 | 2021-07-06 | Stable cannabinoid formulations |
US17/519,844 Pending US20220125932A1 (en) | 2014-05-29 | 2021-11-05 | Stable cannabinoid formulations |
US17/559,155 Pending US20220184215A1 (en) | 2014-05-29 | 2021-12-22 | Stable cannabinoid formulations |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/724,351 Active US11224660B2 (en) | 2014-05-29 | 2015-05-28 | Stable cannabinoid formulations |
US17/367,876 Pending US20210330797A1 (en) | 2014-05-29 | 2021-07-06 | Stable cannabinoid formulations |
US17/519,844 Pending US20220125932A1 (en) | 2014-05-29 | 2021-11-05 | Stable cannabinoid formulations |
Country Status (12)
Country | Link |
---|---|
US (4) | US11224660B2 (en) |
EP (2) | EP3148589B1 (en) |
JP (1) | JP6659933B2 (en) |
KR (1) | KR20170008311A (en) |
CN (2) | CN114191420A (en) |
AU (1) | AU2015266897B2 (en) |
CA (1) | CA2950424C (en) |
IL (2) | IL302782A (en) |
MX (2) | MX2016015636A (en) |
NZ (1) | NZ726746A (en) |
WO (1) | WO2015184127A2 (en) |
ZA (1) | ZA201608209B (en) |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2471523A (en) | 2009-07-03 | 2011-01-05 | Gw Pharma Ltd | Use of tetrahydrocannibivarin (THCV) and optionally cannabidiol (CBD) in the treatment of epilepsy |
TWI583374B (en) | 2010-03-30 | 2017-05-21 | Gw伐瑪有限公司 | Use of the phytocannabinoid cannabidivarin (cbdv) in the treatment of epilepsy |
GB2495118B (en) | 2011-09-29 | 2016-05-18 | Otsuka Pharma Co Ltd | A pharmaceutical composition comprising the phytocannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) |
US11911361B2 (en) | 2014-05-29 | 2024-02-27 | Radius Pharmaceuticals, Inc. | Stable cannabinoid formulations |
US11331279B2 (en) | 2014-05-29 | 2022-05-17 | Radius Pharmaceuticals, Inc. | Stable cannabinoid formulations |
GB2530001B (en) | 2014-06-17 | 2019-01-16 | Gw Pharma Ltd | Use of cannabidiol in the reduction of convulsive seizure frequency in treatment-resistant epilepsy |
GB2527599A (en) | 2014-06-27 | 2015-12-30 | Gw Pharma Ltd | Use of 7-OH-Cannabidiol (7-OH-CBD) and/or 7-OH-Cannabidivarin (7-OH-CBDV) in the treatment of epilepsy |
GB2531278A (en) | 2014-10-14 | 2016-04-20 | Gw Pharma Ltd | Use of cannabidiol in the treatment of intractable epilepsy |
GB2531282A (en) | 2014-10-14 | 2016-04-20 | Gw Pharma Ltd | Use of cannabinoids in the treatment of epilepsy |
GB2531281A (en) | 2014-10-14 | 2016-04-20 | Gw Pharma Ltd | Use of cannabidiol in the treatment of intractable epilepsy |
US20170021029A1 (en) * | 2015-04-15 | 2017-01-26 | Jeffrey Charles Raber | Topical formulations and uses |
AU2016255707A1 (en) * | 2015-04-28 | 2017-11-30 | The Regents Of The University Of California | Uses of cannabidiol for treatment of infantile spasms |
GB201508656D0 (en) | 2015-05-20 | 2015-07-01 | Sunstone Ip Systems Ltd | Portable power generating apparatus |
WO2016191651A1 (en) * | 2015-05-28 | 2016-12-01 | Insys Development Company, Inc. | Stable cannabinoid formulations |
GB2539472A (en) | 2015-06-17 | 2016-12-21 | Gw Res Ltd | Use of cannabinoids in the treatment of epilepsy |
GB2541191A (en) | 2015-08-10 | 2017-02-15 | Gw Pharma Ltd | Use of cannabinoids in the treatment of epilepsy |
BR102015024165A2 (en) * | 2015-09-18 | 2017-03-28 | Prati Donaduzzi & Cia Ltda | oral pharmaceutical composition comprising cannabinoid, process for its preparation and use |
GB2544468A (en) * | 2015-11-12 | 2017-05-24 | Jaytee Biosciences Ltd | Liquid formulation |
GB2548873B (en) | 2016-03-31 | 2020-12-02 | Gw Res Ltd | Use of Cannabidiol in the Treatment of SturgeWeber Syndrome |
GB2549278B (en) * | 2016-04-11 | 2021-02-17 | Gw Res Ltd | Use of cannabidivarin in the treatment of autism spectrum disorder |
GB2549277B (en) * | 2016-04-11 | 2021-02-17 | Gw Res Ltd | Cannabidiolic Acid for use in the Treatment of Autism Spectrum Disorder |
CA3025702C (en) * | 2016-05-27 | 2022-12-20 | Insys Development Company, Inc. | Stable cannabinoid formulations |
WO2017218629A1 (en) * | 2016-06-15 | 2017-12-21 | India Globalization Capital, Inc. | Method and composition for treating seizure disorders |
GB2551987A (en) * | 2016-07-01 | 2018-01-10 | Gw Res Ltd | Oral cannabinoid formulations |
GB2551986A (en) | 2016-07-01 | 2018-01-10 | Gw Res Ltd | Parenteral formulations |
GB2553139A (en) | 2016-08-25 | 2018-02-28 | Gw Res Ltd | Use of cannabinoids in the treatment of multiple myeloma |
AU2017344040A1 (en) | 2016-10-11 | 2019-04-18 | Gbs Global Biopharma, Inc. | Cannabinoid-containing complex mixtures for the treatment of neurodegenerative diseases |
WO2018096504A1 (en) * | 2016-11-28 | 2018-05-31 | Kalytera Therapeutics, Inc | Cbd prodrugs, compositions, and methods of administering cbd and cbd prodrugs |
GB2557921A (en) | 2016-12-16 | 2018-07-04 | Gw Res Ltd | Use of cannabinoids in the treatment of angelman syndrome |
CN107753560A (en) * | 2016-12-28 | 2018-03-06 | 汉义生物科技(北京)有限公司 | A kind of composition and application containing Cannador |
CA3052146A1 (en) | 2017-02-01 | 2018-08-09 | Gbs Global Biopharma, Inc. | Cannabinoid-containing complex mixtures for the treatment of mast cell-associated or basophil-mediated inflammatory disorders |
GB2559774B (en) | 2017-02-17 | 2021-09-29 | Gw Res Ltd | Oral cannabinoid formulations |
NL2018504B1 (en) * | 2017-03-13 | 2018-09-21 | Pharma Unlimited B V | Tobacco- and smoke-less products consumable by humans as epicurean or medical products and method of treating smoking addiction |
JP2020517727A (en) | 2017-04-27 | 2020-06-18 | インシス・ディベロップメント・カンパニー・インコーポレイテッド | Stable cannabinoid formulation |
GB2564383B (en) * | 2017-06-23 | 2021-04-21 | Gw Res Ltd | Use of cannabidiol in the treatment of tumours assoicated with Tuberous Sclerosis Complex |
WO2019018705A1 (en) * | 2017-07-21 | 2019-01-24 | Masaya World, Llc | Cannabidiol-enriched caprylic acid |
US10220061B1 (en) | 2017-09-26 | 2019-03-05 | Cynthia Denapoli | Method of reducing stress and anxiety in equines |
CA3077330A1 (en) | 2017-09-28 | 2019-04-04 | Zynerba Pharmaceuticals, Inc. | Treatment of fragile x syndrome with cannabidiol |
GB2568471B (en) * | 2017-11-15 | 2022-04-13 | Gw Res Ltd | Use of cannabinoids in the treatment of epilepsy |
GB2572126B (en) * | 2018-01-03 | 2021-01-13 | Gw Res Ltd | Pharmaceutical |
GB2572125B (en) * | 2018-01-03 | 2021-01-13 | Gw Res Ltd | Pharmaceutical |
GB2569961B (en) * | 2018-01-03 | 2021-12-22 | Gw Res Ltd | Pharmaceutical |
EP3749297A4 (en) | 2018-02-07 | 2021-04-14 | SCF Pharma Inc. | Polyunsaturated fatty acid monoglycerides, compositions, methods and uses thereof |
BR102018002843A2 (en) * | 2018-02-09 | 2019-08-27 | Prati Donaduzzi & Cia Ltda | pharmaceutical composition and use thereof |
GB201806953D0 (en) | 2018-04-27 | 2018-06-13 | Gw Res Ltd | Cannabidiol Preparations |
CN112423740A (en) | 2018-05-01 | 2021-02-26 | 奇比有限公司 | Eye drop formulations and methods for sustained drug delivery to the retina |
CA3097927A1 (en) | 2018-05-01 | 2019-11-07 | Chibi, Inc. | Liquid depot for non-invasive sustained delivery of agents to the eye |
WO2019210424A1 (en) | 2018-05-03 | 2019-11-07 | Scf Pharma Inc. | Polyunsaturated fatty acid monoglycerides, compositions, methods and uses thereof |
CN110575448A (en) * | 2018-06-08 | 2019-12-17 | 云南汉素生物科技有限公司 | Cannabidiol composition and application thereof |
CN109627148B (en) * | 2018-11-28 | 2021-09-03 | 中国农业科学院麻类研究所 | Preparation method of cannabidiol, prepared cannabidiol and application thereof |
JP7326445B2 (en) | 2018-12-11 | 2023-08-15 | ディスラプション・ラブズ・インコーポレイテッド | Compositions and methods of use and manufacture thereof for delivery of therapeutic agents |
US11458109B2 (en) | 2018-12-14 | 2022-10-04 | Zynerba Pharmaceuticals, Inc. | Treatment of 22Q11.2 deletion syndrome with cannabidiol |
DE102019100483A1 (en) * | 2019-01-10 | 2020-07-16 | Lts Lohmann Therapie-Systeme Ag | Oral thin film |
GB2584341B (en) | 2019-05-31 | 2023-03-01 | Gw Res Ltd | Cannabinoid formulations |
US20220288014A1 (en) * | 2019-08-08 | 2022-09-15 | Neptune Wellness Solutions Inc. | Oral formulations of cannabis extracts and methods of making same |
CN111202767A (en) * | 2019-09-04 | 2020-05-29 | 汉义生物科技(北京)有限公司 | Application of hemp whole plant extract in improving pathological injury of tau protein and β -amyloid protein |
MX2022002548A (en) * | 2019-09-09 | 2022-03-22 | Cardiol Therapeutics Inc | Stable medicinal cannabidiol compositions. |
US12016829B2 (en) | 2019-10-11 | 2024-06-25 | Pike Therapeutics Inc. | Pharmaceutical composition and method for treating seizure disorders |
US12121617B2 (en) | 2019-10-14 | 2024-10-22 | Pike Therapeutics Inc. | Transdermal delivery of cannabidiol |
MX2022004258A (en) | 2019-10-14 | 2022-05-26 | Pike Therapeutics Inc | Transdermal delivery of cannabidiol. |
US20210169795A1 (en) * | 2019-12-06 | 2021-06-10 | Joshua Steindler | Colloidal Suspensions of Plant Extracts in Aqueous Solutions |
GB201918846D0 (en) | 2019-12-19 | 2020-02-05 | Gw Res Ltd | Oral cannabinoid formulations |
EP4088723A4 (en) * | 2020-01-08 | 2024-02-21 | Chengdu Baiyu Pharmaceutical Co., Ltd. | Cannabidiol derivative, and preparation method therefor and medical use thereof |
GB202002754D0 (en) | 2020-02-27 | 2020-04-15 | Gw Res Ltd | Methods of treating tuberous sclerosis complex with cannabidiol and everolimus |
KR102213253B1 (en) * | 2020-04-29 | 2021-02-08 | 한국과학기술원 | Method for evaluating neuroprotective effect of cannabidiol against oxidative stress and Pharmaceutical composition containing cannabidiol As the active ingredient for the prevention or treatment of neurodegenerative diseases |
AU2021347760B2 (en) * | 2020-09-24 | 2024-07-25 | Nicoventures Trading Limited | Formulation |
US11160757B1 (en) | 2020-10-12 | 2021-11-02 | GW Research Limited | pH dependent release coated microparticle cannabinoid formulations |
JP2024500187A (en) | 2020-12-21 | 2024-01-04 | アイソセレス ファーマシューティカルズ,インコーポレイテッド | Parenteral cannabinoid formulations and their uses |
US11242328B1 (en) | 2021-02-25 | 2022-02-08 | Acid Neutral Alkaline Laboratory | Heterogeneous catalyst and method for preparation of aromatic tricyclic pyrans |
US11242330B1 (en) | 2021-02-25 | 2022-02-08 | Acid Neutral Alkaline Laboratory | Organic catalyst and method for preparation of aromatic tricyclic pyrans |
CN113398104B (en) * | 2021-07-14 | 2022-04-08 | 北京森宏健康科技有限公司 | Use of cannabidiol in the treatment of bilirubin encephalopathy |
CA3239914A1 (en) * | 2021-12-03 | 2023-06-08 | Avicanna Inc. | Oral cannabinoid compositions and methods for treating neurological diseases and disorders |
WO2023200906A1 (en) | 2022-04-12 | 2023-10-19 | Shackelford Pharma Inc. | Treatment of seizure disorders |
WO2024079542A1 (en) * | 2022-10-12 | 2024-04-18 | Leiutis Pharmaceuticals Llp | Novel liquid oral formulations of cannabidiol |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE308314T1 (en) | 1999-08-20 | 2005-11-15 | Unimed Pharmaceuticals Inc | COMPOSITION FOR INHALATION CONTAINING DELTA-9-TETRAHYDROCANNABINOL IN A SEMI-AQUEOUS SOLVENT |
DK1361864T3 (en) | 2001-02-14 | 2014-03-03 | Gw Pharma Ltd | FLYLDENDE SPRAY FORMULATIONS FOR buccal administration of cannabinoids |
GB0103638D0 (en) * | 2001-02-14 | 2001-03-28 | Gw Pharmaceuticals Ltd | Pharmaceutical formulations |
CN1652766A (en) * | 2002-03-18 | 2005-08-10 | 免疫力药品有限公司 | Topical formulations of resorcinols and cannibinoids and methods of use |
WO2003101357A1 (en) * | 2002-05-31 | 2003-12-11 | University Of Mississippi | Transmucosal delivery of cannabinoids |
GB0222077D0 (en) * | 2002-09-23 | 2002-10-30 | Gw Pharma Ltd | Methods of preparing cannabinoids from plant material |
GB2393182B (en) * | 2002-09-23 | 2007-03-14 | Gw Pharma Ltd | Method of preparing cannabidiol from plant material |
NZ555701A (en) * | 2004-12-09 | 2011-05-27 | Insys Therapeutics Inc | Room-temperature stable dronabinol formulations |
EP2578561A1 (en) * | 2005-09-29 | 2013-04-10 | Albany Molecular Research, Inc. | Processes for the production of cannabidiol derivatives and intermediates thereof |
US20100291205A1 (en) | 2007-01-16 | 2010-11-18 | Egalet A/S | Pharmaceutical compositions and methods for mitigating risk of alcohol induced dose dumping or drug abuse |
US8222292B2 (en) | 2007-08-06 | 2012-07-17 | Insys Therapeutics, Inc. | Liquid cannabinoid formulations |
US20090181080A1 (en) * | 2007-08-06 | 2009-07-16 | Insys Therapeutics Inc. | Oral cannabinnoid liquid formulations and methods of treatment |
GB2471987B (en) * | 2008-06-04 | 2012-02-22 | Gw Pharma Ltd | Anti-tumoural effects of cannabinoid combinations |
AT509000B1 (en) * | 2009-10-23 | 2012-12-15 | Rausch Peter | WATER-SOLUBLE PREPARATIONS OF CANNABINOIDS AND CANNABIC PREPARATIONS AND THEIR APPLICATIONS |
EP2642982A2 (en) * | 2010-11-22 | 2013-10-02 | Johnson Matthey Public Limited Company | Stable cannabinoid compositions and methods for making and storing them |
US20130289019A1 (en) | 2012-04-26 | 2013-10-31 | Amazing Grace, Inc. | Methods of treating behaviorial and/or mental disorders |
US9345771B2 (en) * | 2012-10-04 | 2016-05-24 | Insys Development Company, Inc. | Oral cannabinoid formulations |
-
2015
- 2015-05-28 CN CN202110901202.3A patent/CN114191420A/en active Pending
- 2015-05-28 MX MX2016015636A patent/MX2016015636A/en unknown
- 2015-05-28 US US14/724,351 patent/US11224660B2/en active Active
- 2015-05-28 JP JP2016569911A patent/JP6659933B2/en active Active
- 2015-05-28 NZ NZ726746A patent/NZ726746A/en unknown
- 2015-05-28 IL IL302782A patent/IL302782A/en unknown
- 2015-05-28 KR KR1020167036656A patent/KR20170008311A/en unknown
- 2015-05-28 IL IL249197A patent/IL249197B2/en unknown
- 2015-05-28 WO PCT/US2015/032955 patent/WO2015184127A2/en active Application Filing
- 2015-05-28 AU AU2015266897A patent/AU2015266897B2/en active Active
- 2015-05-28 CA CA2950424A patent/CA2950424C/en active Active
- 2015-05-28 EP EP15800669.2A patent/EP3148589B1/en active Active
- 2015-05-28 EP EP22197632.7A patent/EP4151234A1/en active Pending
- 2015-05-28 CN CN201580041466.9A patent/CN106999598B/en active Active
-
2016
- 2016-11-28 MX MX2021006035A patent/MX2021006035A/en unknown
- 2016-11-28 ZA ZA2016/08209A patent/ZA201608209B/en unknown
-
2021
- 2021-07-06 US US17/367,876 patent/US20210330797A1/en active Pending
- 2021-11-05 US US17/519,844 patent/US20220125932A1/en active Pending
- 2021-12-22 US US17/559,155 patent/US20220184215A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
AU2015266897B2 (en) | 2020-07-30 |
NZ763449A (en) | 2024-02-23 |
EP3148589A2 (en) | 2017-04-05 |
US20210330797A1 (en) | 2021-10-28 |
CN106999598A (en) | 2017-08-01 |
KR20170008311A (en) | 2017-01-23 |
JP2017519742A (en) | 2017-07-20 |
EP3148589B1 (en) | 2024-10-30 |
EP3148589A4 (en) | 2018-01-17 |
US20150343071A1 (en) | 2015-12-03 |
WO2015184127A9 (en) | 2016-05-19 |
WO2015184127A2 (en) | 2015-12-03 |
NZ726746A (en) | 2020-08-28 |
WO2015184127A3 (en) | 2016-03-17 |
US20220125932A1 (en) | 2022-04-28 |
EP4151234A1 (en) | 2023-03-22 |
CA2950424C (en) | 2023-03-14 |
ZA201608209B (en) | 2023-06-28 |
MX2016015636A (en) | 2017-08-02 |
MX2021006035A (en) | 2021-07-06 |
CA2950424A1 (en) | 2015-12-03 |
IL249197B1 (en) | 2024-05-01 |
US11224660B2 (en) | 2022-01-18 |
AU2015266897A1 (en) | 2016-12-15 |
CN114191420A (en) | 2022-03-18 |
IL302782A (en) | 2023-07-01 |
IL249197B2 (en) | 2024-09-01 |
CN106999598B (en) | 2022-02-08 |
JP6659933B2 (en) | 2020-03-04 |
IL249197A0 (en) | 2017-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220184215A1 (en) | Stable cannabinoid formulations | |
US20220280446A1 (en) | Stable cannabinoid formulations | |
AU2022201441B2 (en) | Stable cannabinoid formulations | |
US20160271252A1 (en) | Stable cannabinoid formulations | |
US20170224634A1 (en) | Stable cannabinoid formulations | |
CA3062814C (en) | Stable cannabinoid formulations | |
US20160367496A1 (en) | Stable cannabinoid formulations | |
US20220054450A1 (en) | Stable cannabinoid formulations | |
WO2017204986A1 (en) | Stable cannabinoid formulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: RADIUS PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FRESH CUT DEVELOPMENT, LLC;REEL/FRAME:059566/0295 Effective date: 20201230 Owner name: FRESH CUT DEVELOPMENT, LLC, ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BENUVIA THERAPEUTICS INC.;REEL/FRAME:059566/0272 Effective date: 20191210 Owner name: INSYS DEVELOPMENT COMPANY, INC., ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INSYS PHARMA, INC.;REEL/FRAME:059566/0102 Effective date: 20160202 Owner name: FRESH CUT DEVELOPMENT, LLC, ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:INSYS THERAPEUTICS, INC.;INSYS PHARMA, INC.;INSYS DEVELOPMENT COMPANY, INC.;REEL/FRAME:059566/0202 Effective date: 20191031 Owner name: BENUVIA THERAPEUTICS INC., ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FRESH CUT DEVELOPMENT, LLC;REEL/FRAME:059566/0246 Effective date: 20191129 Owner name: INSYS DEVELOPMENT COMPANY, INC., ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VANGARA, KIRAN KUMAR;LI, HUAGUANG;YAN, NINGXIN;AND OTHERS;REEL/FRAME:059566/0156 Effective date: 20160923 |
|
AS | Assignment |
Owner name: RADIUS PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: CHANGE OF ADDRESS;ASSIGNOR:RADIUS PHARMACEUTICALS, INC.;REEL/FRAME:059678/0492 Effective date: 20211011 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNOR:RADIUS HEALTH, INC.;REEL/FRAME:061179/0001 Effective date: 20220815 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: RADIUS HEALTH, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:068051/0671 Effective date: 20240722 |
|
AS | Assignment |
Owner name: FRESH CUT DEVELOPMENT, LLC, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RADIUS PHARMACEUTICALS, INC.;REEL/FRAME:068543/0020 Effective date: 20240724 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |