Nothing Special   »   [go: up one dir, main page]

US20210290861A1 - Infusion pump assembly - Google Patents

Infusion pump assembly Download PDF

Info

Publication number
US20210290861A1
US20210290861A1 US17/222,052 US202117222052A US2021290861A1 US 20210290861 A1 US20210290861 A1 US 20210290861A1 US 202117222052 A US202117222052 A US 202117222052A US 2021290861 A1 US2021290861 A1 US 2021290861A1
Authority
US
United States
Prior art keywords
assembly
plunger rod
reservoir
plunger
infusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/222,052
Inventor
Kevin L. Grant
Brian L. Tracey
Marc Aurele Mandro
Robert John Bryant, JR.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deka Products LP
Original Assignee
Deka Products LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/037,614 external-priority patent/US7306578B2/en
Priority claimed from US10/151,733 external-priority patent/US20020173769A1/en
Application filed by Deka Products LP filed Critical Deka Products LP
Priority to US17/222,052 priority Critical patent/US20210290861A1/en
Assigned to DEKA PRODUCTS LIMITED PARTNERSHIP reassignment DEKA PRODUCTS LIMITED PARTNERSHIP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRYANT, ROBERT J., JR., GRANT, KEVIN L., MANDRO, MARC A., TRACEY, BRIAN D.
Publication of US20210290861A1 publication Critical patent/US20210290861A1/en
Priority to US18/216,757 priority patent/US20230338672A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/50Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for preventing re-use, or for indicating if defective, used, tampered with or unsterile
    • A61M5/5086Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for preventing re-use, or for indicating if defective, used, tampered with or unsterile for indicating if defective, used, tampered with or unsterile
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M5/1456Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons with a replaceable reservoir comprising a piston rod to be moved into the reservoir, e.g. the piston rod is part of the removable reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/14586Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of a flexible diaphragm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M2005/14268Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body with a reusable and a disposable component
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M2005/14506Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons mechanically driven, e.g. spring or clockwork
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M2005/14573Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons with a replaceable reservoir for quick connection/disconnection with a driving system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/332Force measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/581Means for facilitating use, e.g. by people with impaired vision by audible feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/582Means for facilitating use, e.g. by people with impaired vision by tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/583Means for facilitating use, e.g. by people with impaired vision by visual feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/201Glucose concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0612Devices for protecting the needle; Devices to help insertion of the needle, e.g. wings or holders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • A61M39/1011Locking means for securing connection; Additional tamper safeties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • A61M39/14Tube connectors; Tube couplings for connecting tubes having sealed ends
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/494Fluidic or fluid actuated device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • This disclosure relates to pump assemblies and, more particularly, to infusion pump assemblies.
  • An infusion pump assembly may be used to infuse a fluid (e.g., a medication or nutrient) into a user.
  • the fluid may be infused intravenously (i.e., into a vein), subcutaneously (i.e., into the skin), arterially (i.e., into an artery), and epidurally (i.e., into the epidural space).
  • Infusion pump assemblies may administer fluids in ways that would be impractically expensive/unreliable if performed manually by nursing staff.
  • an infusion pump assembly may repeatedly administer small quantities of an infusible fluid (e.g., 0.1 mL per hour), while allowing the user to request one-time larger “bolus” doses.
  • an infusion pump assembly includes a locking tab, and a pump barrel inside a pump barrel housing, where the pump barrel accommodates a reservoir assembly.
  • the reservoir assembly includes a reservoir and a plunger rod.
  • the infusion pump assembly also includes a locking disc at a terminus of the pump barrel.
  • the locking disc includes a clearance hole for the plunger rod.
  • the locking disc also includes at least one locking tab notch in close proximity with the locking tab.
  • the locking tab is in moveable engagement with the locking tab notch, and the reservoir moves the locking tab from a locked position to an unlocked position when the plunger rod is inserted through clearance hole.
  • the locking disc rotates upon torque being applied to the reservoir assembly, the locking disc rotating from a non-loaded position to a loaded position with respect to the plunger rod and a drive screw.
  • the locking disc may further include a second locking tab notch, wherein the second locking tab notch is engaged with the locking tab when the locking disc is in the loaded position.
  • the locking disc may further include a plunger rod support. The plunger rod support may be in close relation with the plunger rod when the plunger rod is inserted through the clearance hole.
  • the locking disc may further include at least two reservoir tab openings for mating with at least two reservoir alignment tabs on the reservoir.
  • the reservoir assembly may further include a locking hub.
  • the locking hub may fluidly connected to the reservoir.
  • the locking hub may further include at least two locking hub alignment tabs, the locking hub alignment tabs aligning with the reservoir alignment tabs when the locking hub is fluidly connected to the reservoir.
  • the infusion pump assembly may further include a hub and battery end cap.
  • the end cap may have an opening to the pump barrel.
  • the pump barrel opening may be complementary to the locking hub alignment tabs wherein the loading of the reservoir assembly may provide alignment of the reservoir alignment tabs with the reservoir tab openings and the plunger rod with the clearance hole.
  • the hub and battery end cap may further include a first alignment feature.
  • the first alignment feature may be complementary to a second alignment feature on the reservoir. When the first and second alignment features are aligned, the locking hub alignment tabs may also be aligned with the hub and battery cap opening.
  • a reservoir assembly in accordance with one aspect of the present invention, includes a reservoir, the reservoir having an interior volume and terminating with a male feature on a first end. Also, the reservoir assembly includes a plunger rod, the plunger rod including a threaded portion and a notched portion. The assembly further includes a reservoir bottom, the reservoir bottom having a plunger rod opening, and at least two reservoir alignment tabs, wherein the plunger rod extends through the plunger rod opening.
  • the reservoir assembly may further include an alignment feature on the reservoir.
  • the alignment feature may allow aligning the reservoir assembly with an infusion pump assembly for loading the reservoir assembly into the infusion pump assembly.
  • a removable filling aid may be included having a threaded portion and a handle portion. The threaded portion may thread to the threaded portion of the plunger rod.
  • a method of loading a reservoir assembly to a drive mechanism of an infusion pump assembly includes aligning locking tab alignment features of a reservoir and locking tab assembly with an alignment feature on a hub and battery end cap of the infusion pump assembly, applying pressure to the locking tab of the reservoir and locking tab assembly, and rotating the locking tab until the locking tab is flush with the infusion pump assembly. Rotating the locking tab loads the reservoir and locking hub assembly onto the drive mechanism of the infusion pump assembly.
  • FIGS. 1A-1B are front and back isometric views of an infusion pump assembly
  • FIGS. 1C-1E are side and front views of the infusion pump assembly of FIG. 1 ;
  • FIG. 1F is a front isometric view of the infusion pump assembly of FIG. 1 ;
  • FIG. 2 is a diagrammatic view of the infusion pump assembly of FIG. 1 ;
  • FIG. 3A is a top-level view of an infusion pump according to one embodiment
  • FIG. 3B is an exploded view of a drive mechanism for the infusion pump of FIG. 3A ;
  • FIG. 3C is an isometric views of one embodiment of a reservoir and locking hub assembly according to one embodiment
  • FIG. 3D is an exploded isometric view of a locking hub and a reservoir according to one embodiment
  • FIG. 3E is an isometric view of one embodiment of the reservoir assembly
  • FIG. 3F shows an embodiment of a pump barrel locking mechanism
  • FIG. 3G shows a magnified view according to FIG. 3F ;
  • FIGS. 3H-3I show the relation of the drive screw to the plunger rod for the infusion pump of FIG. 3A ;
  • FIG. 3J shows a connection from one embodiment of a reservoir to a tubing set
  • FIG. 3K illustrates another method of connecting one embodiment of a reservoir to a tubing set
  • FIG. 3L shows an adapter for using a small diameter reservoir with the pump assembly according to one embodiment
  • FIGS. 3M-N are on-axis views of the adapter of FIG. 3L ;
  • FIG. 4A is an exploded view of one embodiment of the reservoir and locking hub assembly with portions of the loading and drive assembly of one embodiment of the infusion pump assembly;
  • FIGS. 4B-4D are partial views of the loading of the reservoir assembly onto the drive assembly
  • FIGS. 4E-4F are top and bottom views of the hub and battery end cap according to one embodiment of the infusion pump apparatus
  • FIG. 4G-4I are bottom, side and top views, respectively, of one embodiment of the locking disc
  • FIGS. 4J-4L are isometric views of one embodiment of the locking disc
  • FIGS. 4M-4N are partial illustrative views of the loading of the reservoir assembly onto the drive assembly of one embodiment of the infusion pump apparatus
  • FIG. 5A is an isometric view of one embodiment of the plunger and plunger rod apparatus
  • FIG. 5B is an isometric view of one embodiments of the reservoir and locking hub assembly
  • FIG. 5C is an isometric view of the plunger and plunger rod apparatus according to the reservoir and locking hub assembly shown in FIG. 5B ;
  • FIGS. 5D-5E are isometric and cross sectional views, respectively, of the plunger seal apparatus according to one embodiment
  • FIG. 5F is a cross sectional cut-off view of the assembled plunger apparatus of FIG. 5C ;
  • FIG. 5G-5P are various embodiments of the plunger seal apparatus
  • FIGS. 6A-6B are views of one embodiment of the filling aid apparatus
  • FIGS. 6C-6D are isometric views of the filling aid apparatus of FIGS. 6A-6B together with a plunger rod, both attached to the plunger rod and detached from the plunger rod, respectively;
  • FIGS. 6E-6F are isometric views of one embodiment of the filling aid apparatus together with a plunger rod, both attached to the plunger rod and detached from the plunger rod, respectively;
  • FIGS. 6G-6I are isometric views of alternate embodiments of the filling aid together with a plunger rod
  • FIGS. 7A-7B are isometric views of various portions of one embodiment of the infusion pump assembly
  • FIGS. 7C-7D are isometric views of the reservoir assembly together with the drive screw and the strain gauge according to one embodiment of the infusion pump apparatus;
  • FIG. 7E is an magnified isometric view of a plunger rod together with an optical displacement sensor according to one embodiment of the infusion pump apparatus;
  • FIGS. 8A-8D are various alternate embodiments of the reservoir assembly
  • FIGS. 9A-9B are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1 ;
  • FIGS. 9C-9D are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1 ;
  • FIGS. 9E-9F are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1 ;
  • FIGS. 9G-H are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1 ;
  • FIGS. 9I-J are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1 ;
  • FIG. 10A is an isometric view of a removable cover assembly for use with the infusion pump assembly of FIG. 1 ;
  • FIG. 10B is an alternative isometric view of the removable cover assembly of FIG. 10A ;
  • FIG. 10C is a cross-sectional view of the removable cover assembly of FIG. 10A ;
  • FIG. 11 is an alternative isometric view of the removable cover assembly of FIG. 10A ;
  • FIG. 12A-12D are isometric views of an alternative embodiment of the removable cover assembly of FIG. 4 ;
  • FIG. 13 is a diagrammatic view of the infusion pump assembly of FIG. 1 ;
  • FIG. 14 is a flowchart of a process executed by the infusion pump assembly of FIG. 1 ;
  • FIG. 15 is a flowchart of a process executed by the infusion pump assembly of FIG. 1 ;
  • FIG. 16 is a timeline illustrative of a plurality of discrete infusion events
  • FIG. 17 is a more detailed view of two discrete infusion events included within FIG. 16 ;
  • FIG. 18 is a diagrammatic view of a storage array included within the infusion pump assembly of FIG. 1 ;
  • FIG. 19 is a flowchart of a process executed by the infusion pump assembly of FIG. 1 ;
  • FIG. 20 is an illustrative view of one embodiment of a remote control assembly.
  • Infusion pump assembly 100 may be housed within enclosure assembly 102 .
  • Infusion pump assembly 100 may include display system 104 that may be visible through enclosure assembly 102 .
  • One or more switch assemblies/input devices 106 , 108 , 110 may be positioned about various portions of enclosure assembly 102 .
  • Enclosure assembly 102 may include infusion port assembly 112 to which cannula assembly 114 may be releasably coupled.
  • Removable cover assembly 116 may allow access to power supply cavity 118 (shown in phantom on FIG. 2 ).
  • Infusion pump assembly 100 may be configured to deliver infusible fluid 200 to user 202 .
  • Infusible fluid 200 may be delivered intravenously (i.e., into a vein), subcutaneously (i.e., into the skin), arterially (i.e., into an artery), and epidurally (i.e., into the epidural space).
  • Examples of infusible fluid 200 may include but are not limited to insulin, nutrients, saline solution, antibiotics, analgesics, anesthetics, hormones, vasoactive drugs, and chelation drugs, and any other therapeutic fluids.
  • Infusion pump assembly 100 may include processing logic 204 that executes one or more processes that may be required for infusion pump assembly 100 to operate properly.
  • Processing logic 204 may include one or more microprocessors (not shown), one or more input/output controllers (not shown), and cache memory devices (not shown).
  • One or more data buses and/or memory buses may be used to interconnect processing logic 204 with one or more subsystems.
  • Examples of the subsystems interconnected with processing logic 204 may include but are not limited to memory system 206 , input system 208 , display system 104 , vibration system 210 , audio system 212 , motor assembly 214 , force sensor 216 , and displacement detection device 218 .
  • Infusion pump assembly 100 may include primary power supply 220 (e.g. a battery) configured to be removable installable within power supply cavity 118 and to provide electrical power to at least a portion of processing logic 204 and one or more of the subsystems (e.g., memory system 206 , input system 208 , display system 104 , vibration system 210 , audio system 212 , motor assembly 214 , force sensor 216 , and displacement detection device 218 ).
  • primary power supply 220 e.g. a battery
  • the subsystems e.g., memory system 206 , input system 208 , display system 104 , vibration system 210 , audio system 212 , motor assembly 214 , force sensor 216
  • Infusion pump assembly 100 may include reservoir assembly 222 configured to contain infusible fluid 200 .
  • reservoir assembly 222 may be a reservoir assembly similar to that described in U.S. Patent Application Publication No. US 2004-0135078-A1, published Jul. 15, 2004, which is herein incorporated by reference in its entirety.
  • the reservoir assembly may be any assembly in which fluid may be acted upon such that at least a portion of the fluid may flow out of the reservoir assembly, for example, the reservoir assembly, in various embodiments, may include but is not limited to: a barrel with a plunger, a cassette or a container at least partially constructed of a flexible membrane.
  • Plunger assembly 224 may be configured to displace infusible fluid 200 from reservoir assembly 222 through cannula assembly 114 (which may be coupled to infusion pump assembly 100 via infusion port assembly 112 ) so that infusible fluid 200 may be delivered to user 202 .
  • plunger assembly 224 is shown to be displaceable by partial nut assembly 226 , which may engage lead screw assembly 228 that may be rotatable by motor assembly 214 in response to signals received from processing logic 204 .
  • the combination of motor assembly 214 , plunger assembly 224 , partial nut assembly 226 , and lead screw assembly 228 may form a pump assembly that effectuates the dispensing of infusible fluid 200 contained within reservoir assembly 222 .
  • partial nut assembly 226 may include but is not limited to a nut assembly that is configured to wrap around lead screw assembly 228 by e.g., 30 degrees.
  • the pump assembly may be similar to one described in U.S. Pat. No. 7,306,578, issued Dec. 11, 2007, which is herein incorporated by reference in its entirety.
  • infusible fluid 200 may be delivered to user 202 in accordance with e.g. a defined delivery schedule.
  • infusion pump assembly 100 is configured to provide 0.00025 mL of infusible fluid 200 to user 202 every three minutes.
  • processing logic 204 may provide the appropriate drive signals to motor assembly 214 to allow motor assembly 30 to rotate lead screw assembly 228 the appropriate amount so that partial nut assembly 226 (and therefore plunger assembly 224 ) may be displaced the appropriate amount in the direction of arrow 230 so that 0.00025 mL of infusible fluid 200 are provided to user 202 (via cannula 114 ).
  • volume of infusible fluid 200 that may be provided to user 202 may vary based upon, at least in part, the nature of the infusible fluid (e.g., the type of fluid, concentration, etc.), use parameters (e.g., treatment type, dosage, etc.). As such the foregoing illustrative example should not be construed as a limitation of the present disclosure.
  • Force sensor 216 may be configured to provide processing logic 204 with data concerning the force required to drive plunger assembly 224 into reservoir assembly 222 .
  • Force sensor 216 may include one or more strain gauges and/or pressure sensing gauges and may be positioned between motor assembly 214 and an immovable object (e.g. bracket assembly 232 ) included within infusion pump assembly 100 .
  • force sensor 216 includes four strain gauges (not shown), such that: two of the four strain gauges are configured to be compressed when driving plunger 222 into reservoir assembly 222 ; and two of the four strain gauges are configured to be stretched when driving plunger 222 into reservoir assembly 222 .
  • the four strain gauges (not shown) may be connected to a Wheatstone Bridge (not shown) that produces an analog force signal (not shown) that is a function of the pressure sensed by force sensor 216 .
  • the analog force signal (not shown) produced by force sensor 216 may be provided to an analog-to-digital converter (not shown) that may convert the analog force signal (not shown) into a digital force signal (not shown) that may be provided to processing logic 204 .
  • An amplifier assembly (not shown) may be positioned prior to the above-described analog-to-digital converter and may be configured to amplify the output of e.g., force sensor 216 to a level sufficient to be processed by the above-described analog-to-digital converter.
  • Motor assembly 214 may be configured as e.g., a brush-type DC electric motor. Further, motor assembly 214 may include a reduction gear assembly (not shown) that e.g. requires motor assembly 214 to rotate three-thousand revolutions for each revolution of lead screw assembly 228 , thus increasing the torque and resolution of motor assembly 214 by a factor of three-thousand.
  • a reduction gear assembly (not shown) that e.g. requires motor assembly 214 to rotate three-thousand revolutions for each revolution of lead screw assembly 228 , thus increasing the torque and resolution of motor assembly 214 by a factor of three-thousand.
  • FIG. 3A is an overall view of an infusion pump according to one embodiment.
  • a pump assembly 300 contains the components needed to cause a reservoir assembly 302 to deliver medication or any liquid to a user.
  • the reservoir assembly 302 may contain enough liquid, e.g., medication, such as, but not limited to, insulin, for several days for a typical user.
  • a tubing set 304 connected to the reservoir assembly 302 , includes a cannula (not shown) through which the medication is delivered to the user.
  • Reservoir assembly 302 may include reservoir 306 , plunger 308 and plunger rod 310 .
  • Reservoir 306 may contain the medication for delivery to the user and is of variable interior volume. The interior volume may be the liquid capacity of reservoir 306 .
  • Plunger 308 may be inserted into the bottom of the reservoir 306 , and may cause the volume of reservoir 306 to change as plunger 308 is displaced along the longitudinal axis of reservoir 306 .
  • Plunger rod 310 may be connected to plunger 308 with the plunger rod's longitudinal axis displaced from and parallel to the longitudinal axis of reservoir 306 .
  • Plunger rod 310 may be threaded for at least a portion of plunger rod's 310 length.
  • cylindrical pump barrel 312 receives reservoir assembly 302 .
  • Pump barrel 312 may constrain plunger rod 310 , orienting plunger rod 310 along the longitudinal axis of pump barrel 312 .
  • Pump barrel 312 may be contained in pump assembly 300 and, in some embodiments, may contain locking tab 317 , which may prevent rotation of pump barrel 312 with respect to pump assembly 300 .
  • Gear box 316 in pump assembly 300 may include drive screw 314 along with motor and gears to turn drive screw 314 .
  • Drive screw 314 may be threaded and the screw's longitudinal axis may be aligned parallel to and may be displaced from the longitudinal axis of pump barrel 312 .
  • Locking hub 318 may be attached to the top of reservoir 306 .
  • reservoir 306 may be sized to accommodate any volume desired.
  • reservoir 306 may accommodate a volume of 2.5 ml, however, in various other embodiments, reservoir 306 may be sized to accommodate a smaller or larger volume.
  • reservoir 306 volume may change as the plunger is displaced along the longitudinal axis of reservoir 306 .
  • locking hub 318 may be connected to tubing set (not shown, an embodiment of the tubing set is shown in FIG. 3A as 304 ) such that the liquid in the reservoir may flow through the locking hub to the tubing.
  • reservoir 306 may also include reservoir alignment tabs 307 and reservoir bottom 305 .
  • plunger rod 310 in the exemplary embodiment, may include a threaded portion 320 and a notched portion 322 .
  • the threaded portion may thread to drive screw 314 .
  • Notched portion 322 may be used, in the exemplary embodiment, to encode information relating to reservoir assembly 302 , including but not limited to the information, the methods and devices described in U.S. Patent Application Publication US 2004/0135078 A1, published on Jul. 15, 2004 and entitled Optical Displacement Sensor for Infusion Devices, which is herein incorporated by reference in its entirety.
  • locking hub 310 may include a female part 329 as well as tab 326
  • reservoir 306 may include a male part 324 as well as slot 328 .
  • Male part 324 and female part 329 may mate to form a luer connection.
  • Tab 326 and slot 328 may lock together when mated and turned, one part relative to its mating part, such that tab 326 may slide into the slot 328 .
  • FIG. 3E another embodiment of reservoir assembly 330 is shown.
  • hub portion 332 and reservoir portion 334 are connected, and in one embodiment, are molded as a single part.
  • the pump barrel 312 includes a clearance hole (not shown, shown in FIG. 3I as 340 ) that guides the plunger rod 310 during insertion of the reservoir assembly 302 into the pump barrel 312 .
  • the pump barrel 312 maintains a fixed position relative to the pump assembly 300 .
  • the position of the pump barrel 312 relative to the pump assembly 300 may be maintained, for example, by a locking tab 317 included in the pump barrel 312 that engages a pump barrel stop 342 in the pump assembly 300 , as shown in FIG. 3G .
  • the locking hub 318 may include a flange 338 which dislodges the locking tab 340 from the pump barrel stop 342 when the locking hub 318 turns, allowing the locking hub 318 to rotate the pump barrel 312 .
  • FIGS. 3H-3I show views along the longitudinal axis of the pump barrel 312 showing the relation of the drive screw 314 to the plunger rod in a loading position and in an engaged position, respectively.
  • the reservoir assembly 302 is positioned for loading so that the plunger rod 310 does not contact the drive screw 314 , as shown in FIG. 3H .
  • the plunger rod 310 clearance from the drive screw 314 is determined by the placement of the clearance hole 340 in the pump barrel 312 base, which hole 340 receives and guides the plunger rod 310 .
  • the clearance hole 340 may be tapered to ease insertion of the plunger rod 310 .
  • the drive screw 314 fits in a clearance hole 340 in the pump barrel 312 .
  • the plunger rod threads and the drive screw threads are buttress threads. These embodiments may be advantageous in that they eliminate reaction forces on the plunger rod normal to the direction of the rod's longitudinal axis. Such reaction forces may cause the rod to deflect and skip a thread on the drive screw, resulting in under delivery of medication to the user. Buttress threads eliminate the normal component of the reaction force.
  • the locking hub 318 may be connected to the reservoir 306 by a tapered luer connection.
  • the reservoir 306 has a male luer taper integrally molded into the reservoir's top 344 .
  • Surrounding the male luer is an annulus with an internal female thread.
  • the locking hub 318 contains the mating female luer and threaded male connection.
  • a needle connection is provided between reservoir 306 and locking hub 318 .
  • the reservoir includes a rubber septum 346 that is attached to the reservoir with a crimped metal collar.
  • a needle 348 integral to the hub, pierces the septum and fluid can then flow from the reservoir to the tubing set.
  • an adapter 350 is provided to permit a reservoir 352 whose diameter is substantially smaller than the diameter of a pump barrel to be used with the pump assembly 300 .
  • the adapter 350 may be a separate component or may be integrated into the locking hub 354 .
  • the locking hub 354 in some embodiments, may be one of the embodiments described herein, and sized accordingly.
  • the adapter 350 aligns and offsets the reservoir's 352 axis parallel to the longitudinal axis of the pump barrel so that the plunger rod 356 , when rotated, mates with the drive screw (not shown).
  • FIGS. 3M-3N show an on-axis view of the small diameter reservoir 352 when placed in the adapter 350 .
  • the offset provided by the adapter allows the plunger rod 356 , when mated with the plunger 308 and reservoir 352 , to engage the drive screw 314 in a similar fashion as for the first embodiment, described above.
  • a cylindrical pump barrel 312 shown here inside a pump barrel housing 360 , receives the reservoir assembly 302 .
  • the pump barrel 312 terminates with a locking disc 400 .
  • the pump barrel 312 constrains the plunger rod 310 , orienting the plunger rod 310 along the longitudinal axis of the pump barrel 312 .
  • the pump barrel 312 is contained in the pump barrel housing 360 , which is contained in the pump assembly 300 .
  • the locking disc 400 in the exemplary embodiment, contacts a locking tab (shown in FIG. 4B as 402 ), which is in the pump gear box 364 .
  • the locking tab 402 prevents rotation of the locking disc 400 with respect to the pump assembly 300 .
  • the locking disc 400 may not include a locking tab 402 .
  • a gear box 364 in the pump assembly 300 includes a drive screw 314 along with motor and gears to turn the drive screw 314 , and, as discussed above, in some embodiments, a locking tab 402 for locking the locking disc 400 .
  • the drive screw 314 is threaded and the screw's longitudinal axis is aligned parallel to and displaced from the longitudinal axis of the pump barrel 312 .
  • a locking hub 318 is attached to the top of the reservoir 306 .
  • the plunger rod 310 is connected to the plunger 308 .
  • the plunger rod 310 and plunger 308 are a single molded part.
  • O-rings 366 fit over the plunger 308 .
  • the O-rings may be molded into the plunger 308 .
  • the locking hub 318 additionally includes locking hub alignment tabs 325 .
  • the pump assembly 300 includes a hub and battery end cap 404 .
  • the hub section of the hub and battery end cap 404 includes complementary opening for the locking hub 318 , including the locking hub alignment tabs 325 .
  • the reservoir assembly 302 is mated with the locking hub 318 , to load the reservoir into the pump barrel 312 , the reservoir must be oriented correctly with respect to the locking hub alignment tabs 325 and the complementary opening in the hub and battery end cap 404 .
  • the reservoir alignment tabs 307 will thus also be aligned with the locking hub alignment tabs 325 .
  • the locking disc 400 includes a clearance hole 340 , which, in the exemplary embodiment is tapered for easy insertion, but in some embodiments, is not tapered. Additionally, the reservoir tab openings 406 , plunger rod support 412 and first and second locking tab notches 408 , 410 are shown. As discussed above, the reservoir alignment tabs 307 are aligned with the locking hub alignment tabs 325 . The orientation assured by the hub and battery end cap 404 assures that the plunger rod 310 will be in the correct orientation to fit through the clearance hole 340 , the reservoir alignment tabs 307 will mate with the reservoir tab opening 406 , and the reservoir bottom 305 displaces the locking tab 402 .
  • the locking disc 400 may include only a first locking tab notch 408 , or, in some embodiments, may not include any locking tab notches.
  • the locking tab notches 408 , 410 maintain the orientation of the locking disc 400 for ease of loading the reservoir and locking hub assembly.
  • the second locking tab notch 408 contributes to maintaining the plunger rod 310 and drive screw 314 relationship.
  • the reservoir tab openings 406 are included in the exemplary embodiment of the locking disc 400 , some embodiments of the locking disc 400 do not include reservoir tab openings 406 . In these embodiments, the reservoir does not include reservoir alignment tabs 307 (shown in FIGS. 3C-3D ).
  • the reservoir tab openings 406 aid in the rotation of the locking disc 400 .
  • the user having aligned the reservoir and locking hub assembly with the hub and battery cap 404 , drops the reservoir and locking hub assembly into the pump barrel 312 and applies a slight pressure to the locking hub 318 .
  • the user then applies torque to the locking hub 318 to complete the loading process.
  • the torque applied to the locking hub is transmitted from the reservoir alignment tabs 307 to the locking disc 400 rather than from the locking hub 318 to the plunger rod 310 .
  • the reservoir alignment tabs 307 together with the reservoir tab openings 406 work together to take up the torque applied to the reservoir and locking hub assembly which contributes to maintaining the integrity of the plunger rod 310 while also ensuring proper engagement of the plunger rod 310 onto the drive screw 314 .
  • bottom view of the locking disc 400 is shown with the locking tab 402 engaged with one of the locking tab notches 408 .
  • the clearance hole 340 is shown empty of the plunger rod.
  • the drive screw 314 is shown and the plunger rod support 412 is also shown.
  • the plunger rod 310 is shown having fit through the clearance hole 340 .
  • the reservoir alignment tabs 307 are shown having mated with the reservoir tab openings 406 , and the locking tab 402 is deflected from the locking tab notch 408 .
  • the plunger rod support 412 is shown along part of the plunger rod 310 .
  • the plunger rod support 412 contributes to maintaining the integrity of the relationship of the plunger rod 310 and the drive screw 314 such that the drive screw 314 of the plunger rod 310 maintain connection and the plunger rod 310 is not deflected.
  • the locking disc 400 is shown after rotation and reservoir loading is complete, i.e., in the loaded position.
  • the plunger rod 310 is engaged to the drive screw 314 .
  • the second locking tab notch 410 is now engaged with the locking tab 402 .
  • the locking disc 400 is locked from continuing further rotation.
  • FIGS. 4M-4N a sequential illustration of the loading of the reservoir and engagement of the drive screw 314 to the plunger rod 310 is shown.
  • the reservoir 306 disengages the locking tab 402 from the first locking tab notch 408 .
  • the reservoir alignment tab 307 (the other tab is obscured) mates with the reservoir tab opening 406 .
  • the plunger rod 310 is engaged with the drive screw 314 .
  • the locking tab 402 is being engaged with the second locking tab notch 410 .
  • loading the reservoir into the pump barrel and engaging the plunger rod to the drive screw includes two steps. First, aligning the locking hub alignment tabs with the hub and battery end cap and dropping the reservoir and locking hub assembly into the pump barrel (the plunger rod being inherently aligned with the clearance hole of the locking disc). Second, rotating the locking hub until rotation stops, i.e., the locking tab has engaged with the second locking tab notch.
  • the hub and battery end cap 404 may include an loading alignment feature 420
  • the reservoir may also include a marking or other alignment feature, aligning the marking on the reservoir with the loading alignment feature 420 assures the reservoir assembly is aligned for dropping the reservoir and locking hub assembly into the pump barrel and completion of the loading steps.
  • the loading alignment feature 420 is a notch molded into the plastic of the hub and battery end cap 404 .
  • the loading alignment feature 420 may be a bump, raised dimple, notch of a different shape, or a painted marking, i.e., any feature that may be utilized by the user in loading the reservoir and locking hub assembly.
  • the complementary feature on the reservoir may be any marking, for example, a painted marking with an indication of the direction of loading, e.g., “pump ⁇ ”, “ ⁇ ”, or, in some embodiments, a simple vertical line of any length, a dot or other symbol that may be utilized by the user in loading the reservoir and locking hub assembly.
  • these alignment features further simplify the method of loading the reservoir and locking hub assembly into the pump assembly
  • the hub and battery end cap is shown populated with a locking hub 108 and a battery cap 110 .
  • the locking hub 108 sits flush with the pump assembly.
  • reservoir loading is advantageously simplified in that the alignment features assure that the reservoir, when dropped into the pump barrel, the plunger rod and reservoir alignment tabs are aligned with the locking disc and, the rotation of the locking hub until the locking hub is flush with the pump assembly assures that reservoir loaded and the plunger rod is threaded to the drive screw.
  • the plunger 308 includes two O-rings 366 .
  • the O-rings 366 and plunger 308 may be one piece and may be made from a material that provides ample sealing properties.
  • the plunger seal 506 is designed to function as a double o-ring plunger, however, is molded as a single part.
  • the plunger seal 506 fits over the plunger 504 , which, in some embodiments, is made from plastic, and in some embodiments, is made from the same plastic as the plunger rod 310 .
  • the plunger cap 508 fits over the plunger seal 506 .
  • the reservoir 306 and reservoir bottom 305 may be as described in the above described embodiments. Referring also to FIGS. 5D-5E , the plunger seal 506 is shown.
  • the top ring-like feature of the seal is thicker than the bottom ring-like feature.
  • the bottom ring-like feature may be the thicker ring-like feature, and in some embodiments, both ring-like features may be the same thickness.
  • FIG. 5F a cross section of the assembled plunger of the embodiments shown in FIGS. 5B-5E is shown.
  • the plunger seal 506 fits around the plunger 504 and the plunger cap 504 snaps over the plunger seal 506 .
  • FIGS. 5G-5P various embodiments of the plunger seal 506 described above are shown.
  • the plunger rod is connected to the plunger, and is part of the reservoir assembly.
  • the reservoir functions to hold a volume of liquid for delivery by the infusion pump assembly. Filling the reservoir with a liquid, e.g. insulin, prior to leading the reservoir assembly into the pump assembly is preferred.
  • a user loads the reservoir with insulin (or another liquid as discussed herein), attached the locking hub (in the exemplary embodiments, although, as discussed above, in some embodiments, the locking hub may be integrated with the reservoir) and loads the reservoir assembly with locking hub into the pump assembly.
  • the plunger rod is designed, as shown herein, to engage with the drive screw and be driven by the drive screw.
  • a filling aid may be desirable.
  • the filling aid 600 is designed to engage with the threaded portion of the plunger rod 310 as described above, i.e., the filling aid includes a mating thread portion 602 .
  • the filling aid 600 slides onto the plunger rod 310 , and as the mating thread portion 602 engages with the plunger rod threads 320 , the filling aid 600 is securely fastened to the plunger rod 310 .
  • the handle 604 in the exemplary embodiment, is shaped to accommodate user's fingers and serves as pull. In practice, the user loads the reservoir by pulling back on the handle 604 .
  • the filling aid 600 may be easily removed from the plunger rod by moving the filling aid 600 such that the threads disengage with the plunger rod threads.
  • the filling aid 600 in the exemplary embodiment, is designed to have tolerances such that the plunger rod threads are not damaged during the filling process.
  • the filling aid may be different shapes, for example, larger, or the handle may be shaped differently, to accommodate those users with arthritis or other ailments that may prevent them from easily utilizing the filling aid as shown.
  • An alternate embodiment is shown in FIGS. 6 E- 6 F.
  • the filling aid 600 is made from plastic, however, in other embodiments, the filling aid 600 may be made from any materials, including but not limited to, stainless steel or aluminum.
  • the filling aid 606 may be connected to the plunger rod 301 by way of a plastic piece 608 .
  • the plastic piece 608 is manufactured such that the filling aid 606 may be removed from the plunger rod 310 by bending the plastic piece, i.e., the filling aid 606 snaps off the plunger rod 310 .
  • the filling aid 606 in these FIGS. is shown having a particular shape, in other embodiments, the shape may be any of the other filling aid embodiments shown herein, or others that may be designed as discussed above.
  • the filling aid 606 and plastic piece 608 may be molded with the plunger rod 310 .
  • the pump assembly 100 includes a housing, which, in the exemplary embodiment, is made from an aluminum portion, plastic portions, and rubber portions. However, in various embodiments, the materials and the portions vary, and include but are not limited to, rubber, aluminum, plastic, stainless steel, and any other suitable materials.
  • the back of the housing, shown in FIG. 1B includes a contour.
  • FIGS. 7A-7B portions of the housing has been removed.
  • the switch assemblies/input devices and the user interface screen have been removed.
  • the pump barrel 312 is shown with a reservoir 306 inside.
  • the battery compartment 706 is shown in FIG. 7A
  • the pump assembly 100 is shown without the battery compartment 706 is FIG. 7B .
  • Various features of the battery compartment 706 are described herein.
  • the gear box 364 is shown assembled with the pump housing 360 in the pump assembly 100 .
  • the hub and battery end cap 404 is shown assembled on the pump assembly 100 .
  • a reservoir assembly 312 is shown engaged to the drive screw 314 and in contact with the strain gauge 708 .
  • the strain gauge 708 is in contact with the drive screw 314 .
  • the pressure measurements of the strain gauge 708 are taken by an electrical contact 710 .
  • the strain gauge 708 measures the pressure exerted by the drive screw 314 .
  • the optical sensor as described above and in more detail in U.S. Patent Application Publication US 2004/0135078 A1, published on Jul. 15, 2004 and entitled Optical Displacement Sensor for Infusion Devices, as used in some embodiments of the infusion pump apparatus, is a sensor used to determine whether the plunger rod 310 has moved and/or advanced and additionally, may also determine whether the plunger rod 310 has moved and/or advanced the intended distance.
  • the pump apparatus using the occlusion detection methods and devices, can determine if the drive screw is unable to advance, and also, can determine if the plunger rod has moved and the distance in which it has moved.
  • FIGS. 8A-8D alternate embodiments of the reservoir assembly are shown.
  • the pumping assembly shape and size may vary from the ones shown herein.
  • the pump assembly may be round or smaller in shape. Therefore, it may be beneficial for the reservoir assembly to accommodate the smaller or rounded shape without having to sacrifice total volume.
  • Exemplary embodiments of these alternate embodiment reservoir assemblies are shown in FIGS. 8A-8C . However, it should be understood these are by example only.
  • the alternate embodiment reservoir assembly may be larger, smaller, or include a larger or smaller angle.
  • a curved reservoir assembly 800 is shown.
  • the angle indicated may have a value of greater than or less than 180 degrees.
  • the reservoir assembly 800 may have an angle of 150 degrees.
  • the reservoir assembly 800 may form a helical shape.
  • the reservoir assembly 800 may be any shape desired, including having one or more portions rounded or curved, and/or one or more portions straight or approaching straight.
  • FIGS. 8B-8D another embodiment of the alternate embodiment reservoir assembly is shown.
  • the reservoir 802 and plunger 804 assembly is shown as having a round or approaching round shape.
  • the reservoir 802 in some embodiments, and as shown in FIGS. 8B-8D , may be a channel in a housing 806 .
  • the reservoir 802 may be cylindrical, and the ends 808 , 810 of the plunger 804 may be circular, however, the plunger 804 may be flat 804 as shown.
  • the plunger 804 may be advanced by applying pressure to the end 808 of the plunger 804 by a mechanical feature (not shown), which, in some embodiments, may be located in the center 812 of the housing 806 , or in other embodiments, elsewhere in the pump assembly within engageable proximity to the plunger 804 .
  • the reservoir 802 may be filled with liquid using inlet 814 .
  • enclosure assembly 102 may include infusion port assembly 112 to which cannula assembly 114 may be releasably coupled.
  • a portion of infusion port assembly 112 and a portion of cannula assembly 114 may form a medium connector assembly for releasably coupling infusion port assembly 112 to cannula assembly 114 and effectuating the delivery of infusible fluid 200 to user 202 .
  • FIG. 9A there is shown one exemplary embodiment of a medium connector assembly 900 for connecting medium carrying components (not shown) and allowing the flow of medium therebetween.
  • medium carrying components may include, but are not limited to, a delivery catheter and an insulin delivery pump, a fluid supply (such as an intravenous fluid supply bag, a dialysate supply, etc.) and a pump supply catheter, or the like.
  • Connector assembly 900 may include medium connector 902 associated with a first medium carrying component (not shown) and mating connector 904 associated with a second medium carrying component.
  • Medium connector 902 may include passage 906 to allow for the flow of medium.
  • the medium flowing between the medium carrying components, e.g., via passage 906 may include liquids (e.g., insulin, dialysate, saline solution, or the like), gases (e.g., air, oxygen, nitrogen, or the like), suspensions, or the like.
  • medium connector 902 may include multi-portion engagement surface 908 , generally, positioned about passage 906 . Multi-portion engagement surface 908 may include first surface portion 910 , and second surface portion 912 .
  • first surface portion 910 of multi-portion engagement surface 908 may be configured to provide an interference fit with corresponding sealing surface 914 of mating connector 904 .
  • second surface portion 912 of multi-portion engagement surface 908 may be configured to provide a clearance fit with corresponding sealing surface 914 of mating connector 904 .
  • the ratio of first surface portion 910 and second surface portion 912 may be selected to regulate an engagement for between medium connector 902 and mating connector 904 .
  • corresponding sealing surface 914 of mating connector 904 may include a tapered surface, e.g., which may include a 6% taper (e.g., approximately 3.4 degree included taper) of a standard Luer taper connector (e.g., as defined by the ISO 594 standard).
  • corresponding sealing surface 914 may include tapers other than a 6% Luer taper.
  • Multi-portion engagement surface 908 may similarly include a tapered surface, in which first surface portion 910 may have a first taper angle, and second surface portion 912 may have a second taper angle that is less than the first taper angle.
  • the second taper angle may approach zero, such that second surface portion 912 may be generally cylindrical (e.g., may include a slight taper, such as a draft angle to facilitate manufacture).
  • second surface portion 912 may include other, non-cylindrical, taper angles.
  • first surface portion 910 of multi-portion engagement surface 908 may include a first taper angle corresponding to the angle of corresponding sealing surface 914 of mating connector 904 (e.g., a 6% taper).
  • first taper angle corresponding to the angle of corresponding sealing surface 914 of mating connector 904 e.g., a 6% taper.
  • the corresponding taper of first surface portion 910 may provide an interference fit with corresponding sealing surface 914 of mating connector 904 .
  • the second taper angle of second surface portion 912 may provide a clearance fit with corresponding sealing surface 914 of mating connector 904 , e.g., which may result in at least partial clearance 916 between second surface portion 912 and corresponding sealing surface 914 .
  • the contact surface area of medium connector 902 and mating connector 904 may remain generally constant once first surface portion 910 has engaged corresponding sealing surface 914 .
  • first surface portion 910 may be configured to provide an interference fit with corresponding sealing surface 914
  • second surface portion 912 of multi-portion engagement surface 908 may be configured to provide a clearance fit with corresponding sealing surface 914
  • only first surface portion 910 may engage corresponding sealing surface 914 .
  • first surface portion 910 engages corresponding sealing surface 914
  • further insertion of medium connector 902 relative to mating connector 904 may be attributable to the elastic and/or plastic deformation force of medium connector 902 in the region of first surface portion 910 and/or of mating connector 904 in the region of contact between corresponding sealing surface 914 and first surface portion 910 (e.g., as first surface portion 910 is forced into the progressively smaller opening provided by corresponding sealing surface 914 ), and the frictional interaction between first surface portion 910 and corresponding sealing surface 914 of mating connector 904 .
  • the ratio of first surface portion 910 and second surface portion 912 may be selected to regulate an engagement force between medium connector 902 and mating connector 904 .
  • second surface portion 912 may be configured to provide a clearance fit with corresponding sealing surface 914 , and as such may not contribute to the engagement force (e.g., the insertion force per increment of axial insertion) between medium connector 902 and mating connector 904 . Therefore, the ratio of first surface portion 910 to second surface portion 912 may be increased to increase the engagement force between medium connector 902 and mating connector 904 . Conversely, the ratio of first surface portion 910 to second surface portion 912 may be decreased to decrease the engagement force between medium connector 902 and mating connector 904 .
  • the ability to regulate the engagement force between medium connector 902 and mating connector 904 may allow the use of features associated with medium connector 902 (and/or the first associated medium carrying component) and/or mating connector 904 (and/or the second associated medium carrying component) which may require a minimum insertion depth to be achieved within a selected range of insertion forces.
  • medium connector 902 may include one or more retention features, e.g., which may facilitate a positive engagement and/or relative position between medium connector 902 and mating connector 904 . As shown in FIGS.
  • the one or more retention features may include one or more snap-fit features (e.g., cooperating snap-fit features 918 , 920 A, respectively associated with medium connector 902 and mating connector 904 ).
  • one or more of cooperating snap-fit features 918 , 920 A may be disposed on a cantilever feature (e.g., cantilever arm 922 ), e.g., which may facilitate engagement/dis-engagement of cooperating snap-fit features 918 , 920 A.
  • Snap-fit features 918 , 920 A may require a minimum insertion depth to provide engagement therebetween.
  • the medium connector assembly may include medium connector 902 associated with a first medium carrying component (not shown) and mating connector 904 associated with a second medium carrying component.
  • one or more of the cooperating snap-fit features e.g., cooperating snap-fit features 918 , 920 B
  • the cooperating snap-fit features may be provided as a feature associated with one of the mating surfaces of the medium connector assembly (e.g., snap-fit feature 920 B may be formed on member 924 defining corresponding sealing surface 914 ).
  • FIGS. 9A-9B and 9C-9D various additional/alternative arrangements may be readily understood, and are contemplated by the present disclosure.
  • the second surface portion may include one or more recesses.
  • the second surface portion may include one or more recesses including one or more longitudinal slots (e.g., longitudinal slot 950 ), e.g., which may be formed in first surface portion 910 .
  • Longitudinal slot 950 may be configured to provide a clearance fit with cooperating sealing surface 114 of mating connector 904 .
  • longitudinal slot 950 may provide a second surface portion which may not engage cooperating sealing surface 914 when first surface portion 910 is fully engaged with cooperating sealing surface 914 of mating connector 904 .
  • the ratio of first surface portion 910 and the radial slots may be selected to regulate the engagement force between medium connector 902 and mating connector 904 , e.g., in as much as longitudinal slot 950 may not provide a frictional engagement force with cooperating sealing surface 914 of mating connector 904 .
  • the second surface portion may include one or more recesses that may include one or more radial slots (e.g., radial slot 952 ). Similar to the above-described longitudinal slots (e.g., longitudinal slot 950 ), radial slot 952 may be configured to provide a clearance fit with corresponding sealing surface 914 of mating connector 904 . As such, the ratio of first surface portion 910 and the radial slots (e.g., radial slot 952 ) may be selected to regulate the engagement force between medium connector 902 and mating connector 904 . For example, radial slot 952 may not provide a frictional engagement force with cooperating sealing surface 914 of mating connector 904 .
  • radial slot 952 may not provide a frictional engagement force with cooperating sealing surface 914 of mating connector 904 .
  • the one or more recesses may include various additional and/or alternative configurations (e.g., dimples, etc.), which may be configured to provide a clearance fit with the cooperating sealing surface of the mating connector.
  • the ratio of the first surface portion and the second surface portion may be selected to regulate an engagement force between the medium connector and the mating connector.
  • the number, arrangement, and character of the one or more recesses may vary according to design criteria and preference.
  • medium connector 902 may additionally/alternatively be configured as a female connector portion.
  • medium connector 902 may include a female connector portion having a multi-portion engagement surface including first surface portion 910 and second surface portion 912 .
  • the multi-portion engagement surface may include a tapered surface, in which first surface portion 910 may have a first taper angle configured to provide an interference fit with cooperating sealing surface 914 of male mating connector 904 .
  • second surface portion 912 may have a second taper angle that is greater than the first taper angle.
  • second surface portion 912 may be configured to provide a clearance fit with cooperating sealing surface 914 of male mating connector 904 .
  • the second surface portion may include one or more recesses.
  • the one or more recesses may include one or more longitudinal slots (e.g., longitudinal slot 950 A, 950 B).
  • first surface portion 910 may be configured to provide an interference fit with cooperating sealing surface 914 of male mating connector 904 .
  • the second surface portion, including longitudinal slot 950 A, 950 B may be configured to provide a clearance fit with cooperating sealing surface 914 of male mating connector 904 .
  • Medium connector 902 may include sealing region 954 , which may not include longitudinal slots, e.g., to thereby facilitate achieving a seal between first surface portion 910 and cooperating sealing surface 914 of mating connector 904 .
  • the second surface portion may include one or more recesses, in which the one or more recesses may include one or more radial slots (e.g., radial slot 952 ).
  • Radial slot 952 may be configured to provide a clearance fit with cooperating sealing surface 914 of male mating connector 904 .
  • the one or more recesses may include various additional and/or alternative configurations (e.g., dimples, etc.), which may be configured to provide a clearance fit with the cooperating sealing surface of the mating connector.
  • the ratio of the first surface portion and the second surface portion may be selected to regulate an engagement force between the medium connector and the mating connector.
  • the number, arrangement, and character of the one or more recesses may vary according to design criteria and preference.
  • infusion pump assembly 100 may include a removable cover assembly 116 configured to allow access to power supply cavity 118 (shown in phantom on FIG. 2 ).
  • power supply cavity 118 (which may be formed by a combination of removable cover assembly 116 and a portion of enclosure assembly 102 ) may be configured to releasably receive primary power supply 220 . Additionally, power supply cavity 118 may be configured to prevent primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204 For example, power supply cavity 118 may be configured to prevent positive terminal 1000 of primary power supply 220 from being electrically coupled to negative terminal 1002 of power supply cavity 118 and/or negative terminal 1004 of primary power supply 220 from being electrically coupled to positive terminal 1006 of power supply cavity 118 ).
  • Configuring power supply cavity 118 to prevent primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204 may provide various benefits.
  • the configuration may prevent the loss of power from primary power supply 220 (e.g., discharge of the battery) where the primary power supply assembly 220 has been inserted incorrectly.
  • this configuration may also be a safety feature to infusion pump assembly 100 .
  • Infusion pump assembly 100 may rely on power for functionality.
  • a user may rely on infusion pump assembly 100 to provide life-sustaining therapy, for example, by delivering insulin.
  • preventing primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204 may allow infusion pump assembly 100 to function for a longer time than if the incorrectly installed primary power supply 220 had been able to be reverse-polarity electrically coupled to processing logic 204 .
  • Removable cover assembly 116 may be configured to allow access to power supply cavity 118 and effectuate the installation/replacement/removal of primary power supply 220 .
  • primary power supply 220 may include but is not limited to a battery.
  • the battery may include, but is not limited to, an A, AA, AAA, or AAAA battery, and the battery may be a lithium battery or alkaline battery.
  • the battery may, in some embodiments, be a rechargeable battery.
  • Removable cover assembly 116 may be configured to rotatably engage enclosure assembly 102 in the direction of arrow 1008 .
  • removable cover assembly 116 may include first twist lock assembly 1010 (e.g., a protruding tab).
  • Enclosure assembly 102 may include a second twist lock assembly 1012 (e.g., a slot) configured to releasably engage first twist lock assembly and effectuate the releasable engagement of the removable cover assembly and the enclosure assembly.
  • removable cover assembly 116 and enclosure assembly 102 is described above as including first twist lock assembly 1010 and second twist lock assembly 1012 , this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible and are considered to be within the scope of this disclosure.
  • one or more thread assemblies may be utilized to effectuate the above-described rotatable engagement.
  • removable cover assembly 116 is described above as being configured to rotatably engage enclosure assembly 102 , this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible.
  • removable cover assembly 116 may be configured to slidably engage enclosure assembly 102 (in the direction of arrow 1014 ) using a slide assembly (not shown).
  • removable cover assembly 116 may be configured to be pressed into enclosure assembly 102 in the direction of arrow 1016 .
  • Removable cover assembly 116 may include sealing assembly 1018 (e.g., an o-ring assembly) that is configured to releasably engage at least a portion of enclosure assembly 102 to form an essentially water-tight seal between removable cover assembly 116 and enclosure assembly 102 .
  • sealing assembly 1018 e.g., an o-ring assembly
  • sealing assembly 1018 includes an o-ring assembly included within removable cover assembly 116
  • the o-ring assembly may be sized to effectuate a watertight (or essentially watertight) seal with a corresponding surface of enclosure assembly 102 .
  • Removable cover assembly 116 may include conductor assembly 1020 for electrically coupling positive terminal 1006 of removable cover assembly 116 with interior wall 120 ( FIG. 1D ) of power supply cavity 118 .
  • conductor assembly 1020 may include a plurality of tabs (e.g., tabs 1022 , 1024 ) that may be electrically coupled to positive terminal 1006 of removable cover assembly 116 .
  • Tabs 1022 , 1024 may be configured so that when removable cover assembly 116 releasably engages enclosure assembly 102 , tabs 1022 , 1024 may make electrical contact with interior wall 120 of power supply cavity 118 .
  • Interior wall 120 of power supply cavity 118 may then be electrically coupled to the various components within infusion pump assembly 100 that require electrical power, examples of which may include but are not limited to processing logic 204 .
  • removable cover assembly 116 may be configured to prevent primary power supply 220 from being reverse-polarity electrically coupled to e.g., processing logic 204 .
  • processing logic 204 e.g., processing logic 204 .
  • removable cover assembly 116 may include insulator assembly 1026 that includes recess 1028 that is sized to receive positive terminal 1000 of primary power supply 220 and enable electrical contact with positive terminal 1006 of removable cover assembly 116 .
  • Insulator assembly 1026 may be constructed of an insulating material, such as PVC plastic or bakelite.
  • recess 1028 may be sized so that negative terminal 1004 of primary power supply 220 cannot make electrical contact with positive terminal 1006 (and may only make contact with insulator 1026 ), thus preventing primary power supply 220 from being electrically coupled to processing logic 204 in a reverse-polarity configuration.
  • Removable cover assembly 116 ′ may include sealing assembly 1018 ′ (e.g., an o-ring assembly) that is configured to releasably engage at least a portion of enclosure assembly 102 to form an essentially water-tight seal between removable cover assembly 116 ′ and enclosure assembly 102 .
  • sealing assembly 1018 ′ e.g., an o-ring assembly
  • Removable cover assembly 116 ′ may include conductor assembly 1020 ′ for electrically coupling positive terminal 1006 ′ of removable cover assembly 116 ′ with interior wall 120 ( FIG. 1D ) of power supply cavity 118 ( FIG. 1D ).
  • conductor assembly 1020 ′ may include a plurality of tabs (e.g., tabs 1022 ′, 1024 ′) that may be electrically coupled to positive terminal 1006 ′ of removable cover assembly 116 ′.
  • Tabs 1022 ′, 1024 ′ may be configured so that when removable cover assembly 116 ′ releasably engages enclosure assembly 102 , tabs 1022 ′, 1024 ′ may make electrical contact with interior wall 120 of power supply cavity 118 .
  • Interior wall 120 of power supply cavity 118 may then be electrically coupled to the various components within infusion pump assembly 100 that require electrical power, examples of which may include but are not limited to processing logic 204 .
  • removable cover assembly 116 ′ may include insulator assembly 1026 ′ that defines recess 1028 ′ that is sized to receive positive terminal 1000 ( FIG. 11 ) of primary power supply 220 ( FIG. 11 ) and enable electrical contact with positive terminal 1006 ′ of removable cover assembly 116 ′.
  • Insulator assembly 1026 ′ which may be constructed of an insulating material (e.g., PVC plastic or bakelite), may be molded into and/or a portion of removable cover assembly 116 ′.
  • recess 1028 ′ may be sized so that negative terminal 1004 ( FIG. 11 ) of primary power supply 220 cannot make electrical contact with positive terminal 1006 ′ (and may only make electrical contact with insulator 1026 ′, thus preventing primary power supply 220 from being electrically coupled to processing logic 204 in a reverse-polarity configuration.
  • power supply cavity 118 is described above as having positive terminal 1006 positioned proximate removable cover assembly 116 , this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible and are considered to be within the scope of this disclosure.
  • negative terminal 1002 may be positioned proximate removable cover assembly 116 .
  • Processing logic 204 may include one or more circuit partitioning components 1300 , 1302 configured to divide processing logic 204 into primary processing logic 1304 and backup processing logic 1306 .
  • Examples of one or more circuit partitioning components 1300 , 1302 may include but are not limited to diode assembly 1300 and current limiting assembly 1302 .
  • Diode assembly 1300 may be configured to allow primary power supply 220 to charge backup power supply 1308 included within backup processing logic 1306 , while prohibiting backup power supply 1308 from providing backup electrical energy 1310 to primary processing logic 1304 in the event that some form of failure prevents primary electrical energy 1312 from providing primary processing logic 1304 .
  • An example of backup power supply 1308 may include but is not limited to a super capacitor assembly.
  • An example of such a super capacitor assembly may include but is not limited to an electric double-layer capacitor manufactured by Elna Co. Ltd. of Yokohama, Japan.
  • Current limiting assembly 1302 may be configured to limit the amount of primary electrical energy 1312 available to charge backup power supply 1308 .
  • the amount of current available from primary power supply 220 may be limited to e.g., avoid depriving primary processing logic 1304 of a requisite portion of primary electrical energy 1312 .
  • Primary processing logic 1304 may include primary microprocessor 1314 and voltage booster circuit 1316 .
  • Primary microprocessor 1314 may include but is not limited to a H8S/2000 manufactured by Renesas Technology America Inc. of San Jose, Calif.
  • Voltage booster circuit 1316 may be configured to increase the voltage potential of primary electrical energy 1312 provided by primary power supply 220 to a level sufficient to power primary microprocessor 1314 .
  • An example of voltage booster circuit 1316 may include but is not limited to a LTC3421 manufactured by Linear Technology of Milpitas, Calif.
  • Current limiting assembly 1302 may be configured to limit the amount of current available to charge backup power supply 1308 during the power-up of primary microprocessor 1314 .
  • current limiting assembly 1302 may be controlled by primary microprocessor 1314 and current limiting assembly 1302 may be disabled (i.e., provide no charging current to backup power supply 1308 ) until after primary microprocessor 1314 is fully powered up.
  • primary microprocessor 1314 may now enable current limiting assembly 1302 , thus providing charging current to backup power supply 1308 .
  • current limiting assembly 1302 may be configured to prohibit the flow of charging current to backup power supply 1308 for a time sufficient to allow for the powering up of primary microprocessor 1314 .
  • Backup processing logic 1306 may include backup power supply 1308 and safety microprocessor 1318 .
  • An example of safety microprocessor 1318 may include but is not limited to a MSP430 manufactured by Texas Instruments of Dallas, Tex.
  • Primary power supply 220 may be configured to provide primary electrical energy 1312 to at least a portion of processing logic 204 . Specifically and during normal operation of infusion pump assembly 100 , primary power supply 220 may be configured to provide primary electrical energy 1312 to all of processing logic 204 (including the various components of primary processing logic 1304 and backup processing logic 1306 ), as well as various subsystems included within infusion pump assembly 100 .
  • Examples of such subsystems may include but are not limited to memory system 206 , input system 208 , display system 104 , vibration system 210 , audio system 212 , motor assembly 214 , force sensor 216 , and displacement detection device 218 .
  • Backup power supply 1308 may be configured to provide backup electrical energy 1310 to the at least a portion of processing logic 204 in the event that primary power supply 220 fails to provide primary electrical energy 1312 to at least a portion of processing logic 204 . Specifically, in the event that primary power supply 220 fails and, therefore, can no longer provide primary electrical energy 1312 to processing logic 204 , backup power supply 1308 may be configured to provide backup electrical energy 1310 to backup processing logic 1306 .
  • voltage booster circuit 1316 may increase the voltage potential of primary electrical energy 1312 to a level sufficient to power primary microprocessor 1314 , wherein voltage booster circuit 1316 and primary microprocessor 1314 are both included within primary processing logic 1304 .
  • diode assembly 1300 may allow a portion of primary electrical energy 1312 to enter backup processing logic 1306 , thus enabling the operation of safety microprocessor 1318 and the charging of backup power supply 1308 .
  • backup power supply 1308 may include but is not limited to a super capacitor.
  • current limiting assembly 1302 may limit the quantity of current provided by primary power supply 220 to backup processing logic 1306 , thus preventing the diversion of too large a portion of primary electrical energy 1312 from primary processing logic 1304 to backup processing logic 1306 .
  • primary power supply 220 may charge backup power supply 1308 .
  • backup power supply 1308 is a 0.33 farad super capacitor.
  • Safety microprocessor 1318 may monitor the status of primary power supply 220 by monitoring (via conductor 1320 ) the voltage potential present at the input of voltage booster circuit 1316 .
  • safety microprocessor 1318 may monitor the status of primary power supply 220 by e.g. monitoring the voltage potential present at the output of voltage booster circuit 1316 .
  • safety microprocessor 1318 and primary microprocessor 1314 may be electrically-coupled via e.g. conductor 1322 and primary microprocessor 1314 may be configured to continuously provide a “beacon” signal to safety microprocessor 1318 .
  • Conductor 1322 may include isolation circuit 1324 (e.g., one or more diodes assemblies) to electrically isolate safety microprocessor 1318 and primary microprocessor 1314 .
  • safety microprocessor 1318 continues to receive the “beacon” signal from primary microprocessor 1314 , primary microprocessor 1314 is functioning and, therefore, being properly powered by primary power supply 220 . In the event that safety microprocessor 1318 fails to receive the “beacon” signal from primary microprocessor 1314 , an alarm sequence may be initiated.
  • safety microprocessor 1318 may be configured to continuously provide a “beacon” signal to primary microprocessor 1314 . Accordingly, provided primary microprocessor 1314 continues to receive the “beacon” signal from safety microprocessor 1318 , safety microprocessor 1318 is functioning and, therefore, being properly powered by backup power supply 1308 . In the event that primary microprocessor 1314 fails to receive the “beacon” signal from safety microprocessor 1318 , an alarm sequence may be initiated.
  • a “beacon” signal may be considered an event that is performed by primary microprocessor 1314 (and/or safety microprocessor 1318 ) solely for the purpose of making the presence of primary microprocessor 1314 (and/or safety microprocessor 1318 ) known. Additionally/alternatively, the “beacon” signal may be considered an event that is performed by primary microprocessor 1314 (and/or safety microprocessor 1318 ) for the purpose of performing a task, wherein the execution of this event is monitored by safety microprocessor 1318 (and/or primary microprocessor 1314 ) to confirm the presence of primary microprocessor 1314 (and/or safety microprocessor 1318 ).
  • primary power supply 220 fails.
  • primary power supply 220 physically fails (as opposed to simply becoming discharged). Examples of such a failure may include but are not limited to the failing of a cell (not shown) within primary power supply 220 and the failing of a conductor (e.g., one or more of conductors 1320 , 1326 ) that electrically-couples primary power supply 220 to processing logic 204 . Accordingly, in the event of such a failure, primary power supply 220 may no longer provide primary electrical energy 1312 to processing logic 204 .
  • safety microprocessor 1318 may monitor (as discussed above) one or more of these voltage potentials, safety microprocessor 1318 may be knowledgeable that primary power supply 220 has failed.
  • primary microprocessor 1314 when such a failure of primary power supply 220 occurs, primary microprocessor 1314 will no longer be powered and, therefore, primary microprocessor 1314 will no longer produce the above-described “beacon” signals. Since safety microprocessor 1318 monitors the above-described “beacon” signals, safety microprocessor 1318 may be knowledgeable that primary power supply 220 has failed.
  • backup power supply 1308 may not provide backup electrical energy 1310 to primary processing logic 1304 . Accordingly, primary processing logic 1304 will no longer function.
  • safety microprocessor 1318 may initiate an alarm sequence that may result in audio system 212 being energized.
  • Audio system 212 may be controllable by both safety microprocessor 1318 and primary microprocessor 1314 . Alternatively, a separate audio system may be used for each of safety microprocessor 1318 and primary microprocessor 1314 .
  • An example of audio system 212 may include but is not limited to a Piezo electric diaphragm, an example of which may include but is not limited to a 7BB-15-6 manufactured by Murata of Kyoto, Japan.
  • Audio system 212 may further include an RS232 line driver circuit 1330 , such as a MAX3319/MAX3221 manufactured by Maxim Integrated Products of Sunnyvale, Calif.
  • RS232 line driver circuit 1330 such as a MAX3319/MAX3221 manufactured by Maxim Integrated Products of Sunnyvale, Calif.
  • One or more or primary microprocessor 1314 and safety microprocessor 1318 may be configured to provide an alarm control signal (e.g., a square wave; not shown) to RS232 line driver circuit 1330 to generate an alarm output signal (not shown) that may be provided to and may drive the above-described Piezo electric diaphragm.
  • the alarm sequence initiated by safety microprocessor 1318 is intended to inform user 202 of the failure of primary power supply 220 so that user 202 may take the appropriate action (e.g. seeking an alterative means to have their therapy performed and/or having infusion pump assembly 100 repaired/replaced).
  • Backup power supply 1308 may be sized so that safety microprocessor 1318 and audio system 212 may continue to function for up to fifteen minutes or more after the failure of primary power supply 220 (i.e., depending on design specifications).
  • the alarm sequence initiated by safety microprocessor 1318 and/or primary microprocessor 1314 may be an “escalating” alarm sequence. For example, at first a discrete “vibrating” alarm may be initiated (via vibration system 210 ). In the event that this “vibrating” alarm is not acknowledged within a defined period of time (e.g., one minute), a low volume audible alarm may be initiated. In the event that this low volume alarm is not acknowledged within a defined period of time (e.g., one minute), a medium volume audible alarm may be initiated. In the event that this medium volume alarm is not acknowledged within a defined period of time (e.g., one minute), a high volume audible alarm may be initiated.
  • a discrete “vibrating” alarm may be initiated (via vibration system 210 ). In the event that this “vibrating” alarm is not acknowledged within a defined period of time (e.g., one minute), a low volume audible alarm may be initiated. In the event that this low volume alarm is not acknowledged within
  • the escalating alarm sequence may provide a notification to user 202 , in which the notification may be discrete or less disruptive at the onset.
  • the initially discrete or less disruptive notification may be advantageous as user 202 may experience minimal disruption.
  • the escalating nature of the alarm may provide for additional layers of safety to user 202 .
  • the escalating alarm sequence which may include both vibration and audio alarms, may insure that user 202 may be notified regardless of whether both systems 210 , 212 are functioning.
  • Audio system 212 may be configured to perform a self test upon power up. For example, upon infusion pump assembly 100 being initially powered up, audio system 212 may provide a “beep-type” signal to each sound generating device included within audio system 212 . In the event that user 202 does not hear these “beep-type” signal(s), user 202 may take the appropriate action (e.g. seeking an alterative means to have their therapy performed and/or having infusion pump assembly 100 repaired/replaced). As discussed above, audio system 212 may be controllable by safety microprocessor 1318 and/or primary microprocessor 1314 .
  • safety microprocessor 1318 and/or primary microprocessor 1314 may control the above-described self test.
  • This feature may provide for additional safety to user 202 , as user 202 may be alerted to a system error earlier than may otherwise be the case.
  • a method may be provided to notify the user early of system errors.
  • the system may otherwise not be aware of an error in audio system 212 , thus, this feature provides for identification of a failure by user 202 that may otherwise go undetected.
  • safety microprocessor 1318 may continue to monitor the voltage potential present at the output of voltage booster circuit 1316 and/or the voltage potential present at the input of voltage booster circuit 1316 . Additionally, safety microprocessor 1318 may continue to monitor for the presence of the above-described “beacon” signals. Accordingly, in the event that the failure of primary power supply 220 was a temporary event (e.g. primary power supply 220 is an out-of-date battery and is being replaced with a new battery), safety microprocessor 1318 may be knowledgeable when primary power supply 220 is once again functioning properly.
  • diode assembly 1300 and current limiting assembly 1302 may allow a portion of primary electrical energy 1312 produced by primary power supply 220 to recharge backup power supply 1308 .
  • safety microprocessor 1318 and primary microprocessor 1314 may each maintain a real-time clock, so that the various doses of infusible fluid may be dispensed at the appropriate time of day. As primary microprocessor 1314 was not functioning during the failure of primary power supply 220 , the real-time clock maintained within primary microprocessor 1314 may no longer be accurate. Accordingly, the real-time clock maintained within safety microprocessor 1318 may be used to reset the real-time clock maintained within primary microprocessor 1314 .
  • primary microprocessor 1314 and safety microprocessor 1318 may each execute applications written in different programming languages.
  • primary microprocessor 1314 may be configured to execute one or more primary applications written in a first computer language
  • safety microprocessor 1318 may be configured to execute one or more safety applications written in a second computer language.
  • Examples of the first computer language in which the primary applications are written may include but are not limited to Ada, Basic, Cobol, C, C++, C#, Fortran, Visual Assembler, Visual Basic, Visual J++, Java, and Java Script languages.
  • the first computer language in which the primary applications (executed on primary microprocessor 1314 ) are written is the C++ computer language.
  • Examples of the second computer language in which the safety applications are written may include but are not limited to Ada, Basic, Cobol, C, C++, C#, Fortran, Visual Assembler, Visual Basic, Visual J++, Java, and Java Script languages.
  • the second computer language in which the safety applications (executed on safety microprocessor 1318 ) are written is the C computer language.
  • primary microprocessor 1314 and safety microprocessor 1318 are different types of microprocessors and, therefore, use different compilers; the compiled code associated with the primary applications executed by primary microprocessor 1314 and the safety applications executed on safety microprocessor 1318 may be different (regardless of the whether the primary applications and the safety applications were written in the same computer language.
  • Examples of the one or more primary applications written in the first computer language and executable on primary microprocessor 1314 may include but are not limited to an operating system (e.g., LinuxTM, UnixTM, Windows CETM), an executive loop and various software applications.
  • examples of the one or more safety applications written in the second computer language and executable on safety microprocessor 1318 may include but are not limited to an operating system (e.g., LinuxTM, UnixTM, Windows CETM), an executive loop and various software applications.
  • primary processing logic 1304 and backup processing logic 1306 may each be configured as a separate stand-alone autonomous computing device. Therefore, primary microprocessor 1314 included within primary processing logic 1304 may execute a first operating system (e.g. LinuxTM) and safety microprocessor 1318 included within backup processing logic 1306 may execute an executive loop.
  • a first operating system e.g. LinuxTM
  • safety microprocessor 1318 included within backup processing logic 1306 may execute an executive loop.
  • primary microprocessor 1314 included within primary processing logic 1304 may execute one or more software applications (e.g. graphical user interface applications, scheduling applications, control applications, telemetry applications) executable within (in this example) a LinuxTM operating system.
  • safety microprocessor 1318 included within backup processing logic 1306 may execute one or more software applications (e.g. graphical user interface applications, scheduling applications, control applications, telemetry applications) executable within (in this example) the executive loop.
  • infusion pump assembly may be less susceptible to e.g. computer-language bugs, operating-system bugs, and/or computer viruses.
  • confirmation process 234 may be configured to process a command received on a first microprocessor (e.g., primary microprocessor 1314 ) so that the command may be confirmed by a second microprocessor (e.g., safety microprocessor 1318 ).
  • the instruction sets and subroutines of confirmation process 234 may be stored on a storage device (e.g., memory system 208 ) accessible by processing logic 204 , may be executed by one or more processors (e.g., primary microprocessor 1314 and/or safety microprocessor 1318 ) and one or more memory architectures (e.g., memory system 208 ) included within infusion pump assembly 100 .
  • processors e.g., primary microprocessor 1314 and/or safety microprocessor 1318
  • memory architectures e.g., memory system 208
  • Examples of memory system 208 may include but are not limited to: a random access memory; a read-only memory; and a flash memory.
  • confirmation process 234 may receive 1400 , on a first microprocessor executing one or more applications written in a first computer language, an initial command processable by the one or more applications written in the first computer language.
  • primary microprocessor 1314 (included within primary processing logic 1304 ) may be executing the LinuxTM operating system. Assuming that user 202 wishes to have a 0.50 mL dose of infusible fluid 200 dispensed by infusion pump assembly 100 , user 202 may select (via input system 208 and display system 104 ) the appropriate commands to have the 0.50 mL dose dispensed. Accordingly, primary microprocessor 1314 may receive 1400 a corresponding command (e.g., command 1332 ) to dispense 0.50 mL of infusible fluid 200 .
  • a corresponding command e.g., command 1332
  • safety microprocessor 1318 (included within backup processing logic 1306 ) may be executing the executive loop. Accordingly, command 1332 may not be provided to safety microprocessor 1318 in its native form, as safety microprocessor 1318 may not be capable of processing command 1332 , due to safety microprocessor 1318 executing the executive loop and primary microprocessor 1314 executing the LinuxTM operating system.
  • confirmation process 234 may convert 1402 initial command 1332 into a modified command (e.g., command 1334 ) that may be processable by e.g., safety microprocessor 1318 (included within backup processing logic 1306 ) that may be executing the executive loop.
  • confirmation process 234 may convert 1402 initial command 1332 into modified command 1334 that is transmittable via a communication protocol (not shown) that effectuates the communication of primary microprocessor 1314 and safety microprocessor 1318 .
  • modified command 1334 may be provided 1404 to e.g., safety microprocessor 1318 (included within backup processing logic 1306 ) that may be executing e.g., the executive loop.
  • safety microprocessor 1318 may process modified command 1334 and provide (via e.g., display system 104 ) a visual confirmation to user 202 .
  • confirmation process 234 may convert modified command 1334 into a native command (not shown) processable by safety microprocessor 1318 .
  • safety microprocessor 1318 may process received modified command 1334 to render (on display system 104 ) a visual confirmation.
  • confirmation process 234 may render on display system 104 a message that states e.g., “Dispense 0.50 U Dose?”.
  • user 202 may either authorize the dispensing of the 0.50 mL dose or cancel the dispensing of the 0.50 mL dose. Accordingly, if user 202 authorizes the dispensing of the 0.50 mL dose of infusible fluid 200 , the accuracy of initial command 1332 and modified command 1334 are both confirmed. However, in the event that e.g., the message rendered by confirmation process 234 is incorrect (e.g., “Dispense 1.50 U Dose?”), the conversion 1402 of initial command 1332 to modified command 132 has failed.
  • primary microprocessor 1314 (and/or the applications being executed on primary microprocessor 1314 ) and/or safety microprocessor 1318 (and/or the applications being executed on safety microprocessor 1318 ) may be malfunctioning. Accordingly, user 202 may need to seek an alterative means to having their therapy performed and/or have infusion pump assembly 100 serviced.
  • infusion pump assembly 100 may be configured to deliver infusible fluid 200 to user 202 .
  • Infusible fluid 200 may be delivered to user 202 via one or more different infusion event types.
  • infusion pump assembly 100 may deliver infusible fluid 200 via may a sequential, multi-part, infusion event (that may include a plurality of discrete infusion events) and/or a one-time infusion event.
  • Examples of such a sequential, multi-part, infusion event may include but are not limited to a basal infusion event and an extended-bolus infusion event.
  • a basal infusion event refers to the constant flow of a small quantity of infusible fluid 200 .
  • a basal infusion event when administered by such an infusion pump assembly, may refer to the repeated injection of small (e.g. 0.05 unit) quantities of infusible fluid 200 at a predefined interval (e.g. every three minutes) that is repeated.
  • the quantity of infusible fluid 200 delivered during each interval may be identical or may vary from interval to interval.
  • the time interval between each delivery of infusible fluid 200 may be identical or may vary from interval to interval.
  • the basal infusion rates may be pre-programmed time-frames, e.g., a rate of 0.50 units per hour from 6 am-3 pm; a rate of 0.40 units per hour from 3 pm-10 pm; and a rate of 0.35 units per hour from 10 pm-6 am.
  • the basal rate may be 0.025 units per hour, and may not change according to pre-programmed time-frames. The basal rates may be repeated regularly/daily until otherwise changed.
  • extended-bolus infusion event may refer to the repeated injection of small (e.g. 0.025 unit) quantities of infusible fluid 200 at a predefined interval (e.g. every three minutes) that is repeated for a defined number of intervals (e.g., three intervals) or for a defined period of time (e.g., one hour).
  • a predefined interval e.g. every three minutes
  • An extended-bolus infusion event may occur simultaneously with a basal infusion event.
  • a normal bolus infusion event refers to a one-time infusion of infusible fluid 200 .
  • the volume of the infusible fluid 200 delivered in a bolus infusion event may be requested, and infusion pump assembly 100 may deliver the requested volume of infusible fluid 200 for the bolus infusion event at a predetermined rate (e.g., as quickly as the infusion pump assembly can deliver).
  • the infusion pump assembly may deliver a normal bolus at a slower rate where the normal bolus volume is greater than a pre-programmed threshold.
  • infusion pump assembly 100 may include input system 208 and display system 104 . Accordingly, user 202 may utilize input system 208 to define a basal infusion event for infusible fluid 200 (e.g., 1.00 units per hour), which may be confirmed via display system 104 .
  • a basal infusion event for infusible fluid 200 e.g., 1.00 units per hour
  • Infusion pump assembly 100 may then determine an infusion schedule based upon the basal infusion event defined; and may administer 100 infusible fluid 200 .
  • infusion pump assembly 100 may deliver 0.05 units of infusible fluid 200 every three minutes, resulting in the delivery of the basal dose of infusible fluid 200 defined by the user (i.e., 1.00 units per hour).
  • fluid delivery process 236 may administer 1500 the sequential, multi-part, infusion event (e.g., 0.05 units of infusible fluid 200 every three minutes).
  • infusible fluid 200 is insulin and sometime after the first 0.05 unit dose 1600 of infusible fluid 200 is administered 1500 by fluid delivery process 236 (but before the second 0.05 unit dose 1602 of infusible fluid 200 is administered 1500 by fluid delivery process 236 ), user 202 checks their blood glucose level and realizes that their blood glucose level is running a little higher than normal. Accordingly, user 202 may define an extended bolus infusion event via fluid delivery process 236 .
  • An extended bolus infusion event may refer to the continuous infusion of a defined quantity of infusible fluid 200 over a finite period of time.
  • an extended bolus infusion event may refer to the infusion of additional small doses of infusible fluid 200 over a finite period of time.
  • user 202 may utilize input system 208 to define an extended bolus infusion event for infusible fluid 200 (e.g., 0.20 units over the next six minutes), which may be confirmed via display system 104 .
  • an extended bolus infusion event for infusible fluid 200 (e.g., 0.20 units over the next six minutes)
  • the extended bolus infusion event is described as 0.20 units over the next six minutes, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as either or both of the unit quantity and total time interval may be adjusted upward or downward.
  • fluid delivery process 236 may determine an infusion schedule based upon the extended bolus infusion event defined; and may administer 1500 infusible fluid 200 .
  • infusion pump assembly 100 may deliver 0.10 units of infusible fluid 200 every three minutes for the next two interval cycles (or six minutes), resulting in the delivery of the extended bolus dose of infusible fluid 200 defined by the user (i.e., 0.20 units over the next six minutes).
  • a one-time infusion event may include but is not limited to a normal bolus infusion event.
  • a normal bolus infusion event refers to a one-time infusion of infusible fluid 200 .
  • Fluid delivery process 236 may monitor the various infusion events being administered by fluid delivery process 236 to determine 1504 whether a one-time infusion event is available to be administered. If 1504 a one-time infusion event is available for administration 1502 , fluid delivery process 236 may delay 1506 the administration of at least a portion of the sequential, multi-part, infusion event.
  • fluid delivery process 236 may delay 1506 the administration 1500 of each sequential, multi-part infusion event and administer 1502 the available one-time infusion event.
  • infusion delivery process 236 prior to user 202 programming fluid delivery process 236 to deliver one-time infusion event 1614 , infusion delivery process 236 was administering 1500 a first sequential, multi-part, infusion event (i.e., 0.05 units infused every three minute interval repeated continuously) and administering 1500 a second sequential, multi-part, infusion event (i.e., 0.10 units infused every three minute interval for two intervals).
  • a first sequential, multi-part, infusion event i.e., 0.05 units infused every three minute interval repeated continuously
  • a second sequential, multi-part, infusion event i.e. 0.10 units infused every three minute interval for two intervals.
  • infusion pump assembly 100 in conjunction with fluid delivery process 236 ) may continue to infuse 0.05 unit doses of infusible fluid 200 at three minute intervals indefinitely (i.e., until the procedure is cancelled by user 202 ).
  • infusion pump assembly 100 in conjunction with fluid delivery process 236 ) may continue to infuse 0.10 unit doses of infusible fluid 200 at three minute intervals for exactly two intervals (i.e., the number of intervals defined by user 202 ).
  • fluid delivery process 236 may delay 1506 the administration 1500 of each sequential, multi-part infusion event and may start administering 1502 one-time infusion event 1614 that is available for administration.
  • fluid delivery process begins administering 1502 one-time infusion event 1614 .
  • one-time infusion event 1614 is comparatively large, it may take longer than three minutes (i.e., the time interval between individual infused doses of the sequential, multi-part, infusion events) to administer and, therefore, one or more of the individual infused doses of the sequential, multi-part, infusion events may need to be delayed.
  • any discrete infusion events included within the sequential, multi-part, infusion event that were delayed may be administered 1500 by fluid delivery process 236 .
  • fluid delivery process 236 may administer 1500 0.05 unit dose 1602 , 0.05 unit dose 1604 , 0.05 unit dose 1606 , 0.10 unit dose 1610 , and 0.10 unit dose 1612 .
  • fluid delivery process 236 is shown to administer 1500 0.05 unit dose 1602 , then 0.10 unit dose 1610 , then 0.05 unit dose 1604 , then 0.10 unit dose 1612 , and then 0.05 unit dose 1606 , this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible and are considered to be within the scope of this disclosure.
  • fluid delivery process 236 may administer 1500 all of the delayed discrete infusion events associated with the first sequential, multi-part infusion event (i.e., namely 0.05 unit dose 1602 , 0.05 unit dose 1604 , and 0.05 unit dose 1606 . Fluid delivery process 236 may then administer 1500 all of the delayed discrete infusion events associated with the second sequential, multi-part infusion event (i.e., 0.10 unit dose 1610 , and 0.10 unit dose 1612 ).
  • one-time infusion event 1614 i.e., the thirty-six unit normal bolus dose of infusible fluid 200
  • each discrete infusion event e.g., 0.05 unit dose 1602 , 0.05 unit dose 1604 , 0.05 unit dose 1606 , 0.10 unit dose 1610 , and 0.10 unit dose 1612
  • one-time infusion event 1614 may include a plurality of discrete infusion sub-events.
  • 0.05 unit dose 1602 is shown to include ten discrete infusion sub-events (e.g., infusion sub-events 1700 1-10 ), wherein a 0.005 unit dose of infusible fluid 200 is infused during each of the ten discrete infusion sub-events.
  • 0.10 unit dose 1610 is shown to include ten discrete infusion sub-events (e.g., infusion sub-events 1702 1-10 ), wherein a 0.01 unit dose of infusible fluid 200 is delivered during each of the ten discrete infusion sub-events.
  • one-time infusion event 1614 may include e.g., three-hundred-sixty one-time infusion sub-events (not shown), wherein a 0.1 unit dose of infusible fluid 200 is delivered during each of the three-hundred-sixty one-time infusion sub-events.
  • the number of sub-events defined above and the quantity of infusible fluid 200 delivered during each sub-event is solely for illustrative purposes only and is not intended to be a limitation of this disclosure, as the number of sub-events and/or the quantity of infusible fluid 200 delivered during each sub-event may be increased or decreased depending upon e.g., the design criteria of infusion pump assembly 100 and/or the implementation of fluid delivery process 236 .
  • infusion pump assembly 100 may confirm the proper operation of infusion pump assembly 100 through the use of e.g., force sensor 216 (i.e., which may determine the occurrence of an occlusion) and displacement detection device 218 (i.e., which may determine the occurrence of a mechanical failure).
  • force sensor 216 i.e., which may determine the occurrence of an occlusion
  • displacement detection device 218 i.e., which may determine the occurrence of a mechanical failure
  • infusible fluid 200 may be delivered to user 202 in accordance with e.g. a defined delivery schedule.
  • infusion pump assembly 100 is configured to provide 0.10 mL of infusible fluid 200 to user 202 every three minutes.
  • processing logic 204 may provide the appropriate drive signals to motor assembly 214 to allow motor assembly 214 to rotate lead screw assembly 42 the appropriate amount so that partial nut assembly 40 (and therefore plunger assembly 224 ) may be displaced the appropriate amount in the direction of arrow 230 so that 0.10 mL of infusible fluid 200 are provided to user 202 (via cannula 38 ).
  • Processing logic 204 may execute occlusion detection process 238 , and occlusion detection process 238 may be configured to monitor one or more events that are occurring within infusion pump assembly 100 to determine whether or not an occlusion (e.g., a blockage) has occurred within e.g. cannula assembly 114 .
  • occlusion e.g., a blockage
  • occlusion detection process 238 may determine 1900 a rate-of-change force reading (e.g., FR01) that corresponds to the delivery of first dose 240 ( FIG. 2 ) of infusible fluid 200 .
  • a rate-of-change force reading e.g., FR01
  • occlusion detection process 238 may determine 1902 an initial force reading prior to dispensing first dose 240 of infusible fluid 200 .
  • infusion pump assembly 100 may regularly dispense individual doses of infusible fluid 200 based upon one or more infusion schedules. For example and as discussed above, infusion pump assembly 100 may be configured to dispense 0.10 mL of infusible fluid 200 to user 202 every three minutes.
  • occlusion detection process 238 may obtain the initial force reading from force sensor 216 . Provided that there is not an occlusion within e.g. cannula assembly 114 , the initial force reading obtained by occlusion detection process 238 prior to infusion pump assembly 100 dispensing first dose 240 of infusible fluid 200 should be zero pounds. Once occlusion detection process 238 determines 1902 the initial force reading, infusion pump assembly 100 may dispense 1904 first dose 240 of infusible fluid 200 to user 202 via cannula assembly 114 .
  • occlusion detection process 238 may determine 1906 a final force reading subsequent to dispensing 1904 first dose 240 of infusible fluid 200 . For example, once infusion pump assembly 100 has completely dispensed 1904 first dose 240 of infusible fluid 200 to user 202 , occlusion detection process 238 may obtain the final force reading from force sensor 216 in a process similar to that used to obtain the initial force reading from force sensor 216 .
  • Occlusion detection process 238 may determine 1900 the rate-of-change force reading (e.g., FR01) based, at least in part, upon the initial force reading and the final force reading. For example, occlusion detection process 238 may subtract the initial force reading from the final force reading to determine the net force change that occurred while dispensing (in this particular example) 0.10 mL of infusible fluid 200 . As discussed above, provided that there are no occlusions within e.g. cannula assembly 114 , the initial force reading (obtained from force sensor 216 ) should be zero and the final force reading (also obtained from force sensor 216 ) should also be zero. Accordingly, the rate-of-change force reading (e.g., FR01) determined 1900 by occlusion detection process 238 should also be zero.
  • the rate-of-change force reading e.g., FR01
  • this final force reading may actually be based upon the initial force reading that is taken for the next dose of infusible fluid 200 . Accordingly, by allowing the initial force reading of the second dose of infusible fluid 200 to provide the data for the final force reading of the first dose of infusible fluid 200 , the total number of force readings made may be reduced by 50%.
  • occlusion detection process 238 may store the rate-of-change force reading (e.g., FR01) within e.g., storage cell 1800 of storage array 1802 .
  • Storage array 1802 may be configured as a FIFO (first in, first out) buffer.
  • Storage array 1802 may be configured to allow occlusion detection process 238 to maintain a plurality of historical values for the rate-of-change force readings (e.g., FR01) discussed above.
  • a typical embodiment of storage array 1802 may include twenty or forty individual storage cells. While storage array 1802 is illustrated in FIG.
  • storage array 1802 may be a single column storage array in which only the rate-of-change force readings are stored.
  • Occlusion detection process 238 may process the historical values of the rate-of-change force readings to determine an average rate-of-change force reading over a desired infusible fluid volume/number of infusion cycles. For example, occlusion detection process 238 may determine an average rate-of-change force reading over each forty infusion cycles. Accordingly, occlusion detection process 238 may determine 1908 additional rate-of-change force readings, each of which corresponds to the delivery of additional doses of infusible fluid 200 . For example and for illustrative purposes only, occlusion detection process 238 may determine 1908 thirty-nine additional rate-of-change force readings for the next thirty-nine infusion cycles.
  • Each of these thirty-nine rate-of-change force readings may be stored in a unique storage cell of storage array 1802 .
  • occlusion detection process 238 may determine an average rate-of-change force reading for the set of forty rate-of-change force readings. Once this average rate-of-change force reading is determined, storage array 1802 may be cleared and the process of gathering additional rate-of-change force readings may be repeated.
  • occlusion detection process 238 may determine 1910 an initial force reading prior to dispensing the additional dose (e.g., dose 242 ) of infusible fluid 200 . Dose 242 of infusible fluid may then be dispensed 1912 by infusion pump assembly 100 . Occlusion detection process 238 may determine 1914 a final force reading subsequent to dispensing dose 242 of infusible fluid 200 .
  • Occlusion detection process 238 may determine 1908 the additional rate-of-change force readings (e.g., FR2) based, at least in part, upon the initial force reading and the final force reading for each additional dose of infusible fluid 200 .
  • the initial force reading obtained from force sensor 216
  • the final force reading also obtained from force sensor 216
  • the rate-of-change force reading e.g., FR2 determined 1908 by occlusion detection process 238 should also be zero.
  • occlusion detection process 238 may store the rate-of-change force reading (e.g., FR2) within e.g., storage cell 1804 of storage array 1802 .
  • occlusion detection process 238 continues to calculate the rate-of-change force readings in the manner described above and continues to store these calculated rate-of-change force readings within storage array 1802 .
  • infusion pump assembly 100 continues to operate properly (i.e. without any occlusions) for the first thirty-three infusion cycles. Accordingly, the first thirty-three rate-of-change force readings (FR01-FR33) are all zero, as their respective initial force reading and final force reading were all zero.
  • an occlusion e.g.
  • occlusion 244 occurs within cannula assembly 114 prior to calculating the thirty-fourth, rate-of-change force reading (e.g., FR34), which is stored within storage cell 1806 .
  • occlusion detection process 238 determines 1910 an initial force reading of 0.00 pounds.
  • occlusion detection process 238 determines 1914 a final force reading of 0.50 pounds. Accordingly, occlusion detection process 238 may determine 1908 the rate-of-change force reading (e.g., FR34) to be 0.50 pounds minus 0.00 pounds, for a rate-of-change of 0.50 pounds.
  • rate-of-change force reading e.g., FR34
  • the initial force reading determined 1910 by occlusion detection process 238 may be the same as the final force reading determined by occlusion detection process 238 when determining the thirty-fourth rate-of-change force reading (e.g., FR34).
  • Occlusion detection process 238 may determine 1916 an average rate-of-change force reading (e.g., AFR) based, at least in part, upon all or a portion of the rate-of-change force readings included within storage array 1802 . Assume for illustrative purposes that occlusion detection process 238 is configured to consider all rate-of-change force readings (e.g., FR01-FR40) included within storage array 1802 . Accordingly, occlusion detection process 238 may calculate the mathematical average of all rate-of-change force readings (e.g., FR01-FR40) included within storage array 1802 . In this particular example, average rate-of-change force reading (e.g., AFR) has a mathematical value of 0.105 pounds.
  • AFR average rate-of-change force reading
  • occlusion detection process 238 may be configured to determine 1916 an average rate-of-change force reading (e.g., AFR) once storage array 1802 is populated with e.g., the first five rate-of-change force readings. If determining 1916 an average rate-of-change force reading (e.g., AFR) prior to storage array 1802 being completely populated, any unpopulated rows within storage array 1802 may be populated with zeros.
  • AFR average rate-of-change force reading
  • Occlusion detection process 238 may compare 1918 the average rate-of-change force reading (e.g., AFR) to a threshold rate-of-change force reading to determine if the average rate-of-change force reading (e.g., AFR) exceeds the threshold rate-of-change force reading. If the average rate-of-change force reading does not exceed the threshold rate-of-change force reading, infusion pump assembly 100 may continue 1920 to operate normally. However, if the average rate-of-change force reading exceeds the threshold rate-of-change force reading, an alarm sequence may be initiated 1922 on infusion pump assembly 100 .
  • AFR average rate-of-change force reading
  • occlusion detection process 238 is configured to have a threshold rate-of-change force reading of 0.90 pounds, only after the average rate-of-change force reading (e.g., AFR) exceeds 0.90 pounds will the alarm sequence be initiated 1920 .
  • measuring the rate-of-change may ensure alarm sequences are triggered more reliably when actual occlusions have occurred.
  • user 202 in some embodiments, defines the sensitivity of the system.
  • the sensitivity of occlusion detection process 238 may be based upon a user-defined sensitivity setting selected 1924 by e.g., user 202 .
  • a user-defined sensitivity setting selected 1924 by e.g., user 202 .
  • occlusion detection process 238 has two sensitivity settings, namely a high sensitivity setting and a low sensitivity setting.
  • each of the sensitivity settings is associated with a unique manner of determining the rate-of-change force readings included within storage array 1802 .
  • occlusion detection process 238 is described above as determining 1900 a rate-of-change force reading (e.g., FR01) that corresponds to the delivery of first dose 240 of infusible fluid 200 .
  • a rate-of-change force reading e.g., FR01
  • occlusion detection process 238 may determine 1900 a rate-of-change force reading that corresponds to the delivery of a comparatively smaller quantity of infusible fluid 200 . Further, assume that when configured in the low sensitivity setting, occlusion detection process 238 may determine 1900 a rate-of-change force reading that corresponds to the delivery of a comparatively larger quantity of infusible fluid 200 . For example, assume that when in the high sensitivity setting, occlusion detection process 238 determines 1900 a rate-of-change force reading that corresponds to the delivery of 0.10 mL of infusible fluid 200 .
  • occlusion detection process 238 determines 1900 a rate-of-change force reading that corresponds to the delivery of a 0.20 mL dose 240 of infusible fluid 200 . Accordingly, when placed in the high sensitivity setting, additional measurements are taken and occlusion detection process 238 is more responsive. However, false alarms may occur more frequently. Conversely, when placed in the low sensitivity setting, fewer measurements are taken and occlusion detection process 238 is less responsive. However, false alarms may occur less frequently due to the “averaging” effect of taking fewer measurements. Accordingly, in order to avoid nuisance alarms (or to reduce the number of alarms), the user (e.g. user 202 ) may select 1924 the low sensitivity setting.
  • the alarm sequence initiated 1922 may include any combination of visual-based (via display system 104 ), audible-based (via a audio system 212 ), and vibration-based alarms (via vibration system 210 ).
  • User 202 may be able to select between the high-sensitivity setting and the low-sensitivity setting via one or more of input system 208 and display system 104 .
  • infusion pump assembly 100 is described above as delivering a plurality of identically-sized doses of infusible fluid 200 and calculating a rate-of-change force reading (e.g., FR01) for each dose of infusible fluid 200 , this is for illustrative purposes only and is not intended to be a limitation of this disclosure.
  • infusion pump assembly 100 may be configured to provide non-identical doses of infusible fluid 200 .
  • infusion pump assembly 100 may be configured to allow user 202 to manually administer a “bolus” dose of infusible fluid 200 in a size determined by user 202 .
  • occlusion detection process 238 may be configured to monitor the volume of infusible fluid 200 dispensed in each dose and may be configured to populate storage array 1802 so that each rate-of-change force reading (e.g., FR01) included within storage array 1802 is indicative of the rate-of-change force sensed by occlusion detection process 238 when dispensing an equivalent quantity of infusible fluid 200 . Accordingly, occlusion detection process 238 may be configured to “normalize” the rate-of-change force readings determined based upon the quantity of infusible fluid delivered.
  • rate-of-change force reading e.g., FR01
  • occlusion detection process 238 is configured so that a storage cell included within storage array 1802 is populated each time 0.10 mL of infusible fluid 200 is dispensed. Assume for illustrative purposes only that user 202 decides to dispense a 0.25 mL dose of infusible fluid 200 . As the 0.25 mL dose of infusible fluid 200 is greater than the 0.10 mL increments at which occlusion detection process 238 is configured to populate storage array 1802 , occlusion detection process 238 may record multiple entries (and, therefore, populate multiple storage cells) within storage array 1802 for the single 0.25 mL dose of infusible fluid 200 .
  • occlusion detection process 238 may “normalize” this rate-of-change force reading. Specifically, occlusion detection process 238 may divide 1.00 pounds by 0.25 mL to determine that the force changed 0.40 pounds per 0.10 mL.
  • occlusion detection process 238 may calculate a rate-of-change force reading of 0.40 pounds for the first 0.10 mL dose of infusible fluid 200 , 0.40 pounds for the second 0.10 mL dose of infusible fluid 200 , and 0.20 pounds for the last 0.05 mL dose of infusible fluid 200 .
  • occlusion detection process 238 may populate storage array 1802 so that a first storage cell (associated with the first 0.10 mL dose of infusible fluid 200 ) defines an initial force reading of 0.00 pounds, a final force reading of 0.40 pounds and a rate-of-change force reading of 0.40 pounds. Further, occlusion detection process 238 may populate storage array 1802 so that a second storage cell (associated with the second 0.10 mL dose of infusible fluid 200 ) defines an additional force reading of 0.40 pounds, a final force reading of 0.80 pounds and a rate-of-change force reading of 0.40 pounds.
  • Occlusion detection process 238 may combine the first 0.05 mL of the 0.15 mL dose of infusible fluid 200 with the remaining 0.05 mL of the 0.25 mL dose of infusible fluid 200 to form a complete 0.10 mL increment for recording within storage array 1802 .
  • occlusion detection process 238 may “normalize” the 0.15 mL dose of infusible fluid 200 . Assume for illustrative purposes that when dispensing the 0.15 mL of infusible fluid 200 , occlusion detection process 238 determines an initial force reading of 1.00 pounds and a final force reading of 1.60 pounds. In the manner described above, occlusion detection process 238 may divide 0.60 pounds (i.e., 1.60 pounds minus 1.00 pounds) by 0.15 mL to determine that the force changed 0.40 pounds per 0.10 mL.
  • occlusion detection process 238 may calculate a rate-of-change force reading of 0.20 pounds for the first 0.05 mL of the 0.15 mL dose of infusible fluid 200 , and 0.40 pounds for the remaining 0.10 mL of the 0.15 mL dose of infusible fluid 200 .
  • occlusion detection process 238 may populate storage array 1802 so that a third storage cell (associated with the combination of the first 0.05 mL of the 0.15 mL dose of infusible fluid 200 with the remaining 0.05 mL of the 0.25 mL dose of infusible fluid 200 ) defines an initial force reading of 0.80 pounds (i.e., which is the final force reading after the second 0.10 mL of the 0.25 mL dose of infusible fluid 200 ), a final force reading of 1.20 pounds (i.e., the sum of the initial force reading of 1.00 pounds plus the 0.20 pound offset for the first 0.05 mL of the 0.15 mL dose of infusible fluid 200 ) and a rate-of-change force reading of 0.40 pounds.
  • 0.80 pounds i.e., which is the final force reading after the second 0.10 mL of the 0.25 mL dose of infusible fluid 200
  • a final force reading of 1.20 pounds i.e., the sum of
  • occlusion detection process 238 may populate storage array 1802 so that a fourth storage cell (associated with the last 0.10 mL of the 0.15 mL dose of infusible fluid 200 ) defines an initial force reading of 1.20 pounds, a final force reading of 1.60 pounds and a rate-of-change force reading of 0.40 pounds.
  • occlusion detection process 238 may compare 1926 one or more of the initial force reading and the final force reading to a threshold force reading to determine if either the initial force reading or the final force reading exceeds the threshold force reading. If either of the initial force reading or the final force reading exceeds the threshold force reading, an alarm sequence may be initiated 1928 on infusion pump assembly 100 .
  • occlusion detection process 238 may define a threshold force reading, which if exceeded by either the initial force reading (which is determined prior to dispensing a dose of infusible fluid 200 ) or the final force reading (which is determined after dispensing a dose of infusible fluid 200 ), an occlusion is deemed to be occurring. Examples of such a threshold force reading is 4.00 pounds. Therefore, if after dispensing a dose of infusible fluid 200 , occlusion detection process 238 determines a final force reading of 5.20 pounds, occlusion detection process 238 may initiate 1928 an alarm sequence, as 5.20 pounds exceeds the 4.00 threshold force reading.
  • the alarm sequence initiated 1928 may include any combination of visual-based (via display system 104 ), audible-based (via audio system 212 ), and vibration-based alarms (via vibration system 210 ).
  • infusion pump assembly 100 may include primary power supply 220 configured to power infusion pump assembly 100 .
  • occlusion detection process 238 may compare 1930 the actual voltage level of primary power supply 220 to a minimum voltage requirement to determine if the actual voltage level of primary power supply 220 meets the minimum voltage requirement. If the actual voltage level does not meet the minimum voltage requirement, occlusion detection process 238 may initiate 1932 an alarm sequence on infusion pump assembly 100 .
  • the alarm sequence initiated 1932 may include any combination of visual-based (via display system 104 ), audible-based (via audio system 212 ), and vibration-based alarms (via vibration system 210 ).
  • primary power supply 220 is a 5.00 VDC battery.
  • the minimum voltage requirement is 3.75 VDC (i.e., 75% of normal voltage). Accordingly, if occlusion detection process 238 determines 1930 that the actual voltage level of primary power supply 220 is 3.60 VDC, occlusion detection process 238 may initiate 1932 an alarm sequence on infusion pump assembly 100 .
  • occlusion detection process 238 may monitor one or more of the displaceable mechanical components included within infusion pump assembly 100 to determine 1934 if one or more displaceable mechanical components included within infusion pump assembly 100 were displaced an expected displacement in response to delivering a dose of infusible fluid 200 . If the displaceable mechanical components monitored were not displaced the expected displacement in response to delivering a dose of infusible fluid 200 , occlusion detection process 238 may initiate 1936 an alarm sequence on infusion pump assembly 100 .
  • the alarm sequence initiated 1936 may include any combination of visual-based (via display system 104 ), audible-based (via audio system 212 ), and vibration-based alarms (via vibration system 210 ).
  • occlusion detection process 238 may (via displacement detection device 218 ) confirm that partial nut assembly 226 did indeed move the expected displacement. Accordingly, in the event that partial nut assembly 226 does not move the expected displacement, a mechanical failure (e.g. the failure of partial nut assembly 226 , the failure of lead screw assembly 228 , the failure of motor assembly 214 ) may have occurred. In the event that the expected displacement of partial nut assembly 226 cannot be confirmed, occlusion detection process 238 may initiate 1936 the alarm sequence on infusion pump assembly 100 .
  • occlusion detection process 238 may expect to see partial nut assembly 226 displaced 0.050 inches. Accordingly, occlusion detection process 238 may utilize a 10% error window in which movement of partial nut assembly 226 of less than 0.045 inches (i.e., 10% less than expected) would result in occlusion detection process 238 initiating 1936 the alarm sequence on infusion pump assembly 100 .
  • displacement detection device 218 includes one or more light sources (not shown) positioned on one side of partial nut assembly 226 and one or more light detectors (not shown) positioned on the other side of partial nut assembly 226 .
  • Partial nut assembly 226 may include one or more passages (not shown) through which the light from the one or more light sources (not shown) included within displacement detection device 218 may shine and may be detected by the one or more light detectors (not shown) included within displacement detection device 218 .
  • the infusion pump may be remotely controlled using remote control assembly 2000 .
  • Remote control assembly 2000 may include all, or a portion of, the functionality of the pump assembly itself.
  • the infusion pump assembly (not shown, see FIGS. 1A-1F , amongst other FIGS.) may be configured via remote control assembly 2000 .
  • the infusion pump assembly may include telemetry circuitry (not shown) that allows for communication (e.g., wired or wireless) between the infusion pump assembly and e.g., remote control assembly 2000 , thus allowing remote control assembly 2000 to remotely control infusion pump assembly 100 ′.
  • Remote control assembly 2000 (which may also include telemetry circuitry (not shown) and may be capable of communicating with infusion pump assembly) may include display assembly 2002 and an input assembly, which may include one or more of the following: an input control device (such as jog wheel 2006 , slider assembly 2012 , or another conventional mode for input into a device), and switch assemblies 2008 , 2010 .
  • an input control device such as jog wheel 2006 , slider assembly 2012 , or another conventional mode for input into a device
  • switch assemblies 2008 , 2010 switch assemblies.
  • remote control assembly 2000 as shown in FIG. 20 includes jog wheel 2006 and slider assembly 2012 , some embodiments may include only one of either jog wheel 2006 or slider assembly 2012 , or another conventional mode for input into a device.
  • jog wheel 2006 may include a wheel, ring, knob, or the like, that may be coupled to a rotary encoder, or other rotary transducer, for providing a control signal based upon, at least in part, movement of the wheel, ring, knob, or the like.
  • Remote control assembly 2000 may include the ability to pre-program basal rates, bolus alarms, delivery limitations, and allow the user to view history and to establish user preferences. Remote control assembly 2000 may also include glucose strip reader 2014 .
  • remote control assembly 2000 may provide instructions to the infusion pump assembly via a wireless communication channel established between remote control assembly 2000 and the infusion pump assembly. Accordingly, the user may use remote control assembly 2000 to program/configure the infusion pump assembly. Some or all of the communication between remote control assembly 2000 and the infusion pump assembly may be encrypted to provide an enhanced level of security.

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Diabetes (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

An infusion pump assembly includes a locking tab and a pump barrel inside a pump barrel housing, where the pump barrel accommodates a reservoir assembly. The reservoir assembly includes a reservoir and a plunger rod. The infusion pump assembly also includes a locking disc at a terminus of the pump barrel. The locking disc includes a clearance hole for the plunger rod. The locking disc also includes at least one locking tab notch in close proximity with the locking tab. The locking tab is in moveable engagement with the locking tab notch, and the reservoir moves the locking tab from a locked position to an unlocked position when the plunger rod is inserted through clearance hole. The locking disc rotates upon torque being applied to the reservoir assembly, the locking disc rotating from a non-loaded position to a loaded position with respect to the plunger rod and a drive screw.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. patent application Ser. No. 15/869,860 filed Jan. 12, 2018, which is a continuation of U.S. patent application Ser. No. 15/269,187 filed on Sep. 19, 2016, which is a continuation of U.S. patent application Ser. No. 14/159,134 filed on Jan. 20, 2014, which is now U.S. Pat. No. 9,446,188, issued Sep. 20, 2016, which is a continuation of U.S. patent application Ser. No. 13/269,089, filed on Oct. 7, 2011, which is now U.S. Pat. No. 8,632,499, issued Jan. 21, 2014, which is a continuation of U.S. patent application Ser. No. 12/249,891, filed Oct. 10, 2008, which is now U.S. Pat. No. 8,034,026, issued Oct. 11, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 14/533,882, filed Sep. 21, 2006, which is now U.S. Pat. No. 9,173,996, issued Nov. 3, 2015, which is a continuation of U.S. patent application Ser. No. 10/151,733, filed May 20, 2002, which is now abandoned. U.S. patent application Ser. No. 14/533,882 also claims priority from U.S. Provisional Patent Application No. 60/291,881, filed May 18, 2001. All of the above-identified applications are hereby incorporated herein by reference in their entireties.
  • U.S. patent application Ser. No. 10/151,733 is a continuation-in-part of U.S. patent application Ser. No. 10/037,614, filed Jan. 4, 2002, which is now U.S. Pat. No. 7,306,578, issued Dec. 11, 2007, and claims priority from U.S. Provisional Patent Application No. 60/291,881, filed May 18, 2001, both of which are hereby incorporated herein by reference in their entireties.
  • TECHNICAL FIELD
  • This disclosure relates to pump assemblies and, more particularly, to infusion pump assemblies.
  • BACKGROUND
  • An infusion pump assembly may be used to infuse a fluid (e.g., a medication or nutrient) into a user. The fluid may be infused intravenously (i.e., into a vein), subcutaneously (i.e., into the skin), arterially (i.e., into an artery), and epidurally (i.e., into the epidural space).
  • Infusion pump assemblies may administer fluids in ways that would be impractically expensive/unreliable if performed manually by nursing staff. For example, an infusion pump assembly may repeatedly administer small quantities of an infusible fluid (e.g., 0.1 mL per hour), while allowing the user to request one-time larger “bolus” doses.
  • SUMMARY OF DISCLOSURE
  • In accordance with one aspect of the present invention, an infusion pump assembly is disclosed. The infusion pump assembly includes a locking tab, and a pump barrel inside a pump barrel housing, where the pump barrel accommodates a reservoir assembly. The reservoir assembly includes a reservoir and a plunger rod. The infusion pump assembly also includes a locking disc at a terminus of the pump barrel. The locking disc includes a clearance hole for the plunger rod. The locking disc also includes at least one locking tab notch in close proximity with the locking tab. The locking tab is in moveable engagement with the locking tab notch, and the reservoir moves the locking tab from a locked position to an unlocked position when the plunger rod is inserted through clearance hole. The locking disc rotates upon torque being applied to the reservoir assembly, the locking disc rotating from a non-loaded position to a loaded position with respect to the plunger rod and a drive screw.
  • Some embodiments of this aspect of the present invention may include one or more of the following features. The locking disc may further include a second locking tab notch, wherein the second locking tab notch is engaged with the locking tab when the locking disc is in the loaded position. The locking disc may further include a plunger rod support. The plunger rod support may be in close relation with the plunger rod when the plunger rod is inserted through the clearance hole. The locking disc may further include at least two reservoir tab openings for mating with at least two reservoir alignment tabs on the reservoir. The reservoir assembly may further include a locking hub. The locking hub may fluidly connected to the reservoir. The locking hub may further include at least two locking hub alignment tabs, the locking hub alignment tabs aligning with the reservoir alignment tabs when the locking hub is fluidly connected to the reservoir. The infusion pump assembly may further include a hub and battery end cap. The end cap may have an opening to the pump barrel. The pump barrel opening may be complementary to the locking hub alignment tabs wherein the loading of the reservoir assembly may provide alignment of the reservoir alignment tabs with the reservoir tab openings and the plunger rod with the clearance hole. The hub and battery end cap may further include a first alignment feature. The first alignment feature may be complementary to a second alignment feature on the reservoir. When the first and second alignment features are aligned, the locking hub alignment tabs may also be aligned with the hub and battery cap opening.
  • In accordance with one aspect of the present invention, a reservoir assembly is disclosed. The reservoir assembly includes a reservoir, the reservoir having an interior volume and terminating with a male feature on a first end. Also, the reservoir assembly includes a plunger rod, the plunger rod including a threaded portion and a notched portion. The assembly further includes a reservoir bottom, the reservoir bottom having a plunger rod opening, and at least two reservoir alignment tabs, wherein the plunger rod extends through the plunger rod opening.
  • Some embodiments of this aspect of the present invention may include one or more of the following features. The reservoir assembly may further include an alignment feature on the reservoir. The alignment feature may allow aligning the reservoir assembly with an infusion pump assembly for loading the reservoir assembly into the infusion pump assembly. A removable filling aid may be included having a threaded portion and a handle portion. The threaded portion may thread to the threaded portion of the plunger rod.
  • In accordance with one aspect of the present invention, a method of loading a reservoir assembly to a drive mechanism of an infusion pump assembly is disclosed. The method includes aligning locking tab alignment features of a reservoir and locking tab assembly with an alignment feature on a hub and battery end cap of the infusion pump assembly, applying pressure to the locking tab of the reservoir and locking tab assembly, and rotating the locking tab until the locking tab is flush with the infusion pump assembly. Rotating the locking tab loads the reservoir and locking hub assembly onto the drive mechanism of the infusion pump assembly.
  • The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features and advantages will become apparent from the description, the drawings, and the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-1B are front and back isometric views of an infusion pump assembly;
  • FIGS. 1C-1E are side and front views of the infusion pump assembly of FIG. 1;
  • FIG. 1F is a front isometric view of the infusion pump assembly of FIG. 1;
  • FIG. 2 is a diagrammatic view of the infusion pump assembly of FIG. 1;
  • FIG. 3A is a top-level view of an infusion pump according to one embodiment;
  • FIG. 3B is an exploded view of a drive mechanism for the infusion pump of FIG. 3A;
  • FIG. 3C is an isometric views of one embodiment of a reservoir and locking hub assembly according to one embodiment;
  • FIG. 3D is an exploded isometric view of a locking hub and a reservoir according to one embodiment;
  • FIG. 3E is an isometric view of one embodiment of the reservoir assembly;
  • FIG. 3F shows an embodiment of a pump barrel locking mechanism;
  • FIG. 3G shows a magnified view according to FIG. 3F;
  • FIGS. 3H-3I show the relation of the drive screw to the plunger rod for the infusion pump of FIG. 3A;
  • FIG. 3J shows a connection from one embodiment of a reservoir to a tubing set;
  • FIG. 3K illustrates another method of connecting one embodiment of a reservoir to a tubing set;
  • FIG. 3L shows an adapter for using a small diameter reservoir with the pump assembly according to one embodiment;
  • FIGS. 3M-N are on-axis views of the adapter of FIG. 3L;
  • FIG. 4A is an exploded view of one embodiment of the reservoir and locking hub assembly with portions of the loading and drive assembly of one embodiment of the infusion pump assembly;
  • FIGS. 4B-4D are partial views of the loading of the reservoir assembly onto the drive assembly;
  • FIGS. 4E-4F are top and bottom views of the hub and battery end cap according to one embodiment of the infusion pump apparatus;
  • FIG. 4G-4I are bottom, side and top views, respectively, of one embodiment of the locking disc;
  • FIGS. 4J-4L are isometric views of one embodiment of the locking disc;
  • FIGS. 4M-4N are partial illustrative views of the loading of the reservoir assembly onto the drive assembly of one embodiment of the infusion pump apparatus;
  • FIG. 5A is an isometric view of one embodiment of the plunger and plunger rod apparatus;
  • FIG. 5B is an isometric view of one embodiments of the reservoir and locking hub assembly;
  • FIG. 5C is an isometric view of the plunger and plunger rod apparatus according to the reservoir and locking hub assembly shown in FIG. 5B;
  • FIGS. 5D-5E are isometric and cross sectional views, respectively, of the plunger seal apparatus according to one embodiment;
  • FIG. 5F is a cross sectional cut-off view of the assembled plunger apparatus of FIG. 5C;
  • FIG. 5G-5P are various embodiments of the plunger seal apparatus;
  • FIGS. 6A-6B are views of one embodiment of the filling aid apparatus;
  • FIGS. 6C-6D are isometric views of the filling aid apparatus of FIGS. 6A-6B together with a plunger rod, both attached to the plunger rod and detached from the plunger rod, respectively;
  • FIGS. 6E-6F are isometric views of one embodiment of the filling aid apparatus together with a plunger rod, both attached to the plunger rod and detached from the plunger rod, respectively;
  • FIGS. 6G-6I are isometric views of alternate embodiments of the filling aid together with a plunger rod;
  • FIGS. 7A-7B are isometric views of various portions of one embodiment of the infusion pump assembly;
  • FIGS. 7C-7D are isometric views of the reservoir assembly together with the drive screw and the strain gauge according to one embodiment of the infusion pump apparatus;
  • FIG. 7E is an magnified isometric view of a plunger rod together with an optical displacement sensor according to one embodiment of the infusion pump apparatus;
  • FIGS. 8A-8D are various alternate embodiments of the reservoir assembly;
  • FIGS. 9A-9B are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1;
  • FIGS. 9C-9D are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1;
  • FIGS. 9E-9F are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1;
  • FIGS. 9G-H are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1;
  • FIGS. 9I-J are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1;
  • FIG. 10A is an isometric view of a removable cover assembly for use with the infusion pump assembly of FIG. 1;
  • FIG. 10B is an alternative isometric view of the removable cover assembly of FIG. 10A;
  • FIG. 10C is a cross-sectional view of the removable cover assembly of FIG. 10A;
  • FIG. 11 is an alternative isometric view of the removable cover assembly of FIG. 10A;
  • FIG. 12A-12D are isometric views of an alternative embodiment of the removable cover assembly of FIG. 4;
  • FIG. 13 is a diagrammatic view of the infusion pump assembly of FIG. 1;
  • FIG. 14 is a flowchart of a process executed by the infusion pump assembly of FIG. 1;
  • FIG. 15 is a flowchart of a process executed by the infusion pump assembly of FIG. 1;
  • FIG. 16 is a timeline illustrative of a plurality of discrete infusion events;
  • FIG. 17 is a more detailed view of two discrete infusion events included within FIG. 16;
  • FIG. 18 is a diagrammatic view of a storage array included within the infusion pump assembly of FIG. 1;
  • FIG. 19 is a flowchart of a process executed by the infusion pump assembly of FIG. 1; and
  • FIG. 20 is an illustrative view of one embodiment of a remote control assembly.
  • Like reference symbols in the various drawings indicate like elements.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIGS. 1A-1F, there is shown an infusion pump assembly 100 that may be housed within enclosure assembly 102. Infusion pump assembly 100 may include display system 104 that may be visible through enclosure assembly 102. One or more switch assemblies/ input devices 106, 108, 110 may be positioned about various portions of enclosure assembly 102. Enclosure assembly 102 may include infusion port assembly 112 to which cannula assembly 114 may be releasably coupled. Removable cover assembly 116 may allow access to power supply cavity 118 (shown in phantom on FIG. 2).
  • Referring to FIG. 2, there is shown a diagrammatic view of infusion pump assembly 100. Infusion pump assembly 100 may be configured to deliver infusible fluid 200 to user 202. Infusible fluid 200 may be delivered intravenously (i.e., into a vein), subcutaneously (i.e., into the skin), arterially (i.e., into an artery), and epidurally (i.e., into the epidural space). Examples of infusible fluid 200 may include but are not limited to insulin, nutrients, saline solution, antibiotics, analgesics, anesthetics, hormones, vasoactive drugs, and chelation drugs, and any other therapeutic fluids.
  • Infusion pump assembly 100 may include processing logic 204 that executes one or more processes that may be required for infusion pump assembly 100 to operate properly. Processing logic 204 may include one or more microprocessors (not shown), one or more input/output controllers (not shown), and cache memory devices (not shown). One or more data buses and/or memory buses may be used to interconnect processing logic 204 with one or more subsystems.
  • Examples of the subsystems interconnected with processing logic 204 may include but are not limited to memory system 206, input system 208, display system 104, vibration system 210, audio system 212, motor assembly 214, force sensor 216, and displacement detection device 218. Infusion pump assembly 100 may include primary power supply 220 (e.g. a battery) configured to be removable installable within power supply cavity 118 and to provide electrical power to at least a portion of processing logic 204 and one or more of the subsystems (e.g., memory system 206, input system 208, display system 104, vibration system 210, audio system 212, motor assembly 214, force sensor 216, and displacement detection device 218).
  • Infusion pump assembly 100 may include reservoir assembly 222 configured to contain infusible fluid 200. In some embodiments, reservoir assembly 222 may be a reservoir assembly similar to that described in U.S. Patent Application Publication No. US 2004-0135078-A1, published Jul. 15, 2004, which is herein incorporated by reference in its entirety. In other embodiments, the reservoir assembly may be any assembly in which fluid may be acted upon such that at least a portion of the fluid may flow out of the reservoir assembly, for example, the reservoir assembly, in various embodiments, may include but is not limited to: a barrel with a plunger, a cassette or a container at least partially constructed of a flexible membrane.
  • Plunger assembly 224 may be configured to displace infusible fluid 200 from reservoir assembly 222 through cannula assembly 114 (which may be coupled to infusion pump assembly 100 via infusion port assembly 112) so that infusible fluid 200 may be delivered to user 202. In this particular embodiment, plunger assembly 224 is shown to be displaceable by partial nut assembly 226, which may engage lead screw assembly 228 that may be rotatable by motor assembly 214 in response to signals received from processing logic 204. In this particular embodiment, the combination of motor assembly 214, plunger assembly 224, partial nut assembly 226, and lead screw assembly 228 may form a pump assembly that effectuates the dispensing of infusible fluid 200 contained within reservoir assembly 222. An example of partial nut assembly 226 may include but is not limited to a nut assembly that is configured to wrap around lead screw assembly 228 by e.g., 30 degrees. In some embodiments, the pump assembly may be similar to one described in U.S. Pat. No. 7,306,578, issued Dec. 11, 2007, which is herein incorporated by reference in its entirety.
  • During operation of infusion pump assembly 100, infusible fluid 200 may be delivered to user 202 in accordance with e.g. a defined delivery schedule. For illustrative purposes only, assume that infusion pump assembly 100 is configured to provide 0.00025 mL of infusible fluid 200 to user 202 every three minutes. Accordingly, every three minutes, processing logic 204 may provide the appropriate drive signals to motor assembly 214 to allow motor assembly 30 to rotate lead screw assembly 228 the appropriate amount so that partial nut assembly 226 (and therefore plunger assembly 224) may be displaced the appropriate amount in the direction of arrow 230 so that 0.00025 mL of infusible fluid 200 are provided to user 202 (via cannula 114). It should be understood that the volume of infusible fluid 200 that may be provided to user 202 may vary based upon, at least in part, the nature of the infusible fluid (e.g., the type of fluid, concentration, etc.), use parameters (e.g., treatment type, dosage, etc.). As such the foregoing illustrative example should not be construed as a limitation of the present disclosure.
  • Force sensor 216 may be configured to provide processing logic 204 with data concerning the force required to drive plunger assembly 224 into reservoir assembly 222. Force sensor 216 may include one or more strain gauges and/or pressure sensing gauges and may be positioned between motor assembly 214 and an immovable object (e.g. bracket assembly 232) included within infusion pump assembly 100.
  • In one embodiment, force sensor 216 includes four strain gauges (not shown), such that: two of the four strain gauges are configured to be compressed when driving plunger 222 into reservoir assembly 222; and two of the four strain gauges are configured to be stretched when driving plunger 222 into reservoir assembly 222. The four strain gauges (not shown) may be connected to a Wheatstone Bridge (not shown) that produces an analog force signal (not shown) that is a function of the pressure sensed by force sensor 216. The analog force signal (not shown) produced by force sensor 216 may be provided to an analog-to-digital converter (not shown) that may convert the analog force signal (not shown) into a digital force signal (not shown) that may be provided to processing logic 204. An amplifier assembly (not shown) may be positioned prior to the above-described analog-to-digital converter and may be configured to amplify the output of e.g., force sensor 216 to a level sufficient to be processed by the above-described analog-to-digital converter.
  • Motor assembly 214 may be configured as e.g., a brush-type DC electric motor. Further, motor assembly 214 may include a reduction gear assembly (not shown) that e.g. requires motor assembly 214 to rotate three-thousand revolutions for each revolution of lead screw assembly 228, thus increasing the torque and resolution of motor assembly 214 by a factor of three-thousand.
  • FIG. 3A is an overall view of an infusion pump according to one embodiment. A pump assembly 300 contains the components needed to cause a reservoir assembly 302 to deliver medication or any liquid to a user. The reservoir assembly 302 may contain enough liquid, e.g., medication, such as, but not limited to, insulin, for several days for a typical user. A tubing set 304, connected to the reservoir assembly 302, includes a cannula (not shown) through which the medication is delivered to the user.
  • Referring also to FIG. 3B, an exploded view of one embodiment of the drive mechanism of the infusion pump is shown. Reservoir assembly 302 may include reservoir 306, plunger 308 and plunger rod 310. Reservoir 306 may contain the medication for delivery to the user and is of variable interior volume. The interior volume may be the liquid capacity of reservoir 306. Plunger 308, may be inserted into the bottom of the reservoir 306, and may cause the volume of reservoir 306 to change as plunger 308 is displaced along the longitudinal axis of reservoir 306. Plunger rod 310 may be connected to plunger 308 with the plunger rod's longitudinal axis displaced from and parallel to the longitudinal axis of reservoir 306. Plunger rod 310 may be threaded for at least a portion of plunger rod's 310 length. As shown in this embodiment, cylindrical pump barrel 312 receives reservoir assembly 302. Pump barrel 312 may constrain plunger rod 310, orienting plunger rod 310 along the longitudinal axis of pump barrel 312. Pump barrel 312 may be contained in pump assembly 300 and, in some embodiments, may contain locking tab 317, which may prevent rotation of pump barrel 312 with respect to pump assembly 300. Gear box 316 in pump assembly 300 may include drive screw 314 along with motor and gears to turn drive screw 314. Drive screw 314 may be threaded and the screw's longitudinal axis may be aligned parallel to and may be displaced from the longitudinal axis of pump barrel 312. Locking hub 318 may be attached to the top of reservoir 306.
  • Referring now to FIGS. 3C-3D, one embodiment of reservoir assembly 302 together with locking hub 318 is shown. Reservoir 306 may be sized to accommodate any volume desired. In the exemplary embodiment, reservoir 306 may accommodate a volume of 2.5 ml, however, in various other embodiments, reservoir 306 may be sized to accommodate a smaller or larger volume. As discussed above, reservoir 306 volume may change as the plunger is displaced along the longitudinal axis of reservoir 306. In the exemplary embodiments, locking hub 318 may be connected to tubing set (not shown, an embodiment of the tubing set is shown in FIG. 3A as 304) such that the liquid in the reservoir may flow through the locking hub to the tubing. In some embodiments, such as the exemplary embodiment shown, reservoir 306 may also include reservoir alignment tabs 307 and reservoir bottom 305.
  • Still referring to FIGS. 3C-3D, plunger rod 310, in the exemplary embodiment, may include a threaded portion 320 and a notched portion 322. The threaded portion may thread to drive screw 314. Notched portion 322 may be used, in the exemplary embodiment, to encode information relating to reservoir assembly 302, including but not limited to the information, the methods and devices described in U.S. Patent Application Publication US 2004/0135078 A1, published on Jul. 15, 2004 and entitled Optical Displacement Sensor for Infusion Devices, which is herein incorporated by reference in its entirety.
  • Referring also to FIG. 3D, the exemplary embodiment of locking hub 310 and mating male portion 324 of reservoir 306 are shown. Reservoir 306 is shown without reservoir bottom 305, which is shown in FIG. 3C. The tapered luer connection is described in more detail below. As shown in FIG. 3D, locking hub 310 may include a female part 329 as well as tab 326, while reservoir 306 may include a male part 324 as well as slot 328. Male part 324 and female part 329 may mate to form a luer connection. Tab 326 and slot 328 may lock together when mated and turned, one part relative to its mating part, such that tab 326 may slide into the slot 328.
  • Referring now to FIG. 3E, another embodiment of reservoir assembly 330 is shown. In this embodiment, hub portion 332 and reservoir portion 334 are connected, and in one embodiment, are molded as a single part.
  • Referring also to FIG. 3F, a pump barrel locking mechanism for an embodiment of the device is shown. The pump barrel 312 includes a clearance hole (not shown, shown in FIG. 3I as 340) that guides the plunger rod 310 during insertion of the reservoir assembly 302 into the pump barrel 312. To ensure that the drive screw 314 does not interfere with the plunger rod 310 during insertion of the reservoir assembly 302, the pump barrel 312 maintains a fixed position relative to the pump assembly 300. The position of the pump barrel 312 relative to the pump assembly 300 may be maintained, for example, by a locking tab 317 included in the pump barrel 312 that engages a pump barrel stop 342 in the pump assembly 300, as shown in FIG. 3G. The locking hub 318 may include a flange 338 which dislodges the locking tab 340 from the pump barrel stop 342 when the locking hub 318 turns, allowing the locking hub 318 to rotate the pump barrel 312.
  • Referring also to FIGS. 3H-3I, these FIGS show views along the longitudinal axis of the pump barrel 312 showing the relation of the drive screw 314 to the plunger rod in a loading position and in an engaged position, respectively. The reservoir assembly 302 is positioned for loading so that the plunger rod 310 does not contact the drive screw 314, as shown in FIG. 3H. With the pump barrel 312 positioned appropriately with respect to the pump assembly 300, the plunger rod 310 clearance from the drive screw 314 is determined by the placement of the clearance hole 340 in the pump barrel 312 base, which hole 340 receives and guides the plunger rod 310. The clearance hole 340 may be tapered to ease insertion of the plunger rod 310. The drive screw 314 fits in a clearance hole 340 in the pump barrel 312. Once the reservoir assembly 302 is inserted into the pump assembly 300, the pump barrel 312 is rotated by the locking hub 318, causing the plunger rod 310 to turn and to engage the drive screw 314, as shown in FIG. 3I. This embodiment advantageously simplifies reservoir loading.
  • In some embodiments, the plunger rod threads and the drive screw threads are buttress threads. These embodiments may be advantageous in that they eliminate reaction forces on the plunger rod normal to the direction of the rod's longitudinal axis. Such reaction forces may cause the rod to deflect and skip a thread on the drive screw, resulting in under delivery of medication to the user. Buttress threads eliminate the normal component of the reaction force.
  • Referring also to FIG. 3J, in some embodiments, the locking hub 318 may be connected to the reservoir 306 by a tapered luer connection. The reservoir 306 has a male luer taper integrally molded into the reservoir's top 344. Surrounding the male luer is an annulus with an internal female thread. Similarly, the locking hub 318 contains the mating female luer and threaded male connection.
  • In another embodiment, a needle connection is provided between reservoir 306 and locking hub 318. As shown in FIG. 3K, the reservoir includes a rubber septum 346 that is attached to the reservoir with a crimped metal collar. A needle 348, integral to the hub, pierces the septum and fluid can then flow from the reservoir to the tubing set.
  • In other embodiments, as shown in FIG. 3L, an adapter 350 is provided to permit a reservoir 352 whose diameter is substantially smaller than the diameter of a pump barrel to be used with the pump assembly 300. The adapter 350 may be a separate component or may be integrated into the locking hub 354. The locking hub 354, in some embodiments, may be one of the embodiments described herein, and sized accordingly. The adapter 350 aligns and offsets the reservoir's 352 axis parallel to the longitudinal axis of the pump barrel so that the plunger rod 356, when rotated, mates with the drive screw (not shown). FIGS. 3M-3N show an on-axis view of the small diameter reservoir 352 when placed in the adapter 350. As will be apparent, the offset provided by the adapter allows the plunger rod 356, when mated with the plunger 308 and reservoir 352, to engage the drive screw 314 in a similar fashion as for the first embodiment, described above.
  • Referring now to FIG. 4A, another embodiment of the drive mechanism for an infusion pump is shown. As shown in this embodiment, a cylindrical pump barrel 312, shown here inside a pump barrel housing 360, receives the reservoir assembly 302. The pump barrel 312 terminates with a locking disc 400. The pump barrel 312 constrains the plunger rod 310, orienting the plunger rod 310 along the longitudinal axis of the pump barrel 312. The pump barrel 312 is contained in the pump barrel housing 360, which is contained in the pump assembly 300. The locking disc 400, in the exemplary embodiment, contacts a locking tab (shown in FIG. 4B as 402), which is in the pump gear box 364. The locking tab 402 prevents rotation of the locking disc 400 with respect to the pump assembly 300. However, in some embodiments, the locking disc 400 may not include a locking tab 402. A gear box 364 in the pump assembly 300 includes a drive screw 314 along with motor and gears to turn the drive screw 314, and, as discussed above, in some embodiments, a locking tab 402 for locking the locking disc 400. The drive screw 314 is threaded and the screw's longitudinal axis is aligned parallel to and displaced from the longitudinal axis of the pump barrel 312. A locking hub 318 is attached to the top of the reservoir 306.
  • Still referring to FIG. 4A, in the embodiment shown, the plunger rod 310 is connected to the plunger 308. In the exemplary embodiment, the plunger rod 310 and plunger 308 are a single molded part. O-rings 366 fit over the plunger 308. However, in some embodiments, the O-rings may be molded into the plunger 308.
  • Referring back to FIGS. 3C-3D, the locking hub 318 additionally includes locking hub alignment tabs 325. As shown in FIG. 3C, once the locking hub 318 and reservoir 306 are mated, the locking hub alignment tabs 325 and the reservoir alignment tabs 307 are aligned with one another. Referring also to FIGS. 4E-4F, the pump assembly 300 includes a hub and battery end cap 404. The hub section of the hub and battery end cap 404 includes complementary opening for the locking hub 318, including the locking hub alignment tabs 325.
  • Thus, once the reservoir assembly 302 is mated with the locking hub 318, to load the reservoir into the pump barrel 312, the reservoir must be oriented correctly with respect to the locking hub alignment tabs 325 and the complementary opening in the hub and battery end cap 404. The reservoir alignment tabs 307 will thus also be aligned with the locking hub alignment tabs 325.
  • Referring now also to FIGS. 4G-4L the locking disc 400 is shown. The locking disc 400 includes a clearance hole 340, which, in the exemplary embodiment is tapered for easy insertion, but in some embodiments, is not tapered. Additionally, the reservoir tab openings 406, plunger rod support 412 and first and second locking tab notches 408, 410 are shown. As discussed above, the reservoir alignment tabs 307 are aligned with the locking hub alignment tabs 325. The orientation assured by the hub and battery end cap 404 assures that the plunger rod 310 will be in the correct orientation to fit through the clearance hole 340, the reservoir alignment tabs 307 will mate with the reservoir tab opening 406, and the reservoir bottom 305 displaces the locking tab 402.
  • In some embodiments, the locking disc 400 may include only a first locking tab notch 408, or, in some embodiments, may not include any locking tab notches. The locking tab notches 408, 410 maintain the orientation of the locking disc 400 for ease of loading the reservoir and locking hub assembly. Also, the second locking tab notch 408 contributes to maintaining the plunger rod 310 and drive screw 314 relationship. Additionally, although the reservoir tab openings 406 are included in the exemplary embodiment of the locking disc 400, some embodiments of the locking disc 400 do not include reservoir tab openings 406. In these embodiments, the reservoir does not include reservoir alignment tabs 307 (shown in FIGS. 3C-3D).
  • In the exemplary embodiment, the reservoir tab openings 406, together with the reservoir alignment tabs 307, aid in the rotation of the locking disc 400. When loading the reservoir and locking hub assembly into the pump assembly 300, the user, having aligned the reservoir and locking hub assembly with the hub and battery cap 404, drops the reservoir and locking hub assembly into the pump barrel 312 and applies a slight pressure to the locking hub 318. The user then applies torque to the locking hub 318 to complete the loading process. Where the locking disc 400 includes the reservoir tab openings 406 and the reservoir includes the reservoir alignment tabs 307, as in the exemplary embodiment, the torque applied to the locking hub is transmitted from the reservoir alignment tabs 307 to the locking disc 400 rather than from the locking hub 318 to the plunger rod 310. Thus, in the exemplary embodiment, the reservoir alignment tabs 307 together with the reservoir tab openings 406 work together to take up the torque applied to the reservoir and locking hub assembly which contributes to maintaining the integrity of the plunger rod 310 while also ensuring proper engagement of the plunger rod 310 onto the drive screw 314.
  • Referring also to FIG. 4B, bottom view of the locking disc 400 is shown with the locking tab 402 engaged with one of the locking tab notches 408. The clearance hole 340 is shown empty of the plunger rod. Thus, the locking disc 400 is shown in the locked, non-loaded position. The drive screw 314 is shown and the plunger rod support 412 is also shown. Referring now also to FIG. 4C, the plunger rod 310 is shown having fit through the clearance hole 340. The reservoir alignment tabs 307 are shown having mated with the reservoir tab openings 406, and the locking tab 402 is deflected from the locking tab notch 408.
  • The plunger rod support 412 is shown along part of the plunger rod 310. The plunger rod support 412 contributes to maintaining the integrity of the relationship of the plunger rod 310 and the drive screw 314 such that the drive screw 314 of the plunger rod 310 maintain connection and the plunger rod 310 is not deflected.
  • Referring now also to FIG. 4D, the locking disc 400 is shown after rotation and reservoir loading is complete, i.e., in the loaded position. The plunger rod 310 is engaged to the drive screw 314. The second locking tab notch 410 is now engaged with the locking tab 402. Thus, the locking disc 400 is locked from continuing further rotation.
  • Referring also to FIGS. 4M-4N, a sequential illustration of the loading of the reservoir and engagement of the drive screw 314 to the plunger rod 310 is shown. As the plunger rod 310 fits through the clearance hole, the reservoir 306 disengages the locking tab 402 from the first locking tab notch 408. The reservoir alignment tab 307 (the other tab is obscured) mates with the reservoir tab opening 406. As shown in FIG. 4N, the plunger rod 310 is engaged with the drive screw 314. The locking tab 402 is being engaged with the second locking tab notch 410.
  • In the exemplary embodiment, loading the reservoir into the pump barrel and engaging the plunger rod to the drive screw includes two steps. First, aligning the locking hub alignment tabs with the hub and battery end cap and dropping the reservoir and locking hub assembly into the pump barrel (the plunger rod being inherently aligned with the clearance hole of the locking disc). Second, rotating the locking hub until rotation stops, i.e., the locking tab has engaged with the second locking tab notch. In the exemplary embodiment, and referring again to FIG. 4F, the hub and battery end cap 404 may include an loading alignment feature 420, and the reservoir may also include a marking or other alignment feature, aligning the marking on the reservoir with the loading alignment feature 420 assures the reservoir assembly is aligned for dropping the reservoir and locking hub assembly into the pump barrel and completion of the loading steps. In the exemplary embodiment, the loading alignment feature 420 is a notch molded into the plastic of the hub and battery end cap 404. However, in other embodiments, the loading alignment feature 420 may be a bump, raised dimple, notch of a different shape, or a painted marking, i.e., any feature that may be utilized by the user in loading the reservoir and locking hub assembly. The complementary feature on the reservoir may be any marking, for example, a painted marking with an indication of the direction of loading, e.g., “pump→”, “→”, or, in some embodiments, a simple vertical line of any length, a dot or other symbol that may be utilized by the user in loading the reservoir and locking hub assembly. In these embodiments, these alignment features further simplify the method of loading the reservoir and locking hub assembly into the pump assembly
  • Referring again to FIG. 1C, the hub and battery end cap is shown populated with a locking hub 108 and a battery cap 110. In this embodiment of the pump assembly, the locking hub 108 sits flush with the pump assembly. Thus, when loading of the reservoir, once the locking hub has been rotated such that the locking hub is flush with the pump assembly body, loading is complete. Thus, reservoir loading is advantageously simplified in that the alignment features assure that the reservoir, when dropped into the pump barrel, the plunger rod and reservoir alignment tabs are aligned with the locking disc and, the rotation of the locking hub until the locking hub is flush with the pump assembly assures that reservoir loaded and the plunger rod is threaded to the drive screw.
  • Referring now to FIG. 5A, a view of the exemplary embodiment of the plunger rod 310 and plunger 308 is shown. The plunger 308 includes two O-rings 366. In some embodiments, the O-rings 366 and plunger 308 may be one piece and may be made from a material that provides ample sealing properties.
  • Referring now to FIGS. 5B-5C, another embodiment of the reservoir assembly 502, together with the locking hub 318, is shown. In this embodiment, the plunger seal 506 is designed to function as a double o-ring plunger, however, is molded as a single part. The plunger seal 506 fits over the plunger 504, which, in some embodiments, is made from plastic, and in some embodiments, is made from the same plastic as the plunger rod 310. The plunger cap 508 fits over the plunger seal 506. The reservoir 306 and reservoir bottom 305, in some embodiments, may be as described in the above described embodiments. Referring also to FIGS. 5D-5E, the plunger seal 506 is shown. As shown, the top ring-like feature of the seal is thicker than the bottom ring-like feature. However, in other embodiments, the bottom ring-like feature may be the thicker ring-like feature, and in some embodiments, both ring-like features may be the same thickness. Referring also to FIG. 5F, a cross section of the assembled plunger of the embodiments shown in FIGS. 5B-5E is shown. The plunger seal 506 fits around the plunger 504 and the plunger cap 504 snaps over the plunger seal 506. Referring now to FIGS. 5G-5P, various embodiments of the plunger seal 506 described above are shown.
  • As described above, the plunger rod is connected to the plunger, and is part of the reservoir assembly. The reservoir, as discussed above, functions to hold a volume of liquid for delivery by the infusion pump assembly. Filling the reservoir with a liquid, e.g. insulin, prior to leading the reservoir assembly into the pump assembly is preferred. Thus, in practice, a user loads the reservoir with insulin (or another liquid as discussed herein), attached the locking hub (in the exemplary embodiments, although, as discussed above, in some embodiments, the locking hub may be integrated with the reservoir) and loads the reservoir assembly with locking hub into the pump assembly.
  • In the exemplary embodiments, the plunger rod is designed, as shown herein, to engage with the drive screw and be driven by the drive screw. Thus, it may be difficult for some users to load the reservoir from a vial of insulin as the plunger rod is designed for drive screw engagement, not necessarily for human finger engagement. Thus, in some embodiments, a filling aid may be desirable.
  • Referring now to FIGS. 6A-6D, an exemplary embodiment of the reservoir filling aid 600 is shown. In this embodiment, the filling aid 600 is designed to engage with the threaded portion of the plunger rod 310 as described above, i.e., the filling aid includes a mating thread portion 602. The filling aid 600 slides onto the plunger rod 310, and as the mating thread portion 602 engages with the plunger rod threads 320, the filling aid 600 is securely fastened to the plunger rod 310. The handle 604, in the exemplary embodiment, is shaped to accommodate user's fingers and serves as pull. In practice, the user loads the reservoir by pulling back on the handle 604. Once the user has filled the reservoir, the filling aid 600 may be easily removed from the plunger rod by moving the filling aid 600 such that the threads disengage with the plunger rod threads. The filling aid 600, in the exemplary embodiment, is designed to have tolerances such that the plunger rod threads are not damaged during the filling process. In various embodiments, the filling aid may be different shapes, for example, larger, or the handle may be shaped differently, to accommodate those users with arthritis or other ailments that may prevent them from easily utilizing the filling aid as shown. An alternate embodiment is shown in FIGS. 6E-6F. In the exemplary embodiment, the filling aid 600 is made from plastic, however, in other embodiments, the filling aid 600 may be made from any materials, including but not limited to, stainless steel or aluminum.
  • Referring now to FIGS. 6G-6I, in some embodiments, the filling aid 606 may be connected to the plunger rod 301 by way of a plastic piece 608. In these embodiments, the plastic piece 608 is manufactured such that the filling aid 606 may be removed from the plunger rod 310 by bending the plastic piece, i.e., the filling aid 606 snaps off the plunger rod 310. Although the filling aid 606 in these FIGS. is shown having a particular shape, in other embodiments, the shape may be any of the other filling aid embodiments shown herein, or others that may be designed as discussed above. In some of the “snap-off” embodiments of the filling aid, the filling aid 606 and plastic piece 608 may be molded with the plunger rod 310.
  • Referring now to FIGS. 7A-7B, the pump assembly 100 is shown. Referring to FIGS. 1A-1B, the pump assembly 100 includes a housing, which, in the exemplary embodiment, is made from an aluminum portion, plastic portions, and rubber portions. However, in various embodiments, the materials and the portions vary, and include but are not limited to, rubber, aluminum, plastic, stainless steel, and any other suitable materials. In the exemplary embodiment, the back of the housing, shown in FIG. 1B, includes a contour.
  • Referring now to FIGS. 7A-7B, portions of the housing has been removed. The switch assemblies/input devices and the user interface screen have been removed. The pump barrel 312 is shown with a reservoir 306 inside. The battery compartment 706 is shown in FIG. 7A, and the pump assembly 100 is shown without the battery compartment 706 is FIG. 7B. Various features of the battery compartment 706 are described herein. The gear box 364 is shown assembled with the pump housing 360 in the pump assembly 100. The hub and battery end cap 404 is shown assembled on the pump assembly 100.
  • Referring now to FIGS. 7C-7D, a reservoir assembly 312 is shown engaged to the drive screw 314 and in contact with the strain gauge 708. As described in more detail herein, the strain gauge 708 is in contact with the drive screw 314. The pressure measurements of the strain gauge 708 are taken by an electrical contact 710. The strain gauge 708 measures the pressure exerted by the drive screw 314. Although the methods for sensing an occlusion are described in more detail herein, where the drive screw 314 is unable to drive the plunger rod 310 further into the reservoir, the drive screw 314 will exert pressure onto the strain gauge 708.
  • Referring now to FIG. 7E, an embodiment of an optical sensor is shown. The optical sensor, as described above and in more detail in U.S. Patent Application Publication US 2004/0135078 A1, published on Jul. 15, 2004 and entitled Optical Displacement Sensor for Infusion Devices, as used in some embodiments of the infusion pump apparatus, is a sensor used to determine whether the plunger rod 310 has moved and/or advanced and additionally, may also determine whether the plunger rod 310 has moved and/or advanced the intended distance. Thus, in the infusion pump system and apparatus described herein, the pump apparatus, using the occlusion detection methods and devices, can determine if the drive screw is unable to advance, and also, can determine if the plunger rod has moved and the distance in which it has moved.
  • Referring now to FIGS. 8A-8D, alternate embodiments of the reservoir assembly are shown. Although the embodiments discussed and described above may be used in a pumping assembly, and in some embodiments, are used in the pumping assemblies shown and described herein, in other embodiments, the pumping assembly shape and size may vary from the ones shown herein. For example, the pump assembly may be round or smaller in shape. Therefore, it may be beneficial for the reservoir assembly to accommodate the smaller or rounded shape without having to sacrifice total volume. Exemplary embodiments of these alternate embodiment reservoir assemblies are shown in FIGS. 8A-8C. However, it should be understood these are by example only. Depending on the size and shape of the pump assembly, the alternate embodiment reservoir assembly may be larger, smaller, or include a larger or smaller angle.
  • Referring now to FIG. 8A, a curved reservoir assembly 800 is shown. In the various embodiments, the angle indicated may have a value of greater than or less than 180 degrees. In one exemplary embodiment, the reservoir assembly 800 may have an angle of 150 degrees. In some embodiments, the reservoir assembly 800 may form a helical shape. In other embodiments, the reservoir assembly 800 may be any shape desired, including having one or more portions rounded or curved, and/or one or more portions straight or approaching straight.
  • Referring now to FIGS. 8B-8D, another embodiment of the alternate embodiment reservoir assembly is shown. In this embodiment, the reservoir 802 and plunger 804 assembly is shown as having a round or approaching round shape. The reservoir 802, in some embodiments, and as shown in FIGS. 8B-8D, may be a channel in a housing 806. The reservoir 802 may be cylindrical, and the ends 808, 810 of the plunger 804 may be circular, however, the plunger 804 may be flat 804 as shown. In various embodiments, the plunger 804 may be advanced by applying pressure to the end 808 of the plunger 804 by a mechanical feature (not shown), which, in some embodiments, may be located in the center 812 of the housing 806, or in other embodiments, elsewhere in the pump assembly within engageable proximity to the plunger 804. In some embodiments, the reservoir 802 may be filled with liquid using inlet 814.
  • As discussed above, enclosure assembly 102 may include infusion port assembly 112 to which cannula assembly 114 may be releasably coupled. A portion of infusion port assembly 112 and a portion of cannula assembly 114 may form a medium connector assembly for releasably coupling infusion port assembly 112 to cannula assembly 114 and effectuating the delivery of infusible fluid 200 to user 202.
  • Referring to FIG. 9A, there is shown one exemplary embodiment of a medium connector assembly 900 for connecting medium carrying components (not shown) and allowing the flow of medium therebetween. Examples of medium carrying components may include, but are not limited to, a delivery catheter and an insulin delivery pump, a fluid supply (such as an intravenous fluid supply bag, a dialysate supply, etc.) and a pump supply catheter, or the like. Connector assembly 900 may include medium connector 902 associated with a first medium carrying component (not shown) and mating connector 904 associated with a second medium carrying component.
  • Medium connector 902 may include passage 906 to allow for the flow of medium. The medium flowing between the medium carrying components, e.g., via passage 906, may include liquids (e.g., insulin, dialysate, saline solution, or the like), gases (e.g., air, oxygen, nitrogen, or the like), suspensions, or the like. Further, medium connector 902 may include multi-portion engagement surface 908, generally, positioned about passage 906. Multi-portion engagement surface 908 may include first surface portion 910, and second surface portion 912.
  • As will be discussed below in greater detail, first surface portion 910 of multi-portion engagement surface 908 may be configured to provide an interference fit with corresponding sealing surface 914 of mating connector 904. Further, second surface portion 912 of multi-portion engagement surface 908 may be configured to provide a clearance fit with corresponding sealing surface 914 of mating connector 904. The ratio of first surface portion 910 and second surface portion 912 may be selected to regulate an engagement for between medium connector 902 and mating connector 904.
  • For example, corresponding sealing surface 914 of mating connector 904 may include a tapered surface, e.g., which may include a 6% taper (e.g., approximately 3.4 degree included taper) of a standard Luer taper connector (e.g., as defined by the ISO 594 standard). Of course, corresponding sealing surface 914 may include tapers other than a 6% Luer taper. Multi-portion engagement surface 908 may similarly include a tapered surface, in which first surface portion 910 may have a first taper angle, and second surface portion 912 may have a second taper angle that is less than the first taper angle. In one particular embodiment, the second taper angle may approach zero, such that second surface portion 912 may be generally cylindrical (e.g., may include a slight taper, such as a draft angle to facilitate manufacture). Of course, second surface portion 912 may include other, non-cylindrical, taper angles.
  • Continuing with the above-stated example, first surface portion 910 of multi-portion engagement surface 908 may include a first taper angle corresponding to the angle of corresponding sealing surface 914 of mating connector 904 (e.g., a 6% taper). As shown in FIG. 9B, the corresponding taper of first surface portion 910 may provide an interference fit with corresponding sealing surface 914 of mating connector 904. As also shown, the second taper angle of second surface portion 912 may provide a clearance fit with corresponding sealing surface 914 of mating connector 904, e.g., which may result in at least partial clearance 916 between second surface portion 912 and corresponding sealing surface 914.
  • The contact surface area of medium connector 902 and mating connector 904 may remain generally constant once first surface portion 910 has engaged corresponding sealing surface 914. For example, as first surface portion 910 may be configured to provide an interference fit with corresponding sealing surface 914, while second surface portion 912 of multi-portion engagement surface 908 may be configured to provide a clearance fit with corresponding sealing surface 914, only first surface portion 910 may engage corresponding sealing surface 914.
  • Once first surface portion 910 engages corresponding sealing surface 914, further insertion of medium connector 902 relative to mating connector 904 may be attributable to the elastic and/or plastic deformation force of medium connector 902 in the region of first surface portion 910 and/or of mating connector 904 in the region of contact between corresponding sealing surface 914 and first surface portion 910 (e.g., as first surface portion 910 is forced into the progressively smaller opening provided by corresponding sealing surface 914), and the frictional interaction between first surface portion 910 and corresponding sealing surface 914 of mating connector 904.
  • As such, the ratio of first surface portion 910 and second surface portion 912 may be selected to regulate an engagement force between medium connector 902 and mating connector 904. As discussed above, second surface portion 912 may be configured to provide a clearance fit with corresponding sealing surface 914, and as such may not contribute to the engagement force (e.g., the insertion force per increment of axial insertion) between medium connector 902 and mating connector 904. Therefore, the ratio of first surface portion 910 to second surface portion 912 may be increased to increase the engagement force between medium connector 902 and mating connector 904. Conversely, the ratio of first surface portion 910 to second surface portion 912 may be decreased to decrease the engagement force between medium connector 902 and mating connector 904.
  • The ability to regulate the engagement force between medium connector 902 and mating connector 904 (e.g., based upon the ratio of first surface portion 910 and second surface portion 912) may allow the use of features associated with medium connector 902 (and/or the first associated medium carrying component) and/or mating connector 904 (and/or the second associated medium carrying component) which may require a minimum insertion depth to be achieved within a selected range of insertion forces. For example, medium connector 902 may include one or more retention features, e.g., which may facilitate a positive engagement and/or relative position between medium connector 902 and mating connector 904. As shown in FIGS. 9A-9B, the one or more retention features may include one or more snap-fit features (e.g., cooperating snap-fit features 918, 920A, respectively associated with medium connector 902 and mating connector 904). As shown, one or more of cooperating snap-fit features 918, 920A may be disposed on a cantilever feature (e.g., cantilever arm 922), e.g., which may facilitate engagement/dis-engagement of cooperating snap-fit features 918, 920A. Snap-fit features 918, 920A may require a minimum insertion depth to provide engagement therebetween. As described above, the ratio of first surface portion 910 and second surface portion 912 may be selected to regulate the engagement force between medium connector 902 and mating connector 904 associated with the insertion depth necessary to provide engagement between snap-fit features 918, 920A. While regulating the engagement force between the medium connector and the mating connector has been described in connection with the use of retention features, this is not intended as a limitation of the present disclosure, as the ability to regulate the engagement force between the medium connector and the mating connector may equally be used for other purposes.
  • Referring also to FIGS. 9C and 9D, the medium connector assembly may include medium connector 902 associated with a first medium carrying component (not shown) and mating connector 904 associated with a second medium carrying component. As shown, one or more of the cooperating snap-fit features (e.g., cooperating snap-fit features 918, 920B) may be provided as a feature associated with one of the mating surfaces of the medium connector assembly (e.g., snap-fit feature 920B may be formed on member 924 defining corresponding sealing surface 914). Based upon, at least in part, the illustrated exemplary embodiments of FIGS. 9A-9B and 9C-9D, various additional/alternative arrangements may be readily understood, and are contemplated by the present disclosure.
  • In addition/as an alternative to the second surface portion including a second taper angle, the second surface portion may include one or more recesses. For example, and referring also to FIG. 9E, the second surface portion may include one or more recesses including one or more longitudinal slots (e.g., longitudinal slot 950), e.g., which may be formed in first surface portion 910. Longitudinal slot 950 may be configured to provide a clearance fit with cooperating sealing surface 114 of mating connector 904. For example, longitudinal slot 950 may provide a second surface portion which may not engage cooperating sealing surface 914 when first surface portion 910 is fully engaged with cooperating sealing surface 914 of mating connector 904. The ratio of first surface portion 910 and the radial slots (e.g., longitudinal slot 950) may be selected to regulate the engagement force between medium connector 902 and mating connector 904, e.g., in as much as longitudinal slot 950 may not provide a frictional engagement force with cooperating sealing surface 914 of mating connector 904.
  • Referring also to FIG. 9F, additionally/alternatively the second surface portion may include one or more recesses that may include one or more radial slots (e.g., radial slot 952). Similar to the above-described longitudinal slots (e.g., longitudinal slot 950), radial slot 952 may be configured to provide a clearance fit with corresponding sealing surface 914 of mating connector 904. As such, the ratio of first surface portion 910 and the radial slots (e.g., radial slot 952) may be selected to regulate the engagement force between medium connector 902 and mating connector 904. For example, radial slot 952 may not provide a frictional engagement force with cooperating sealing surface 914 of mating connector 904.
  • In addition to the specifically described and depicted recesses in the form of longitudinal slots and radial slots, the one or more recesses may include various additional and/or alternative configurations (e.g., dimples, etc.), which may be configured to provide a clearance fit with the cooperating sealing surface of the mating connector. As such, the ratio of the first surface portion and the second surface portion (including one or more recesses) may be selected to regulate an engagement force between the medium connector and the mating connector. Further, it will be appreciated that the number, arrangement, and character of the one or more recesses may vary according to design criteria and preference.
  • While the above-described embodiments have been depicted having a multi-portion engagement surface configured as a male medium connector portion, referring also to FIGS. 9G-9H, medium connector 902 may additionally/alternatively be configured as a female connector portion. For example, medium connector 902 may include a female connector portion having a multi-portion engagement surface including first surface portion 910 and second surface portion 912. As shown in FIG. 9G, the multi-portion engagement surface may include a tapered surface, in which first surface portion 910 may have a first taper angle configured to provide an interference fit with cooperating sealing surface 914 of male mating connector 904. Further, second surface portion 912 may have a second taper angle that is greater than the first taper angle. As such, second surface portion 912 may be configured to provide a clearance fit with cooperating sealing surface 914 of male mating connector 904.
  • Further, the second surface portion may include one or more recesses. For example, and referring also to FIGS. 9H-9I, the one or more recesses may include one or more longitudinal slots (e.g., longitudinal slot 950A, 950B). Similar to previously described embodiments, first surface portion 910 may be configured to provide an interference fit with cooperating sealing surface 914 of male mating connector 904. Further, the second surface portion, including longitudinal slot 950A, 950B, may be configured to provide a clearance fit with cooperating sealing surface 914 of male mating connector 904. Medium connector 902 may include sealing region 954, which may not include longitudinal slots, e.g., to thereby facilitate achieving a seal between first surface portion 910 and cooperating sealing surface 914 of mating connector 904.
  • Referring also to FIG. 9J, the second surface portion may include one or more recesses, in which the one or more recesses may include one or more radial slots (e.g., radial slot 952). Radial slot 952 may be configured to provide a clearance fit with cooperating sealing surface 914 of male mating connector 904.
  • In addition to the specifically described and depicted recesses in the form of longitudinal slots and radial slots, the one or more recesses may include various additional and/or alternative configurations (e.g., dimples, etc.), which may be configured to provide a clearance fit with the cooperating sealing surface of the mating connector. As such, the ratio of the first surface portion and the second surface portion (including one or more recesses) may be selected to regulate an engagement force between the medium connector and the mating connector. Further, it will be appreciated that the number, arrangement, and character of the one or more recesses may vary according to design criteria and preference.
  • As discussed above, infusion pump assembly 100 may include a removable cover assembly 116 configured to allow access to power supply cavity 118 (shown in phantom on FIG. 2).
  • Referring also to FIGS. 10A-10C, power supply cavity 118 (which may be formed by a combination of removable cover assembly 116 and a portion of enclosure assembly 102) may be configured to releasably receive primary power supply 220. Additionally, power supply cavity 118 may be configured to prevent primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204 For example, power supply cavity 118 may be configured to prevent positive terminal 1000 of primary power supply 220 from being electrically coupled to negative terminal 1002 of power supply cavity 118 and/or negative terminal 1004 of primary power supply 220 from being electrically coupled to positive terminal 1006 of power supply cavity 118).
  • Configuring power supply cavity 118 to prevent primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204 may provide various benefits. For example, the configuration may prevent the loss of power from primary power supply 220 (e.g., discharge of the battery) where the primary power supply assembly 220 has been inserted incorrectly. In addition to functioning to not waste power, this configuration may also be a safety feature to infusion pump assembly 100. Infusion pump assembly 100 may rely on power for functionality. A user may rely on infusion pump assembly 100 to provide life-sustaining therapy, for example, by delivering insulin. Thus, preventing primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204 (e.g., as a result of user 202 having mistakenly inserted primary power supply 220 incorrectly), preventing primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204 may allow infusion pump assembly 100 to function for a longer time than if the incorrectly installed primary power supply 220 had been able to be reverse-polarity electrically coupled to processing logic 204.
  • Removable cover assembly 116 may be configured to allow access to power supply cavity 118 and effectuate the installation/replacement/removal of primary power supply 220. As discussed above, an example of primary power supply 220 may include but is not limited to a battery. In some embodiments, the battery may include, but is not limited to, an A, AA, AAA, or AAAA battery, and the battery may be a lithium battery or alkaline battery. The battery may, in some embodiments, be a rechargeable battery.
  • Removable cover assembly 116 may be configured to rotatably engage enclosure assembly 102 in the direction of arrow 1008. For example, removable cover assembly 116 may include first twist lock assembly 1010 (e.g., a protruding tab). Enclosure assembly 102 may include a second twist lock assembly 1012 (e.g., a slot) configured to releasably engage first twist lock assembly and effectuate the releasable engagement of the removable cover assembly and the enclosure assembly.
  • While removable cover assembly 116 and enclosure assembly 102 is described above as including first twist lock assembly 1010 and second twist lock assembly 1012, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible and are considered to be within the scope of this disclosure. For example, one or more thread assemblies (not shown) may be utilized to effectuate the above-described rotatable engagement.
  • Further, while removable cover assembly 116 is described above as being configured to rotatably engage enclosure assembly 102, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible. For example, removable cover assembly 116 may be configured to slidably engage enclosure assembly 102 (in the direction of arrow 1014) using a slide assembly (not shown). Alternatively, removable cover assembly 116 may be configured to be pressed into enclosure assembly 102 in the direction of arrow 1016.
  • Removable cover assembly 116 may include sealing assembly 1018 (e.g., an o-ring assembly) that is configured to releasably engage at least a portion of enclosure assembly 102 to form an essentially water-tight seal between removable cover assembly 116 and enclosure assembly 102.
  • In an embodiment in which sealing assembly 1018 includes an o-ring assembly included within removable cover assembly 116, the o-ring assembly may be sized to effectuate a watertight (or essentially watertight) seal with a corresponding surface of enclosure assembly 102.
  • Alternatively, in an embodiment in which sealing assembly 1018 includes an o-ring assembly included within enclosure assembly 102, the o-ring assembly may be sized to effectuate a watertight (or essentially watertight) seal with a corresponding surface of removable cover assembly 116.
  • Removable cover assembly 116 may include conductor assembly 1020 for electrically coupling positive terminal 1006 of removable cover assembly 116 with interior wall 120 (FIG. 1D) of power supply cavity 118. For example, conductor assembly 1020 may include a plurality of tabs (e.g., tabs 1022, 1024) that may be electrically coupled to positive terminal 1006 of removable cover assembly 116. Tabs 1022, 1024 may be configured so that when removable cover assembly 116 releasably engages enclosure assembly 102, tabs 1022, 1024 may make electrical contact with interior wall 120 of power supply cavity 118. Interior wall 120 of power supply cavity 118 may then be electrically coupled to the various components within infusion pump assembly 100 that require electrical power, examples of which may include but are not limited to processing logic 204.
  • As discussed above, the combination of removable cover assembly 116 and a portion of enclosure assembly 102 may be configured to prevent primary power supply 220 from being reverse-polarity electrically coupled to e.g., processing logic 204. Referring also to FIG. 11, one or more of negative terminal 1002 and positive terminal 1006 may be configured so that the above-described reverse polarity situation cannot occur. For example, removable cover assembly 116 may include insulator assembly 1026 that includes recess 1028 that is sized to receive positive terminal 1000 of primary power supply 220 and enable electrical contact with positive terminal 1006 of removable cover assembly 116. Insulator assembly 1026 may be constructed of an insulating material, such as PVC plastic or bakelite. Further, recess 1028 may be sized so that negative terminal 1004 of primary power supply 220 cannot make electrical contact with positive terminal 1006 (and may only make contact with insulator 1026), thus preventing primary power supply 220 from being electrically coupled to processing logic 204 in a reverse-polarity configuration.
  • Referring also to FIGS. 12A-12D, there is shown an alternative-embodiment removable cover assembly 116′. Removable cover assembly 116′ may include sealing assembly 1018′ (e.g., an o-ring assembly) that is configured to releasably engage at least a portion of enclosure assembly 102 to form an essentially water-tight seal between removable cover assembly 116′ and enclosure assembly 102.
  • Removable cover assembly 116′ may include conductor assembly 1020′ for electrically coupling positive terminal 1006′ of removable cover assembly 116′ with interior wall 120 (FIG. 1D) of power supply cavity 118 (FIG. 1D). For example, conductor assembly 1020′ may include a plurality of tabs (e.g., tabs 1022′, 1024′) that may be electrically coupled to positive terminal 1006′ of removable cover assembly 116′. Tabs 1022′, 1024′ may be configured so that when removable cover assembly 116′ releasably engages enclosure assembly 102, tabs 1022′, 1024′ may make electrical contact with interior wall 120 of power supply cavity 118. Interior wall 120 of power supply cavity 118 may then be electrically coupled to the various components within infusion pump assembly 100 that require electrical power, examples of which may include but are not limited to processing logic 204.
  • As discussed above, the combination of removable cover assembly 116′ and a portion of enclosure assembly 102 may be configured to prevent primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204. For example, removable cover assembly 116′ may include insulator assembly 1026′ that defines recess 1028′ that is sized to receive positive terminal 1000 (FIG. 11) of primary power supply 220 (FIG. 11) and enable electrical contact with positive terminal 1006′ of removable cover assembly 116′. Insulator assembly 1026′, which may be constructed of an insulating material (e.g., PVC plastic or bakelite), may be molded into and/or a portion of removable cover assembly 116′. Further, recess 1028′ may be sized so that negative terminal 1004 (FIG. 11) of primary power supply 220 cannot make electrical contact with positive terminal 1006′ (and may only make electrical contact with insulator 1026′, thus preventing primary power supply 220 from being electrically coupled to processing logic 204 in a reverse-polarity configuration.
  • While power supply cavity 118 is described above as having positive terminal 1006 positioned proximate removable cover assembly 116, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible and are considered to be within the scope of this disclosure. For example, negative terminal 1002 may be positioned proximate removable cover assembly 116.
  • Referring also to FIG. 13, there is shown a more-detailed diagrammatic view of processing logic 204. Processing logic 204 may include one or more circuit partitioning components 1300, 1302 configured to divide processing logic 204 into primary processing logic 1304 and backup processing logic 1306. Examples of one or more circuit partitioning components 1300, 1302 may include but are not limited to diode assembly 1300 and current limiting assembly 1302.
  • Diode assembly 1300 may be configured to allow primary power supply 220 to charge backup power supply 1308 included within backup processing logic 1306, while prohibiting backup power supply 1308 from providing backup electrical energy 1310 to primary processing logic 1304 in the event that some form of failure prevents primary electrical energy 1312 from providing primary processing logic 1304. An example of backup power supply 1308 may include but is not limited to a super capacitor assembly. An example of such a super capacitor assembly may include but is not limited to an electric double-layer capacitor manufactured by Elna Co. Ltd. of Yokohama, Japan.
  • Current limiting assembly 1302 may be configured to limit the amount of primary electrical energy 1312 available to charge backup power supply 1308. Specifically, as primary power supply 220 may be configured to charge backup power supply 1308, the amount of current available from primary power supply 220 may be limited to e.g., avoid depriving primary processing logic 1304 of a requisite portion of primary electrical energy 1312.
  • Primary processing logic 1304 may include primary microprocessor 1314 and voltage booster circuit 1316. An example of primary microprocessor 1314 may include but is not limited to a H8S/2000 manufactured by Renesas Technology America Inc. of San Jose, Calif. Voltage booster circuit 1316 may be configured to increase the voltage potential of primary electrical energy 1312 provided by primary power supply 220 to a level sufficient to power primary microprocessor 1314. An example of voltage booster circuit 1316 may include but is not limited to a LTC3421 manufactured by Linear Technology of Milpitas, Calif.
  • Current limiting assembly 1302 may be configured to limit the amount of current available to charge backup power supply 1308 during the power-up of primary microprocessor 1314. Specifically and for illustrative purposes, current limiting assembly 1302 may be controlled by primary microprocessor 1314 and current limiting assembly 1302 may be disabled (i.e., provide no charging current to backup power supply 1308) until after primary microprocessor 1314 is fully powered up. Upon primary microprocessor 1314 being fully powered up, primary microprocessor 1314 may now enable current limiting assembly 1302, thus providing charging current to backup power supply 1308. Alternatively and upon being initially energized, current limiting assembly 1302 may be configured to prohibit the flow of charging current to backup power supply 1308 for a time sufficient to allow for the powering up of primary microprocessor 1314.
  • Backup processing logic 1306 may include backup power supply 1308 and safety microprocessor 1318. An example of safety microprocessor 1318 may include but is not limited to a MSP430 manufactured by Texas Instruments of Dallas, Tex.
  • Primary power supply 220 may be configured to provide primary electrical energy 1312 to at least a portion of processing logic 204. Specifically and during normal operation of infusion pump assembly 100, primary power supply 220 may be configured to provide primary electrical energy 1312 to all of processing logic 204 (including the various components of primary processing logic 1304 and backup processing logic 1306), as well as various subsystems included within infusion pump assembly 100.
  • Examples of such subsystems may include but are not limited to memory system 206, input system 208, display system 104, vibration system 210, audio system 212, motor assembly 214, force sensor 216, and displacement detection device 218.
  • Backup power supply 1308 may be configured to provide backup electrical energy 1310 to the at least a portion of processing logic 204 in the event that primary power supply 220 fails to provide primary electrical energy 1312 to at least a portion of processing logic 204. Specifically, in the event that primary power supply 220 fails and, therefore, can no longer provide primary electrical energy 1312 to processing logic 204, backup power supply 1308 may be configured to provide backup electrical energy 1310 to backup processing logic 1306.
  • For illustrative purposes only, assume that infusion pump assembly 100 is operating normally and primary power supply 220 is providing primary electrical energy 1312 to processing logic 204. As discussed above, voltage booster circuit 1316 may increase the voltage potential of primary electrical energy 1312 to a level sufficient to power primary microprocessor 1314, wherein voltage booster circuit 1316 and primary microprocessor 1314 are both included within primary processing logic 1304.
  • Further, diode assembly 1300 may allow a portion of primary electrical energy 1312 to enter backup processing logic 1306, thus enabling the operation of safety microprocessor 1318 and the charging of backup power supply 1308. As discussed above an example of backup power supply 1308 may include but is not limited to a super capacitor. As discussed above, current limiting assembly 1302 may limit the quantity of current provided by primary power supply 220 to backup processing logic 1306, thus preventing the diversion of too large a portion of primary electrical energy 1312 from primary processing logic 1304 to backup processing logic 1306.
  • Accordingly, in addition to powering safety microprocessor 1318, primary power supply 220 may charge backup power supply 1308. In a preferred embodiment, backup power supply 1308 is a 0.33 farad super capacitor.
  • Safety microprocessor 1318 may monitor the status of primary power supply 220 by monitoring (via conductor 1320) the voltage potential present at the input of voltage booster circuit 1316. Alternatively, safety microprocessor 1318 may monitor the status of primary power supply 220 by e.g. monitoring the voltage potential present at the output of voltage booster circuit 1316. Further still, safety microprocessor 1318 and primary microprocessor 1314 may be electrically-coupled via e.g. conductor 1322 and primary microprocessor 1314 may be configured to continuously provide a “beacon” signal to safety microprocessor 1318. Conductor 1322 may include isolation circuit 1324 (e.g., one or more diodes assemblies) to electrically isolate safety microprocessor 1318 and primary microprocessor 1314. Accordingly, provided safety microprocessor 1318 continues to receive the “beacon” signal from primary microprocessor 1314, primary microprocessor 1314 is functioning and, therefore, being properly powered by primary power supply 220. In the event that safety microprocessor 1318 fails to receive the “beacon” signal from primary microprocessor 1314, an alarm sequence may be initiated.
  • Further still, safety microprocessor 1318 may be configured to continuously provide a “beacon” signal to primary microprocessor 1314. Accordingly, provided primary microprocessor 1314 continues to receive the “beacon” signal from safety microprocessor 1318, safety microprocessor 1318 is functioning and, therefore, being properly powered by backup power supply 1308. In the event that primary microprocessor 1314 fails to receive the “beacon” signal from safety microprocessor 1318, an alarm sequence may be initiated.
  • As used in this disclosure, a “beacon” signal may be considered an event that is performed by primary microprocessor 1314 (and/or safety microprocessor 1318) solely for the purpose of making the presence of primary microprocessor 1314 (and/or safety microprocessor 1318) known. Additionally/alternatively, the “beacon” signal may be considered an event that is performed by primary microprocessor 1314 (and/or safety microprocessor 1318) for the purpose of performing a task, wherein the execution of this event is monitored by safety microprocessor 1318 (and/or primary microprocessor 1314) to confirm the presence of primary microprocessor 1314 (and/or safety microprocessor 1318).
  • Assume for illustrative purposes that primary power supply 220 fails. For example, assume that primary power supply 220 physically fails (as opposed to simply becoming discharged). Examples of such a failure may include but are not limited to the failing of a cell (not shown) within primary power supply 220 and the failing of a conductor (e.g., one or more of conductors 1320, 1326) that electrically-couples primary power supply 220 to processing logic 204. Accordingly, in the event of such a failure, primary power supply 220 may no longer provide primary electrical energy 1312 to processing logic 204.
  • However, when such a failure of primary power supply 220 occurs, the voltage potential present at the output of voltage booster circuit 1316 and the voltage potential present at the input of voltage booster circuit 1316 may be reduced to zero. Since safety microprocessor 1318 may monitor (as discussed above) one or more of these voltage potentials, safety microprocessor 1318 may be knowledgeable that primary power supply 220 has failed.
  • Further, when such a failure of primary power supply 220 occurs, primary microprocessor 1314 will no longer be powered and, therefore, primary microprocessor 1314 will no longer produce the above-described “beacon” signals. Since safety microprocessor 1318 monitors the above-described “beacon” signals, safety microprocessor 1318 may be knowledgeable that primary power supply 220 has failed.
  • As discussed above, in the event of such a failure of primary power supply 220, as diode assembly 1300 is reversed-biased, backup power supply 1308 may not provide backup electrical energy 1310 to primary processing logic 1304. Accordingly, primary processing logic 1304 will no longer function.
  • Upon sensing the failure of primary power supply 220, safety microprocessor 1318 may initiate an alarm sequence that may result in audio system 212 being energized. Audio system 212 may be controllable by both safety microprocessor 1318 and primary microprocessor 1314. Alternatively, a separate audio system may be used for each of safety microprocessor 1318 and primary microprocessor 1314. An example of audio system 212 may include but is not limited to a Piezo electric diaphragm, an example of which may include but is not limited to a 7BB-15-6 manufactured by Murata of Kyoto, Japan.
  • Audio system 212 may further include an RS232 line driver circuit 1330, such as a MAX3319/MAX3221 manufactured by Maxim Integrated Products of Sunnyvale, Calif. One or more or primary microprocessor 1314 and safety microprocessor 1318 may be configured to provide an alarm control signal (e.g., a square wave; not shown) to RS232 line driver circuit 1330 to generate an alarm output signal (not shown) that may be provided to and may drive the above-described Piezo electric diaphragm.
  • The alarm sequence initiated by safety microprocessor 1318 is intended to inform user 202 of the failure of primary power supply 220 so that user 202 may take the appropriate action (e.g. seeking an alterative means to have their therapy performed and/or having infusion pump assembly 100 repaired/replaced). Backup power supply 1308 may be sized so that safety microprocessor 1318 and audio system 212 may continue to function for up to fifteen minutes or more after the failure of primary power supply 220 (i.e., depending on design specifications).
  • The alarm sequence initiated by safety microprocessor 1318 and/or primary microprocessor 1314 may be an “escalating” alarm sequence. For example, at first a discrete “vibrating” alarm may be initiated (via vibration system 210). In the event that this “vibrating” alarm is not acknowledged within a defined period of time (e.g., one minute), a low volume audible alarm may be initiated. In the event that this low volume alarm is not acknowledged within a defined period of time (e.g., one minute), a medium volume audible alarm may be initiated. In the event that this medium volume alarm is not acknowledged within a defined period of time (e.g., one minute), a high volume audible alarm may be initiated. The escalating alarm sequence may provide a notification to user 202, in which the notification may be discrete or less disruptive at the onset. The initially discrete or less disruptive notification may be advantageous as user 202 may experience minimal disruption. However, in the event that user 202 does not acknowledge the alarm, the escalating nature of the alarm may provide for additional layers of safety to user 202. Additionally, in a case of audio system 212 error, or vibration system 210 error, the escalating alarm sequence, which may include both vibration and audio alarms, may insure that user 202 may be notified regardless of whether both systems 210, 212 are functioning.
  • Audio system 212, in some embodiments, may be configured to perform a self test upon power up. For example, upon infusion pump assembly 100 being initially powered up, audio system 212 may provide a “beep-type” signal to each sound generating device included within audio system 212. In the event that user 202 does not hear these “beep-type” signal(s), user 202 may take the appropriate action (e.g. seeking an alterative means to have their therapy performed and/or having infusion pump assembly 100 repaired/replaced). As discussed above, audio system 212 may be controllable by safety microprocessor 1318 and/or primary microprocessor 1314. Accordingly, when performing the above-described self test upon power up, safety microprocessor 1318 and/or primary microprocessor 1314 may control the above-described self test. This feature may provide for additional safety to user 202, as user 202 may be alerted to a system error earlier than may otherwise be the case. Thus, a method may be provided to notify the user early of system errors. Also, the system may otherwise not be aware of an error in audio system 212, thus, this feature provides for identification of a failure by user 202 that may otherwise go undetected.
  • During the failure of primary power supply 220, safety microprocessor 1318 may continue to monitor the voltage potential present at the output of voltage booster circuit 1316 and/or the voltage potential present at the input of voltage booster circuit 1316. Additionally, safety microprocessor 1318 may continue to monitor for the presence of the above-described “beacon” signals. Accordingly, in the event that the failure of primary power supply 220 was a temporary event (e.g. primary power supply 220 is an out-of-date battery and is being replaced with a new battery), safety microprocessor 1318 may be knowledgeable when primary power supply 220 is once again functioning properly.
  • Upon primary power supply 220 once again functioning properly, diode assembly 1300 and current limiting assembly 1302 may allow a portion of primary electrical energy 1312 produced by primary power supply 220 to recharge backup power supply 1308.
  • Additionally, safety microprocessor 1318 and primary microprocessor 1314 may each maintain a real-time clock, so that the various doses of infusible fluid may be dispensed at the appropriate time of day. As primary microprocessor 1314 was not functioning during the failure of primary power supply 220, the real-time clock maintained within primary microprocessor 1314 may no longer be accurate. Accordingly, the real-time clock maintained within safety microprocessor 1318 may be used to reset the real-time clock maintained within primary microprocessor 1314.
  • In order to further enhance the reliability and safety of infusion pump assembly 100, primary microprocessor 1314 and safety microprocessor 1318 may each execute applications written in different programming languages. For example, primary microprocessor 1314 may be configured to execute one or more primary applications written in a first computer language, while safety microprocessor 1318 may be configured to execute one or more safety applications written in a second computer language.
  • Examples of the first computer language in which the primary applications are written may include but are not limited to Ada, Basic, Cobol, C, C++, C#, Fortran, Visual Assembler, Visual Basic, Visual J++, Java, and Java Script languages. In a preferred embodiment, the first computer language in which the primary applications (executed on primary microprocessor 1314) are written is the C++ computer language.
  • Examples of the second computer language in which the safety applications are written may include but are not limited to Ada, Basic, Cobol, C, C++, C#, Fortran, Visual Assembler, Visual Basic, Visual J++, Java, and Java Script languages. In a preferred embodiment, the second computer language in which the safety applications (executed on safety microprocessor 1318) are written is the C computer language.
  • Further, assuming that primary microprocessor 1314 and safety microprocessor 1318 are different types of microprocessors and, therefore, use different compilers; the compiled code associated with the primary applications executed by primary microprocessor 1314 and the safety applications executed on safety microprocessor 1318 may be different (regardless of the whether the primary applications and the safety applications were written in the same computer language.
  • Examples of the one or more primary applications written in the first computer language and executable on primary microprocessor 1314 may include but are not limited to an operating system (e.g., Linux™, Unix™, Windows CE™), an executive loop and various software applications. Further, examples of the one or more safety applications written in the second computer language and executable on safety microprocessor 1318 may include but are not limited to an operating system (e.g., Linux™, Unix™, Windows CE™), an executive loop and various software applications.
  • Accordingly, primary processing logic 1304 and backup processing logic 1306 may each be configured as a separate stand-alone autonomous computing device. Therefore, primary microprocessor 1314 included within primary processing logic 1304 may execute a first operating system (e.g. Linux™) and safety microprocessor 1318 included within backup processing logic 1306 may execute an executive loop.
  • Additionally, primary microprocessor 1314 included within primary processing logic 1304 may execute one or more software applications (e.g. graphical user interface applications, scheduling applications, control applications, telemetry applications) executable within (in this example) a Linux™ operating system. Further, safety microprocessor 1318 included within backup processing logic 1306 may execute one or more software applications (e.g. graphical user interface applications, scheduling applications, control applications, telemetry applications) executable within (in this example) the executive loop.
  • By utilizing diverse computer languages and/or diverse operating systems, infusion pump assembly may be less susceptible to e.g. computer-language bugs, operating-system bugs, and/or computer viruses.
  • One or more of primary microprocessor 1314 (included within primary processing logic 1304 of processing logic 204) and safety microprocessor 1318 (included within backup processing logic 1306 of processing logic 204) may execute confirmation process 234 (FIG. 2). As will be discussed below in greater detail, confirmation process 234 may be configured to process a command received on a first microprocessor (e.g., primary microprocessor 1314) so that the command may be confirmed by a second microprocessor (e.g., safety microprocessor 1318).
  • The instruction sets and subroutines of confirmation process 234, which may be stored on a storage device (e.g., memory system 208) accessible by processing logic 204, may be executed by one or more processors (e.g., primary microprocessor 1314 and/or safety microprocessor 1318) and one or more memory architectures (e.g., memory system 208) included within infusion pump assembly 100. Examples of memory system 208 may include but are not limited to: a random access memory; a read-only memory; and a flash memory.
  • Referring also to FIG. 14, confirmation process 234 may receive 1400, on a first microprocessor executing one or more applications written in a first computer language, an initial command processable by the one or more applications written in the first computer language. For example and as discussed above, primary microprocessor 1314 (included within primary processing logic 1304) may be executing the Linux™ operating system. Assuming that user 202 wishes to have a 0.50 mL dose of infusible fluid 200 dispensed by infusion pump assembly 100, user 202 may select (via input system 208 and display system 104) the appropriate commands to have the 0.50 mL dose dispensed. Accordingly, primary microprocessor 1314 may receive 1400 a corresponding command (e.g., command 1332) to dispense 0.50 mL of infusible fluid 200.
  • As discussed above, safety microprocessor 1318 (included within backup processing logic 1306) may be executing the executive loop. Accordingly, command 1332 may not be provided to safety microprocessor 1318 in its native form, as safety microprocessor 1318 may not be capable of processing command 1332, due to safety microprocessor 1318 executing the executive loop and primary microprocessor 1314 executing the Linux™ operating system.
  • Accordingly, confirmation process 234 may convert 1402 initial command 1332 into a modified command (e.g., command 1334) that may be processable by e.g., safety microprocessor 1318 (included within backup processing logic 1306) that may be executing the executive loop. For example, confirmation process 234 may convert 1402 initial command 1332 into modified command 1334 that is transmittable via a communication protocol (not shown) that effectuates the communication of primary microprocessor 1314 and safety microprocessor 1318. Once command 1332 is converted 1402 into modified command 1334, modified command 1334 may be provided 1404 to e.g., safety microprocessor 1318 (included within backup processing logic 1306) that may be executing e.g., the executive loop.
  • Once received by e.g., safety microprocessor 1318 (included within backup processing logic 1306), safety microprocessor 1318 may process modified command 1334 and provide (via e.g., display system 104) a visual confirmation to user 202. Prior to processing modified command 1334, confirmation process 234 may convert modified command 1334 into a native command (not shown) processable by safety microprocessor 1318. For example, upon receiving modified command 1334, safety microprocessor 1318 may process received modified command 1334 to render (on display system 104) a visual confirmation.
  • Upon processing modified command 1334, confirmation process 234 may render on display system 104 a message that states e.g., “Dispense 0.50 U Dose?”. Upon reading this message, user 202 may either authorize the dispensing of the 0.50 mL dose or cancel the dispensing of the 0.50 mL dose. Accordingly, if user 202 authorizes the dispensing of the 0.50 mL dose of infusible fluid 200, the accuracy of initial command 1332 and modified command 1334 are both confirmed. However, in the event that e.g., the message rendered by confirmation process 234 is incorrect (e.g., “Dispense 1.50 U Dose?”), the conversion 1402 of initial command 1332 to modified command 132 has failed. Accordingly, primary microprocessor 1314 (and/or the applications being executed on primary microprocessor 1314) and/or safety microprocessor 1318 (and/or the applications being executed on safety microprocessor 1318) may be malfunctioning. Accordingly, user 202 may need to seek an alterative means to having their therapy performed and/or have infusion pump assembly 100 serviced.
  • As discussed above, infusion pump assembly 100 may be configured to deliver infusible fluid 200 to user 202. Infusible fluid 200 may be delivered to user 202 via one or more different infusion event types. For example, infusion pump assembly 100 may deliver infusible fluid 200 via may a sequential, multi-part, infusion event (that may include a plurality of discrete infusion events) and/or a one-time infusion event.
  • Examples of such a sequential, multi-part, infusion event may include but are not limited to a basal infusion event and an extended-bolus infusion event. As is known in the art, a basal infusion event refers to the constant flow of a small quantity of infusible fluid 200. However, as such an infusion methodology is impractical/undesirable for an infusion pump assembly, when administered by such an infusion pump assembly, a basal infusion event may refer to the repeated injection of small (e.g. 0.05 unit) quantities of infusible fluid 200 at a predefined interval (e.g. every three minutes) that is repeated. The quantity of infusible fluid 200 delivered during each interval may be identical or may vary from interval to interval. Further, the time interval between each delivery of infusible fluid 200 may be identical or may vary from interval to interval. Further, the basal infusion rates may be pre-programmed time-frames, e.g., a rate of 0.50 units per hour from 6 am-3 pm; a rate of 0.40 units per hour from 3 pm-10 pm; and a rate of 0.35 units per hour from 10 pm-6 am. However, similarly, the basal rate may be 0.025 units per hour, and may not change according to pre-programmed time-frames. The basal rates may be repeated regularly/daily until otherwise changed.
  • Further and as is known in the art, and extended-bolus infusion event may refer to the repeated injection of small (e.g. 0.025 unit) quantities of infusible fluid 200 at a predefined interval (e.g. every three minutes) that is repeated for a defined number of intervals (e.g., three intervals) or for a defined period of time (e.g., one hour). An extended-bolus infusion event may occur simultaneously with a basal infusion event.
  • In contrast, as in known in the art, a normal bolus infusion event refers to a one-time infusion of infusible fluid 200. The volume of the infusible fluid 200 delivered in a bolus infusion event may be requested, and infusion pump assembly 100 may deliver the requested volume of infusible fluid 200 for the bolus infusion event at a predetermined rate (e.g., as quickly as the infusion pump assembly can deliver). However, the infusion pump assembly may deliver a normal bolus at a slower rate where the normal bolus volume is greater than a pre-programmed threshold.
  • Referring also to FIGS. 15-16, assume for illustrative purposes only that user 202 configures infusion pump assembly 100 to administer a basal dose (e.g. 0.05 units) of infusible fluid 200 every three minutes. As discussed above, infusion pump assembly 100 may include input system 208 and display system 104. Accordingly, user 202 may utilize input system 208 to define a basal infusion event for infusible fluid 200 (e.g., 1.00 units per hour), which may be confirmed via display system 104. While, in this example, the basal infusion event is described as 1.00 units per hour, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as either or both of the unit quantity and time period may be adjusted upward or downward. Infusion pump assembly 100 may then determine an infusion schedule based upon the basal infusion event defined; and may administer 100 infusible fluid 200. For example, infusion pump assembly 100 may deliver 0.05 units of infusible fluid 200 every three minutes, resulting in the delivery of the basal dose of infusible fluid 200 defined by the user (i.e., 1.00 units per hour).
  • Once defined and/or confirmed, fluid delivery process 236 may administer 1500 the sequential, multi-part, infusion event (e.g., 0.05 units of infusible fluid 200 every three minutes). Accordingly, while administering 1500 the sequential, multi-part, infusion event, infusion pump assembly 100: may infuse a first 0.05 unit dose 1600 of infusible fluid 200 at t=0:00 (i.e., a first discrete infusion event), may infuse a second 0.05 unit dose 1602 of infusible fluid 200 at t=3:00 (i.e., a second discrete infusion event); may infuse a third 0.05 unit dose 1604 of infusible fluid 200 at t=6:00 (i.e., a third discrete infusion event); may infuse a fourth 0.05 unit dose 1606 of infusible fluid 200 at t=9:00 (i.e., a fourth discrete infusion event); and may infuse a fifth 0.05 unit dose 1608 of infusible fluid 200 at t=12:00 (i.e., a fifth discrete infusion event). As discussed above, this pattern of infusing 0.05 unit doses of infusible fluid 200 every three minutes may be repeated indefinitely in this example, as this is an illustrative example of a basal infusion event.
  • Further, assume for illustrative purposes that infusible fluid 200 is insulin and sometime after the first 0.05 unit dose 1600 of infusible fluid 200 is administered 1500 by fluid delivery process 236 (but before the second 0.05 unit dose 1602 of infusible fluid 200 is administered 1500 by fluid delivery process 236), user 202 checks their blood glucose level and realizes that their blood glucose level is running a little higher than normal. Accordingly, user 202 may define an extended bolus infusion event via fluid delivery process 236. An extended bolus infusion event may refer to the continuous infusion of a defined quantity of infusible fluid 200 over a finite period of time. However, as such an infusion methodology is impractical/undesirable for an infusion pump assembly, when administered by such an infusion pump assembly, an extended bolus infusion event may refer to the infusion of additional small doses of infusible fluid 200 over a finite period of time.
  • Accordingly, user 202 may utilize input system 208 to define an extended bolus infusion event for infusible fluid 200 (e.g., 0.20 units over the next six minutes), which may be confirmed via display system 104. While, in this example, the extended bolus infusion event is described as 0.20 units over the next six minutes, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as either or both of the unit quantity and total time interval may be adjusted upward or downward. Once defined and/or confirmed, fluid delivery process 236 may determine an infusion schedule based upon the extended bolus infusion event defined; and may administer 1500 infusible fluid 200. For example, infusion pump assembly 100 may deliver 0.10 units of infusible fluid 200 every three minutes for the next two interval cycles (or six minutes), resulting in the delivery of the extended bolus dose of infusible fluid 200 defined by the user (i.e., 0.20 units over the next six minutes).
  • Accordingly, while administering 1500 the second, sequential, multi-part, infusion event, infusion pump assembly 100 may infuse a first 0.10 unit dose 1610 of infusible fluid 200 at t=3:00 (e.g., after administering the second 0.05 unit dose 1602 of infusible fluid 200). Infusion pump assembly 100 may also infuse a second 0.10 unit dose 1612 of infusible fluid 200 at t=6:00 (e.g., after administering the third 0.05 unit dose 1604 of infusible fluid 200).
  • Assume for illustrative purposes only that after user 202 programs infusion pump assembly 100 to administer 1500 the first sequential, multi-part, infusion event (i.e., 0.05 units infused every three minute interval repeated continuously) and administer 1500 the second sequential, multi-part, infusion event (i.e., 0.10 units infused every three minute interval for two intervals), user 202 decides to eat a very large meal. Predicting that their blood glucose level might increase considerably, user 202 may program infusion pump assembly 100 (via input system 208 and/or display system 104) to administer 1502 a one-time infusion event. An example of such a one-time infusion event may include but is not limited to a normal bolus infusion event. As is known in the art, a normal bolus infusion event refers to a one-time infusion of infusible fluid 200.
  • For illustrative purposes only, assume that user 202 wishes to have infusion pump assembly 100 administer 1502 a bolus dose of thirty-six units of infusible fluid 200. Fluid delivery process 236 may monitor the various infusion events being administered by fluid delivery process 236 to determine 1504 whether a one-time infusion event is available to be administered. If 1504 a one-time infusion event is available for administration 1502, fluid delivery process 236 may delay 1506 the administration of at least a portion of the sequential, multi-part, infusion event.
  • Continuing with the above-stated example, once user 202 completes the programming of fluid delivery process 236 to deliver one-time infusion event 1614 (i.e., the thirty-six unit bolus dose of infusible fluid 200), upon fluid delivery process 236 determining 1504 that the one-time infusion event is available for administration 1502, fluid delivery process 236 may delay 1506 the administration 1500 of each sequential, multi-part infusion event and administer 1502 the available one-time infusion event.
  • Specifically and as discussed above, prior to user 202 programming fluid delivery process 236 to deliver one-time infusion event 1614, infusion delivery process 236 was administering 1500 a first sequential, multi-part, infusion event (i.e., 0.05 units infused every three minute interval repeated continuously) and administering 1500 a second sequential, multi-part, infusion event (i.e., 0.10 units infused every three minute interval for two intervals).
  • For illustrative purposes only, the first sequential, multi-part, infusion event may be represented within FIG. 16 as 0.05 unit dose 1600 @ t=0:00, 0.05 unit dose 1602 @ t=3:00, 0.05 unit dose 1604 @ t=6:00, 0.05 unit dose 1606 @ t=9:00, and 0.05 unit dose 1608 @ t=12:00. As the first sequential, multi-part, infusion event is described above is a basal infusion event, infusion pump assembly 100 (in conjunction with fluid delivery process 236) may continue to infuse 0.05 unit doses of infusible fluid 200 at three minute intervals indefinitely (i.e., until the procedure is cancelled by user 202).
  • Further and for illustrative purposes only, the second sequential, multi-part, infusion event may be represented within FIG. 16 as 0.10 unit dose 1610 @ t=3:00 and 0.10 unit dose 1612 @ t=6:00. As the second sequential, multi-part, infusion event is described above as an extended bolus infusion event, infusion pump assembly 100 (in conjunction with fluid delivery process 236) may continue to infuse 0.10 unit doses of infusible fluid 200 at three minute intervals for exactly two intervals (i.e., the number of intervals defined by user 202).
  • Continuing with the above-stated example, upon fluid delivery process 236 determining 1504 that the thirty-six unit normal bolus dose of infusible fluid 200 (i.e., one-time infusion event 1614) is available for administration 1502, fluid delivery process 236 may delay 1506 the administration 1500 of each sequential, multi-part infusion event and may start administering 1502 one-time infusion event 1614 that is available for administration.
  • Accordingly and for illustrative purposes only, assume that upon completion of the programming of infusion pump assembly 100 to deliver the thirty-six unit normal bolus does of infusible fluid 200 (i.e., the one-time infusion event), fluid delivery process begins administering 1502 one-time infusion event 1614. Being that one-time infusion event 1614 is comparatively large, it may take longer than three minutes (i.e., the time interval between individual infused doses of the sequential, multi-part, infusion events) to administer and, therefore, one or more of the individual infused doses of the sequential, multi-part, infusion events may need to be delayed.
  • Specifically, assume that it will take infusion pump assembly 100 greater than six minutes to infuse thirty-six units of infusible fluid 200. Accordingly, fluid delivery process 236 may delay 0.05 unit dose 1602 (i.e., scheduled to be infused @ t=3:00), 0.05 unit dose 1604 (i.e., scheduled to be infused @ t=6:00), and 0.05 unit dose 1606 (i.e., scheduled to be infused @ t=9:00) until after one-time infusion event 1614 (i.e., the thirty-six unit normal bolus dose of infusible fluid 200) is completely administered. Further, fluid delivery process 236 may delay 0.10 unit dose 1610 (i.e., scheduled to be infused @ t=3:00 and 0.10 unit dose 1612 (i.e., scheduled to be infused @ t=6:00) until after one-time infusion event 1614.
  • Once administration 1502 of one-time infusion event 1614 is completed by fluid delivery process 236, any discrete infusion events included within the sequential, multi-part, infusion event that were delayed may be administered 1500 by fluid delivery process 236.
  • Accordingly, once one-time infusion event 1614 (i.e., the thirty-six unit normal bolus dose of infusible fluid 200) is completely administered 1502, fluid delivery process 236 may administer 1500 0.05 unit dose 1602, 0.05 unit dose 1604, 0.05 unit dose 1606, 0.10 unit dose 1610, and 0.10 unit dose 1612.
  • While fluid delivery process 236 is shown to administer 1500 0.05 unit dose 1602, then 0.10 unit dose 1610, then 0.05 unit dose 1604, then 0.10 unit dose 1612, and then 0.05 unit dose 1606, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible and are considered to be within the scope of this disclosure. For example, upon fluid delivery process 236 completing the administration 1502 of one-time infusion event 1614 (i.e., the thirty-six unit normal bolus dose of infusible fluid 200), fluid delivery process 236 may administer 1500 all of the delayed discrete infusion events associated with the first sequential, multi-part infusion event (i.e., namely 0.05 unit dose 1602, 0.05 unit dose 1604, and 0.05 unit dose 1606. Fluid delivery process 236 may then administer 1500 all of the delayed discrete infusion events associated with the second sequential, multi-part infusion event (i.e., 0.10 unit dose 1610, and 0.10 unit dose 1612).
  • While one-time infusion event 1614 (i.e., the thirty-six unit normal bolus dose of infusible fluid 200) is shown as being infused beginning at t=3:00, this is for illustrative purposes only and is not intended to be a limitation of this disclosure. Specifically, fluid delivery process 236 may not need to begin infusing one-time infusion event 1614 at one of the three-minute intervals (e.g., t=0:00, t=3:00, t=6:00, t=9:00, or t=12:00) and may begin administering 1502 one-time infusion event 1614 at any time.
  • While each discrete infusion event (e.g., 0.05 unit dose 1602, 0.05 unit dose 1604, 0.05 unit dose 1606, 0.10 unit dose 1610, and 0.10 unit dose 1612) and one-time infusion event 1614 are shown as being a single event, this is for illustrative purposes only and is not intended to be a limitation of this disclosure. Specifically, at least one of the plurality of discrete infusion events e.g., 0.05 unit dose 1602, 0.05 unit dose 1604, 0.05 unit dose 1606, 0.10 unit dose 1610, and 0.10 unit dose 1612) may include a plurality of discrete infusion sub-events. Further, one-time infusion event 1614 may include a plurality of one-time infusion sub-events.
  • Referring also to FIG. 17 and for illustrative purposes, 0.05 unit dose 1602 is shown to include ten discrete infusion sub-events (e.g., infusion sub-events 1700 1-10), wherein a 0.005 unit dose of infusible fluid 200 is infused during each of the ten discrete infusion sub-events. Additionally, 0.10 unit dose 1610 is shown to include ten discrete infusion sub-events (e.g., infusion sub-events 1702 1-10), wherein a 0.01 unit dose of infusible fluid 200 is delivered during each of the ten discrete infusion sub-events. Further, one-time infusion event 1614 may include e.g., three-hundred-sixty one-time infusion sub-events (not shown), wherein a 0.1 unit dose of infusible fluid 200 is delivered during each of the three-hundred-sixty one-time infusion sub-events. The number of sub-events defined above and the quantity of infusible fluid 200 delivered during each sub-event is solely for illustrative purposes only and is not intended to be a limitation of this disclosure, as the number of sub-events and/or the quantity of infusible fluid 200 delivered during each sub-event may be increased or decreased depending upon e.g., the design criteria of infusion pump assembly 100 and/or the implementation of fluid delivery process 236.
  • Before, after, or in between the above-described infusion sub-events, infusion pump assembly 100 may confirm the proper operation of infusion pump assembly 100 through the use of e.g., force sensor 216 (i.e., which may determine the occurrence of an occlusion) and displacement detection device 218 (i.e., which may determine the occurrence of a mechanical failure).
  • As discussed above, during operation of infusion pump assembly 100, infusible fluid 200 may be delivered to user 202 in accordance with e.g. a defined delivery schedule. For illustrative purposes only, assume that infusion pump assembly 100 is configured to provide 0.10 mL of infusible fluid 200 to user 202 every three minutes. Accordingly, every three minutes, processing logic 204 may provide the appropriate drive signals to motor assembly 214 to allow motor assembly 214 to rotate lead screw assembly 42 the appropriate amount so that partial nut assembly 40 (and therefore plunger assembly 224) may be displaced the appropriate amount in the direction of arrow 230 so that 0.10 mL of infusible fluid 200 are provided to user 202 (via cannula 38).
  • Processing logic 204 may execute occlusion detection process 238, and occlusion detection process 238 may be configured to monitor one or more events that are occurring within infusion pump assembly 100 to determine whether or not an occlusion (e.g., a blockage) has occurred within e.g. cannula assembly 114.
  • Referring also to FIGS. 18-19, occlusion detection process 238 may determine 1900 a rate-of-change force reading (e.g., FR01) that corresponds to the delivery of first dose 240 (FIG. 2) of infusible fluid 200.
  • When determining 1900 the rate-of-change force reading (e.g., FR01), occlusion detection process 238 may determine 1902 an initial force reading prior to dispensing first dose 240 of infusible fluid 200. As discussed above, infusion pump assembly 100 may regularly dispense individual doses of infusible fluid 200 based upon one or more infusion schedules. For example and as discussed above, infusion pump assembly 100 may be configured to dispense 0.10 mL of infusible fluid 200 to user 202 every three minutes.
  • When determining 1902 the initial force reading prior to dispensing first dose 240 of infusible fluid 200, occlusion detection process 238 may obtain the initial force reading from force sensor 216. Provided that there is not an occlusion within e.g. cannula assembly 114, the initial force reading obtained by occlusion detection process 238 prior to infusion pump assembly 100 dispensing first dose 240 of infusible fluid 200 should be zero pounds. Once occlusion detection process 238 determines 1902 the initial force reading, infusion pump assembly 100 may dispense 1904 first dose 240 of infusible fluid 200 to user 202 via cannula assembly 114. While the system may be described above and/or below as having a force reading of zero pounds prior to and/or subsequent to dispensing infusible fluid 200, this is for illustrative purposes only, as frictional forces and/or backpressure may result in force readings that are slightly higher than zero pounds.
  • Once infusion pump assembly 100 dispenses 1904 first dose 240 of infusible fluid 200 to user 202, occlusion detection process 238 may determine 1906 a final force reading subsequent to dispensing 1904 first dose 240 of infusible fluid 200. For example, once infusion pump assembly 100 has completely dispensed 1904 first dose 240 of infusible fluid 200 to user 202, occlusion detection process 238 may obtain the final force reading from force sensor 216 in a process similar to that used to obtain the initial force reading from force sensor 216.
  • Occlusion detection process 238 may determine 1900 the rate-of-change force reading (e.g., FR01) based, at least in part, upon the initial force reading and the final force reading. For example, occlusion detection process 238 may subtract the initial force reading from the final force reading to determine the net force change that occurred while dispensing (in this particular example) 0.10 mL of infusible fluid 200. As discussed above, provided that there are no occlusions within e.g. cannula assembly 114, the initial force reading (obtained from force sensor 216) should be zero and the final force reading (also obtained from force sensor 216) should also be zero. Accordingly, the rate-of-change force reading (e.g., FR01) determined 1900 by occlusion detection process 238 should also be zero.
  • While the system is described above as determining 1906 a final force reading subsequent to dispensing 1904 first dose 240 of infusible fluid 200, this final force reading may actually be based upon the initial force reading that is taken for the next dose of infusible fluid 200. Accordingly, by allowing the initial force reading of the second dose of infusible fluid 200 to provide the data for the final force reading of the first dose of infusible fluid 200, the total number of force readings made may be reduced by 50%.
  • Once the rate-of-change force reading (e.g., FR01) is determined, occlusion detection process 238 may store the rate-of-change force reading (e.g., FR01) within e.g., storage cell 1800 of storage array 1802. Storage array 1802 may be configured as a FIFO (first in, first out) buffer. Storage array 1802 may be configured to allow occlusion detection process 238 to maintain a plurality of historical values for the rate-of-change force readings (e.g., FR01) discussed above. A typical embodiment of storage array 1802 may include twenty or forty individual storage cells. While storage array 1802 is illustrated in FIG. 18 as being a multi-column storage array, this is for illustrative purposes only and is not intended to be a limitation of this disclosure. For example, storage array 1802 may be a single column storage array in which only the rate-of-change force readings are stored.
  • Occlusion detection process 238 may process the historical values of the rate-of-change force readings to determine an average rate-of-change force reading over a desired infusible fluid volume/number of infusion cycles. For example, occlusion detection process 238 may determine an average rate-of-change force reading over each forty infusion cycles. Accordingly, occlusion detection process 238 may determine 1908 additional rate-of-change force readings, each of which corresponds to the delivery of additional doses of infusible fluid 200. For example and for illustrative purposes only, occlusion detection process 238 may determine 1908 thirty-nine additional rate-of-change force readings for the next thirty-nine infusion cycles. Each of these thirty-nine rate-of-change force readings may be stored in a unique storage cell of storage array 1802. Once storage array 1802 is completely full (i.e. contains forty rate-of-change force readings), occlusion detection process 238 may determine an average rate-of-change force reading for the set of forty rate-of-change force readings. Once this average rate-of-change force reading is determined, storage array 1802 may be cleared and the process of gathering additional rate-of-change force readings may be repeated.
  • When determining additional rate-of-change force readings, occlusion detection process 238 may determine 1910 an initial force reading prior to dispensing the additional dose (e.g., dose 242) of infusible fluid 200. Dose 242 of infusible fluid may then be dispensed 1912 by infusion pump assembly 100. Occlusion detection process 238 may determine 1914 a final force reading subsequent to dispensing dose 242 of infusible fluid 200.
  • Occlusion detection process 238 may determine 1908 the additional rate-of-change force readings (e.g., FR2) based, at least in part, upon the initial force reading and the final force reading for each additional dose of infusible fluid 200. As discussed above, provided that there are no occlusions within e.g. cannula assembly 114, the initial force reading (obtained from force sensor 216) should be zero and the final force reading (also obtained from force sensor 216) should also be zero. Accordingly, the rate-of-change force reading (e.g., FR2) determined 1908 by occlusion detection process 238 should also be zero. As discussed above, once the additional rate-of-change force readings (e.g., FR2) are determined, occlusion detection process 238 may store the rate-of-change force reading (e.g., FR2) within e.g., storage cell 1804 of storage array 1802.
  • Assume for illustrative purposes that occlusion detection process 238 continues to calculate the rate-of-change force readings in the manner described above and continues to store these calculated rate-of-change force readings within storage array 1802. Further, assume for illustrative purposes that infusion pump assembly 100 continues to operate properly (i.e. without any occlusions) for the first thirty-three infusion cycles. Accordingly, the first thirty-three rate-of-change force readings (FR01-FR33) are all zero, as their respective initial force reading and final force reading were all zero. However, assume for illustrative purposes that an occlusion (e.g. occlusion 244) occurs within cannula assembly 114 prior to calculating the thirty-fourth, rate-of-change force reading (e.g., FR34), which is stored within storage cell 1806. Assume for illustrative purposes that when determining the thirty-fourth rate-of-change force reading (e.g., FR34), occlusion detection process 238 determines 1910 an initial force reading of 0.00 pounds. When infusion pump assembly 100 begins to dispense 1912 the thirty-fourth dose of infusible fluid 200, as occlusion 244 is present within cannula assembly 114, the fluid displaced from reservoir assembly 200 by plunger assembly 224 will not be able to pass through cannula assembly 114. Accordingly, the pressure within reservoir assembly 200 will begin to build. Therefore, assume for illustrative purposes that occlusion detection process 238 determines 1914 a final force reading of 0.50 pounds. Accordingly, occlusion detection process 238 may determine 1908 the rate-of-change force reading (e.g., FR34) to be 0.50 pounds minus 0.00 pounds, for a rate-of-change of 0.50 pounds.
  • Due to the presence of occlusion 244 within cannula assembly 114, when motor assembly 214 attempts to dispense the next dose of infusible fluid 200, 0.50 pounds of pressure sensed by force sensor 216 will still be present within fluid reservoir 200. Accordingly, when determining the thirty-fifth rate-of-change force reading (e.g., FR35), the initial force reading determined 1910 by occlusion detection process 238 may be the same as the final force reading determined by occlusion detection process 238 when determining the thirty-fourth rate-of-change force reading (e.g., FR34).
  • Occlusion detection process 238 may determine 1916 an average rate-of-change force reading (e.g., AFR) based, at least in part, upon all or a portion of the rate-of-change force readings included within storage array 1802. Assume for illustrative purposes that occlusion detection process 238 is configured to consider all rate-of-change force readings (e.g., FR01-FR40) included within storage array 1802. Accordingly, occlusion detection process 238 may calculate the mathematical average of all rate-of-change force readings (e.g., FR01-FR40) included within storage array 1802. In this particular example, average rate-of-change force reading (e.g., AFR) has a mathematical value of 0.105 pounds. While the system is described above as being capable of considering all rate-of-change force readings (e.g., FR01-FR40) included within storage array 1802, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible. For example, occlusion detection process 238 may be configured to determine 1916 an average rate-of-change force reading (e.g., AFR) once storage array 1802 is populated with e.g., the first five rate-of-change force readings. If determining 1916 an average rate-of-change force reading (e.g., AFR) prior to storage array 1802 being completely populated, any unpopulated rows within storage array 1802 may be populated with zeros.
  • Occlusion detection process 238 may compare 1918 the average rate-of-change force reading (e.g., AFR) to a threshold rate-of-change force reading to determine if the average rate-of-change force reading (e.g., AFR) exceeds the threshold rate-of-change force reading. If the average rate-of-change force reading does not exceed the threshold rate-of-change force reading, infusion pump assembly 100 may continue 1920 to operate normally. However, if the average rate-of-change force reading exceeds the threshold rate-of-change force reading, an alarm sequence may be initiated 1922 on infusion pump assembly 100. For example, assuming for illustrative purposes that occlusion detection process 238 is configured to have a threshold rate-of-change force reading of 0.90 pounds, only after the average rate-of-change force reading (e.g., AFR) exceeds 0.90 pounds will the alarm sequence be initiated 1920. Thus, in these embodiments, measuring the rate-of-change may ensure alarm sequences are triggered more reliably when actual occlusions have occurred. As described below, user 202, in some embodiments, defines the sensitivity of the system.
  • The sensitivity of occlusion detection process 238 may be based upon a user-defined sensitivity setting selected 1924 by e.g., user 202. For example, assume that occlusion detection process 238 has two sensitivity settings, namely a high sensitivity setting and a low sensitivity setting. Further, assume that each of the sensitivity settings is associated with a unique manner of determining the rate-of-change force readings included within storage array 1802. As discussed above, occlusion detection process 238 is described above as determining 1900 a rate-of-change force reading (e.g., FR01) that corresponds to the delivery of first dose 240 of infusible fluid 200. Assume that when configured in the high sensitivity setting, occlusion detection process 238 may determine 1900 a rate-of-change force reading that corresponds to the delivery of a comparatively smaller quantity of infusible fluid 200. Further, assume that when configured in the low sensitivity setting, occlusion detection process 238 may determine 1900 a rate-of-change force reading that corresponds to the delivery of a comparatively larger quantity of infusible fluid 200. For example, assume that when in the high sensitivity setting, occlusion detection process 238 determines 1900 a rate-of-change force reading that corresponds to the delivery of 0.10 mL of infusible fluid 200. Further, assume that when in the low sensitivity setting, occlusion detection process 238 determines 1900 a rate-of-change force reading that corresponds to the delivery of a 0.20 mL dose 240 of infusible fluid 200. Accordingly, when placed in the high sensitivity setting, additional measurements are taken and occlusion detection process 238 is more responsive. However, false alarms may occur more frequently. Conversely, when placed in the low sensitivity setting, fewer measurements are taken and occlusion detection process 238 is less responsive. However, false alarms may occur less frequently due to the “averaging” effect of taking fewer measurements. Accordingly, in order to avoid nuisance alarms (or to reduce the number of alarms), the user (e.g. user 202) may select 1924 the low sensitivity setting.
  • The alarm sequence initiated 1922 may include any combination of visual-based (via display system 104), audible-based (via a audio system 212), and vibration-based alarms (via vibration system 210). User 202 may be able to select between the high-sensitivity setting and the low-sensitivity setting via one or more of input system 208 and display system 104.
  • While infusion pump assembly 100 is described above as delivering a plurality of identically-sized doses of infusible fluid 200 and calculating a rate-of-change force reading (e.g., FR01) for each dose of infusible fluid 200, this is for illustrative purposes only and is not intended to be a limitation of this disclosure. Specifically, infusion pump assembly 100 may be configured to provide non-identical doses of infusible fluid 200. Further and as discussed above, infusion pump assembly 100 may be configured to allow user 202 to manually administer a “bolus” dose of infusible fluid 200 in a size determined by user 202. Accordingly, occlusion detection process 238 may be configured to monitor the volume of infusible fluid 200 dispensed in each dose and may be configured to populate storage array 1802 so that each rate-of-change force reading (e.g., FR01) included within storage array 1802 is indicative of the rate-of-change force sensed by occlusion detection process 238 when dispensing an equivalent quantity of infusible fluid 200. Accordingly, occlusion detection process 238 may be configured to “normalize” the rate-of-change force readings determined based upon the quantity of infusible fluid delivered.
  • For example, assume that occlusion detection process 238 is configured so that a storage cell included within storage array 1802 is populated each time 0.10 mL of infusible fluid 200 is dispensed. Assume for illustrative purposes only that user 202 decides to dispense a 0.25 mL dose of infusible fluid 200. As the 0.25 mL dose of infusible fluid 200 is greater than the 0.10 mL increments at which occlusion detection process 238 is configured to populate storage array 1802, occlusion detection process 238 may record multiple entries (and, therefore, populate multiple storage cells) within storage array 1802 for the single 0.25 mL dose of infusible fluid 200.
  • Specifically, assume that the initial force reading determined 1910 prior to delivering the 0.25 mL dose of infusible fluid 200 is 0.00 pounds and the final force reading determined 1914 after dispensing 1912 the 0.25 mL dose of infusible fluid 200 is 1.00 pounds. As the 0.25 mL dose of infusible fluid 200 is two-and-a-half times the 0.10 mL increments in which occlusion detection process 238 is configured to populate storage array 52, occlusion detection process 238 may “normalize” this rate-of-change force reading. Specifically, occlusion detection process 238 may divide 1.00 pounds by 0.25 mL to determine that the force changed 0.40 pounds per 0.10 mL. Accordingly, occlusion detection process 238 may calculate a rate-of-change force reading of 0.40 pounds for the first 0.10 mL dose of infusible fluid 200, 0.40 pounds for the second 0.10 mL dose of infusible fluid 200, and 0.20 pounds for the last 0.05 mL dose of infusible fluid 200.
  • Accordingly, occlusion detection process 238 may populate storage array 1802 so that a first storage cell (associated with the first 0.10 mL dose of infusible fluid 200) defines an initial force reading of 0.00 pounds, a final force reading of 0.40 pounds and a rate-of-change force reading of 0.40 pounds. Further, occlusion detection process 238 may populate storage array 1802 so that a second storage cell (associated with the second 0.10 mL dose of infusible fluid 200) defines an additional force reading of 0.40 pounds, a final force reading of 0.80 pounds and a rate-of-change force reading of 0.40 pounds.
  • Concerning the remaining 0.05 mL of the 0.25 mL dose of infusible fluid 200, as this is less than the 0.10 mL increment at which occlusion detection process 238 is configured to populate storage array 52, the next cell within storage array 1802 will not be populated until an additional 0.05 mL dose of infusible fluid 200 is dispensed.
  • Continuing with the above-stated example, assume for illustrative purposes that infusion pump assembly 100 administers a 0.15 mL dose of infusible fluid 200. Occlusion detection process 238 may combine the first 0.05 mL of the 0.15 mL dose of infusible fluid 200 with the remaining 0.05 mL of the 0.25 mL dose of infusible fluid 200 to form a complete 0.10 mL increment for recording within storage array 1802.
  • Again, occlusion detection process 238 may “normalize” the 0.15 mL dose of infusible fluid 200. Assume for illustrative purposes that when dispensing the 0.15 mL of infusible fluid 200, occlusion detection process 238 determines an initial force reading of 1.00 pounds and a final force reading of 1.60 pounds. In the manner described above, occlusion detection process 238 may divide 0.60 pounds (i.e., 1.60 pounds minus 1.00 pounds) by 0.15 mL to determine that the force changed 0.40 pounds per 0.10 mL. Accordingly, occlusion detection process 238 may calculate a rate-of-change force reading of 0.20 pounds for the first 0.05 mL of the 0.15 mL dose of infusible fluid 200, and 0.40 pounds for the remaining 0.10 mL of the 0.15 mL dose of infusible fluid 200.
  • Accordingly, occlusion detection process 238 may populate storage array 1802 so that a third storage cell (associated with the combination of the first 0.05 mL of the 0.15 mL dose of infusible fluid 200 with the remaining 0.05 mL of the 0.25 mL dose of infusible fluid 200) defines an initial force reading of 0.80 pounds (i.e., which is the final force reading after the second 0.10 mL of the 0.25 mL dose of infusible fluid 200), a final force reading of 1.20 pounds (i.e., the sum of the initial force reading of 1.00 pounds plus the 0.20 pound offset for the first 0.05 mL of the 0.15 mL dose of infusible fluid 200) and a rate-of-change force reading of 0.40 pounds. Further, occlusion detection process 238 may populate storage array 1802 so that a fourth storage cell (associated with the last 0.10 mL of the 0.15 mL dose of infusible fluid 200) defines an initial force reading of 1.20 pounds, a final force reading of 1.60 pounds and a rate-of-change force reading of 0.40 pounds.
  • In addition to comparing 1918 the average rate-of-change force reading (e.g., AFR) to a threshold rate-of-change force reading to determine if the average rate-of-change force reading (e.g., AFR) exceeds the threshold rate-of-change force reading, occlusion detection process 238 may compare 1926 one or more of the initial force reading and the final force reading to a threshold force reading to determine if either the initial force reading or the final force reading exceeds the threshold force reading. If either of the initial force reading or the final force reading exceeds the threshold force reading, an alarm sequence may be initiated 1928 on infusion pump assembly 100.
  • For example, occlusion detection process 238 may define a threshold force reading, which if exceeded by either the initial force reading (which is determined prior to dispensing a dose of infusible fluid 200) or the final force reading (which is determined after dispensing a dose of infusible fluid 200), an occlusion is deemed to be occurring. Examples of such a threshold force reading is 4.00 pounds. Therefore, if after dispensing a dose of infusible fluid 200, occlusion detection process 238 determines a final force reading of 5.20 pounds, occlusion detection process 238 may initiate 1928 an alarm sequence, as 5.20 pounds exceeds the 4.00 threshold force reading. The alarm sequence initiated 1928 may include any combination of visual-based (via display system 104), audible-based (via audio system 212), and vibration-based alarms (via vibration system 210).
  • As discussed above, infusion pump assembly 100 may include primary power supply 220 configured to power infusion pump assembly 100. Before and/or after dispensing a dose of infusible fluid 200, occlusion detection process 238 may compare 1930 the actual voltage level of primary power supply 220 to a minimum voltage requirement to determine if the actual voltage level of primary power supply 220 meets the minimum voltage requirement. If the actual voltage level does not meet the minimum voltage requirement, occlusion detection process 238 may initiate 1932 an alarm sequence on infusion pump assembly 100. The alarm sequence initiated 1932 may include any combination of visual-based (via display system 104), audible-based (via audio system 212), and vibration-based alarms (via vibration system 210). For example, assume for illustrative purposes that primary power supply 220 is a 5.00 VDC battery. Further, assume that the minimum voltage requirement is 3.75 VDC (i.e., 75% of normal voltage). Accordingly, if occlusion detection process 238 determines 1930 that the actual voltage level of primary power supply 220 is 3.60 VDC, occlusion detection process 238 may initiate 1932 an alarm sequence on infusion pump assembly 100.
  • Additionally, occlusion detection process 238 may monitor one or more of the displaceable mechanical components included within infusion pump assembly 100 to determine 1934 if one or more displaceable mechanical components included within infusion pump assembly 100 were displaced an expected displacement in response to delivering a dose of infusible fluid 200. If the displaceable mechanical components monitored were not displaced the expected displacement in response to delivering a dose of infusible fluid 200, occlusion detection process 238 may initiate 1936 an alarm sequence on infusion pump assembly 100. The alarm sequence initiated 1936 may include any combination of visual-based (via display system 104), audible-based (via audio system 212), and vibration-based alarms (via vibration system 210).
  • For example, upon processing logic 204 energizing motor assembly 214 to dispense 0.10 mL of infusible fluid 200, occlusion detection process 238 may (via displacement detection device 218) confirm that partial nut assembly 226 did indeed move the expected displacement. Accordingly, in the event that partial nut assembly 226 does not move the expected displacement, a mechanical failure (e.g. the failure of partial nut assembly 226, the failure of lead screw assembly 228, the failure of motor assembly 214) may have occurred. In the event that the expected displacement of partial nut assembly 226 cannot be confirmed, occlusion detection process 238 may initiate 1936 the alarm sequence on infusion pump assembly 100.
  • When determining whether partial nut assembly 226 was displaced the expected amount, tolerances may be utilized. For example, assume that to deliver a 0.10 mL dose of infusible fluid 200, occlusion detection process 238 may expect to see partial nut assembly 226 displaced 0.050 inches. Accordingly, occlusion detection process 238 may utilize a 10% error window in which movement of partial nut assembly 226 of less than 0.045 inches (i.e., 10% less than expected) would result in occlusion detection process 238 initiating 1936 the alarm sequence on infusion pump assembly 100.
  • In one embodiment of displacement detection device 218, displacement detection device 218 includes one or more light sources (not shown) positioned on one side of partial nut assembly 226 and one or more light detectors (not shown) positioned on the other side of partial nut assembly 226. Partial nut assembly 226 may include one or more passages (not shown) through which the light from the one or more light sources (not shown) included within displacement detection device 218 may shine and may be detected by the one or more light detectors (not shown) included within displacement detection device 218.
  • Referring now to FIG. 20, in some embodiments of the infusion pump system, the infusion pump may be remotely controlled using remote control assembly 2000. Remote control assembly 2000 may include all, or a portion of, the functionality of the pump assembly itself. Thus, in some exemplary embodiments of the above-described infusion pump assembly, the infusion pump assembly (not shown, see FIGS. 1A-1F, amongst other FIGS.) may be configured via remote control assembly 2000. In these particular embodiments, the infusion pump assembly may include telemetry circuitry (not shown) that allows for communication (e.g., wired or wireless) between the infusion pump assembly and e.g., remote control assembly 2000, thus allowing remote control assembly 2000 to remotely control infusion pump assembly 100′. Remote control assembly 2000 (which may also include telemetry circuitry (not shown) and may be capable of communicating with infusion pump assembly) may include display assembly 2002 and an input assembly, which may include one or more of the following: an input control device (such as jog wheel 2006, slider assembly 2012, or another conventional mode for input into a device), and switch assemblies 2008, 2010. Thus, although remote control assembly 2000 as shown in FIG. 20 includes jog wheel 2006 and slider assembly 2012, some embodiments may include only one of either jog wheel 2006 or slider assembly 2012, or another conventional mode for input into a device. In embodiments having jog wheel 2006, jog wheel 2006 may include a wheel, ring, knob, or the like, that may be coupled to a rotary encoder, or other rotary transducer, for providing a control signal based upon, at least in part, movement of the wheel, ring, knob, or the like.
  • Remote control assembly 2000 may include the ability to pre-program basal rates, bolus alarms, delivery limitations, and allow the user to view history and to establish user preferences. Remote control assembly 2000 may also include glucose strip reader 2014.
  • During use, remote control assembly 2000 may provide instructions to the infusion pump assembly via a wireless communication channel established between remote control assembly 2000 and the infusion pump assembly. Accordingly, the user may use remote control assembly 2000 to program/configure the infusion pump assembly. Some or all of the communication between remote control assembly 2000 and the infusion pump assembly may be encrypted to provide an enhanced level of security.
  • A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other implementations are within the scope of the following claims.

Claims (20)

What is claimed is:
1. An infusion pump device for delivering infusible fluid to a user, the device comprising:
a reusable pump portion comprising a motor assembly;
a disposable portion in removable relation to the reusable pump portion, the disposable portion comprising a plunger rod, the plunger rod connected to the plunger and extending away from the plunger to a distal end, the plunger rod having a threaded portion; and
processing logic for executing one or more processes in the reusable pump portion,
wherein when the disposable portion is attached to the reusable pump portion the plunger rod is engaged with the motor assembly, and
wherein the plunger rod is displaceable by the motor assembly, and
wherein the processing logic configured to monitor a displacement of the plunger rod to determine if the plunger rod was displaced an expected displacement in response to displacement by the motor assembly; and
wherein if the plunger rod was not displaced the expected displacement, initiating an alarm sequence on the infusion pump device.
2. The device in claim 1 further comprising a battery assembly configured to power the infusion pump device, wherein the processing logic configured to:
compare an actual voltage level of the battery assembly to a minimum voltage requirement to determine if the actual voltage level meets the minimum voltage requirement; and
if the actual voltage level does not meet the minimum voltage requirement, initiating an alarm sequence on the infusion pump device.
3. The device in claim 1 wherein the motor assembly comprises a nut assembly.
4. The device of claim 1 wherein the reusable pump portion is configured to receive the disposable portion.
5. The device of claim 1 wherein the plunger assembly comprises at least one seal.
6. The device of claim 1 wherein the disposable portion further comprises a needle.
7. The device of claim 1 wherein the disposable portion further comprises a rubber septum.
8. The device of claim 7 wherein the disposable portion further comprises a needle, wherein when the disposable portion is attached to the reusable pump portion, the needle pierces the septum.
9. An infusion pump device for delivering infusible fluid to a user, the device comprising:
a reusable pump portion comprising a motor assembly; and
a disposable portion in removable relation to the reusable pump portion, the disposable portion comprising:
a plunger rod, the plunger rod connected to the plunger and extending away from the plunger to a distal end, the plunger rod having a threaded portion extending over an entire length of the plunger rod from the plunger to the distal end,
wherein the plunger rod is displaceable by the motor assembly.
10. The device of claim 9 wherein the disposable portion further comprises a needle.
11. The device of claim 9 wherein the disposable portion further comprises a rubber septum.
12. The device of claim 11 wherein the disposable portion further comprises a needle, wherein when the disposable portion is attached to the reusable pump portion, the needle pierces the septum.
13. The device of claim 9 wherein the plunger assembly further comprises at least one seal.
14. The device of claim 9 further comprising processing logic for executing one or more processes in the reusable pump portion.
15. The device of claim 14 wherein the processing logic configured to monitor a displacement of the plunger rod to determine if the plunger rod was displaced an expected displacement in response to displacement by the motor assembly.
16. The device of claim 15 wherein and if the plunger rod was not displaced the expected displacement, initiating an alarm sequence on the infusion pump device.
17. An infusion pump device for delivering infusible fluid to a user, the device comprising:
a pump portion comprising a motor assembly wherein the motor assembly comprising a nut assembly; and
a reservoir in removable relation to the pump portion, the reservoir comprising:
a plunger rod, the plunger rod connected to the plunger and extending away from the plunger to a distal end, the plunger rod having a threaded portion extending over an entire length of the plunger rod from the plunger to the distal end,
wherein the plunger rod is displaceable by the nut assembly, and
wherein the pump portion is durable and the reservoir is disposable.
18. The device of claim 17 wherein the plunger assembly comprises at least one seal.
19. The device of claim 17 wherein the reservoir further comprises a rubber septum.
20. The device of claim 17 further comprising processing logic for executing one or more processes in the reusable pump portion, wherein the processing logic configured to:
monitor a displacement of the plunger rod to determine if the plunger rod was displaced an expected displacement in response to displacement by the motor assembly; and
if the plunger rod was not displaced the expected displacement, initiating an alarm sequence on the infusion pump device.
US17/222,052 2001-05-18 2021-04-05 Infusion pump assembly Abandoned US20210290861A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/222,052 US20210290861A1 (en) 2001-05-18 2021-04-05 Infusion pump assembly
US18/216,757 US20230338672A1 (en) 2017-09-06 2023-06-30 Multi-featured panel fastener and panel system including the multi-featured panel fastener

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US29188101P 2001-05-18 2001-05-18
US10/037,614 US7306578B2 (en) 2002-01-04 2002-01-04 Loading mechanism for infusion pump
US10/151,733 US20020173769A1 (en) 2001-05-18 2002-05-20 Infusion set for a fluid pump
US11/533,882 US9173996B2 (en) 2001-05-18 2006-09-21 Infusion set for a fluid pump
US12/249,891 US8034026B2 (en) 2001-05-18 2008-10-10 Infusion pump assembly
US13/269,089 US8632499B2 (en) 2001-05-18 2011-10-07 Infusion pump assembly
US14/159,134 US9446188B2 (en) 2001-05-18 2014-01-20 Infusion pump assembly
US15/269,187 US10500352B2 (en) 2001-05-18 2016-09-19 Infusion pump assembly
US15/869,860 US10967137B2 (en) 2001-05-18 2018-01-12 Infusion pump assembly
US17/222,052 US20210290861A1 (en) 2001-05-18 2021-04-05 Infusion pump assembly

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US15/869,860 Continuation US10967137B2 (en) 2001-05-18 2018-01-12 Infusion pump assembly
US16/123,127 Division US10995789B2 (en) 2017-09-06 2018-09-06 Multi-featured panel fastener and panel system including the multi-featured panel fastener

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/216,757 Continuation US20230338672A1 (en) 2017-09-06 2023-06-30 Multi-featured panel fastener and panel system including the multi-featured panel fastener

Publications (1)

Publication Number Publication Date
US20210290861A1 true US20210290861A1 (en) 2021-09-23

Family

ID=40534923

Family Applications (11)

Application Number Title Priority Date Filing Date
US12/249,891 Expired - Fee Related US8034026B2 (en) 2001-05-18 2008-10-10 Infusion pump assembly
US12/413,234 Expired - Fee Related US8845587B2 (en) 2001-05-18 2009-03-27 Infusion pump assembly
US12/429,555 Expired - Lifetime US8409143B2 (en) 2001-05-18 2009-04-24 Infusion pump assembly
US13/269,089 Expired - Fee Related US8632499B2 (en) 2001-05-18 2011-10-07 Infusion pump assembly
US13/854,307 Expired - Fee Related US9205188B2 (en) 2001-05-18 2013-04-01 Infusion pump assembly
US14/159,134 Expired - Fee Related US9446188B2 (en) 2001-05-18 2014-01-20 Infusion pump assembly
US14/500,082 Expired - Fee Related US9308318B2 (en) 2001-05-18 2014-09-29 Infusion pump assembly
US15/095,709 Abandoned US20160220755A1 (en) 2001-05-18 2016-04-11 Infusion Pump Assembly
US15/269,187 Expired - Fee Related US10500352B2 (en) 2001-05-18 2016-09-19 Infusion pump assembly
US15/869,860 Expired - Lifetime US10967137B2 (en) 2001-05-18 2018-01-12 Infusion pump assembly
US17/222,052 Abandoned US20210290861A1 (en) 2001-05-18 2021-04-05 Infusion pump assembly

Family Applications Before (10)

Application Number Title Priority Date Filing Date
US12/249,891 Expired - Fee Related US8034026B2 (en) 2001-05-18 2008-10-10 Infusion pump assembly
US12/413,234 Expired - Fee Related US8845587B2 (en) 2001-05-18 2009-03-27 Infusion pump assembly
US12/429,555 Expired - Lifetime US8409143B2 (en) 2001-05-18 2009-04-24 Infusion pump assembly
US13/269,089 Expired - Fee Related US8632499B2 (en) 2001-05-18 2011-10-07 Infusion pump assembly
US13/854,307 Expired - Fee Related US9205188B2 (en) 2001-05-18 2013-04-01 Infusion pump assembly
US14/159,134 Expired - Fee Related US9446188B2 (en) 2001-05-18 2014-01-20 Infusion pump assembly
US14/500,082 Expired - Fee Related US9308318B2 (en) 2001-05-18 2014-09-29 Infusion pump assembly
US15/095,709 Abandoned US20160220755A1 (en) 2001-05-18 2016-04-11 Infusion Pump Assembly
US15/269,187 Expired - Fee Related US10500352B2 (en) 2001-05-18 2016-09-19 Infusion pump assembly
US15/869,860 Expired - Lifetime US10967137B2 (en) 2001-05-18 2018-01-12 Infusion pump assembly

Country Status (1)

Country Link
US (11) US8034026B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11833325B2 (en) 2010-10-04 2023-12-05 Unomedical A/S Sprinkler cannula

Families Citing this family (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094352A2 (en) * 2001-05-18 2002-11-28 Deka Products Limited Partnership Infusion set for a fluid pump
US8034026B2 (en) * 2001-05-18 2011-10-11 Deka Products Limited Partnership Infusion pump assembly
US20080172026A1 (en) 2006-10-17 2008-07-17 Blomquist Michael L Insulin pump having a suspension bolus
US9123077B2 (en) 2003-10-07 2015-09-01 Hospira, Inc. Medication management system
US8065161B2 (en) 2003-11-13 2011-11-22 Hospira, Inc. System for maintaining drug information and communicating with medication delivery devices
US7905868B2 (en) * 2006-08-23 2011-03-15 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US8512288B2 (en) * 2006-08-23 2013-08-20 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
ES2354107T3 (en) 2005-09-12 2011-03-10 Unomedical A/S INSERTION DEVICE FOR AN INFUSION TEAM WITH A FIRST AND SECOND SPRING UNITS.
US8141844B2 (en) * 2005-10-26 2012-03-27 Codman NeuroSciences Sàrl Flow rate accuracy of a fluidic delivery system
US8149131B2 (en) 2006-08-03 2012-04-03 Smiths Medical Asd, Inc. Interface for medical infusion pump
JP2010507176A (en) 2006-10-16 2010-03-04 ホスピラ・インコーポレイテツド System and method for comparing and utilizing dynamic information and configuration information from multiple device management systems
US8613725B2 (en) * 2007-04-30 2013-12-24 Medtronic Minimed, Inc. Reservoir systems and methods
CA2685474C (en) 2007-04-30 2014-07-08 Medtronic Minimed, Inc. Reservoir filling, bubble management, and infusion medium delivery systems and methods with same
US7963954B2 (en) 2007-04-30 2011-06-21 Medtronic Minimed, Inc. Automated filling systems and methods
US8597243B2 (en) * 2007-04-30 2013-12-03 Medtronic Minimed, Inc. Systems and methods allowing for reservoir air bubble management
US9173997B2 (en) 2007-10-02 2015-11-03 Medimop Medical Projects Ltd. External drug pump
CN102216932A (en) * 2008-04-01 2011-10-12 史密斯医疗Asd公司 Software features for medical infusion pump
CA3132517C (en) 2008-09-15 2024-04-30 Deka Products Limited Partnership Systems and methods for fluid delivery
US8267892B2 (en) 2008-10-10 2012-09-18 Deka Products Limited Partnership Multi-language / multi-processor infusion pump assembly
US8728024B2 (en) 2008-10-10 2014-05-20 Deka Products Limited Partnership Infusion pump methods, systems and apparatus
US8262616B2 (en) 2008-10-10 2012-09-11 Deka Products Limited Partnership Infusion pump assembly
US9833569B2 (en) * 2008-10-10 2017-12-05 Deka Products Limited Partnership Infusion pump assembly
US8708376B2 (en) 2008-10-10 2014-04-29 Deka Products Limited Partnership Medium connector
US8066672B2 (en) 2008-10-10 2011-11-29 Deka Products Limited Partnership Infusion pump assembly with a backup power supply
US8223028B2 (en) 2008-10-10 2012-07-17 Deka Products Limited Partnership Occlusion detection system and method
US8016789B2 (en) 2008-10-10 2011-09-13 Deka Products Limited Partnership Pump assembly with a removable cover assembly
US9180245B2 (en) * 2008-10-10 2015-11-10 Deka Products Limited Partnership System and method for administering an infusible fluid
US20100217233A1 (en) * 2009-02-20 2010-08-26 Ranft Elizabeth A Method and device to anesthetize an area
EP4324499A3 (en) 2009-03-25 2024-04-24 DEKA Products Limited Partnership Infusion pump methods and systems
US8271106B2 (en) 2009-04-17 2012-09-18 Hospira, Inc. System and method for configuring a rule set for medical event management and responses
US8167846B2 (en) * 2009-07-08 2012-05-01 Medtronic Minimed, Inc. Reservoir filling systems and methods
US8641671B2 (en) 2009-07-30 2014-02-04 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8547239B2 (en) 2009-08-18 2013-10-01 Cequr Sa Methods for detecting failure states in a medicine delivery device
US8672873B2 (en) 2009-08-18 2014-03-18 Cequr Sa Medicine delivery device having detachable pressure sensing unit
US8882710B2 (en) 2009-09-02 2014-11-11 Medtronic Minimed, Inc. Insertion device systems and methods
US11497850B2 (en) 2009-12-30 2022-11-15 Medtronic Minimed, Inc. Connection and alignment detection systems and methods
US8070723B2 (en) * 2009-12-31 2011-12-06 Medtronic Minimed, Inc. Activity guard
CA2787660C (en) 2010-01-22 2019-09-10 Deka Products Limited Partnership Infusion pump apparatus, method and system
US9151646B2 (en) 2011-12-21 2015-10-06 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US9662438B2 (en) 2010-02-05 2017-05-30 Deka Products Limited Partnership Devices, methods and systems for wireless control of medical devices
CA2789141C (en) 2010-02-05 2018-06-12 Deka Products Limited Partnership Infusion pump apparatus, method and system
JP2013523233A (en) 2010-03-30 2013-06-17 ウノメディカル アクティーゼルスカブ Medical device
US9855650B2 (en) * 2010-06-04 2018-01-02 Husqvarna Ab Handle system for a handheld power tool
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9675751B2 (en) 2010-07-31 2017-06-13 Becton, Dickinson And Company Infusion reservoir with push-on connector features and/or attachments therefor
JP6010536B2 (en) * 2010-08-13 2016-10-19 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Coding system and drug delivery system for drug delivery device
US9308320B2 (en) 2010-09-24 2016-04-12 Perqflo, Llc Infusion pumps
AU2015201858B2 (en) * 2010-09-24 2018-01-18 Medtronic Minimed, Inc. Infusion pumps
US9498573B2 (en) 2010-09-24 2016-11-22 Perqflo, Llc Infusion pumps
US8915879B2 (en) 2010-09-24 2014-12-23 Perqflo, Llc Infusion pumps
US9216249B2 (en) 2010-09-24 2015-12-22 Perqflo, Llc Infusion pumps
US8905972B2 (en) 2010-11-20 2014-12-09 Perqflo, Llc Infusion pumps
US10194938B2 (en) 2011-03-14 2019-02-05 UnoMedical, AS Inserter system with transport protection
EP2551523A1 (en) * 2011-07-29 2013-01-30 Debiotech S.A. Method and device for accurate and low-consumption mems micropump actuation
CN103957962B (en) 2011-10-05 2017-07-07 犹诺医药有限公司 Insert for inserting multiple percutaneous parts simultaneously
US9987428B2 (en) 2011-10-14 2018-06-05 Amgen Inc. Injector and method of assembly
EP2583715A1 (en) 2011-10-19 2013-04-24 Unomedical A/S Infusion tube system and method for manufacture
EP2769357B1 (en) 2011-10-21 2023-08-30 ICU Medical, Inc. Medical device update system
US9724465B2 (en) 2011-12-21 2017-08-08 Deka Products Limited Partnership Flow meter
US10488848B2 (en) 2011-12-21 2019-11-26 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US9372486B2 (en) 2011-12-21 2016-06-21 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US9746094B2 (en) 2011-12-21 2017-08-29 Deka Products Limited Partnership Flow meter having a background pattern with first and second portions
US10228683B2 (en) 2011-12-21 2019-03-12 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US9435455B2 (en) 2011-12-21 2016-09-06 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US9746093B2 (en) 2011-12-21 2017-08-29 Deka Products Limited Partnership Flow meter and related system and apparatus
US9335910B2 (en) 2012-04-23 2016-05-10 Tandem Diabetes Care, Inc. System and method for reduction of inadvertent activation of medical device during manipulation
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US9238100B2 (en) 2012-06-07 2016-01-19 Tandem Diabetes Care, Inc. Device and method for training users of ambulatory medical devices
US9715327B2 (en) 2012-06-07 2017-07-25 Tandem Diabetes Care, Inc. Preventing inadvertent changes in ambulatory medical devices
USD719596S1 (en) 2012-12-20 2014-12-16 Sfs Intec Holding Ag Induction apparatus
US9759343B2 (en) 2012-12-21 2017-09-12 Deka Products Limited Partnership Flow meter using a dynamic background image
CN103083756A (en) * 2013-01-18 2013-05-08 郑州瑞宇科技有限公司 Intelligent insulin pump
CN110097963B (en) 2013-02-05 2023-11-17 德卡产品有限公司 Apparatus, method and system for wireless control of medical devices
CA2904053C (en) 2013-03-06 2023-01-03 Hospira, Inc. Medical device communication method
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US9421329B2 (en) 2013-03-15 2016-08-23 Tandem Diabetes Care, Inc. Infusion device occlusion detection system
US9603995B2 (en) 2013-03-15 2017-03-28 Tandem Diabetes Care. Inc. Device and method for setting therapeutic parameters for an infusion device
WO2014149357A1 (en) 2013-03-22 2014-09-25 Amgen Inc. Injector and method of assembly
USD762850S1 (en) * 2013-04-23 2016-08-02 Covidien Lp Cassette
JP6621748B2 (en) 2013-08-30 2019-12-18 アイシーユー・メディカル・インコーポレーテッド System and method for monitoring and managing a remote infusion regimen
US9662436B2 (en) 2013-09-20 2017-05-30 Icu Medical, Inc. Fail-safe drug infusion therapy system
ES2946751T3 (en) 2013-10-24 2023-07-25 Univ Boston Infusion system to prevent incorrect channeling of multiple medications
KR102458637B1 (en) 2013-10-24 2022-10-24 암겐 인코포레이티드 Injector and method of assembly
USD745661S1 (en) 2013-11-06 2015-12-15 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD749206S1 (en) 2013-11-06 2016-02-09 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD751689S1 (en) 2013-11-06 2016-03-15 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD752209S1 (en) * 2013-11-06 2016-03-22 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD751690S1 (en) * 2013-11-06 2016-03-15 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
US10311972B2 (en) 2013-11-11 2019-06-04 Icu Medical, Inc. Medical device system performance index
US10042986B2 (en) 2013-11-19 2018-08-07 Icu Medical, Inc. Infusion pump automation system and method
CA2945647C (en) 2014-04-30 2023-08-08 Hospira, Inc. Patient care system with conditional alarm forwarding
WO2015177652A1 (en) 2014-05-20 2015-11-26 Cequr Sa Medicine delivery device with restricted access filling port
KR102506249B1 (en) 2014-06-03 2023-03-03 암겐 인코포레이티드 Drug delivery system and method of use
US9724470B2 (en) 2014-06-16 2017-08-08 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US9539383B2 (en) 2014-09-15 2017-01-10 Hospira, Inc. System and method that matches delayed infusion auto-programs with manually entered infusion programs and analyzes differences therein
US10159786B2 (en) 2014-09-30 2018-12-25 Perqflo, Llc Hybrid ambulatory infusion pumps
EP3689394A1 (en) 2014-12-19 2020-08-05 Amgen Inc. Drug delivery device with live button or user interface field
EP3848072A1 (en) 2014-12-19 2021-07-14 Amgen Inc. Drug delivery device with proximity sensor
USD770034S1 (en) * 2015-01-09 2016-10-25 BioQ Pharma, Inc. Liquid medicament dosage control and delivery device
WO2016133789A2 (en) 2015-02-18 2016-08-25 Perqflo, Llc Ambulatory infusion pump and reservoir assemblies for use with same
AU2016267761B2 (en) 2015-05-26 2021-02-11 Icu Medical, Inc. Infusion pump system and method with multiple drug library editor source capability
WO2017007968A1 (en) 2015-07-08 2017-01-12 Trustees Of Boston University Infusion system and components thereof
US10576207B2 (en) 2015-10-09 2020-03-03 West Pharma. Services IL, Ltd. Angled syringe patch injector
WO2017060899A2 (en) 2015-10-05 2017-04-13 E3D Agricultural Cooperative Association Ltd. Infusion pump device and method for use thereof
CN112972833B (en) 2015-10-09 2024-01-09 西医药服务以色列分公司 Syringe needle cap remover
EP3405230A1 (en) 2016-01-19 2018-11-28 Unomedical A/S Cannula and infusion devices
CN109310816B (en) 2016-01-21 2020-04-21 西医药服务以色列有限公司 Needle insertion and retraction mechanism
JP6885960B2 (en) 2016-01-21 2021-06-16 ウェスト ファーマ サービシーズ イスラエル リミテッド Drug delivery device with visual indicators
CN111544704B (en) 2016-01-21 2022-06-03 西医药服务以色列有限公司 Force containment in autoinjectors
USD905848S1 (en) 2016-01-28 2020-12-22 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
SG10202110658VA (en) 2016-01-28 2021-11-29 Deka Products Lp Apparatus for monitoring, regulating, or controlling fluid flow
CN115607768A (en) 2016-02-12 2023-01-17 美敦力米尼梅德有限公司 Portable infusion pump and assembly for use therewith
USD809134S1 (en) * 2016-03-10 2018-01-30 Bigfoot Biomedical, Inc. Infusion pump assembly
US11389597B2 (en) 2016-03-16 2022-07-19 West Pharma. Services IL, Ltd. Staged telescopic screw assembly having different visual indicators
USD854145S1 (en) 2016-05-25 2019-07-16 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
US10603445B2 (en) 2016-06-09 2020-03-31 Becton, Dickinson And Company Needle actuator assembly for drug delivery system
US10751476B2 (en) 2016-06-09 2020-08-25 Becton, Dickinson And Company Actuator assembly for drug delivery system
US10549044B2 (en) 2016-06-09 2020-02-04 Becton, Dickinson And Company Spacer assembly for drug delivery system
US10792432B2 (en) 2016-06-09 2020-10-06 Becton, Dickinson And Company Drive assembly and spacer for drug delivery system
CA3027961C (en) 2016-06-16 2021-09-07 Smiths Medical Asd, Inc. Assemblies and methods for infusion pump system administration sets
NZ750032A (en) 2016-07-14 2020-05-29 Icu Medical Inc Multi-communication path selection and security system for a medical device
WO2018026387A1 (en) 2016-08-01 2018-02-08 Medimop Medical Projects Ltd. Anti-rotation cartridge pin
CN109640920B (en) 2016-08-22 2022-06-07 伊莱利利公司 Safe drug transfer system
AU2017335762B2 (en) 2016-09-27 2022-03-17 Bigfoot Biomedical, Inc. Medicine injection and disease management systems, devices, and methods
USD836769S1 (en) * 2016-12-12 2018-12-25 Bigfoot Biomedical, Inc. Insulin delivery controller
CA3037432A1 (en) 2016-12-12 2018-06-21 Bigfoot Biomedical, Inc. Alarms and alerts for medication delivery devices and related systems and methods
BR112019013985A2 (en) 2017-01-06 2020-03-03 Trustees Of Boston University INFUSION SYSTEM AND COMPONENTS OF THE SAME
JP6848446B2 (en) * 2017-01-11 2021-03-24 富士電機株式会社 Switching power supply
CN106860956B (en) * 2017-03-17 2020-09-15 苏州艾伊帕微动力科技有限公司 Portable automatic chronic disease monitoring/drug delivery device driven by flexible micropump
EP3630226A1 (en) 2017-05-30 2020-04-08 West Pharma. Services Il, Ltd. Modular drive train for wearable injector
USD839294S1 (en) 2017-06-16 2019-01-29 Bigfoot Biomedical, Inc. Display screen with graphical user interface for closed-loop medication delivery
US20230123806A1 (en) 2017-07-07 2023-04-20 Neuroderm, Ltd. Device for subcutaneous delivery of fluid medicament
WO2019008529A1 (en) 2017-07-07 2019-01-10 Neuroderm Ltd Device for subcutaneous delivery of fluid medicament
EP3651647A1 (en) 2017-07-13 2020-05-20 Bigfoot Biomedical, Inc. Multi-scale display of blood glucose information
CN110944697B (en) 2017-07-19 2022-09-09 史密斯医疗Asd公司 Casing arrangement for infusion pump
US20190022330A1 (en) * 2017-07-21 2019-01-24 Verily Life Sciences Llc Strain based dosage measurement
CN107456625B (en) * 2017-09-12 2018-08-14 美敦力公司 Fluid infusion apparatus and its drive system
JP7111809B2 (en) 2017-10-16 2022-08-02 ベクトン・ディキンソン・アンド・カンパニー Spacer assembly for drug delivery device
CN109718428A (en) * 2017-10-31 2019-05-07 比亚迪股份有限公司 A kind of locker and portable injection pump
CN107762825A (en) * 2017-12-04 2018-03-06 西南石油大学 A kind of pressure break pump hydraulic end plunger and spool position detecting system
USD907193S1 (en) 2018-02-21 2021-01-05 Eli Lilly And Company Secured medication transfer set
EP3824383B1 (en) 2018-07-17 2023-10-11 ICU Medical, Inc. Systems and methods for facilitating clinical messaging in a network environment
US10861592B2 (en) 2018-07-17 2020-12-08 Icu Medical, Inc. Reducing infusion pump network congestion by staggering updates
US11483403B2 (en) 2018-07-17 2022-10-25 Icu Medical, Inc. Maintaining clinical messaging during network instability
AU2019306490A1 (en) 2018-07-17 2021-02-04 Icu Medical, Inc. Updating infusion pump drug libraries and operational software in a networked environment
US10692595B2 (en) 2018-07-26 2020-06-23 Icu Medical, Inc. Drug library dynamic version management
CA3107315C (en) 2018-07-26 2023-01-03 Icu Medical, Inc. Drug library management system
WO2020036858A1 (en) 2018-08-13 2020-02-20 Monumedical, Llc Syringe with multi-stage filling and dispensing
EP3966992A4 (en) 2019-05-08 2023-06-21 ICU Medical, Inc. Threshold signature based medical device management
US11458292B2 (en) 2019-05-20 2022-10-04 Unomedical A/S Rotatable infusion device and methods thereof
US11793930B2 (en) 2019-06-06 2023-10-24 Medtronic Minimed, Inc. Fluid infusion systems
WO2021011699A1 (en) 2019-07-16 2021-01-21 Beta Bionics, Inc. Ambulatory device and components thereof
USD964563S1 (en) 2019-07-26 2022-09-20 Deka Products Limited Partnership Medical flow clamp
WO2021021596A1 (en) 2019-07-26 2021-02-04 Deka Products Limited Partnership Apparatus for monitoring, regulating, or controlling fluid flow
USD948037S1 (en) * 2019-11-15 2022-04-05 Kpr U.S., Llc Cassette
USD1031975S1 (en) 2020-03-10 2024-06-18 Beta Bionics, Inc. Medicament infusion pump device
US11278661B2 (en) 2020-03-10 2022-03-22 Beta Bionics, Inc. Infusion system and components thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423035B1 (en) * 1999-06-18 2002-07-23 Animas Corporation Infusion pump with a sealed drive mechanism and improved method of occlusion detection
US20040176725A1 (en) * 2003-03-05 2004-09-09 Medtronic Minimed Inc. Lead screw driven reservoir with integral plunger nut and method of using the same
US20070100283A1 (en) * 2000-03-23 2007-05-03 Minimed Inc. Control tabs for infusion devices and methods of using the same
US8632499B2 (en) * 2001-05-18 2014-01-21 Deka Products Limited Partnership Infusion pump assembly

Family Cites Families (674)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US115917A (en) 1871-06-13 Improvement in hose-couplings
US5935099A (en) 1992-09-09 1999-08-10 Sims Deltec, Inc. Drug pump systems and methods
US6241704B1 (en) 1901-11-22 2001-06-05 Sims Deltec, Inc. Drug pump systems and methods
US5669877A (en) 1994-03-07 1997-09-23 Sims Deltec, Inc. Systems and methods for automated testing of medical equipment
US5876370A (en) 1995-10-11 1999-03-02 Sims Deltec, Inc. Intermittent fluid delivery apparatus and method
US5338157B1 (en) 1992-09-09 1999-11-02 Sims Deltec Inc Systems and methods for communicating with ambulat
US3631847A (en) 1966-03-04 1972-01-04 James C Hobbs Method and apparatus for injecting fluid into the vascular system
US3623474A (en) * 1966-07-25 1971-11-30 Medrad Inc Angiographic injection equipment
US3692027A (en) * 1971-04-23 1972-09-19 Everett H Ellinwood Jr Implanted medication dispensing device and method
US3752510A (en) 1971-10-07 1973-08-14 Sherwood Medical Ind Inc Structure for connecting a flexible tube to a syringe
US3837339A (en) 1972-02-03 1974-09-24 Whittaker Corp Blood glucose level monitoring-alarm system and method therefor
US3811122A (en) 1972-06-23 1974-05-14 Baker Ind Inc Supervised battery power supply
US3811121A (en) 1972-06-23 1974-05-14 Baker Ind Inc Supervised battery power supply
US3887393A (en) 1972-12-15 1975-06-03 Bell & Howell Co Battery holder assembly
US4146029A (en) 1974-04-23 1979-03-27 Ellinwood Jr Everett H Self-powered implanted programmable medication system and method
US3951147A (en) 1975-04-07 1976-04-20 Metal Bellows Company Implantable infusate pump
US4046287A (en) * 1976-05-10 1977-09-06 Graco Inc. Automatic metering and dispensing system
USD248873S (en) 1976-07-01 1978-08-08 Concord Laboratories Blood gas syringe stopper
US4273122A (en) 1976-11-12 1981-06-16 Whitney Douglass G Self contained powered injection system
US4267836A (en) * 1976-11-12 1981-05-19 Whitney Douglass G Injection device and method
US4150672A (en) 1976-11-12 1979-04-24 Martin John K Injection device and method
US4123631A (en) 1977-02-16 1978-10-31 Owens-Illinois, Inc. Touch switch
NL7714233A (en) 1977-12-22 1979-06-26 Philips Nv BATTERY HOLDER.
US4559037A (en) 1977-12-28 1985-12-17 Siemens Aktiengesellschaft Device for the pre-programmable infusion of liquids
DE2758368C2 (en) 1977-12-28 1985-10-17 Siemens AG, 1000 Berlin und 8000 München Device for the pre-programmable infusion of liquids
DE2758467C2 (en) 1977-12-28 1985-04-04 Siemens AG, 1000 Berlin und 8000 München Device for the pre-programmable infusion of liquids
US4273121A (en) 1978-02-17 1981-06-16 Andros Incorporated Medical infusion system
US4331262A (en) 1978-04-07 1982-05-25 New Brunswick Scientific Co., Inc. Calibratable automatic fluid dispenser
USD254446S (en) 1978-04-14 1980-03-11 Concord Laboratories Blood gas syringe stopper
US4215701A (en) 1978-08-21 1980-08-05 Concord Laboratories, Inc. Elastomeric plunger tip for a syringe
DE7831842U1 (en) 1978-10-26 1979-03-08 Braun Ag, 6000 Frankfurt Pocket calculator with a chamber for holding batteries
US4373527B1 (en) 1979-04-27 1995-06-27 Univ Johns Hopkins Implantable programmable medication infusion system
US4731051A (en) 1979-04-27 1988-03-15 The Johns Hopkins University Programmable control means for providing safe and controlled medication infusion
US4533346A (en) 1979-06-26 1985-08-06 Pharmacontrol Corporation System for automatic feedback-controlled administration of drugs
US4296949A (en) 1979-08-06 1981-10-27 Abbott Laboratories Rotatable connecting device for I.V. administration set
US4452532A (en) 1980-06-18 1984-06-05 Philip Morris Incorporated Beam alignment tool and method
US4503494A (en) 1980-06-26 1985-03-05 Texas Instruments Incorporated Non-volatile memory system
AU546785B2 (en) 1980-07-23 1985-09-19 Commonwealth Of Australia, The Open-loop controlled infusion of diabetics
DE3035670A1 (en) 1980-09-22 1982-04-29 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR INFUSING LIQUIDS IN HUMAN OR ANIMAL BODIES
US4371594A (en) 1980-10-03 1983-02-01 Canon Kabushiki Kaisha Battery accommodating device
JPS57211361A (en) 1981-06-23 1982-12-25 Terumo Corp Liquid injecting apparatus
US4392849A (en) 1981-07-27 1983-07-12 The Cleveland Clinic Foundation Infusion pump controller
US4437859A (en) 1981-08-03 1984-03-20 Drs Infusion Systems, Inc. Hydraulic syringe drive
US4391883A (en) 1981-09-28 1983-07-05 Motorola, Inc. Housing arrangement with breakaway battery access door
US4529401A (en) 1982-01-11 1985-07-16 Cardiac Pacemakers, Inc. Ambulatory infusion pump having programmable parameters
US4494950A (en) 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4435173A (en) * 1982-03-05 1984-03-06 Delta Medical Industries Variable rate syringe pump for insulin delivery
US4498843A (en) 1982-08-02 1985-02-12 Schneider Philip H Insulin infusion pump
US4443218A (en) 1982-09-09 1984-04-17 Infusaid Corporation Programmable implantable infusate pump
US4464170A (en) 1982-09-29 1984-08-07 Miles Laboratories, Inc. Blood glucose control apparatus and method
US4624661A (en) 1982-11-16 1986-11-25 Surgidev Corp. Drug dispensing system
US4465472A (en) 1982-11-22 1984-08-14 American Hospital Supply Corp. Syringe cartridge and method
US4493704A (en) * 1982-11-29 1985-01-15 Oximetrix, Inc. Portable fluid infusion apparatus
US4543093A (en) 1982-12-20 1985-09-24 Becton, Dickinson And Company Variable sealing pressure plunger rod assembly
US5776116A (en) 1983-01-24 1998-07-07 Icu Medical, Inc. Medical connector
IT1170375B (en) 1983-04-19 1987-06-03 Giuseppe Bombardieri Implantable device for measuring body fluid parameters
IL69431A (en) 1983-08-04 1987-12-31 Omikron Scient Ltd Liquid delivery system particularly useful as an implantable micro-pump for delivering insulin or other drugs
US4561856A (en) 1983-08-18 1985-12-31 Cochran Ulrich D Infusion pump
US4685902A (en) 1983-08-24 1987-08-11 Becton, Dickinson And Company Disposable reservoir cassette
ATE95433T1 (en) 1983-11-15 1993-10-15 Dean L Kamen CONTAINER STRUCTURE FOR THE INTERCHANGEABLE CONNECTION WITH A MOTOR DRIVE.
US4648872A (en) 1983-11-15 1987-03-10 Kamen Dean L Volumetric pump with replaceable reservoir assembly
US4826810A (en) 1983-12-16 1989-05-02 Aoki Thomas T System and method for treating animal body tissues to improve the dietary fuel processing capabilities thereof
US4685903A (en) 1984-01-06 1987-08-11 Pacesetter Infusion, Ltd. External infusion pump apparatus
US4562751A (en) 1984-01-06 1986-01-07 Nason Clyde K Solenoid drive apparatus for an external infusion pump
US4678408A (en) 1984-01-06 1987-07-07 Pacesetter Infusion, Ltd. Solenoid drive apparatus for an external infusion pump
CA1257165A (en) 1984-02-08 1989-07-11 Paul Epstein Infusion system having plural fluid input ports and at least one patient output port
US5100380A (en) 1984-02-08 1992-03-31 Abbott Laboratories Remotely programmable infusion system
US4550731A (en) 1984-03-07 1985-11-05 Cordis Corporation Acquisition circuit for cardiac pacer
US4542532A (en) 1984-03-09 1985-09-17 Medtronic, Inc. Dual-antenna transceiver
GB8408847D0 (en) 1984-04-05 1984-05-16 Ti Group Services Ltd Electrical switches
CA1254091A (en) 1984-09-28 1989-05-16 Vladimir Feingold Implantable medication infusion system
US4559038A (en) 1984-10-19 1985-12-17 Deltec Systems, Inc. Drug delivery system
US4714463A (en) 1984-11-29 1987-12-22 Minnesota Mining And Manufacturing Company Sequence valve for piggyback IV administration with tube reversal prevention
US5088981A (en) 1985-01-18 1992-02-18 Howson David C Safety enhanced device and method for effecting application of a therapeutic agent
US4735441A (en) 1985-06-03 1988-04-05 Hewlett-Packard Company Non-loosening luer nut
US4690878A (en) 1985-08-23 1987-09-01 Minolta Camera Kabukishi Kaisha Battery power detector for sensing presence of batteries
US5364346A (en) 1985-12-20 1994-11-15 Schrezenmeir Juergen Process for the continuous and discontinuous administration of insulin to the human body
US4741731A (en) 1986-02-19 1988-05-03 Fibra-Sonics, Inc. Vented ultrasonic transducer for surgical handpiece
US5575310A (en) 1986-03-04 1996-11-19 Deka Products Limited Partnership Flow control system with volume-measuring system using a resonatable mass
US5349852A (en) 1986-03-04 1994-09-27 Deka Products Limited Partnership Pump controller using acoustic spectral analysis
US4731726A (en) 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US4693684A (en) 1986-05-30 1987-09-15 Johnson & Johnson Dental Products Company Ratchet type dispenser for dental materials
US4803625A (en) 1986-06-30 1989-02-07 Buddy Systems, Inc. Personal health monitor
GB8618253D0 (en) 1986-07-25 1986-09-03 Wallace Ltd H G Intermittent administration of therapeutic substance
DE8622507U1 (en) 1986-08-22 1986-10-09 B. Braun Melsungen Ag, 3508 Melsungen Puncture cannula
US4790028A (en) 1986-09-12 1988-12-06 Westinghouse Electric Corp. Method and apparatus for generating variably scaled displays
JPH0747045B2 (en) 1986-10-15 1995-05-24 株式会社大協精工 Stacked syringe stopper
US4804368A (en) 1986-12-05 1989-02-14 C. R. Bard, Inc. Battery operated miniature syringe infusion pump and improved halfnut therefor
US4747828A (en) 1986-12-09 1988-05-31 Fisher Scientific Group IV fluid line occlusion detector
US4919650A (en) 1987-03-30 1990-04-24 Bionica Pty. Limited Infusion pump
US5216597A (en) 1987-05-01 1993-06-01 Diva Medical Systems Bv Diabetes therapy management system, apparatus and method
EP0290683A3 (en) 1987-05-01 1988-12-14 Diva Medical Systems B.V. Diabetes management system and apparatus
AU609843B2 (en) 1987-06-19 1991-05-09 University Of Melbourne, The Infusion pump
US5207642A (en) 1987-08-07 1993-05-04 Baxter International Inc. Closed multi-fluid delivery system and method
US5201711A (en) 1987-09-30 1993-04-13 Sherwood Medical Company Safety interlock system for medical fluid pumps
US4809697A (en) 1987-10-14 1989-03-07 Siemens-Pacesetter, Inc. Interactive programming and diagnostic system for use with implantable pacemaker
US4856340A (en) 1987-12-01 1989-08-15 Minimed Technologies Pressure diaphragm for a medication infusion system
US5025374A (en) 1987-12-09 1991-06-18 Arch Development Corp. Portable system for choosing pre-operative patient test
US4834712A (en) 1988-01-15 1989-05-30 Corpak, Inc. Tube fixation device
US4898578A (en) 1988-01-26 1990-02-06 Baxter International Inc. Drug infusion system with calculator
JPH0534669Y2 (en) 1988-03-16 1993-09-02
FR2629988B1 (en) * 1988-04-15 1990-08-10 Oreal RECHARGEABLE DISPENSER HAVING A TRANSLATABLE PISTON
US5803712A (en) 1988-05-17 1998-09-08 Patient Solutions, Inc. Method of measuring an occlusion in an infusion device with disposable elements
GB2218831A (en) 1988-05-17 1989-11-22 Mark John Newland Personal medical apparatus
JP2717808B2 (en) 1988-08-10 1998-02-25 テルモ株式会社 Syringe pump
US4849852A (en) 1988-09-30 1989-07-18 Alps Electric (U.S.A.), Inc. Variable capacitance push-button switch
US4881063A (en) 1989-01-30 1989-11-14 Ei Company, Ltd. Battery removal indicator
US5153827A (en) 1989-01-30 1992-10-06 Omni-Flow, Inc. An infusion management and pumping system having an alarm handling system
US4880712A (en) 1989-03-08 1989-11-14 Motorola, Inc. Battery housing
US4959640A (en) 1989-03-09 1990-09-25 Pioneer Manufacturing, Inc. Apparatus for detect missing battery in smoke detector
US5205819A (en) * 1989-05-11 1993-04-27 Bespak Plc Pump apparatus for biomedical use
US5055830A (en) 1989-06-12 1991-10-08 Pittway Corporation Battery sensing mechanism
US5103216A (en) 1989-06-12 1992-04-07 Pittway Corporation Improperly inserted battery detector
US5569236A (en) * 1989-06-16 1996-10-29 Science Incorporated Fluid delivery apparatus
GB8914417D0 (en) 1989-06-23 1989-08-09 Rank Taylor Hobson Ltd Interpolator
EP0404597B1 (en) 1989-06-23 1996-08-21 Rank Taylor Hobson Limited Metrological apparatus and calibration method therefor
US5101814A (en) 1989-08-11 1992-04-07 Palti Yoram Prof System for monitoring and controlling blood glucose
US4972508A (en) 1989-08-28 1990-11-20 Motorola, Inc. Housing for a battery powered device
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5104374A (en) 1990-01-16 1992-04-14 Bishko Jay R Electronic fluid flow rate controller for controlling the infusion of intravenous drugs into a patient
US5254093A (en) 1990-02-12 1993-10-19 Medical Appliances, Inc. Non-reusable hypodermic syringe
US5191855A (en) 1990-02-26 1993-03-09 Pittway Corporation Battery missing indicator
GB9007113D0 (en) * 1990-03-29 1990-05-30 Sams Bernard Dispensing device
US5080653A (en) 1990-04-16 1992-01-14 Pacesetter Infusion, Ltd. Infusion pump with dual position syringe locator
US5165407A (en) 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US5049141A (en) 1990-04-25 1991-09-17 Infusaid, Inc. Programmable valve pump
US5176502A (en) 1990-04-25 1993-01-05 Becton, Dickinson And Company Syringe pump and the like for delivering medication
US5078683A (en) 1990-05-04 1992-01-07 Block Medical, Inc. Programmable infusion system
US5270702A (en) 1990-06-04 1993-12-14 Motorola, Inc. Battery door for a selective call receiver
US5174716A (en) 1990-07-23 1992-12-29 General Electric Company Pitch change mechanism
US5176662A (en) 1990-08-23 1993-01-05 Minimed Technologies, Ltd. Subcutaneous injection set with improved cannula mounting arrangement
US5217442A (en) 1990-09-28 1993-06-08 Minimed Technologies Aspiration and refill kit for a medication infusion pump
JPH089891Y2 (en) 1990-11-27 1996-03-21 リオン株式会社 Hearing aid battery storage
US5176644A (en) 1990-11-29 1993-01-05 Minimed Technologies, Ltd. Medication infusion pump with improved liquid-vapor pressure reservoir
US5197322A (en) 1990-11-29 1993-03-30 Minimed Technologies, Ltd. Pressure reservoir filling process for an implantable medication infusion pump
US5508690A (en) 1991-02-13 1996-04-16 E-Systems, Inc. Programmable data alarm
US5181910A (en) 1991-02-28 1993-01-26 Pharmacia Deltec, Inc. Method and apparatus for a fluid infusion system with linearized flow rate change
GB9108655D0 (en) 1991-04-23 1991-06-12 Waverley Pharma Ltd Improved multi-use liquid dispensers
US5197895A (en) 1991-05-10 1993-03-30 Bicore Monitoring Systems Disposable electro-fluidic connector with data storage
EP0514907B1 (en) 1991-05-23 1996-07-10 Ivac Corporation Syringe plunger driver system
US5236416A (en) * 1991-05-23 1993-08-17 Ivac Corporation Syringe plunger position detection and alarm generation
US5300031A (en) 1991-06-07 1994-04-05 Liebel-Flarsheim Company Apparatus for injecting fluid into animals and disposable front loadable syringe therefor
US5102388A (en) 1991-07-15 1992-04-07 Richmond John E Sequential delivery syringe
US5545142A (en) 1991-10-18 1996-08-13 Ethicon, Inc. Seal members for surgical trocars
US5641892A (en) 1995-06-07 1997-06-24 Deka Products Limited Partnership Intravenous-line air-detection system
US5755683A (en) 1995-06-07 1998-05-26 Deka Products Limited Partnership Stopcock valve
CA2060131C (en) 1992-01-28 1995-06-27 John Mallory Battery socket for smoke detector
US5279585A (en) 1992-02-04 1994-01-18 Becton, Dickinson And Company Medication delivery pen having improved dose delivery features
NL9200207A (en) 1992-02-05 1993-09-01 Nedap Nv IMPLANTABLE BIOMEDICAL SENSOR DEVICE, IN PARTICULAR FOR MEASUREMENT OF THE GLUCOSE CONCENTRATION.
JPH08275927A (en) 1992-02-13 1996-10-22 Seta:Kk Homestay medical care system and medical device used in this system
US5405614A (en) 1992-04-08 1995-04-11 International Medical Associates, Inc. Electronic transdermal drug delivery system
US6090071A (en) 1992-04-17 2000-07-18 Science Incorporated Fluid dispenser with fill adapter
GB9209362D0 (en) 1992-04-30 1992-06-17 Varitronix Ltd A contact sensitive substrate
US5543588A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Touch pad driven handheld computing device
US5569026A (en) 1992-06-18 1996-10-29 Storz Endoskop Gmbh Tube pump in which tube can be inserted only in one direction
US5314416A (en) 1992-06-22 1994-05-24 Sherwood Medical Company Low friction syring assembly
US5337215A (en) 1992-07-10 1994-08-09 Sherwood Medical Company Pivoting battery compartment and door
US5248569A (en) 1992-07-30 1993-09-28 Motorola, Inc. Battery door having integrated locking mechanism
DE4228958A1 (en) 1992-08-31 1994-03-03 Vorwerk Co Interholding Spacer fabric
US5788669A (en) 1995-11-22 1998-08-04 Sims Deltec, Inc. Pump tracking system
US5254096A (en) 1992-09-23 1993-10-19 Becton, Dickinson And Company Syringe pump with graphical display or error conditions
US5376070A (en) 1992-09-29 1994-12-27 Minimed Inc. Data transfer system for an infusion pump
ES2154651T3 (en) 1992-10-15 2001-04-16 Gen Hospital Corp INFUSION PUMP WITH ELECTRONICALLY CHARGABLE MEDICATIONS LIBRARY.
US5391157A (en) 1992-10-20 1995-02-21 Eli Lilly And Company End of dose indicator
US5933136A (en) 1996-12-23 1999-08-03 Health Hero Network, Inc. Network media access control system for encouraging patient compliance with a treatment plan
US5940801A (en) 1994-04-26 1999-08-17 Health Hero Network, Inc. Modular microprocessor-based diagnostic measurement apparatus and method for psychological conditions
US5913310A (en) 1994-05-23 1999-06-22 Health Hero Network, Inc. Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game
US5879163A (en) 1996-06-24 1999-03-09 Health Hero Network, Inc. On-line health education and feedback system using motivational driver profile coding and automated content fulfillment
US5307263A (en) 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US5997476A (en) 1997-03-28 1999-12-07 Health Hero Network, Inc. Networked system for interactive communication and remote monitoring of individuals
US5960403A (en) 1992-11-17 1999-09-28 Health Hero Network Health management process control system
US5897493A (en) 1997-03-28 1999-04-27 Health Hero Network, Inc. Monitoring system for remotely querying individuals
US5899855A (en) 1992-11-17 1999-05-04 Health Hero Network, Inc. Modular microprocessor-based health monitoring system
US6101478A (en) 1997-04-30 2000-08-08 Health Hero Network Multi-user remote health monitoring system
US5832448A (en) 1996-10-16 1998-11-03 Health Hero Network Multiple patient monitoring system for proactive health management
US5918603A (en) 1994-05-23 1999-07-06 Health Hero Network, Inc. Method for treating medical conditions using a microprocessor-based video game
US5956501A (en) 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US5364242A (en) 1992-11-25 1994-11-15 Pharmacia Deltec, Inc. Pump apparatus and method including double activation pump apparatus
US5545143A (en) 1993-01-21 1996-08-13 T. S. I. Medical Device for subcutaneous medication delivery
US20080215029A1 (en) 1993-01-22 2008-09-04 I-Flow Corporation Platen pump
DK25793A (en) 1993-03-09 1994-09-10 Pharma Plast Int As Infusion set for intermittent or continuous administration of a therapeutic agent
US5383865A (en) 1993-03-15 1995-01-24 Eli Lilly And Company Medication dispensing device
US5357427A (en) 1993-03-15 1994-10-18 Digital Equipment Corporation Remote monitoring of high-risk patients using artificial intelligence
US5257971A (en) 1993-03-16 1993-11-02 Minimed Technologies, Ltd. Recondition process for a medication infusion pump
US5433710A (en) 1993-03-16 1995-07-18 Minimed, Inc. Medication infusion pump with fluoropolymer valve seat
US5426602A (en) 1993-03-31 1995-06-20 Mentor Graphics Corporation Detection of multiple hits within a device having multiple sense outputs
US5257980A (en) 1993-04-05 1993-11-02 Minimed Technologies, Ltd. Subcutaneous injection set with crimp-free soft cannula
US5417667A (en) 1993-04-19 1995-05-23 Hyprotek, Inc. Catheter access system and method
KR100188087B1 (en) 1993-04-21 1999-06-01 김광호 Power supply control device and its driving method
US5350411A (en) 1993-06-28 1994-09-27 Medtronic, Inc. Pacemaker telemetry system
WO1995002426A1 (en) 1993-07-13 1995-01-26 Sims Deltec, Inc. Medical pump and method of programming
US5678568A (en) 1993-07-27 1997-10-21 Olympus Optical Co., Ltd. System control apparatus, medical system control apparatus and image-plane display method of medical system control apparatus
US5368562A (en) 1993-07-30 1994-11-29 Pharmacia Deltec, Inc. Systems and methods for operating ambulatory medical devices such as drug delivery devices
JP3298250B2 (en) 1993-07-30 2002-07-02 ソニー株式会社 Automatic inspection method and automatic inspection device
DE4329229A1 (en) 1993-08-25 1995-03-09 Meditech Medizintechnik Gmbh Adaptive controlled pump control, in particular for adaptive patient-controlled analgesia (APCA)
KR100281508B1 (en) 1993-09-27 2001-02-15 휘슨, 맥스웰 에드먼드 Infusion set
US5389078A (en) 1993-10-06 1995-02-14 Sims Deltec, Inc. Programmable infusion pump for administering medication to patients
US5801600A (en) 1993-10-14 1998-09-01 Deltec New Zealand Limited Variable differential phase shifter providing phase variation of two output signals relative to one input signal
US5567119A (en) 1993-10-28 1996-10-22 Sims Deltec, Inc. Bag/syringe enclosure arrangements and methods
US5540561A (en) 1993-10-28 1996-07-30 Sims Deltec, Inc. Reservoir enclosure arrangements
US5399823A (en) 1993-11-10 1995-03-21 Minimed Inc. Membrane dome switch with tactile feel regulator shim
US5540564A (en) 1993-11-12 1996-07-30 Stanadyne Automotive Corp. Rotary distributor type fuel injection pump
US5497772A (en) 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5772409A (en) 1993-11-22 1998-06-30 Sims Deltec, Inc. Drug infusion device with pressure plate
US5531697A (en) 1994-04-15 1996-07-02 Sims Deltec, Inc. Systems and methods for cassette identification for drug pumps
US5658252A (en) 1993-11-22 1997-08-19 Sims Deltec, Inc. Drug pump including pressure plate and tube
US5594638A (en) 1993-12-29 1997-01-14 First Opinion Corporation Computerized medical diagnostic system including re-enter function and sensitivity factors
US5660176A (en) 1993-12-29 1997-08-26 First Opinion Corporation Computerized medical diagnostic and treatment advice system
IT1269700B (en) 1994-01-07 1997-04-15 Abbott Lab SYSTEM AND EQUIPMENT TO CONNECT AN ANESTHETIC CONTAINER TO A VAPORIZER
US5562618A (en) 1994-01-21 1996-10-08 Sims Deltec, Inc. Portal assembly and catheter connector
US5387192A (en) 1994-01-24 1995-02-07 Sims Deltec, Inc. Hybrid portal and method
EP0664137B1 (en) 1994-01-25 1999-03-31 Becton, Dickinson and Company Syringe and method for lyophilizing and reconstituting injectable medication
US5795337A (en) 1994-02-14 1998-08-18 Becton Dickinson And Company Syringe assembly and syringe stopper
US5514097A (en) * 1994-02-14 1996-05-07 Genentech, Inc. Self administered injection pen apparatus and method
FR2716286A1 (en) 1994-02-16 1995-08-18 Debiotech Sa Installation of remote monitoring of controllable equipment.
US5482438A (en) 1994-03-09 1996-01-09 Anderson; Robert L. Magnetic detent and position detector for fluid pump motor
US5536249A (en) 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5658133A (en) 1994-03-09 1997-08-19 Baxter International Inc. Pump chamber back pressure dissipation apparatus and method
US5478211A (en) 1994-03-09 1995-12-26 Baxter International Inc. Ambulatory infusion pump
US5482446A (en) 1994-03-09 1996-01-09 Baxter International Inc. Ambulatory infusion pump
US5630710A (en) 1994-03-09 1997-05-20 Baxter International Inc. Ambulatory infusion pump
US5390671A (en) 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
EP0672427A1 (en) 1994-03-17 1995-09-20 Siemens-Elema AB System for infusion of medicine into the body of a patient
US5456940A (en) 1994-03-28 1995-10-10 Minimed Inc. System for lubricating a syringe barrel
US5505713A (en) 1994-04-01 1996-04-09 Minimed Inc. Indwelling catheter with stable enzyme coating
US5527307A (en) 1994-04-01 1996-06-18 Minimed Inc. Implantable medication infusion pump with discharge side port
US5609575A (en) 1994-04-11 1997-03-11 Graseby Medical Limited Infusion pump and method with dose-rate calculation
US7033339B1 (en) 1998-05-29 2006-04-25 Becton Dickinson And Company (Part Interest) Self sealing luer receiving stopcock
US5569186A (en) 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
US5370622A (en) 1994-04-28 1994-12-06 Minimed Inc. Proctective case for a medication infusion pump
US5476460A (en) 1994-04-29 1995-12-19 Minimed Inc. Implantable infusion port with reduced internal volume
DE69531292T2 (en) 1994-05-13 2004-05-13 Abbott Laboratories, Abbott Park DISPOSABLE INFUSION CASSETTE WITH A PUSHBUTTON-OPERATED BOLT VALVE
US5704366A (en) 1994-05-23 1998-01-06 Enact Health Management Systems System for monitoring and reporting medical measurements
US5472317A (en) 1994-06-03 1995-12-05 Minimed Inc. Mounting clip for a medication infusion pump
US5514103A (en) 1994-06-14 1996-05-07 Minimed Inc. Medication infusion pump with improved pressure reservoir
US5462525A (en) 1994-06-14 1995-10-31 Minimed, Inc., A Delaware Corporation Flow sensor for an infusion pump
US5460618A (en) 1994-06-20 1995-10-24 Minimed Inc. Side slit catheter
US6321158B1 (en) 1994-06-24 2001-11-20 Delorme Publishing Company Integrated routing/mapping information
US5582593A (en) 1994-07-21 1996-12-10 Hultman; Barry W. Ambulatory medication delivery system
US5695473A (en) 1994-07-27 1997-12-09 Sims Deltec, Inc. Occlusion detection system for an infusion pump
US5507727A (en) 1994-08-02 1996-04-16 Design Standards Corporation Inflation deflation syringe assembly for use in angioplasty procedures
US5569187A (en) 1994-08-16 1996-10-29 Texas Instruments Incorporated Method and apparatus for wireless chemical supplying
US6757630B2 (en) 1994-08-19 2004-06-29 Mediq/Prn Life Support Services, Inc. Integrated systems for testing and certifying the physical, functional, and electrical performance of IV pumps
US5533996A (en) 1994-08-24 1996-07-09 Baxter International, Inc. Transfer set connector with permanent, integral cam opening closure and a method of using the same
EP0779790A1 (en) 1994-09-06 1997-06-25 Sims Deltec, Inc. Method and apparatus for location of a catheter tip
US5505709A (en) 1994-09-15 1996-04-09 Minimed, Inc., A Delaware Corporation Mated infusion pump and syringe
US5840026A (en) 1994-09-21 1998-11-24 Medrad, Inc. Patient specific dosing contrast delivery systems and methods
US5533981A (en) * 1994-10-06 1996-07-09 Baxter International Inc. Syringe infusion pump having a syringe plunger sensor
US5687734A (en) 1994-10-20 1997-11-18 Hewlett-Packard Company Flexible patient monitoring system featuring a multiport transmitter
US5545152A (en) 1994-10-28 1996-08-13 Minimed Inc. Quick-connect coupling for a medication infusion system
IE72524B1 (en) 1994-11-04 1997-04-23 Elan Med Tech Analyte-controlled liquid delivery device and analyte monitor
US6749586B2 (en) 1994-11-25 2004-06-15 I-Flow Corporation Remotely programmable infusion system
US5573506A (en) 1994-11-25 1996-11-12 Block Medical, Inc. Remotely programmable infusion system
US5743879A (en) 1994-12-02 1998-04-28 Science Incorporated Medicament dispenser
US5685844A (en) 1995-01-06 1997-11-11 Abbott Laboratories Medicinal fluid pump having multiple stored protocols
US5637095A (en) 1995-01-13 1997-06-10 Minimed Inc. Medication infusion pump with flexible drive plunger
US5814015A (en) 1995-02-24 1998-09-29 Harvard Clinical Technology, Inc. Infusion pump for at least one syringe
US5647853A (en) 1995-03-03 1997-07-15 Minimed Inc. Rapid response occlusion detector for a medication infusion pump
US5620312A (en) 1995-03-06 1997-04-15 Sabratek Corporation Infusion pump with dual-latching mechanism
US5713856A (en) 1995-03-13 1998-02-03 Alaris Medical Systems, Inc. Modular patient care system
US6099502A (en) 1995-04-20 2000-08-08 Acist Medical Systems, Inc. Dual port syringe
US5609060A (en) 1995-04-28 1997-03-11 Dentsleeve Pty Limited Multiple channel perfused manometry apparatus and a method of operation of such a device
US6293159B1 (en) * 1995-05-01 2001-09-25 Science Incorporated Fluid delivery apparatus with reservoir fill assembly
US5772635A (en) 1995-05-15 1998-06-30 Alaris Medical Systems, Inc. Automated infusion system with dose rate calculator
US5665065A (en) 1995-05-26 1997-09-09 Minimed Inc. Medication infusion device with blood glucose data input
US5788673A (en) 1995-06-05 1998-08-04 Atrion Medical Products, Inc. Drug infusion system
US6165154A (en) 1995-06-07 2000-12-26 Deka Products Limited Partnership Cassette for intravenous-line flow-control system
US5733673A (en) 1995-06-07 1998-03-31 Norand Corporation Method and apparatus to detect imminent battery removal in a portable electronic device
US5584813A (en) 1995-06-07 1996-12-17 Minimed Inc. Subcutaneous injection set
US5989216A (en) 1995-06-29 1999-11-23 Sims Deltec, Inc. Access portal and method
US5651775A (en) 1995-07-12 1997-07-29 Walker; Richard Bradley Medication delivery and monitoring system and methods
US5637420A (en) 1995-09-01 1997-06-10 Globe-Union Inc. Self-latching handle for storage batteries
US5712795A (en) * 1995-10-02 1998-01-27 Alaris Medical Systems, Inc. Power management system
US5797515A (en) * 1995-10-18 1998-08-25 Adds, Inc. Method for controlling a drug dispensing system
US5718562A (en) 1995-11-02 1998-02-17 Abbott Laboratories Interface module for use with an NCT-based pumping mechanism and NCT-based cassette
CA2190901A1 (en) 1995-11-24 1997-05-25 John B. Shaw Electro-convulsive therapy (ect) system with enhanced safety features
JPH09197531A (en) 1996-01-24 1997-07-31 Nikon Corp Photographing lens, camera body and camera system
FI118509B (en) 1996-02-12 2007-12-14 Nokia Oyj A method and apparatus for predicting blood glucose levels in a patient
EP2319556B1 (en) 1996-02-27 2013-04-24 B. Braun Melsungen AG Needle tip guard for hypodermic needles
US5669887A (en) 1996-04-22 1997-09-23 Cooper; William L. Retractable non-reusable needle
AU2808697A (en) 1996-04-24 1997-11-12 Logitech, Inc. Touch and pressure sensing method and apparatus
US5879143A (en) 1996-04-26 1999-03-09 Sims Deltec, Inc. Reservoir enclosure adaptors and methods
FR2748588B1 (en) 1996-05-07 1998-08-07 Soc Et Tech Set DEVICE COMPRISING AT LEAST ONE ARRAY OF NEURONES FOR DETERMINING THE QUANTITY OF A SUBSTANCE TO BE ADMINISTERED TO A PATIENT, IN PARTICULAR INSULIN
US5861018A (en) 1996-05-28 1999-01-19 Telecom Medical Inc. Ultrasound transdermal communication system and method
US5716725A (en) 1996-06-06 1998-02-10 Motorola, Inc. Method apparatus for indicating improper coupling of a power source to an electronic device
US5713857A (en) 1996-06-28 1998-02-03 Becton Dickinson France, S.A. Sequential stopper
DE19627619A1 (en) 1996-07-09 1998-01-15 Orlita Prozesstechnik Orlita G Drive for diaphragm or piston pump for dosing of media, e.g. medicine into body
US6689091B2 (en) 1996-08-02 2004-02-10 Tuan Bui Medical apparatus with remote control
US5885245A (en) 1996-08-02 1999-03-23 Sabratek Corporation Medical apparatus with remote virtual input device
US5807336A (en) 1996-08-02 1998-09-15 Sabratek Corporation Apparatus for monitoring and/or controlling a medical device
US5879144A (en) 1996-08-14 1999-03-09 Sims Deltec, Inc. Pressure plate adaptors and methods
US5788671A (en) 1996-08-14 1998-08-04 Sims Deltec, Inc. Reusable cassette housings and methods
US5928196A (en) 1996-08-14 1999-07-27 Sims Deltec, Inc. Control module cassette locks and methods
US5954485A (en) 1996-08-14 1999-09-21 Sims Deltec, Inc. Free-flow protection devices and methods
US5823746A (en) 1996-08-14 1998-10-20 Sims Deltec, Inc. Reusable pressure plates and methods
EP0763368B1 (en) 1996-08-26 2001-02-28 Fluidsense Corporation Variable-pulse dynamic fluid flow controller
US5800387A (en) 1996-10-04 1998-09-01 Alaris Medical Systems, Inc. Safety monitoring apparatus for a patient care system
US6042565A (en) 1996-10-18 2000-03-28 Medrad, Inc. Syringe, injector and injector system
US5843042A (en) * 1996-11-06 1998-12-01 Ren; Liang Chen Oral medicine dispensing device having a metered syringe component and reservoir
US5882047A (en) 1996-12-20 1999-03-16 Itt Automotive, Inc. Quick connector fluid coupling
US6032119A (en) 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US6607509B2 (en) 1997-12-31 2003-08-19 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US6093172A (en) 1997-02-05 2000-07-25 Minimed Inc. Injector for a subcutaneous insertion set
US5851197A (en) 1997-02-05 1998-12-22 Minimed Inc. Injector for a subcutaneous infusion set
US5785681A (en) 1997-02-25 1998-07-28 Minimed Inc. Flow rate controller for a medication infusion pump
US6009339A (en) 1997-02-27 1999-12-28 Terumo Cardiovascular Systems Corporation Blood parameter measurement device
US6270455B1 (en) 1997-03-28 2001-08-07 Health Hero Network, Inc. Networked system for interactive communications and remote monitoring of drug delivery
US6073036A (en) 1997-04-28 2000-06-06 Nokia Mobile Phones Limited Mobile station with touch input having automatic symbol magnification function
US5843146A (en) 1997-04-30 1998-12-01 Medtronic Incorporated Adjustable medical lead anchor
US5851692A (en) 1997-05-01 1998-12-22 Motorola, Inc. Electronic device having a concealed battery latch door
US5779665A (en) 1997-05-08 1998-07-14 Minimed Inc. Transdermal introducer assembly
JP3387775B2 (en) 1997-05-22 2003-03-17 株式会社大協精工 Sealing stopper for syringe and prefilled syringe
US5957890A (en) 1997-06-09 1999-09-28 Minimed Inc. Constant flow medication infusion pump
US6558351B1 (en) 1999-06-03 2003-05-06 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
US5882256A (en) 1997-06-09 1999-03-16 Shropshire; Maurice C. Fragrance dispenser
US5968011A (en) 1997-06-20 1999-10-19 Maersk Medical A/S Subcutaneous injection set
CA2297022A1 (en) 1997-08-01 1999-02-11 Alfred E. Mann Foundation For Scientific Research Implantable device with improved battery recharging and powering configuration
US6484012B1 (en) 1997-08-04 2002-11-19 Wireless Facilities, Inc. Inter-band communication repeater system
US6183444B1 (en) 1998-05-16 2001-02-06 Microheart, Inc. Drug delivery module
US5973623A (en) 1997-10-21 1999-10-26 Stmicroelectronics, Inc. Solid state capacitive switch
WO1999020330A1 (en) 1997-10-23 1999-04-29 Bristol-Myers Squibb Company Preloadable syringe for automated dispensing device
US5931791A (en) 1997-11-05 1999-08-03 Instromedix, Inc. Medical patient vital signs-monitoring apparatus
DE19751219A1 (en) 1997-11-19 1999-05-27 Vetter & Co Apotheker Syringe, especially prefilled syringe, or carpule
DE29722447U1 (en) 1997-12-19 1998-02-19 Clinico GmbH & Co. Verwaltungs- und Beteiligungs-KG, 36251 Bad Hersfeld Infusion catheter
WO1999033504A1 (en) 1997-12-31 1999-07-08 Minimed Inc. Insertion device for an insertion set and method of using the same
US6110152A (en) 1998-01-13 2000-08-29 Minimed Inc. Medication cartridge for an electronic pen-type injector, infusion pump, electronic delivery device, or the like, and method of making the same
US5954700A (en) 1998-01-13 1999-09-21 Minimed Inc. Medication cartridge for an electronic pen-type injector, or the like, and method of making the same
US8479122B2 (en) 2004-07-30 2013-07-02 Apple Inc. Gestures for touch sensitive input devices
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
US6096011A (en) 1998-01-29 2000-08-01 Medrad, Inc. Aseptic connector and fluid delivery system using such an aseptic connector
US5954697A (en) 1998-03-02 1999-09-21 Srisathapat; Chad Threaded nut syringe plunger for use with a medication infusion pump
US6056718A (en) 1998-03-04 2000-05-02 Minimed Inc. Medication infusion set
US6086575A (en) 1998-03-20 2000-07-11 Maersk Medical A/S Subcutaneous infusion device
US6123690A (en) 1998-03-20 2000-09-26 Maersk Medical A/S Subcutaneous infusion device
US5980506A (en) 1998-03-20 1999-11-09 Mathiasen; Orla Subcutaneous infusion device
US6142150A (en) 1998-03-24 2000-11-07 Nellcor Puritan-Bennett Compliance compensation in volume control ventilator
US6311868B1 (en) 1998-04-06 2001-11-06 New Sensations, L.L.C. Dispenser which incrementally heats fluids with substantial non-volatile constituent parts
US6200289B1 (en) 1998-04-10 2001-03-13 Milestone Scientific, Inc. Pressure/force computer controlled drug delivery system and the like
US6211856B1 (en) 1998-04-17 2001-04-03 Sung M. Choi Graphical user interface touch screen with an auto zoom feature
US6057169A (en) 1998-04-17 2000-05-02 Lsi Logic Corporation Method for I/O device layout during integrated circuit design
US7647237B2 (en) 1998-04-29 2010-01-12 Minimed, Inc. Communication station and software for interfacing with an infusion pump, analyte monitor, analyte meter, or the like
US6056522A (en) 1998-05-13 2000-05-02 Sims Deltec, Inc. Reusable cassette with a moveable door
JP4323721B2 (en) 1998-05-29 2009-09-02 ローレンス・エイ・リン Luer receptacle and fluid transfer method
US6364859B1 (en) 1998-06-16 2002-04-02 Robbins Scientific Corporation Locking cap for replaceable needle assembly
US6537268B1 (en) 1998-06-18 2003-03-25 Medtronic Minimed, Inc. Medical infusion device with a source of controlled compliance
US6007941A (en) 1998-06-19 1999-12-28 Abbott Laboratories Watertight battery compartment cover with latch actuated o-ring seal
US6305908B1 (en) 1998-06-19 2001-10-23 Abbott Laboratories Infusion pump extruded metal housing with elastomeric end caps
US6043610A (en) 1998-07-16 2000-03-28 Durel Corporation Battery operated power supply including a low level boost and a high level boost
US5993423A (en) 1998-08-18 1999-11-30 Choi; Soo Bong Portable automatic syringe device and injection needle unit thereof
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6554798B1 (en) 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US5951521A (en) 1998-09-25 1999-09-14 Minimed Inc. Subcutaneous implantable sensor set having the capability to remove deliver fluids to an insertion site
US6254586B1 (en) 1998-09-25 2001-07-03 Minimed Inc. Method and kit for supplying a fluid to a subcutaneous placement site
US6422057B1 (en) 1998-09-29 2002-07-23 Deltec, Inc. Drug pump testing system and methods
CA2653180C (en) 1998-09-30 2013-11-19 Medtronic Minimed, Inc. Communication station and software for interfacing with an infusion pump, analyte monitor, analyte meter, or the like
AU6255699A (en) 1998-10-08 2000-04-26 Minimed, Inc. Telemetered characteristic monitor system
DK1716884T3 (en) 1998-10-29 2014-03-10 Medtronic Minimed Inc reservoir Connection
US7766873B2 (en) 1998-10-29 2010-08-03 Medtronic Minimed, Inc. Method and apparatus for detecting occlusions in an ambulatory infusion pump
US20020173748A1 (en) 1998-10-29 2002-11-21 Mcconnell Susan Reservoir connector
US6800071B1 (en) 1998-10-29 2004-10-05 Medtronic Minimed, Inc. Fluid reservoir piston
US6248093B1 (en) 1998-10-29 2001-06-19 Minimed Inc. Compact pump drive system
US7193521B2 (en) 1998-10-29 2007-03-20 Medtronic Minimed, Inc. Method and apparatus for detecting errors, fluid pressure, and occlusions in an ambulatory infusion pump
US7621893B2 (en) 1998-10-29 2009-11-24 Medtronic Minimed, Inc. Methods and apparatuses for detecting occlusions in an ambulatory infusion pump
US6817990B2 (en) 1998-10-29 2004-11-16 Medtronic Minimed, Inc. Fluid reservoir piston
US6156013A (en) 1998-11-04 2000-12-05 Mahurkar; Sakharam D. Safety syringe
US6202708B1 (en) 1998-11-09 2001-03-20 Sims Deltec, Inc. Fillable cassette apparatus and method
JP2002529204A (en) * 1998-11-13 2002-09-10 エラン・フアルマ・インターナシヨナル・リミテツド System and method for delivering chemicals
US6964643B2 (en) 1998-11-18 2005-11-15 Nugyn, Inc. Devices and methods for treatment of incontinence
US6077055A (en) 1998-12-03 2000-06-20 Sims Deltec, Inc. Pump system including cassette sensor and occlusion sensor
US6645177B1 (en) 1999-02-09 2003-11-11 Alaris Medical Systems, Inc. Directly engaged syringe driver system
US20040158193A1 (en) 1999-02-10 2004-08-12 Baxter International Inc. Medical apparatus using selective graphical interface
US6375638B2 (en) 1999-02-12 2002-04-23 Medtronic Minimed, Inc. Incremental motion pump mechanisms powered by shape memory alloy wire or the like
US6280416B1 (en) 1999-02-19 2001-08-28 Minimed Inc. Constant flow medication infusion pump
US6283943B1 (en) 1999-02-19 2001-09-04 Minimed Inc. Negative pressure pump
US6562023B1 (en) 1999-04-23 2003-05-13 Deltec Inc. Catheter connector including seal ring and method
US6267564B1 (en) 1999-05-12 2001-07-31 Sims Deltec, Inc. Medical reservoir bag and system
GB9910985D0 (en) 1999-05-12 1999-07-14 Smiths Industries Plc Syringe pumps
US6461331B1 (en) 1999-05-21 2002-10-08 Minimed Inc. Device and method for infusion of small molecule insulin mimetic materials
US6458102B1 (en) 1999-05-28 2002-10-01 Medtronic Minimed, Inc. External gas powered programmable infusion device
US6752787B1 (en) 1999-06-08 2004-06-22 Medtronic Minimed, Inc., Cost-sensitive application infusion device
US6259587B1 (en) 1999-06-17 2001-07-10 Minimed Inc. Direct current motor safety circuits for fluid delivery systems
US6216795B1 (en) 1999-07-01 2001-04-17 Andrew F. Buchl Ultrasonic transducer based device positioning system and method
GB9915525D0 (en) 1999-07-03 1999-09-01 Smiths Industries Plc Syringe pumps
US7181505B2 (en) 1999-07-07 2007-02-20 Medtronic, Inc. System and method for remote programming of an implantable medical device
US20020052539A1 (en) 1999-07-07 2002-05-02 Markus Haller System and method for emergency communication between an implantable medical device and a remote computer system or health care provider
US6804558B2 (en) 1999-07-07 2004-10-12 Medtronic, Inc. System and method of communicating between an implantable medical device and a remote computer system or health care provider
US6877713B1 (en) 1999-07-20 2005-04-12 Deka Products Limited Partnership Tube occluder and method for occluding collapsible tubes
US6416293B1 (en) 1999-07-20 2002-07-09 Deka Products Limited Partnership Pumping cartridge including a bypass valve and method for directing flow in a pumping cartridge
US6428509B1 (en) 1999-07-29 2002-08-06 Alaris Medical Systems, Inc. Syringe plunger driver system and method
JP4838468B2 (en) 1999-07-30 2011-12-14 メドラッド インコーポレーテッド Injector system and syringe adapter used in the injector system
US6459424B1 (en) 1999-08-10 2002-10-01 Hewlett-Packard Company Touch-sensitive input screen having regional sensitivity and resolution properties
US7113821B1 (en) 1999-08-25 2006-09-26 Johnson & Johnson Consumer Companies, Inc. Tissue electroperforation for enhanced drug delivery
US7933780B2 (en) 1999-10-22 2011-04-26 Telaric, Llc Method and apparatus for controlling an infusion pump or the like
US7063684B2 (en) 1999-10-28 2006-06-20 Medtronic Minimed, Inc. Drive system seal
US6453956B2 (en) 1999-11-05 2002-09-24 Medtronic Minimed, Inc. Needle safe transfer guard
US6253804B1 (en) 1999-11-05 2001-07-03 Minimed Inc. Needle safe transfer guard
US6904324B2 (en) 1999-12-01 2005-06-07 Meagan Medical, Inc. Method and apparatus for deploying a percutaneous probe
US6611410B1 (en) 1999-12-17 2003-08-26 Siemens Vdo Automotive Inc. Positive supply lead reverse polarity protection circuit
US20020193846A1 (en) 1999-12-21 2002-12-19 Pool Nancy Perry Instrumentation and software for remote monitoring and programming of implantable medical devices (IMDs)
US6283949B1 (en) 1999-12-27 2001-09-04 Advanced Cardiovascular Systems, Inc. Refillable implantable drug delivery pump
US20020120231A1 (en) 2000-01-18 2002-08-29 Douglas Joel S. Subcutaneous injection set with secondary injection septum
US6694191B2 (en) 2000-01-21 2004-02-17 Medtronic Minimed, Inc. Ambulatory medical apparatus and method having telemetry modifiable control software
IL151030A0 (en) 2000-02-14 2003-04-10 First Opinion Corp Automated diagnostic system and method
US20030060765A1 (en) 2000-02-16 2003-03-27 Arthur Campbell Infusion device menu structure and method of using the same
US6572542B1 (en) 2000-03-03 2003-06-03 Medtronic, Inc. System and method for monitoring and controlling the glycemic state of a patient
US6461329B1 (en) 2000-03-13 2002-10-08 Medtronic Minimed, Inc. Infusion site leak detection system and method of using the same
WO2001070304A1 (en) 2000-03-22 2001-09-27 Docusys, Inc. A drug delivery and monitoring system
US6554774B1 (en) * 2000-03-23 2003-04-29 Tensys Medical, Inc. Method and apparatus for assessing hemodynamic properties within the circulatory system of a living subject
US6485465B2 (en) 2000-03-29 2002-11-26 Medtronic Minimed, Inc. Methods, apparatuses, and uses for infusion pump fluid pressure and force detection
US6485461B1 (en) 2000-04-04 2002-11-26 Insulet, Inc. Disposable infusion device
US6524281B1 (en) 2000-04-14 2003-02-25 Portex, Inc. Needle protection device for use with a vial
US7039755B1 (en) 2000-05-31 2006-05-02 Advanced Micro Devices, Inc. Method and apparatus for powering down the CPU/memory controller complex while preserving the self refresh state of memory in the system
US20020056114A1 (en) 2000-06-16 2002-05-09 Fillebrown Lisa A. Transmitter for a personal wireless network
US6652493B1 (en) 2000-07-05 2003-11-25 Animas Corporation Infusion pump syringe
WO2002004047A2 (en) 2000-07-07 2002-01-17 Fluidsense Corporation Pump cassette with controlled pump force
DE60131653T2 (en) 2000-07-20 2008-10-30 ACIST Medical Systems, Inc., Eden Prairie SYRINGE PISTON LOCKING MECHANISM
US6572586B1 (en) 2000-07-25 2003-06-03 Animas Corporation Low profile infusion set
DE10036830A1 (en) 2000-07-28 2002-02-21 Schott Glas dosing
US6589229B1 (en) 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device
US6642936B1 (en) 2000-08-08 2003-11-04 Tektronix, Inc. Touch zoom in/out for a graphics display
US6554800B1 (en) 2000-08-09 2003-04-29 Medtronic Minimed, Inc. Compact pump motor system and dispensing process
GB0020060D0 (en) * 2000-08-16 2000-10-04 Smiths Industries Plc Syringe pumps
US6475196B1 (en) 2000-08-18 2002-11-05 Minimed Inc. Subcutaneous infusion cannula
AU2001288575B2 (en) 2000-09-08 2006-06-01 Insulet Corporation Devices, systems and methods for patient infusion
US6669669B2 (en) 2001-10-12 2003-12-30 Insulet Corporation Laminated patient infusion device
WO2002024257A1 (en) 2000-09-22 2002-03-28 Novo Nordisk A/S A medication delivery device
US6704034B1 (en) 2000-09-28 2004-03-09 International Business Machines Corporation Method and apparatus for providing accessibility through a context sensitive magnifying glass
US6738671B2 (en) 2000-10-26 2004-05-18 Medtronic, Inc. Externally worn transceiver for use with an implantable medical device
CN101264357A (en) 2000-11-09 2008-09-17 茵斯莱特有限公司 Transcutaneous delivery means
US7052483B2 (en) 2000-12-19 2006-05-30 Animas Corporation Transcutaneous inserter for low-profile infusion sets
DE60144252D1 (en) 2000-12-21 2011-04-28 Insulet Corp Medical device for remote control and procedures
US6579267B2 (en) 2001-01-05 2003-06-17 Applied Diabetes Research, Inc. Pivoting joint infusion assembly
EP1351729B1 (en) 2001-01-18 2011-07-06 Medrad, Inc. Syringe interfaces
US7776029B2 (en) 2001-01-30 2010-08-17 The Alfred E. Mann Foundation For Scientific Research Microminiature infusion pump
US7025757B2 (en) 2001-02-08 2006-04-11 Medrad, Inc. Syringe loading devices for use with syringes and medical injectors
EP1381408A4 (en) 2001-02-22 2007-06-13 Insulet Corp Modular infusion device and method
EP1362606B1 (en) 2001-02-22 2010-04-14 Terumo Kabushiki Kaisha Syringe pump
EP1368080A4 (en) 2001-03-04 2007-08-15 Sterling Medivations Inc Infusion hub assembly and fluid line disconnect system
US6879930B2 (en) 2001-03-30 2005-04-12 Microsoft Corporation Capacitance touch slider
DE10117285B4 (en) 2001-04-06 2016-08-04 Roche Diabetes Care Gmbh cannula system
US20020161332A1 (en) 2001-04-13 2002-10-31 Kirk Ramey Infusion set with tape
US6854620B2 (en) 2001-04-13 2005-02-15 Nipro Diabetes, Systems, Inc. Drive system for an infusion pump
US20020071225A1 (en) 2001-04-19 2002-06-13 Minimed Inc. Direct current motor safety circuits for fluid delivery systems
WO2002087663A2 (en) 2001-04-27 2002-11-07 Penjet Corporation Method and apparatus for filling or refilling a needle-less injector
US7088343B2 (en) 2001-04-30 2006-08-08 Lenovo (Singapore) Pte., Ltd. Edge touchpad input device
ATE339234T1 (en) 2001-04-30 2006-10-15 Medtronic Inc IMPLANTABLE MEDICAL DEVICE AND CUSHION ELECTRODE SYSTEM
ATE277667T1 (en) 2001-05-09 2004-10-15 Arta Plast Ab INFUSION DEVICE FOR ADMINISTRATION OF A THERAPEUTIC DRUG
WO2002094352A2 (en) * 2001-05-18 2002-11-28 Deka Products Limited Partnership Infusion set for a fluid pump
US7306578B2 (en) 2002-01-04 2007-12-11 Deka Products Limited Partnership Loading mechanism for infusion pump
US6796957B2 (en) 2001-07-10 2004-09-28 Myocardial Therapeutics, Inc. Sterile aspiration/reinjection systems
KR100407467B1 (en) 2001-07-12 2003-11-28 최수봉 Insulin pump operated by remote-controller
US6691043B2 (en) 2001-08-28 2004-02-10 Maxi-Med, Llc Bolus calculator
EP1291659A3 (en) 2001-09-06 2008-05-21 Sysmex Corporation Automatic sample analyzer and its components
US6770067B2 (en) 2001-09-07 2004-08-03 Medtronic Minimed, Inc. Infusion device and driving mechanism for same
US6997921B2 (en) 2001-09-07 2006-02-14 Medtronic Minimed, Inc. Infusion device and driving mechanism for same
US6652510B2 (en) 2001-09-07 2003-11-25 Medtronic Minimed, Inc. Implantable infusion device and reservoir for same
US6827702B2 (en) 2001-09-07 2004-12-07 Medtronic Minimed, Inc. Safety limits for closed-loop infusion pump control
US6740072B2 (en) 2001-09-07 2004-05-25 Medtronic Minimed, Inc. System and method for providing closed loop infusion formulation delivery
US6595756B2 (en) 2001-09-07 2003-07-22 Medtronic Minimed, Inc. Electronic control system and process for electromagnetic pump
US7045361B2 (en) 2001-09-12 2006-05-16 Medtronic Minimed, Inc. Analyte sensing via acridine-based boronate biosensors
US6845465B2 (en) 2001-09-17 2005-01-18 Sun Microsystems, Inc. Method and system for leveraging spares in a data storage system including a plurality of disk drives
US20030055380A1 (en) 2001-09-19 2003-03-20 Flaherty J. Christopher Plunger for patient infusion device
US7337333B2 (en) 2001-09-19 2008-02-26 Dell Products L.P. System and method for strategic power supply sequencing in a computer system with multiple processing resources and multiple power supplies
US20030088238A1 (en) 2001-09-26 2003-05-08 Poulsen Jens Ulrik Modular drug delivery system
US6613015B2 (en) 2001-10-04 2003-09-02 Deltec, Inc. Right angle safety needle
US7011608B2 (en) 2001-10-19 2006-03-14 Spencer Bruce L Pneumatic pogo stick
US7046230B2 (en) 2001-10-22 2006-05-16 Apple Computer, Inc. Touch pad handheld device
US6963487B2 (en) * 2001-10-25 2005-11-08 Hewlett-Packard Development Company, L.P. Pedestal computer docking station
US6549423B1 (en) 2001-11-15 2003-04-15 Ge Medical Systems Information Technologies, Inc. Medical device having a side loading battery compartment
US6752299B2 (en) 2001-12-07 2004-06-22 Medtronic Minimed, Inc. Rotational holster for an electronic device
US6665909B2 (en) 2001-12-14 2003-12-23 Medtronic Minimed, Inc. Low-profile mounting clip for personal device
US7204823B2 (en) 2001-12-19 2007-04-17 Medtronic Minimed, Inc. Medication delivery system and monitor
US20030132922A1 (en) 2002-01-17 2003-07-17 Harald Philipp Touch screen detection apparatus
US8489427B2 (en) 2002-01-29 2013-07-16 Baxter International Inc. Wireless medical data communication system and method
US20030140929A1 (en) 2002-01-29 2003-07-31 Wilkes Gordon J. Infusion therapy bar coding system and method
US20030141981A1 (en) 2002-01-29 2003-07-31 Tuan Bui System and method for operating medical devices
US7075512B1 (en) 2002-02-07 2006-07-11 Palmsource, Inc. Method and system for navigating a display screen for locating a desired item of information
ATE428462T1 (en) 2002-02-25 2009-05-15 Scott Lab Inc SEDATION AND ANALGESIA SYSTEM INTEGRATED WITH A FUNCTION-PROOF MODULE
US20030212379A1 (en) 2002-02-26 2003-11-13 Bylund Adam David Systems and methods for remotely controlling medication infusion and analyte monitoring
US6852104B2 (en) 2002-02-28 2005-02-08 Smiths Medical Md, Inc. Programmable insulin pump
US7041082B2 (en) 2002-02-28 2006-05-09 Smiths Medical Md, Inc. Syringe pump control systems and methods
US6744350B2 (en) 2002-02-28 2004-06-01 Smiths Medical Md, Inc. Insulin pump having missed meal bolus alarm
US20030163089A1 (en) 2002-02-28 2003-08-28 Bynum Gail Beth Child safety cap for syringe pump
US7033338B2 (en) 2002-02-28 2006-04-25 Smiths Medical Md, Inc. Cartridge and rod for axially loading medication pump
US6830558B2 (en) 2002-03-01 2004-12-14 Insulet Corporation Flow condition sensor assembly for patient infusion device
US6692457B2 (en) 2002-03-01 2004-02-17 Insulet Corporation Flow condition sensor assembly for patient infusion device
US6912417B1 (en) 2002-04-05 2005-06-28 Ichor Medical Systmes, Inc. Method and apparatus for delivery of therapeutic agents
US6835190B2 (en) 2002-04-17 2004-12-28 Smiths Medical Asd, Inc. Retractable safety infusion needle
US7052251B2 (en) 2002-04-22 2006-05-30 Medtronic Minimed, Inc. Shape memory alloy wire driven positive displacement micropump with pulsatile output
US6960192B1 (en) 2002-04-23 2005-11-01 Insulet Corporation Transcutaneous fluid delivery system
US6656158B2 (en) 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
US6656159B2 (en) 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
US20050238507A1 (en) 2002-04-23 2005-10-27 Insulet Corporation Fluid delivery device
US20040172301A1 (en) 2002-04-30 2004-09-02 Mihai Dan M. Remote multi-purpose user interface for a healthcare system
US20050065817A1 (en) 2002-04-30 2005-03-24 Mihai Dan M. Separation of validated information and functions in a healthcare system
US20040176667A1 (en) 2002-04-30 2004-09-09 Mihai Dan M. Method and system for medical device connectivity
US20050055242A1 (en) 2002-04-30 2005-03-10 Bryan Bello System and method for medical data tracking, analysis and reporting for healthcare system
US20040167465A1 (en) 2002-04-30 2004-08-26 Mihai Dan M. System and method for medical device authentication
US8234128B2 (en) 2002-04-30 2012-07-31 Baxter International, Inc. System and method for verifying medical device operational parameters
US6902207B2 (en) 2002-05-01 2005-06-07 Medtronic Minimed, Inc. Self sealing disconnect device
US7150724B2 (en) 2002-06-05 2006-12-19 Cardinal Health 303, Inc. Syringe plunger driver system
US6723072B2 (en) 2002-06-06 2004-04-20 Insulet Corporation Plunger assembly for patient infusion device
US6997905B2 (en) 2002-06-14 2006-02-14 Baxter International Inc. Dual orientation display for a medical device
US7018361B2 (en) 2002-06-14 2006-03-28 Baxter International Inc. Infusion pump
US20030236489A1 (en) 2002-06-21 2003-12-25 Baxter International, Inc. Method and apparatus for closed-loop flow control system
US7018360B2 (en) 2002-07-16 2006-03-28 Insulet Corporation Flow restriction system and method for patient infusion device
USD480477S1 (en) 2002-07-19 2003-10-07 Becton Dickinson And Co. Stopper for a syringe plunger rod
US8512276B2 (en) 2002-07-24 2013-08-20 Medtronic Minimed, Inc. System for providing blood glucose measurements to an infusion device
US20040068230A1 (en) 2002-07-24 2004-04-08 Medtronic Minimed, Inc. System for providing blood glucose measurements to an infusion device
MXPA05000951A (en) 2002-07-24 2005-05-16 Deka Products Lp Optical displacement sensor for infusion devices.
US7278983B2 (en) 2002-07-24 2007-10-09 Medtronic Minimed, Inc. Physiological monitoring device for controlling a medication infusion device
JP2005533545A (en) 2002-07-24 2005-11-10 エム2・メディカル・アクティーゼルスカブ Infusion pump system, infusion pump unit, infusion pump
DE10240166A1 (en) 2002-08-30 2004-03-18 Disetronic Licensing Ag Injection syringe for dispensing insulin to treat diabetes has piston operated by flexible belt which is moved by manually-operated wheel with teeth which cooperate with catches set to give predetermined dose
US7404796B2 (en) 2004-03-01 2008-07-29 Becton Dickinson And Company System for determining insulin dose using carbohydrate to insulin ratio and insulin sensitivity factor
US7150741B2 (en) 2002-09-20 2006-12-19 Advanced Neuromodulation Systems, Inc. Programmable dose control module
US7144384B2 (en) * 2002-09-30 2006-12-05 Insulet Corporation Dispenser components and methods for patient infusion device
EP1551480B1 (en) 2002-09-30 2009-05-13 Novo Nordisk A/S Indicating device with estimating feature
US7128727B2 (en) 2002-09-30 2006-10-31 Flaherty J Christopher Components and methods for patient infusion device
US7993108B2 (en) 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
JP4856873B2 (en) 2002-10-11 2012-01-18 ベクトン・ディキンソン・アンド・カンパニー Flash syringe with compressible plunger
US7967812B2 (en) 2002-10-22 2011-06-28 Medtronic, Inc. Drug infusion system programmable in flex mode
DE10250391B4 (en) 2002-10-29 2006-05-24 Smiths Medical Deutschland Gmbh Control valve for adjusting the volume flow during an infusion or transfusion process
US20040133166A1 (en) 2002-11-22 2004-07-08 Minimed Inc. Methods, apparatuses, and uses for infusion pump fluid pressure and force detection
ATE385814T1 (en) 2002-12-23 2008-03-15 M2 Medical As MEDICAL DEVICE FOR DELIVERING INSULIN
US6932584B2 (en) 2002-12-26 2005-08-23 Medtronic Minimed, Inc. Infusion device and driving mechanism and process for same with actuator for multiple infusion uses
US6978182B2 (en) 2002-12-27 2005-12-20 Cardiac Pacemakers, Inc. Advanced patient management system including interrogator/transceiver unit
US20040140304A1 (en) 2003-01-22 2004-07-22 Leyendecker Kurt Philip Baby bottle chiller/warmer and method of use
TWI236611B (en) 2003-02-01 2005-07-21 Baxter Int Medical data communication notification and messaging system and method
US7329241B2 (en) 2003-02-14 2008-02-12 Valeant Pharmaceuticals North America Drug delivery system for administering an adjustable preset dose
US6994619B2 (en) 2003-03-04 2006-02-07 Triatek, Inc. Optical sash sensing system for fume hoods
KR100478771B1 (en) 2003-03-27 2005-03-25 주식회사 엔터기술 insulin pump
US7061140B2 (en) 2003-04-16 2006-06-13 General Instrument Corportion Power supply, and apparatus and method for operating a power supply
US20050022274A1 (en) 2003-04-18 2005-01-27 Robert Campbell User interface for infusion pump remote controller and method of using the same
US20050182366A1 (en) 2003-04-18 2005-08-18 Insulet Corporation Method For Visual Output Verification
US6930602B2 (en) 2003-04-25 2005-08-16 Medtronic, Inc. Coaxial cable antenna for communication with implanted medical devices
US20060074381A1 (en) 2003-04-30 2006-04-06 Luis Malave Medical device initialization method & system
MXPA05013437A (en) 2003-06-09 2007-08-24 Nipro Diabetes Systems Inc Coupling system for an infusion pump.
US20050055244A1 (en) 2003-07-18 2005-03-10 Janet Mullan Wireless medical communication system and method
US7311879B2 (en) 2003-08-14 2007-12-25 Hodson Steve J Syringe pump
US7499040B2 (en) 2003-08-18 2009-03-03 Apple Inc. Movable touch pad with added functionality
WO2005019766A2 (en) 2003-08-21 2005-03-03 Harald Philipp Capacitive position sensor
US20050063857A1 (en) 2003-09-23 2005-03-24 Alheidt Thomas A. Flush syringe having anti-reflux stopper
US7146977B2 (en) 2003-09-25 2006-12-12 Deka Products Limited Partnership Valve system and method for aerosol delivery
US7342660B2 (en) 2003-09-25 2008-03-11 Deka Products Limited Partnership Detection system and method for aerosol delivery
US7029456B2 (en) 2003-10-15 2006-04-18 Baxter International Inc. Medical fluid therapy flow balancing and synchronization system
US8182461B2 (en) 2003-11-04 2012-05-22 Smiths Medical Asd, Inc. Syringe pump rapid occlusion detection system
US6946217B2 (en) 2003-12-05 2005-09-20 D & K Group, Inc. Battery lock
US20050137573A1 (en) 2003-12-19 2005-06-23 Animas Corporation System, method, and communication hub for controlling external infusion device
US20050177111A1 (en) 2004-02-06 2005-08-11 Shaul Ozeri Miniature infusion pump
US7704231B2 (en) * 2004-02-18 2010-04-27 Ares Trading S.A. Hand-held electronically controlled injection device for injecting liquid medications
US20050187515A1 (en) 2004-02-19 2005-08-25 Advanced Neuromodulation Systems, Inc. Reduced size programmable drug pump
US20050187593A1 (en) 2004-02-23 2005-08-25 Medtronic, Inc. Implantable medical device system with communication link to home appliances
CN100586495C (en) 2004-03-30 2010-02-03 诺和诺德公司 Actuator system comprising lever mechanism
US7211782B2 (en) 2004-04-09 2007-05-01 Mitutoyo Corporation Precision measuring gauges with optical fiber output channels
CA2556841C (en) 2004-04-12 2015-01-06 Baxter International Inc. System and method for medical data tracking, analysis and reporting for a healthcare system
US20050242126A1 (en) 2004-04-16 2005-11-03 Izoe Jolly F Dispenser for highly viscous liquids and pastes
ITMO20040085A1 (en) * 2004-04-20 2004-07-20 Gambro Lundia Ab INFUSION DEVICE FOR MEDICAL FLUIDS.
WO2005102416A1 (en) 2004-04-27 2005-11-03 Rodney Brian Savage Medical fluid injector
US6997910B2 (en) 2004-05-03 2006-02-14 Infusive Technologies, Llc Multi-chamber, sequential dose dispensing syringe
US7966391B2 (en) 2004-05-11 2011-06-21 Todd J. Anderson Systems, apparatus and methods for managing networking devices
US20050273080A1 (en) 2004-05-20 2005-12-08 Paul Patrick J Methods and systems for providing an interface between an ambulatory medical device and a display device
US20050261660A1 (en) 2004-05-24 2005-11-24 Choi Soo B Method for controlling insulin pump using Bluetooth protocol
US7470253B2 (en) 2004-05-26 2008-12-30 Bioquiddity, Inc. Fluid delivery apparatus with adjustable flow rate control
US8518021B2 (en) 2004-05-27 2013-08-27 Baxter International Inc. Apparatus and method for therapeutic delivery of medication
US6999854B2 (en) 2004-05-28 2006-02-14 International Business Machines Corporation Medical infusion pump capable of learning bolus time patterns and providing bolus alerts
US20050267550A1 (en) 2004-05-28 2005-12-01 Medtronic Minimed, Inc. System and method for medical communication device and communication protocol for same
GB0412787D0 (en) 2004-06-09 2004-07-14 Koninkl Philips Electronics Nv Input system
US20050285880A1 (en) 2004-06-23 2005-12-29 Inventec Appliances Corporation Method of magnifying a portion of display
US8017890B2 (en) 2004-07-20 2011-09-13 Massachusetts Institute Of Technology Continuous capacitive slider controller for a smooth surfaced cooktop
US7344500B2 (en) 2004-07-27 2008-03-18 Medtronic Minimed, Inc. Sensing system with auxiliary display
US7653883B2 (en) 2004-07-30 2010-01-26 Apple Inc. Proximity detector in handheld device
US8381135B2 (en) 2004-07-30 2013-02-19 Apple Inc. Proximity detector in handheld device
US7737953B2 (en) 2004-08-19 2010-06-15 Synaptics Incorporated Capacitive sensing apparatus having varying depth sensing elements
US7522744B2 (en) 2004-08-31 2009-04-21 University Of Iowa Research Foundation System and method for adaptive bolus chasing computed tomography (CT) angiography
MX2007002925A (en) 2004-09-10 2007-08-14 Becton Dickinson Co Reconstituting infusion device.
WO2006032652A1 (en) 2004-09-23 2006-03-30 Novo Nordisk A/S Remote commander to be used with a drug delivery device
US7394458B2 (en) 2004-09-24 2008-07-01 Apple Inc. Low EMI capacitive trackpad
WO2006037109A2 (en) 2004-09-27 2006-04-06 Deka Products Limited Partnership Infusion set improvements
WO2006051539A2 (en) 2004-11-12 2006-05-18 Shaul Ozeri A miniature infusion pump for a controlled delivery of medication
US7263871B2 (en) 2004-12-08 2007-09-04 Finesse Solutions Llc. System and method for gas analysis using doubly resonant photoacoustic spectroscopy
US7547281B2 (en) 2005-02-01 2009-06-16 Medtronic Minimed, Inc. Algorithm sensor augmented bolus estimator for semi-closed loop infusion system
EP1688085A1 (en) 2005-02-02 2006-08-09 Disetronic Licensing AG Ambulatory medical device and method of communication between medical devices
US20060178633A1 (en) 2005-02-03 2006-08-10 Insulet Corporation Chassis for fluid delivery device
US20060189926A1 (en) 2005-02-14 2006-08-24 Hall W D Apparatus and methods for analyzing body fluid samples
DE102005009795A1 (en) 2005-03-03 2006-09-14 Wago Verwaltungsgesellschaft Mbh Microprocessor system for machine control in safety certifiable applications
US20080208627A1 (en) 2005-03-17 2008-08-28 Ole Skyggebjerg Securing Pairing of Electronic Devices
US7489105B2 (en) 2005-03-21 2009-02-10 Eveready Battery Company, Inc. Portable power supply
US20060227117A1 (en) 2005-04-07 2006-10-12 Microsoft Corporation Circular touch sensor
US7945452B2 (en) 2005-04-11 2011-05-17 Hospira, Inc. User interface improvements for medical devices
EP1877116A1 (en) 2005-04-13 2008-01-16 Novo Nordisk A/S Medical skin mountable device and system
US20060232554A1 (en) 2005-04-14 2006-10-19 Creative Technology Ltd. Scrolling interface for media player
US7471284B2 (en) 2005-04-15 2008-12-30 Microsoft Corporation Tactile scroll bar with illuminated document position indicator
US7355595B2 (en) 2005-04-15 2008-04-08 Microsoft Corporation Tactile device for scrolling
US8137314B2 (en) 2006-08-23 2012-03-20 Medtronic Minimed, Inc. Infusion medium delivery device and method with compressible or curved reservoir or conduit
US20060253085A1 (en) 2005-05-06 2006-11-09 Medtronic Minimed, Inc. Dual insertion set
US8840586B2 (en) 2006-08-23 2014-09-23 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7905868B2 (en) 2006-08-23 2011-03-15 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US20080097291A1 (en) * 2006-08-23 2008-04-24 Hanson Ian B Infusion pumps and methods and delivery devices and methods with same
US8277415B2 (en) 2006-08-23 2012-10-02 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US7699833B2 (en) 2005-05-06 2010-04-20 Moberg Sheldon B Pump assembly and method for infusion device
ES2314568T3 (en) * 2005-06-01 2009-03-16 Shl Group Ab DEVICE FOR THE DELIVERY OF MEDICINAL PRODUCT.
US8603034B2 (en) * 2005-07-12 2013-12-10 Applied Diabetes Research, Inc. One piece sealing reservoir for an insulin infusion pump
US20070066956A1 (en) 2005-07-27 2007-03-22 Medtronic Minimed, Inc. Systems and methods for entering temporary basal rate pattern in an infusion device
US7737581B2 (en) 2005-08-16 2010-06-15 Medtronic Minimed, Inc. Method and apparatus for predicting end of battery life
US20070066940A1 (en) 2005-09-19 2007-03-22 Lifescan, Inc. Systems and Methods for Detecting a Partition Position in an Infusion Pump
US20070093753A1 (en) 2005-09-19 2007-04-26 Lifescan, Inc. Malfunction Detection Via Pressure Pulsation
WO2007038060A2 (en) 2005-09-26 2007-04-05 M2 Medical A/S Modular infusion pump having two different energy sources
US20070072146A1 (en) * 2005-09-29 2007-03-29 Dentsply Research And Development Corp. Dispensing syringe having multiple barrels for discharging a dental composition
US7935104B2 (en) * 2005-11-07 2011-05-03 Medingo, Ltd. Systems and methods for sustained medical infusion and devices related thereto
US7704226B2 (en) 2005-11-17 2010-04-27 Medtronic Minimed, Inc. External infusion device with programmable capabilities to time-shift basal insulin and method of using the same
US8794929B2 (en) 2005-11-23 2014-08-05 Eksigent Technologies Llc Electrokinetic pump designs and drug delivery systems
WO2007079305A2 (en) 2005-12-02 2007-07-12 Baxa Corporation Improved automated medical liquid filling system and method
US7963917B2 (en) * 2005-12-05 2011-06-21 Echo Therapeutics, Inc. System and method for continuous non-invasive glucose monitoring
US7655351B2 (en) 2006-02-01 2010-02-02 Disetronic Licensing Ag Administering device with a power source contacted by spring force
AU2007212192B2 (en) 2006-02-09 2013-01-17 Deka Products Limited Partnership Patch-sized fluid delivery systems and methods
AU2006338189B2 (en) 2006-02-14 2012-01-19 Battelle Memorial Institute Accurate metering system
US20070203439A1 (en) 2006-02-24 2007-08-30 Water Pik, Inc. Water jet unit and handle
CN101401314B (en) 2006-03-13 2013-04-24 诺沃-诺迪斯克有限公司 Medical system comprising dual purpose communication means
US20070233051A1 (en) 2006-03-31 2007-10-04 David Hohl Drug delivery systems and methods
US7942844B2 (en) 2006-04-28 2011-05-17 Medtronic Minimed, Inc. Remote monitoring for networked fluid infusion systems
US20070258395A1 (en) 2006-04-28 2007-11-08 Medtronic Minimed, Inc. Wireless data communication protocols for a medical device network
US20080160492A1 (en) 2006-08-08 2008-07-03 Insulet Corporation Interactive training system and method
US7789857B2 (en) * 2006-08-23 2010-09-07 Medtronic Minimed, Inc. Infusion medium delivery system, device and method with needle inserter and needle inserter device and method
US7828764B2 (en) * 2006-08-23 2010-11-09 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7811262B2 (en) * 2006-08-23 2010-10-12 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7794434B2 (en) * 2006-08-23 2010-09-14 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US8721584B2 (en) 2006-11-02 2014-05-13 The University Of North Carolina At Chapel Hill Methods and systems for determining an intravenous insulin infusion rate to correct hyperglycemia of a patient, to maintain euglycemia of a patient, and to prevent hypoglycemia of a patient
US20090198183A1 (en) 2006-11-03 2009-08-06 Krumme John F Apparatus and methods for injecting dermal fillers
US7704227B2 (en) 2006-11-29 2010-04-27 Medtronic Minimed, Inc. Methods and apparatuses for detecting medical device acceleration, temperature, and humidity conditions
US20080125700A1 (en) 2006-11-29 2008-05-29 Moberg Sheldon B Methods and apparatuses for detecting medical device acceleration, temperature, and humidity conditions
JP2010511430A (en) 2006-12-04 2010-04-15 デカ・プロダクツ・リミテッド・パートナーシップ Medical device including a slider assembly
US20080161754A1 (en) 2006-12-29 2008-07-03 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
US10154804B2 (en) 2007-01-31 2018-12-18 Medtronic Minimed, Inc. Model predictive method and system for controlling and supervising insulin infusion
WO2008107467A1 (en) * 2007-03-06 2008-09-12 Novo Nordisk A/S Pump assembly comprising actuator system
EP2136863A2 (en) 2007-03-19 2009-12-30 Insuline Medical Ltd. Device for drug delivery and associated connections thereto
US8390244B2 (en) 2007-03-30 2013-03-05 Nipro Healthcare Systems, Llc Rechargeable battery backup apparatus and method for insulin pump
EP4364766A3 (en) * 2007-04-10 2024-11-06 Roche Diabetes Care GmbH Apparatus for pumping fluid
US8034019B2 (en) * 2007-04-10 2011-10-11 Amrita Vishwa Vidyapeetham Dual microcontroller-based liquid infusion system
US7963954B2 (en) 2007-04-30 2011-06-21 Medtronic Minimed, Inc. Automated filling systems and methods
US9878103B2 (en) * 2007-05-14 2018-01-30 Shl Group Ab Delivery device
US7794426B2 (en) 2007-05-21 2010-09-14 Asante Solutions, Inc. Infusion pump system with contamination-resistant features
US8105282B2 (en) 2007-07-13 2012-01-31 Iradimed Corporation System and method for communication with an infusion device
AU2008281381A1 (en) * 2007-08-01 2009-02-05 F.Hoffmann-La Roche Ag Portable infusion device provided with means for monitoring and controlling fluid delivery
WO2009016635A2 (en) 2007-08-01 2009-02-05 Medingo Ltd. Detachable portable infusion device
US9968742B2 (en) 2007-08-29 2018-05-15 Medtronic Minimed, Inc. Combined sensor and infusion set using separated sites
US8287514B2 (en) 2007-09-07 2012-10-16 Asante Solutions, Inc. Power management techniques for an infusion pump system
US8032226B2 (en) 2007-09-07 2011-10-04 Asante Solutions, Inc. User profile backup system for an infusion pump device
US8626297B2 (en) 2007-09-20 2014-01-07 Boston Scientific Neuromodulation Corporation Apparatus and methods for charging an implanted medical device power source
EP2042208A1 (en) 2007-09-25 2009-04-01 Boehringer Ingelheim Pharma GmbH & Co. KG Dispensing device
US20090118683A1 (en) 2007-10-05 2009-05-07 Hanson Barry G Dual reservoir implantable access port
US7592740B2 (en) 2007-11-08 2009-09-22 Roche Diagnostics Operations, Inc. Miniature drug delivery pump with a piezoelectric drive system
US7918825B2 (en) 2007-11-29 2011-04-05 Insulet Corporation Interfacing a prefilled syringe with an infusion pump to fill the infusion pump
US7806868B2 (en) * 2007-11-30 2010-10-05 Roche Diagnostics Operations, Inc. Drug reservoir loading and unloading mechanism for a drug delivery device using a unidirectional rotated shaft
US7875022B2 (en) * 2007-12-12 2011-01-25 Asante Solutions, Inc. Portable infusion pump and media player
US20090164251A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Method and apparatus for providing treatment profile management
US8120485B2 (en) * 2007-12-19 2012-02-21 Abbott Laboratories Articles containing chipless radio frequency identification elements
US20090163855A1 (en) 2007-12-24 2009-06-25 Medtronic Minimed, Inc. Infusion system with adaptive user interface
US8708957B2 (en) 2007-12-31 2014-04-29 Novo Nordisk A/S Electronically monitored injection device
US20090172425A1 (en) 2007-12-31 2009-07-02 Simtek Digitally controlled dynamic power management unit for uninterruptible power supply
US7914483B2 (en) 2008-04-02 2011-03-29 Baxter International Inc. Pain controlled analgesic (“PCA”) apparatus
US20090259217A1 (en) 2008-04-09 2009-10-15 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems associated with delivery of one or more agents to an individual
US7938797B2 (en) 2008-05-05 2011-05-10 Asante Solutions, Inc. Infusion pump system
US8021344B2 (en) 2008-07-28 2011-09-20 Intelliject, Inc. Medicament delivery device configured to produce an audible output
US8009499B2 (en) 2008-06-16 2011-08-30 Hewlett-Packard Development Company, L.P. Providing a capacitor-based power supply to enable backup copying of data from volatile storage to persistent storage
US7967785B2 (en) 2008-07-14 2011-06-28 Nipro Healthcare Systems, Llc Insulin reservoir detection via magnetic switching
US8349174B2 (en) 2008-07-23 2013-01-08 Baxter International Inc. Portable power dialysis machine
US9713701B2 (en) 2008-07-31 2017-07-25 Medtronic, Inc. Using multiple diagnostic parameters for predicting heart failure events
US8398590B2 (en) 2008-09-09 2013-03-19 Baxter International Inc. Device to indicate priming of an infusion line
US8393323B2 (en) 2008-09-30 2013-03-12 Covidien Lp Supplemental gas safety system for a breathing assistance system
US8302600B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Battery management for a breathing assistance system
US8016789B2 (en) 2008-10-10 2011-09-13 Deka Products Limited Partnership Pump assembly with a removable cover assembly
US8262616B2 (en) 2008-10-10 2012-09-11 Deka Products Limited Partnership Infusion pump assembly
US9833569B2 (en) 2008-10-10 2017-12-05 Deka Products Limited Partnership Infusion pump assembly
US8267892B2 (en) * 2008-10-10 2012-09-18 Deka Products Limited Partnership Multi-language / multi-processor infusion pump assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423035B1 (en) * 1999-06-18 2002-07-23 Animas Corporation Infusion pump with a sealed drive mechanism and improved method of occlusion detection
US20070100283A1 (en) * 2000-03-23 2007-05-03 Minimed Inc. Control tabs for infusion devices and methods of using the same
US8632499B2 (en) * 2001-05-18 2014-01-21 Deka Products Limited Partnership Infusion pump assembly
US9446188B2 (en) * 2001-05-18 2016-09-20 Deka Products Limited Partnership Infusion pump assembly
US10500352B2 (en) * 2001-05-18 2019-12-10 Deka Products Limited Partnership Infusion pump assembly
US10967137B2 (en) * 2001-05-18 2021-04-06 Deka Products Limited Partnership Infusion pump assembly
US20040176725A1 (en) * 2003-03-05 2004-09-09 Medtronic Minimed Inc. Lead screw driven reservoir with integral plunger nut and method of using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11833325B2 (en) 2010-10-04 2023-12-05 Unomedical A/S Sprinkler cannula

Also Published As

Publication number Publication date
US10967137B2 (en) 2021-04-06
US20180133413A1 (en) 2018-05-17
US20160220755A1 (en) 2016-08-04
US8034026B2 (en) 2011-10-11
US8845587B2 (en) 2014-09-30
US20120209196A1 (en) 2012-08-16
US20120083738A1 (en) 2012-04-05
US9308318B2 (en) 2016-04-12
US8632499B2 (en) 2014-01-21
US20150018768A1 (en) 2015-01-15
US8409143B2 (en) 2013-04-02
US9446188B2 (en) 2016-09-20
US10500352B2 (en) 2019-12-10
US20140135695A1 (en) 2014-05-15
US20090099523A1 (en) 2009-04-16
US20170007779A1 (en) 2017-01-12
US9205188B2 (en) 2015-12-08
US20120209194A1 (en) 2012-08-16
US20130289485A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
US20210290861A1 (en) Infusion pump assembly
US20220193330A1 (en) Infusion pump assembly
US11135357B2 (en) Infusion pump assembly
US11173242B2 (en) Infusion pump assembly
US11364352B2 (en) Infusion pump methods, systems and apparatus
US20220080112A1 (en) Infusion Pump Assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEKA PRODUCTS LIMITED PARTNERSHIP, NEW HAMPSHIRE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRANT, KEVIN L.;TRACEY, BRIAN D.;MANDRO, MARC A.;AND OTHERS;SIGNING DATES FROM 20140310 TO 20140930;REEL/FRAME:056585/0716

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION