US20210261516A1 - Myc g-quadruplex stabilizing small molecules and their use - Google Patents
Myc g-quadruplex stabilizing small molecules and their use Download PDFInfo
- Publication number
- US20210261516A1 US20210261516A1 US17/306,756 US202117306756A US2021261516A1 US 20210261516 A1 US20210261516 A1 US 20210261516A1 US 202117306756 A US202117306756 A US 202117306756A US 2021261516 A1 US2021261516 A1 US 2021261516A1
- Authority
- US
- United States
- Prior art keywords
- compound
- optionally
- myc
- substituted
- cancer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000003384 small molecules Chemical class 0.000 title abstract description 28
- 108091081406 G-quadruplex Proteins 0.000 title abstract description 22
- 230000000087 stabilizing effect Effects 0.000 title description 3
- 150000001875 compounds Chemical class 0.000 claims abstract description 222
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 179
- 238000000034 method Methods 0.000 claims abstract description 97
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 68
- 201000011510 cancer Diseases 0.000 claims abstract description 62
- 230000007423 decrease Effects 0.000 claims abstract description 19
- 230000014509 gene expression Effects 0.000 claims description 95
- 102100038895 Myc proto-oncogene protein Human genes 0.000 claims description 75
- 101710135898 Myc proto-oncogene protein Proteins 0.000 claims description 72
- 101710150448 Transcriptional regulator Myc Proteins 0.000 claims description 70
- 150000003839 salts Chemical class 0.000 claims description 60
- 150000002148 esters Chemical class 0.000 claims description 38
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 32
- 208000034578 Multiple myelomas Diseases 0.000 claims description 23
- 230000003247 decreasing effect Effects 0.000 claims description 21
- 230000012010 growth Effects 0.000 claims description 15
- 238000001727 in vivo Methods 0.000 claims description 13
- 238000000338 in vitro Methods 0.000 claims description 9
- 208000026310 Breast neoplasm Diseases 0.000 claims description 7
- 230000035755 proliferation Effects 0.000 claims description 7
- 206010006187 Breast cancer Diseases 0.000 claims description 6
- 208000032839 leukemia Diseases 0.000 claims description 6
- 201000001441 melanoma Diseases 0.000 claims description 6
- 206010009944 Colon cancer Diseases 0.000 claims description 4
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 4
- 230000002018 overexpression Effects 0.000 claims description 4
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 3
- 206010033128 Ovarian cancer Diseases 0.000 claims description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 3
- 206010060862 Prostate cancer Diseases 0.000 claims description 3
- 208000029742 colonic neoplasm Diseases 0.000 claims description 3
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 3
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 claims description 3
- 206010038389 Renal cancer Diseases 0.000 claims description 2
- 201000007455 central nervous system cancer Diseases 0.000 claims description 2
- 201000010982 kidney cancer Diseases 0.000 claims description 2
- 206010027476 Metastases Diseases 0.000 abstract description 12
- 210000004027 cell Anatomy 0.000 description 115
- 125000000217 alkyl group Chemical group 0.000 description 98
- -1 small molecule compounds Chemical class 0.000 description 98
- 229940125904 compound 1 Drugs 0.000 description 75
- 229910052736 halogen Chemical group 0.000 description 72
- 125000001188 haloalkyl group Chemical group 0.000 description 70
- 239000000203 mixture Substances 0.000 description 65
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 60
- 235000002639 sodium chloride Nutrition 0.000 description 56
- 150000002367 halogens Chemical group 0.000 description 54
- 238000011282 treatment Methods 0.000 description 52
- 239000001257 hydrogen Substances 0.000 description 50
- 229910052739 hydrogen Inorganic materials 0.000 description 50
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 42
- 125000003118 aryl group Chemical group 0.000 description 39
- 230000000694 effects Effects 0.000 description 36
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 35
- 150000002431 hydrogen Chemical class 0.000 description 32
- 239000003795 chemical substances by application Substances 0.000 description 31
- 230000027455 binding Effects 0.000 description 30
- 229910052757 nitrogen Inorganic materials 0.000 description 30
- 108020004414 DNA Proteins 0.000 description 29
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 28
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 27
- 201000010099 disease Diseases 0.000 description 27
- 239000000243 solution Substances 0.000 description 23
- 239000000126 substance Substances 0.000 description 23
- 239000002253 acid Substances 0.000 description 22
- 125000003545 alkoxy group Chemical group 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 22
- 239000002585 base Substances 0.000 description 22
- 125000005843 halogen group Chemical group 0.000 description 22
- 229910052760 oxygen Inorganic materials 0.000 description 22
- 239000001301 oxygen Substances 0.000 description 22
- 125000001072 heteroaryl group Chemical group 0.000 description 21
- 239000000651 prodrug Substances 0.000 description 21
- 229940002612 prodrug Drugs 0.000 description 21
- 208000024891 symptom Diseases 0.000 description 21
- 241000282414 Homo sapiens Species 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 20
- 125000004432 carbon atom Chemical group C* 0.000 description 19
- 239000003814 drug Substances 0.000 description 19
- 238000009472 formulation Methods 0.000 description 19
- 239000008194 pharmaceutical composition Substances 0.000 description 19
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 19
- 230000035899 viability Effects 0.000 description 19
- KGNDCEVUMONOKF-UGPLYTSKSA-N benzyl n-[(2r)-1-[(2s,4r)-2-[[(2s)-6-amino-1-(1,3-benzoxazol-2-yl)-1,1-dihydroxyhexan-2-yl]carbamoyl]-4-[(4-methylphenyl)methoxy]pyrrolidin-1-yl]-1-oxo-4-phenylbutan-2-yl]carbamate Chemical compound C1=CC(C)=CC=C1CO[C@H]1CN(C(=O)[C@@H](CCC=2C=CC=CC=2)NC(=O)OCC=2C=CC=CC=2)[C@H](C(=O)N[C@@H](CCCCN)C(O)(O)C=2OC3=CC=CC=C3N=2)C1 KGNDCEVUMONOKF-UGPLYTSKSA-N 0.000 description 18
- 229940125833 compound 23 Drugs 0.000 description 18
- 230000001225 therapeutic effect Effects 0.000 description 18
- 239000003981 vehicle Substances 0.000 description 18
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 17
- 125000004433 nitrogen atom Chemical group N* 0.000 description 17
- RWRDLPDLKQPQOW-UHFFFAOYSA-N tetrahydropyrrole Natural products C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 17
- 108091034117 Oligonucleotide Proteins 0.000 description 16
- 125000000753 cycloalkyl group Chemical group 0.000 description 16
- 238000013518 transcription Methods 0.000 description 16
- 230000035897 transcription Effects 0.000 description 16
- 238000003556 assay Methods 0.000 description 15
- 150000007523 nucleic acids Chemical class 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 14
- 235000018102 proteins Nutrition 0.000 description 14
- 102000004169 proteins and genes Human genes 0.000 description 14
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 13
- 108010087705 Proto-Oncogene Proteins c-myc Proteins 0.000 description 13
- 102000009092 Proto-Oncogene Proteins c-myc Human genes 0.000 description 13
- 125000003710 aryl alkyl group Chemical group 0.000 description 13
- 230000005764 inhibitory process Effects 0.000 description 13
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 12
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 12
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 12
- 150000007513 acids Chemical class 0.000 description 12
- 150000001408 amides Chemical class 0.000 description 12
- 150000001412 amines Chemical class 0.000 description 12
- 239000002246 antineoplastic agent Substances 0.000 description 12
- 230000001419 dependent effect Effects 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000002202 Polyethylene glycol Substances 0.000 description 11
- 125000003342 alkenyl group Chemical group 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 11
- 230000003833 cell viability Effects 0.000 description 11
- GLUUGHFHXGJENI-UHFFFAOYSA-N diethylenediamine Natural products C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 11
- 229940079593 drug Drugs 0.000 description 11
- 229920001223 polyethylene glycol Polymers 0.000 description 11
- NQRYJNQNLNOLGT-UHFFFAOYSA-N tetrahydropyridine hydrochloride Natural products C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 11
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 10
- 125000000304 alkynyl group Chemical group 0.000 description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 10
- 230000010534 mechanism of action Effects 0.000 description 10
- 231100000252 nontoxic Toxicity 0.000 description 10
- 230000003000 nontoxic effect Effects 0.000 description 10
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 10
- 230000002441 reversible effect Effects 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 9
- 238000011529 RT qPCR Methods 0.000 description 9
- 125000003277 amino group Chemical group 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 239000003446 ligand Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000009401 metastasis Effects 0.000 description 9
- 201000000050 myeloid neoplasm Diseases 0.000 description 9
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 230000014616 translation Effects 0.000 description 9
- 208000011691 Burkitt lymphomas Diseases 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 206010025323 Lymphomas Diseases 0.000 description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 description 8
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 8
- 239000004480 active ingredient Substances 0.000 description 8
- 238000002512 chemotherapy Methods 0.000 description 8
- 238000013270 controlled release Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000002493 microarray Methods 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 125000006239 protecting group Chemical group 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 0 CC.[1*]C1=C([2*])C(CN([8*])[9*])=C2C(C(=O)NC3=CC=CC=C3)=C([6*])C([7*])C2=C1[1*].[4*]C.[5*]C Chemical compound CC.[1*]C1=C([2*])C(CN([8*])[9*])=C2C(C(=O)NC3=CC=CC=C3)=C([6*])C([7*])C2=C1[1*].[4*]C.[5*]C 0.000 description 7
- 239000004721 Polyphenylene oxide Substances 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 150000001537 azepanes Chemical class 0.000 description 7
- 239000000969 carrier Substances 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 7
- 229940127089 cytotoxic agent Drugs 0.000 description 7
- 235000019439 ethyl acetate Nutrition 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 230000002401 inhibitory effect Effects 0.000 description 7
- 150000004885 piperazines Chemical class 0.000 description 7
- 150000003053 piperidines Chemical class 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 150000003235 pyrrolidines Chemical class 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 230000006641 stabilisation Effects 0.000 description 7
- 238000011105 stabilization Methods 0.000 description 7
- 229940124530 sulfonamide Drugs 0.000 description 7
- 150000003456 sulfonamides Chemical class 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000013543 active substance Substances 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 229940024606 amino acid Drugs 0.000 description 6
- 235000001014 amino acid Nutrition 0.000 description 6
- 150000001413 amino acids Chemical group 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 238000010494 dissociation reaction Methods 0.000 description 6
- 230000005593 dissociations Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 6
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 102000039446 nucleic acids Human genes 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 150000007530 organic bases Chemical class 0.000 description 6
- 229920000570 polyether Polymers 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000000069 prophylactic effect Effects 0.000 description 6
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 6
- 238000007920 subcutaneous administration Methods 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 230000002459 sustained effect Effects 0.000 description 6
- 229910001868 water Inorganic materials 0.000 description 6
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 5
- 229930195725 Mannitol Natural products 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 230000006907 apoptotic process Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 150000007529 inorganic bases Chemical class 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- 229910052740 iodine Inorganic materials 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 230000003211 malignant effect Effects 0.000 description 5
- 239000000594 mannitol Substances 0.000 description 5
- 235000010355 mannitol Nutrition 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 210000005259 peripheral blood Anatomy 0.000 description 5
- 239000011886 peripheral blood Substances 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- WOQIDNWTQOYDLF-RPWUZVMVSA-N quarfloxin Chemical compound CN1CCC[C@H]1CCNC(=O)C(C1=O)=CN2C3=C1C=C(F)C(N1C[C@@H](CC1)C=1N=CC=NC=1)=C3OC1=CC3=CC=CC=C3C=C12 WOQIDNWTQOYDLF-RPWUZVMVSA-N 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000012552 review Methods 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 125000000475 sulfinyl group Chemical class [*:2]S([*:1])=O 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 5
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- WHZKKSJWHVBOII-UHFFFAOYSA-N 4-(azepan-1-ylmethyl)-5-hydroxy-2-methyl-n-(4-methylphenyl)-1-benzofuran-3-carboxamide Chemical compound C=12C(C(=O)NC=3C=CC(C)=CC=3)=C(C)OC2=CC=C(O)C=1CN1CCCCCC1 WHZKKSJWHVBOII-UHFFFAOYSA-N 0.000 description 4
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 4
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- 101001030211 Homo sapiens Myc proto-oncogene protein Proteins 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- 108700020796 Oncogene Proteins 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 201000000582 Retinoblastoma Diseases 0.000 description 4
- 206010039491 Sarcoma Diseases 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 229960001467 bortezomib Drugs 0.000 description 4
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 230000010261 cell growth Effects 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 230000003828 downregulation Effects 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 238000003818 flash chromatography Methods 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 125000000623 heterocyclic group Chemical group 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000007918 intramuscular administration Methods 0.000 description 4
- 208000020816 lung neoplasm Diseases 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 208000037819 metastatic cancer Diseases 0.000 description 4
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 4
- LGRLWUINFJPLSH-UHFFFAOYSA-N methanide Chemical compound [CH3-] LGRLWUINFJPLSH-UHFFFAOYSA-N 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 150000007522 mineralic acids Chemical class 0.000 description 4
- 125000002950 monocyclic group Chemical group 0.000 description 4
- RZXMPPFPUUCRFN-UHFFFAOYSA-N p-toluidine Chemical compound CC1=CC=C(N)C=C1 RZXMPPFPUUCRFN-UHFFFAOYSA-N 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 239000001103 potassium chloride Substances 0.000 description 4
- 235000011164 potassium chloride Nutrition 0.000 description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 150000003222 pyridines Chemical class 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 125000000547 substituted alkyl group Chemical group 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 238000013268 sustained release Methods 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- 230000002103 transcriptional effect Effects 0.000 description 4
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 3
- KAESVJOAVNADME-UHFFFAOYSA-N 1H-pyrrole Natural products C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 3
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 3
- MBSYHCUMNRMHPB-UHFFFAOYSA-N 4-(azepan-1-ylmethyl)-5-hydroxy-2-methyl-n-(2-methylphenyl)-1-benzofuran-3-carboxamide Chemical compound C=12C(C(=O)NC=3C(=CC=CC=3)C)=C(C)OC2=CC=C(O)C=1CN1CCCCCC1 MBSYHCUMNRMHPB-UHFFFAOYSA-N 0.000 description 3
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 3
- 208000030507 AIDS Diseases 0.000 description 3
- 206010000830 Acute leukaemia Diseases 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- 108091012583 BCL2 Proteins 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- NUAKCMINGUJEHV-UHFFFAOYSA-N CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(O)C=C32)C=C1 Chemical compound CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(O)C=C32)C=C1 NUAKCMINGUJEHV-UHFFFAOYSA-N 0.000 description 3
- 239000012625 DNA intercalator Substances 0.000 description 3
- 208000001976 Endocrine Gland Neoplasms Diseases 0.000 description 3
- 230000037057 G1 phase arrest Effects 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 208000017604 Hodgkin disease Diseases 0.000 description 3
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 3
- 101000808011 Homo sapiens Vascular endothelial growth factor A Proteins 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 206010027406 Mesothelioma Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 206010029260 Neuroblastoma Diseases 0.000 description 3
- 101710163270 Nuclease Proteins 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical class C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 3
- 239000012980 RPMI-1640 medium Substances 0.000 description 3
- 208000000453 Skin Neoplasms Diseases 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 239000006180 TBST buffer Substances 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 102100039037 Vascular endothelial growth factor A Human genes 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 235000011054 acetic acid Nutrition 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 125000004423 acyloxy group Chemical group 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000004037 angiogenesis inhibitor Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 229960003121 arginine Drugs 0.000 description 3
- 150000001538 azepines Chemical class 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 3
- BLMPQMFVWMYDKT-NZTKNTHTSA-N carfilzomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)[C@]1(C)OC1)NC(=O)CN1CCOCC1)CC1=CC=CC=C1 BLMPQMFVWMYDKT-NZTKNTHTSA-N 0.000 description 3
- 229960002438 carfilzomib Drugs 0.000 description 3
- 108010021331 carfilzomib Proteins 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 208000025997 central nervous system neoplasm Diseases 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000002983 circular dichroism Methods 0.000 description 3
- 235000015165 citric acid Nutrition 0.000 description 3
- 238000011260 co-administration Methods 0.000 description 3
- 238000002648 combination therapy Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 230000002074 deregulated effect Effects 0.000 description 3
- 150000004891 diazines Chemical class 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 238000010195 expression analysis Methods 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 238000003633 gene expression assay Methods 0.000 description 3
- 230000030279 gene silencing Effects 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000019359 magnesium stearate Nutrition 0.000 description 3
- 235000011090 malic acid Nutrition 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 238000002483 medication Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 206010061289 metastatic neoplasm Diseases 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000011580 nude mouse model Methods 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 150000008039 phosphoramides Chemical class 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 150000003233 pyrroles Chemical class 0.000 description 3
- 125000000168 pyrrolyl group Chemical group 0.000 description 3
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000008247 solid mixture Substances 0.000 description 3
- 239000012453 solvate Substances 0.000 description 3
- 229940035044 sorbitan monolaurate Drugs 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- 230000036962 time dependent Effects 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 231100000027 toxicology Toxicity 0.000 description 3
- 150000003918 triazines Chemical class 0.000 description 3
- 150000003852 triazoles Chemical class 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 2
- 125000006619 (C1-C6) dialkylamino group Chemical group 0.000 description 2
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- AEEZXQFUVDKVFT-UHFFFAOYSA-N 2-(benzylamino)phenol Chemical group OC1=CC=CC=C1NCC1=CC=CC=C1 AEEZXQFUVDKVFT-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- 206010061728 Bone lesion Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- 108091028690 C-myc mRNA Proteins 0.000 description 2
- BFHIMJYAUCQWDL-UHFFFAOYSA-N C=C1C(=O)C=CC2=C1/C(C(=O)NC1=CC=C(C)C=C1)=C(/C)O2.CC1=CC=C(NC(=O)/C2=C(\C)OC3=CC=C(O)C(CO)=C32)C=C1.CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(O)C(CN4CCCCCC4)=C32)C=C1 Chemical compound C=C1C(=O)C=CC2=C1/C(C(=O)NC1=CC=C(C)C=C1)=C(/C)O2.CC1=CC=C(NC(=O)/C2=C(\C)OC3=CC=C(O)C(CO)=C32)C=C1.CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(O)C(CN4CCCCCC4)=C32)C=C1 BFHIMJYAUCQWDL-UHFFFAOYSA-N 0.000 description 2
- CYDPVFHMSOSOOP-UHFFFAOYSA-N CC1=C(C(=O)NC2=C(C)C(Cl)=CC=C2)C2=C(CN3CCCCCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=C(C)C(Cl)=CC=C2)C2=C(CN3CCCCCC3)C(O)=CC=C2O1 CYDPVFHMSOSOOP-UHFFFAOYSA-N 0.000 description 2
- CSEXFKBCUJAUMQ-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCC(C)CC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCC(C)CC3)C(O)=CC=C2O1 CSEXFKBCUJAUMQ-UHFFFAOYSA-N 0.000 description 2
- ZBNYQXNSNSVCTO-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCC(C)C3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCC(C)C3)C(O)=CC=C2O1 ZBNYQXNSNSVCTO-UHFFFAOYSA-N 0.000 description 2
- PTQNDXJBEWNYAJ-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCN(CC4=CC=CC=C4)CC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCN(CC4=CC=CC=C4)CC3)C(O)=CC=C2O1 PTQNDXJBEWNYAJ-UHFFFAOYSA-N 0.000 description 2
- MKMRGAPTCYHHJH-UHFFFAOYSA-N CC1=CC(C)=C(NC(=O)C2=C(C)OC3=CC=C(O)C(CN4CCCCCC4)=C32)C=C1 Chemical compound CC1=CC(C)=C(NC(=O)C2=C(C)OC3=CC=C(O)C(CN4CCCCCC4)=C32)C=C1 MKMRGAPTCYHHJH-UHFFFAOYSA-N 0.000 description 2
- SKTIDQPWKYMUOJ-UHFFFAOYSA-N CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(O)C(CN4CCN(C)CC4)=C32)C=C1 Chemical compound CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(O)C(CN4CCN(C)CC4)=C32)C=C1 SKTIDQPWKYMUOJ-UHFFFAOYSA-N 0.000 description 2
- MGSSSNFDMFQGBL-UHFFFAOYSA-N COC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(O)C(CN4CCCCCC4)=C32)C=C1 Chemical compound COC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(O)C(CN4CCCCCC4)=C32)C=C1 MGSSSNFDMFQGBL-UHFFFAOYSA-N 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 206010058314 Dysplasia Diseases 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 208000006168 Ewing Sarcoma Diseases 0.000 description 2
- 108700024394 Exon Proteins 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 101001046870 Homo sapiens Hypoxia-inducible factor 1-alpha Proteins 0.000 description 2
- 101000742859 Homo sapiens Retinoblastoma-associated protein Proteins 0.000 description 2
- 102100022875 Hypoxia-inducible factor 1-alpha Human genes 0.000 description 2
- DNVXATUJJDPFDM-KRWDZBQOSA-N JQ1 Chemical compound N([C@@H](CC(=O)OC(C)(C)C)C1=NN=C(N1C=1SC(C)=C(C)C=11)C)=C1C1=CC=C(Cl)C=C1 DNVXATUJJDPFDM-KRWDZBQOSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102000029749 Microtubule Human genes 0.000 description 2
- 108091022875 Microtubule Proteins 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 2
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methyl-N-phenylamine Natural products CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 2
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- 206010029098 Neoplasm skin Diseases 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 229940079156 Proteasome inhibitor Drugs 0.000 description 2
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 2
- 102100038042 Retinoblastoma-associated protein Human genes 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 101150057615 Syn gene Proteins 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 206010046458 Urethral neoplasms Diseases 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 208000008383 Wilms tumor Diseases 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 239000003855 balanced salt solution Substances 0.000 description 2
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 229960000397 bevacizumab Drugs 0.000 description 2
- 238000005298 biophysical measurement Methods 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000037058 blood plasma level Effects 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 230000025084 cell cycle arrest Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical compound OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 235000011087 fumaric acid Nutrition 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 238000007327 hydrogenolysis reaction Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- TWBYWOBDOCUKOW-UHFFFAOYSA-N isonicotinic acid Chemical compound OC(=O)C1=CC=NC=C1 TWBYWOBDOCUKOW-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 229960002510 mandelic acid Drugs 0.000 description 2
- 229960004961 mechlorethamine Drugs 0.000 description 2
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 2
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- 238000010208 microarray analysis Methods 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 210000004688 microtubule Anatomy 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 230000009149 molecular binding Effects 0.000 description 2
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 231100000956 nontoxicity Toxicity 0.000 description 2
- 239000003865 nucleic acid synthesis inhibitor Substances 0.000 description 2
- 108091008820 oncogenic transcription factors Proteins 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 125000001715 oxadiazolyl group Chemical group 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 239000006179 pH buffering agent Substances 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 230000009038 pharmacological inhibition Effects 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 230000004983 pleiotropic effect Effects 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 239000003207 proteasome inhibitor Substances 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 230000004797 therapeutic response Effects 0.000 description 2
- 238000005382 thermal cycling Methods 0.000 description 2
- 125000001113 thiadiazolyl group Chemical group 0.000 description 2
- 125000000335 thiazolyl group Chemical group 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 230000037317 transdermal delivery Effects 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 125000001425 triazolyl group Chemical group 0.000 description 2
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 210000003708 urethra Anatomy 0.000 description 2
- 210000002229 urogenital system Anatomy 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- OMJKFYKNWZZKTK-POHAHGRESA-N (5z)-5-(dimethylaminohydrazinylidene)imidazole-4-carboxamide Chemical compound CN(C)N\N=C1/N=CN=C1C(N)=O OMJKFYKNWZZKTK-POHAHGRESA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- 125000006595 (C1-C3) alkylsulfinyl group Chemical group 0.000 description 1
- 125000004454 (C1-C6) alkoxycarbonyl group Chemical group 0.000 description 1
- 125000004738 (C1-C6) alkyl sulfinyl group Chemical group 0.000 description 1
- 125000006700 (C1-C6) alkylthio group Chemical group 0.000 description 1
- 125000005862 (C1-C6)alkanoyl group Chemical group 0.000 description 1
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 1
- UWYVPFMHMJIBHE-OWOJBTEDSA-N (e)-2-hydroxybut-2-enedioic acid Chemical compound OC(=O)\C=C(\O)C(O)=O UWYVPFMHMJIBHE-OWOJBTEDSA-N 0.000 description 1
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- 125000004504 1,2,4-oxadiazolyl group Chemical group 0.000 description 1
- 125000004520 1,3,4-thiadiazolyl group Chemical group 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- HJTAZXHBEBIQQX-UHFFFAOYSA-N 1,5-bis(chloromethyl)naphthalene Chemical compound C1=CC=C2C(CCl)=CC=CC2=C1CCl HJTAZXHBEBIQQX-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 1
- PPNCOQHHSGMKGI-UHFFFAOYSA-N 1-cyclononyldiazonane Chemical compound C1CCCCCCCC1N1NCCCCCCC1 PPNCOQHHSGMKGI-UHFFFAOYSA-N 0.000 description 1
- 125000006039 1-hexenyl group Chemical group 0.000 description 1
- 125000004066 1-hydroxyethyl group Chemical group [H]OC([H])([*])C([H])([H])[H] 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- QXLQZLBNPTZMRK-UHFFFAOYSA-N 2-[(dimethylamino)methyl]-1-(2,4-dimethylphenyl)prop-2-en-1-one Chemical compound CN(C)CC(=C)C(=O)C1=CC=C(C)C=C1C QXLQZLBNPTZMRK-UHFFFAOYSA-N 0.000 description 1
- IOOMXAQUNPWDLL-UHFFFAOYSA-N 2-[6-(diethylamino)-3-(diethyliminiumyl)-3h-xanthen-9-yl]-5-sulfobenzene-1-sulfonate Chemical compound C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S(O)(=O)=O)C=C1S([O-])(=O)=O IOOMXAQUNPWDLL-UHFFFAOYSA-N 0.000 description 1
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- 125000001340 2-chloroethyl group Chemical group [H]C([H])(Cl)C([H])([H])* 0.000 description 1
- 125000004777 2-fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 1
- 125000006040 2-hexenyl group Chemical group 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- DETXZQGDWUJKMO-UHFFFAOYSA-N 2-hydroxymethanesulfonic acid Chemical compound OCS(O)(=O)=O DETXZQGDWUJKMO-UHFFFAOYSA-N 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- PKRSYEPBQPFNRB-UHFFFAOYSA-N 2-phenoxybenzoic acid Chemical compound OC(=O)C1=CC=CC=C1OC1=CC=CC=C1 PKRSYEPBQPFNRB-UHFFFAOYSA-N 0.000 description 1
- WLJVXDMOQOGPHL-PPJXEINESA-N 2-phenylacetic acid Chemical compound O[14C](=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-PPJXEINESA-N 0.000 description 1
- GXIURPTVHJPJLF-UHFFFAOYSA-N 2-phosphoglyceric acid Chemical compound OCC(C(O)=O)OP(O)(O)=O GXIURPTVHJPJLF-UHFFFAOYSA-N 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- WADSJYLPJPTMLN-UHFFFAOYSA-N 3-(cycloundecen-1-yl)-1,2-diazacycloundec-2-ene Chemical compound C1CCCCCCCCC=C1C1=NNCCCCCCCC1 WADSJYLPJPTMLN-UHFFFAOYSA-N 0.000 description 1
- UZFPOOOQHWICKY-UHFFFAOYSA-N 3-[13-[1-[1-[8,12-bis(2-carboxyethyl)-17-(1-hydroxyethyl)-3,7,13,18-tetramethyl-21,24-dihydroporphyrin-2-yl]ethoxy]ethyl]-18-(2-carboxyethyl)-8-(1-hydroxyethyl)-3,7,12,17-tetramethyl-22,23-dihydroporphyrin-2-yl]propanoic acid Chemical compound N1C(C=C2C(=C(CCC(O)=O)C(C=C3C(=C(C)C(C=C4N5)=N3)CCC(O)=O)=N2)C)=C(C)C(C(C)O)=C1C=C5C(C)=C4C(C)OC(C)C1=C(N2)C=C(N3)C(C)=C(C(O)C)C3=CC(C(C)=C3CCC(O)=O)=NC3=CC(C(CCC(O)=O)=C3C)=NC3=CC2=C1C UZFPOOOQHWICKY-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- 125000006041 3-hexenyl group Chemical group 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- WWBITQUCWSFVNB-UHFFFAOYSA-N 3-silylpropan-1-amine Chemical compound NCCC[SiH3] WWBITQUCWSFVNB-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- VGHSATQVJCTKEF-UHFFFAOYSA-N 4-(2-aminoethoxy)-2-n,6-n-bis[4-(2-aminoethoxy)quinolin-2-yl]pyridine-2,6-dicarboxamide Chemical group C1=CC=CC2=NC(NC(=O)C=3C=C(C=C(N=3)C(=O)NC=3N=C4C=CC=CC4=C(OCCN)C=3)OCCN)=CC(OCCN)=C21 VGHSATQVJCTKEF-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- APRZHQXAAWPYHS-UHFFFAOYSA-N 4-[5-[3-(carboxymethoxy)phenyl]-3-(4,5-dimethyl-1,3-thiazol-2-yl)tetrazol-3-ium-2-yl]benzenesulfonate Chemical compound S1C(C)=C(C)N=C1[N+]1=NC(C=2C=C(OCC(O)=O)C=CC=2)=NN1C1=CC=C(S([O-])(=O)=O)C=C1 APRZHQXAAWPYHS-UHFFFAOYSA-N 0.000 description 1
- WUBBRNOQWQTFEX-UHFFFAOYSA-N 4-aminosalicylic acid Chemical compound NC1=CC=C(C(O)=O)C(O)=C1 WUBBRNOQWQTFEX-UHFFFAOYSA-N 0.000 description 1
- 125000006042 4-hexenyl group Chemical group 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 description 1
- 125000006043 5-hexenyl group Chemical group 0.000 description 1
- RSHSSGDUMLTSEG-UHFFFAOYSA-N 5-methoxy-2-methyl-1-benzofuran-3-carboxylic acid Chemical compound COC1=CC=C2OC(C)=C(C(O)=O)C2=C1 RSHSSGDUMLTSEG-UHFFFAOYSA-N 0.000 description 1
- WYWHKKSPHMUBEB-UHFFFAOYSA-N 6-Mercaptoguanine Natural products N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- YXHLJMWYDTXDHS-IRFLANFNSA-N 7-aminoactinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=C(N)C=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 YXHLJMWYDTXDHS-IRFLANFNSA-N 0.000 description 1
- 108700012813 7-aminoactinomycin D Proteins 0.000 description 1
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 description 1
- SHGAZHPCJJPHSC-ZVCIMWCZSA-N 9-cis-retinoic acid Chemical compound OC(=O)/C=C(\C)/C=C/C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-ZVCIMWCZSA-N 0.000 description 1
- 208000002008 AIDS-Related Lymphoma Diseases 0.000 description 1
- 101150078244 AMO1 gene Proteins 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 208000006468 Adrenal Cortex Neoplasms Diseases 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 208000000058 Anaplasia Diseases 0.000 description 1
- 108090000672 Annexin A5 Proteins 0.000 description 1
- 102000004121 Annexin A5 Human genes 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 102000015790 Asparaginase Human genes 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 1
- 229910015845 BBr3 Inorganic materials 0.000 description 1
- MJAPNWJRLLDPAB-UHFFFAOYSA-N BRACO-19 Chemical compound Cl.Cl.Cl.C1=CC(N(C)C)=CC=C1NC1=C(C=CC(NC(=O)CCN2CCCC2)=C2)C2=NC2=CC(NC(=O)CCN3CCCC3)=CC=C12 MJAPNWJRLLDPAB-UHFFFAOYSA-N 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- JCXFOYXOSALVRY-UHFFFAOYSA-O CC(=O)[O-].[H][N+]1(CC2=C3C(=CC=C2)OC(C)=C3C(=O)NC2=CC=C(C)C=C2)CCCCCC1 Chemical compound CC(=O)[O-].[H][N+]1(CC2=C3C(=CC=C2)OC(C)=C3C(=O)NC2=CC=C(C)C=C2)CCCCCC1 JCXFOYXOSALVRY-UHFFFAOYSA-O 0.000 description 1
- INGCXVDJXLCLKF-UHFFFAOYSA-N CC(C)(C)CC(C)(C)C.CC(C)(C)CCC(C)(C)C.CC(C)(C)NC(=O)C(C)(C)C.CC(C)(C)NC(=O)C(C)(C)C.CC(C)(C)NS(=O)(=O)C(C)(C)C Chemical compound CC(C)(C)CC(C)(C)C.CC(C)(C)CCC(C)(C)C.CC(C)(C)NC(=O)C(C)(C)C.CC(C)(C)NC(=O)C(C)(C)C.CC(C)(C)NS(=O)(=O)C(C)(C)C INGCXVDJXLCLKF-UHFFFAOYSA-N 0.000 description 1
- SKPSYJBZGYNHMA-UHFFFAOYSA-N CC(C)(C)CC1=C(C(C)(C)C)C(C(C)(C)C)=CC=C1O.CC(C)(C)CC1=C(C(C)(C)C)C(C(C)(C)C)=CN=C1O.CC(C)(C)CC1=C(C(C)(C)C)C(C(C)(C)C)=NC=C1O.CC1=CC=C(C(C)(C)C)C(C(C)(C)C)=C1CC(C)(C)C.CC1=CC=C(C(C)(C)C)C(C(C)(C)C)=C1CC(C)(C)C.CC1=CN=C(C(C)(C)C)C(C(C)(C)C)=C1CC(C)(C)C.CC1=CN=C(C(C)(C)C)C(C(C)(C)C)=C1CC(C)(C)C.CC1=NC=C(C(C)(C)C)C(C(C)(C)C)=C1CC(C)(C)C.CC1=NC=C(C(C)(C)C)C(C(C)(C)C)=C1CC(C)(C)C Chemical compound CC(C)(C)CC1=C(C(C)(C)C)C(C(C)(C)C)=CC=C1O.CC(C)(C)CC1=C(C(C)(C)C)C(C(C)(C)C)=CN=C1O.CC(C)(C)CC1=C(C(C)(C)C)C(C(C)(C)C)=NC=C1O.CC1=CC=C(C(C)(C)C)C(C(C)(C)C)=C1CC(C)(C)C.CC1=CC=C(C(C)(C)C)C(C(C)(C)C)=C1CC(C)(C)C.CC1=CN=C(C(C)(C)C)C(C(C)(C)C)=C1CC(C)(C)C.CC1=CN=C(C(C)(C)C)C(C(C)(C)C)=C1CC(C)(C)C.CC1=NC=C(C(C)(C)C)C(C(C)(C)C)=C1CC(C)(C)C.CC1=NC=C(C(C)(C)C)C(C(C)(C)C)=C1CC(C)(C)C SKPSYJBZGYNHMA-UHFFFAOYSA-N 0.000 description 1
- GFONROXQFASPMJ-UHFFFAOYSA-N CC(C)(C)NC(=O)C(C)(C)C Chemical compound CC(C)(C)NC(=O)C(C)(C)C GFONROXQFASPMJ-UHFFFAOYSA-N 0.000 description 1
- PZFBAOJVMJBIJI-UHFFFAOYSA-N CC.CC.CC(C)(C)N1CCCCC1.CC(C)(C)N1CCCCC1.CC(C)(C)N1CCCCCC1.CC(C)(C)N1CCCCCC1 Chemical compound CC.CC.CC(C)(C)N1CCCCC1.CC(C)(C)N1CCCCC1.CC(C)(C)N1CCCCCC1.CC(C)(C)N1CCCCCC1 PZFBAOJVMJBIJI-UHFFFAOYSA-N 0.000 description 1
- GOWKJSBGHKBQJM-UHFFFAOYSA-N CC.CC.CC.CC(C)(C)C1=CC=CC=C1.CC(C)(C)C1=CC=CC=C1.CC(C)(C)C1=NC=CC=C1.CC(C)(C)C1=NC=CC=C1.CC(F)(F)F Chemical compound CC.CC.CC.CC(C)(C)C1=CC=CC=C1.CC(C)(C)C1=CC=CC=C1.CC(C)(C)C1=NC=CC=C1.CC(C)(C)C1=NC=CC=C1.CC(F)(F)F GOWKJSBGHKBQJM-UHFFFAOYSA-N 0.000 description 1
- UQOSVOGTGKTKEH-UHFFFAOYSA-N CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC(C)(C)N1CCC1.CC(C)(C)N1CCC1.CC(C)(C)N1CCCC1.CC(C)(C)N1CCCC1.CC(C)(C)N1CCCCC1.CC(C)(C)N1CCCCC1.CC(C)(C)N1CCCCCC1.CC(C)(C)N1CCCCCC1.CC(C)(C)N1CCCCN1.CC(C)(C)N1CCCCN1.CC(C)(C)N1CCCN1.CC(C)(C)N1CCCN1.CC(C)(C)N1CCCNC1.CC(C)(C)N1CCCNC1.CC(C)(C)N1CCNC1.CC(C)(C)N1CCNC1.CC(C)(C)N1CCNCC1.CC(C)(C)N1CCNCC1.CC(C)(C)N1CNC1.CC(C)(C)N1CNC1 Chemical compound CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC(C)(C)N1CCC1.CC(C)(C)N1CCC1.CC(C)(C)N1CCCC1.CC(C)(C)N1CCCC1.CC(C)(C)N1CCCCC1.CC(C)(C)N1CCCCC1.CC(C)(C)N1CCCCCC1.CC(C)(C)N1CCCCCC1.CC(C)(C)N1CCCCN1.CC(C)(C)N1CCCCN1.CC(C)(C)N1CCCN1.CC(C)(C)N1CCCN1.CC(C)(C)N1CCCNC1.CC(C)(C)N1CCCNC1.CC(C)(C)N1CCNC1.CC(C)(C)N1CCNC1.CC(C)(C)N1CCNCC1.CC(C)(C)N1CCNCC1.CC(C)(C)N1CNC1.CC(C)(C)N1CNC1 UQOSVOGTGKTKEH-UHFFFAOYSA-N 0.000 description 1
- PVWGPETUEICKRM-UHFFFAOYSA-N CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC(C)(C)C1CCC1.CC(C)(C)C1CCC1.CC(C)(C)C1CCCC1.CC(C)(C)C1CCCC1.CC(C)(C)C1CCCCC1.CC(C)(C)C1CCCCC1.CC(C)(C)C1CCCCCC1.CC(C)(C)C1CCCCCC1.CC(C)(C)N1CCC1.CC(C)(C)N1CCC1.CC(C)(C)N1CCCC1.CC(C)(C)N1CCCC1.CC(C)(C)N1CCCCC1.CC(C)(C)N1CCCCC1.CC(C)(C)N1CCCCCC1.CC(C)(C)N1CCCCCC1.CC(C)(C)N1CCCCN1.CC(C)(C)N1CCCCN1.CC(C)(C)N1CCCN1.CC(C)(C)N1CCCN1.CC(C)(C)N1CCCNC1.CC(C)(C)N1CCCNC1.CC(C)(C)N1CCNC1.CC(C)(C)N1CCNC1.CC(C)(C)N1CCNCC1.CC(C)(C)N1CCNCC1.CC(C)(C)N1CNC1.CC(C)(C)N1CNC1 Chemical compound CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC(C)(C)C1CCC1.CC(C)(C)C1CCC1.CC(C)(C)C1CCCC1.CC(C)(C)C1CCCC1.CC(C)(C)C1CCCCC1.CC(C)(C)C1CCCCC1.CC(C)(C)C1CCCCCC1.CC(C)(C)C1CCCCCC1.CC(C)(C)N1CCC1.CC(C)(C)N1CCC1.CC(C)(C)N1CCCC1.CC(C)(C)N1CCCC1.CC(C)(C)N1CCCCC1.CC(C)(C)N1CCCCC1.CC(C)(C)N1CCCCCC1.CC(C)(C)N1CCCCCC1.CC(C)(C)N1CCCCN1.CC(C)(C)N1CCCCN1.CC(C)(C)N1CCCN1.CC(C)(C)N1CCCN1.CC(C)(C)N1CCCNC1.CC(C)(C)N1CCCNC1.CC(C)(C)N1CCNC1.CC(C)(C)N1CCNC1.CC(C)(C)N1CCNCC1.CC(C)(C)N1CCNCC1.CC(C)(C)N1CNC1.CC(C)(C)N1CNC1 PVWGPETUEICKRM-UHFFFAOYSA-N 0.000 description 1
- RAJXZFORKZYMET-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCC3)C(O)=CC=C2O1 RAJXZFORKZYMET-UHFFFAOYSA-N 0.000 description 1
- FVHWMZSQHYQDCH-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCC3)C(O)=CC=C2O1 FVHWMZSQHYQDCH-UHFFFAOYSA-N 0.000 description 1
- MLIQRPOJJQFUOM-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCCC3)C(O)=CC=C2O1 MLIQRPOJJQFUOM-UHFFFAOYSA-N 0.000 description 1
- CBZDVGFZHFVWHL-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCCC3C)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCCC3C)C(O)=CC=C2O1 CBZDVGFZHFVWHL-UHFFFAOYSA-N 0.000 description 1
- IOAMOZLUVOVISJ-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCCCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCCCC3)C(O)=CC=C2O1 IOAMOZLUVOVISJ-UHFFFAOYSA-N 0.000 description 1
- CBZDVGFZHFVWHL-AWEZNQCLSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCC[C@@H]3C)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCC[C@@H]3C)C(O)=CC=C2O1 CBZDVGFZHFVWHL-AWEZNQCLSA-N 0.000 description 1
- CBZDVGFZHFVWHL-CQSZACIVSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCC[C@H]3C)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCCC[C@H]3C)C(O)=CC=C2O1 CBZDVGFZHFVWHL-CQSZACIVSA-N 0.000 description 1
- ZBNYQXNSNSVCTO-CQSZACIVSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCC[C@@H](C)C3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCC[C@@H](C)C3)C(O)=CC=C2O1 ZBNYQXNSNSVCTO-CQSZACIVSA-N 0.000 description 1
- ZBNYQXNSNSVCTO-AWEZNQCLSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCC[C@H](C)C3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCC[C@H](C)C3)C(O)=CC=C2O1 ZBNYQXNSNSVCTO-AWEZNQCLSA-N 0.000 description 1
- SBTCWIIEIIEGOT-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCN(C)CC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCN(C)CC3)C(O)=CC=C2O1 SBTCWIIEIIEGOT-UHFFFAOYSA-N 0.000 description 1
- WCKNHHBKOVIVMV-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCOCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC(C(F)(F)F)=CC=C2)C2=C(CN3CCOCC3)C(O)=CC=C2O1 WCKNHHBKOVIVMV-UHFFFAOYSA-N 0.000 description 1
- SSOGOCUBPOZJSM-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CCC3CC4CCC3C4)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CCC3CC4CCC3C4)C(O)=CC=C2O1 SSOGOCUBPOZJSM-UHFFFAOYSA-N 0.000 description 1
- XGRKQKMXBVLPFG-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CCC3CC4CCC3CC4)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CCC3CC4CCC3CC4)C(O)=CC=C2O1 XGRKQKMXBVLPFG-UHFFFAOYSA-N 0.000 description 1
- UCSBBJSIAVNUFN-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CCCN3CCCCCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CCCN3CCCCCC3)C(O)=CC=C2O1 UCSBBJSIAVNUFN-UHFFFAOYSA-N 0.000 description 1
- OQQCYNNOJOVMSU-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CCN3CCCCCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CCN3CCCCCC3)C(O)=CC=C2O1 OQQCYNNOJOVMSU-UHFFFAOYSA-N 0.000 description 1
- NFPHUGSICNVQAV-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CC4CCC3C4)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CC4CCC3C4)C(O)=CC=C2O1 NFPHUGSICNVQAV-UHFFFAOYSA-N 0.000 description 1
- RIYOMSXKXBENIC-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCC(C)CC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCC(C)CC3)C(O)=CC=C2O1 RIYOMSXKXBENIC-UHFFFAOYSA-N 0.000 description 1
- SDRFOYBUBBFVJN-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCC3)C(O)=CC=C2O1 SDRFOYBUBBFVJN-UHFFFAOYSA-N 0.000 description 1
- ACTXXJNURFRWDY-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCCC3)C(O)=CC=C2O1 ACTXXJNURFRWDY-UHFFFAOYSA-N 0.000 description 1
- CCAKHVBCBLIIEV-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCCCCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCCCCC3)C(O)=CC=C2O1 CCAKHVBCBLIIEV-UHFFFAOYSA-N 0.000 description 1
- OXPQNCUYJTWUQO-AWEZNQCLSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCCC[C@@H]3C)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCCC[C@@H]3C)C(O)=CC=C2O1 OXPQNCUYJTWUQO-AWEZNQCLSA-N 0.000 description 1
- OXPQNCUYJTWUQO-CQSZACIVSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCCC[C@H]3C)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCCC[C@H]3C)C(O)=CC=C2O1 OXPQNCUYJTWUQO-CQSZACIVSA-N 0.000 description 1
- YAWPCNSMWROMFB-ZDUSSCGKSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCC[C@@H]3C)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CN3CCC[C@@H]3C)C(O)=CC=C2O1 YAWPCNSMWROMFB-ZDUSSCGKSA-N 0.000 description 1
- VPMGTIICKGFQPY-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CNC3CC4CCC3CC4)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=C(C(F)(F)F)C=C2)C2=C(CNC3CC4CCC3CC4)C(O)=CC=C2O1 VPMGTIICKGFQPY-UHFFFAOYSA-N 0.000 description 1
- IGLWWMRLNCWGQP-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC=CC=C2)C2=C(CN3CCCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2=CC=CC=C2)C2=C(CN3CCCC3)C(O)=CC=C2O1 IGLWWMRLNCWGQP-UHFFFAOYSA-N 0.000 description 1
- JHPGKHHSWMXZTR-UHFFFAOYSA-N CC1=C(C(=O)NC2=CC=CC=C2)C2=C(CN3CCCCCC3)C(O)=CC=C2O1.CC1=C(C(=O)O)C2=CC(CO)=CC=C2O1.CC1=CC=C(N)C=C1.CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(C)C(CN4CCCCCC4)=C32)C=C1.CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(CO)C=C32)C=C1.CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(O)C=C32)C=C1.[H]C1=CC=C2OC(C)=C(C(=O)NC3=CC=C(C)C=C3)C2=C1CN1CCCCCC1 Chemical compound CC1=C(C(=O)NC2=CC=CC=C2)C2=C(CN3CCCCCC3)C(O)=CC=C2O1.CC1=C(C(=O)O)C2=CC(CO)=CC=C2O1.CC1=CC=C(N)C=C1.CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(C)C(CN4CCCCCC4)=C32)C=C1.CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(CO)C=C32)C=C1.CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(O)C=C32)C=C1.[H]C1=CC=C2OC(C)=C(C(=O)NC3=CC=C(C)C=C3)C2=C1CN1CCCCCC1 JHPGKHHSWMXZTR-UHFFFAOYSA-N 0.000 description 1
- WVUITDWABKAKME-UHFFFAOYSA-N CC1=C(C(=O)NC2CCCCC2)C2=C(CN3CCCCCC3)C(O)=CC=C2O1 Chemical compound CC1=C(C(=O)NC2CCCCC2)C2=C(CN3CCCCCC3)C(O)=CC=C2O1 WVUITDWABKAKME-UHFFFAOYSA-N 0.000 description 1
- GGXTXJAHVGHBHF-UHFFFAOYSA-N CC1=C(NC(=O)C2=C(C)OC3=CC=C(O)C(CN4CCCCC4)=C32)C=CC=C1 Chemical compound CC1=C(NC(=O)C2=C(C)OC3=CC=C(O)C(CN4CCCCC4)=C32)C=CC=C1 GGXTXJAHVGHBHF-UHFFFAOYSA-N 0.000 description 1
- IEVHWVRRDPKZKE-UHFFFAOYSA-N CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(CO)C=C32)C=C1 Chemical compound CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(CO)C=C32)C=C1 IEVHWVRRDPKZKE-UHFFFAOYSA-N 0.000 description 1
- YVHFQZKKQZFPJH-UHFFFAOYSA-N CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(OS(=O)(=O)C(F)(F)F)C(CN4CCCCCC4)=C32)C=C1 Chemical compound CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(OS(=O)(=O)C(F)(F)F)C(CN4CCCCCC4)=C32)C=C1 YVHFQZKKQZFPJH-UHFFFAOYSA-N 0.000 description 1
- ICJPHUMEBBPJGR-UHFFFAOYSA-N CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(OS(C)(=O)=O)C(CN4CCCCCC4)=C32)C=C1 Chemical compound CC1=CC=C(NC(=O)C2=C(C)OC3=CC=C(OS(C)(=O)=O)C(CN4CCCCCC4)=C32)C=C1 ICJPHUMEBBPJGR-UHFFFAOYSA-N 0.000 description 1
- JCXFOYXOSALVRY-UHFFFAOYSA-N CC1=CC=C(NC(=O)C2=C(C)OC3=CC=CC(CN4CCCCCC4)=C32)C=C1 Chemical compound CC1=CC=C(NC(=O)C2=C(C)OC3=CC=CC(CN4CCCCCC4)=C32)C=C1 JCXFOYXOSALVRY-UHFFFAOYSA-N 0.000 description 1
- ZIEORZBTTRHPEF-UHFFFAOYSA-N CCN1CCN(CC2=C3C(=CC=C2O)OC(C)=C3C(=O)NC2=CC(C(F)(F)F)=CC=C2)CC1 Chemical compound CCN1CCN(CC2=C3C(=CC=C2O)OC(C)=C3C(=O)NC2=CC(C(F)(F)F)=CC=C2)CC1 ZIEORZBTTRHPEF-UHFFFAOYSA-N 0.000 description 1
- KXAXVGODKLONAP-UHFFFAOYSA-N CCOC(=O)C1=C(C)N(C)C2=CC=C(O)C(CN3CCC(C)CC3)=C21 Chemical compound CCOC(=O)C1=C(C)N(C)C2=CC=C(O)C(CN3CCC(C)CC3)=C21 KXAXVGODKLONAP-UHFFFAOYSA-N 0.000 description 1
- WCGCXQQWRRQKEG-UHFFFAOYSA-N CCOC(=O)C1=C(C2=CC=CC=C2)OC2=CC=C(O)C(CN3CCCCCC3)=C21 Chemical compound CCOC(=O)C1=C(C2=CC=CC=C2)OC2=CC=C(O)C(CN3CCCCCC3)=C21 WCGCXQQWRRQKEG-UHFFFAOYSA-N 0.000 description 1
- 101001059929 Caenorhabditis elegans Forkhead box protein O Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 206010007270 Carcinoid syndrome Diseases 0.000 description 1
- 206010007275 Carcinoid tumour Diseases 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 241000759568 Corixa Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- NBSCHQHZLSJFNQ-GASJEMHNSA-N D-Glucose 6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@H]1O NBSCHQHZLSJFNQ-GASJEMHNSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- DSLZVSRJTYRBFB-LLEIAEIESA-N D-glucaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O DSLZVSRJTYRBFB-LLEIAEIESA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 102100030960 DNA replication licensing factor MCM2 Human genes 0.000 description 1
- 102100021389 DNA replication licensing factor MCM4 Human genes 0.000 description 1
- 102100034001 DNA replication licensing factor MCM5 Human genes 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 208000006402 Ductal Carcinoma Diseases 0.000 description 1
- 241001269524 Dura Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- QTANTQQOYSUMLC-UHFFFAOYSA-O Ethidium cation Chemical compound C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 QTANTQQOYSUMLC-UHFFFAOYSA-O 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 108091092566 Extrachromosomal DNA Proteins 0.000 description 1
- JNCMHMUGTWEVOZ-UHFFFAOYSA-N F[CH]F Chemical compound F[CH]F JNCMHMUGTWEVOZ-UHFFFAOYSA-N 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 108010009307 Forkhead Box Protein O3 Proteins 0.000 description 1
- 230000010190 G1 phase Effects 0.000 description 1
- 102100030708 GTPase KRas Human genes 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- VFRROHXSMXFLSN-UHFFFAOYSA-N Glc6P Natural products OP(=O)(O)OCC(O)C(O)C(O)C(O)C=O VFRROHXSMXFLSN-UHFFFAOYSA-N 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 239000007821 HATU Substances 0.000 description 1
- 101000583807 Homo sapiens DNA replication licensing factor MCM2 Proteins 0.000 description 1
- 101000615280 Homo sapiens DNA replication licensing factor MCM4 Proteins 0.000 description 1
- 101001017545 Homo sapiens DNA replication licensing factor MCM5 Proteins 0.000 description 1
- 101001018431 Homo sapiens DNA replication licensing factor MCM7 Proteins 0.000 description 1
- 101000584612 Homo sapiens GTPase KRas Proteins 0.000 description 1
- 101000904152 Homo sapiens Transcription factor E2F1 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 206010061252 Intraocular melanoma Diseases 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 125000002061 L-isoleucyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](C([H])([H])[H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000004395 L-leucine Substances 0.000 description 1
- 235000019454 L-leucine Nutrition 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 125000003580 L-valyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(C([H])([H])[H])(C([H])([H])[H])[H] 0.000 description 1
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 1
- 239000002147 L01XE04 - Sunitinib Substances 0.000 description 1
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 1
- 239000002136 L01XE07 - Lapatinib Substances 0.000 description 1
- 239000003798 L01XE11 - Pazopanib Substances 0.000 description 1
- 239000002118 L01XE12 - Vandetanib Substances 0.000 description 1
- 102100020870 La-related protein 6 Human genes 0.000 description 1
- 108050008265 La-related protein 6 Proteins 0.000 description 1
- XNRVGTHNYCNCFF-UHFFFAOYSA-N Lapatinib ditosylate monohydrate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1.CC1=CC=C(S(O)(=O)=O)C=C1.O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 XNRVGTHNYCNCFF-UHFFFAOYSA-N 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- 206010024305 Leukaemia monocytic Diseases 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 206010026673 Malignant Pleural Effusion Diseases 0.000 description 1
- 206010025538 Malignant ascites Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 208000037196 Medullary thyroid carcinoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- ONXPDKGXOOORHB-BYPYZUCNSA-N N(5)-methyl-L-glutamine Chemical compound CNC(=O)CC[C@H](N)C(O)=O ONXPDKGXOOORHB-BYPYZUCNSA-N 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 125000000815 N-oxide group Chemical group 0.000 description 1
- QECVIPBZOPUTRD-UHFFFAOYSA-N N=S(=O)=O Chemical class N=S(=O)=O QECVIPBZOPUTRD-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 206010052437 Nasal discomfort Diseases 0.000 description 1
- 208000009905 Neurofibromatoses Diseases 0.000 description 1
- 102100021010 Nucleolin Human genes 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229920005689 PLLA-PGA Polymers 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 206010033701 Papillary thyroid cancer Diseases 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 206010033963 Parathyroid tumour Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 208000002471 Penile Neoplasms Diseases 0.000 description 1
- 208000005228 Pericardial Effusion Diseases 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- QOSMNYMQXIVWKY-UHFFFAOYSA-N Propyl levulinate Chemical compound CCCOC(=O)CCC(C)=O QOSMNYMQXIVWKY-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 208000007660 Residual Neoplasm Diseases 0.000 description 1
- 108020001027 Ribosomal DNA Proteins 0.000 description 1
- 229910006074 SO2NH2 Inorganic materials 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- NAVMQTYZDKMPEU-UHFFFAOYSA-N Targretin Chemical compound CC1=CC(C(CCC2(C)C)(C)C)=C2C=C1C(=C)C1=CC=C(C(O)=O)C=C1 NAVMQTYZDKMPEU-UHFFFAOYSA-N 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- IVTVGDXNLFLDRM-HNNXBMFYSA-N Tomudex Chemical compound C=1C=C2NC(C)=NC(=O)C2=CC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)S1 IVTVGDXNLFLDRM-HNNXBMFYSA-N 0.000 description 1
- 102100024026 Transcription factor E2F1 Human genes 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 201000005969 Uveal melanoma Diseases 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 241000863480 Vinca Species 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- KYIKRXIYLAGAKQ-UHFFFAOYSA-N abcn Chemical compound C1CCCCC1(C#N)N=NC1(C#N)CCCCC1 KYIKRXIYLAGAKQ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- 208000017733 acquired polycythemia vera Diseases 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229960000548 alemtuzumab Drugs 0.000 description 1
- 229960001445 alitretinoin Drugs 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000004414 alkyl thio group Chemical class 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- 125000000266 alpha-aminoacyl group Chemical group 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 229960002749 aminolevulinic acid Drugs 0.000 description 1
- 229960004909 aminosalicylic acid Drugs 0.000 description 1
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 229960001694 anagrelide Drugs 0.000 description 1
- OTBXOEAOVRKTNQ-UHFFFAOYSA-N anagrelide Chemical compound N1=C2NC(=O)CN2CC2=C(Cl)C(Cl)=CC=C21 OTBXOEAOVRKTNQ-UHFFFAOYSA-N 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000003217 anti-cancerogenic effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 1
- 229940045985 antineoplastic platinum compound Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005140 aralkylsulfonyl group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- GOLCXWYRSKYTSP-UHFFFAOYSA-N arsenic trioxide Inorganic materials O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 1
- 229960002594 arsenic trioxide Drugs 0.000 description 1
- 150000007860 aryl ester derivatives Chemical class 0.000 description 1
- 150000001502 aryl halides Chemical class 0.000 description 1
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 1
- 125000005135 aryl sulfinyl group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 229960003005 axitinib Drugs 0.000 description 1
- RITAVMQDGBJQJZ-FMIVXFBMSA-N axitinib Chemical compound CNC(=O)C1=CC=CC=C1SC1=CC=C(C(\C=C\C=2N=CC=CC=2)=NN2)C2=C1 RITAVMQDGBJQJZ-FMIVXFBMSA-N 0.000 description 1
- ZSIQJIWKELUFRJ-UHFFFAOYSA-N azepane Chemical compound C1CCCNCC1 ZSIQJIWKELUFRJ-UHFFFAOYSA-N 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- UPABQMWFWCMOFV-UHFFFAOYSA-N benethamine Chemical compound C=1C=CC=CC=1CNCCC1=CC=CC=C1 UPABQMWFWCMOFV-UHFFFAOYSA-N 0.000 description 1
- MIAUJDCQDVWHEV-UHFFFAOYSA-N benzene-1,2-disulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1S(O)(=O)=O MIAUJDCQDVWHEV-UHFFFAOYSA-N 0.000 description 1
- 125000004604 benzisothiazolyl group Chemical group S1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000004603 benzisoxazolyl group Chemical group O1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000005872 benzooxazolyl group Chemical group 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 208000036815 beta tubulin Diseases 0.000 description 1
- 229960002938 bexarotene Drugs 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 125000002618 bicyclic heterocycle group Chemical group 0.000 description 1
- 201000007180 bile duct carcinoma Diseases 0.000 description 1
- 210000003445 biliary tract Anatomy 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000008436 biogenesis Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 238000001815 biotherapy Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- 208000014581 breast ductal adenocarcinoma Diseases 0.000 description 1
- 201000010983 breast ductal carcinoma Diseases 0.000 description 1
- 201000003714 breast lobular carcinoma Diseases 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- IYYIVELXUANFED-UHFFFAOYSA-N bromo(trimethyl)silane Chemical compound C[Si](C)(C)Br IYYIVELXUANFED-UHFFFAOYSA-N 0.000 description 1
- 229940125763 bromodomain inhibitor Drugs 0.000 description 1
- 125000005997 bromomethyl group Chemical group 0.000 description 1
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229960002713 calcium chloride Drugs 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 125000001589 carboacyl group Chemical group 0.000 description 1
- 125000004452 carbocyclyl group Chemical group 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- YAYRGNWWLMLWJE-UHFFFAOYSA-L carboplatin Chemical compound O=C1O[Pt](N)(N)OC(=O)C11CCC1 YAYRGNWWLMLWJE-UHFFFAOYSA-L 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229940045110 chitosan Drugs 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 1
- 229960002023 chloroprocaine Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000024207 chronic leukemia Diseases 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 238000001142 circular dichroism spectrum Methods 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- WDDPHFBMKLOVOX-AYQXTPAHSA-N clofarabine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1F WDDPHFBMKLOVOX-AYQXTPAHSA-N 0.000 description 1
- 229960000928 clofarabine Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229960005188 collagen Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000009096 combination chemotherapy Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 208000030381 cutaneous melanoma Diseases 0.000 description 1
- 125000004850 cyclobutylmethyl group Chemical group C1(CCC1)C* 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000004851 cyclopentylmethyl group Chemical group C1(CCCC1)C* 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 230000002380 cytological effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000007257 deesterification reaction Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 229960002923 denileukin diftitox Drugs 0.000 description 1
- 108010017271 denileukin diftitox Proteins 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000011903 deuterated solvents Substances 0.000 description 1
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000004786 difluoromethoxy group Chemical group [H]C(F)(F)O* 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 125000005303 dithiazolyl group Chemical group S1SNC(=C1)* 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 201000011523 endocrine gland cancer Diseases 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 229960001433 erlotinib Drugs 0.000 description 1
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 1
- HCZKYJDFEPMADG-UHFFFAOYSA-N erythro-nordihydroguaiaretic acid Natural products C=1C=C(O)C(O)=CC=1CC(C)C(C)CC1=CC=C(O)C(O)=C1 HCZKYJDFEPMADG-UHFFFAOYSA-N 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- AFAXGSQYZLGZPG-UHFFFAOYSA-N ethanedisulfonic acid Chemical compound OS(=O)(=O)CCS(O)(=O)=O AFAXGSQYZLGZPG-UHFFFAOYSA-N 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 208000028149 female reproductive system neoplasm Diseases 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 229960004783 fotemustine Drugs 0.000 description 1
- YAKWPXVTIGTRJH-UHFFFAOYSA-N fotemustine Chemical compound CCOP(=O)(OCC)C(C)NC(=O)N(CCCl)N=O YAKWPXVTIGTRJH-UHFFFAOYSA-N 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 229960002584 gefitinib Drugs 0.000 description 1
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 229960000578 gemtuzumab Drugs 0.000 description 1
- 238000011223 gene expression profiling Methods 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 208000003884 gestational trophoblastic disease Diseases 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000025750 heavy chain disease Diseases 0.000 description 1
- 201000002222 hemangioblastoma Diseases 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000005935 hexyloxycarbonyl group Chemical group 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical class C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 210000003026 hypopharynx Anatomy 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 1
- 229960002411 imatinib Drugs 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 238000003017 in situ immunoassay Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 210000002602 induced regulatory T cell Anatomy 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 150000002485 inorganic esters Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000000185 intracerebroventricular administration Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 206010073095 invasive ductal breast carcinoma Diseases 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- XJTQJERLRPWUGL-UHFFFAOYSA-N iodomethylbenzene Chemical compound ICC1=CC=CC=C1 XJTQJERLRPWUGL-UHFFFAOYSA-N 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- QRWOVIRDHQJFDB-UHFFFAOYSA-N isobutyl cyanoacrylate Chemical compound CC(C)COC(=O)C(=C)C#N QRWOVIRDHQJFDB-UHFFFAOYSA-N 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 description 1
- 125000005928 isopropyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 229950003188 isovaleryl diethylamide Drugs 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229960004891 lapatinib Drugs 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000002463 lignoceryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 208000037841 lung tumor Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229960003951 masoprocol Drugs 0.000 description 1
- HCZKYJDFEPMADG-TXEJJXNPSA-N masoprocol Chemical compound C([C@H](C)[C@H](C)CC=1C=C(O)C(O)=CC=1)C1=CC=C(O)C(O)=C1 HCZKYJDFEPMADG-TXEJJXNPSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- HRDXJKGNWSUIBT-UHFFFAOYSA-N methoxybenzene Chemical group [CH2]OC1=CC=CC=C1 HRDXJKGNWSUIBT-UHFFFAOYSA-N 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- YUUAYBAIHCDHHD-UHFFFAOYSA-N methyl 5-aminolevulinate Chemical compound COC(=O)CCC(=O)CN YUUAYBAIHCDHHD-UHFFFAOYSA-N 0.000 description 1
- 229960005033 methyl aminolevulinate Drugs 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 108091062762 miR-21 stem-loop Proteins 0.000 description 1
- 108091041631 miR-21-1 stem-loop Proteins 0.000 description 1
- 108091044442 miR-21-2 stem-loop Proteins 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 201000006894 monocytic leukemia Diseases 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 1
- 235000021281 monounsaturated fatty acids Nutrition 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 210000001989 nasopharynx Anatomy 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 108010087904 neutravidin Proteins 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 125000006502 nitrobenzyl group Chemical group 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 108010044762 nucleolin Proteins 0.000 description 1
- NSDWWGAIPUNJAX-UHFFFAOYSA-N o-quinomethane Chemical compound C=C1C=CC=CC1=O NSDWWGAIPUNJAX-UHFFFAOYSA-N 0.000 description 1
- OIPZNTLJVJGRCI-UHFFFAOYSA-M octadecanoyloxyaluminum;dihydrate Chemical compound O.O.CCCCCCCCCCCCCCCCCC(=O)O[Al] OIPZNTLJVJGRCI-UHFFFAOYSA-M 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 201000002575 ocular melanoma Diseases 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 210000003300 oropharynx Anatomy 0.000 description 1
- 230000000010 osteolytic effect Effects 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WLJNZVDCPSBLRP-UHFFFAOYSA-N pamoic acid Chemical compound C1=CC=C2C(CC=3C4=CC=CC=C4C=C(C=3O)C(=O)O)=C(O)C(C(O)=O)=CC2=C1 WLJNZVDCPSBLRP-UHFFFAOYSA-N 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 230000009996 pancreatic endocrine effect Effects 0.000 description 1
- 229960001972 panitumumab Drugs 0.000 description 1
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 1
- 201000010198 papillary carcinoma Diseases 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 208000007312 paraganglioma Diseases 0.000 description 1
- 210000003695 paranasal sinus Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229960000639 pazopanib Drugs 0.000 description 1
- CUIHSIWYWATEQL-UHFFFAOYSA-N pazopanib Chemical compound C1=CC2=C(C)N(C)N=C2C=C1N(C)C(N=1)=CC=NC=1NC1=CC=C(C)C(S(N)(=O)=O)=C1 CUIHSIWYWATEQL-UHFFFAOYSA-N 0.000 description 1
- 229960001744 pegaspargase Drugs 0.000 description 1
- 108010001564 pegaspargase Proteins 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- WBXPDJSOTKVWSJ-ZDUSSCGKSA-N pemetrexed Chemical compound C=1NC=2NC(N)=NC(=O)C=2C=1CCC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 WBXPDJSOTKVWSJ-ZDUSSCGKSA-N 0.000 description 1
- 229960005079 pemetrexed Drugs 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 235000019371 penicillin G benzathine Nutrition 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 125000001148 pentyloxycarbonyl group Chemical group 0.000 description 1
- 229960002087 pertuzumab Drugs 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 208000010626 plasma cell neoplasm Diseases 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 150000003058 platinum compounds Chemical class 0.000 description 1
- 229920002863 poly(1,4-phenylene oxide) polymer Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 208000037244 polycythemia vera Diseases 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229960004293 porfimer sodium Drugs 0.000 description 1
- 229960002816 potassium chloride Drugs 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 125000001325 propanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 238000012342 propidium iodide staining Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000004742 propyloxycarbonyl group Chemical group 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 201000001514 prostate carcinoma Diseases 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- 125000002755 pyrazolinyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000001422 pyrrolinyl group Chemical group 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 229960004432 raltitrexed Drugs 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 239000012146 running buffer Substances 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 201000003708 skin melanoma Diseases 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 229960004249 sodium acetate Drugs 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229960002668 sodium chloride Drugs 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- ILJOYZVVZZFIKA-UHFFFAOYSA-M sodium;1,1-dioxo-1,2-benzothiazol-3-olate;hydrate Chemical compound O.[Na+].C1=CC=C2C(=O)[N-]S(=O)(=O)C2=C1 ILJOYZVVZZFIKA-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 229960003787 sorafenib Drugs 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012306 spectroscopic technique Methods 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 125000003696 stearoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229960005137 succinic acid Drugs 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 description 1
- 229960001796 sunitinib Drugs 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 201000010965 sweat gland carcinoma Diseases 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- 125000000464 thioxo group Chemical class S=* 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 208000013818 thyroid gland medullary carcinoma Diseases 0.000 description 1
- 208000030045 thyroid gland papillary carcinoma Diseases 0.000 description 1
- 208000013076 thyroid tumor Diseases 0.000 description 1
- MNRILEROXIRVNJ-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=NC=N[C]21 MNRILEROXIRVNJ-UHFFFAOYSA-N 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- ZHPPJUUSHATRPV-UHFFFAOYSA-N tortuosine Chemical compound COC1=C(OC)C=C2C3=CC(OC)=CC(CC4)=C3[N+]4=CC2=C1 ZHPPJUUSHATRPV-UHFFFAOYSA-N 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000012085 transcriptional profiling Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229960000575 trastuzumab Drugs 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 229940117013 triethanolamine oleate Drugs 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical class OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 230000005748 tumor development Effects 0.000 description 1
- 208000017997 tumor of parathyroid gland Diseases 0.000 description 1
- 229960001055 uracil mustard Drugs 0.000 description 1
- 238000002562 urinalysis Methods 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- ZOCKGBMQLCSHFP-KQRAQHLDSA-N valrubicin Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)CCCC)[C@H]1C[C@H](NC(=O)C(F)(F)F)[C@H](O)[C@H](C)O1 ZOCKGBMQLCSHFP-KQRAQHLDSA-N 0.000 description 1
- 229960000653 valrubicin Drugs 0.000 description 1
- 125000002114 valyl group Chemical group 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229960000241 vandetanib Drugs 0.000 description 1
- UHTHHESEBZOYNR-UHFFFAOYSA-N vandetanib Chemical compound COC1=CC(C(/N=CN2)=N/C=3C(=CC(Br)=CC=3)F)=C2C=C1OCC1CCN(C)CC1 UHTHHESEBZOYNR-UHFFFAOYSA-N 0.000 description 1
- ZQFGRJWRSLZCSQ-ZSFNYQMMSA-N verteporfin Chemical compound C=1C([C@@]2([C@H](C(=O)OC)C(=CC=C22)C(=O)OC)C)=NC2=CC(C(=C2C=C)C)=NC2=CC(C(=C2CCC(O)=O)C)=NC2=CC2=NC=1C(C)=C2CCC(=O)OC ZQFGRJWRSLZCSQ-ZSFNYQMMSA-N 0.000 description 1
- 229960003895 verteporfin Drugs 0.000 description 1
- 231100000747 viability assay Toxicity 0.000 description 1
- 238000003026 viability measurement method Methods 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- HHJUWIANJFBDHT-KOTLKJBCSA-N vindesine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(N)=O)N4C)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 HHJUWIANJFBDHT-KOTLKJBCSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 210000003905 vulva Anatomy 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/78—Benzo [b] furans; Hydrogenated benzo [b] furans
- C07D307/82—Benzo [b] furans; Hydrogenated benzo [b] furans with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
- C07D307/84—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
- A61K31/343—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/397—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having four-membered rings, e.g. azetidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/4025—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil not condensed and containing further heterocyclic rings, e.g. cromakalim
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/439—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/4525—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with oxygen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/496—Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/06—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/08—Bridged systems
Definitions
- This relates to small molecule compounds that bind and stabilize the G-quadruplex DNA formation in the promoter of the c-MYC gene, and therefore can be used to reduce expression of the c-MYC gene in cells.
- the small molecule compounds can be used, for example, in methods of treating or inhibiting a tumor having increased c-MYC expression in a subject.
- the oncogenic transcription factor c-Myc has a pleiotropic role in a wide range of cell processes and is deregulated in some 70% of human cancers.
- targeting the c-Myc protein directly has proven to be difficult due to a lack of well-defined pockets amenable to small molecule binding.
- An alternative approach for suppressing c-Myc levels in the cell is through stabilization of the G-quadruplex DNA formation (G4) present in the promoter of the c-MYC gene.
- G4 G-quadruplex DNA formation
- Expression of the proto-oncogene c-MYC is regulated by a 27 base pair (Pu27) sequence found in the nuclease hypersensitive element III (1) region (NHEIII 1 ) of the c-MYC gene known to form a G4. Formation of the quadruplex in this sequence is believed to result in a “kink” in the DNA that prevents the polymerase from continuing along its reading frame, ultimately resulting in downregulation of the c-MY
- the identification and characterization of a new class of small molecule c-MYC G4 ligands that selectively bind to and stabilize the G4 in the c-MYC promoter region and silence c-Myc expression is described herein.
- the compounds are useful, for example, in methods of reducing or inhibiting c-MYC expression in cells (such as cancer cells), as well as in methods of treating or inhibiting a c-MYC expressing tumor in a subject.
- a method of decreasing c-MYC expression in a cell comprises contacting the cell with an effective amount of a compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of:
- A is a 6 membered aryl ring
- C is a 6-membered aryl ring
- each R 1 is independently selected from hydrogen or optionally-substituted lower alkyl
- a 0, 1, or 2;
- R 2 is selected from hydroxyl or halogen
- R 8 and R 9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring;
- each R 3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- b is 0 to 4.
- R 4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- each R 5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- d 0, 1, or 2;
- R 6 is selected from methyl, trifluoromethyl, or phenyl
- Z is selected from nitrogen or oxygen
- IV is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, optionally-substituted lower alkyl, and if Z is oxygen, IV is not present.
- a is 0, R 2 is hydroxyl, and/or R 6 is methyl.
- R 4 is lower haloalkyl (such as trifluoromethyl) and/or d is 0.
- R 8 and R 9 together with the linking nitrogen atom form optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted piperidine, optionally-substituted piperazine, or optionally-substituted azepane.
- R 8 and R 9 together with the linking nitrogen atom form pyrrolidine, imidizolidine, pryazolidine, piperidine, piperazine, or azepane.
- the method can include contacting the cell with an effective amount of a compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of one of Compounds 1, 3, 6, 10, 12-13, 18-20, 22-23, 26, or 28-29 as disclosed herein. In some embodiments of the method of decreasing c-MYC expression in a cell, the method can include contacting the cell with an effective amount of a compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of Compounds 23.
- compounds for use in the disclosed methods are provided.
- a compound, or a pharmaceutically acceptable salt or ester thereof is provided, having a structure of Formula III:
- each R 1 is independently selected from hydrogen or optionally-substituted lower alkyl
- R 2 is selected from hydroxyl or halogen
- R 8 and R 9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring;
- each R 3 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- b is 0 to 4.
- R 4 is trifluoromethyl
- each R 5 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- d 0, 1, or 2;
- R 6 is selected from methyl, trifluoromethyl, or phenyl
- Z is selected from nitrogen or oxygen
- R 7 is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkyl, and if Z is oxygen, R 7 is not present;
- a compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of one of compounds 23-29, or 34 is provided.
- Pharmaceutical composition comprising a disclosed compound and at least one pharmaceutically acceptable additive are also provided.
- the patent or application file contains at least one drawing executed in color.
- FIGS. 1A and 1B show a set of schematic drawings illustrating the c-MYC Pu22 G-quadruplex and its formation.
- A Schematic drawing of the c-MYC Pu22 G-quadruplex. In structure on right, each circle represents a different nucleotide (indicated as thymine, T, guanine, G, and adenine, A).
- the quadruplex-forming promoter sequence of the NHE III 1 region of wild type c-MycPu27 (SEQ ID NO: 1) and variant c-MycPu22 (SEQ ID NO: 2) are shown.
- B Cartoon depicting reversible formation of G-quadruplex DNA in c-MYC promoter region that controls gene transcription. Stabilization of the quadruplex with a small molecule inhibits transcription.
- FIGS. 2A-2C show a set of diagrams and graphs illustrating identification and testing of c-MycPu22 quadruplex DNA binding agents.
- A Cartoon depicting a small molecule microarray screen to identify compounds that bind to c-MycPu22 quadruplex DNA.
- B Structure of a compound identified from the screen to selectively bind to c-MycPu22. Compound 1 increases the melting temperature of quadruplex DNA as measured by circular dichroism (average of 4 trials ⁇ standard deviation).
- C Surface plasmon resonance experiment to measure the dissociation constant of Compound 1 binding to c-MycPu22. Shown are the sensorgram (left) and binding isotherm (right).
- FIGS. 3A-3C show a pair of Western blots and a graph illustrating that compound 1 inhibits c-MycPu22 quadruplex function.
- A PCR stop assay. Compound 1 inhibits PCR amplification of a synthetic wildtype oligonucleotide sequence (nucleotides 3-19 of SEQ ID NO: 2) capable of forming a G4, but not the mutant sequence (SEQ ID NO: 3) that cannot form a G4.
- B Exon specific qPCR assay with CA-46 Burkitt's Lymphoma cell line. Exon 1 (in red) remains under control of the G4 while transcription from exon 2 is not under control of a G4. Cells were treated with 10 ⁇ M 1 for the time indicated.
- FIGS. 4A-4D show a set of graphs and a Western blot illustrating the effects of Compound 1 on cell viability and c-Myc translation.
- A Dose-dependent effects of Compound 1 on myeloma cell viability at 72 h.
- B Time-dependent inhibition of c-Myc transcription in myeloma cells after treatment with 10 ⁇ M 1, as measured by qPCR. Data is average of 2 replicates and error bars represent standard deviation.
- C Inhibition of c-Myc protein translation with 10 ⁇ M Compound 1 is sustained over time.
- D Effects on cell viability and c-Myc protein translation by Compound 1 across a panel of multiple myeloma cell lines. Also included are the resistant CA46 Burkitt's Lymphoma cell line and peripheral blood mononucleocytes.
- FIGS. 5A-5C show a set of graphs and digital images illustrating that Compound 1 causes cell-cycle arrest in myeloma cells.
- A Cycle analysis for L363 cells treated with 10 ⁇ M Compound 1.
- Compound 1 induces sustained G1 arrest.
- Compound 1 does not induce significant apoptosis at 10 ⁇ M after 72 h.
- C Compound 1 induces a senescent state in myeloma cells at 10 ⁇ M after 72 h.
- FIGS. 6A-6C show a series of graphs illustrating the effect of Compound 1 treatment on gene expression.
- A Treatment with 10 ⁇ M of Compound 1 for various times reduces c-Myc expression of while minimally affecting expression of other G-quadruplex containing genes, as evaluated using Nanostring assays.
- B Treatment with 5, 10 or 12.5 ⁇ M of Compound 1 for 48 hours reduces c-Myc expression of while minimally affecting expression of other G-quadruplex containing genes, as evaluated using qPCR analysis (data are the average log 2 value for ⁇ Ct of three replicates).
- C A series of analogs of Compound 1 were tested for any effect on c-Myc expression or L363 cell viability. The expression levels of the BCL2 (1), KRAS (2), HIF1A (3), VEGFA (4), Rbl (5), and c-MYC (6) genes is shown.
- FIG. 7 illustrates potential decomposition pathways for Compound 1.
- FIG. 8 shows the 12 hits from the screen that were chosen for follow-up studies. Molecules with similar chemical scaffolds are grouped in boxes.
- FIG. 9 shows a circular dichroism spectrum of c-MycPu22 quadruplex DNA (SEQ ID NO: 2). Observed maximum (262 nm) and minimum (244 nm) demonstrate formation of a properly folded parallel-stranded G-quadruplex structure.
- FIG. 10 shows a general scheme for synthesis of analogs of Compound 1.
- FIG. 11 illustrates exemplary substitutions to Compound 1 that can be made to generate analogs that stabilize the G4 in the c-MYC promoter and inhibit c-Myc expression.
- FIG. 12 is a set of graphs showing the blood plasma levels of Compound 23 after a single IP (lower graph) or IV (upper graph) injection (19 mg/kg) in female nude mice.
- FIG. 13 shows a Western blot showing c-MYC expression levels in L363 subcutaneous xenografts that were harvested from xenograft bearing mice 2 or 8 hours after a single dose of Compound 23 at 19 mg/kg or 38 mg/kg (administered IP).
- FIGS. 14A and 14B are a set of graphs illustrating the effect of Compound 1 or Compound 23 treatment on gene expression.
- A Treatment of L363 cells with 5 ⁇ M Compound 23 for 24 or 48 hours reduced c-Myc expression while minimally affecting expression of other G-quadruplex containing genes as evaluated using qPCR analysis.
- B Treatment of L363 cells with 10 ⁇ M BRACO-19, 10 ⁇ M Compound 1 or 7.5 ⁇ M Compound 23 for 48 hours reduced c-Myc expression while minimally affecting expression of other G-quadruplex containing genes as evaluated using qPCR.
- the expression levels of the BCL2 (1), KRAS (2), HIF1A (3), VEGFA (4), and c-MYC (5) genes is shown.
- nucleic and amino acid sequences listed in the accompanying sequence listing are shown using standard letter abbreviations for nucleotide bases, and three letter code for amino acids, as defined in 37 C.F.R. 1.822. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included by any reference to the displayed strand.
- sequence.txt ⁇ 4 kb
- SEQ ID NO: 1 is the nucleic acid sequence of a c-MycPu27 G4
- SEQ ID NO: 2 is the nucleic acid sequence of a c-MycPu22 G4
- SEQ ID NO: 3 is the nucleic acid sequence of a mutant c-MycPu22 that does not form a G4 structure.
- SEQ ID NO: 4 is the nucleic acid sequence of an oligonucleotide primer.
- Acyl A group having the structure —C(O)R, where R may be, for example, optionally substituted alkyl, optionally substituted aryl, or optionally substituted heteroaryl.
- R may be, for example, optionally substituted alkyl, optionally substituted aryl, or optionally substituted heteroaryl.
- Lower acyl groups are those that contain one to six carbon atoms.
- Acyloxy A group having the structure —OC(O)R—, where R may be, for example, optionally substituted alkyl, optionally substituted aryl, or optionally substituted heteroaryl. Lower acyloxy groups contain one to six carbon atoms.
- a small molecule compound that selectively binds to G4 quadruplex DNA in the c-MYC promoter by any effective route.
- routes of administration include, but are not limited to, oral, injection (such as subcutaneous, intramuscular, intradermal, intraperitoneal, and intravenous), sublingual, rectal, transdermal (for example, topical), intranasal, vaginal, and inhalation routes.
- Co-administration or co-administering refers to administration of at least two therapeutic compounds within the same general time period, and does not require administration at the same exact moment in time (although co-administration is inclusive of administering at the same exact moment in time). Thus, co-administration may be on the same day or on different days, or in the same week or in different weeks.
- the therapeutic compounds disclosed herein may be included in the same composition or they may each individually be included in separate compositions.
- the two compounds may be administered during a time frame wherein their respective periods of biological activity overlap.
- the term includes sequential as well as coextensive administration of two or more compounds.
- administering should be understood to mean providing a compound, a prodrug of a compound, or a pharmaceutical composition as described herein.
- the compound or composition can be administered by another person to the subject (e.g., intravenously) or it can be self-administered by the subject (e.g., tablets).
- Agent Any substance or any combination of substances that is useful for achieving an end or result; for example, a substance or combination of substances useful for decreasing or reducing tumor growth in a subject. Agents include effector molecules and detectable markers. In some embodiments, the agent is a chemotherapeutic agent. The skilled artisan will understand that particular agents may be useful to achieve more than one result; for example, an agent may be useful as both a detectable marker and a chemotherapeutic agent.
- Aliphatic A group including alkyl, alkenyl, alkynyl, halogenated alkyl and cycloalkyl groups.
- a lower aliphatic group is a branched or unbranched aliphatic group having from 1 to 10 carbon atoms.
- Alkanediyl, cycloalkanediyl, aryldiyl, alkanearyldiyl A divalent radical derived from aliphatic, cycloaliphatic, aryl, and alkanearyl hydrocarbons.
- Alkenyl A cyclic, branched or straight chain group containing only carbon and hydrogen, and contains one or more double bonds that may or may not be conjugated. Alkenyl groups may be unsubstituted or substituted. Lower alkenyl groups contain one to six carbon atoms.
- Alkoxy A straight, branched or cyclic hydrocarbon configuration and combinations thereof, including from 1 to 20 carbon atoms, preferably from 1 to 6 carbon atoms (referred to as a “lower alkoxy”), more preferably from 1 to 4 carbon atoms, that include an oxygen atom at the point of attachment.
- An example of an “alkoxy group” is represented by the formula —OR, where R can be an alkyl group, optionally substituted with an alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, halogenated alkyl, alkoxy or heterocycloalkyl group.
- Suitable alkoxy groups include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, sec-butoxy, tert-butoxy cyclopropoxy, cyclohexyloxy, and the like.
- Alkoxycarbonyl An alkoxy substituted carbonyl radical, —C(O)OR, wherein R represents an optionally substituted alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl or similar moiety.
- Alkyl A branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, pentyl, hexyl, heptyl, octyl, decyl, tetradecyl, hexadecyl, eicosyl, tetracosyl and the like.
- a lower alkyl group is a saturated branched or unbranched hydrocarbon having from 1 to 6 carbon atoms. Preferred alkyl groups have 1 to 4 carbon atoms.
- Alkyl groups may be substituted alkyls wherein one or more hydrogen atoms are substituted with a substituent such as halogen, cycloalkyl, alkoxy, amino, hydroxyl, aryl, alkenyl, or carboxyl.
- a lower alkyl or (C 1 -C 6 )alkyl can be methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, or hexyl;
- (C 3 -C 6 )cycloalkyl can be cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl;
- (C 3 -C 6 )cycloalkyl(C 1 -C 6 )alkyl can be cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, 2-cyclopropylethyl, 2-cyclobutylethyl, 2-cyclopentylethyl, or 2-cyclohexylethyl;
- (C 1 -C 6 )alkoxy can be methoxy, ethoxy, prop
- Alkynyl A cyclic, branched or straight chain group containing only carbon and hydrogen, and unless otherwise mentioned typically contains one to twelve carbon atoms, and contains one or more triple bonds. Alkynyl groups may be unsubstituted or substituted. A lower alkynyl group is one that contains one to six carbon atoms.
- Amine or Amino A group of the formula —NRR′, where R and R′ can be, independently, hydrogen or an alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, halogenated alkyl, or heterocycloalkyl group.
- R and R′ can be, independently, hydrogen or an alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, halogenated alkyl, or heterocycloalkyl group.
- an “alkylamino” or “alkylated amino” refers to —NRR′, wherein at least one of R or R′ is an alkyl.
- Aminoalkyl An alkyl group as defined above where at least one hydrogen atom is replaced with an amino group (e.g, —CH 2 —NH 2 ).
- Aminocarbonyl A group that, alone or in combination, includes an amino substituted carbonyl (carbamoyl) radical, wherein the amino radical may optionally be mono- or di-substituted, such as with alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, alkanoyl, alkoxycarbonyl, aralkoxycarbonyl and the like.
- An aminocarbonyl group may be —N(R)—C(O)—R (wherein R is a substituted group or H).
- a suitable aminocarbonyl group is acetamido.
- Amide or Amido A group that is represented by the formula —C(O)NRR′, where R and R′ independently can be a hydrogen, alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, halogenated alkyl, or heterocycloalkyl group.
- Analog A molecule that differs in chemical structure from a parent compound, for example a homolog (differing by an increment in the chemical structure or mass, such as a difference in the length of an alkyl chain or the inclusion of one of more isotopes), a molecular fragment, a structure that differs by one or more functional groups, or a change in ionization.
- An analog is not necessarily synthesized from the parent compound.
- a derivative is a molecule derived from the base structure.
- Aralkyl An alkyl group wherein an aryl group is substituted for a hydrogen of the alkyl group.
- An example of an aralkyl group is a benzyl group.
- Aryl A monovalent unsaturated aromatic carbocyclic group having a single ring (e.g., phenyl) or multiple condensed rings (e.g., naphthyl or anthryl), which can optionally be unsubstituted or substituted.
- a heteroaryl group is an aromatic group that has at least one heteroatom incorporated within the ring of the aromatic group. Examples of heteroatoms include, but are not limited to, nitrogen, oxygen, sulfur, and phosphorous.
- Heteroaryl includes, but is not limited to, pyridinyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzooxazolyl, quinoxalinyl, and the like.
- the aryl or heteroaryl group can be substituted with one or more groups including, but not limited to, alkyl, alkynyl, alkenyl, aryl, halide, nitro, amino, ester, ketone, aldehyde, hydroxy, carboxylic acid, or alkoxy, or the aryl or heteroaryl group can be unsubstituted.
- Aryloxy or Heteroaryloxy A group of the formula —OAr, wherein Ar is an aryl group or a heteroaryl group, respectively.
- Cancer A malignant tumor that has undergone characteristic anaplasia with loss of differentiation, increase rate of growth, invasion of surrounding tissue, and is capable of metastasis.
- thyroid cancer is a malignant tumor that arises in or from thyroid tissue
- breast cancer is a malignant tumor that arises in or from breast tissue (such as a ductal carcinoma).
- Residual cancer is cancer that remains in a subject after any form of treatment given to the subject to reduce or eradicate the cancer.
- Metastatic cancer is a tumor at one or more sites in the body other than the site of origin of the original (primary) cancer from which the metastatic cancer is derived. Cancer includes, but is not limited to, solid tumors.
- Carboxylate or Carboxyl The group —COO or —COOH.
- the carboxyl group can form a carboxylic acid.
- a substituted carboxyl is a —COOR group where R is alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, halogenated alkyl, or heterocycloalkyl group.
- a substituted carboxyl group could be a carboxylic acid ester or a salt thereof (e.g., a carboxylate).
- Chemotherapeutic agent Any chemical agent with therapeutic usefulness in the treatment of diseases characterized by abnormal cell growth.
- chemotherapeutic agents are useful for the treatment of neuroblastoma.
- additional therapeutic agents include microtubule binding agents, DNA intercalators or cross-linkers, DNA synthesis inhibitors, DNA and RNA transcription inhibitors, antibodies, enzymes, enzyme inhibitors, gene regulators, and angiogenesis inhibitors.
- a chemotherapeutic agent is a radioactive compound.
- chemotherapeutic agent of use see for example, Slapak and Kufe, Principles of Cancer Therapy , Chapter 86 in Harrison's Principles of Internal Medicine, 14th edition; Perry et al., Chemotherapy , Ch. 17 in Abeloff, Clinical Oncology 2 nd ed., ⁇ 2000 Churchill Livingstone, Inc; Baltzer, L., Berkery, R. (eds): Oncology Pocket Guide to Chemotherapy, 2nd ed. St. Louis, Mosby-Year Book, 1995; Fischer, D. S., Knobf, M. F., Durivage, H. J. (eds): The Cancer Chemotherapy Handbook, 4th ed.
- Combination chemotherapy is the administration of more than one agent to treat cancer.
- Control A sample or standard used for comparison with an experimental sample.
- the control is a sample obtained from a healthy patient or a non-tumor tissue sample obtained from a patient diagnosed with cancer.
- the control is a tumor tissue sample obtained from a patient diagnosed with cancer.
- the control is a tumor tissue sample obtained from a patient diagnosed with cancer, where the patient has not received treatment with a G4 stabilizing agent as disclosed herein.
- control is a historical control or standard reference value or range of values (such as a previously tested control sample, such as a group of cancer patients with known prognosis or outcome, or group of samples that represent baseline or normal values, such as the expression level of the c-MYC gene in a non-tumor tissue).
- Cycloalkyl A non-aromatic carbon-based ring composed of at least three carbon atoms.
- Examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
- a heterocycloalkyl group is a cycloalkyl group as defined above where at least one of the carbon atoms of the ring is substituted with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorous. Cycloalkyl and heterocycloalkyl groups can be mono-cyclic or bi-cyclic.
- a therapy reduces a tumor (such as the size of a tumor, the number of tumors, the metastasis of a tumor, or combinations thereof), or one or more symptoms associated with a tumor, for example as compared to the response in the absence of the therapy.
- a therapy decreases the size of a tumor, the number of tumors, the metastasis of a tumor, or combinations thereof, subsequent to the therapy, such as a decrease of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%. Such decreases can be measured using the methods disclosed herein.
- Determining or detecting the level of expression of a gene product Detection of a level of expression in either a qualitative or quantitative manner, for example by detecting nucleic acid molecules or proteins, for instance using routine methods known in the art.
- Diagnosis The process of identifying a disease by its signs, symptoms and results of various tests. The conclusion reached through that process is also called “a diagnosis.” Forms of testing commonly performed include blood tests, medical imaging, urinalysis, and biopsy.
- Ester A carboxyl group-containing moiety having the hydrogen replaced with, for example, a C 1-6 alkyl group (“carboxyl C 1-6 alkyl” or “alkylester”), an aryl or aralkyl group (“arylester” or “aralkylester”) and so on.
- CO 2 C 1-3 alkyl groups are preferred, such as for example, methylester (CO 2 Me), ethylester (CO 2 Et) and propylester (CO 2 Pr) and includes reverse esters thereof (e.g. —OCOMe, —OCOEt and —OCOPr).
- Halogenated alkyl or Haloalkyl group An alkyl group with one or more hydrogen atoms present on these groups substituted with a halogen (F, Cl, Br, I).
- Hydroxyl A group represented by the formula —OH.
- Hydroxyalkyl An alkyl group that has at least one hydrogen atom substituted with a hydroxyl group.
- a alkoxyalkyl group is an alkyl group that has at least one hydrogen atom substituted with an alkoxy group described above.
- an biological component is a component that has been substantially separated or purified away from other biological components in the cell of the organism in which the component naturally occurs, i.e., other chromosomal and extra-chromosomal DNA and RNA, proteins, lipids, and organelles. “Isolated” does not require absolute purity.
- the desired isolated biological component may represent at least 50%, particularly at least about 75%, more particularly at least about 90%, and most particularly at least about 98%, of the total content of the preparation.
- Isolated biological components as described herein can be isolated by many methods such as salt fractionation, phenol extraction, precipitation with organic solvents (for example, hexadecyltrimethylammonium bromide or ethanol), affinity chromatography, ion-exchange chromatography, hydrophobic chromatography, high performance liquid chromatography, gel filtration, iso-electric focusing, physical separation (e.g., centrifugation or stirring), and the like.
- organic solvents for example, hexadecyltrimethylammonium bromide or ethanol
- affinity chromatography for example, hexadecyltrimethylammonium bromide or ethanol
- ion-exchange chromatography for example, hydrophobic chromatography
- hydrophobic chromatography hydrophobic chromatography
- high performance liquid chromatography gel filtration
- iso-electric focusing e.g., centrifugation or stirring
- a purified peptide preparation is one in which the peptide or protein is more enriched than the peptide or protein is in its natural environment within a cell.
- a compound preparation is purified such that the desired polysaccharide protein conjugate represents at least 50%, more particularly at least about 90%, and most particularly at least about 98%, of the total content of the preparation.
- MM Multiple myeloma: A malignancy of terminally differentiated antibody secreting B cells with ⁇ 20,000 new cases diagnosed yearly in the United States (Jemal et al., CA Cancer J Clin., 60:277-300, 2010).
- MM is characterized by the accumulation of clonal plasma cells in the bone marrow (BM) and osteolytic bone lesions.
- BM bone marrow
- the person of ordinary skill is familiar with tests used to determine the presence and severity of MM.
- the Durie-Salmon staging system divides MM patients into three stages: Stages I, II, and III, corresponding to low, intermediate, and high cell mass, depending upon the severity of anemia, calcium level, kidney function, presence or absence of bone lesions, and the quantity of abnormal proteins.
- MM Approximately 25 percent of people with MM have high-risk disease. Treatment options include chemotherapy, treatment with immune modulating medications, and Autologous Stem Cell Transplant (ASCT) (Attal et al., N. Engl. J. Med., 1996; 335:91-97; Barlogie et al., Blood, 1997; 89:789-793). However, patients invariably relapse, and MM remains a universal fatal disease. See, e.g., Rajkumar and Kyle, (eds), Treatment of Multiple Myeloma and Related Disorders, 1 st ; Cambridge University Press, New York, 2006.
- c-Myc A transcription factor known to be overexpressed in several types of cancer, including lymphoma and multiple myeloma.
- c-Myc protein is encoded by the c-MYC gene.
- Expression of the c-MYC gene is regulated in part by a 27 base pair (Pu27) sequence found in the nuclease hypersensitive element III(1) region (NHEIII 1 ) of the c-MYC promoter that can form a G-quadruplex (G4) structure. Formation of the G4 structure in this sequence is believed to result in a “kink” in the DNA that prevents the polymerase from continuing along its reading frame, ultimately resulting in downregulation of the c-MYC gene.
- Pu27 27 base pair
- NHEIII 1 nuclease hypersensitive element III(1) region
- N-heterocyclic Mono or bicyclic rings or ring systems that include at least one nitrogen heteroatom.
- the rings or ring systems generally include 1 to 9 carbon atoms in addition to the heteroatom(s) and may be saturated, unsaturated or aromatic (including pseudoaromatic).
- the term “pseudoaromatic” refers to a ring system which is not strictly aromatic, but which is stabilized by means of delocalization of electrons and behaves in a similar manner to aromatic rings.
- Aromatic includes pseudoaromatic ring systems, such as pyrrolyl rings.
- Examples of 5-membered monocyclic N-heterocycles include pyrrolyl, H-pyrrolyl, pyrrolinyl, pyrrolidinyl, oxazolyl, oxadiazolyl, (including 1,2,3 and 1,2,4 oxadiazolyls) isoxazolyl, furazanyl, thiazolyl, isothiazolyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, imidazolyl, imidazolinyl, triazolyl (including 1,2,3 and 1,3,4 triazolyls), tetrazolyl, thiadiazolyl (including 1,2,3 and 1,3,4 thiadiazolyls), and dithiazolyl.
- 6-membered monocyclic N-heterocycles include pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, and triazinyl.
- the heterocycles may be optionally substituted with a broad range of substituents, and preferably with C 1-6 alkyl, C 1-6 alkoxy, C 2-6 alkenyl, C 2-6 alkynyl, halo, hydroxy, mercapto, trifluoromethyl, amino, cyano or mono or di(C 1-6 alkyl)amino.
- the N-heterocyclic group may be fused to a carbocyclic ring such as phenyl, naphthyl, indenyl, azulenyl, fluorenyl, and anthracenyl.
- Examples of 8, 9 and 10-membered bicyclic heterocycles include 1H thieno[2,3-c]pyrazolyl, indolyl, isoindolyl, benzoxazolyl, benzothiazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolyl, indazolyl, isoquinolinyl, quinolinyl, quinoxalinyl, purinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, benzotriazinyl, and the like.
- heterocycles may be optionally substituted, for example with C 1-6 alkyl, C 1-6 alkoxy, C 2-6 alkenyl, C 2-6 alkynyl, halo, hydroxy, mercapto, trifluoromethyl, amino, cyano or mono or di(C 1-6 alkyl)amino
- optionally substituted N-heterocyclics includes pyridinium salts and the N-oxide form of suitable ring nitrogens.
- composition including an amount (for example, a unit dosage) of one or more of the disclosed compounds together with one or more non-toxic pharmaceutically acceptable additives, including carriers, diluents, and/or adjuvants, and optionally other biologically active ingredients.
- non-toxic pharmaceutically acceptable additives including carriers, diluents, and/or adjuvants, and optionally other biologically active ingredients.
- Such pharmaceutical compositions can be prepared by standard pharmaceutical formulation techniques such as those disclosed in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. (19th Edition).
- compositions and formulations suitable for pharmaceutical delivery of the disclosed immunogens are conventional. Remington's Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, Pa., 19th Edition, 1995, describes compositions and formulations suitable for pharmaceutical delivery of the disclosed immunogens.
- parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like
- solid compositions e.g., powder, pill, tablet, or capsule forms
- conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate.
- compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- auxiliary substances such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- the carrier may be sterile, and/or suspended or otherwise contained in a unit dosage form containing one or more measured doses of the composition suitable to induce the desired tumor response. It may also be accompanied by medications for its use for treatment purposes.
- the unit dosage form may be, for example, in a sealed vial that contains sterile contents or a syringe for injection into a subject, or lyophilized for subsequent solubilization and administration or in a solid or controlled release dosage.
- inorganic and organic acids including but not limited to hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, malic acid, acetic acid, oxalic acid, tartaric acid, citric acid, lactic acid, fumaric acid, succinic acid, maleic acid, salicylic acid, benzoic acid, phenylacetic acid, mandelic
- Pharmaceutically acceptable salts of the presently disclosed compounds also include those formed from cations such as sodium, potassium, aluminum, calcium, lithium, magnesium, zinc, and from bases such as ammonia, ethylenediamine, N-methyl-glutamine, lysine, arginine, ornithine, choline, N,N′-dibenzylethylenediamine, chloroprocaine, diethanolamine, procaine, N-benzylphenethylamine, diethylamine, piperazine, tris(hydroxymethyl)aminomethane, and tetramethylammonium hydroxide.
- bases such as ammonia, ethylenediamine, N-methyl-glutamine, lysine, arginine, ornithine, choline, N,N′-dibenzylethylenediamine, chloroprocaine, diethanolamine, procaine, N-benzylphenethylamine, diethylamine, piperazine, tris(hydroxymethyl)
- salts may be prepared by standard procedures, for example by reacting the free acid with a suitable organic or inorganic base. Any chemical compound recited in this specification may alternatively be administered as a pharmaceutically acceptable salt thereof. “Pharmaceutically acceptable salts” are also inclusive of the free acid, base, and zwitterionic forms. Descriptions of suitable pharmaceutically acceptable salts can be found in Handbook of Pharmaceutical Salts, Properties, Selection and Use , Wiley VCH (2002). When compounds disclosed herein include an acidic function such as a carboxy group, then suitable pharmaceutically acceptable cation pairs for the carboxy group are well known to those skilled in the art and include alkaline, alkaline earth, ammonium, quaternary ammonium cations and the like. Such salts are known to those of skill in the art. For additional examples of pharmacologically acceptable salts, see Berge et al., J. Pharm. Sci. 66:1 (1977).
- esters include those derived from compounds described herein that are modified to include a carboxyl group.
- An in vivo hydrolysable ester is an ester, which is hydrolysed in the human or animal body to produce the parent acid or alcohol.
- Representative esters thus include carboxylic acid esters in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (for example, methyl, n-propyl, t-butyl, or n-butyl), cycloalkyl, alkoxyalkyl (for example, methoxymethyl), aralkyl (for example benzyl), aryloxyalkyl (for example, phenoxymethyl), aryl (for example, phenyl, optionally substituted by, for example, halogen, C.sub.1-4 alkyl, or C.sub.1-4 alkoxy) or amino); sulphonate esters, such as alkyl- or aralky
- a “pharmaceutically acceptable ester” also includes inorganic esters such as mono-, di-, or tri-phosphate esters.
- any alkyl moiety present advantageously contains from 1 to 18 carbon atoms, particularly from 1 to 6 carbon atoms, more particularly from 1 to 4 carbon atoms.
- Any cycloalkyl moiety present in such esters advantageously contains from 3 to 6 carbon atoms.
- Any aryl moiety present in such esters advantageously comprises a phenyl group, optionally substituted as shown in the definition of carbocycylyl above.
- esters thus include C 1 -C 22 fatty acid esters, such as acetyl, t-butyl or long chain straight or branched unsaturated or omega-6 monounsaturated fatty acids such as palmoyl, stearoyl and the like.
- Alternative aryl or heteroaryl esters include benzoyl, pyridylmethyloyl and the like any of which may be substituted, as defined in carbocyclyl above.
- Additional pharmaceutically acceptable esters include aliphatic L-amino acid esters such as leucyl, isoleucyl and especially valyl.
- salts of the compounds are those wherein the counter-ion is pharmaceutically acceptable.
- salts of acids and bases which are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound.
- the pharmaceutically acceptable acid and base addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid and base addition salt forms which the compounds are able to form.
- the pharmaceutically acceptable acid addition salts can conveniently be obtained by treating the base form with such appropriate acid.
- Appropriate acids comprise, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic acid, sulfuric, nitric, phosphoric and the like acids; or organic acids such as, for example, acetic, propanoic, hydroxyacetic, lactic, pyruvic, oxalic (i.e. ethanedioic), malonic, succinic (i.e.
- salt forms can be converted by treatment with an appropriate base into the free base form.
- the compounds containing an acidic proton may also be converted into their non-toxic metal or amine addition salt forms by treatment with appropriate organic and inorganic bases.
- Appropriate base salt forms comprise, for example, the ammonium salts, the alkali and earth alkaline metal salts, e.g. the lithium, sodium, potassium, magnesium, calcium salts and the like, salts with organic bases, e.g. the benzathine, N-methyl-D-glucamine, hydrabamine salts, and salts with amino acids such as, for example, arginine, lysine and the like.
- addition salt as used hereinabove also comprises the solvates which the compounds described herein are able to form.
- Such solvates are for example hydrates, alcoholates and the like.
- quaternary amine as used hereinbefore defines the quaternary ammonium salts which the compounds are able to form by reaction between a basic nitrogen of a compound and an appropriate quaternizing agent, such as, for example, an optionally substituted alkylhalide, arylhalide or arylalkylhalide, e.g. methyliodide or benzyliodide.
- reactants with good leaving groups may also be used, such as alkyl trifluoromethanesulfonates, alkyl methanesulfonates, and alkyl p-toluenesulfonates.
- a quaternary amine has a positively charged nitrogen.
- Pharmaceutically acceptable counterions include chloro, bromo, iodo, trifluoroacetate and acetate. The counterion of choice can be introduced using ion exchange resins.
- Prodrugs of the disclosed compounds also are contemplated herein.
- a prodrug is an active or inactive compound that is modified chemically through in vivo physiological action, such as hydrolysis, metabolism and the like, into an active compound following administration of the prodrug to a subject.
- the term “prodrug” as used throughout this text means the pharmacologically acceptable derivatives such as esters, amides and phosphates, such that the resulting in vivo biotransformation product of the derivative is the active drug as defined in the compounds described herein.
- Prodrugs preferably have excellent aqueous solubility, increased bioavailability and are readily metabolized into the active inhibitors in vivo.
- Prodrugs of a compounds described herein may be prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either by routine manipulation or in vivo, to the parent compound.
- the suitability and techniques involved in making and using prodrugs are well known by those skilled in the art.
- prodrugs involving esters see Svensson and Tunek, Drug Metabolism Reviews 165 (1988) and Bundgaard, Design of Prodrugs , Elsevier (1985).
- prodrug also is intended to include any covalently bonded carriers that release an active parent drug of the present invention in vivo when the prodrug is administered to a subject. Since prodrugs often have enhanced properties relative to the active agent pharmaceutical, such as, solubility and bioavailability, the compounds disclosed herein can be delivered in prodrug form. Thus, also contemplated are prodrugs of the presently disclosed compounds, methods of delivering prodrugs and compositions containing such prodrugs. Prodrugs of the disclosed compounds typically are prepared by modifying one or more functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to yield the parent compound.
- Prodrugs include compounds having a phosphonate and/or amino group functionalized with any group that is cleaved in vivo to yield the corresponding amino and/or phosphonate group, respectively.
- Examples of prodrugs include, without limitation, compounds having an acylated amino group and/or a phosphonate ester or phosphonate amide group.
- a prodrug is a lower alkyl phosphonate ester, such as an isopropyl phosphonate ester.
- Protected derivatives of the disclosed compounds also are contemplated.
- a variety of suitable protecting groups for use with the disclosed compounds are disclosed in Greene and Wuts, Protective Groups in Organic Synthesis; 3rd Ed.; John Wiley & Sons, New York, 1999.
- protecting groups are removed under conditions that will not affect the remaining portion of the molecule. These methods are well known in the art and include acid hydrolysis, hydrogenolysis and the like.
- One preferred method involves the removal of an ester, such as cleavage of a phosphonate ester using Lewis acidic conditions, such as in TMS-Br mediated ester cleavage to yield the free phosphonate.
- a second preferred method involves removal of a protecting group, such as removal of a benzyl group by hydrogenolysis utilizing palladium on carbon in a suitable solvent system such as an alcohol, acetic acid, and the like or mixtures thereof.
- a t-butoxy-based group, including t-butoxy carbonyl protecting groups can be removed utilizing an inorganic or organic acid, such as HCl or trifluoroacetic acid, in a suitable solvent system, such as water, dioxane and/or methylene chloride.
- a suitable solvent system such as water, dioxane and/or methylene chloride.
- Another exemplary protecting group, suitable for protecting amino and hydroxy functions amino is trityl.
- Other conventional protecting groups are known and suitable protecting groups can be selected by those of skill in the art in consultation with Greene and Wuts, Protective Groups in Organic Synthesis; 3rd Ed.; John Wiley & Sons, New York, 1999.
- an amine is deprotected, the resulting salt can readily be neutralized to yield the free amine.
- an acid moiety such as a phosphonic acid moiety is unveiled, the compound may be isolated as the acid compound or as a salt thereof.
- Phosphoryl Moieties of the formula —P(O)OR—, wherein R may be H, an aliphatic or aromatic moiety, a cation or a lone pair of electrons. Phosphoryl moieties may be further substituted to form phosphoramidates, phosphates and phosphonates.
- Polyether moiety An oligomer (which is inclusive of dimers and higher repeating units) or a polymer.
- Illustrative polyether moieties include those derived from an aliphatic polyether (e.g., paraformaldehyde, polyethylene glycol (PEG), polypropylene glycol, and polytetramethylene glycol, and those derived from an aromatic polyether (e.g., polyphenyl ether or poly(p-phenylene oxide)).
- a preferred polyether moiety is derived from PEG, also referred to herein as a poly(ethylene oxide).
- the PEG may be a straight chain PEG or a branched PEG.
- PEG is also inclusive of methoxypolyethylene glycol.
- the number of repeating ethylene oxide units in the PEG moiety may range from 2 to 50, more particularly from 2 to 10.
- the polyether moiety may be covalently bonded to the core motif via PEGylation procedures.
- Small organic molecule An organic molecule with a molecular weight of about 1000 daltons or less (for example about 900 daltons or less, about 800 daltons or less, about 700 daltons or less, about 600 daltons or less, about 500 daltons or less, about 400 daltons or less, about 300 daltons or less, about 200 daltons or less, or about 100 daltons or less). In some examples, a small organic molecule has a molecular weight of about 100-1000 daltons, about 200-900 daltons, about 300-700 daltons, about 200-500 daltons, or about 400-700 daltons.
- Subject Includes both human and non-human subjects, including birds and non-human mammals, such as non-human primates, companion animals (such as dogs and cats), livestock (such as pigs, sheep, cows), as well as non-domesticated animals, such as the big cats.
- non-human mammals such as non-human primates, companion animals (such as dogs and cats), livestock (such as pigs, sheep, cows), as well as non-domesticated animals, such as the big cats.
- livestock such as pigs, sheep, cows
- non-domesticated animals such as the big cats.
- subject applies regardless of the stage in the organism's life-cycle. Thus, the term subject applies to an organism in utero or in ovo, depending on the organism (that is, whether the organism is a mammal or a bird, such as a domesticated or wild fowl).
- Substituted or Substitution Replacement of a hydrogen atom of a molecule or an R-group with one or more additional R-groups.
- the term “optionally-substituted” or “optional substituent” as used herein refers to a group which may or may not be further substituted with 1, 2, 3, 4 or more groups, preferably 1, 2 or 3, more preferably 1 or 2 groups.
- the substituents may be selected, for example, from C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-8 cycloalkyl, hydroxyl, oxo, C 1-6 alkoxy, aryloxy, C 1-6 alkoxyaryl, halo, C 1-6 alkylhalo (such as CF 3 and CHF 2 ), C 1-6 alkoxyhalo (such as OCF 3 and OCHF 2 ), carboxyl, esters, cyano, nitro, amino, substituted amino, disubstituted amino, acyl, ketones, amides, aminoacyl, substituted amides, disubstituted amides, thiol, alkylthio, thioxo, sulfates, sulfonates, sulfinyl, substituted sulfinyl, sulfonyl, substituted sulfonyl, sulfonylamide
- Sulfinyl The group —S( ⁇ O)H.
- a substituted sulfinyl or sulfoxide is a sulfinyl group having the hydrogen replaced with, for example a C 1-6 alkyl group (“C 1-6 alkylsulfinyl” or “C 1-6 alkylsulfoxide”), an aryl (“arylsulfinyl”), an aralkyl (“aralkyl sulfinyl”) and so on.
- C 1-3 alkylsulfinyl groups are preferred, such as for example, —SOmethyl, —SOethyl and —SOpropyl.
- Sulfonyl The group —SO 2 H.
- the sulfonyl group can be further substituted with a variety of groups to form, for example, sulfonic acids, sulfonamides, sulfonate esters and sulfones.
- a substituted sulfonyl is a sulfonyl group having the hydrogen replaced with, for example a C 1-6 alkyl group (“sulfonylC 1-6 alkyl”), an aryl (“arylsulfonyl”), an aralkyl (“aralkylsulfonyl”) and so on.
- SulfonylC 1-3 alkyl groups are preferred, such as for example, —SO 2 Me, —SO 2 Et and —SO 2 Pr.
- Sulfonylamido or sulfonamide The group —SO 2 NH 2 .
- a substituted thiol is a thiol group having the hydrogen replaced with, for example a C 1-6 alkyl group (“—S(C 1-6 alkyl)”), an aryl (“—S(aryl)”), or an aralkyl (“—S(alkyl)(aryl)”) and so on.
- Therapeutically effective amount The amount of an agent that alone, or together with one or more additional agents, induces the desired response, such as, for example treatment of a tumor in a subject. Ideally, a therapeutically effective amount provides a therapeutic effect without causing a substantial cytotoxic effect in the subject.
- a desired response is to decrease the size, volume, or number (such as metastases) of a tumor in a subject.
- the agent or agents can decrease the size, volume, or number of tumors by a desired amount, for example by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 50%, at least 75%, at least 90%, or at least 95% as compared to a response in the absence of the agent.
- a therapeutically effective amount of a disclosed compound that is administered to a human or veterinary subject will vary depending upon a number of factors associated with that subject, for example the overall health of the subject.
- a therapeutically effective amount can be determined by varying the dosage and measuring the resulting therapeutic response, such as the regression of a tumor.
- Therapeutically effective amounts also can be determined through various in vitro, in vivo or in situ immunoassays.
- the disclosed agents can be administered in a single dose, or in several doses, as needed to obtain the desired response. However, the therapeutically effective amount of can be dependent on the source applied, the subject being treated, the severity and type of the condition being treated, and the manner of administration.
- Treating or Inhibiting a Disease A therapeutic intervention that reduces a sign or symptom of a disease or pathological condition related to a disease (such as a tumor). Treatment can also induce remission or cure of a condition, such as a tumor.
- treatment includes preventing a tumor, for example by inhibiting the full development of a tumor, such as preventing development of a metastasis or the development of a primary tumor. Prevention does not require a total absence of a tumor.
- Reducing a sign or symptom of a disease or pathological condition related to a disease refers to any observable beneficial effect of the treatment. Reducing a sign or symptom associated with a tumor can be evidenced, for example, by a delayed onset of clinical symptoms of the disease in a susceptible subject (such as a subject having a tumor which has not yet metastasized), a reduction in severity of some or all clinical symptoms of the disease, a slower progression of the disease (for example by prolonging the life of a subject having tumor), a reduction in the number of relapses of the disease, an improvement in the overall health or well-being of the subject, or by other parameters well known in the art that are specific to the particular tumor.
- a “prophylactic” treatment is a treatment administered to a subject who does not exhibit signs of a disease or exhibits only early signs for the purpose of decreasing the risk of developing pathology.
- Tumor An abnormal growth of cells, which can be benign or malignant. Cancer is a malignant tumor, which is characterized by abnormal or uncontrolled cell growth. Other features often associated with malignancy include metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels and suppression or aggravation of inflammatory or immunological response, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc. “Metastatic disease” refers to cancer cells that have left the original tumor site and migrate to other parts of the body for example via the bloodstream or lymph system.
- the amount of a tumor in an individual is the “tumor burden” which can be measured as the number, volume, or weight of the tumor.
- a tumor that does not metastasize is referred to as “benign.”
- a tumor that invades the surrounding tissue and/or can metastasize is referred to as “malignant.”
- hematological tumors include leukemias, including acute leukemias (such as 11q23-positive acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, acute myelogenous leukemia and myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia), chronic leukemias (such as chronic myelocytic (granulocytic) leukemia, chronic myelogenous leukemia, and chronic lymphocytic leukemia), polycythemia vera, lymphoma, Hodgkin's disease, non-Hodgkin's lympho
- solid tumors such as sarcomas and carcinomas
- solid tumors include fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, and other sarcomas, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, lymphoid malignancy, pancreatic cancer, breast cancer (including basal breast carcinoma, ductal carcinoma and lobular breast carcinoma), lung cancers, ovarian cancer, prostate cancer, hepatocellular carcinoma, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, medullary thyroid carcinoma, papillary thyroid carcinoma, pheochromocytomas sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma,
- An “established” or “existing” tumor is an existing tumor that can be discerned by diagnostic tests.
- and established tumor can be palpated.
- and “established tumor” is at least 500 mm 3 , such as at least 600 mm 3 , at least 700 mm 3 , or at least 800 mm 3 in size.
- the tumor is at least 1 cm long.
- established tumor generally has an robust blood supply, and has induced Tregs and myeloid derived suppressor cells (MDSC).
- G4 stabilizing compounds or a pharmaceutically acceptable salt or ester thereof, for the treatment of, for example, cancer.
- the compounds can selectively bind to the G4 in the c-MYC promoter, for example G4 DNA comprising the nucleic acid sequence set forth as TGAGGGTGGGTAGGGTGGGTAA, SEQ ID NO: 2.
- the compounds can be used to reduce expression of the c-MYC gene in a cell.
- the cell can be in vitro or in vivo.
- the cell is a cancer cell, such as a multiple myeloma cell.
- A, B, and C are each independently selected from a 4 to 7 membered cycloaliphatic, optionally-substituted heterocycloaliphatic, optionally-substituted aryl, or optionally-substituted heteroaryl;
- each R 1 is independently selected from hydrogen or optionally-substituted lower alkyl
- a is 0 to 2, such as 0 to 1, for example 0;
- R 2 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy, such as hydroxyl;
- X is optionally-substituted methyl, ethyl or propyl, such as methyl;
- each R 3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl, for example, R 3 can be methyl and b can be 1;
- b is 0 to 6, such as 0 to 1, for example 1;
- each Y is independently selected from optionally-substituted lower alkyl, optionally-substituted amide, optionally-substituted sulfonamide, or optionally-substituted phosphoramide;
- c is 0 to 3, such as 1 to 2, for example 1;
- R 4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl, such as lower haloalkyl, for example trifluoromethyl;
- each R 5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- d is 0 to 5, such as 0 to 1, for example 0;
- R 6 is selected from halogen, hydroxyl, lower haloalkyl, or optionally-substituted lower alkyl, such as lower alkyl, for example methyl;
- Z is selected from carbon, oxygen, nitrogen, or sulfur, such as oxygen;
- R 7 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy, or is not present.
- X is methyl
- Y is amide. In some embodiments of Formula I, Y can be selected from one of:
- Y can be
- B is optionally-substituted N-heterocyclic or N-heterocyclic.
- B is selected from optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted pyrrole, optionally-substituted diazole, optionally-substituted triazole, optionally-substituted piperidine, optionally-substituted pyridine, optionally-substituted diazine, optionally substituted triazine, optionally-substituted piperazine, optionally-substituted azepane, or optionally-substituted azepine.
- R 3 is hydrogen or methyl.
- a combination of B and R 3 can be selected from one of the following:
- a and C are each independently selected from a 5 or 6 membered optionally-substituted aryl, or optionally-substituted heteroaryl;
- each R 1 is independently selected from hydrogen or optionally-substituted lower alkyl, such as methyl;
- a is 0 to 2, such as 0 to 1, for example 0;
- R 2 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy, such as hydroxyl;
- R 8 and R 9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring;
- each R 3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- b is 0 to 6;
- R 4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- each R 5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- d 0 to 5;
- R 6 is selected from halogen, hydroxyl, lower haloalkyl, or optionally-substituted lower alkyl;
- Z is selected from nitrogen or oxygen
- R 7 is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy, and if Z is oxygen, R 7 is not present.
- C can be 6-membered optionally-substituted aryl or optionally substituted heteroaryl.
- R 4 can be lower haloalkyl, such as trifluoromethyl.
- d can be 0.
- C can be a benzyl or nitrobenzyl ring, and R 4 can be methyl or trifluoromethyl.
- Z is not oxygen, R 2 is not hydroxyl, R 6 is not methyl, B is not a 5-, 6-, or 7-membered N-heterocycloalkyl ring, and/or the compound does not comprise the structure set forth as any one of structures 1-13, or 17-20.
- A is a 6-membered optionally-substituted aryl or optionally-substituted heteroaryl.
- each of a is 0.
- R 2 is hydroxyl or halide.
- Ha is halide, such as F or Cl.
- each R 1 is independently selected from hydrogen or optionally-substituted lower alkyl or is not present;
- R 2 is selected from hydroxyl or halogen;
- R 8 and R 9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring;
- each R 3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- b is 0 to 6;
- R 4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- each R 5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- d is 0 to 2; and
- R 6 is selected from methyl, trifluoromethyl, or phenyl;
- Z is selected from nitrogen or oxygen; if Z is nitrogen, R 7 is selected from hydrogen
- each R 1 is independently selected from hydrogen or optionally-substituted lower alkyl;
- R 2 is selected from hydroxyl or halogen;
- R 8 and R 9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring;
- each R 3 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- b is 0 to 4;
- R 4 is trifluoromethyl;
- each R 5 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- d is 0, 1, or 2;
- R 6 is selected from methyl, trifluoromethyl, or phenyl;
- Z is selected from nitrogen or oxygen; and if Z is nitrogen,
- R 7 is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower al
- R 8 and R 9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring; each R 3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; R 4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; each R 5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; d is 0 to 2; and IV is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkyl.
- R 8 and R 9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring; each R 3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; R 4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; each R 5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; and d is 0 to 2.
- R 8 and R 9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring; each R 3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; and R 7 is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkyl.
- R 8 and R 9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring; each R 3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; and b is 0 to 6.
- R 4 is trifluoromethyl and d is 0. In some embodiments of any one of Formulas I-V, R 4 is trifluoromethyl and d is 1. In some embodiments of any one of Formulas I-V, R 4 is methyl and d is 0. In some embodiments of any one of Formulas II-V, R 4 is methyl and d is 1. In some embodiments of any one of Formulas II-IX, the compound does not comprise the structure set forth as any one of structures 12-13, 17-20, or 36-43.
- R 8 and R 9 together with the linking nitrogen atom form optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted piperidine, optionally-substituted piperazine, optionally-substituted azepane.
- R 3 is hydrogen or methyl.
- R 3 is hydrogen or methyl.
- R 3 is hydrogen or methyl.
- R 6 is methyl. In some embodiments of Formula I, Formula II, or Formula III, Z is nitrogen.
- the compound can be selected from one of compounds 1, 3, 6, 7, 12, 13, or 17-25.
- the disclosed compounds can selectively bind to the G4 in the c-MYC promoter, for example G4 DNA comprising the nucleic acid sequence set forth as TGAGGGTGGGTAGGGTGGGTAA, SEQ ID NO: 2.
- the compounds disclosed herein have an equilibrium dissociation constant (K d ) for G4 DNA having the sequence set forth as SEQ ID NO: 2 of no more than 5 ⁇ M, such as no more than 1 ⁇ M, no more than 0.5 ⁇ M, no more than 100 nM, no more than 10 nM, or no more than 1 nM or less.
- a method for reducing c-Myc expression in a cell includes contacting the cell with an effective amount of a disclosed compound (such as any of the compounds disclosed in section II, or one of Compounds 36-43) or a pharmaceutically acceptable salt or ester thereof.
- a disclosed compound such as any of the compounds disclosed in section II, or one of Compounds 36-43
- the compound selectively binds to G4 quadruplex DNA in the promoter of the c-MYC gene, and stabilizes the G4 formation, thereby reducing expression of the c-MYC gene in the cell.
- the cell can be in vitro or in vivo.
- the expression of the c-MYC gene in the cell is reduced at least 50% (such as at least 75%, at least 80%, at least 90%, at least 95%, or at least 98%) compared to the expression of the c-MYC gene in a corresponding control cell.
- decreasing expression of c-Myc in the cell decreases growth and/or proliferation of the cell.
- a therapeutically effective amount of a disclosed compound (such as any of the compounds disclosed in section II, or one of Compounds 36-43) or a pharmaceutically acceptable salt or ester thereof can be administered to a subject to treat or inhibit a tumor and/or a cancer in a subject.
- the subject can be selected for treatment that has, is suspected of having or is at risk of developing a tumor, such as a lymphoma or multiple myeloma.
- Subjects that can benefit from the disclosed methods include human and veterinary subjects.
- treating the tumor and/or cancer in the subject decreases growth and/or proliferation of the tumor.
- the tumor can be benign or malignant.
- the tumor can be any tumor of interest, including, but not limited to lymphoma or multiple myeloma. Additional examples are skin tumors, breast tumors, brain tumors, cervical carcinomas, testicular carcinomas, head and neck tumors, gastrointestinal tract tumors, genitourinary system tumors, gynaecological system tumors, breast, endocrine system tumors, skin tumors, a sarcoma of the soft tissue and bone, a mesothelioma, a melanoma, a neoplasm of the central nervous system, or a leukemia.
- the tumor is a head and neck tumor, such as tumors of the nasal cavity, paranasal sinuses, nasopharynx, oral cavity, oropharynx, larynx, hypopharynx, salivary glands and paragangliomas.
- the tumor is a lung tumor, such as a non-small cell lung cancer or a small cell lung cancer.
- the tumor can be a tumor of the gastrointestinal tract, such as cancer of the oesophagus, stomach, pancreas, liver, biliary tree, small intestine, colon, rectum and anal region.
- the tumor can be a tumor of the genitourinary system, such as cancer of the kidney, urethra, bladder, prostate, urethra, penis and testis.
- the tumor is a gynecologic tumor, such as cancer of the cervix, vagina, vulva, uterine body, gestational trophoblastic diseases, ovarian, fallopian tube, peritoneal, or breast.
- the tumor is an endocrine system tumor, such as a thyroid tumor, parathyroid tumor, adrenal cortex tumor, pancreatic endocrine tumor, carcinoid tumor and carcinoid syndrome.
- the tumor can be a sarcoma of the soft tissue and bone, a mesothelioma, a cancer of the skin, a melanoma, comprising cutaneous melanomas and intraocular melanomas, a neoplasm of the central nervous system, a cancer of the childhood, comprising retinoblastoma, Wilm's tumor, neurofibromatoses, neuroblastoma, Ewing's sarcoma family of tumors, rhabdomyosarcoma.
- the tumor can be a lymphoma, comprising non-Hodgkin's lymphomas, cutaneous T-cell lymphomas, primary central nervous system lymphoma, and
- the tumor can be a leukaemia, such as acute leukemias, chronic myelogenous and lymphocytic leukemias.
- the tumor can be plasma cell neoplasms, a cancer of unknown primary site, a peritoneal carcinomastosis, a Kaposi's sarcoma, AIDS-associated lymphomas, AIDS-associated primary central nervous system lymphoma, AIDS-associated Hodgkin's disease and AIDS-associated anogenital cancers, a metastatic cancer to the liver, metastatic cancer to the bone, malignant pleural and pericardial effusions and malignant ascites.
- Treatment of the tumor is generally initiated after the diagnosis of the tumor, or after the initiation of a precursor condition (such as dysplasia or development of a benign tumor). Treatment can be initiated at the early stages of cancer, for instance, can be initiated before a subject manifests symptoms of a condition, such as during a stage I diagnosis or at the time dysplasia is diagnosed. However, treatment can be initiated during any stage of the disease, such as but not limited to stage I, stage II, stage III and stage IV cancers. In some examples, treatment is administered to these subjects with a benign tumor that can convert into a malignant or even metastatic tumor.
- Treatment initiated after the development of a condition may result in decreasing the severity of the symptoms of one of the conditions, or completely removing the symptoms, or reducing metastasis, tumor volume or number of tumors.
- the tumor becomes undetectable following treatment.
- the formation of tumors, such as metastasis is delayed, prevented or decreased.
- the size of the primary tumor is decreased.
- a symptom of the tumor is decreased.
- tumor volume is decreased.
- Subjects can be screened prior to initiating the disclosed therapies, for example to determine whether the subject has a tumor.
- the presence of a tumor can be determined by methods known in the art, and typically include cytological and morphological evaluation.
- the tumor can be an established tumor.
- the cells can be in vivo or ex vivo, including cells obtained from a biopsy.
- the presence of a tumor indicates that the tumor can be treated using the methods provided herein.
- a subject with a c-Myc-positive tumor is selected for treatment, for example, by detecting c-Myc expression and/or activity in a biological sample obtained from the subject.
- upregulated expression of the c-MYC gene (for example, as detected by an increase in c-Myc mRNA, c-Myc protein, or the expression of genes up-regulated by c-Myc compared to a control) can be detected, and in some examples quantified.
- the c-MYC gene expression in the biological sample is compared to a control (such as a normal, non-tumor sample).
- an increase in the expression of the c-MYC gene indicates the presence of a c-Myc-positive tumor, and can be used to select a subject for treatment with one or more of the compounds or compositions disclosed herein.
- an increase in the test sample of at least 50%, at least 75%, at least 80%, at least 90%, at least 100%, at least 200% or even greater than 500%, relative to the control indicates the subject (such as a human subject) is likely to respond favorably to treatment with one or more of the agents disclosed herein.
- Suitable methods for detecting and/or monitoring a c-Myc-positive tumor in a subject can be selected by a treating physician.
- a sample is obtained from a subject, and the presence of a cell that expresses c-Myc is assessed in vitro.
- a therapeutically effective amount of a disclosed compound (such as any of the compounds disclosed in section II, or one of Compounds 36-43) or composition containing same can be administered to a subject to treat a tumor and/or cancer in the subject.
- the subject can be selected for treatment that has, is suspected of having or is at risk of developing a tumor or tumors, such as multiple myeloma or lymphoma.
- Subjects that can benefit from the disclosed methods include, for example, human and veterinary subjects.
- the administration of a compound can be for either prophylactic or therapeutic purpose.
- the compound is provided in advance of any symptom.
- the prophylactic administration of the compound serves to prevent or ameliorate any subsequent disease process.
- the compound is provided at (or shortly after) the onset of a symptom of disease or infection.
- a disclosed compound such as any of the compounds disclosed in section II, or one of Compounds 36-43) or composition containing same can be administered to a subject to slow or inhibit the growth or metastasis of a tumor and/or cancer.
- a therapeutically effective amount of a disclosed compound such as any of the compounds disclosed in section II, or one of Compounds 36-43) or composition containing same can be administered to a subject in an amount and under conditions sufficient to bind to the G4 present in the c-MYC promoter and reduce c-Myc expression, thereby slowing or inhibiting the growth or the metastasis of a tumor, or to inhibit a sign or a symptom of a tumor.
- suitable subjects include those diagnosed with or suspecting of having cancer (for example, a subject having a tumor), for example a subject having a multiple myeloma.
- the therapeutically effective amount will depend upon the severity of the disease and the general state of the patient's health.
- a therapeutically effective amount is that which provides either subjective relief of a symptom(s) or an objectively identifiable improvement as noted by the clinician or other qualified observer.
- a therapeutically effective amount is the amount necessary to inhibit tumor growth, or the amount that is effective at reducing a sign or a symptom of the tumor.
- the therapeutically effective amount of the agents administered can vary depending upon the desired effects and the subject to be treated. In some examples, therapeutic amounts are amounts which eliminate or reduce the patient's tumor burden, or which prevent or reduce the proliferation of metastatic cells.
- the actual dosage of the compound will vary according to factors such as the disease indication and particular status of the subject (for example, the subject's age, size, fitness, extent of symptoms, susceptibility factors, and the like), time and route of administration, other drugs or treatments being administered concurrently, as well as the specific pharmacology of the compound for eliciting the desired activity or biological response in the subject. Dosage regimens can be adjusted to provide an optimum prophylactic or therapeutic response. A therapeutically effective amount is also one in which any toxic or detrimental side effects of the compound and/or other biologically active agent is outweighed in clinical terms by therapeutically beneficial effects.
- a non-limiting range for a therapeutically effective amount of a compound and/or other biologically active agent within the methods and formulations of the disclosure is about 0.01 mg/kg body weight to about 20 mg/kg body weight, such as about 0.05 mg/kg to about 5 mg/kg body weight, or about 0.2 mg/kg to about 2 mg/kg body weight.
- Dosage can be varied by the attending clinician to maintain a desired concentration at a target site (for example, the lungs or systemic circulation). Higher or lower concentrations can be selected based on the mode of delivery, for example, trans-epidermal, rectal, oral, pulmonary, intraosseous, or intranasal delivery versus intravenous or subcutaneous or intramuscular delivery. Dosage can also be adjusted based on the release rate of the administered formulation, for example, of an intrapulmonary spray versus powder, sustained release oral versus injected particulate or transdermal delivery formulations, and so forth.
- any method of administration can be used for the disclosed therapeutic agents, including local and systemic administration.
- topical, oral, intravascular such as intravenous, intramuscular, intraperitoneal, intranasal, intradermal, intrathecal and subcutaneous administration can be used.
- intravascular such as intravenous, intramuscular, intraperitoneal, intranasal, intradermal, intrathecal and subcutaneous administration
- the particular mode of administration and the dosage regimen will be selected by the attending clinician, taking into account the particulars of the case (for example the subject, the disease, the disease state involved, and whether the treatment is prophylactic).
- one or more routes of administration may be used.
- the compound can be administered to the subject by the oral route or in a single bolus delivery, via continuous delivery (for example, continuous transdermal, mucosal or intravenous delivery) over an extended time period, or in a repeated administration protocol (for example, by an hourly, daily or weekly, repeated administration protocol).
- the therapeutically effective dosage of the compound can be provided as repeated doses within a prolonged prophylaxis or treatment regimen that will yield clinically significant results to alleviate one or more symptoms or detectable conditions associated with a targeted disease or condition as set forth herein. Determination of effective dosages in this context is typically based on animal model studies followed up by human clinical trials and is guided by administration protocols that significantly reduce the occurrence or severity of targeted disease symptoms or conditions in the subject.
- Suitable models in this regard include, for example, murine, rat, avian, dog, sheep, porcine, feline, non-human primate, and other accepted animal model subjects known in the art.
- effective dosages can be determined using in vitro models. Using such models, only ordinary calculations and adjustments are required to determine an appropriate concentration and dose to administer a therapeutically effective amount of the compound (for example, amounts that are effective to alleviate one or more symptoms of a targeted disease).
- an effective amount or effective dose of the compound may simply inhibit or enhance one or more selected biological activities correlated with a disease or condition, as set forth herein, for either therapeutic or diagnostic purposes.
- local administration of the disclosed compounds can be used, for instance by applying a disclosed compound to a region of tissue from which a tumor has been removed, or a region suspected of being prone to tumor development.
- sustained intra-tumoral (or near-tumoral) release of the pharmaceutical preparation that includes a therapeutically effective amount of a disclosed compound may be beneficial.
- the disclosed therapeutic agents can be formulated in unit dosage form suitable for individual administration of precise dosages.
- the disclosed therapeutic agents may be administered in a single dose or in a multiple dose schedule.
- a multiple dose schedule is one in which a primary course of treatment may be with more than one separate dose, for instance 1-10 doses, followed by other doses given at subsequent time intervals as needed to maintain or reinforce the action of the compositions.
- Treatment can involve daily or multi-daily doses of compound(s) over a period of a few days to months, or even years.
- the dosage regime will also, at least in part, be determined based on the particular needs of the subject to be treated and will be dependent upon the judgment of the administering practitioner.
- the subject is administered a therapeutic composition that includes one or more of the disclosed compounds on a multiple daily dosing schedule, such as at least two consecutive days, 10 consecutive days, and so forth, for example for a period of weeks, months, or years.
- the subject is administered the conjugates, antibodies, compositions or additional agents for a period of at least 30 days, such as at least 2 months, at least 4 months, at least 6 months, at least 12 months, at least 24 months, or at least 36 months.
- the disclosed methods include providing surgery, radiation therapy, and/or chemotherapeutics to the subject in combination with administration of a disclosed compound or composition containing same.
- Methods and therapeutic dosages of such agents and treatments are known to those skilled in the art, and can be determined by a skilled clinician.
- Preparation and dosing schedules for the additional agent may be used according to manufacturer's instructions or as determined empirically by the skilled practitioner. Preparation and dosing schedules for such chemotherapy are also described in Chemotherapy Service, (1992) Ed., M. C. Perry, Williams & Wilkins, Baltimore, Md.
- Non-limiting examples of additional therapeutic agents that can be used with the combination therapy include microtubule binding agents, DNA intercalators or cross-linkers, DNA synthesis inhibitors, DNA and RNA transcription inhibitors, antibodies, enzymes, enzyme inhibitors, gene regulators, angiogenesis inhibitors, and proteosome inhibitors (such as bortezomib or carfilzomib). These agents (which are administered at a therapeutically effective amount) and treatments can be used alone or in combination.
- any suitable anti-cancer or anti-angiogenic agent can be administered in combination with the antibodies, conjugates disclosed herein. Methods and therapeutic dosages of such agents are known to those skilled in the art, and can be determined by a skilled clinician.
- Additional chemotherapeutic agents include, but are not limited to alkylating agents, such as nitrogen mustards (for example, chlorambucil, chlormethine, cyclophosphamide, ifosfamide, and melphalan), nitrosoureas (for example, carmustine, fotemustine, lomustine, and streptozocin), platinum compounds (for example, carboplatin, cisplatin, oxaliplatin, and BBR3464), busulfan, dacarbazine, mechlorethamine, procarbazine, temozolomide, thiotepa, and uramustine; antimetabolites, such as folic acid (for example, methotrexate, pemetrexed, and raltitrexed), purine (for example, cladribine, clofarabine, fludarabine, mercaptopurine, and tioguanine), pyrimidine (for example, capecitabine),
- the combination therapy may provide synergy and prove synergistic, that is, the effect achieved when the active ingredients used together is greater than the sum of the effects that results from using the compounds separately.
- a synergistic effect may be attained when the active ingredients are: (1) co-formulated and administered or delivered simultaneously in a combined, unit dosage formulation; (2) delivered by alternation or in parallel as separate formulations; or (3) by some other regimen.
- a synergistic effect may be attained when the compounds are administered or delivered sequentially, for example by different injections in separate syringes.
- an effective dosage of each active ingredient is administered sequentially, i.e. serially
- combination therapy effective dosages of two or more active ingredients are administered together.
- compositions prepared for administration to a subject which include a therapeutically effective amount of one or more of the compounds disclosed herein.
- the therapeutically effective amount of a disclosed compound will depend on the route of administration, the species of subject and the physical characteristics of the subject being treated. Specific factors that can be taken into account include disease severity and stage, weight, diet and concurrent medications. The relationship of these factors to determining a therapeutically effective amount of the disclosed compounds is understood by those of skill in the art.
- compositions for administration to a subject can include at least one further pharmaceutically acceptable additive such as carriers, thickeners, diluents, buffers, preservatives, surface active agents and the like in addition to the molecule of choice.
- Pharmaceutical compositions can also include one or more additional active ingredients such as antimicrobial agents, anti-inflammatory agents, anesthetics, and the like.
- the pharmaceutically acceptable carriers useful for these formulations are conventional. Remington's Pharmaceutical Sciences , by E. W. Martin, Mack Publishing Co., Easton, Pa., 19th Edition (1995), describes compositions and formulations suitable for pharmaceutical delivery of the compounds herein disclosed.
- parenteral formulations usually contain injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- injectable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like
- solid compositions for example, powder, pill, tablet, or capsule forms
- conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate.
- compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- non-toxic auxiliary substances such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- compositions disclosed herein include those formed from pharmaceutically acceptable salts and/or solvates of the disclosed compounds.
- Pharmaceutically acceptable salts include those derived from pharmaceutically acceptable inorganic or organic bases and acids. Particular disclosed compounds possess at least one basic group that can form acid-base salts with acids. Examples of basic groups include, but are not limited to, amino and imino groups. Examples of inorganic acids that can form salts with such basic groups include, but are not limited to, mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid.
- Basic groups also can form salts with organic carboxylic acids, sulfonic acids, sulfo acids or phospho acids or N-substituted sulfamic acid, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, embonic acid, nicotinic acid or isonicotinic acid, and, in addition, with amino acids, for example with ⁇ -amino acids, and also with methanesulfonic acid, ethanesulfonic acid, 2-hydroxymethanesulfonic acid, ethane-1,2-disulfonic acid
- Certain compounds include at least one acidic group that can form an acid-base salt with an inorganic or organic base.
- salts formed from inorganic bases include salts of the presently disclosed compounds with alkali metals such as potassium and sodium, alkaline earth metals, including calcium and magnesium and the like.
- salts of acidic compounds with an organic base such as an amine (as used herein terms that refer to amines should be understood to include their conjugate acids unless the context clearly indicates that the free amine is intended) are contemplated, including salts formed with basic amino acids, aliphatic amines, heterocyclic amines, aromatic amines, pyridines, guanidines and amidines.
- aliphatic amines the acyclic aliphatic amines, and cyclic and acyclic di- and tri-alkyl amines are particularly suitable for use in the disclosed compounds.
- quaternary ammonium counterions also can be used.
- Suitable amine bases for use in the present compounds include, without limitation, pyridine, N,N-dimethylaminopyridine, diazabicyclononane, diazabicycloundecene, N-methyl-N-ethylamine, diethylamine, triethylamine, diisopropylethylamine, mono-, bis- or tris- (2-hydroxyethyl)amine, 2-hydroxy-tert-butylamine, tris(hydroxymethyl)methylamine, N,N-dimethyl-N-(2-hydroxyethyl)amine, tri-(2-hydroxyethyl)amine and N-methyl-D-glucamine.
- pyridine N,N-dimethylaminopyridine, diazabicyclononane, diazabicycloundecene
- N-methyl-N-ethylamine diethylamine
- triethylamine diisopropylethylamine
- Compounds disclosed herein can be crystallized and can be provided in a single crystalline form or as a combination of different crystal polymorphs.
- the compounds can be provided in one or more physical form, such as different crystal forms, crystalline, liquid crystalline or non-crystalline (amorphous) forms.
- Such different physical forms of the compounds can be prepared using, for example different solvents or different mixtures of solvents for recrystallization.
- different polymorphs can be prepared, for example, by performing recrystallizations at different temperatures and/or by altering cooling rates during recrystallization.
- the presence of polymorphs can be determined by X-ray crystallography, or in some cases by another spectroscopic technique, such as solid phase NMR spectroscopy, IR spectroscopy, or by differential scanning calorimetry.
- compositions can be administered to subjects by a variety of mucosal administration modes, including by oral, rectal, intranasal, intrapulmonary, or transdermal delivery, or by topical delivery to other surfaces.
- the compositions can be administered by non-mucosal routes, including by intramuscular, subcutaneous, intravenous, intra-arterial, intra-articular, intraperitoneal, intrathecal, intracerebroventricular, or parenteral routes.
- the compound can be administered ex vivo by direct exposure to cells, tissues or organs originating from a subject.
- the compound can be combined with various pharmaceutically acceptable additives, as well as a base or vehicle for dispersion of the compound.
- Desired additives include, but are not limited to, pH control agents, such as arginine, sodium hydroxide, glycine, hydrochloric acid, citric acid, and the like.
- local anesthetics for example, benzyl alcohol
- isotonizing agents for example, sodium chloride, mannitol, sorbitol
- adsorption inhibitors for example, Tween 80 or Miglyol 812
- solubility enhancing agents for example, cyclodextrins and derivatives thereof
- stabilizers for example, serum albumin
- reducing agents for example, glutathione
- Adjuvants such as aluminum hydroxide (for example, Amphogel, Wyeth Laboratories, Madison, N.J.), Freund's adjuvant, MPLTM (3-O-deacylated monophosphoryl lipid A; Corixa, Hamilton, Ind.) and IL-12 (Genetics Institute, Cambridge, Mass.), among many other suitable adjuvants well known in the art, can be included in the compositions.
- the tonicity of the formulation as measured with reference to the tonicity of 0.9% (w/v) physiological saline solution taken as unity, is typically adjusted to a value at which no substantial, irreversible tissue damage will be induced at the site of administration.
- the tonicity of the solution is adjusted to a value of about 0.3 to about 3.0, such as about 0.5 to about 2.0, or about 0.8 to about 1.7.
- the compound can be dispersed in a base or vehicle, which can include a hydrophilic compound having a capacity to disperse the compound, and any desired additives.
- the base can be selected from a wide range of suitable compounds, including but not limited to, copolymers of polycarboxylic acids or salts thereof, carboxylic anhydrides (for example, maleic anhydride) with other monomers (for example, methyl (meth)acrylate, acrylic acid and the like), hydrophilic vinyl polymers, such as polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, cellulose derivatives, such as hydroxymethylcellulose, hydroxypropylcellulose and the like, and natural polymers, such as chitosan, collagen, sodium alginate, gelatin, hyaluronic acid, and nontoxic metal salts thereof.
- a biodegradable polymer is selected as a base or vehicle, for example, polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyhydroxybutyric acid, poly(hydroxybutyric acid-glycolic acid) copolymer and mixtures thereof.
- synthetic fatty acid esters such as polyglycerin fatty acid esters, sucrose fatty acid esters and the like can be employed as vehicles.
- Hydrophilic polymers and other vehicles can be used alone or in combination, and enhanced structural integrity can be imparted to the vehicle by partial crystallization, ionic bonding, cross-linking and the like.
- the vehicle can be provided in a variety of forms, including fluid or viscous solutions, gels, pastes, powders, microspheres and films for direct application to a mucosal surface.
- the compound can be combined with the base or vehicle according to a variety of methods, and release of the compound can be by diffusion, disintegration of the vehicle, or associated formation of water channels.
- the compound is dispersed in microcapsules (microspheres) or nanocapsules (nanospheres) prepared from a suitable polymer, for example, isobutyl 2-cyanoacrylate (see, for example, Michael et al., J. Pharmacy Pharmacol. 43:1-5, 1991), and dispersed in a biocompatible dispersing medium, which yields sustained delivery and biological activity over a protracted time.
- compositions of the disclosure can alternatively contain as pharmaceutically acceptable vehicles substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, and triethanolamine oleate.
- pharmaceutically acceptable vehicles for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like.
- compositions for administering the compound can also be formulated as a solution, microemulsion, or other ordered structure suitable for high concentration of active ingredients.
- the vehicle can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- polyol for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like
- suitable mixtures thereof for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- Proper fluidity for solutions can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of a desired particle size in the case of dispersible formulations, and by the use of surfactants.
- isotonic agents for example, sugars, polyalcohols, such as mannitol and sorbitol, or sodium chloride in the composition.
- Prolonged absorption of the compound can be brought about by including in the composition an agent which delays absorption, for example, monostearate salts and gelatin.
- the compound can be administered in a time release formulation, for example in a composition which includes a slow release polymer.
- a composition which includes a slow release polymer can be prepared with vehicles that will protect against rapid release, for example a controlled release vehicle such as a polymer, microencapsulated delivery system or bioadhesive gel. Prolonged delivery in various compositions of the disclosure can be brought about by including in the composition agents that delay absorption, for example, aluminum monostearate hydrogels and gelatin.
- controlled release binders suitable for use in accordance with the disclosure include any biocompatible controlled release material which is inert to the active agent and which is capable of incorporating the compound and/or other biologically active agent. Numerous such materials are known in the art.
- Useful controlled-release binders are materials that are metabolized slowly under physiological conditions following their delivery (for example, at a mucosal surface, or in the presence of bodily fluids).
- Appropriate binders include, but are not limited to, biocompatible polymers and copolymers well known in the art for use in sustained release formulations.
- biocompatible compounds are non-toxic and inert to surrounding tissues, and do not trigger significant adverse side effects, such as nasal irritation, immune response, inflammation, or the like. They are metabolized into metabolic products that are also biocompatible and easily eliminated from the body.
- Exemplary polymeric materials for use in the present disclosure include, but are not limited to, polymeric matrices derived from copolymeric and homopolymeric polyesters having hydrolyzable ester linkages. A number of these are known in the art to be biodegradable and to lead to degradation products having no or low toxicity.
- Exemplary polymers include polyglycolic acids and polylactic acids, poly(DL-lactic acid-co-glycolic acid), poly(D-lactic acid-co-glycolic acid), and poly(L-lactic acid-co-glycolic acid).
- biodegradable or bioerodable polymers include, but are not limited to, such polymers as poly(epsilon-caprolactone), poly(epsilon-aprolactone-CO-lactic acid), poly(epsilon.-aprolactone-CO-glycolic acid), poly(beta-hydroxy butyric acid), poly(alkyl-2-cyanoacrilate), hydrogels, such as poly(hydroxyethyl methacrylate), polyamides, poly(amino acids) (for example, L-leucine, glutamic acid, L-aspartic acid and the like), poly(ester urea), poly(2-hydroxyethyl DL-aspartamide), polyacetal polymers, polyorthoesters, polycarbonate, polymaleamides, polysaccharides, and copolymers thereof.
- polymers such as polymers as poly(epsilon-caprolactone), poly(epsilon-aprolactone-CO-lactic acid
- compositions of the disclosure typically are sterile and stable under conditions of manufacture, storage and use.
- Sterile solutions can be prepared by incorporating the compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated herein, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the compound and/or other biologically active agent into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated herein.
- methods of preparation include vacuum drying and freeze-drying which yields a powder of the compound plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- the prevention of the action of microorganisms can be accomplished by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- kits, packages and multi-container units containing the herein described pharmaceutical compositions, active ingredients, and/or means for administering the same for use in the prevention and treatment of diseases and other conditions in mammalian subjects.
- Kits for diagnostic use are also provided.
- these kits include a container or formulation that contains one or more of the compounds described herein.
- this component is formulated in a pharmaceutical preparation for delivery to a subject.
- the compound is optionally contained in a bulk dispensing container or unit or multi-unit dosage form.
- Optional dispensing means can be provided, for example a pulmonary or intranasal spray applicator.
- Packaging materials optionally include a label or instruction indicating for what treatment purposes and/or in what manner the pharmaceutical agent packaged therewith can be used.
- Clause 1 A method of decreasing c-Myc expression in a cell, comprising contacting the cell with an effective amount of a compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of:
- A, B, and C are each independently selected from a 4 to 7 membered cycloaliphatic, optionally-substituted heterocycloaliphatic, optionally-substituted aryl, or optionally-substituted heteroaryl; each R 1 is independently selected from optionally-substituted lower alkyl; a is 0 to 2; R 2 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy; X is optionally-substituted methyl, ethyl or propyl; each R 3 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; each Y is independently selected from optionally-substituted lower alkyl, optionally-substituted amide, optionally-substituted sulfonamide, or optionally-substituted phosphoramide
- B is selected from optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted pyrrole, optionally-substituted diazole, optionally-substituted triazole, optionally-substituted piperidine, optionally-substituted pyridine, optionally-substituted diazine, optionally substituted triazine, optionally-substituted piperazine, optionally-substituted azepane, or optionally-substituted azepine.
- a and C are each independently selected from a 5 or 6 membered optionally-substituted aryl, or optionally-substituted heteroaryl; each R 1 is independently selected from optionally-substituted lower alkyl; a is 0 to 2; R 2 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy; R 8 and R 9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocycloaliphatic ring; each R 3 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; R 4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; each R 5 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; d
- Clause 18 The method of clause 1, wherein the compound is one of compounds 1, 3, 6, 7, 12, 13, or 17-25.
- Clause 20 The method of any one of clauses 1-18, wherein the cell is in vivo.
- Clause 21 The method of any one of the prior clauses, wherein contacting the cell with the effective amount of the compound or the pharmaceutically acceptable salt or ester thereof decreases c-Myc expression in the cell by at least 50% compared to a control.
- Clause 22 The method of any one of the prior clauses, wherein decreasing expression of c-Myc in the cell decreases growth and/or proliferation of the cell.
- Clause 23 The method of any one of the prior clauses, wherein the cell is a cell with overexpression of the c-MYC gene.
- Clause 24 The method of any one of the prior clauses, wherein the compound selectively binds to a G4 quadruplex nucleic acid molecule comprising the sequence set forth as SEQ ID NO: 2 with a K d of no more than 5 ⁇ M.
- Clause 25 The method of any one of clauses 1-18 or 20-22, wherein the cell is a tumor cell in the subject, the method further comprising treating or preventing a tumor in the subject, comprising the step of:
- Clause 27 The method of clauses 25 or clause 26, wherein treating the tumor comprises decreasing tumor volume; decreasing the number or size of metastases; or lessening a symptom of the tumor.
- Clause 28 The method of any of clauses 25-27, further comprising administering a therapeutically effective amount of an additional anti-cancer agent to the subject, particularly wherein the additional anti-cancer agent is a proteasome inhibitor, for example bortezomib or carfilzomib.
- an additional anti-cancer agent is a proteasome inhibitor, for example bortezomib or carfilzomib.
- A, B, and C are each independently selected from a 4 to 7 membered cycloaliphatic, optionally-substituted heterocycloaliphatic, optionally-substituted aryl, or optionally-substituted heteroaryl; each R 1 is independently selected from optionally-substituted lower alkyl; a is 0 to 2; R 2 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy; X is optionally-substituted methyl, ethyl or propyl; each R 3 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; each Y is independently selected from optionally-substituted lower alkyl, optionally-substituted amide, optionally-substituted sulfonamide, or optionally-substituted phosphoramide
- Clause 30 The compound of clause 29, wherein A is a 6-membered optionally-substituted aryl or optionally-substituted heteroaryl.
- Clause 31 The compound of clause 29 or clause 30, wherein X is methyl.
- Clause 32 The compound of any one of clauses 29-31, wherein B is optionally-substituted N-heterocyclic or N-heterocyclic.
- Clause 33 The compound of any one of clauses 29-32, wherein B is selected from optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted pyrrole, optionally-substituted diazole, optionally-substituted triazole, optionally-substituted piperidine, optionally-substituted pyridine, optionally-substituted diazine, optionally substituted triazine, optionally-substituted piperazine, optionally-substituted azepane, or optionally-substituted azepine.
- B is selected from optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted pyrrole, optionally-substituted
- Clause 34 The compound of any one of clauses 29-33, wherein Y is amide.
- Clause 35 The compound of any one of clauses 29-34, wherein C is 6-membered optionally-substituted aryl or optionally substituted heteroaryl.
- a and C are each independently selected from a 5 or 6 membered optionally-substituted aryl, or optionally-substituted heteroaryl; each R 1 is independently selected from hydrogen or optionally-substituted lower alkyl; a is 0 to 2; R 2 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy; R 8 and R 9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocycloaliphatic ring; each R 3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; R 4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; each R 5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower al
- Clause 37 The compound of clause 36, wherein R 8 and R 9 together with the linking nitrogen atom form optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted piperidine, optionally-substituted piperazine, optionally-substituted azepane.
- Clause 40 The compound of any one of clauses 29-39, wherein R 3 is hydrogen or methyl.
- Clause 44 The compound of any one of clauses 29-43, wherein R 6 is methyl.
- Clause 45 The compound of any one of clauses 29-44, wherein Z is nitrogen.
- Clause 46 The compound of clause 29, wherein the compound is one of compounds 21-25.
- Clause 47 A pharmaceutical composition comprising a compound of any one of clauses 29-46, and at least one pharmaceutically acceptable additive.
- Clause 48 The pharmaceutical composition of clause 47, comprising a unit dosage form of a therapeutic amount of the compound.
- Clause 49 The pharmaceutical composition of clause 47 or clause 48, further comprising an additional anticancer agent, particularly wherein the anticancer agent is a proteasome inhibitor, for example bortezomib or carfilzomib.
- an additional anticancer agent particularly wherein the anticancer agent is a proteasome inhibitor, for example bortezomib or carfilzomib.
- the transcription factor c-Myc plays a pivotal role in cancer initiation and progression, however small molecules that selectively suppress its function or expression are limiting.
- One potential route to pharmacological inhibition of c-Myc is preventing its expression through small molecule mediated stabilization of the G-quadruplex (G4) present in its promoter.
- G4 G-quadruplex
- a small molecule microarray screen was used to identify compounds that both directly and selectively bind to the c-MYC G4.
- SPR surface plasmon resonance
- thermal melt assays confirmed that one molecule identified in this screen binds reversibly to the G4 with single digit micromolar affinity.
- the oncogenic transcription factor c-Myc has a pleiotropic role in a wide range of cell processes (Bretones, et al., Biochimica et biophysica acta 2014) and is deregulated in some 70% of human cancers (Beroukhim, et al., Nature 2010, 463, 899).
- G4s are guanine-rich noncanonical Hoogsteen-bonded nucleotide structures found in many RNA and DNA sequences ( FIG. 1A ) (Huppert and Balasubramanian, Nucleic Acids Res 2007, 35, 406; Gray, et al., Nat Chem Biol 2014, 10, 313).
- expression of the proto-oncogene c-MYC is regulated by a 27 base pair (Pu27) sequence found in the nuclease hypersensitive element III (1) region (NHEIII 1 ) of the c-MYC gene known to form a G4 (Gonzalez and Hurley, Annual review of pharmacology and toxicology 2010, 50, 111). Formation of the quadruplex in this sequence is believed to result in a “kink” in the DNA that prevents the polymerase from continuing along its reading frame, ultimately resulting in downregulation of the associated gene ( FIG. 1B ) (Weitzmann, et al., J Biol Chem 1996, 271, 20958).
- Quarfloxin effects apoptosis and cell death in cancer cells, and its mechanism of action is believed to involve the inhibition of ribosomal RNA biogenesis via disruption of the interaction between nucleolin and G4s in ribosomal DNA (Drygin, et al., Cancer Res 2009, 69, 7653).
- G4 ligands are duplex DNA intercalators, exhibit promiscuous reactivity, or bind to quadruplexes with greater than a 1:1 binding stoichiometry (Balasubramanian, et al., Nat Rev Drug Discov 2011, 10, 261; Drygin, et al., Cancer Res 2009, 69, 7653; Dai, et al., J Am Chem Soc 2011, 133, 17673).
- TMPyP4 a commonly used reagent in quadruplex binding studies, is a cationic porphyrin that binds to quadruplex DNA in multiple fashions (Freyer, et al., Biophys J 2007, 92, 2007), and also has significant off-target activity (Sibata, et al., Expert opinion on pharmacotherapy 2001, 2, 917; Grand, C. L.; et al., Mol Cancer Ther 2002, 1, 565; Mikami-Terao, et al., Cancer Lett 2008, 261, 226).
- a second prominent example is pyridostatin, a compound designed to bind all G4s in the cell (Koirala, et al., Nat Chem 2011, 3, 782; Muller, et al., Org Biomol Chem 2012, 10, 6537.
- pyridostatin a compound designed to bind all G4s in the cell
- SMMs small molecule microarrays
- c-Myc transcription correlated with decreased viability across a panel of multiple myeloma cell lines. Additionally, the compound has minimal effects on cell viability in a Burkitt's Lymphoma cell line harboring a c-MYC translocation that deletes the G4, and has only modest toxicity in normal peripheral blood mononucleocytes. Finally, gene expression analysis demonstrates that the compound reduces the expression of c-MYC and c-Myc target genes, and does not alter the expression of several other genes known to be controlled by G4s, thus indicating considerable selectivity.
- FIGS. 1, 2 In order to identify compounds that selectively bind to c-MYC quadruplex DNA, a small molecule microarray (SMM) screening approach was used ( FIGS. 1, 2 ) (Bradner, et al., Nat Protoc 2006, 1, 2344; Duffner, et al., Curr Opin Chem Biol 2007, 11, 74; Kawasumi, et al., J Invest Dermatol 2005, 124, A39; Koehler, et al., J Am Chem Soc 2003, 125, 8420; Miao, et al., J Comb Chem 2007, 9, 245; Stanton, et al., Nat Chem Biol 2009, 5, 154; Vegas, et al., Angew Chem Int Edit 2007, 46, 7960).
- SMM small molecule microarray
- RNA hairpins Sztuba-Solinska, et al., J Am Chem Soc 2014, 136, 8402
- FOXO binding domain Carter and Brunet, Curr Biol 2007, 17, R113
- CAG repeat DNA Michlewski and Krzyzosiak, J Mol Biol 2004, 340, 665
- Compound 1 interacts with quadruplex DNA through a reversible binding interaction, and rapid, complete dissociation can be observed in the sensogram ( FIG. 2C ).
- no evidence of binding was observed, pointing to a unique mechanism for transcriptional inhibition of c-Myc with Compound 1.
- a modified version of the PCR-stop assay was used to investigate the ability of Compound 1 to inhibit c-MYC DNA amplification in a G4-dependent fashion (Lemarteleur, et al., Biochem Biophys Res Commun 2004, 323, 802; Ou, et al., J Med Chem 2007, 50, 1465).
- a linear c-MYC Pu27 (mutant) sequence can be PCR-amplified using normal thermal cycling conditions.
- a G4-containing Pu27 (wild type) sequence blocks polymerase activity and inhibits formation of the PCR product. In the presence of a quadruplex-stabilizing ligand, PCR amplification is inhibited further.
- Compound 1 demonstrated dose-dependent inhibition of PCR amplification for the wild type Pu27 sequence at concentrations comparable to the K d measured by SPR. In contrast, Compound 1 had no effect at concentrations up to 100 ⁇ M on the amplification of a mutant sequence incapable of G4 formation ( FIG. 3A ). These data point to a G4-dependent mechanism of inhibition by the lead compound in vitro.
- CA46 Burkitt's Lymphoma line was used in an exon-specific assay, as previously reported (Boddupally, et al., J Med Chem 2012, 55, 6076). For most cell lines, 85-90% of c-Myc expression is controlled by the G4 located prior to exons 1 and 2 in the promoter. Furthermore, expression predominantly occurs following exon 2, due to a thousand-fold increase in transcription from this allele (Brown, et al., J Biol Chem 2011, 286, 41018).
- the CA46 Burkitt's Lymphoma cell line is an exception to this trend due to the existence of a chromosome (8:14) (Pelicci, et al., Proc Natl Acad Sci USA 1986, 83, 2984) translocation between exons 1 and 2, leaving exon 1 under G4 control.
- c-Myc expression from exon 2 is G4 independent ( FIG. 3B ). This renders the overall cell line resistant to G4-mediated c-Myc inhibition at the RNA and protein level, and proliferation should be uninhibited by G4-stabilizing agents.
- c-Myc transcription from exon 1 should be downregulated, while transcription from exon 2 should be largely unaffected.
- FAM-tagged exon specific TaqMan gene expression assays with qPCR for c-MYC it was demonstrated that Compound 1 results in sustained downregulation of transcription from exon 1, which contains a quadruplex, while transcription from exon 2, which does not contain a quadruplex, is unaffected at treatment times up to 48 hours ( FIG. 3C ).
- c-Myc protein translation was also significantly inhibited by exposure to 10 ⁇ M of Compound 1. This suppression was maintained over 72 hours, which is notable given the characteristic rapid replenishment of the protein—a phenomenon that complicates targeting c-Myc at the protein level ( FIG. 4C ). This effect was maintained across a genetically diverse set of 4 multiple myeloma lines. We observed decreases in c-MYC translation in all lines tested, and this effect also correlated with decreases in viability ( FIG. 4D ).
- the CA46 Burkitt's Lymphoma line (lacking a G4) was included in this panel as a resistant control, as it showed negligible changes in c-MYC expression or cell viability when treated with Compound 1.
- Compound 1 did not alter viability in peripheral blood mononucleocytes drawn from a healthy volunteer, even at doses 25% higher than those used for the cell treatments discussed above ( FIG. 4E ).
- Compound 1 triggered a senescent state in a majority of treated myeloma cells after 72 hours, supporting cell cycle arrest as a primary mechanism of action ( FIG. 5C ).
- FIG. 5C shows that Compound 1 is acting through suppression of c-MYC expression, rather than a non-specific mechanism of action.
- c-MYC was one of the most suppressed genes, and a number of known c-Myc target genes were also suppressed, including E2F1, MCM2, MCM4, MCM5, and CDCl25A. Additionally, a third data set was collected comparing Compound 1 treatment to JQ-1 (a BET-bromodomain inhibitor) and quarfloxin (another quadruplex-binding small molecule). All three inhibitors exhibited substantial differences in gene expression profiles, highlighting a unique mechanism of action of Compound 1.
- c-MYC overexpression of c-MYC is implicated in a vast number of human cancers, however only a small number of inhibitors have been described in the literature, and as of now none are clinically approved.
- Pharmacological inhibition of c-Myc has historically been a challenge, and small molecules that are efficacious in cells are relatively rare.
- G4-DNA stabilization and subsequent transcriptional silencing by a small molecule is an attractive strategy for c-MYC inhibition because it circumvents targeting c-Myc at the protein level. Nevertheless, many of the compounds currently known to bind to the c-MYC G4 generally have poor drug-like properties, nonspecific quadruplex binding, or exhibit quadruplex-independent effects in more complex cell culture models.
- a small molecule microarray-based screening approach was employed. By evaluating multiple oligonucleotide structures simultaneously as part of the initial screen, selectivity considerations were incorporated early in the discovery process. Through evaluation of the most promising hits in preliminary assays, Compound 1 was pursued for further investigation.
- the benzofuran structure of Compound 1 is a novel quadruplex-binding small molecule scaffold. Molecules containing benzylaminophenol groups have previously been reported to form quinone methide structures in aqueous solution. However, in this case a stability study demonstrated that the compound persists for three days in culture media.
- Compound 1 In contrast to quinone methide-forming alkylators, which are typically non-specifically toxic, Compound 1 displays no toxicity to the CA46 resistant cell line or peripheral blood mononucleocytes at relevant concentrations, further suggesting on-target activity as the origin of the observed effects in cells.
- Compound 1 inhibits c-MYC expression at both the transcriptional and translational levels. Moreover, it decreased the viability of several myeloma cell lines in a dose dependent fashion.
- Cell cycle analysis demonstrates that Compound 1 also triggers G1 arrest and senescence in myeloma cells, which is consistent with literature findings regarding effects of c-MYC knockdown on cell cycle progression (Wang, et al., Oncogene 2008, 27, 1905). In sum, these results validate that Compound 1 effectively suppresses c-MYC expression through a G4-dependent inhibitory mechanism in vitro and in cancer cells.
- Small Molecule Microarray Screening Small molecule microarray screening was carried out as previously described (Duffner, et al., Curr Opin Chem Biol 2007, 11, 74; Sztuba-Solinska, et al., J Am Chem Soc 2014, 136, 8402; Bradner, et al., Nat Protoc 2006, 1, 2344). Briefly, ⁇ -aminopropyl silane (GAPS) microscope slides were functionalized with a short Fmoc-protected amino polyethylene glycol spacer.
- GAPS ⁇ -aminopropyl silane
- 1,6-diisocyanatohexane was coupled to the surface by urea bond formation to provide functionalized isocyanate-coated microarray slides that can react with primary alcohols and amines to form immobilized chemical screening libraries.
- 20,000 unique small molecule stock solutions (10 mM in DMSO) purchased from ChemBridge and ChemDiv screening libraries, in addition to dyes and controls, were printed in duplicate onto four slides of 5,000 compounds each, and exposed to pyridine vapor to facilitate covalent attachment to the slide surface. After drying, slides were incubated with a polyethylene glycol solution to quench unreacted isocyanate surface.
- Printed slides were incubated for 1 h at room temperature with a Cy5-tagged DNA oligonucleotide of the c-MYC G-quadruplex forming sequence (5′d(Cy5)-TGAGGGTGGGTAGGGTGGGTAA-3′, SEQ ID NO: 2), which had been annealed by heating to 95° C. for three minutes, cooled to room temperature, and diluted to 500 nM in PBS. Following incubation, slides were gently washed three times for 5 min in PBST, twice in PBS, and once in deionized water to remove unbound oligonucleotide, and dried by centrifugation for 2 min at 3400 g.
- a Cy5-tagged DNA oligonucleotide of the c-MYC G-quadruplex forming sequence 5′d(Cy5)-TGAGGGTGGGTAGGGTGGGTAA-3′, SEQ ID NO: 2′, which had been annealed by heating to 95° C. for three minutes
- SNR signal-to-noise ratio
- CV coefficient of variance
- the other nucleic acids were the FOXO3 DNA transcription factor binding domain, CAG DNA repeat, HIV TAR RNA, and miR-21 RNA, all of which were Cy5-labeled, and the screens were run in the same method described above using the respective Cy5-nucleic acid instead of the c-MYC DNA.
- PCR Stop Assay A test oligonucleotide and a complementary sequence that partially hybridizes to its last G-repeat (sequences below) were synthesized by IDT. The reactions were performed in a master mix containing 1 ⁇ PCR buffer, 10 ⁇ mol of each oligo, 0.16 mM dNTP, 1.5 mM MgCl 2 , 2.5 U HotStarTaq polymerase (Qiagen), and a dose titration of a ligand of interest, spanning three orders of magnitude, in 25 ⁇ L total volume. The thermal cycling conditions were as follows: 94° C. for 5 min, followed by 22 cycles of 94° C. for 30 s, 58° C. for 30 s, 72° C.
- the amplified products were mixed with 6 ⁇ DNA Loading Dye (Thermo Scientific) and resolved on a 15% TBE-Urea Gel (Invitrogen) on the Novex mini gel system at 150 V for 1 h. The gel products were stained in a 0.01% (v/v). Ethidium Bromide-TBE solution for 15 min and imaged under UV light on the GBOX F3 (Syngene).
- CA46 cells were treated with ligands of interest or DMSO control at designated time points, washed in PBS, flash frozen, and RNA isolated using the Qiagen RNeasy Kit. RNA was quantified by NanoDrop, and 0.5 ⁇ g was reverse transcribed for use in qPCR. Reverse transcription was performed using the Applied Biosystems Kit B808-0234, cycled at 25° C. for 10 min, 48° C. for 60 min, 95° C. for 5 min, and held at 4° C. following completion in 25 ⁇ L total volumes.
- the cDNA was diluted four fold and used in qPCR with the Taqman Gene Expression Assays (Life Technologies, exon 1: 01562521_m1, exon 2: 00153408_m1), cycled at 50° C. for 2 min, 95° C. for 10 min, and followed by 40 cycles of 95° C. for 15 s and 60° C. for 1 min on the Applied Biosystems 7500 Fast Real-Time PCR System.
- ⁇ C t was normalized to a VIC-Primer Limited tagged GAPDH Taqman Gene Expression Assay (multiplexed in the same well) and DMSO treated control samples.
- T m the temperature at which 50% of the formed higher order DNA structure was melted
- SPR Surface Plasmon Resonance
- MTS reagent was then directly added, incubated at 37° C. for 90 min, and absorbance of MTS formazan was read at 500 nm on an Omega 640 spectrophotometer. Percentage cell viability was normalized to the absorbance of untreated (DMSO) wells. In the case of cells harvested for their protein or RNA, pellets were flash frozen and stored at ⁇ 80° C. overnight prior to use.
- Blots were washed with TBST three times prior to incubation with polyclonal secondary antibodies for 1 h in 5% dry milk at room temperature. Blots were washed three more times with TBST and imaged with Supersignal West Dura Chemiluminescent Substrate (Thermo Scientific) on the GBOX F3 (Syngene).
- the c-Myc monoclonal antibody was purchased from abcam (ab84132) and used at a concentration of 1:1000. All other monoclonal antibodies were purchased from Cell Signaling Technologies and used at a concentration of 1:1000, with the exception of ⁇ - ⁇ tubulin, which was used at a concentration of 1:2000.
- RNA of treated myeloma cells at designated time points was isolated with the Qiagen RNeasy kit, and used with the nCounter Human Cancer Reference Kit (NanoString Technologies), surveying changes in expression for 780 cancer-related human genes and 6 reference genes. Quantitative changes in expression were analyzed and grouped in the form of a heat map using the programming language, R. All other quantitative statistical packing was performed in GraphPad Prism.
- Compound 1 (10 ⁇ L of 1 mM DMSO solution) was added to 490 ⁇ L RPMI-1640 culture media. After 1 min, 25 h, 48 h, and 72 h, 100 ⁇ L of this solution was diluted into 100 ⁇ L acetonitrile. The mixture was centrifuged at 5500 rpm for 1 min and the supernatant was removed from the pellet. Another 800 ⁇ L MeCN was added to the supernatant and the mixture was centrifuged again at 5500 rpm for 1 min.
- Compound 1 (10 ⁇ L of 1 mM DMSO solution) was added to 490 ⁇ L RPMI-1640 culture media. After 1 min, 25 h, 48 h, and 72 h, 100 ⁇ L of this solution was diluted into 100 ⁇ L acetonitrile. The mixture was centrifuged at 5500 rpm for 1 min and the supernatant was removed from the pellet. Another 800 ⁇ L MeCN was added to the supernatant and the mixture was centrifuged again at 5500 rpm for 1 min. The resulting supernatant was subjected to LC/MS (ESI + ) on an Agilent Technologies 1200 LC/MSD single quadrupole system, equipped with an in-line diode-array UV detector.
- LC/MS ESI +
- FIG. 11 shows exemplary substitutions to Compound 1 that can be made to generate analogs of Compound 1 that selectively bind to G4 quadruplex DNA comprising the sequence set forth as SEQ ID NO: 2, and can be used to reduce c-MYC expression in cells.
- FIG. 10 illustrates an exemplary procedure for generating analogs of Compound 1. The amine group of Compound 1 can be varied in reductive aminations to provide additional analogs.
- Several exemplary analogs of Compound 1 are listed in the following table, which also shows results of assays for inhibition of c-MYC expression in L363 cells (Peggy) and for viability of L363 cells as discussed in Example 1. The table also provides an indication of an exemplary commercial source for the compounds, or (if applicable) an indication that the compound is new.
- This example illustrates that Compounds 1 and 23 can be used in inhibit the growth of c-Myc expressing cancer cell lines in vitro.
- the NCI-60 panel of cancer cell lines (see Shoemaker, Nat. Rev. Cancer, 6, 813-823, 2006, and dtp.cancer.gov/discovery_development/nci-60/) was assayed for cell growth in the presence of 10 ⁇ M Compound 1 or Compound 23 for 48 hours. At 48 hours, the assay was terminated by fixation with TCA and determination of relative cell counts by addition of Sulforhodamine B (SRB, see Alley et al., Cancer Research, 48: 589-601, 1988).
- SRB Sulforhodamine B
- Growth percent was determined by comparison of SRB reading of a duplicate plate of cells taken at the time of compound addition to the SRB reading at the termination of the treatment.
- the following table provides a summary of the percent of growth of each cell line in the panel compared to control (no treatment), as well as the mean delta and range of percent growth compared to control across the panel of cell lines for each treatment condition.
- Compound 1 Compound 23 Cell Line Growth Percent Growth Percent Leukemia CCRF-CEM 87.67 65.23 HL-60(TB) 92.74 83.01 K-562 75.93 29.63 MOLT-4 92.81 64.31 RPMI-8226 91.38 75.08 SR 83.12 ⁇ 8.44 Non-Small Cell Lung Cancer A549/ATCC 85.87 61.22 EKVX 83.79 64.06 HOP-62 79.76 70.39 HOP-92 55.89 34.88 NCI-H226 85.66 72.45 NCI-H23 90.23 69.93 NCI-H322M 97.51 69.34 NCI-H460 80.25 51.53 NCI-H522 90.68 72.52 Colon Cancer COLO 205 104.20 48.73 HCC-2998 116.36 11.22 HCT-116 64.67 32.68 HCT-15 83.45 45.06 HT29 100.25
- H1299 and H157 cells were treated with 10 ⁇ M Compound 23 and c-Myc protein expression levels quantified by Western blot.
- c-Myc protein expression levels were approximately 55% compared to untreated control cells.
- c-Myc protein expression levels were approximately 74% compared to untreated control cells.
- the blood plasma levels of Compound 23 after a single IP or IV injection (19 mg/kg) in female nude mice were determined by mass spectrometry (see FIG. 12 and the following table).
- the capacity of Compound 23 to inhibit c-MYC expression in tumor was evaluated in nude mice bearing subcutaneous xenografts of the human multiple myeloma cell line L363.
- tumors from two tumor-bearing mice were harvested 2 and 8 hours after a single dose of Compound 23 at 19 mg/kg or 38 mg/kg (administered IP).
- By western blot decreased c-MYC expression levels were observed in tumors at each time point compared to vehicle control tumors ( FIG. 13 ).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This is a continuation of U.S. application Ser. No. 16/835,102, filed Mar. 30, 2020, which is a continuation of U.S. application Ser. No. 16/218,341, filed Dec. 12, 2018, now U.S. Pat. No. 10,604,499, issued Mar. 31, 2020, which is a divisional of U.S. application Ser. No. 15/541,676, filed Jul. 5, 2017, now U.S. Pat. No. 10,196,372, issued Feb. 5, 2019, which is the U.S. National Stage of International Application No. PCT/US2016/012222, filed Jan. 5, 2016, which was published in English under PCT Article 21(2), which in turn claims the benefit of U.S. Provisional Application No. 62/099,938, filed Jan. 5, 2015. Each of the prior applications is incorporated by reference herein in its entirety.
- This relates to small molecule compounds that bind and stabilize the G-quadruplex DNA formation in the promoter of the c-MYC gene, and therefore can be used to reduce expression of the c-MYC gene in cells. The small molecule compounds can be used, for example, in methods of treating or inhibiting a tumor having increased c-MYC expression in a subject.
- The oncogenic transcription factor c-Myc has a pleiotropic role in a wide range of cell processes and is deregulated in some 70% of human cancers. However, targeting the c-Myc protein directly has proven to be difficult due to a lack of well-defined pockets amenable to small molecule binding. An alternative approach for suppressing c-Myc levels in the cell is through stabilization of the G-quadruplex DNA formation (G4) present in the promoter of the c-MYC gene. Expression of the proto-oncogene c-MYC is regulated by a 27 base pair (Pu27) sequence found in the nuclease hypersensitive element III (1) region (NHEIII1) of the c-MYC gene known to form a G4. Formation of the quadruplex in this sequence is believed to result in a “kink” in the DNA that prevents the polymerase from continuing along its reading frame, ultimately resulting in downregulation of the c-MYC gene.
- The use of small molecules to stabilize the G4 conformation and consequently decrease c-MYC expression is an attractive therapeutic goal in cancers where c-Myc is overexpressed. Unfortunately, although some quadruplex stabilizing small molecules have been shown to reduce c-Myc expression in cells, these agents may not be selective and activity cannot always be attributed to a c-MYC quadruplex-dependent mechanism of action. New classes of potent, selective quadruplex stabilizing agents that are active in tissue culture models would be of substantial utility as reagents to study c-Myc biology as well as potential therapeutics.
- The identification and characterization of a new class of small molecule c-MYC G4 ligands that selectively bind to and stabilize the G4 in the c-MYC promoter region and silence c-Myc expression is described herein. The compounds are useful, for example, in methods of reducing or inhibiting c-MYC expression in cells (such as cancer cells), as well as in methods of treating or inhibiting a c-MYC expressing tumor in a subject.
- In some embodiments, a method of decreasing c-MYC expression in a cell is provided. The method comprises contacting the cell with an effective amount of a compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of:
- wherein:
- A is a 6 membered aryl ring;
- C is a 6-membered aryl ring;
- each R1 is independently selected from hydrogen or optionally-substituted lower alkyl;
- a is 0, 1, or 2;
- R2 is selected from hydroxyl or halogen;
- R8 and R9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring;
- each R3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- b is 0 to 4;
- R4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- each R5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- d is 0, 1, or 2;
- R6 is selected from methyl, trifluoromethyl, or phenyl;
- Z is selected from nitrogen or oxygen; and
- if Z is nitrogen, IV is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, optionally-substituted lower alkyl, and if Z is oxygen, IV is not present. In some such embodiments, a is 0, R2 is hydroxyl, and/or R6 is methyl. In some such embodiments, R4 is lower haloalkyl (such as trifluoromethyl) and/or d is 0. In some such embodiments, R8 and R9 together with the linking nitrogen atom form optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted piperidine, optionally-substituted piperazine, or optionally-substituted azepane. For example, R8 and R9 together with the linking nitrogen atom form pyrrolidine, imidizolidine, pryazolidine, piperidine, piperazine, or azepane.
- In some embodiments of the method of decreasing c-MYC expression in a cell, the method can include contacting the cell with an effective amount of a compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of one of
Compounds Compounds 23. - In additional embodiments, compounds for use in the disclosed methods are provided. In some embodiments, a compound, or a pharmaceutically acceptable salt or ester thereof, is provided, having a structure of Formula III:
- wherein:
- each R1 is independently selected from hydrogen or optionally-substituted lower alkyl;
- R2 is selected from hydroxyl or halogen;
- R8 and R9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring;
- each R3 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- b is 0 to 4;
- R4 is trifluoromethyl;
- each R5 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- d is 0, 1, or 2;
- R6 is selected from methyl, trifluoromethyl, or phenyl;
- Z is selected from nitrogen or oxygen; and
- if Z is nitrogen, R7 is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkyl, and if Z is oxygen, R7 is not present; and
- with the proviso that the compound does not comprise the structure set forth as any one of structures 12-13, 17-20, or 36-43. In some embodiments, a compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of one of compounds 23-29, or 34 is provided. Pharmaceutical composition comprising a disclosed compound and at least one pharmaceutically acceptable additive are also provided.
- The foregoing and other features and advantages of this disclosure will become more apparent from the following detailed description of several embodiments which proceeds with reference to the accompanying figures.
- The patent or application file contains at least one drawing executed in color.
-
FIGS. 1A and 1B show a set of schematic drawings illustrating the c-MYC Pu22 G-quadruplex and its formation. (A) Schematic drawing of the c-MYC Pu22 G-quadruplex. In structure on right, each circle represents a different nucleotide (indicated as thymine, T, guanine, G, and adenine, A). The quadruplex-forming promoter sequence of the NHE III1 region of wild type c-MycPu27 (SEQ ID NO: 1) and variant c-MycPu22 (SEQ ID NO: 2) are shown. (B) Cartoon depicting reversible formation of G-quadruplex DNA in c-MYC promoter region that controls gene transcription. Stabilization of the quadruplex with a small molecule inhibits transcription. -
FIGS. 2A-2C show a set of diagrams and graphs illustrating identification and testing of c-MycPu22 quadruplex DNA binding agents. (A) Cartoon depicting a small molecule microarray screen to identify compounds that bind to c-MycPu22 quadruplex DNA. (B) Structure of a compound identified from the screen to selectively bind to c-MycPu22.Compound 1 increases the melting temperature of quadruplex DNA as measured by circular dichroism (average of 4 trials±standard deviation). (C) Surface plasmon resonance experiment to measure the dissociation constant ofCompound 1 binding to c-MycPu22. Shown are the sensorgram (left) and binding isotherm (right). -
FIGS. 3A-3C show a pair of Western blots and a graph illustrating thatcompound 1 inhibits c-MycPu22 quadruplex function. (A) PCR stop assay.Compound 1 inhibits PCR amplification of a synthetic wildtype oligonucleotide sequence (nucleotides 3-19 of SEQ ID NO: 2) capable of forming a G4, but not the mutant sequence (SEQ ID NO: 3) that cannot form a G4. (B) Exon specific qPCR assay with CA-46 Burkitt's Lymphoma cell line. Exon 1 (in red) remains under control of the G4 while transcription fromexon 2 is not under control of a G4. Cells were treated with 10μM 1 for the time indicated. Real time polymerase chain reaction was carried out, after which the observed threshold cycle (Ct) was measured and normalized to the value for cells treated with a DMSO control. The data represents an average of four replicates. Error bars represent standard deviation. (C) Western blot demonstrating resistance of CA-46 cell line to inhibition of c-Myc translation. -
FIGS. 4A-4D show a set of graphs and a Western blot illustrating the effects ofCompound 1 on cell viability and c-Myc translation. (A) Dose-dependent effects ofCompound 1 on myeloma cell viability at 72 h. (B) Time-dependent inhibition of c-Myc transcription in myeloma cells after treatment with 10μM 1, as measured by qPCR. Data is average of 2 replicates and error bars represent standard deviation. (C) Inhibition of c-Myc protein translation with 10μM Compound 1 is sustained over time. (D) Effects on cell viability and c-Myc protein translation byCompound 1 across a panel of multiple myeloma cell lines. Also included are the resistant CA46 Burkitt's Lymphoma cell line and peripheral blood mononucleocytes. -
FIGS. 5A-5C show a set of graphs and digital images illustrating thatCompound 1 causes cell-cycle arrest in myeloma cells. (A) Cycle analysis for L363 cells treated with 10μM Compound 1.Compound 1 induces sustained G1 arrest. (B)Compound 1 does not induce significant apoptosis at 10 μM after 72 h. (C)Compound 1 induces a senescent state in myeloma cells at 10 μM after 72 h. -
FIGS. 6A-6C show a series of graphs illustrating the effect ofCompound 1 treatment on gene expression. (A) Treatment with 10 μM ofCompound 1 for various times reduces c-Myc expression of while minimally affecting expression of other G-quadruplex containing genes, as evaluated using Nanostring assays. (B) Treatment with 5, 10 or 12.5 μM ofCompound 1 for 48 hours reduces c-Myc expression of while minimally affecting expression of other G-quadruplex containing genes, as evaluated using qPCR analysis (data are theaverage log 2 value for ΔΔCt of three replicates). (C) A series of analogs ofCompound 1 were tested for any effect on c-Myc expression or L363 cell viability. The expression levels of the BCL2 (1), KRAS (2), HIF1A (3), VEGFA (4), Rbl (5), and c-MYC (6) genes is shown. -
FIG. 7 illustrates potential decomposition pathways forCompound 1. -
FIG. 8 shows the 12 hits from the screen that were chosen for follow-up studies. Molecules with similar chemical scaffolds are grouped in boxes. -
FIG. 9 shows a circular dichroism spectrum of c-MycPu22 quadruplex DNA (SEQ ID NO: 2). Observed maximum (262 nm) and minimum (244 nm) demonstrate formation of a properly folded parallel-stranded G-quadruplex structure. -
FIG. 10 shows a general scheme for synthesis of analogs ofCompound 1. -
FIG. 11 illustrates exemplary substitutions to Compound 1 that can be made to generate analogs that stabilize the G4 in the c-MYC promoter and inhibit c-Myc expression. -
FIG. 12 is a set of graphs showing the blood plasma levels ofCompound 23 after a single IP (lower graph) or IV (upper graph) injection (19 mg/kg) in female nude mice. -
FIG. 13 shows a Western blot showing c-MYC expression levels in L363 subcutaneous xenografts that were harvested fromxenograft bearing mice Compound 23 at 19 mg/kg or 38 mg/kg (administered IP). -
FIGS. 14A and 14B are a set of graphs illustrating the effect ofCompound 1 or Compound 23 treatment on gene expression. (A) Treatment of L363 cells with 5μM Compound 23 for 24 or 48 hours reduced c-Myc expression while minimally affecting expression of other G-quadruplex containing genes as evaluated using qPCR analysis. (B) Treatment of L363 cells with 10 μM BRACO-19, 10μM Compound 1 or 7.5μM Compound 23 for 48 hours reduced c-Myc expression while minimally affecting expression of other G-quadruplex containing genes as evaluated using qPCR. The expression levels of the BCL2 (1), KRAS (2), HIF1A (3), VEGFA (4), and c-MYC (5) genes is shown. - The nucleic and amino acid sequences listed in the accompanying sequence listing are shown using standard letter abbreviations for nucleotide bases, and three letter code for amino acids, as defined in 37 C.F.R. 1.822. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included by any reference to the displayed strand. The Sequence Listing is submitted as an ASCII text file in the form of the file named “Sequence.txt” (˜4 kb), which was created on Apr. 30, 2021, which is incorporated by reference herein. In the accompanying sequence listing:
- SEQ ID NO: 1 is the nucleic acid sequence of a c-MycPu27 G4
- SEQ ID NO: 2 is the nucleic acid sequence of a c-MycPu22 G4
- SEQ ID NO: 3 is the nucleic acid sequence of a mutant c-MycPu22 that does not form a G4 structure.
- SEQ ID NO: 4 is the nucleic acid sequence of an oligonucleotide primer.
- The following explanations of terms and methods are provided to better describe the present compounds, compositions and methods, and to guide those of ordinary skill in the art in the practice of the present disclosure. It is also to be understood that the terminology used in the disclosure is for the purpose of describing particular embodiments and examples only and is not intended to be limiting.
- Acyl: A group having the structure —C(O)R, where R may be, for example, optionally substituted alkyl, optionally substituted aryl, or optionally substituted heteroaryl. Lower acyl groups are those that contain one to six carbon atoms.
- Acyloxy: A group having the structure —OC(O)R—, where R may be, for example, optionally substituted alkyl, optionally substituted aryl, or optionally substituted heteroaryl. Lower acyloxy groups contain one to six carbon atoms.
- Administration: To provide or give to a subject an agent, for example, a small molecule compound that selectively binds to G4 quadruplex DNA in the c-MYC promoter, by any effective route. Exemplary routes of administration include, but are not limited to, oral, injection (such as subcutaneous, intramuscular, intradermal, intraperitoneal, and intravenous), sublingual, rectal, transdermal (for example, topical), intranasal, vaginal, and inhalation routes.
- Co-administration or co-administering refers to administration of at least two therapeutic compounds within the same general time period, and does not require administration at the same exact moment in time (although co-administration is inclusive of administering at the same exact moment in time). Thus, co-administration may be on the same day or on different days, or in the same week or in different weeks. The therapeutic compounds disclosed herein may be included in the same composition or they may each individually be included in separate compositions. In certain embodiments, the two compounds may be administered during a time frame wherein their respective periods of biological activity overlap. Thus, the term includes sequential as well as coextensive administration of two or more compounds.
- “Administration of” and “administering a” compound should be understood to mean providing a compound, a prodrug of a compound, or a pharmaceutical composition as described herein. The compound or composition can be administered by another person to the subject (e.g., intravenously) or it can be self-administered by the subject (e.g., tablets).
- Agent: Any substance or any combination of substances that is useful for achieving an end or result; for example, a substance or combination of substances useful for decreasing or reducing tumor growth in a subject. Agents include effector molecules and detectable markers. In some embodiments, the agent is a chemotherapeutic agent. The skilled artisan will understand that particular agents may be useful to achieve more than one result; for example, an agent may be useful as both a detectable marker and a chemotherapeutic agent.
- Aliphatic: A group including alkyl, alkenyl, alkynyl, halogenated alkyl and cycloalkyl groups. A lower aliphatic group is a branched or unbranched aliphatic group having from 1 to 10 carbon atoms. Alkanediyl, cycloalkanediyl, aryldiyl, alkanearyldiyl: A divalent radical derived from aliphatic, cycloaliphatic, aryl, and alkanearyl hydrocarbons.
- Alkenyl: A cyclic, branched or straight chain group containing only carbon and hydrogen, and contains one or more double bonds that may or may not be conjugated. Alkenyl groups may be unsubstituted or substituted. Lower alkenyl groups contain one to six carbon atoms.
- Alkoxy: A straight, branched or cyclic hydrocarbon configuration and combinations thereof, including from 1 to 20 carbon atoms, preferably from 1 to 6 carbon atoms (referred to as a “lower alkoxy”), more preferably from 1 to 4 carbon atoms, that include an oxygen atom at the point of attachment. An example of an “alkoxy group” is represented by the formula —OR, where R can be an alkyl group, optionally substituted with an alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, halogenated alkyl, alkoxy or heterocycloalkyl group. Suitable alkoxy groups include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, sec-butoxy, tert-butoxy cyclopropoxy, cyclohexyloxy, and the like.
- Alkoxycarbonyl: An alkoxy substituted carbonyl radical, —C(O)OR, wherein R represents an optionally substituted alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl or similar moiety.
- Alkyl: A branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, pentyl, hexyl, heptyl, octyl, decyl, tetradecyl, hexadecyl, eicosyl, tetracosyl and the like. A lower alkyl group is a saturated branched or unbranched hydrocarbon having from 1 to 6 carbon atoms. Preferred alkyl groups have 1 to 4 carbon atoms. Alkyl groups may be substituted alkyls wherein one or more hydrogen atoms are substituted with a substituent such as halogen, cycloalkyl, alkoxy, amino, hydroxyl, aryl, alkenyl, or carboxyl. For example, a lower alkyl or (C1-C6)alkyl can be methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, or hexyl; (C3-C6)cycloalkyl can be cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl; (C3-C6)cycloalkyl(C1-C6)alkyl can be cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, 2-cyclopropylethyl, 2-cyclobutylethyl, 2-cyclopentylethyl, or 2-cyclohexylethyl; (C1-C6)alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 3-pentoxy, or hexyloxy; (C2-C6)alkenyl can be vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl; (C2-C6)alkynyl can be ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, or 5-hexynyl; (C1-C6)alkanoyl can be acetyl, propanoyl or butanoyl; halo(C1-C6)alkyl can be iodomethyl, bromomethyl, chloromethyl, fluoromethyl, trifluoromethyl, 2-chloroethyl, 2-fluoroethyl, 2,2,2-trifluoroethyl, or pentafluoroethyl; hydroxy(C1-C6)alkyl can be hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxypropyl, 2-hydroxypropyl, 3-hydroxypropyl, 1-hydroxybutyl, 4-hydroxybutyl, 1-hydroxypentyl, 5-hydroxypentyl, 1-hydroxyhexyl, or 6-hydroxyhexyl; (C1-C6)alkoxycarbonyl can be methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, or hexyloxycarbonyl; (C1-C6)alkylthio can be methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, pentylthio, or hexylthio; (C2-C6)alkanoyloxy can be acetoxy, propanoyloxy, butanoyloxy, isobutanoyloxy, pentanoyloxy, or hexanoyloxy.
- Alkynyl: A cyclic, branched or straight chain group containing only carbon and hydrogen, and unless otherwise mentioned typically contains one to twelve carbon atoms, and contains one or more triple bonds. Alkynyl groups may be unsubstituted or substituted. A lower alkynyl group is one that contains one to six carbon atoms.
- Amine or Amino: A group of the formula —NRR′, where R and R′ can be, independently, hydrogen or an alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, halogenated alkyl, or heterocycloalkyl group. For example, an “alkylamino” or “alkylated amino” refers to —NRR′, wherein at least one of R or R′ is an alkyl.
- Aminoalkyl: An alkyl group as defined above where at least one hydrogen atom is replaced with an amino group (e.g, —CH2—NH2).
- Aminocarbonyl: A group that, alone or in combination, includes an amino substituted carbonyl (carbamoyl) radical, wherein the amino radical may optionally be mono- or di-substituted, such as with alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, alkanoyl, alkoxycarbonyl, aralkoxycarbonyl and the like. An aminocarbonyl group may be —N(R)—C(O)—R (wherein R is a substituted group or H). A suitable aminocarbonyl group is acetamido.
- Amide or Amido: A group that is represented by the formula —C(O)NRR′, where R and R′ independently can be a hydrogen, alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, halogenated alkyl, or heterocycloalkyl group.
- Analog: A molecule that differs in chemical structure from a parent compound, for example a homolog (differing by an increment in the chemical structure or mass, such as a difference in the length of an alkyl chain or the inclusion of one of more isotopes), a molecular fragment, a structure that differs by one or more functional groups, or a change in ionization. An analog is not necessarily synthesized from the parent compound. A derivative is a molecule derived from the base structure.
- Aralkyl: An alkyl group wherein an aryl group is substituted for a hydrogen of the alkyl group. An example of an aralkyl group is a benzyl group.
- Aryl: A monovalent unsaturated aromatic carbocyclic group having a single ring (e.g., phenyl) or multiple condensed rings (e.g., naphthyl or anthryl), which can optionally be unsubstituted or substituted. A heteroaryl group is an aromatic group that has at least one heteroatom incorporated within the ring of the aromatic group. Examples of heteroatoms include, but are not limited to, nitrogen, oxygen, sulfur, and phosphorous. Heteroaryl includes, but is not limited to, pyridinyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzooxazolyl, quinoxalinyl, and the like. The aryl or heteroaryl group can be substituted with one or more groups including, but not limited to, alkyl, alkynyl, alkenyl, aryl, halide, nitro, amino, ester, ketone, aldehyde, hydroxy, carboxylic acid, or alkoxy, or the aryl or heteroaryl group can be unsubstituted.
- Aryloxy or Heteroaryloxy: A group of the formula —OAr, wherein Ar is an aryl group or a heteroaryl group, respectively.
- Cancer: A malignant tumor that has undergone characteristic anaplasia with loss of differentiation, increase rate of growth, invasion of surrounding tissue, and is capable of metastasis. For example, thyroid cancer is a malignant tumor that arises in or from thyroid tissue, and breast cancer is a malignant tumor that arises in or from breast tissue (such as a ductal carcinoma). Residual cancer is cancer that remains in a subject after any form of treatment given to the subject to reduce or eradicate the cancer. Metastatic cancer is a tumor at one or more sites in the body other than the site of origin of the original (primary) cancer from which the metastatic cancer is derived. Cancer includes, but is not limited to, solid tumors.
- Carboxylate or Carboxyl: The group —COO or —COOH. The carboxyl group can form a carboxylic acid. A substituted carboxyl is a —COOR group where R is alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, halogenated alkyl, or heterocycloalkyl group. For example, a substituted carboxyl group could be a carboxylic acid ester or a salt thereof (e.g., a carboxylate).
- Chemotherapeutic agent: Any chemical agent with therapeutic usefulness in the treatment of diseases characterized by abnormal cell growth. For example, chemotherapeutic agents are useful for the treatment of neuroblastoma. Particular examples of additional therapeutic agents that can be used include microtubule binding agents, DNA intercalators or cross-linkers, DNA synthesis inhibitors, DNA and RNA transcription inhibitors, antibodies, enzymes, enzyme inhibitors, gene regulators, and angiogenesis inhibitors. In one embodiment, a chemotherapeutic agent is a radioactive compound. One of skill in the art can readily identify a chemotherapeutic agent of use (see for example, Slapak and Kufe, Principles of Cancer Therapy, Chapter 86 in Harrison's Principles of Internal Medicine, 14th edition; Perry et al., Chemotherapy, Ch. 17 in Abeloff,
Clinical Oncology 2nd ed., © 2000 Churchill Livingstone, Inc; Baltzer, L., Berkery, R. (eds): Oncology Pocket Guide to Chemotherapy, 2nd ed. St. Louis, Mosby-Year Book, 1995; Fischer, D. S., Knobf, M. F., Durivage, H. J. (eds): The Cancer Chemotherapy Handbook, 4th ed. St. Louis, Mosby-Year Book, 1993; Chabner and Longo, Cancer Chemotherapy and Biotherapy: Principles and Practice (4th ed.). Philadelphia: Lippincott Willians & Wilkins, 2005; Skeel, Handbook of Cancer Chemotherapy (6th ed.). Lippincott Williams & Wilkins, 2003). Combination chemotherapy is the administration of more than one agent to treat cancer. - Control: A sample or standard used for comparison with an experimental sample. In some embodiments, the control is a sample obtained from a healthy patient or a non-tumor tissue sample obtained from a patient diagnosed with cancer. In other embodiments, the control is a tumor tissue sample obtained from a patient diagnosed with cancer. In some embodiments, the control is a tumor tissue sample obtained from a patient diagnosed with cancer, where the patient has not received treatment with a G4 stabilizing agent as disclosed herein. In still other embodiments, the control is a historical control or standard reference value or range of values (such as a previously tested control sample, such as a group of cancer patients with known prognosis or outcome, or group of samples that represent baseline or normal values, such as the expression level of the c-MYC gene in a non-tumor tissue).
- Cycloalkyl: A non-aromatic carbon-based ring composed of at least three carbon atoms. Examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like. A heterocycloalkyl group is a cycloalkyl group as defined above where at least one of the carbon atoms of the ring is substituted with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorous. Cycloalkyl and heterocycloalkyl groups can be mono-cyclic or bi-cyclic.
- Decrease or Reduce: To reduce the quality, amount, or strength of something; for example a reduction in tumor burden. In one example, a therapy reduces a tumor (such as the size of a tumor, the number of tumors, the metastasis of a tumor, or combinations thereof), or one or more symptoms associated with a tumor, for example as compared to the response in the absence of the therapy. In a particular example, a therapy decreases the size of a tumor, the number of tumors, the metastasis of a tumor, or combinations thereof, subsequent to the therapy, such as a decrease of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%. Such decreases can be measured using the methods disclosed herein.
- Determining or detecting the level of expression of a gene product: Detection of a level of expression in either a qualitative or quantitative manner, for example by detecting nucleic acid molecules or proteins, for instance using routine methods known in the art.
- Diagnosis: The process of identifying a disease by its signs, symptoms and results of various tests. The conclusion reached through that process is also called “a diagnosis.” Forms of testing commonly performed include blood tests, medical imaging, urinalysis, and biopsy.
- Ester: A carboxyl group-containing moiety having the hydrogen replaced with, for example, a C1-6alkyl group (“carboxyl C1-6alkyl” or “alkylester”), an aryl or aralkyl group (“arylester” or “aralkylester”) and so on. CO2C1-3alkyl groups are preferred, such as for example, methylester (CO2Me), ethylester (CO2Et) and propylester (CO2Pr) and includes reverse esters thereof (e.g. —OCOMe, —OCOEt and —OCOPr).
- Halogenated alkyl or Haloalkyl group: An alkyl group with one or more hydrogen atoms present on these groups substituted with a halogen (F, Cl, Br, I).
- Hydroxyl: A group represented by the formula —OH.
- Hydroxyalkyl: An alkyl group that has at least one hydrogen atom substituted with a hydroxyl group. A alkoxyalkyl group is an alkyl group that has at least one hydrogen atom substituted with an alkoxy group described above.
- Isolated or Purified: An biological component is a component that has been substantially separated or purified away from other biological components in the cell of the organism in which the component naturally occurs, i.e., other chromosomal and extra-chromosomal DNA and RNA, proteins, lipids, and organelles. “Isolated” does not require absolute purity. For example, the desired isolated biological component may represent at least 50%, particularly at least about 75%, more particularly at least about 90%, and most particularly at least about 98%, of the total content of the preparation. Isolated biological components as described herein can be isolated by many methods such as salt fractionation, phenol extraction, precipitation with organic solvents (for example, hexadecyltrimethylammonium bromide or ethanol), affinity chromatography, ion-exchange chromatography, hydrophobic chromatography, high performance liquid chromatography, gel filtration, iso-electric focusing, physical separation (e.g., centrifugation or stirring), and the like.
- The term purified does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified peptide preparation is one in which the peptide or protein is more enriched than the peptide or protein is in its natural environment within a cell. For example, a compound preparation is purified such that the desired polysaccharide protein conjugate represents at least 50%, more particularly at least about 90%, and most particularly at least about 98%, of the total content of the preparation.
- Multiple myeloma: A malignancy of terminally differentiated antibody secreting B cells with ˜20,000 new cases diagnosed yearly in the United States (Jemal et al., CA Cancer J Clin., 60:277-300, 2010). MM is characterized by the accumulation of clonal plasma cells in the bone marrow (BM) and osteolytic bone lesions. The person of ordinary skill is familiar with tests used to determine the presence and severity of MM. For example, the Durie-Salmon staging system divides MM patients into three stages: Stages I, II, and III, corresponding to low, intermediate, and high cell mass, depending upon the severity of anemia, calcium level, kidney function, presence or absence of bone lesions, and the quantity of abnormal proteins. Approximately 25 percent of people with MM have high-risk disease. Treatment options include chemotherapy, treatment with immune modulating medications, and Autologous Stem Cell Transplant (ASCT) (Attal et al., N. Engl. J. Med., 1996; 335:91-97; Barlogie et al., Blood, 1997; 89:789-793). However, patients invariably relapse, and MM remains a universal fatal disease. See, e.g., Rajkumar and Kyle, (eds), Treatment of Multiple Myeloma and Related Disorders, 1st; Cambridge University Press, New York, 2006.
- c-Myc: A transcription factor known to be overexpressed in several types of cancer, including lymphoma and multiple myeloma. c-Myc protein is encoded by the c-MYC gene. Expression of the c-MYC gene is regulated in part by a 27 base pair (Pu27) sequence found in the nuclease hypersensitive element III(1) region (NHEIII1) of the c-MYC promoter that can form a G-quadruplex (G4) structure. Formation of the G4 structure in this sequence is believed to result in a “kink” in the DNA that prevents the polymerase from continuing along its reading frame, ultimately resulting in downregulation of the c-MYC gene.
- N-heterocyclic: Mono or bicyclic rings or ring systems that include at least one nitrogen heteroatom. The rings or ring systems generally include 1 to 9 carbon atoms in addition to the heteroatom(s) and may be saturated, unsaturated or aromatic (including pseudoaromatic). The term “pseudoaromatic” refers to a ring system which is not strictly aromatic, but which is stabilized by means of delocalization of electrons and behaves in a similar manner to aromatic rings. Aromatic includes pseudoaromatic ring systems, such as pyrrolyl rings.
- Examples of 5-membered monocyclic N-heterocycles include pyrrolyl, H-pyrrolyl, pyrrolinyl, pyrrolidinyl, oxazolyl, oxadiazolyl, (including 1,2,3 and 1,2,4 oxadiazolyls) isoxazolyl, furazanyl, thiazolyl, isothiazolyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, imidazolyl, imidazolinyl, triazolyl (including 1,2,3 and 1,3,4 triazolyls), tetrazolyl, thiadiazolyl (including 1,2,3 and 1,3,4 thiadiazolyls), and dithiazolyl. Examples of 6-membered monocyclic N-heterocycles include pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, and triazinyl. The heterocycles may be optionally substituted with a broad range of substituents, and preferably with C1-6 alkyl, C1-6 alkoxy, C2-6 alkenyl, C2-6 alkynyl, halo, hydroxy, mercapto, trifluoromethyl, amino, cyano or mono or di(C1-6alkyl)amino. The N-heterocyclic group may be fused to a carbocyclic ring such as phenyl, naphthyl, indenyl, azulenyl, fluorenyl, and anthracenyl.
- Examples of 8, 9 and 10-membered bicyclic heterocycles include 1H thieno[2,3-c]pyrazolyl, indolyl, isoindolyl, benzoxazolyl, benzothiazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolyl, indazolyl, isoquinolinyl, quinolinyl, quinoxalinyl, purinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, benzotriazinyl, and the like. These heterocycles may be optionally substituted, for example with C1-6 alkyl, C1-6 alkoxy, C2-6 alkenyl, C2-6 alkynyl, halo, hydroxy, mercapto, trifluoromethyl, amino, cyano or mono or di(C1-6alkyl)amino Unless otherwise defined optionally substituted N-heterocyclics includes pyridinium salts and the N-oxide form of suitable ring nitrogens.
- Pharmaceutical composition: A composition including an amount (for example, a unit dosage) of one or more of the disclosed compounds together with one or more non-toxic pharmaceutically acceptable additives, including carriers, diluents, and/or adjuvants, and optionally other biologically active ingredients. Such pharmaceutical compositions can be prepared by standard pharmaceutical formulation techniques such as those disclosed in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. (19th Edition).
- Pharmaceutically acceptable carrier: The pharmaceutically acceptable carriers of use are conventional. Remington's Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, Pa., 19th Edition, 1995, describes compositions and formulations suitable for pharmaceutical delivery of the disclosed immunogens.
- In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. For solid compositions (e.g., powder, pill, tablet, or capsule forms), conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate. In addition to biologically neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate. In particular embodiments, suitable for administration to a subject the carrier may be sterile, and/or suspended or otherwise contained in a unit dosage form containing one or more measured doses of the composition suitable to induce the desired tumor response. It may also be accompanied by medications for its use for treatment purposes. The unit dosage form may be, for example, in a sealed vial that contains sterile contents or a syringe for injection into a subject, or lyophilized for subsequent solubilization and administration or in a solid or controlled release dosage.
- Pharmaceutically acceptable salt or ester: Salts or esters prepared by conventional means that include salts, e.g., of inorganic and organic acids, including but not limited to hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, malic acid, acetic acid, oxalic acid, tartaric acid, citric acid, lactic acid, fumaric acid, succinic acid, maleic acid, salicylic acid, benzoic acid, phenylacetic acid, mandelic acid and the like.
- Pharmaceutically acceptable salts of the presently disclosed compounds also include those formed from cations such as sodium, potassium, aluminum, calcium, lithium, magnesium, zinc, and from bases such as ammonia, ethylenediamine, N-methyl-glutamine, lysine, arginine, ornithine, choline, N,N′-dibenzylethylenediamine, chloroprocaine, diethanolamine, procaine, N-benzylphenethylamine, diethylamine, piperazine, tris(hydroxymethyl)aminomethane, and tetramethylammonium hydroxide.
- These salts may be prepared by standard procedures, for example by reacting the free acid with a suitable organic or inorganic base. Any chemical compound recited in this specification may alternatively be administered as a pharmaceutically acceptable salt thereof. “Pharmaceutically acceptable salts” are also inclusive of the free acid, base, and zwitterionic forms. Descriptions of suitable pharmaceutically acceptable salts can be found in Handbook of Pharmaceutical Salts, Properties, Selection and Use, Wiley VCH (2002). When compounds disclosed herein include an acidic function such as a carboxy group, then suitable pharmaceutically acceptable cation pairs for the carboxy group are well known to those skilled in the art and include alkaline, alkaline earth, ammonium, quaternary ammonium cations and the like. Such salts are known to those of skill in the art. For additional examples of pharmacologically acceptable salts, see Berge et al., J. Pharm. Sci. 66:1 (1977).
- Pharmaceutically acceptable esters include those derived from compounds described herein that are modified to include a carboxyl group. An in vivo hydrolysable ester is an ester, which is hydrolysed in the human or animal body to produce the parent acid or alcohol. Representative esters thus include carboxylic acid esters in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (for example, methyl, n-propyl, t-butyl, or n-butyl), cycloalkyl, alkoxyalkyl (for example, methoxymethyl), aralkyl (for example benzyl), aryloxyalkyl (for example, phenoxymethyl), aryl (for example, phenyl, optionally substituted by, for example, halogen, C.sub.1-4 alkyl, or C.sub.1-4 alkoxy) or amino); sulphonate esters, such as alkyl- or aralkylsulphonyl (for example, methanesulphonyl); or amino acid esters (for example, L-valyl or L-isoleucyl). A “pharmaceutically acceptable ester” also includes inorganic esters such as mono-, di-, or tri-phosphate esters. In such esters, unless otherwise specified, any alkyl moiety present advantageously contains from 1 to 18 carbon atoms, particularly from 1 to 6 carbon atoms, more particularly from 1 to 4 carbon atoms. Any cycloalkyl moiety present in such esters advantageously contains from 3 to 6 carbon atoms. Any aryl moiety present in such esters advantageously comprises a phenyl group, optionally substituted as shown in the definition of carbocycylyl above. Pharmaceutically acceptable esters thus include C1-C22 fatty acid esters, such as acetyl, t-butyl or long chain straight or branched unsaturated or omega-6 monounsaturated fatty acids such as palmoyl, stearoyl and the like. Alternative aryl or heteroaryl esters include benzoyl, pyridylmethyloyl and the like any of which may be substituted, as defined in carbocyclyl above. Additional pharmaceutically acceptable esters include aliphatic L-amino acid esters such as leucyl, isoleucyl and especially valyl.
- For therapeutic use, salts of the compounds are those wherein the counter-ion is pharmaceutically acceptable. However, salts of acids and bases which are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound.
- The pharmaceutically acceptable acid and base addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid and base addition salt forms which the compounds are able to form. The pharmaceutically acceptable acid addition salts can conveniently be obtained by treating the base form with such appropriate acid. Appropriate acids comprise, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic acid, sulfuric, nitric, phosphoric and the like acids; or organic acids such as, for example, acetic, propanoic, hydroxyacetic, lactic, pyruvic, oxalic (i.e. ethanedioic), malonic, succinic (i.e. butanedioic acid), maleic, fumaric, malic (i.e. hydroxybutanedioic acid), tartaric, citric, methanesulfonic, ethanesulfonic, benzenesulfonic, p-toluenesulfonic, cyclamic, salicylic, p-aminosalicylic, pamoic and the like acids. Conversely said salt forms can be converted by treatment with an appropriate base into the free base form.
- The compounds containing an acidic proton may also be converted into their non-toxic metal or amine addition salt forms by treatment with appropriate organic and inorganic bases. Appropriate base salt forms comprise, for example, the ammonium salts, the alkali and earth alkaline metal salts, e.g. the lithium, sodium, potassium, magnesium, calcium salts and the like, salts with organic bases, e.g. the benzathine, N-methyl-D-glucamine, hydrabamine salts, and salts with amino acids such as, for example, arginine, lysine and the like.
- The term addition salt as used hereinabove also comprises the solvates which the compounds described herein are able to form. Such solvates are for example hydrates, alcoholates and the like. The term “quaternary amine” as used hereinbefore defines the quaternary ammonium salts which the compounds are able to form by reaction between a basic nitrogen of a compound and an appropriate quaternizing agent, such as, for example, an optionally substituted alkylhalide, arylhalide or arylalkylhalide, e.g. methyliodide or benzyliodide. Other reactants with good leaving groups may also be used, such as alkyl trifluoromethanesulfonates, alkyl methanesulfonates, and alkyl p-toluenesulfonates. A quaternary amine has a positively charged nitrogen. Pharmaceutically acceptable counterions include chloro, bromo, iodo, trifluoroacetate and acetate. The counterion of choice can be introduced using ion exchange resins.
- Prodrugs of the disclosed compounds also are contemplated herein. A prodrug is an active or inactive compound that is modified chemically through in vivo physiological action, such as hydrolysis, metabolism and the like, into an active compound following administration of the prodrug to a subject. The term “prodrug” as used throughout this text means the pharmacologically acceptable derivatives such as esters, amides and phosphates, such that the resulting in vivo biotransformation product of the derivative is the active drug as defined in the compounds described herein. Prodrugs preferably have excellent aqueous solubility, increased bioavailability and are readily metabolized into the active inhibitors in vivo. Prodrugs of a compounds described herein may be prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either by routine manipulation or in vivo, to the parent compound. The suitability and techniques involved in making and using prodrugs are well known by those skilled in the art. For a general discussion of prodrugs involving esters see Svensson and Tunek, Drug Metabolism Reviews 165 (1988) and Bundgaard, Design of Prodrugs, Elsevier (1985).
- The term “prodrug” also is intended to include any covalently bonded carriers that release an active parent drug of the present invention in vivo when the prodrug is administered to a subject. Since prodrugs often have enhanced properties relative to the active agent pharmaceutical, such as, solubility and bioavailability, the compounds disclosed herein can be delivered in prodrug form. Thus, also contemplated are prodrugs of the presently disclosed compounds, methods of delivering prodrugs and compositions containing such prodrugs. Prodrugs of the disclosed compounds typically are prepared by modifying one or more functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to yield the parent compound. Prodrugs include compounds having a phosphonate and/or amino group functionalized with any group that is cleaved in vivo to yield the corresponding amino and/or phosphonate group, respectively. Examples of prodrugs include, without limitation, compounds having an acylated amino group and/or a phosphonate ester or phosphonate amide group. In particular examples, a prodrug is a lower alkyl phosphonate ester, such as an isopropyl phosphonate ester.
- Protected derivatives of the disclosed compounds also are contemplated. A variety of suitable protecting groups for use with the disclosed compounds are disclosed in Greene and Wuts, Protective Groups in Organic Synthesis; 3rd Ed.; John Wiley & Sons, New York, 1999.
- In general, protecting groups are removed under conditions that will not affect the remaining portion of the molecule. These methods are well known in the art and include acid hydrolysis, hydrogenolysis and the like. One preferred method involves the removal of an ester, such as cleavage of a phosphonate ester using Lewis acidic conditions, such as in TMS-Br mediated ester cleavage to yield the free phosphonate. A second preferred method involves removal of a protecting group, such as removal of a benzyl group by hydrogenolysis utilizing palladium on carbon in a suitable solvent system such as an alcohol, acetic acid, and the like or mixtures thereof. A t-butoxy-based group, including t-butoxy carbonyl protecting groups can be removed utilizing an inorganic or organic acid, such as HCl or trifluoroacetic acid, in a suitable solvent system, such as water, dioxane and/or methylene chloride. Another exemplary protecting group, suitable for protecting amino and hydroxy functions amino is trityl. Other conventional protecting groups are known and suitable protecting groups can be selected by those of skill in the art in consultation with Greene and Wuts, Protective Groups in Organic Synthesis; 3rd Ed.; John Wiley & Sons, New York, 1999. When an amine is deprotected, the resulting salt can readily be neutralized to yield the free amine. Similarly, when an acid moiety, such as a phosphonic acid moiety is unveiled, the compound may be isolated as the acid compound or as a salt thereof.
- Phosphoryl: Moieties of the formula —P(O)OR—, wherein R may be H, an aliphatic or aromatic moiety, a cation or a lone pair of electrons. Phosphoryl moieties may be further substituted to form phosphoramidates, phosphates and phosphonates.
- Polyether moiety: An oligomer (which is inclusive of dimers and higher repeating units) or a polymer. Illustrative polyether moieties include those derived from an aliphatic polyether (e.g., paraformaldehyde, polyethylene glycol (PEG), polypropylene glycol, and polytetramethylene glycol, and those derived from an aromatic polyether (e.g., polyphenyl ether or poly(p-phenylene oxide)). A preferred polyether moiety is derived from PEG, also referred to herein as a poly(ethylene oxide). The PEG may be a straight chain PEG or a branched PEG. PEG is also inclusive of methoxypolyethylene glycol. In certain embodiments, the number of repeating ethylene oxide units in the PEG moiety may range from 2 to 50, more particularly from 2 to 10. The polyether moiety may be covalently bonded to the core motif via PEGylation procedures.
- Small organic molecule: An organic molecule with a molecular weight of about 1000 daltons or less (for example about 900 daltons or less, about 800 daltons or less, about 700 daltons or less, about 600 daltons or less, about 500 daltons or less, about 400 daltons or less, about 300 daltons or less, about 200 daltons or less, or about 100 daltons or less). In some examples, a small organic molecule has a molecular weight of about 100-1000 daltons, about 200-900 daltons, about 300-700 daltons, about 200-500 daltons, or about 400-700 daltons.
- Subject: Includes both human and non-human subjects, including birds and non-human mammals, such as non-human primates, companion animals (such as dogs and cats), livestock (such as pigs, sheep, cows), as well as non-domesticated animals, such as the big cats. The term subject applies regardless of the stage in the organism's life-cycle. Thus, the term subject applies to an organism in utero or in ovo, depending on the organism (that is, whether the organism is a mammal or a bird, such as a domesticated or wild fowl).
- Substituted or Substitution: Replacement of a hydrogen atom of a molecule or an R-group with one or more additional R-groups. Unless otherwise defined, the term “optionally-substituted” or “optional substituent” as used herein refers to a group which may or may not be further substituted with 1, 2, 3, 4 or more groups, preferably 1, 2 or 3, more preferably 1 or 2 groups. The substituents may be selected, for example, from C1-6alkyl, C2-6alkenyl, C2-6alkynyl, C3-8cycloalkyl, hydroxyl, oxo, C1-6alkoxy, aryloxy, C1-6alkoxyaryl, halo, C1-6alkylhalo (such as CF3 and CHF2), C1-6alkoxyhalo (such as OCF3 and OCHF2), carboxyl, esters, cyano, nitro, amino, substituted amino, disubstituted amino, acyl, ketones, amides, aminoacyl, substituted amides, disubstituted amides, thiol, alkylthio, thioxo, sulfates, sulfonates, sulfinyl, substituted sulfinyl, sulfonyl, substituted sulfonyl, sulfonylamides, substituted sulfonamides, disubstituted sulfonamides, aryl, arC1-6alkyl, heterocyclyl and heteroaryl wherein each alkyl, alkenyl, alkynyl, cycloalkyl, aryl and heterocyclyl and groups containing them may be further optionally substituted. Optional substituents in the case N-heterocycles may also include but are not limited to C1-6alkyl i.e. N—C1-3alkyl, more preferably methyl particularly N-methyl.
- Sulfinyl: The group —S(═O)H. A substituted sulfinyl or sulfoxide is a sulfinyl group having the hydrogen replaced with, for example a C1-6alkyl group (“C1-6alkylsulfinyl” or “C1-6alkylsulfoxide”), an aryl (“arylsulfinyl”), an aralkyl (“aralkyl sulfinyl”) and so on. C1-3alkylsulfinyl groups are preferred, such as for example, —SOmethyl, —SOethyl and —SOpropyl.
- Sulfonyl: The group —SO2H. The sulfonyl group can be further substituted with a variety of groups to form, for example, sulfonic acids, sulfonamides, sulfonate esters and sulfones. A substituted sulfonyl is a sulfonyl group having the hydrogen replaced with, for example a C1-6alkyl group (“sulfonylC1-6alkyl”), an aryl (“arylsulfonyl”), an aralkyl (“aralkylsulfonyl”) and so on. SulfonylC1-3alkyl groups are preferred, such as for example, —SO2Me, —SO2Et and —SO2Pr.
- Sulfonylamido or sulfonamide: The group —SO2NH2.
- Thiol: The group —SH. A substituted thiol is a thiol group having the hydrogen replaced with, for example a C1-6alkyl group (“—S(C1-6alkyl)”), an aryl (“—S(aryl)”), or an aralkyl (“—S(alkyl)(aryl)”) and so on.
- Therapeutically effective amount: The amount of an agent that alone, or together with one or more additional agents, induces the desired response, such as, for example treatment of a tumor in a subject. Ideally, a therapeutically effective amount provides a therapeutic effect without causing a substantial cytotoxic effect in the subject.
- In one example, a desired response is to decrease the size, volume, or number (such as metastases) of a tumor in a subject. For example, the agent or agents can decrease the size, volume, or number of tumors by a desired amount, for example by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 50%, at least 75%, at least 90%, or at least 95% as compared to a response in the absence of the agent.
- Several preparations disclosed herein are administered in therapeutically effective amounts. A therapeutically effective amount of a disclosed compound that is administered to a human or veterinary subject will vary depending upon a number of factors associated with that subject, for example the overall health of the subject. A therapeutically effective amount can be determined by varying the dosage and measuring the resulting therapeutic response, such as the regression of a tumor. Therapeutically effective amounts also can be determined through various in vitro, in vivo or in situ immunoassays. The disclosed agents can be administered in a single dose, or in several doses, as needed to obtain the desired response. However, the therapeutically effective amount of can be dependent on the source applied, the subject being treated, the severity and type of the condition being treated, and the manner of administration.
- Treating or Inhibiting a Disease: A therapeutic intervention that reduces a sign or symptom of a disease or pathological condition related to a disease (such as a tumor). Treatment can also induce remission or cure of a condition, such as a tumor. In particular examples, treatment includes preventing a tumor, for example by inhibiting the full development of a tumor, such as preventing development of a metastasis or the development of a primary tumor. Prevention does not require a total absence of a tumor.
- Reducing a sign or symptom of a disease or pathological condition related to a disease, refers to any observable beneficial effect of the treatment. Reducing a sign or symptom associated with a tumor can be evidenced, for example, by a delayed onset of clinical symptoms of the disease in a susceptible subject (such as a subject having a tumor which has not yet metastasized), a reduction in severity of some or all clinical symptoms of the disease, a slower progression of the disease (for example by prolonging the life of a subject having tumor), a reduction in the number of relapses of the disease, an improvement in the overall health or well-being of the subject, or by other parameters well known in the art that are specific to the particular tumor. A “prophylactic” treatment is a treatment administered to a subject who does not exhibit signs of a disease or exhibits only early signs for the purpose of decreasing the risk of developing pathology.
- Tumor: An abnormal growth of cells, which can be benign or malignant. Cancer is a malignant tumor, which is characterized by abnormal or uncontrolled cell growth. Other features often associated with malignancy include metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels and suppression or aggravation of inflammatory or immunological response, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc. “Metastatic disease” refers to cancer cells that have left the original tumor site and migrate to other parts of the body for example via the bloodstream or lymph system.
- The amount of a tumor in an individual is the “tumor burden” which can be measured as the number, volume, or weight of the tumor. A tumor that does not metastasize is referred to as “benign.” A tumor that invades the surrounding tissue and/or can metastasize is referred to as “malignant.” Examples of hematological tumors include leukemias, including acute leukemias (such as 11q23-positive acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, acute myelogenous leukemia and myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia), chronic leukemias (such as chronic myelocytic (granulocytic) leukemia, chronic myelogenous leukemia, and chronic lymphocytic leukemia), polycythemia vera, lymphoma, Hodgkin's disease, non-Hodgkin's lymphoma (indolent and high grade forms), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, myelodysplastic syndrome, hairy cell leukemia and myelodysplasia.
- Examples of solid tumors, such as sarcomas and carcinomas, include fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, and other sarcomas, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, lymphoid malignancy, pancreatic cancer, breast cancer (including basal breast carcinoma, ductal carcinoma and lobular breast carcinoma), lung cancers, ovarian cancer, prostate cancer, hepatocellular carcinoma, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, medullary thyroid carcinoma, papillary thyroid carcinoma, pheochromocytomas sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, Wilms' tumor, cervical cancer, testicular tumor, seminoma, bladder carcinoma, and CNS tumors (such as a glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma and retinoblastoma). In several examples, a tumor is melanoma, lung cancer, lymphoma breast cancer or colon cancer.
- An “established” or “existing” tumor is an existing tumor that can be discerned by diagnostic tests. In some embodiments, and established tumor can be palpated. In some embodiments, and “established tumor” is at least 500 mm3, such as at least 600 mm3, at least 700 mm3, or at least 800 mm3 in size. In other embodiments, the tumor is at least 1 cm long. With regard to a solid tumor, and established tumor generally has an robust blood supply, and has induced Tregs and myeloid derived suppressor cells (MDSC).
- A person of ordinary skill in the art would recognize that the definitions provided above are not intended to include impermissible substitution patterns (e.g., methyl substituted with 5 different groups, and the like). Such impermissible substitution patterns are easily recognized by a person of ordinary skill in the art. Any functional group disclosed herein and/or defined above can be substituted or unsubstituted, unless otherwise indicated herein. Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The singular terms “a,” “an,” and “the” include plural referents unless context clearly indicates otherwise. The term “comprises” means “includes.” Therefore, comprising “A” or “B” refers to including A, including B, or including both A and B. It is further to be understood that all base sizes or amino acid sizes, and all molecular weight or molecular mass values, given for nucleic acids or polypeptides are approximate, and are provided for description. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described herein. In case of conflict, the present specification, including explanations of terms, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
- Disclosed therein are novel methods for using G4 stabilizing compounds, or a pharmaceutically acceptable salt or ester thereof, for the treatment of, for example, cancer. The compounds can selectively bind to the G4 in the c-MYC promoter, for example G4 DNA comprising the nucleic acid sequence set forth as TGAGGGTGGGTAGGGTGGGTAA, SEQ ID NO: 2. In several embodiments, the compounds can be used to reduce expression of the c-MYC gene in a cell. The cell can be in vitro or in vivo. In a non-limiting example, the cell is a cancer cell, such as a multiple myeloma cell.
- In one embodiment, there is disclosed herein a compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of:
- wherein:
- A, B, and C are each independently selected from a 4 to 7 membered cycloaliphatic, optionally-substituted heterocycloaliphatic, optionally-substituted aryl, or optionally-substituted heteroaryl;
- each R1 is independently selected from hydrogen or optionally-substituted lower alkyl;
- a is 0 to 2, such as 0 to 1, for example 0;
- R2 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy, such as hydroxyl;
- X is optionally-substituted methyl, ethyl or propyl, such as methyl;
- each R3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl, for example, R3 can be methyl and b can be 1;
- b is 0 to 6, such as 0 to 1, for example 1;
- each Y is independently selected from optionally-substituted lower alkyl, optionally-substituted amide, optionally-substituted sulfonamide, or optionally-substituted phosphoramide;
- c is 0 to 3, such as 1 to 2, for example 1;
- R4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl, such as lower haloalkyl, for example trifluoromethyl;
- each R5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- d is 0 to 5, such as 0 to 1, for example 0;
- R6 is selected from halogen, hydroxyl, lower haloalkyl, or optionally-substituted lower alkyl, such as lower alkyl, for example methyl;
- Z is selected from carbon, oxygen, nitrogen, or sulfur, such as oxygen; and
- wherein if Z is carbon or nitrogen, R7 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy, or is not present.
- In some embodiments of Formula I, X is methyl.
- In some embodiments of Formula I, Y is amide. In some embodiments of Formula I, Y can be selected from one of:
- and c can be selected from 1 or 2, for example, Y can be
- and c can be 1.
- In some embodiments of Formula I, B is optionally-substituted N-heterocyclic or N-heterocyclic. In some embodiments of Formula I, B is selected from optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted pyrrole, optionally-substituted diazole, optionally-substituted triazole, optionally-substituted piperidine, optionally-substituted pyridine, optionally-substituted diazine, optionally substituted triazine, optionally-substituted piperazine, optionally-substituted azepane, or optionally-substituted azepine. In some embodiments of Formula I, R3 is hydrogen or methyl. For example, in some embodiments of Formula I, a combination of B and R3 can be selected from one of the following:
- In one embodiment, there is disclosed herein a compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of:
- wherein:
- A and C are each independently selected from a 5 or 6 membered optionally-substituted aryl, or optionally-substituted heteroaryl;
- each R1 is independently selected from hydrogen or optionally-substituted lower alkyl, such as methyl;
- a is 0 to 2, such as 0 to 1, for example 0;
- R2 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy, such as hydroxyl;
- R8 and R9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring;
- each R3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- b is 0 to 6;
- R4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- each R5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl;
- d is 0 to 5;
- R6 is selected from halogen, hydroxyl, lower haloalkyl, or optionally-substituted lower alkyl;
- Z is selected from nitrogen or oxygen; and
- wherein if Z is nitrogen, R7 is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy, and if Z is oxygen, R7 is not present.
- In some embodiments of Formula II, A is a 6 membered aryl ring; C is a 6-membered aryl ring; each R1 is independently selected from hydrogen or optionally-substituted lower alkyl; a is 0, 1, or 2; R2 is selected from hydroxyl or halogen; R8 and R9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring; each R3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 4; R4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; each R5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; d is 0, 1, or 2; R6 is selected from methyl, trifluoromethyl, or phenyl; Z is selected from nitrogen or oxygen; and if Z is nitrogen, IV is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkyl, and if Z is oxygen, IV is not present.
- In some embodiments of Formula I or Formula II, C can be 6-membered optionally-substituted aryl or optionally substituted heteroaryl. In some embodiments of Formula I or Formula II, R4 can be lower haloalkyl, such as trifluoromethyl. In some embodiments of Formula I or Formula II, d can be 0. For example, in some embodiments, C can be a benzyl or nitrobenzyl ring, and R4 can be methyl or trifluoromethyl. For example, in some embodiments,
- can be selected from one of:
- In some embodiments of Formula II, Z is not oxygen, R2 is not hydroxyl, R6 is not methyl, B is not a 5-, 6-, or 7-membered N-heterocycloalkyl ring, and/or the compound does not comprise the structure set forth as any one of structures 1-13, or 17-20.
- In some embodiments of Formula I or Formula II, A is a 6-membered optionally-substituted aryl or optionally-substituted heteroaryl. In some embodiments of Formula I or Formula II, each of a is 0. In some embodiments of Formula I or Formula II, R2 is hydroxyl or halide. For example, in some embodiments of Formula I or Formula II,
- can be selected from one of:
- wherein Ha is halide, such as F or Cl.
- In some embodiments, there is disclosed herein a compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of any one of Formulas III-IX
- With reference to Formula III, in some embodiments, each R1 is independently selected from hydrogen or optionally-substituted lower alkyl or is not present; R2 is selected from hydroxyl or halogen; R8 and R9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring; each R3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; R4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; each R5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; d is 0 to 2; and R6 is selected from methyl, trifluoromethyl, or phenyl; Z is selected from nitrogen or oxygen; if Z is nitrogen, R7 is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkyl, and if Z is oxygen, R7 is not present.
- With reference to Formula III, in some embodiments, each R1 is independently selected from hydrogen or optionally-substituted lower alkyl; R2 is selected from hydroxyl or halogen; R8 and R9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring; each R3 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 4; R4 is trifluoromethyl; each R5 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; d is 0, 1, or 2; R6 is selected from methyl, trifluoromethyl, or phenyl; Z is selected from nitrogen or oxygen; and if Z is nitrogen, R7 is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkyl, and if Z is oxygen, R7 is not present; and with the proviso that the compound does not comprise the structure set forth as any one of structures 12-13, 17-20, or 36-43.
- With reference to Formula IV, in some embodiments, R8 and R9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring; each R3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; R4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; each R5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; d is 0 to 2; and IV is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkyl.
- With reference to Formula V, in some embodiments, R8 and R9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring; each R3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; R4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; each R5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; and d is 0 to 2.
- With reference to Formulas VI and VII, in some embodiments, R8 and R9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring; each R3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; and R7 is selected from hydrogen, hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkyl.
- With reference to Formulas VIII and IX, in some embodiments, R8 and R9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocyclic ring; each R3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; and b is 0 to 6.
- In some embodiments of any one of Formulas I-V, R4 is trifluoromethyl and d is 0. In some embodiments of any one of Formulas I-V, R4 is trifluoromethyl and d is 1. In some embodiments of any one of Formulas I-V, R4 is methyl and d is 0. In some embodiments of any one of Formulas II-V, R4 is methyl and d is 1. In some embodiments of any one of Formulas II-IX, the compound does not comprise the structure set forth as any one of structures 12-13, 17-20, or 36-43.
- In some embodiments of any one of Formulas II-IX, R8 and R9 together with the linking nitrogen atom form optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted piperidine, optionally-substituted piperazine, optionally-substituted azepane. In some embodiments of any one of Formulas II-IX, R3 is hydrogen or methyl. In some embodiments of any one of Formulas II-IX,
- can be selected from one of:
- In some embodiments of any one of Formulas II-IX, R3 is hydrogen or methyl. For example, in some embodiments of any one of Formulas II-IX,
- can be selected from one of:
- In some embodiments of Formula I, Formula II, or Formula III, R6 is methyl. In some embodiments of Formula I, Formula II, or Formula III, Z is nitrogen.
- In some embodiments, of Formula I or Formula II, the compound can be selected from one of
compounds - In several embodiments, the disclosed compounds can selectively bind to the G4 in the c-MYC promoter, for example G4 DNA comprising the nucleic acid sequence set forth as TGAGGGTGGGTAGGGTGGGTAA, SEQ ID NO: 2. In certain embodiments, the compounds disclosed herein have an equilibrium dissociation constant (Kd) for G4 DNA having the sequence set forth as SEQ ID NO: 2 of no more than 5 μM, such as no more than 1 μM, no more than 0.5 μM, no more than 100 nM, no more than 10 nM, or no more than 1 nM or less.
- In several embodiments, a method is provided for reducing c-Myc expression in a cell. The method includes contacting the cell with an effective amount of a disclosed compound (such as any of the compounds disclosed in section II, or one of Compounds 36-43) or a pharmaceutically acceptable salt or ester thereof. The compound selectively binds to G4 quadruplex DNA in the promoter of the c-MYC gene, and stabilizes the G4 formation, thereby reducing expression of the c-MYC gene in the cell. The cell can be in vitro or in vivo. In several embodiments, the expression of the c-MYC gene in the cell is reduced at least 50% (such as at least 75%, at least 80%, at least 90%, at least 95%, or at least 98%) compared to the expression of the c-MYC gene in a corresponding control cell. In some embodiments, decreasing expression of c-Myc in the cell decreases growth and/or proliferation of the cell.
- In additional embodiments, a therapeutically effective amount of a disclosed compound (such as any of the compounds disclosed in section II, or one of Compounds 36-43) or a pharmaceutically acceptable salt or ester thereof can be administered to a subject to treat or inhibit a tumor and/or a cancer in a subject. The subject can be selected for treatment that has, is suspected of having or is at risk of developing a tumor, such as a lymphoma or multiple myeloma. Subjects that can benefit from the disclosed methods include human and veterinary subjects. In some embodiments, treating the tumor and/or cancer in the subject decreases growth and/or proliferation of the tumor.
- The tumor can be benign or malignant. The tumor can be any tumor of interest, including, but not limited to lymphoma or multiple myeloma. Additional examples are skin tumors, breast tumors, brain tumors, cervical carcinomas, testicular carcinomas, head and neck tumors, gastrointestinal tract tumors, genitourinary system tumors, gynaecological system tumors, breast, endocrine system tumors, skin tumors, a sarcoma of the soft tissue and bone, a mesothelioma, a melanoma, a neoplasm of the central nervous system, or a leukemia. In some embodiments, the tumor is a head and neck tumor, such as tumors of the nasal cavity, paranasal sinuses, nasopharynx, oral cavity, oropharynx, larynx, hypopharynx, salivary glands and paragangliomas. In other embodiments, the tumor is a lung tumor, such as a non-small cell lung cancer or a small cell lung cancer. In further embodiments, the tumor can be a tumor of the gastrointestinal tract, such as cancer of the oesophagus, stomach, pancreas, liver, biliary tree, small intestine, colon, rectum and anal region. In yet other embodiments, the tumor can be a tumor of the genitourinary system, such as cancer of the kidney, urethra, bladder, prostate, urethra, penis and testis. In some embodiments, the tumor is a gynecologic tumor, such as cancer of the cervix, vagina, vulva, uterine body, gestational trophoblastic diseases, ovarian, fallopian tube, peritoneal, or breast. In other embodiments, the tumor is an endocrine system tumor, such as a thyroid tumor, parathyroid tumor, adrenal cortex tumor, pancreatic endocrine tumor, carcinoid tumor and carcinoid syndrome. The tumor can be a sarcoma of the soft tissue and bone, a mesothelioma, a cancer of the skin, a melanoma, comprising cutaneous melanomas and intraocular melanomas, a neoplasm of the central nervous system, a cancer of the childhood, comprising retinoblastoma, Wilm's tumor, neurofibromatoses, neuroblastoma, Ewing's sarcoma family of tumors, rhabdomyosarcoma. The tumor can be a lymphoma, comprising non-Hodgkin's lymphomas, cutaneous T-cell lymphomas, primary central nervous system lymphoma, and
- Hodgkin's disease. The tumor can be a leukaemia, such as acute leukemias, chronic myelogenous and lymphocytic leukemias. The tumor can be plasma cell neoplasms, a cancer of unknown primary site, a peritoneal carcinomastosis, a Kaposi's sarcoma, AIDS-associated lymphomas, AIDS-associated primary central nervous system lymphoma, AIDS-associated Hodgkin's disease and AIDS-associated anogenital cancers, a metastatic cancer to the liver, metastatic cancer to the bone, malignant pleural and pericardial effusions and malignant ascites.
- Treatment of the tumor is generally initiated after the diagnosis of the tumor, or after the initiation of a precursor condition (such as dysplasia or development of a benign tumor). Treatment can be initiated at the early stages of cancer, for instance, can be initiated before a subject manifests symptoms of a condition, such as during a stage I diagnosis or at the time dysplasia is diagnosed. However, treatment can be initiated during any stage of the disease, such as but not limited to stage I, stage II, stage III and stage IV cancers. In some examples, treatment is administered to these subjects with a benign tumor that can convert into a malignant or even metastatic tumor.
- Treatment initiated after the development of a condition, such as malignant cancer, may result in decreasing the severity of the symptoms of one of the conditions, or completely removing the symptoms, or reducing metastasis, tumor volume or number of tumors. In some example, the tumor becomes undetectable following treatment. In one aspect of the disclosure, the formation of tumors, such as metastasis, is delayed, prevented or decreased. In another aspect, the size of the primary tumor is decreased. In a further aspect, a symptom of the tumor is decreased. In yet another aspect, tumor volume is decreased.
- Subjects can be screened prior to initiating the disclosed therapies, for example to determine whether the subject has a tumor. The presence of a tumor can be determined by methods known in the art, and typically include cytological and morphological evaluation. The tumor can be an established tumor. The cells can be in vivo or ex vivo, including cells obtained from a biopsy. The presence of a tumor indicates that the tumor can be treated using the methods provided herein. In some embodiments, a subject with a c-Myc-positive tumor is selected for treatment, for example, by detecting c-Myc expression and/or activity in a biological sample obtained from the subject. For example, upregulated expression of the c-MYC gene (for example, as detected by an increase in c-Myc mRNA, c-Myc protein, or the expression of genes up-regulated by c-Myc compared to a control) can be detected, and in some examples quantified. The c-MYC gene expression in the biological sample is compared to a control (such as a normal, non-tumor sample). An increase in the expression of the c-MYC gene (such as an increase in c-Myc mRNA, c-Myc protein, or the expression of genes up-regulated by c-Myc) in the biological sample relative to the control indicates the presence of a c-Myc-positive tumor, and can be used to select a subject for treatment with one or more of the compounds or compositions disclosed herein. For example, an increase in the test sample of at least 50%, at least 75%, at least 80%, at least 90%, at least 100%, at least 200% or even greater than 500%, relative to the control, indicates the subject (such as a human subject) is likely to respond favorably to treatment with one or more of the agents disclosed herein. Suitable methods for detecting and/or monitoring a c-Myc-positive tumor in a subject (such as a c-Myc-positive multiple myeloma) can be selected by a treating physician. In one embodiment, a sample is obtained from a subject, and the presence of a cell that expresses c-Myc is assessed in vitro.
- A therapeutically effective amount of a disclosed compound (such as any of the compounds disclosed in section II, or one of Compounds 36-43) or composition containing same can be administered to a subject to treat a tumor and/or cancer in the subject. The subject can be selected for treatment that has, is suspected of having or is at risk of developing a tumor or tumors, such as multiple myeloma or lymphoma. Subjects that can benefit from the disclosed methods include, for example, human and veterinary subjects.
- The administration of a compound (such as any of the compounds disclosed in section II, or one of Compounds 36-43) of the disclosure can be for either prophylactic or therapeutic purpose. When provided prophylactically, the compound is provided in advance of any symptom. The prophylactic administration of the compound serves to prevent or ameliorate any subsequent disease process. When provided therapeutically, the compound is provided at (or shortly after) the onset of a symptom of disease or infection.
- In some examples, a disclosed compound (such as any of the compounds disclosed in section II, or one of Compounds 36-43) or composition containing same can be administered to a subject to slow or inhibit the growth or metastasis of a tumor and/or cancer. In these applications, a therapeutically effective amount of a disclosed compound (such as any of the compounds disclosed in section II, or one of Compounds 36-43) or composition containing same can be administered to a subject in an amount and under conditions sufficient to bind to the G4 present in the c-MYC promoter and reduce c-Myc expression, thereby slowing or inhibiting the growth or the metastasis of a tumor, or to inhibit a sign or a symptom of a tumor. Examples of suitable subjects include those diagnosed with or suspecting of having cancer (for example, a subject having a tumor), for example a subject having a multiple myeloma.
- The therapeutically effective amount will depend upon the severity of the disease and the general state of the patient's health. A therapeutically effective amount is that which provides either subjective relief of a symptom(s) or an objectively identifiable improvement as noted by the clinician or other qualified observer. In one embodiment, a therapeutically effective amount is the amount necessary to inhibit tumor growth, or the amount that is effective at reducing a sign or a symptom of the tumor. The therapeutically effective amount of the agents administered can vary depending upon the desired effects and the subject to be treated. In some examples, therapeutic amounts are amounts which eliminate or reduce the patient's tumor burden, or which prevent or reduce the proliferation of metastatic cells.
- The actual dosage of the compound will vary according to factors such as the disease indication and particular status of the subject (for example, the subject's age, size, fitness, extent of symptoms, susceptibility factors, and the like), time and route of administration, other drugs or treatments being administered concurrently, as well as the specific pharmacology of the compound for eliciting the desired activity or biological response in the subject. Dosage regimens can be adjusted to provide an optimum prophylactic or therapeutic response. A therapeutically effective amount is also one in which any toxic or detrimental side effects of the compound and/or other biologically active agent is outweighed in clinical terms by therapeutically beneficial effects. A non-limiting range for a therapeutically effective amount of a compound and/or other biologically active agent within the methods and formulations of the disclosure is about 0.01 mg/kg body weight to about 20 mg/kg body weight, such as about 0.05 mg/kg to about 5 mg/kg body weight, or about 0.2 mg/kg to about 2 mg/kg body weight.
- Dosage can be varied by the attending clinician to maintain a desired concentration at a target site (for example, the lungs or systemic circulation). Higher or lower concentrations can be selected based on the mode of delivery, for example, trans-epidermal, rectal, oral, pulmonary, intraosseous, or intranasal delivery versus intravenous or subcutaneous or intramuscular delivery. Dosage can also be adjusted based on the release rate of the administered formulation, for example, of an intrapulmonary spray versus powder, sustained release oral versus injected particulate or transdermal delivery formulations, and so forth.
- Any method of administration can be used for the disclosed therapeutic agents, including local and systemic administration. For example topical, oral, intravascular such as intravenous, intramuscular, intraperitoneal, intranasal, intradermal, intrathecal and subcutaneous administration can be used. The particular mode of administration and the dosage regimen will be selected by the attending clinician, taking into account the particulars of the case (for example the subject, the disease, the disease state involved, and whether the treatment is prophylactic). In cases in which more than one agent or composition is being administered, one or more routes of administration may be used.
- For prophylactic and therapeutic purposes, the compound can be administered to the subject by the oral route or in a single bolus delivery, via continuous delivery (for example, continuous transdermal, mucosal or intravenous delivery) over an extended time period, or in a repeated administration protocol (for example, by an hourly, daily or weekly, repeated administration protocol). The therapeutically effective dosage of the compound can be provided as repeated doses within a prolonged prophylaxis or treatment regimen that will yield clinically significant results to alleviate one or more symptoms or detectable conditions associated with a targeted disease or condition as set forth herein. Determination of effective dosages in this context is typically based on animal model studies followed up by human clinical trials and is guided by administration protocols that significantly reduce the occurrence or severity of targeted disease symptoms or conditions in the subject. Suitable models in this regard include, for example, murine, rat, avian, dog, sheep, porcine, feline, non-human primate, and other accepted animal model subjects known in the art. Alternatively, effective dosages can be determined using in vitro models. Using such models, only ordinary calculations and adjustments are required to determine an appropriate concentration and dose to administer a therapeutically effective amount of the compound (for example, amounts that are effective to alleviate one or more symptoms of a targeted disease). In alternative embodiments, an effective amount or effective dose of the compound may simply inhibit or enhance one or more selected biological activities correlated with a disease or condition, as set forth herein, for either therapeutic or diagnostic purposes.
- In some embodiments, local administration of the disclosed compounds can be used, for instance by applying a disclosed compound to a region of tissue from which a tumor has been removed, or a region suspected of being prone to tumor development. In some embodiments, sustained intra-tumoral (or near-tumoral) release of the pharmaceutical preparation that includes a therapeutically effective amount of a disclosed compound may be beneficial.
- The disclosed therapeutic agents can be formulated in unit dosage form suitable for individual administration of precise dosages. In addition, the disclosed therapeutic agents may be administered in a single dose or in a multiple dose schedule. A multiple dose schedule is one in which a primary course of treatment may be with more than one separate dose, for instance 1-10 doses, followed by other doses given at subsequent time intervals as needed to maintain or reinforce the action of the compositions. Treatment can involve daily or multi-daily doses of compound(s) over a period of a few days to months, or even years. Thus, the dosage regime will also, at least in part, be determined based on the particular needs of the subject to be treated and will be dependent upon the judgment of the administering practitioner.
- In particular examples, the subject is administered a therapeutic composition that includes one or more of the disclosed compounds on a multiple daily dosing schedule, such as at least two consecutive days, 10 consecutive days, and so forth, for example for a period of weeks, months, or years. In one example, the subject is administered the conjugates, antibodies, compositions or additional agents for a period of at least 30 days, such as at least 2 months, at least 4 months, at least 6 months, at least 12 months, at least 24 months, or at least 36 months.
- In some embodiments, the disclosed methods include providing surgery, radiation therapy, and/or chemotherapeutics to the subject in combination with administration of a disclosed compound or composition containing same. Methods and therapeutic dosages of such agents and treatments are known to those skilled in the art, and can be determined by a skilled clinician. Preparation and dosing schedules for the additional agent may be used according to manufacturer's instructions or as determined empirically by the skilled practitioner. Preparation and dosing schedules for such chemotherapy are also described in Chemotherapy Service, (1992) Ed., M. C. Perry, Williams & Wilkins, Baltimore, Md.
- Non-limiting examples of additional therapeutic agents that can be used with the combination therapy include microtubule binding agents, DNA intercalators or cross-linkers, DNA synthesis inhibitors, DNA and RNA transcription inhibitors, antibodies, enzymes, enzyme inhibitors, gene regulators, angiogenesis inhibitors, and proteosome inhibitors (such as bortezomib or carfilzomib). These agents (which are administered at a therapeutically effective amount) and treatments can be used alone or in combination. For example, any suitable anti-cancer or anti-angiogenic agent can be administered in combination with the antibodies, conjugates disclosed herein. Methods and therapeutic dosages of such agents are known to those skilled in the art, and can be determined by a skilled clinician.
- Additional chemotherapeutic agents include, but are not limited to alkylating agents, such as nitrogen mustards (for example, chlorambucil, chlormethine, cyclophosphamide, ifosfamide, and melphalan), nitrosoureas (for example, carmustine, fotemustine, lomustine, and streptozocin), platinum compounds (for example, carboplatin, cisplatin, oxaliplatin, and BBR3464), busulfan, dacarbazine, mechlorethamine, procarbazine, temozolomide, thiotepa, and uramustine; antimetabolites, such as folic acid (for example, methotrexate, pemetrexed, and raltitrexed), purine (for example, cladribine, clofarabine, fludarabine, mercaptopurine, and tioguanine), pyrimidine (for example, capecitabine), cytarabine, fluorouracil, and gemcitabine; plant alkaloids, such as odophyllum (for example, etoposide, and teniposide), taxane (for example, docetaxel and paclitaxel), vinca (for example, vinblastine, vincristine, vindesine, and vinorelbine); cytotoxic/antitumor antibiotics, such as anthracycline family members (for example, daunorubicin, doxorubicin, epirubicin, idarubicin, mitoxantrone, and valrubicin), bleomycin, rifampicin, hydroxyurea, and mitomycin; topoisomerase inhibitors, such as topotecan and irinotecan; monoclonal antibodies, such as alemtuzumab, bevacizumab, cetuximab, gemtuzumab, rituximab, panitumumab, pertuzumab, and trastuzumab; photosensitizers, such as aminolevulinic acid, methyl aminolevulinate, porfimer sodium, and verteporfin; and other agents, such as alitretinoin, altretamine, amsacrine, anagrelide, arsenic trioxide, asparaginase, axitinib, bexarotene, bevacizumab, bortezomib, celecoxib, denileukin diftitox, erlotinib, estramustine, gefitinib, hydroxycarbamide, imatinib, lapatinib, pazopanib, pentostatin, masoprocol, mitotane, pegaspargase, tamoxifen, sorafenib, sunitinib, vemurafinib, vandetanib, and tretinoin. Selection and therapeutic dosages of such agents are known to those skilled in the art, and can be determined by a skilled clinician.
- The combination therapy may provide synergy and prove synergistic, that is, the effect achieved when the active ingredients used together is greater than the sum of the effects that results from using the compounds separately. A synergistic effect may be attained when the active ingredients are: (1) co-formulated and administered or delivered simultaneously in a combined, unit dosage formulation; (2) delivered by alternation or in parallel as separate formulations; or (3) by some other regimen. When delivered in alternation, a synergistic effect may be attained when the compounds are administered or delivered sequentially, for example by different injections in separate syringes. In general, during alternation, an effective dosage of each active ingredient is administered sequentially, i.e. serially, whereas in combination therapy, effective dosages of two or more active ingredients are administered together.
- Another aspect of the disclosure includes pharmaceutical compositions prepared for administration to a subject and which include a therapeutically effective amount of one or more of the compounds disclosed herein. The therapeutically effective amount of a disclosed compound will depend on the route of administration, the species of subject and the physical characteristics of the subject being treated. Specific factors that can be taken into account include disease severity and stage, weight, diet and concurrent medications. The relationship of these factors to determining a therapeutically effective amount of the disclosed compounds is understood by those of skill in the art.
- Pharmaceutical compositions for administration to a subject can include at least one further pharmaceutically acceptable additive such as carriers, thickeners, diluents, buffers, preservatives, surface active agents and the like in addition to the molecule of choice. Pharmaceutical compositions can also include one or more additional active ingredients such as antimicrobial agents, anti-inflammatory agents, anesthetics, and the like. The pharmaceutically acceptable carriers useful for these formulations are conventional. Remington's Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, Pa., 19th Edition (1995), describes compositions and formulations suitable for pharmaceutical delivery of the compounds herein disclosed.
- In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually contain injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. For solid compositions (for example, powder, pill, tablet, or capsule forms), conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate. In addition to biologically-neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- Pharmaceutical compositions disclosed herein include those formed from pharmaceutically acceptable salts and/or solvates of the disclosed compounds. Pharmaceutically acceptable salts include those derived from pharmaceutically acceptable inorganic or organic bases and acids. Particular disclosed compounds possess at least one basic group that can form acid-base salts with acids. Examples of basic groups include, but are not limited to, amino and imino groups. Examples of inorganic acids that can form salts with such basic groups include, but are not limited to, mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid. Basic groups also can form salts with organic carboxylic acids, sulfonic acids, sulfo acids or phospho acids or N-substituted sulfamic acid, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, embonic acid, nicotinic acid or isonicotinic acid, and, in addition, with amino acids, for example with α-amino acids, and also with methanesulfonic acid, ethanesulfonic acid, 2-hydroxymethanesulfonic acid, ethane-1,2-disulfonic acid, benzenedisulfonic acid, 4-methylbenzenesulfonic acid, naphthalene-2-sulfonic acid, 2- or 3-phosphoglycerate, glucose-6-phosphate or N-cyclohexylsulfamic acid (with formation of the cyclamates) or with other acidic organic compounds, such as ascorbic acid. In particular, suitable salts include those derived from alkali metals such as potassium and sodium, alkaline earth metals such as calcium and magnesium, among numerous other acids well known in the pharmaceutical art.
- Certain compounds include at least one acidic group that can form an acid-base salt with an inorganic or organic base. Examples of salts formed from inorganic bases include salts of the presently disclosed compounds with alkali metals such as potassium and sodium, alkaline earth metals, including calcium and magnesium and the like. Similarly, salts of acidic compounds with an organic base, such as an amine (as used herein terms that refer to amines should be understood to include their conjugate acids unless the context clearly indicates that the free amine is intended) are contemplated, including salts formed with basic amino acids, aliphatic amines, heterocyclic amines, aromatic amines, pyridines, guanidines and amidines. Of the aliphatic amines, the acyclic aliphatic amines, and cyclic and acyclic di- and tri-alkyl amines are particularly suitable for use in the disclosed compounds. In addition, quaternary ammonium counterions also can be used.
- Particular examples of suitable amine bases (and their corresponding ammonium ions) for use in the present compounds include, without limitation, pyridine, N,N-dimethylaminopyridine, diazabicyclononane, diazabicycloundecene, N-methyl-N-ethylamine, diethylamine, triethylamine, diisopropylethylamine, mono-, bis- or tris- (2-hydroxyethyl)amine, 2-hydroxy-tert-butylamine, tris(hydroxymethyl)methylamine, N,N-dimethyl-N-(2-hydroxyethyl)amine, tri-(2-hydroxyethyl)amine and N-methyl-D-glucamine. For additional examples of “pharmacologically acceptable salts,” see Berge et al., J. Pharm. Sci. 66:1 (1977).
- Compounds disclosed herein can be crystallized and can be provided in a single crystalline form or as a combination of different crystal polymorphs. As such, the compounds can be provided in one or more physical form, such as different crystal forms, crystalline, liquid crystalline or non-crystalline (amorphous) forms. Such different physical forms of the compounds can be prepared using, for example different solvents or different mixtures of solvents for recrystallization. Alternatively or additionally, different polymorphs can be prepared, for example, by performing recrystallizations at different temperatures and/or by altering cooling rates during recrystallization. The presence of polymorphs can be determined by X-ray crystallography, or in some cases by another spectroscopic technique, such as solid phase NMR spectroscopy, IR spectroscopy, or by differential scanning calorimetry.
- The pharmaceutical compositions can be administered to subjects by a variety of mucosal administration modes, including by oral, rectal, intranasal, intrapulmonary, or transdermal delivery, or by topical delivery to other surfaces. Optionally, the compositions can be administered by non-mucosal routes, including by intramuscular, subcutaneous, intravenous, intra-arterial, intra-articular, intraperitoneal, intrathecal, intracerebroventricular, or parenteral routes. In other alternative embodiments, the compound can be administered ex vivo by direct exposure to cells, tissues or organs originating from a subject.
- To formulate the pharmaceutical compositions, the compound can be combined with various pharmaceutically acceptable additives, as well as a base or vehicle for dispersion of the compound. Desired additives include, but are not limited to, pH control agents, such as arginine, sodium hydroxide, glycine, hydrochloric acid, citric acid, and the like. In addition, local anesthetics (for example, benzyl alcohol), isotonizing agents (for example, sodium chloride, mannitol, sorbitol), adsorption inhibitors (for example,
Tween 80 or Miglyol 812), solubility enhancing agents (for example, cyclodextrins and derivatives thereof), stabilizers (for example, serum albumin), and reducing agents (for example, glutathione) can be included. Adjuvants, such as aluminum hydroxide (for example, Amphogel, Wyeth Laboratories, Madison, N.J.), Freund's adjuvant, MPL™ (3-O-deacylated monophosphoryl lipid A; Corixa, Hamilton, Ind.) and IL-12 (Genetics Institute, Cambridge, Mass.), among many other suitable adjuvants well known in the art, can be included in the compositions. When the composition is a liquid, the tonicity of the formulation, as measured with reference to the tonicity of 0.9% (w/v) physiological saline solution taken as unity, is typically adjusted to a value at which no substantial, irreversible tissue damage will be induced at the site of administration. Generally, the tonicity of the solution is adjusted to a value of about 0.3 to about 3.0, such as about 0.5 to about 2.0, or about 0.8 to about 1.7. - The compound can be dispersed in a base or vehicle, which can include a hydrophilic compound having a capacity to disperse the compound, and any desired additives. The base can be selected from a wide range of suitable compounds, including but not limited to, copolymers of polycarboxylic acids or salts thereof, carboxylic anhydrides (for example, maleic anhydride) with other monomers (for example, methyl (meth)acrylate, acrylic acid and the like), hydrophilic vinyl polymers, such as polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, cellulose derivatives, such as hydroxymethylcellulose, hydroxypropylcellulose and the like, and natural polymers, such as chitosan, collagen, sodium alginate, gelatin, hyaluronic acid, and nontoxic metal salts thereof. Often, a biodegradable polymer is selected as a base or vehicle, for example, polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyhydroxybutyric acid, poly(hydroxybutyric acid-glycolic acid) copolymer and mixtures thereof. Alternatively or additionally, synthetic fatty acid esters such as polyglycerin fatty acid esters, sucrose fatty acid esters and the like can be employed as vehicles. Hydrophilic polymers and other vehicles can be used alone or in combination, and enhanced structural integrity can be imparted to the vehicle by partial crystallization, ionic bonding, cross-linking and the like. The vehicle can be provided in a variety of forms, including fluid or viscous solutions, gels, pastes, powders, microspheres and films for direct application to a mucosal surface.
- The compound can be combined with the base or vehicle according to a variety of methods, and release of the compound can be by diffusion, disintegration of the vehicle, or associated formation of water channels. In some circumstances, the compound is dispersed in microcapsules (microspheres) or nanocapsules (nanospheres) prepared from a suitable polymer, for example, isobutyl 2-cyanoacrylate (see, for example, Michael et al., J. Pharmacy Pharmacol. 43:1-5, 1991), and dispersed in a biocompatible dispersing medium, which yields sustained delivery and biological activity over a protracted time.
- The compositions of the disclosure can alternatively contain as pharmaceutically acceptable vehicles substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, and triethanolamine oleate. For solid compositions, conventional nontoxic pharmaceutically acceptable vehicles can be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like.
- Pharmaceutical compositions for administering the compound can also be formulated as a solution, microemulsion, or other ordered structure suitable for high concentration of active ingredients. The vehicle can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like), and suitable mixtures thereof. Proper fluidity for solutions can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of a desired particle size in the case of dispersible formulations, and by the use of surfactants. In many cases, it will be desirable to include isotonic agents, for example, sugars, polyalcohols, such as mannitol and sorbitol, or sodium chloride in the composition. Prolonged absorption of the compound can be brought about by including in the composition an agent which delays absorption, for example, monostearate salts and gelatin.
- In certain embodiments, the compound can be administered in a time release formulation, for example in a composition which includes a slow release polymer. These compositions can be prepared with vehicles that will protect against rapid release, for example a controlled release vehicle such as a polymer, microencapsulated delivery system or bioadhesive gel. Prolonged delivery in various compositions of the disclosure can be brought about by including in the composition agents that delay absorption, for example, aluminum monostearate hydrogels and gelatin. When controlled release formulations are desired, controlled release binders suitable for use in accordance with the disclosure include any biocompatible controlled release material which is inert to the active agent and which is capable of incorporating the compound and/or other biologically active agent. Numerous such materials are known in the art. Useful controlled-release binders are materials that are metabolized slowly under physiological conditions following their delivery (for example, at a mucosal surface, or in the presence of bodily fluids). Appropriate binders include, but are not limited to, biocompatible polymers and copolymers well known in the art for use in sustained release formulations. Such biocompatible compounds are non-toxic and inert to surrounding tissues, and do not trigger significant adverse side effects, such as nasal irritation, immune response, inflammation, or the like. They are metabolized into metabolic products that are also biocompatible and easily eliminated from the body.
- Exemplary polymeric materials for use in the present disclosure include, but are not limited to, polymeric matrices derived from copolymeric and homopolymeric polyesters having hydrolyzable ester linkages. A number of these are known in the art to be biodegradable and to lead to degradation products having no or low toxicity. Exemplary polymers include polyglycolic acids and polylactic acids, poly(DL-lactic acid-co-glycolic acid), poly(D-lactic acid-co-glycolic acid), and poly(L-lactic acid-co-glycolic acid). Other useful biodegradable or bioerodable polymers include, but are not limited to, such polymers as poly(epsilon-caprolactone), poly(epsilon-aprolactone-CO-lactic acid), poly(epsilon.-aprolactone-CO-glycolic acid), poly(beta-hydroxy butyric acid), poly(alkyl-2-cyanoacrilate), hydrogels, such as poly(hydroxyethyl methacrylate), polyamides, poly(amino acids) (for example, L-leucine, glutamic acid, L-aspartic acid and the like), poly(ester urea), poly(2-hydroxyethyl DL-aspartamide), polyacetal polymers, polyorthoesters, polycarbonate, polymaleamides, polysaccharides, and copolymers thereof. Many methods for preparing such formulations are well known to those skilled in the art (see, for example, Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978). Other useful formulations include controlled-release microcapsules (U.S. Pat. Nos. 4,652,441 and 4,917,893), lactic acid-glycolic acid copolymers useful in making microcapsules and other formulations (U.S. Pat. Nos. 4,677,191 and 4,728,721) and sustained-release compositions for water-soluble peptides (U.S. Pat. No. 4,675,189).
- The pharmaceutical compositions of the disclosure typically are sterile and stable under conditions of manufacture, storage and use. Sterile solutions can be prepared by incorporating the compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated herein, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the compound and/or other biologically active agent into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated herein. In the case of sterile powders, methods of preparation include vacuum drying and freeze-drying which yields a powder of the compound plus any additional desired ingredient from a previously sterile-filtered solution thereof. The prevention of the action of microorganisms can be accomplished by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- The instant disclosure also includes kits, packages and multi-container units containing the herein described pharmaceutical compositions, active ingredients, and/or means for administering the same for use in the prevention and treatment of diseases and other conditions in mammalian subjects. Kits for diagnostic use are also provided. In one embodiment, these kits include a container or formulation that contains one or more of the compounds described herein. In one example, this component is formulated in a pharmaceutical preparation for delivery to a subject. The compound is optionally contained in a bulk dispensing container or unit or multi-unit dosage form. Optional dispensing means can be provided, for example a pulmonary or intranasal spray applicator. Packaging materials optionally include a label or instruction indicating for what treatment purposes and/or in what manner the pharmaceutical agent packaged therewith can be used.
- Clause 1. A method of decreasing c-Myc expression in a cell, comprising contacting the cell with an effective amount of a compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of:
- wherein A, B, and C are each independently selected from a 4 to 7 membered cycloaliphatic, optionally-substituted heterocycloaliphatic, optionally-substituted aryl, or optionally-substituted heteroaryl; each R1 is independently selected from optionally-substituted lower alkyl; a is 0 to 2; R2 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy; X is optionally-substituted methyl, ethyl or propyl; each R3 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; each Y is independently selected from optionally-substituted lower alkyl, optionally-substituted amide, optionally-substituted sulfonamide, or optionally-substituted phosphoramide; c is 0 to 3; R4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; each R5 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; d is 0 to 5; R6 is selected from halogen, hydroxyl, lower haloalkyl, or optionally-substituted lower alkyl; Z is selected from carbon, oxygen, nitrogen, or sulfur; and wherein if Z is carbon or nitrogen, R7 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy.
-
Clause 2. The method ofclause 1, wherein A is a 6-membered optionally-substituted aryl or optionally-substituted heteroaryl. -
Clause 3. The method ofclause 1 orclause 2, wherein X is methyl. -
Clause 4. The method of any one of the prior clauses, wherein B is optionally-substituted N-heterocyclic or N-heterocyclic. -
Clause 5. The method of any one of the prior clauses, wherein B is selected from optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted pyrrole, optionally-substituted diazole, optionally-substituted triazole, optionally-substituted piperidine, optionally-substituted pyridine, optionally-substituted diazine, optionally substituted triazine, optionally-substituted piperazine, optionally-substituted azepane, or optionally-substituted azepine. -
Clause 6. The method of any one of the prior clauses, wherein Y is amide. -
Clause 7. The method of any one of the prior clauses, wherein C is 6-membered optionally-substituted aryl or optionally substituted heteroaryl. - Clause 8. The method of clause 1, wherein the compound has a structure of:
- wherein A and C are each independently selected from a 5 or 6 membered optionally-substituted aryl, or optionally-substituted heteroaryl; each R1 is independently selected from optionally-substituted lower alkyl; a is 0 to 2; R2 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy; R8 and R9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocycloaliphatic ring; each R3 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; R4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; each R5 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; d is 0 to 5; R6 is selected from halogen, hydroxyl, lower haloalkyl, or optionally-substituted lower alkyl; Z is selected from nitrogen or oxygen; and wherein if Z is carbon or nitrogen, R7 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy, or is not present.
-
Clause 9. The method ofclause 8, wherein R8 and R9 together with the linking nitrogen atom form optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted piperidine, optionally-substituted piperazine, optionally-substituted azepane. -
Clause 10. The method of any one of the prior clauses, wherein a is 0. - Clause 11. The method of any one of the prior clauses, wherein R2 is hydroxyl.
-
Clause 12. The method of any one of the prior clauses, wherein R3 methyl and b is 1. - Clause 13. The method of any one of the prior clauses, wherein R4 is lower haloalkyl.
-
Clause 14. The method of clause 13, wherein R4 is trifluoromethyl. -
Clause 15. The method of any one of the prior clauses, wherein d is 0. - Clause 16. The method of any one of the prior clauses, wherein R6 is methyl.
- Clause 17. The method of any one of the prior clauses, wherein Z is nitrogen.
- Clause 18. The method of
clause 1, wherein the compound is one ofcompounds -
Clause 19. The method of any one of the prior clauses, wherein the cell is in vitro. -
Clause 20. The method of any one of clauses 1-18, wherein the cell is in vivo. -
Clause 21. The method of any one of the prior clauses, wherein contacting the cell with the effective amount of the compound or the pharmaceutically acceptable salt or ester thereof decreases c-Myc expression in the cell by at least 50% compared to a control. - Clause 22. The method of any one of the prior clauses, wherein decreasing expression of c-Myc in the cell decreases growth and/or proliferation of the cell.
-
Clause 23. The method of any one of the prior clauses, wherein the cell is a cell with overexpression of the c-MYC gene. -
Clause 24. The method of any one of the prior clauses, wherein the compound selectively binds to a G4 quadruplex nucleic acid molecule comprising the sequence set forth as SEQ ID NO: 2 with a Kd of no more than 5 μM. -
Clause 25. The method of any one of clauses 1-18 or 20-22, wherein the cell is a tumor cell in the subject, the method further comprising treating or preventing a tumor in the subject, comprising the step of: - administering to a subject in need thereof a therapeutically effective amount of the compound, or the pharmaceutically acceptable salt or ester thereof, to decrease c-Myc expression in the tumor cell, thereby treating or preventing the tumor in the subject.
- Clause 26. The method of
clause 23, wherein the tumor is a lymphoma or multiple myeloma. - Clause 27. The method of
clauses 25 or clause 26, wherein treating the tumor comprises decreasing tumor volume; decreasing the number or size of metastases; or lessening a symptom of the tumor. - Clause 28. The method of any of clauses 25-27, further comprising administering a therapeutically effective amount of an additional anti-cancer agent to the subject, particularly wherein the additional anti-cancer agent is a proteasome inhibitor, for example bortezomib or carfilzomib.
- Clause 29. A compound, or a pharmaceutically acceptable salt or ester thereof, having a structure of:
- wherein A, B, and C are each independently selected from a 4 to 7 membered cycloaliphatic, optionally-substituted heterocycloaliphatic, optionally-substituted aryl, or optionally-substituted heteroaryl; each R1 is independently selected from optionally-substituted lower alkyl; a is 0 to 2; R2 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy; X is optionally-substituted methyl, ethyl or propyl; each R3 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; each Y is independently selected from optionally-substituted lower alkyl, optionally-substituted amide, optionally-substituted sulfonamide, or optionally-substituted phosphoramide; c is 0 to 3; R4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; each R5 is independently selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; d is 0 to 5; R6 is selected from halogen, hydroxyl, lower haloalkyl, or optionally-substituted lower alkyl; Z is selected from carbon, oxygen, nitrogen, or sulfur; and wherein if Z is carbon or nitrogen, R7 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkoxy or is not present; and with the proviso selected from one or more of: Z is not oxygen; Y is not amide; X is not CH2; c is not 1; R2 is not hydroxyl; R6 is not methyl; B is not a 5-, 6-, or 7-membered N-heterocycloalkyl ring; and the compound does not comprise the structure set forth as any one of structures 1-13, or 17-20.
-
Clause 30. The compound of clause 29, wherein A is a 6-membered optionally-substituted aryl or optionally-substituted heteroaryl. - Clause 31. The compound of clause 29 or
clause 30, wherein X is methyl. - Clause 32. The compound of any one of clauses 29-31, wherein B is optionally-substituted N-heterocyclic or N-heterocyclic.
- Clause 33. The compound of any one of clauses 29-32, wherein B is selected from optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted pyrrole, optionally-substituted diazole, optionally-substituted triazole, optionally-substituted piperidine, optionally-substituted pyridine, optionally-substituted diazine, optionally substituted triazine, optionally-substituted piperazine, optionally-substituted azepane, or optionally-substituted azepine.
- Clause 34. The compound of any one of clauses 29-33, wherein Y is amide.
- Clause 35. The compound of any one of clauses 29-34, wherein C is 6-membered optionally-substituted aryl or optionally substituted heteroaryl.
- 36. The compound of clause 28, wherein the compound has a structure of:
- wherein A and C are each independently selected from a 5 or 6 membered optionally-substituted aryl, or optionally-substituted heteroaryl; each R1 is independently selected from hydrogen or optionally-substituted lower alkyl; a is 0 to 2; R2 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy; R8 and R9 together with the linking nitrogen atom form a 4 to 7 membered optionally-substituted N-heterocycloaliphatic ring; each R3 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; b is 0 to 6; R4 is selected from halogen, lower haloalkyl, or optionally-substituted lower alkyl; each R5 is independently selected from hydrogen, halogen, lower haloalkyl, or optionally-substituted lower alkyl; d is 0 to 5; R6 is selected from hydrogen, halogen, hydroxyl, lower haloalkyl, or optionally-substituted lower alkyl; Z is selected from nitrogen or oxygen; and wherein if Z is carbon or nitrogen, R7 is selected from hydroxyl, halogen, lower haloalkyl, or optionally-substituted lower alkoxy, or is not present.
- Clause 37. The compound of clause 36, wherein R8 and R9 together with the linking nitrogen atom form optionally-substituted pyrrolidine, optionally-substituted imidizolidine, optionally-substituted pryazolidine, optionally-substituted piperidine, optionally-substituted piperazine, optionally-substituted azepane.
-
Clause 38. The compound of any one of clauses 29-37, wherein each of R1 is hydrogen. -
Clause 39. The compound of any one of clauses 29-38, wherein R2 is hydroxyl. -
Clause 40. The compound of any one of clauses 29-39, wherein R3 is hydrogen or methyl. - Clause 41. The compound of any one of clauses 29-40, wherein R4 is lower haloalkyl.
- Clause 42. The compound of clause 41, wherein R4 is trifluoromethyl.
- Clause 43. The compound of any one of clauses 29-41, wherein each of R5 is hydrogen.
- Clause 44. The compound of any one of clauses 29-43, wherein R6 is methyl.
- Clause 45. The compound of any one of clauses 29-44, wherein Z is nitrogen.
- Clause 46. The compound of clause 29, wherein the compound is one of compounds 21-25.
- Clause 47. A pharmaceutical composition comprising a compound of any one of clauses 29-46, and at least one pharmaceutically acceptable additive.
-
Clause 48. The pharmaceutical composition of clause 47, comprising a unit dosage form of a therapeutic amount of the compound. - Clause 49. The pharmaceutical composition of clause 47 or
clause 48, further comprising an additional anticancer agent, particularly wherein the anticancer agent is a proteasome inhibitor, for example bortezomib or carfilzomib. - The following examples are provided to illustrate particular features of certain embodiments, but the scope of the claims should not be limited to those features exemplified.
- The transcription factor c-Myc plays a pivotal role in cancer initiation and progression, however small molecules that selectively suppress its function or expression are limiting. One potential route to pharmacological inhibition of c-Myc is preventing its expression through small molecule mediated stabilization of the G-quadruplex (G4) present in its promoter. Here, a small molecule that binds to quadruplex DNA, and inhibits c-Myc expression in cell models is reported. A small molecule microarray screen was used to identify compounds that both directly and selectively bind to the c-MYC G4. Surface plasmon resonance (SPR) and thermal melt assays confirmed that one molecule identified in this screen binds reversibly to the G4 with single digit micromolar affinity. Furthermore, evaluation of this compound in biochemical and cell-based assays demonstrates that the compound effectively silences c-Myc transcription and translation via a quadruplex-dependent mechanism of action. Consistent with other studies of c-Myc inhibition, the compound induces G1 arrest and is selectively toxic to c-Myc-driven cancer cell lines that contain a quadruplex in the promoter, with minimal effects on peripheral blood mononucleocytes or a cell line lacking the G4. Gene expression analysis demonstrates that c-Myc and a number of c-Myc target genes are downregulated upon treatment with this compound, while several other known quadruplex-driven genes are not affected. This work confirms that selective stabilization of the c-MYC G4 is a viable strategy for attenuating c-Myc expression and function.
- The oncogenic transcription factor c-Myc has a pleiotropic role in a wide range of cell processes (Bretones, et al., Biochimica et biophysica acta 2014) and is deregulated in some 70% of human cancers (Beroukhim, et al., Nature 2010, 463, 899). However, targeting the c-Myc protein directly has proven to be difficult due to a lack of well-defined pockets amenable to small molecule binding (Berg, et al., Proc Natl Acad Sci USA 2002, 99, 3830; Yin, et al., Oncogene 2003, 22, 6151; Huang, et al., Experimental hematology 2006, 34, 1480; Wang, et al.,
Mol Cancer Ther 2007, 6, 2399) and alternative mechanisms to inhibit c-Myc function are desirable (Dang, et al., Seminars in cancer biology 2006, 16, 253; Balasubramanian, et al., NatRev Drug Discov 2011, 10, 261). One such alternative mechanism is through stabilization of the G-quadruplex (G4) present in the c-MYC promoter region (Balasubramanian, et al., NatRev Drug Discov 2011, 10, 261). G4s are guanine-rich noncanonical Hoogsteen-bonded nucleotide structures found in many RNA and DNA sequences (FIG. 1A ) (Huppert and Balasubramanian, Nucleic Acids Res 2007, 35, 406; Gray, et al.,Nat Chem Biol 2014, 10, 313). For example, expression of the proto-oncogene c-MYC is regulated by a 27 base pair (Pu27) sequence found in the nuclease hypersensitive element III (1) region (NHEIII1) of the c-MYC gene known to form a G4 (Gonzalez and Hurley, Annual review of pharmacology andtoxicology 2010, 50, 111). Formation of the quadruplex in this sequence is believed to result in a “kink” in the DNA that prevents the polymerase from continuing along its reading frame, ultimately resulting in downregulation of the associated gene (FIG. 1B ) (Weitzmann, et al., J Biol Chem 1996, 271, 20958). The use of small molecules to stabilize the G4 conformation and consequently decrease c-Myc expression is an attractive therapeutic goal in cancers where c-Myc is overexpressed (Siddiqui-Jain, et al., Proc Natl Acad Sci USA 2002, 99, 11593). - There are a number of reported ligands that effectively stabilize quadruplex DNA according to structural and biophysical measurements (Dash, et al., Chemistry 2011, 17, 4571), however few are validated in cellular models (Castillo-Gonzalez, et at,
Curr Pharm Des 2013, 19, 2164; Wei, et al., International journal of biological macromolecules 2013, 57, 1). Additionally, though some quadruplex ligands silence c-MYC expression in cells, they may not be selective (Nasiri, et al., Chem Commun (Camb) 2014, 50, 1704) and activity cannot always be attributed to a c-MYC quadruplex-dependent mechanism of action (Boddupally, et al., J Med Chem 2012, 55, 6076). The only G4-stabilizing drug that has advanced to clinical trials is Quarfloxin (CX-3552, Cylene Pharmaceuticals, Tetragene). Quarfloxin effects apoptosis and cell death in cancer cells, and its mechanism of action is believed to involve the inhibition of ribosomal RNA biogenesis via disruption of the interaction between nucleolin and G4s in ribosomal DNA (Drygin, et al.,Cancer Res 2009, 69, 7653). Furthermore, many other reported G4 ligands are duplex DNA intercalators, exhibit promiscuous reactivity, or bind to quadruplexes with greater than a 1:1 binding stoichiometry (Balasubramanian, et al., NatRev Drug Discov 2011, 10, 261; Drygin, et al.,Cancer Res 2009, 69, 7653; Dai, et al., J Am Chem Soc 2011, 133, 17673). As an example, TMPyP4, a commonly used reagent in quadruplex binding studies, is a cationic porphyrin that binds to quadruplex DNA in multiple fashions (Freyer, et al., Biophys J 2007, 92, 2007), and also has significant off-target activity (Sibata, et al., Expert opinion onpharmacotherapy 2001, 2, 917; Grand, C. L.; et al.,Mol Cancer Ther 2002, 1, 565; Mikami-Terao, et al., Cancer Lett 2008, 261, 226). A second prominent example is pyridostatin, a compound designed to bind all G4s in the cell (Koirala, et al.,Nat Chem 2011, 3, 782; Muller, et al.,Org Biomol Chem 2012, 10, 6537. Thus, new classes of potent, selective quadruplex ligands that are active in tissue culture models would be of substantial utility as reagents to study c-Myc biology as well as potential therapeutics. - The identification and characterization of a new class of small molecule c-MYC G4 ligands using small molecule microarrays (SMMs) is provided in this example. A SMM screen of 20,000 compounds using a fluorescently tagged G4 DNA oligonucleotide derived from the NHEIII1 region in the c-MYC promoter was performed (Gonzalez and Hurley, Annual review of pharmacology and
toxicology 2010, 50, 111). One of the small molecules identified in this screen inhibits c-MYC transcription in vitro in a G4-dependent fashion. Direct and reversible binding to c-MYC G4-DNA was validated through SPR and thermal melt assays. Furthermore, decreased c-Myc transcription correlated with decreased viability across a panel of multiple myeloma cell lines. Additionally, the compound has minimal effects on cell viability in a Burkitt's Lymphoma cell line harboring a c-MYC translocation that deletes the G4, and has only modest toxicity in normal peripheral blood mononucleocytes. Finally, gene expression analysis demonstrates that the compound reduces the expression of c-MYC and c-Myc target genes, and does not alter the expression of several other genes known to be controlled by G4s, thus indicating considerable selectivity. - In order to identify compounds that selectively bind to c-MYC quadruplex DNA, a small molecule microarray (SMM) screening approach was used (
FIGS. 1, 2 ) (Bradner, et al.,Nat Protoc 2006, 1, 2344; Duffner, et al., Curr Opin Chem Biol 2007, 11, 74; Kawasumi, et al., J Invest Dermatol 2005, 124, A39; Koehler, et al., J Am Chem Soc 2003, 125, 8420; Miao, et al.,J Comb Chem Nat Chem Biol 2009, 5, 154; Vegas, et al., Angew Chem Int Edit 2007, 46, 7960). Briefly, a library of 20,000 compounds was covalently immobilized on glass slides using isocyanate surface chemistry, as previously described (Sztuba-Solinska, et al., J Am Chem Soc 2014, 136, 8402). Next, a Cy5-labeled c-MYC G4 oligonucleotide derived from the NHEIII1 region of the promoter (Gonzalez and Hurley, Annual review of pharmacology andtoxicology 2010, 50, 111) was annealed and incubated with the printed library to identify discrete binding interactions (FIG. 2A ). In parallel, several other Cy5-labeled oligonucleotide structures (including RNA hairpins (Sztuba-Solinska, et al., J Am Chem Soc 2014, 136, 8402), the FOXO binding domain (Carter and Brunet, Curr Biol 2007, 17, R113), and CAG repeat DNA (Michlewski and Krzyzosiak, J Mol Biol 2004, 340, 665)) were screened in an analogous manner, which served as controls. For each compound in the library, a composite Z-score was calculated, and the c-MYC G4-incubated data set was compared to a buffer-incubated control data set. Compounds were considered hits if their composite Z-score was greater than three (representing three standard deviations from the mean of the screening library), and if no fluorescence was observed in the buffer-incubated sample. Next, these hit compounds were eliminated if they were also found to bind to other non-homologous oligonucleotides investigated by the same technique. - Using these criteria, 32 unique hits were identified as binding selectively to the c-MYC quadruplex structure, for a final hit rate of 0.16%. A panel of the twelve most promising hits was selected for further analysis on the basis of Z-score, qualitative inspection of microarray results, and compound availability (
FIG. 8 ). Each of these compounds was evaluated for its capacity to functionally inhibit c-MYC oncogene transcription and translation, and to reduce cancer cell viability in multiple myeloma cell lines. On the basis of these preliminary studies,Compound 1, a benzofuran structurally unlike any reported quadruplex-binding small molecules, was identified as a promising candidate and it was selected for further in-depth characterization (FIG. 2B ). - To assess the ability of
Compound 1 to bind to the c-MYC G4 in solution, a CD-based thermal melt experiment was employed. After annealing, the molecular ellipticity of the c-MYC G4 was measured by circular dichroism, where a maximum was observed at 262 nm and a minimum was observed at 244 nm, thus confirming proper folding of the oligonucleotide into a parallel-stranded quadruplex (Mathad, et al.,Nucleic Acids Res 2011, 39, 9023) (seeFIG. 9 ). Next, molecular ellipticity was monitored at 262 nm as a function of temperature in order to measure the melting temperature (Tm). Finally, a sample containing equimolar concentrations ofCompound 1 and the c-MYC G4 oligonucleotide was evaluated in the same experiment. Molecules that productively bind to the G4-DNA stabilize the structure and therefore increase its Tm (Murat, et al., Chemical Society reviews 2011, 40, 5293). In the presence ofCompound 1, the Tm of the G4-DNA increased by 2.1 (±0.5) ° C. (FIG. 2B ). This result confirms that the compound binds to and stabilizes quadruplex DNA. - In order to quantitatively assess the binding affinity of
Compound 1 with the c-MYC G4, surface plasmon resonance (SPR) experiments (De Crescenzo, et al.,Cell Mol Bioeng 2008, 1, 204) were performed using a biotinylated c-MYC G4 oligonucleotide. The oligonucleotide was immobilized to a streptavidin-coated chip, and binding was measured as a function of concentration. (FIG. 2 ). This experiment demonstrates thatCompound 1 binds to the c-MYC G4 DNA with an equilibrium dissociation constant (Kd) of 4.5±1.4 μM (FIG. 2C ). Furthermore,Compound 1 interacts with quadruplex DNA through a reversible binding interaction, and rapid, complete dissociation can be observed in the sensogram (FIG. 2C ). Significantly, the data fit well to a 1:1 binding isotherm and the saturation binding measurement of ˜20 response units suggests that the binding stoichiometry is likely 1:1. When the same experiment was performed with Quarfloxin, no evidence of binding was observed, pointing to a unique mechanism for transcriptional inhibition of c-Myc withCompound 1. - Next, a modified version of the PCR-stop assay was used to investigate the ability of
Compound 1 to inhibit c-MYC DNA amplification in a G4-dependent fashion (Lemarteleur, et al., Biochem Biophys Res Commun 2004, 323, 802; Ou, et al.,J Med Chem 2007, 50, 1465). A linear c-MYC Pu27 (mutant) sequence can be PCR-amplified using normal thermal cycling conditions. However, a G4-containing Pu27 (wild type) sequence blocks polymerase activity and inhibits formation of the PCR product. In the presence of a quadruplex-stabilizing ligand, PCR amplification is inhibited further. Indeed,Compound 1 demonstrated dose-dependent inhibition of PCR amplification for the wild type Pu27 sequence at concentrations comparable to the Kd measured by SPR. In contrast,Compound 1 had no effect at concentrations up to 100 μM on the amplification of a mutant sequence incapable of G4 formation (FIG. 3A ). These data point to a G4-dependent mechanism of inhibition by the lead compound in vitro. - To confirm a G4 specific mechanism of action in cells, the CA46 Burkitt's Lymphoma line was used in an exon-specific assay, as previously reported (Boddupally, et al., J Med Chem 2012, 55, 6076). For most cell lines, 85-90% of c-Myc expression is controlled by the G4 located prior to
exons exon 2, due to a thousand-fold increase in transcription from this allele (Brown, et al., J Biol Chem 2011, 286, 41018). The CA46 Burkitt's Lymphoma cell line is an exception to this trend due to the existence of a chromosome (8:14) (Pelicci, et al., Proc Natl Acad Sci USA 1986, 83, 2984) translocation betweenexons exon 1 under G4 control. As a result, c-Myc expression fromexon 2 is G4 independent (FIG. 3B ). This renders the overall cell line resistant to G4-mediated c-Myc inhibition at the RNA and protein level, and proliferation should be uninhibited by G4-stabilizing agents. Thus, in the presence of a G4 stabilizing agent, c-Myc transcription fromexon 1 should be downregulated, while transcription fromexon 2 should be largely unaffected. Using FAM-tagged exon specific TaqMan gene expression assays with qPCR for c-MYC, it was demonstrated thatCompound 1 results in sustained downregulation of transcription fromexon 1, which contains a quadruplex, while transcription fromexon 2, which does not contain a quadruplex, is unaffected at treatment times up to 48 hours (FIG. 3C ). This effect is further evidenced by the observation that whileCompound 1 silences c-MYC in several other multiple myeloma cell lines, the CA46 Burkitt's Lymphoma cell line is resistant to inhibition of c-Myc protein translation by Compound 1 (FIG. 3C , vide infra). - Since two thirds of multiple myeloma cases involve deregulated c-MYC expression (Kuehl and Bergsagel,
Blood 2012, 120, 2351; Shou, et al., Proc Natl Acad Sci USA 2000, 97, 228), we elected to evaluate the cell viability effects ofCompound 1 in a multiple myeloma model.Compound 1 inhibited myeloma cell viability in a dose- and time-dependent manner, with an IC50 of 7.6±1.1 μM after 72 hours (FIG. 4A ). Furthermore,Compound 1 induced a seven-fold decrease in c-Myc transcription after 24 hours (FIG. 4B ). Additionally, c-Myc protein translation was also significantly inhibited by exposure to 10 μM ofCompound 1. This suppression was maintained over 72 hours, which is notable given the characteristic rapid replenishment of the protein—a phenomenon that complicates targeting c-Myc at the protein level (FIG. 4C ). This effect was maintained across a genetically diverse set of 4 multiple myeloma lines. We observed decreases in c-MYC translation in all lines tested, and this effect also correlated with decreases in viability (FIG. 4D ). The CA46 Burkitt's Lymphoma line (lacking a G4) was included in this panel as a resistant control, as it showed negligible changes in c-MYC expression or cell viability when treated withCompound 1. Notably,Compound 1 did not alter viability in peripheral blood mononucleocytes drawn from a healthy volunteer, even atdoses 25% higher than those used for the cell treatments discussed above (FIG. 4E ). - To further explore the mechanism of action for the anticancer activity of
Compound 1, cell cycle analysis was performed and monitored for potential induction of apoptotic death.Compound 1 was observed to causes ˜85% of treated cells to arrest in the G1 phase after 72 hours, as measured by propidium iodide staining (FIG. 5A ). Additionally, minimal increases in apoptosis were observed, by Annexin V/7-AAD staining and FACS analysis; only 13% of the cells were undergoing apoptosis (FIG. 5B ). These results may be indicative of the low nonspecific cytotoxicity and high target specificity ofCompound 1, which is important in achieving a useful therapeutic window. Additionally,Compound 1 triggered a senescent state in a majority of treated myeloma cells after 72 hours, supporting cell cycle arrest as a primary mechanism of action (FIG. 5C ). Taken together, these results support thatCompound 1 is acting through suppression of c-MYC expression, rather than a non-specific mechanism of action. - Having demonstrated that
Compound 1 suppresses c-MYC expression, subsequent experiments focused on gaining insight into the specificity ofCompound 1 by probing effects on gene expression in a broader sense. Gene expression analysis was performed on a panel of 770 cancer-associated genes in a multiplexed (nanostring) transcriptional assay. In addition to c-MYC itself, several c-Myc target genes were included in the panel, as were a number of other quadruplex-driven genes. Cells were treated with 10μM Compound 1 for 2h, 4h, 12h, 24h, and 48h, and separately with doses of 1, 2.5, 5, and 10 μM at a time point of 24h, and the effects on gene expression were evaluated. c-MYC was one of the most suppressed genes, and a number of known c-Myc target genes were also suppressed, including E2F1, MCM2, MCM4, MCM5, and CDCl25A. Additionally, a third data set was collected comparingCompound 1 treatment to JQ-1 (a BET-bromodomain inhibitor) and quarfloxin (another quadruplex-binding small molecule). All three inhibitors exhibited substantial differences in gene expression profiles, highlighting a unique mechanism of action ofCompound 1. - The effects of
Compound 1 on a number of known quadruplex-driven genes in the panel were examined further (FIG. 6 ). Expression levels of MYC, RB1, VEGFA, KRAS, and HIF1α, all of which are reported to be under the control of promoter G4s, and are expressed in L363 cells, were included in the panel of genes evaluated by Nanostring as discussed above. The change in expression for each of these genes (nanostring) over time is presented inFIG. 6A . While MYC expression was substantially reduced at all time points, expression of other G4-associated genes was minimally affected. To further confirm these results, we also performed qPCR experiments on these genes following treatment with Compound 1 (FIG. 6B ). Again, MYC expression is greatly reduced while other genes are minimally affected. These changes in gene expression are in line with biophysical measurements of compound affinity. Corresponding data showing similar results is presented forCompounds FIGS. 14A and 14B . While the quadruplex with the highest affinity for Compound 1 (MYC) had pronounced changes in gene expression, G4s with weaker binding (RB1, BCL2) or a complete lack of G4 binding (KRAS, VEGF) had minimal changes in expression, even after 48 h of treatment. These observations further highlight the ability ofCompound 1 andCompound 23 to specifically target the expression of c-Myc and related pathways. - Having established the reversible binding of
Compound 1 to quadruplex DNA and selective quadruplex-dependent silencing of c-Myc, one consideration that remained was the presence of a benzylaminophenol functional group inCompound 1. It has previously been reported that compounds containing this functional group can have the propensity to eject amines, form an o-quinone methide, and alkylate proteins (Weinert, et al., J Am Chem Soc 2006, 128, 11940; Herzig, et al., J Org Chem 2006, 71, 4130; McLean, et al., BioorgMed Chem Lett 2009, 19, 6717). To assess whetherCompound 1 was undergoing this reactivity, a small series of analogs was prepared. InFIG. 6C , compounds lacking the phenol or amino group were prepared and evaluated. As can be observed, a compound incapable of forming a quinone methide retains activity in silencing c-MYC expression, while a compound lacking the amino substitution is not active, demonstrating the importance of the amino group for activity. Additionally, the stability ofCompound 1 was evaluated (seeFIG. 7 ). Here,Compound 1 persisted in culture media over a period of 72 h as monitored by LC/MS, confirming that the compound is largely stable in complex, biologically relevant mixtures over the timeframe of viability assays used in this study. Additionally, the putative hydrolysis products arising from quinone methide formation were not observed at any time by LC/MS. Taken together, these data point toward a reversible binding interaction not dependent on the formation of a quinone methide. - The overexpression of c-MYC is implicated in a vast number of human cancers, however only a small number of inhibitors have been described in the literature, and as of now none are clinically approved. Pharmacological inhibition of c-Myc has historically been a challenge, and small molecules that are efficacious in cells are relatively rare. G4-DNA stabilization and subsequent transcriptional silencing by a small molecule is an attractive strategy for c-MYC inhibition because it circumvents targeting c-Myc at the protein level. Nevertheless, many of the compounds currently known to bind to the c-MYC G4 generally have poor drug-like properties, nonspecific quadruplex binding, or exhibit quadruplex-independent effects in more complex cell culture models.
- To address challenges in the identification of c-MYC G4-binding compounds, a small molecule microarray-based screening approach was employed. By evaluating multiple oligonucleotide structures simultaneously as part of the initial screen, selectivity considerations were incorporated early in the discovery process. Through evaluation of the most promising hits in preliminary assays,
Compound 1 was pursued for further investigation. The benzofuran structure ofCompound 1 is a novel quadruplex-binding small molecule scaffold. Molecules containing benzylaminophenol groups have previously been reported to form quinone methide structures in aqueous solution. However, in this case a stability study demonstrated that the compound persists for three days in culture media. Furthermore, reversible binding was demonstrated by SPR experiments, where a Kd of 4.5±1.4 μM was measured, with an apparent 1:1 binding stoichiometry. By evaluating a small panel of analogs ofCompound 1, further information about the pharmacophore was gained. A compound lacking the amine was completely inactive, while an analog lacking the phenol group (incapable of forming a quinone methide) retained activity. Thus, the amine functionality is likely required for binding to the quadruplex, while the formation of a quinone methide structure is unlikely to be involved in the mechanism. In contrast to quinone methide-forming alkylators, which are typically non-specifically toxic,Compound 1 displays no toxicity to the CA46 resistant cell line or peripheral blood mononucleocytes at relevant concentrations, further suggesting on-target activity as the origin of the observed effects in cells. - In culture models,
Compound 1 inhibits c-MYC expression at both the transcriptional and translational levels. Moreover, it decreased the viability of several myeloma cell lines in a dose dependent fashion. Cell cycle analysis demonstrates thatCompound 1 also triggers G1 arrest and senescence in myeloma cells, which is consistent with literature findings regarding effects of c-MYC knockdown on cell cycle progression (Wang, et al., Oncogene 2008, 27, 1905). In sum, these results validate thatCompound 1 effectively suppresses c-MYC expression through a G4-dependent inhibitory mechanism in vitro and in cancer cells. - Through gene expression profiling, further evidence for the suppression of c-Myc and related proteins was observed. In a panel of 770 cancer-related genes, the expression of c-MYC itself and a number of c-Myc target genes were suppressed in a dose- and time-dependent manner. In comparison to quarfloxin and JQ1,
Compound 1 appears to have a unique mechanism of action and modulates a distinct subset of genes. Importantly, in depth analysis of the data set indicated that several other known quadruplex-driven genes were not affected byCompound 1. Thus,Compound 1 has specific effects for the c-MYC quadruplex over several other quadruplex sequences within the genome. Furthermore, transcriptional profiling provides evidence for the selective modulation of the c-MYC pathway in a broader sense. - General Materials and Methods. Reactions were conducted using anhydrous solvents (passed through activated alumina columns). All commercially obtained reagents were used as received. Flash column chromatography was performed using normal phase silica gel (60 Å, 230-400 mesh, RediSep® Normal-phase Silica Flash Columns) on a CombiFlash® Rf 200i (Teledyne Isco Inc). Preparative HPLC was performed with a Waters® 2545 Binary Gradient Module equipped with a Waters® 2767 Sample Manager fraction collector and a
Luna 10 μm C18 110 Å (75×30 mm) column obtained from Phenomenex, Inc. High-resolution LC/MS analyses were conducted on a Thermo-Fisher LTQ-Orbitrap-XL hybrid mass spectrometer system with an Ion MAX API electrospray ion source in positive ion mode. Analytical LC/MS was performed using a Shimadzu LCMS-2020 Single Quadrupole utilizing a Kinetex 2.6μm C18 100 Å (2.1×50 mm) column obtained from Phenomenex Inc. Runs employed a gradient of 0→90% MeOH/0.1% aqueous formic acid over 4.5 min at a flow rate of 0.2 mL/min. 1H NMR and 13C NMR spectra were recorded on Varian and Bruker spectrometers (at 400 or 500 MHz or at 100 or 125 MHz) and are reported relative to deuterated solvent signals. Data for 13H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. Data for 13C NMR spectra are reported in terms of chemical shift. Surface plasmon resonance analysis was performed at the ATRF (NCI-Frederick) using a Biacore T200 (GE Healthcare). - Small Molecule Microarray Screening. Small molecule microarray screening was carried out as previously described (Duffner, et al., Curr Opin Chem Biol 2007, 11, 74; Sztuba-Solinska, et al., J Am Chem Soc 2014, 136, 8402; Bradner, et al.,
Nat Protoc 2006, 1, 2344). Briefly, γ-aminopropyl silane (GAPS) microscope slides were functionalized with a short Fmoc-protected amino polyethylene glycol spacer. After deprotection using piperidine, 1,6-diisocyanatohexane was coupled to the surface by urea bond formation to provide functionalized isocyanate-coated microarray slides that can react with primary alcohols and amines to form immobilized chemical screening libraries. 20,000 unique small molecule stock solutions (10 mM in DMSO) purchased from ChemBridge and ChemDiv screening libraries, in addition to dyes and controls, were printed in duplicate onto four slides of 5,000 compounds each, and exposed to pyridine vapor to facilitate covalent attachment to the slide surface. After drying, slides were incubated with a polyethylene glycol solution to quench unreacted isocyanate surface. Printed slides were incubated for 1 h at room temperature with a Cy5-tagged DNA oligonucleotide of the c-MYC G-quadruplex forming sequence (5′d(Cy5)-TGAGGGTGGGTAGGGTGGGTAA-3′, SEQ ID NO: 2), which had been annealed by heating to 95° C. for three minutes, cooled to room temperature, and diluted to 500 nM in PBS. Following incubation, slides were gently washed three times for 5 min in PBST, twice in PBS, and once in deionized water to remove unbound oligonucleotide, and dried by centrifugation for 2 min at 3400 g. Fluorescence intensity was measured (650 nm excitation, 670 nm emission) on a GenePix 4000a Microarray Scanner. Hits were identified on the basis of signal-to-noise ratio (SNR), defined as (mean foreground−mean background)/(standard deviation of background), and Z-score, with the following criteria: (1) Raw SNR>0, (2) SNR>3 SD above negative control readings, (3) coefficient of variance (CV) of replicate spots<100, (4) SNR of negative control slide<1, and (5) no activity with any other nucleic acid structures screened. The other nucleic acids were the FOXO3 DNA transcription factor binding domain, CAG DNA repeat, HIV TAR RNA, and miR-21 RNA, all of which were Cy5-labeled, and the screens were run in the same method described above using the respective Cy5-nucleic acid instead of the c-MYC DNA. - PCR Stop Assay. A test oligonucleotide and a complementary sequence that partially hybridizes to its last G-repeat (sequences below) were synthesized by IDT. The reactions were performed in a master mix containing 1× PCR buffer, 10 μmol of each oligo, 0.16 mM dNTP, 1.5 mM MgCl2, 2.5 U HotStarTaq polymerase (Qiagen), and a dose titration of a ligand of interest, spanning three orders of magnitude, in 25 μL total volume. The thermal cycling conditions were as follows: 94° C. for 5 min, followed by 22 cycles of 94° C. for 30 s, 58° C. for 30 s, 72° C. for 30 s, and finally held at 4° C. following completion. The amplified products were mixed with 6×DNA Loading Dye (Thermo Scientific) and resolved on a 15% TBE-Urea Gel (Invitrogen) on the Novex mini gel system at 150 V for 1 h. The gel products were stained in a 0.01% (v/v). Ethidium Bromide-TBE solution for 15 min and imaged under UV light on the GBOX F3 (Syngene).
- Oligos Used:
- Forward 5′-AGG GTG GGG AGG GTG GGG-3′, nucleotides 3-19 of SEQ ID NO: 2 (Partial sequence in the promoter of oncogene c-MYC that may form G-quadruplex.)
Forward Mutant 5′-AGG GTG AAA AGG GTG GGG-3′, SEQ ID NO: 3 - Reverse 5′-ATC GAT CGC TTC TCG TCC TTC CCC A-3′, SEQ ID NO: 4 (Complementary sequence used for both forward and reverse.)
- Exon Specific Assay. CA46 cells were treated with ligands of interest or DMSO control at designated time points, washed in PBS, flash frozen, and RNA isolated using the Qiagen RNeasy Kit. RNA was quantified by NanoDrop, and 0.5 μg was reverse transcribed for use in qPCR. Reverse transcription was performed using the Applied Biosystems Kit B808-0234, cycled at 25° C. for 10 min, 48° C. for 60 min, 95° C. for 5 min, and held at 4° C. following completion in 25 μL total volumes. The cDNA was diluted four fold and used in qPCR with the Taqman Gene Expression Assays (Life Technologies, exon 1: 01562521_m1, exon 2: 00153408_m1), cycled at 50° C. for 2 min, 95° C. for 10 min, and followed by 40 cycles of 95° C. for 15 s and 60° C. for 1 min on the Applied Biosystems 7500 Fast Real-Time PCR System. For
exon 1 andexon 2, ΔCt was normalized to a VIC-Primer Limited tagged GAPDH Taqman Gene Expression Assay (multiplexed in the same well) and DMSO treated control samples. - CD-Thermal Melt Assay. Thermal stability of the c-MYC G4-forming oligonucleotide Pu22 (TGAGGGTGGGTAGGGTGGGTAA, SEQ ID NO: 2) in the absence and presence of compounds was recorded on an Aviv Biomedical Inc. Model 420 Circular Dichroism Spectrometer. The c-MYC G-quadruplex was diluted to 50 μM in 10 mM Tris buffer (pH 7.5, containing 100 mM KCl), heated to 95° C. for 5 min, and allowed to cool to room temperature. Positive molecular ellipticity of the parallel G-quadruplex peak (262 nm) was confirmed by spectral examination. To 150 μL of the G-quadruplex in buffer was added one equiv. of compound (150 μL of a 50 μM solution in buffer containing 0.5% DMSO), after which the mixtures were heated from 5 to 95° C. at 2° C./min in a 0.1 mm quartz cell. Molecular ellipticity as a function of temperature was used to calculate a T., (the temperature at which 50% of the formed higher order DNA structure was melted) for each condition using
GraphPad Prism 6 software and a nonlinear regression model with a variable slope. ΔTm values were calculated as Tm(+compound)−Tm(control). - Surface Plasmon Resonance (SPR). SPR experiments were performed with a Biacore T200 (GE Healthcare). 20 μg/mL biotin-labeled Pu22 G-quadruplex in 10 mM Tris buffer (pH 7.5, containing 100 mM KCl, 3 mM EDTA) was heated to 95° C. for 5 min, and allowed to cool to room temperature. The c-MYC DNA was then captured (FC2: 1245 Ru) on a Series S Sensor CM5 Chip (GE Healthcare) with amine-coupled Neutravidin (FC1: 4466 Ru, FC2: 5458 Ru). Single Cycle Kinetics (SCK) experiments were carried out with five injections of increasing concentration of analyte solution, which was prepared by a three-fold serial dilution of compound with buffer (10 mM Tris pH 7.5, 100 mM KCl, 3 mM EDTA) containing 3% DMSO. Binding analysis was conducted at a flow rate of 30 μL/min at 25° C. In each run, the association phase and the subsequent dissociation phase were monitored for 1 min and 10 min, respectively. Prior to each compound injection, three buffer injections were made. From the obtained reference-subtracted sensorgrams, the dissociation constants (Kd) of the compounds were estimated by a global fitting to a simple 1:1 binding model in the Biacore evaluation software (GE Healthcare).
- Cell Culture Conditions and Experimental Endpoints. Human multiple myeloma and Burkitt's Lymphoma cell lines L363, CA46, MM-1R, KMS-11, and MM-1S were cultured and authenticated as previously described (Simmons, et al.,
Molecular oncology 2014, 8, 261). All plasma derived cell lines were cultured in RPMI-1640 (2 mM L-glutamine, 10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 μg/ml streptomycin: Gibco) and incubated at 37° C. with 5% CO2. Viability experiments were performed in quadruplicate on 96-well plates (Costar) at designated time and dose points. MTS reagent was then directly added, incubated at 37° C. for 90 min, and absorbance of MTS formazan was read at 500 nm on an Omega 640 spectrophotometer. Percentage cell viability was normalized to the absorbance of untreated (DMSO) wells. In the case of cells harvested for their protein or RNA, pellets were flash frozen and stored at −80° C. overnight prior to use. - Western Blots. Cell pellets/tissue were homogenized and lysed in RIPA buffer on ice for 1 h. Protein was quantitated by BCA, and equal protein was loaded onto 4-12% Bis-Tris Gels (Novex), electrophoresed at 150 V for 75 min to obtain sufficient separation, and transferred via the iBlot system (Life Technologies). Successful transfer and uniform loading was confirmed by Ponceau S staining (Thermo Scientific). Blots were blocked in 10% dry milk in TBST, incubated with primary monoclonal antibodies in 5% BSA at concentrations designated by the manufacturer, and gently rotated at 4° C. overnight. Blots were washed with TBST three times prior to incubation with polyclonal secondary antibodies for 1 h in 5% dry milk at room temperature. Blots were washed three more times with TBST and imaged with Supersignal West Dura Chemiluminescent Substrate (Thermo Scientific) on the GBOX F3 (Syngene). The c-Myc monoclonal antibody was purchased from abcam (ab84132) and used at a concentration of 1:1000. All other monoclonal antibodies were purchased from Cell Signaling Technologies and used at a concentration of 1:1000, with the exception of α-β tubulin, which was used at a concentration of 1:2000. All primary antibodies used in this study were of rabbit origin, and goat anti-rabbit IgG (H+L) horseradish peroxidase conjugate (Invitrogen G21234) was used as the polyclonal secondary antibody at a concentration of 1:4000.
- Cancer Genome-Wide Probing and Statistical Packaging. The phenotype for c-MYC genetic knockdown in multiple myeloma was achieved through lentiviral transduction of shRNA for c-MYC, derived from the spinoculation of 293T cells and plasmids grown in STBL3 E. coli, and isolated with the Qiagen Plasmid Midi Kit. Aliquots of the plasmids were generously provided by Art Shaffer. RNA of treated myeloma cells at designated time points was isolated with the Qiagen RNeasy kit, and used with the nCounter Human Cancer Reference Kit (NanoString Technologies), surveying changes in expression for 780 cancer-related human genes and 6 reference genes. Quantitative changes in expression were analyzed and grouped in the form of a heat map using the programming language, R. All other quantitative statistical packing was performed in GraphPad Prism.
- Stability Study. Compound 1 (10 μL of 1 mM DMSO solution) was added to 490 μL RPMI-1640 culture media. After 1 min, 25 h, 48 h, and 72 h, 100 μL of this solution was diluted into 100 μL acetonitrile. The mixture was centrifuged at 5500 rpm for 1 min and the supernatant was removed from the pellet. Another 800 μL MeCN was added to the supernatant and the mixture was centrifuged again at 5500 rpm for 1 min. The resulting supernatant was subjected to LC/MS (ESI+) on an Agilent Technologies 1200 LC/MSD single quadrupole system, equipped with an in-line diode-array UV detector. The mass corresponding to Compound 1 (M+H+=393) was extracted. This mass persisted as a significant peak through 72 h. Masses of the putative hydrolyzed compound (see structure below; M+H+=312) and o-quinone methide compound (see structure below; M+H+=294) were extracted, and were found to be insignificant at all time points (see the chromatograms below).
- Synthesis of analogs. A general procedure for synthesis of certain analogs of Compound 1 is shown below:
- Additional details are provided below.
- A solution of phenol (
Otava 7018860558, 12 mg, 0.028 mmol) in DCM (0.28 mL) was cooled to −78° C. Pyridine (4.5 μL, 0.056 mmol) was added and the solution was stirred for 10 min. At this point trifluoromethanesulfonic anhydride solution (1M in DCM, 34 μL, 0.034 mmol) was added slowly. The reaction was gradually warmed to rt overnight. After a total of 23 h, the solvent was removed in vacuo and the residue was purified by flash column chromatography (10-50% EtOAc/hexanes) to provide X (9.5 mg, 65%) as a white solid. Rf=0.71 (33% EtOAc/hexanes). 1H NMR ((CD3)2SO, 400 MHz) δ 10.35 (s, 1H), 7.70 (d, J=9.0 Hz, 1H), 7.67 (d, J=8.4 Hz, 2H), 7.32 (d, J=9.0 Hz, 1H), 7.16 (d, J=8.3 Hz, 2H), 3.83 (s, 2H), 2.59 (s, 3H), 2.38-2.31 (m, 4H), 2.29 (s, 3H), 1.41-1.34 (m, 4H), 1.34-1.25 (m, 4H). 13C NMR ((CD3)2SO, 125 MHz) δ 161.0, 157.5, 151.8, 144.0, 136.9, 132.3, 129.1, 127.3, 125.8, 119.1, 118.1 (q, JC-F=320 Hz), 117.1, 116.5, 111.5, 54.4, 51.7, 26.8, 26.2, 20.5, 13.5; HRMS (ESI) calculated for C25H28N2O6S (MH+) 541.1615, observed 541.1615. - To a solution of triflate X (3.1 mg, 0.0059 mmol) in DMF (60 μL, 0.098 M) was added formic acid (0.56 μL, 0.014 mmol), tributylamine (5 μL, 0.063 mmol), and Pd(PPh3)2Cl2 (0.5 mg, 0.0007 mmol) successively under Ar. The solution was heated to 110° C. for 1 h at which point it was cooled to room temperature. The mixture was filtered through cotton and the filtrate was purified by HPLC (10-95% MeCN/H2O containing 0.1% TFA in the running buffer) to provide X as a white solid (2.5 mg, 86%). 1H NMR ((CD3)2SO, 500 MHz) δ 10.64 (s, 1H), 9.48 (brs, 1H), 7.76 (t, J=4.5 Hz, 1H), 7.63 (d, J=7.9 Hz, 2H), 7.45 (d, J=4.6 Hz, 2H), 7.23 (d, J=7.9 Hz, 1H), 4.60 (d, J=5.3 Hz, 2H), 3.28-3.09 (m, 4H), 2.66 (s, 3H), 2.31 (s, 3H), 1.89-1.69 (m, 4H), 1.67-1.47 (m, 4H); 13C NMR ((CD3)2SO, 125 MHz) δ 165.1, 163.3, 157.5, 153.5, 135.8, 133.8, 129.3, 128.9, 128.2, 124.8, 120.4, 119.1, 117.4 (qC-F, J=301.8 Hz), 113.8, 112.8, 54.5, 53.7, 27.3, 26.1, 20.5, 14.0; HRMS (ESI) calculated for C24H29N2O2 (MH+) 377.2224, observed 377.2225.
- To a solution of 5-methoxy-2-methylbenzofuran-3-carboxylic acid (1.20 g, 5.80 mmol) in DMF (29 mL) was added HATU (5.50 g, 14.0 mmol), p-toluidine (2.50 g, 23.0 mmol), and DIPEA (1.5 mL. 8.7 mmol). The brown solution was heated to 80° C. under argon. After 22 h, the reaction was cooled to room temperature, after which it was diluted with EtOAc and washed with NaHCO3 (sat., aq). The aqueous layer was extracted 2× with EtOAc and the combined organic layers were washed successively with NH4Cl (sat., aq.), brine, and H2O (3×). It was then dried over Na2SO4, filtered and concentrated to give a brown oil. Flash column chromatography (5-30% EtOAc/hexanes) afforded a fraction of pure X in addition to a mixture of X and p-toluidine. The mixed fraction was repurified using the same conditions, and this process was repeated two additional times. In total 1.07 g (3.62 mmol, 62%) pure X was obtained as a tan solid. Rf=0.60 (25% EtOAc/hexanes). 1H NMR (CDCl3, 500 MHz) δ 7.63 (brs, 1H), 7.50 (d, J=8.4 Hz, 2H), 7.32 (d, J=8.9 Hz, 1H), 7.17 (d, J=8.2 Hz, 2H), 7.14 (d, J=2.5 Hz, 1H), 6.86 (dd, J=8.9, 2.5 Hz), 3.82 (s, 3H), 2.68 (s, 3H), 2.35 (s, 3H); 13C NMR (CDCl3, 125 MHz) δ 162.4, 160.6, 156.6, 148.6, 135.3, 134.3, 129.7, 126.3, 120.4, 112.7, 112.3, 111.8, 102.7, 56.0, 21.0, 14.2; HRMS (ESI) calculated for C18H18NO3 (MH+) 296.1281, observed 296.1285.
- A solution of X (703 mg, 2.38 mmol) in DCM (60 mL) was cooled to −78° C. Then BBr3 (1M in DCM, 11.9 mL) was added slowly. The solution was allowed to gradually warm to room temperature overnight. After a total of 22 h˜60 mL 1N HCl added and the resulting mixture was stirred vigorously for 45 min. At this point, the DCM was removed in vacuo and the aqueous mixture was extracted two times with EtOAc. The combined organic layers were washed with NaHCO3 (sat., aq) followed by brine. It was then dried over Na2SO4, filtered, and concentrated to give a yellow solid. Flash column chromatography (0-15% MeOH/DCM) afforded X (189 mg, 28%) as a tan solid. Rf=0.32 (5% MeOH/DCM); 1H NMR (CD3OD, 500 MHz) δ 7.53 (d, J=8.3 Hz, 2H), 7.27 (d, J=8.8 Hz, 1H), 7.17 (d, J=8.3 Hz, 2H), 7.10 (d, J=2.4 Hz, 1H), 6.76 (dd, J=8.8, 2.5 Hz, 1H), 2.62 (s, 3H), 2.33 (s, 3H); 13C NMR (CD3OD, 125 MHz) δ 165.1, 160.0, 155.0, 149.5, 137.1, 135.3, 130.3, 128.3, 122.0, 114.5, 113.9, 112.1, 106.1, 21.0, 13.9; HRMS (ESI) calculated for C17H16NO3 (MH+) 282.1125, observed 282.1124.
- Compound 1 (10 μL of 1 mM DMSO solution) was added to 490 μL RPMI-1640 culture media. After 1 min, 25 h, 48 h, and 72 h, 100 μL of this solution was diluted into 100 μL acetonitrile. The mixture was centrifuged at 5500 rpm for 1 min and the supernatant was removed from the pellet. Another 800 μL MeCN was added to the supernatant and the mixture was centrifuged again at 5500 rpm for 1 min. The resulting supernatant was subjected to LC/MS (ESI+) on an Agilent Technologies 1200 LC/MSD single quadrupole system, equipped with an in-line diode-array UV detector. The mass corresponding to Compound 1 (M+H+=393) was extracted and the chromatogram evaluated. This mass persisted as a significant peak through 72 h. Masses of the putative hydrolyzed compound (compound 26, see structure below; M+H+=312) and o-quinone methide compound (see structure below; M+H+=294) were extracted, and were found to be insignificant at all time points.
-
FIG. 11 shows exemplary substitutions to Compound 1 that can be made to generate analogs ofCompound 1 that selectively bind to G4 quadruplex DNA comprising the sequence set forth as SEQ ID NO: 2, and can be used to reduce c-MYC expression in cells.FIG. 10 illustrates an exemplary procedure for generating analogs ofCompound 1. The amine group ofCompound 1 can be varied in reductive aminations to provide additional analogs. Several exemplary analogs ofCompound 1 are listed in the following table, which also shows results of assays for inhibition of c-MYC expression in L363 cells (Peggy) and for viability of L363 cells as discussed in Example 1. The table also provides an indication of an exemplary commercial source for the compounds, or (if applicable) an indication that the compound is new. -
Peggy (% c-Myc expression Compound compared to No. Structure Name/Catalog No. untreated) IC 501 Commercial: ChemDiv No. D089-0563 50% (at 10 μM) 7.6 μM 2 Commercial: ChemDiv No. D089-0474 72% (at 10 μM) 95% viability (at 10 μM) 3 Commercial: Otava Chemical No. 7018860541 52% (at 10 μM) 6.3 μM 4 Commercial: ChemDiv No. D089-0559 73% (at 10 μM) 75% viability (at 10 μM) 5 Commercial: ChemBridge No. 9127171 89% (at 10 μM) 85% viability (at 10 μM) 6 Commercial: Otava Chemical No. 7018860559 45% (at 10 μM) 4.9 μM 7 Commercial: Otava Chemical No. 7011860542 81% (at 10 μM) 7.2 μM 8 Commercial: Otava Chemical No. 7011860556 76% (at 10 μM) — 9 Commercial: ChemBridge No. 9139363 96% (at 10 μM) 100% viability (at 10 μM) 10 Commercial: ChemBridge No. 6240697 37% (at 10 μM) 7.1 μM 11 Commercial: ChemBridge No. 6238398 69% (at 10 μM) 89% viability (at 10 μM) 12 Commercial: ChemDiv No. D089-0350 43% (at 10 μM) 3.4 μM 13 Commercial: Otava Chemical No. 7018860553 12% (at 10 μM) 3.3 μM 14 New: 196D-12 106% (at 10 μM) 84% viability (at 10 μM) 15 New: 196D-15 80% (at 10 μM) 53% viability (at 10 μM) 16 New: 196D-16 112% (at 10 μM) 70% viability (at 10 μM) 17 Commercial: Otava Chemical No. 7018860464 68% (at 10 μM) >12 μM 18 Commercial: Otava Chemical No. 7018860259 6.5% (at 10 μM) 5.2 μM 19 Commercial: Otava Chemical No. 7018860288 0.56% (at 10 μM) 3.8 μM 20 Commercial: Otava Chemical No. 7018860345 1.4% (at 10 μM) 3.8 μM 21 New: 196D-44 74% (at 10 μM) >12 μM 22 New: 196D-48b 27% (at 10 μM) 100% viability (at 10 μM) 23 New: DC-34 0.44% (at 10 μM) 3.6 μM 24 New: 196D-49a 63% (at 6 μM) 7.8 μM 25 New: 196D-49b 32% (at 10 μM) 1.6 μM 26 New: DC-065B — 11.40 μM 27 New: DC-066B — 25.84 μM 28 New: DC-067B — 6.84 μM 29 New: DC-068B — 4.45 μM 30 New: DC-069B — 38.17 μM 31 New: DC-197 — 100% viability (at 10 μM) 32 New: DC-111B — 100% viability (at 10 μM) 33 New: DC-86B — 100% viability (at 10 μM) 34 New: DC-102B — 9.83 μM 35 New: DC-103B — 100% viability (at 10 μM)
Additional analogs ofCompound 1 are listed below: -
Cell Line IC50 (μM) L363 3.64 KMM1 4.13 KMS27 5.06 KMS12PE 5.33 ARD 5.75 AMO1 5.92 JIM1 6.35 - This example illustrates that
Compounds μM Compound 1 or Compound 23 for 48 hours. At 48 hours, the assay was terminated by fixation with TCA and determination of relative cell counts by addition of Sulforhodamine B (SRB, see Alley et al., Cancer Research, 48: 589-601, 1988). Growth percent was determined by comparison of SRB reading of a duplicate plate of cells taken at the time of compound addition to the SRB reading at the termination of the treatment. The following table provides a summary of the percent of growth of each cell line in the panel compared to control (no treatment), as well as the mean delta and range of percent growth compared to control across the panel of cell lines for each treatment condition. -
Compound 1 Compound 23 Cell Line Growth Percent Growth Percent Leukemia CCRF-CEM 87.67 65.23 HL-60(TB) 92.74 83.01 K-562 75.93 29.63 MOLT-4 92.81 64.31 RPMI-8226 91.38 75.08 SR 83.12 −8.44 Non-Small Cell Lung Cancer A549/ATCC 85.87 61.22 EKVX 83.79 64.06 HOP-62 79.76 70.39 HOP-92 55.89 34.88 NCI-H226 85.66 72.45 NCI-H23 90.23 69.93 NCI-H322M 97.51 69.34 NCI-H460 80.25 51.53 NCI-H522 90.68 72.52 Colon Cancer COLO 205 104.20 48.73 HCC-2998 116.36 11.22 HCT-116 64.67 32.68 HCT-15 83.45 45.06 HT29 100.25 80.45 KM12 102.59 65.50 SW-620 85.97 67.44 CNS Cancer SF-268 100.73 75.44 SF-295 85.34 48.84 SF-539 93.10 61.23 SNB-19 84.35 69.94 SNB-75 78.34 50.57 U251 88.66 55.07 Melanoma LOX IMVI 88.87 39.15 MALME-3M 107.60 49.92 M14 85.90 58.14 MDA-MB-435 95.94 58.22 SK-MEL-2 99.26 78.38 SK-MEL-28 96.60 76.90 SK-MEL-5 86.08 69.97 UACC-257 112.11 82.00 UACC-62 102.82 67.27 Ovarian Cancer IGROV1 81.22 54.25 OVCAR-3 101.03 62.02 OVCAR-4 82.06 58.58 OVCAR-5 95.63 85.79 OVCAR-8 89.96 66.34 NCl/ADR-RES 89.34 53.65 SK-OV-3 100.26 76.35 Renal Cancer 786-0 84.68 49.50 A498 64.12 50.48 ACHN 93.94 68.48 CAKI-1 75.13 50.46 RXF 393 81.36 50.40 SN12C 84.31 66.72 TK-10 92.66 81.06 UO-31 62.74 40.69 Prostate Cancer PC-3 79.90 45.70 DU-145 103.26 64.80 Breast Cancer MCF7 78.41 48.09 MDA-MB-231/ATCC 79.39 48.96 HS 578T 88.40 65.50 BT-549 92.88 78.51 T-47D 92.74 73.98 MDA-MB-468 73.62 5.74 Mean 88.39 58.56 Delta 32.50 67.00 Range 60.47 94.23 - The effect of
Compound 23 on the expression of c-Myc protein in the human lung cancer cell lines H1299 and H157 was also assayed. H1299 and H157 cells were treated with 10μM Compound 23 and c-Myc protein expression levels quantified by Western blot. In Compound 23-treated H1299 cells, c-Myc protein expression levels were approximately 55% compared to untreated control cells. In Compound 23-treated H157 cells, c-Myc protein expression levels were approximately 74% compared to untreated control cells. - The blood plasma levels of
Compound 23 after a single IP or IV injection (19 mg/kg) in female nude mice were determined by mass spectrometry (seeFIG. 12 and the following table). -
Pharmacokinetic Parameters IV IP AUC0-24h 491.729 552.478 AUC0-inf 493.342 570.140 Tmax (h) 0.38 1.00 t1/2 (h) 2.25 6.50 Kel (1/h) 0.277 0.277 - The capacity of
Compound 23 to inhibit c-MYC expression in tumor was evaluated in nude mice bearing subcutaneous xenografts of the human multiple myeloma cell line L363. In this assay, tumors from two tumor-bearing mice were harvested 2 and 8 hours after a single dose ofCompound 23 at 19 mg/kg or 38 mg/kg (administered IP). By western blot, decreased c-MYC expression levels were observed in tumors at each time point compared to vehicle control tumors (FIG. 13 ). - It will be apparent that the precise details of the methods or compositions described may be varied or modified without departing from the spirit of the described embodiments. We claim all such modifications and variations that fall within the scope and spirit of the claims below.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/306,756 US20210261516A1 (en) | 2015-01-05 | 2021-05-03 | Myc g-quadruplex stabilizing small molecules and their use |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562099938P | 2015-01-05 | 2015-01-05 | |
PCT/US2016/012222 WO2016112036A1 (en) | 2015-01-05 | 2016-01-05 | Myc g-quadruplex stabilizing small molecules and their use |
US201715541676A | 2017-07-05 | 2017-07-05 | |
US16/218,341 US10604499B2 (en) | 2015-01-05 | 2018-12-12 | MYC G-quadruplex stabilizing small molecules and their use |
US16/835,102 US11014902B2 (en) | 2015-01-05 | 2020-03-30 | MYC G-quadruplex stabilizing small molecules and their use |
US17/306,756 US20210261516A1 (en) | 2015-01-05 | 2021-05-03 | Myc g-quadruplex stabilizing small molecules and their use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/835,102 Continuation US11014902B2 (en) | 2015-01-05 | 2020-03-30 | MYC G-quadruplex stabilizing small molecules and their use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210261516A1 true US20210261516A1 (en) | 2021-08-26 |
Family
ID=55521780
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/541,676 Active US10196372B2 (en) | 2015-01-05 | 2016-01-05 | MYC G-quadruplex stabilizing small molecules and their use |
US16/218,341 Active US10604499B2 (en) | 2015-01-05 | 2018-12-12 | MYC G-quadruplex stabilizing small molecules and their use |
US16/835,102 Active US11014902B2 (en) | 2015-01-05 | 2020-03-30 | MYC G-quadruplex stabilizing small molecules and their use |
US17/306,756 Abandoned US20210261516A1 (en) | 2015-01-05 | 2021-05-03 | Myc g-quadruplex stabilizing small molecules and their use |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/541,676 Active US10196372B2 (en) | 2015-01-05 | 2016-01-05 | MYC G-quadruplex stabilizing small molecules and their use |
US16/218,341 Active US10604499B2 (en) | 2015-01-05 | 2018-12-12 | MYC G-quadruplex stabilizing small molecules and their use |
US16/835,102 Active US11014902B2 (en) | 2015-01-05 | 2020-03-30 | MYC G-quadruplex stabilizing small molecules and their use |
Country Status (3)
Country | Link |
---|---|
US (4) | US10196372B2 (en) |
EP (2) | EP3242661B1 (en) |
WO (1) | WO2016112036A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109942523B (en) * | 2017-12-20 | 2023-06-09 | 华东师范大学 | Benzofuran and benzofuran coumarin derivatives, and preparation method and application thereof |
US20210382058A1 (en) * | 2020-06-01 | 2021-12-09 | Purdue Research Foundation | Patient selection for treatment of myc positive cancers with indenoisoquinolines |
CN115463131B (en) * | 2021-06-11 | 2024-07-23 | 中国科学院化学研究所 | Application of combination or complex of pyridine chalone or derivative and trans-platinum compound in preparation of medicines for treating cancers |
EP4362943A2 (en) * | 2021-07-01 | 2024-05-08 | Centre National de la Recherche Scientifique | New drug application |
CN113698375A (en) * | 2021-09-23 | 2021-11-26 | 八叶草健康产业研究院(厦门)有限公司 | Synthesis method of 4-cyclohexylimine methyl substituted benzofuran derivative |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4675189A (en) | 1980-11-18 | 1987-06-23 | Syntex (U.S.A.) Inc. | Microencapsulation of water soluble active polypeptides |
JPS60100516A (en) | 1983-11-04 | 1985-06-04 | Takeda Chem Ind Ltd | Preparation of sustained release microcapsule |
CA1236641A (en) | 1984-07-06 | 1988-05-10 | Motoaki Tanaka | Copolymer of lactic acid and glycolic acid and method for producing same |
JP2551756B2 (en) | 1985-05-07 | 1996-11-06 | 武田薬品工業株式会社 | Polyoxycarboxylic acid ester and method for producing the same |
US4874759A (en) | 1987-01-23 | 1989-10-17 | Yoshitomi Pharmaceutical Industries, Ltd. | 5-Hydroxyindole-3-carboxylic acid amide compounds, pharmaceutical compositions and use |
US5220059A (en) | 1990-04-19 | 1993-06-15 | Abbott Laboratories | Lipoxygenase-inhibiting compounds derived from non-steroidal antiinflammatory carboxylic acids |
US5773467A (en) | 1995-12-05 | 1998-06-30 | Chiroscience, Ltd. | Benzofuran sulphonanmides |
ES2193376T3 (en) | 1996-05-20 | 2003-11-01 | Darwin Discovery Ltd | CARBOXAMIDS OF BENZOFURAN AND ITS THERAPEUTIC USES. |
HUP0700124A2 (en) | 2001-10-25 | 2007-06-28 | Takeda Chemical Industries Ltd | Quinoline compound |
DE10217006A1 (en) | 2002-04-16 | 2003-11-06 | Merck Patent Gmbh | Substituted indoles |
US7001588B2 (en) | 2002-09-12 | 2006-02-21 | Cylene Pharmaceuticals | Expanded porphyrin compositions for tumor inhibition |
EP1654245A1 (en) | 2003-08-07 | 2006-05-10 | Bayer Pharmaceuticals Corporation | Benzofuran derivatives useful for treating hyper-proliferative disorders |
US20070254877A1 (en) | 2004-06-02 | 2007-11-01 | Takada Pharmaceutical Company Limited | Indole Derivative and Use for Treatment of Cancer |
US8138356B2 (en) | 2007-10-16 | 2012-03-20 | Angiogeney, Inc. | Chemical inhibitors of inhibitors of differentiation |
EP2427057B1 (en) | 2009-05-05 | 2015-08-12 | Sloan-Kettering Institute for Cancer Research | Benzofuran-4,5-diones as selective peptide deformylase inhibitors |
US20130338201A1 (en) | 2009-11-02 | 2013-12-19 | Ahr Pharmaceuticals, Inc. | Method of Cancer Treatment with 2-(1H-Indole-3-Carbonyl)-Thiazole-4-Carboxylic Acid Methyl Ester |
EP2388255A1 (en) | 2010-05-11 | 2011-11-23 | Ikerchem, S.L. | Polysubstituted benzofurans and medicinal applications thereof |
EP2836493B1 (en) | 2012-04-05 | 2018-06-20 | Nerviano Medical Sciences S.r.l. | Functionalized thieno-indole derivatives for the treatment of cancer |
-
2016
- 2016-01-05 EP EP16709158.6A patent/EP3242661B1/en active Active
- 2016-01-05 EP EP19185807.5A patent/EP3597186B1/en active Active
- 2016-01-05 WO PCT/US2016/012222 patent/WO2016112036A1/en active Application Filing
- 2016-01-05 US US15/541,676 patent/US10196372B2/en active Active
-
2018
- 2018-12-12 US US16/218,341 patent/US10604499B2/en active Active
-
2020
- 2020-03-30 US US16/835,102 patent/US11014902B2/en active Active
-
2021
- 2021-05-03 US US17/306,756 patent/US20210261516A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP3597186B1 (en) | 2021-12-08 |
US10604499B2 (en) | 2020-03-31 |
US20190100503A1 (en) | 2019-04-04 |
US20200308128A1 (en) | 2020-10-01 |
EP3242661B1 (en) | 2019-08-21 |
EP3597186A1 (en) | 2020-01-22 |
WO2016112036A1 (en) | 2016-07-14 |
US11014902B2 (en) | 2021-05-25 |
US20180030018A1 (en) | 2018-02-01 |
EP3242661A1 (en) | 2017-11-15 |
US10196372B2 (en) | 2019-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11014902B2 (en) | MYC G-quadruplex stabilizing small molecules and their use | |
US20210085700A1 (en) | Targeted therapeutics | |
JP6815318B2 (en) | How to Induce Targeted Proteolysis by Bifunctional Molecules | |
JP2021120420A (en) | Methods of treating cancer | |
CN106488910B (en) | Inhibitors of KRAS G12C | |
JP7121660B2 (en) | Use of EZH2 inhibitors to treat cancer | |
EP3046561A1 (en) | Compounds for treating prostate cancer | |
WO2018133795A1 (en) | Ezh2 inhibitor and use thereof | |
JP2015536308A5 (en) | ||
TW201625620A (en) | Heterocyclic hydroxamic acids as protein deacetylase inhibitors and dual protein deacetylase-protein kinase inhibitors and methods of use thereof | |
JP2023095928A (en) | Use of ezh2 inhibitors for treating cancer | |
RU2641693C2 (en) | 5-(pyridine-2-ylamino)-pyrasin-2-carbonitrile compounds and their therapeutic application | |
US20240132485A1 (en) | Heterocyclic cullin ring ubiquitin ligase compounds and uses thereof | |
WO2013116228A1 (en) | Compounds and methods for inhibition of ap endonuclease-1/ redox factor-1 (hape1) activity | |
CN111432820A (en) | Heterochromatin gene repression inhibitors | |
US20240287054A1 (en) | Compounds that bind non-canonical g-quadruplex structures and methods of making and using the same | |
US20230212202A1 (en) | Treatment of mgmt deficient cancer with 2-fluoroethyl-substituted nitrosoureas and other compounds | |
US20210300939A1 (en) | Single Molecule Compounds Providing Multi-Target Inhibition of BTK and Other Proteins and Methods of Use Thereof | |
TW202241517A (en) | Usp5 binding survival-targeting chimeric (surtac) molecules & uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHNEEKLOTH, JOHN, JR.;SIMMONS, JOHN;FELSENSTEIN, KENNETH;AND OTHERS;SIGNING DATES FROM 20160204 TO 20160216;REEL/FRAME:056120/0856 Owner name: YALE UNIVERSITY, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GAREISS, PETER;REEL/FRAME:056120/0850 Effective date: 20160301 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |