US20210245397A1 - Plasticating apparatus screw having grooves of varying angles and depths - Google Patents
Plasticating apparatus screw having grooves of varying angles and depths Download PDFInfo
- Publication number
- US20210245397A1 US20210245397A1 US17/242,952 US202117242952A US2021245397A1 US 20210245397 A1 US20210245397 A1 US 20210245397A1 US 202117242952 A US202117242952 A US 202117242952A US 2021245397 A1 US2021245397 A1 US 2021245397A1
- Authority
- US
- United States
- Prior art keywords
- cross
- screw
- grooves
- cut
- helix angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 claims abstract description 20
- 230000010006 flight Effects 0.000 claims abstract description 13
- 230000003247 decreasing effect Effects 0.000 claims description 11
- 239000012260 resinous material Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 230000004323 axial length Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000000289 melt material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/40—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
- B29B7/42—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
- B29B7/428—Parts or accessories, e.g. casings, feeding or discharging means
- B29B7/429—Screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
- B29B7/826—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/53—Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/535—Screws with thread pitch varying along the longitudinal axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/54—Screws with additional forward-feeding elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/56—Screws having grooves or cavities other than the thread or the channel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/59—Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/59—Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw
- B29C48/60—Thread tops
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/59—Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw
- B29C48/605—Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw the thread being discontinuous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/59—Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw
- B29C48/615—Threads having varying helix angles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/64—Screws with two or more threads
- B29C48/655—Screws with two or more threads having three or more threads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/397—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/64—Screws with two or more threads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/67—Screws having incorporated mixing devices not provided for in groups B29C48/52 - B29C48/66
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/78—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
- B29C48/80—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
- B29C48/83—Heating or cooling the cylinders
- B29C48/832—Heating
Definitions
- This invention relates to a plasticating apparatus screw rotatable within a barrel to extrude molten resinous material. More particularly, this invention relates to a longitudinal portion of the screw designed to recirculate material for thorough mixing and melting via grooves of various angles and having various depths and depth tapers.
- a plasticating apparatus typically receives polymer or thermoplastic resin pellets, granules or powders, from an inlet port, then heats and works the resin to convert it into a melted or molten state.
- the melt or molten material is delivered under pressure through a restricted outlet or discharge port to make the finished article. It is desirable that the molten material leaving the apparatus be completely melted and homogeneously mixed, resulting in uniform temperature, viscosity, color and composition.
- a typical plasticating apparatus includes an elongated cylindrical barrel, which is usually heated at various locations along its length.
- An axially supported and rotating screw extends longitudinally through the barrel.
- the screw is responsible for forwarding, melting, pressurizing and homogenizing the material as it passes from the inlet port to the outlet port.
- the screw has a core with a helical flight thereon and the flight cooperates with the cylindrical inner surface of the barrel to define a helical channel for forward passage of the resin to the outlet port.
- the typical plasticating screw has a plurality of sections along its longitudinal axis with each section being designed for a particular function. Ordinarily, there is a feed section, a transition section, a metering section and a mixing section in series.
- a plasticating screw 100 has a main channel defined by a helical flight 113 disposed within and cooperating with an inner-wall of a heated barrel (not shown).
- the prior art screw 100 has a longitudinal portion with a plurality of staggered rows of noncontinuous advancing grooves 130 arranged in the main channel thereof.
- the axis of each row of advancing grooves 130 is substantially parallel to the helical axis of the adjacent helical flight 113 of the longitudinal portion to promote flow in the direction indicated by the arrow 140 .
- a noncontinuous helical channel is formed therein traversing in a reverse direction, compared with the direction of the helical flight 113 , the channel having a plurality of retracting grooves 137 . While the objective of the retracting grooves 137 is to promote mixing of the polymer or thermoplastic resin pellets in the main channel, in some instances mixing is insufficient.
- the present invention resides in one aspect in a screw for a plasticating apparatus.
- the plasticating apparatus includes a barrel that has an axial length extending between an inlet port and an outlet port.
- the barrel has an inner wall.
- the screw has a longitudinal axis and is rotatably supported in the barrel for rotation about the longitudinal axis.
- the screw has a core and one or more helical flights extending along a length of the screw.
- the helical flight extends in a first threaded direction and defines a first helix angle relative to a reference line perpendicular to the longitudinal axis and defines a first helical path oriented at the first helix angle which is less than ninety degrees.
- the helical flight defines a helical channel.
- the screw may include a feed section cooperating with the inlet port, an intermediate melt section, and/or a metering section cooperating with said outlet port.
- a longitudinal portion of the screw e.g., in the feed section, the intermediate melt section, and/or the metering section
- Each of the advancing grooves has one or both ends closed.
- the advancing grooves are arranged in a noncontinuous helix cut in the screw core in the helical channel of the screw.
- the plurality of advancing grooves are dimensioned to receive material therein as the material is conveyed through the helical channel, to the outlet port.
- the longitudinal portion further has a plurality of noncontinuous cross-cut grooves traversing one or more of the advancing grooves.
- One or more of the cross-cut grooves has a second helix angle (measured relative to a reference line perpendicular to the longitudinal axis) greater than the first helix angle and less than ninety degrees; and/or one or more of another of the cross-cut grooves has a third helix angle (measured relative to a reference line perpendicular to the longitudinal axis) of about ninety degrees.
- each cross-cut groove passes through the helical flight not more than two times so that the material can back flow and recirculate within said longitudinal portion.
- one or more of the plurality of advancing grooves includes an advancing groove depth taper; and/or one or more of the plurality of cross-cut grooves having a cross-cut groove depth taper.
- the present invention also resides in another screw for a plasticating apparatus.
- the plasticating apparatus includes a barrel that has an axial length extending between an inlet port and an outlet port.
- the barrel has an inner wall.
- the screw has a longitudinal axis and is rotatably supported in the barrel for rotation about the longitudinal axis.
- the screw has a core and one or more helical flights extending along a length of the screw.
- the helical flight defines a first helix angle relative to a reference line perpendicular to the longitudinal axis and defines a first helical path oriented at the first helix angle which is less than ninety degrees.
- the helical flight defines a helical channel.
- the screw may include a feed section cooperating with the inlet port, an intermediate melt section, and/or a metering section cooperating with said outlet port.
- a longitudinal portion of the screw (e.g., in the feed section, the intermediate melt section, and/or the metering section) has a plurality of advancing grooves formed therein. Each of the advancing grooves has one or both ends closed. The advancing grooves are arranged in a noncontinuous helix cut in the screw core in the helical channel of the screw. The plurality of advancing grooves are dimensioned to receive material therein as the material is conveyed through the helical channel, to the outlet port.
- the longitudinal portion further has a plurality of noncontinuous cross-cut grooves traversing several advancing grooves. One or more of the plurality of advancing grooves has an advancing groove depth taper; and/or one or more of the plurality of cross-cut grooves has a cross-cut groove depth taper.
- the present invention also resides in yet another screw for a plasticating apparatus.
- the plasticating apparatus includes a barrel that has an axial length extending between an inlet port and an outlet port.
- the barrel has an inner wall.
- the screw has a longitudinal axis and is rotatably supported in the barrel for rotation about the longitudinal axis.
- the screw has a core and one or more helical flights extending along a length of the screw.
- the helical flight defines a first helix angle relative to a reference line perpendicular to the longitudinal axis and defines a first helical path oriented at the first helix angle which is less than ninety degrees.
- the helical flight defines a helical channel.
- the screw may include a feed section cooperating with the inlet port, an intermediate melt section, and/or a metering section cooperating with said outlet port.
- a longitudinal portion of the screw e.g., in the feed section, the intermediate melt section, and/or the metering section
- Each of the advancing grooves has one or both ends closed.
- the advancing grooves are arranged in a noncontinuous helix cut in the screw core in the helical channel of the screw.
- the plurality of advancing grooves are dimensioned to receive material therein as the material is conveyed through the helical channel, to the outlet port.
- the longitudinal portion further has a plurality of noncontinuous cross-cut grooves traversing one or more of the advancing grooves.
- the plurality of cross-cut grooves includes one or more first cross cut grooves having a second helix angle (measured relative to a reference line perpendicular to the longitudinal axis) and one or more second cross-cut grooves having a third helix angle (measured relative to a reference line perpendicular to the longitudinal axis).
- the first helix angle, the second helix angle and the third helix angle are different.
- the plasticating apparatus includes one or more third cross-cut grooves having a fourth helix angle that is different from the first helix angle, the second helix angle and the third helix angle.
- the present invention also resides in still another screw for a plasticating apparatus.
- the plasticating apparatus includes a barrel that has an axial length extending between an inlet port and an outlet port.
- the barrel has an inner wall.
- the screw has a longitudinal axis and is rotatably supported in the barrel for rotation about the longitudinal axis.
- the screw has a core and one or more helical flights extending along a length of the screw.
- the helical flight defines a helix angle relative to a reference line perpendicular to the longitudinal axis and defines a first helical path of a first helix angle less than ninety degrees.
- the helical flight defines a helical channel.
- the screw may include a feed section cooperating with the inlet port, an intermediate melt section, and/or a metering section cooperating with said outlet port.
- a longitudinal portion of the screw (e.g., in the feed section, the intermediate melt section, and/or the metering section) has a plurality of advancing grooves formed therein. Each of the advancing grooves has one or both ends closed. The advancing grooves are arranged in a noncontinuous helix cut in the screw core in the helical channel of the screw. The plurality of advancing grooves are dimensioned to receive material therein as the material is conveyed through the helical channel, to the outlet port.
- the longitudinal portion further has one or more undercut surfaces located radially inwardly from the flight surface. The undercut surface has a depth that varies in a longitudinal direction parallel to the advancing grooves; and/or in a direction traverse to the longitudinal direction.
- FIG. 1 is a schematic view of a portion of the surface of a prior art screw for a plasticating apparatus
- FIG. 2 is a schematic view of a screw for a plasticating apparatus of the present invention, shown in a cut away view of a barrel;
- FIG. 3 is a schematic view of a portion of the surface of a screw for a plasticating apparatus of the present invention illustrating neutrally oriented cross-cut grooves on the screw;
- FIG. 4A is a schematic view of a portion of the surface of a screw for a plasticating apparatus of the present invention illustrating cross-cut grooves on the screw oriented in a common direction to the flight of the screw and each cross-cut groove cutting through one flight;
- FIG. 4B is a schematic view of a portion of the surface of a screw for a plasticating apparatus of the present invention illustrating cross-cut grooves on the screw oriented in a common direction to the flight of the screw and each cross-cut groove cutting through two flights;
- FIG. 5 is a schematic view of a portion of the surface of a screw for a plasticating apparatus of the present invention illustrating a combination of neutrally oriented cross-cut grooves and cross-cut grooves oriented in a multiple directions;
- FIG. 6 is a schematic view of a portion of the surface of a screw for a plasticating apparatus of the present invention illustrating advancing grooves having varying depths and depth tapers;
- FIG. 7A is a cross sectional view of a portion of the surface of the screw of FIG. 6 taken across line 7 A- 7 A;
- FIG. 7B is a cross sectional view of another embodiment of a portion of the surface of the screw of FIG. 6 taken across line 7 B- 7 B;
- FIG. 7C is a cross sectional view of another embodiment of a portion of the surface of the screw of FIG. 6 taken across line 7 C- 7 C;
- FIG. 7D is a cross sectional view of another embodiment of a portion of the surface of the screw of FIG. 6 taken across line 7 D- 7 D;
- FIG. 7E is a cross sectional view of another embodiment of a portion of the surface of the screw of FIG. 6 taken across line 7 E- 7 E;
- FIG. 8A is a cross sectional view of one of the advancing grooves of FIG. 6 taken across line 8 A- 8 A showing a decreasing depth taper;
- FIG. 8B is a cross sectional view of one of the advancing grooves of FIG. 6 taken across line 8 B- 8 B showing constant depth taper;
- FIG. 8C is a cross sectional view of one of the advancing grooves of FIG. 6 taken across line 8 C- 8 C showing an increasing depth taper;
- FIG. 8D is a cross sectional view of one of the advancing grooves of FIG. 6 taken across line 8 D- 8 D showing varying depth taper;
- FIG. 8E is a cross sectional view of one of the advancing grooves of FIG. 6 taken across line 8 E- 8 E showing another varying depth taper;
- FIG. 8F is a cross sectional view of one of the advancing grooves of FIG. 6 taken across line 8 F- 8 F showing another varying depth taper;
- FIG. 9 is a schematic view of a portion of the surface of a screw for a plasticating apparatus of the present invention illustrating cross-cut grooves having varying depths and depth tapers;
- FIG. 10A is a cross sectional view of a portion of the surface of the screw of FIG. 9 taken across line 10 A- 10 A
- FIG. 10B is a cross sectional view of a portion of the surface of the screw of FIG. 9 taken across line 10 B- 10 B;
- FIG. 10C is a cross sectional view of a portion of the surface of the screw of FIG. 9 taken across line 10 C- 10 C;
- FIG. 11A is a cross sectional view of a portion of the surface of the screw of FIG. 9 taken across line 11 A- 11 A;
- FIG. 11B is a cross sectional view of a portion of the surface of the screw of FIG. 9 taken across line 11 B- 11 B;
- FIG. 11C is a cross sectional view of a portion of the surface of the screw of FIG. 9 taken across line 11 C- 11 C;
- FIG. 11D is a cross sectional view of a portion of the surface of the screw of FIG. 9 taken across line 11 D- 11 D;
- FIG. 11E is a cross sectional view of a portion of the surface of the screw of FIG. 9 taken across line 11 E- 11 E;
- FIG. 11F is a cross sectional view of a portion of the surface of the screw of FIG. 9 taken across line 11 F- 11 F.
- a plasticating apparatus is generally designated by the numeral 200 .
- the plasticating apparatus includes a cylindrical barrel 2 that defines an inner surface 3 .
- the barrel 2 includes an inlet port 4 that has a feed hopper 7 connected thereto.
- the feed hopper 7 and inlet port 4 cooperate to supply one or more solid particulate resinous materials and any additives or agents to the barrel 2 .
- the barrel 2 includes an outlet port 6 for the discharge of plasticated molten extrudate to a mold or die (not shown).
- Heating elements 11 are positioned outside of the barrel 2 for applying heat to the barrel 2 .
- a screw 10 is axially supported for rotation in the barrel 2 along a longitudinal axis A 1 .
- the screw 10 extends from the inlet port 4 to the outlet port 6 .
- the screw 10 includes a helical flight 13 radially extending from and winding around a core 12 in a first direction (e.g., in a right hand threaded direction).
- the helical flight 13 includes a radially outermost flight surface 14 (e.g., also referred to as a flight land) which moves in close cooperative association with the inner surface 3 of the barrel 2 .
- the helical flight 13 defines a helical channel 18 bounded by flight 13 , inner surface 3 of the barrel 2 and the surface of the core 12 .
- the depth of the helical channel 18 is measured radially from the surface of core 12 to the inner surface 3 of the barrel 2 and is referred to as the root depth RD.
- the helical channel 18 forces a forward flow in the direction indicated by the arrow 40 of resinous materials.
- the screw 10 includes a relatively deep root feed section B for the admission, heating and working of solid resin, a transition section C of reducing root depth to adapt to the reduced volume of resin due to melting and the elimination of air spaces between the solid particles, and a relatively shallow root metering section D wherein the resin is a combination of molten and un-melted material.
- the metering section D includes a longitudinal portion A.
- the inlet port 4 is typically at the rear-most part of the upstream feed section B and the outlet port 6 is the forward-most part of the downstream metering section D.
- the longitudinal portion A of the surface of the core 12 includes a plurality of noncontinuous advancing grooves 30 .
- the advancing grooves 30 are arranged to make a forward helical pathway in the helical channel 18 .
- the advancing grooves 30 are cut into the surface of core 12 .
- the advancing grooves 30 are generally elliptically tapered.
- the advancing grooves 30 are parallel to and have the same helical pitch and first helix angle H 1 as the forward helical flight 13 .
- the first helix angle H 1 is measured relative to a reference line perpendicular to the longitudinal axis A 1 .
- the advancing grooves 30 facilitate the forward flow of the resinous material towards the outlet port 6 .
- the longitudinal portion A of the surface of the core 12 includes a plurality of staggered rows of noncontinuous cross-cut grooves 37 N cut into the surface of the core 12 and intercept through one flight 13 .
- the axis of each cross-cut groove 37 N is parallel to the other cross-cut grooves 37 N.
- the cross-cut grooves 37 N are oriented in a neutral direction parallel to the longitudinal axis A 1 (i.e., at about ninety degrees relative to a reference line perpendicular to the longitudinal axis).
- the cross-cut grooves 37 N facilitate mixing of the resinous material during the transport towards the outlet port 6 .
- cross-cut grooves 37 N are shown and described as intercepting through one flight 13 , the present invention is not limited in this regard as the cross-cut grooves 37 N may intercept more than one flight 13 , for example, two flights 13 (e.g., both leading and trailing flight with respect to the channel 18 ), as shown in FIG. 4B .
- the longitudinal portion A of the surface of the core 12 includes has a plurality of staggered rows of noncontinuous cross-cut grooves 37 C cut into the surface of the core 12 and intercept through one flight 13 .
- the axis of each cross-cut groove 37 C is parallel to the other cross-cut grooves 37 C. While the cross-cut grooves 37 C are shown and described as being parallel to one another, the cross-cut grooves 37 C may be at different angles to one another.
- the cross-cut grooves 37 C are oriented in the first direction common to that of the helical flight (i.e., a right hand threaded direction).
- the cross-cut grooves 37 C are oriented at a second helix angle H 2 that is different from the first helix angle H 1 of the advancing grooves 30 and the helical flight 13 .
- the second helix angle H 2 shown in FIG. 4B is greater than the first helix angle H 1 , however in one embodiment, the second helix angle H 2 may be greater than the first helix angle H 1 and less than 90 degrees.
- the cross-cut grooves 37 C facilitate mixing of the resinous material during the transport towards the outlet port 6 .
- cross-cut grooves 37 C are shown and described as intercepting through one flight 13 , the present invention is not limited in this regard as the cross-cut grooves 37 C may intercept more than one flight 13 , for example, two flights 13 (e.g., both leading and trailing flight with respect to the channel 18 ), as shown in FIG. 4B .
- the longitudinal portion A of the surface of the core 12 includes a plurality of the cross-cut grooves 37 N and a plurality of the cross-cut grooves 37 C cut into the surface of the core 12 .
- Each of the plurality of cross-cut grooves 37 N and each of the plurality of cross-cut grooves 37 C intersect one or both flights 13 .
- Each of the plurality of cross-cut grooves 37 N is oriented at third helix angle H 3 that is about 90 degrees.
- Some of the cross-cut grooves 37 C have a second helix angle H 2 ′ and some of the cross cut grooves 37 C have another second helix angle H 2 ′′, wherein the second helix angle H 2 ′ is different than the other second helix angle H 2 ′′.
- the second helix angle H 2 ′ and the other second helix angle H 2 ′′ are greater than the first helix angle H 1 of the flight 13 .
- the cross-cut grooves 37 N and 37 C facilitate mixing of the resinous material during the transport towards the outlet port 6 .
- the advancing grooves 30 have different depths and different depth tapers along a longitudinal axis of the advancing groove in a direction of flow Q 1 in the advancing groove.
- the depths are measured from the inner surface 3 of the barrel 2 to the radially inner most point of the advancing groove 30 .
- the different depths and different depth tapers of the advancing grooves 30 facilitate mixing of the resinous material, for example, by changing velocity distributions across the advancing groove 30 .
- the advancing grooves 30 promote flow in the direction indicated by the arrow 40 .
- FIG. 7A three adjacent advancing grooves 30 have different but uniform depths D 1 , D 2 and D 3 , respectively.
- D 1 and D 3 are greater than D 2
- the advancing groove 30 with the shallow depth D 2 being positioned between two advancing grooves 30 having greater depths D 1 and D 3 .
- FIGS. 7A, 7B and 7C there is an undercut surface 66 that is formed (e.g., machine cut into) at a depth D 66 which is greater than the land depth LD.
- the undercut surface 66 is located radially inwardly from the flight surface 14 .
- the undercut surface shown in FIGS. 7A, 7B and 7C has a constant depth D 66 .
- three adjacent advancing grooves 30 have different but uniform depths D 4 , D 5 and D 6 , respectively.
- D 5 and D 6 are greater than D 4 , with the advancing groove 30 with the shallow depth D 4 being positioned adjacent to the two adjacent advancing grooves 30 having greater depths D 5 and D 6 .
- three adjacent advancing grooves 30 have different but uniform depths D 7 , D 8 and D 9 , respectively.
- D 7 and D 8 are greater than D 9 , with the advancing groove 30 with the shallow depth D 9 being positioned adjacent to the two adjacent advancing grooves 30 having greater depths D 7 and D 8 .
- the undercut surface is shown in FIGS. 7A, 7B and 7C as having a constant depth D 66 , the present invention is not limited in this regard.
- the undercut surfaces have undercut groove depths that vary in a direction traverse to the longitudinal direction along the direction of flow Q 1 including: 1) the undercut surfaces 66 adjacent to the flight 13 each have a depth D 66 ; 2) the undercut surface 66 ′ has a depth D 66 ′ that is less than the depth D 66 and greater than the land depth LD; and 3) the undercut surface 66 ′′ has a depth D 66 ′′ that is greater than the depth D 66 ′.
- the traverse change in depths of the undercut surface 66 , 66 ′ and 66 ′′ facilitates mixing of the resinous material, for example, by changing velocity distributions across the advancing groove 30 .
- the undercut surface has a varying depth in a longitudinal direction along the direction of flow Q 1 , for example: 1) a portion of the undercut surface 66 has a constant depth D 66 ; 2) another portion of the undercut surface 66 D has an increasing depth taper along the longitudinal direction of flow Q 1 in the advancing groove 30 wherein a portion of the increasing taper has a depth D 66 I that is greater than the depth D 66 ; 3) another portion of the undercut surface 66 ′′ has a constant depth D 66 ′′ that is greater than the depth D 66 and the depth D 66 I; 4) another portion of the undercut surface 66 D has a decreasing depth taper along the longitudinal direction of flow Q 1 in the advancing groove 30 wherein a portion of the decreasing depth taper has a depth of D 66 D that is less than the depth D 66 ′′; and 5) another portion of the undercut surface 66 ′ has a depth D 66 ′ that is less than the
- the advancing groove 30 has a decreasing depth taper in the first direction (i.e., a longitudinal direction along the advancing groove in a direction of flow though the advancing groove) as indicated by the arrow Q 1 .
- the decreasing depth taper is defined by a depth D 11 that is greater than a depth D 10 .
- the advancing groove 30 has a constant depth taper in the first direction as indicated by the arrow Q 1 .
- the constant depth taper is defined by a uniform depth D 12 .
- the advancing groove 30 has an increasing depth taper in the first direction as indicated by the arrow Q 1 .
- the increasing depth taper is defined by a depth D 13 that is less than a depth D 14 .
- the advancing groove 30 has a varying depth taper in the first direction as indicated by the arrow Q 1 .
- the varying depth taper is defined by: 1) a section of decreasing depth taper wherein a depth D 15 ′ is less than a depth D 15 ; 2) a section of constant depth D 16 ; 3) and a section of increasing depth taper wherein a depth D 17 ′ is greater than a depth D 17 .
- the advancing groove 30 has varying depth taper in the first direction as indicated by the arrow Q 1 .
- the varying depth taper is defined by: 1) a section of constant depth D 18 ; 2) a section of increasing depth taper wherein a depth D 19 ′ is greater than a depth D 19 ; 2) a section of constant depth D 20 ; 4) a section of decreasing depth taper wherein a depth D 21 is less than a depth D 21 ′; and 5) a section of constant depth D 18 .
- the advancing groove 30 has a continuously varying depth D 22 , D 24 such as a wave or sinusoidal pattern.
- the present invention is not limited in this regard as the cross-cut grooves may also or in the alternative have different depths and different depth tapers.
- the cross-cut grooves 37 N and 37 C have different depths and different depth tapers along a longitudinal axis of the cross-cut groove in a direction of flow Q 3 in the cross-cut grooves 37 C and in the direction of flow Q 2 in the cross-cut grooves 37 N.
- the depths are measured from the inner surface 3 of the barrel 2 to the radially inner most point of the cross-cut groove 37 N or 37 C.
- the different depths and different depth tapers of the cross-cut grooves 37 N and 37 C facilitates mixing of the resinous material, for example, by changing velocity distributions across the cross-cut grooves 37 N and 37 C.
- the cross-cut groove 37 C has a constant depth D 30 along the longitudinal axis of the cross-cut groove in a direction of flow Q 3 .
- the cross-cut groove 37 C has a constant depth D 32 along the longitudinal axis of the cross-cut 37 C groove in a direction of flow Q 3 .
- the cross-cut groove 37 N has a constant depth D 33 along the longitudinal axis of the cross-cut groove in a direction of flow Q 3 .
- the depth D 30 is greater than the depth D 32 and the depth D 32 is greater than the depth D 33 .
- the cross-cut grooves 37 C and the cross-cut grooves 37 N have different depths relative to other ones of the cross-cut grooves 37 C and the cross-cut grooves 37 N. While, the cross-cut grooves 37 C and the cross-cut grooves 37 N are shown and described as having different depths, the present invention is not limited in this regard as the cross-cut grooves 37 C and the cross-cut grooves 37 N may have equal depths or some of the cross-cut grooves 37 C and the cross-cut grooves 37 N may have equal depths and other of the cross-cut grooves 37 and the cross-cut grooves 37 N may have different depths.
- the cross-cut grooves 37 C and the cross-cut grooves 37 N have different depth tapers.
- the cross-cut groove 37 C has an increasing depth taper along the longitudinal axis of the cross-cut groove 37 C in a direction of flow Q 3 (e.g., the cross-cut groove 37 C has a depth D 40 proximate one end thereof and a depth D 41 proximate another end thereof, wherein the depth D 41 is greater than the depth D 40 ).
- the cross-cut groove 37 C has a depth D 40 proximate one end thereof and a depth D 41 proximate another end thereof, wherein the depth D 41 is greater than the depth D 40 ).
- the cross-cut groove 37 C has a decreasing depth taper along the longitudinal axis of the cross-cut groove 37 C in a direction of flow Q 3 (e.g., the cross-cut groove 37 C has a depth D 44 proximate one end thereof and a depth D 43 proximate another end thereof, wherein the depth D 44 is greater than the depth D 43 ).
- the cross-cut groove 37 N has a varying depth taper along the longitudinal axis of the cross-cut groove 37 C in a direction of flow Q 3 .
- the cross-cut groove 37 N has a depth D 50 proximate one end thereof and a depth D 53 adjacent thereto, wherein the depth D 53 is greater than the depth D 50 thereby defining an increasing depth taper; 2) the cross-cut groove 37 N has a constant depth D 55 along a central section thereof, wherein the depth D 55 is greater than the depth D 53 ; 3) the cross-cut groove 37 N has a depth D 52 proximate another end thereof and a depth D 53 adjacent thereto, wherein the depth D 53 is greater than the depth D 52 thereby defining an decreasing depth taper.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
- The instant application is a divisional application of U.S. Non-Provisional patent application Ser. No. 16/697,491, filed Nov. 27, 2019, which is a divisional application of U.S. Non-Provisional patent application Ser. No. 15/091,802, filed Apr. 6, 2016, now U.S. Pat. No. 10,532,490 and entitled “Plasticating Apparatus Screw Having Grooves of Varying Angles and Depths,” the entirety of each of which is incorporated herein by reference.
- This invention relates to a plasticating apparatus screw rotatable within a barrel to extrude molten resinous material. More particularly, this invention relates to a longitudinal portion of the screw designed to recirculate material for thorough mixing and melting via grooves of various angles and having various depths and depth tapers.
- A plasticating apparatus typically receives polymer or thermoplastic resin pellets, granules or powders, from an inlet port, then heats and works the resin to convert it into a melted or molten state. The melt or molten material is delivered under pressure through a restricted outlet or discharge port to make the finished article. It is desirable that the molten material leaving the apparatus be completely melted and homogeneously mixed, resulting in uniform temperature, viscosity, color and composition.
- A typical plasticating apparatus includes an elongated cylindrical barrel, which is usually heated at various locations along its length. An axially supported and rotating screw extends longitudinally through the barrel. The screw is responsible for forwarding, melting, pressurizing and homogenizing the material as it passes from the inlet port to the outlet port. The screw has a core with a helical flight thereon and the flight cooperates with the cylindrical inner surface of the barrel to define a helical channel for forward passage of the resin to the outlet port.
- The typical plasticating screw has a plurality of sections along its longitudinal axis with each section being designed for a particular function. Ordinarily, there is a feed section, a transition section, a metering section and a mixing section in series.
- As disclosed in U.S. Pat. No. 6,498,399 and illustrated in
FIG. 1 a plasticatingscrew 100 has a main channel defined by ahelical flight 113 disposed within and cooperating with an inner-wall of a heated barrel (not shown). As illustrated inFIG. 1 , theprior art screw 100 has a longitudinal portion with a plurality of staggered rows of noncontinuous advancinggrooves 130 arranged in the main channel thereof. The axis of each row of advancinggrooves 130 is substantially parallel to the helical axis of the adjacenthelical flight 113 of the longitudinal portion to promote flow in the direction indicated by thearrow 140. A noncontinuous helical channel is formed therein traversing in a reverse direction, compared with the direction of thehelical flight 113, the channel having a plurality of retractinggrooves 137. While the objective of the retractinggrooves 137 is to promote mixing of the polymer or thermoplastic resin pellets in the main channel, in some instances mixing is insufficient. - Based on the foregoing, it is the general object of this invention to provide a screw configured for improved mixing of the polymer or thermoplastic resin pellets.
- The present invention resides in one aspect in a screw for a plasticating apparatus. The plasticating apparatus includes a barrel that has an axial length extending between an inlet port and an outlet port. The barrel has an inner wall. The screw has a longitudinal axis and is rotatably supported in the barrel for rotation about the longitudinal axis. The screw has a core and one or more helical flights extending along a length of the screw. The helical flight extends in a first threaded direction and defines a first helix angle relative to a reference line perpendicular to the longitudinal axis and defines a first helical path oriented at the first helix angle which is less than ninety degrees. The helical flight defines a helical channel. The screw may include a feed section cooperating with the inlet port, an intermediate melt section, and/or a metering section cooperating with said outlet port. A longitudinal portion of the screw (e.g., in the feed section, the intermediate melt section, and/or the metering section) has a plurality of advancing grooves formed therein. Each of the advancing grooves has one or both ends closed. The advancing grooves are arranged in a noncontinuous helix cut in the screw core in the helical channel of the screw. The plurality of advancing grooves are dimensioned to receive material therein as the material is conveyed through the helical channel, to the outlet port. The longitudinal portion further has a plurality of noncontinuous cross-cut grooves traversing one or more of the advancing grooves. One or more of the cross-cut grooves has a second helix angle (measured relative to a reference line perpendicular to the longitudinal axis) greater than the first helix angle and less than ninety degrees; and/or one or more of another of the cross-cut grooves has a third helix angle (measured relative to a reference line perpendicular to the longitudinal axis) of about ninety degrees.
- In one embodiment, each cross-cut groove passes through the helical flight not more than two times so that the material can back flow and recirculate within said longitudinal portion.
- In one embodiment, one or more of the plurality of advancing grooves includes an advancing groove depth taper; and/or one or more of the plurality of cross-cut grooves having a cross-cut groove depth taper.
- The present invention also resides in another screw for a plasticating apparatus. The plasticating apparatus includes a barrel that has an axial length extending between an inlet port and an outlet port. The barrel has an inner wall. The screw has a longitudinal axis and is rotatably supported in the barrel for rotation about the longitudinal axis. The screw has a core and one or more helical flights extending along a length of the screw. The helical flight defines a first helix angle relative to a reference line perpendicular to the longitudinal axis and defines a first helical path oriented at the first helix angle which is less than ninety degrees. The helical flight defines a helical channel. The screw may include a feed section cooperating with the inlet port, an intermediate melt section, and/or a metering section cooperating with said outlet port. A longitudinal portion of the screw (e.g., in the feed section, the intermediate melt section, and/or the metering section) has a plurality of advancing grooves formed therein. Each of the advancing grooves has one or both ends closed. The advancing grooves are arranged in a noncontinuous helix cut in the screw core in the helical channel of the screw. The plurality of advancing grooves are dimensioned to receive material therein as the material is conveyed through the helical channel, to the outlet port. The longitudinal portion further has a plurality of noncontinuous cross-cut grooves traversing several advancing grooves. One or more of the plurality of advancing grooves has an advancing groove depth taper; and/or one or more of the plurality of cross-cut grooves has a cross-cut groove depth taper.
- The present invention also resides in yet another screw for a plasticating apparatus. The plasticating apparatus includes a barrel that has an axial length extending between an inlet port and an outlet port. The barrel has an inner wall. The screw has a longitudinal axis and is rotatably supported in the barrel for rotation about the longitudinal axis. The screw has a core and one or more helical flights extending along a length of the screw. The helical flight defines a first helix angle relative to a reference line perpendicular to the longitudinal axis and defines a first helical path oriented at the first helix angle which is less than ninety degrees. The helical flight defines a helical channel. The screw may include a feed section cooperating with the inlet port, an intermediate melt section, and/or a metering section cooperating with said outlet port. A longitudinal portion of the screw (e.g., in the feed section, the intermediate melt section, and/or the metering section) has a plurality of advancing grooves formed therein. Each of the advancing grooves has one or both ends closed. The advancing grooves are arranged in a noncontinuous helix cut in the screw core in the helical channel of the screw. The plurality of advancing grooves are dimensioned to receive material therein as the material is conveyed through the helical channel, to the outlet port. The longitudinal portion further has a plurality of noncontinuous cross-cut grooves traversing one or more of the advancing grooves. The plurality of cross-cut grooves includes one or more first cross cut grooves having a second helix angle (measured relative to a reference line perpendicular to the longitudinal axis) and one or more second cross-cut grooves having a third helix angle (measured relative to a reference line perpendicular to the longitudinal axis). The first helix angle, the second helix angle and the third helix angle are different.
- In one embodiment, the plasticating apparatus includes one or more third cross-cut grooves having a fourth helix angle that is different from the first helix angle, the second helix angle and the third helix angle.
- The present invention also resides in still another screw for a plasticating apparatus. The plasticating apparatus includes a barrel that has an axial length extending between an inlet port and an outlet port. The barrel has an inner wall. The screw has a longitudinal axis and is rotatably supported in the barrel for rotation about the longitudinal axis. The screw has a core and one or more helical flights extending along a length of the screw. The helical flight defines a helix angle relative to a reference line perpendicular to the longitudinal axis and defines a first helical path of a first helix angle less than ninety degrees. The helical flight defines a helical channel. The screw may include a feed section cooperating with the inlet port, an intermediate melt section, and/or a metering section cooperating with said outlet port. A longitudinal portion of the screw (e.g., in the feed section, the intermediate melt section, and/or the metering section) has a plurality of advancing grooves formed therein. Each of the advancing grooves has one or both ends closed. The advancing grooves are arranged in a noncontinuous helix cut in the screw core in the helical channel of the screw. The plurality of advancing grooves are dimensioned to receive material therein as the material is conveyed through the helical channel, to the outlet port. The longitudinal portion further has one or more undercut surfaces located radially inwardly from the flight surface. The undercut surface has a depth that varies in a longitudinal direction parallel to the advancing grooves; and/or in a direction traverse to the longitudinal direction.
-
FIG. 1 is a schematic view of a portion of the surface of a prior art screw for a plasticating apparatus; -
FIG. 2 is a schematic view of a screw for a plasticating apparatus of the present invention, shown in a cut away view of a barrel; -
FIG. 3 is a schematic view of a portion of the surface of a screw for a plasticating apparatus of the present invention illustrating neutrally oriented cross-cut grooves on the screw; -
FIG. 4A is a schematic view of a portion of the surface of a screw for a plasticating apparatus of the present invention illustrating cross-cut grooves on the screw oriented in a common direction to the flight of the screw and each cross-cut groove cutting through one flight; -
FIG. 4B is a schematic view of a portion of the surface of a screw for a plasticating apparatus of the present invention illustrating cross-cut grooves on the screw oriented in a common direction to the flight of the screw and each cross-cut groove cutting through two flights; -
FIG. 5 is a schematic view of a portion of the surface of a screw for a plasticating apparatus of the present invention illustrating a combination of neutrally oriented cross-cut grooves and cross-cut grooves oriented in a multiple directions; -
FIG. 6 is a schematic view of a portion of the surface of a screw for a plasticating apparatus of the present invention illustrating advancing grooves having varying depths and depth tapers; -
FIG. 7A is a cross sectional view of a portion of the surface of the screw ofFIG. 6 taken acrossline 7A-7A; -
FIG. 7B is a cross sectional view of another embodiment of a portion of the surface of the screw ofFIG. 6 taken acrossline 7B-7B; -
FIG. 7C is a cross sectional view of another embodiment of a portion of the surface of the screw ofFIG. 6 taken acrossline 7C-7C; -
FIG. 7D is a cross sectional view of another embodiment of a portion of the surface of the screw ofFIG. 6 taken acrossline 7D-7D; -
FIG. 7E is a cross sectional view of another embodiment of a portion of the surface of the screw ofFIG. 6 taken acrossline 7E-7E; -
FIG. 8A is a cross sectional view of one of the advancing grooves ofFIG. 6 taken acrossline 8A-8A showing a decreasing depth taper; -
FIG. 8B is a cross sectional view of one of the advancing grooves ofFIG. 6 taken acrossline 8B-8B showing constant depth taper; -
FIG. 8C is a cross sectional view of one of the advancing grooves ofFIG. 6 taken acrossline 8C-8C showing an increasing depth taper; -
FIG. 8D is a cross sectional view of one of the advancing grooves ofFIG. 6 taken acrossline 8D-8D showing varying depth taper; -
FIG. 8E is a cross sectional view of one of the advancing grooves ofFIG. 6 taken acrossline 8E-8E showing another varying depth taper; -
FIG. 8F is a cross sectional view of one of the advancing grooves ofFIG. 6 taken acrossline 8F-8F showing another varying depth taper; -
FIG. 9 is a schematic view of a portion of the surface of a screw for a plasticating apparatus of the present invention illustrating cross-cut grooves having varying depths and depth tapers; -
FIG. 10A is a cross sectional view of a portion of the surface of the screw ofFIG. 9 taken acrossline 10A-10A -
FIG. 10B is a cross sectional view of a portion of the surface of the screw ofFIG. 9 taken acrossline 10B-10B; -
FIG. 10C is a cross sectional view of a portion of the surface of the screw ofFIG. 9 taken acrossline 10C-10C; -
FIG. 11A is a cross sectional view of a portion of the surface of the screw ofFIG. 9 taken acrossline 11A-11A; -
FIG. 11B is a cross sectional view of a portion of the surface of the screw ofFIG. 9 taken acrossline 11B-11B; -
FIG. 11C is a cross sectional view of a portion of the surface of the screw ofFIG. 9 taken acrossline 11C-11C; -
FIG. 11D is a cross sectional view of a portion of the surface of the screw ofFIG. 9 taken acrossline 11D-11D; -
FIG. 11E is a cross sectional view of a portion of the surface of the screw ofFIG. 9 taken acrossline 11E-11E; and -
FIG. 11F is a cross sectional view of a portion of the surface of the screw ofFIG. 9 taken acrossline 11F-11F. - Referring to
FIG. 2 , a plasticating apparatus is generally designated by the numeral 200. The plasticating apparatus includes acylindrical barrel 2 that defines aninner surface 3. Thebarrel 2 includes an inlet port 4 that has a feed hopper 7 connected thereto. The feed hopper 7 and inlet port 4 cooperate to supply one or more solid particulate resinous materials and any additives or agents to thebarrel 2. Thebarrel 2 includes anoutlet port 6 for the discharge of plasticated molten extrudate to a mold or die (not shown).Heating elements 11 are positioned outside of thebarrel 2 for applying heat to thebarrel 2. - As illustrated in
FIG. 2 , ascrew 10 is axially supported for rotation in thebarrel 2 along a longitudinal axis A1. Thescrew 10 extends from the inlet port 4 to theoutlet port 6. Thescrew 10 includes ahelical flight 13 radially extending from and winding around acore 12 in a first direction (e.g., in a right hand threaded direction). Thehelical flight 13 includes a radially outermost flight surface 14 (e.g., also referred to as a flight land) which moves in close cooperative association with theinner surface 3 of thebarrel 2. Thehelical flight 13 defines ahelical channel 18 bounded byflight 13,inner surface 3 of thebarrel 2 and the surface of thecore 12. The depth of thehelical channel 18 is measured radially from the surface ofcore 12 to theinner surface 3 of thebarrel 2 and is referred to as the root depth RD. With the rotation of thescrew 10, thehelical channel 18 forces a forward flow in the direction indicated by thearrow 40 of resinous materials. - As shown in
FIG. 2 , thescrew 10 includes a relatively deep root feed section B for the admission, heating and working of solid resin, a transition section C of reducing root depth to adapt to the reduced volume of resin due to melting and the elimination of air spaces between the solid particles, and a relatively shallow root metering section D wherein the resin is a combination of molten and un-melted material. The metering section D includes a longitudinal portion A. The inlet port 4 is typically at the rear-most part of the upstream feed section B and theoutlet port 6 is the forward-most part of the downstream metering section D. - As shown in
FIG. 3 , the longitudinal portion A of the surface of thecore 12 includes a plurality ofnoncontinuous advancing grooves 30. The advancinggrooves 30 are arranged to make a forward helical pathway in thehelical channel 18. The advancinggrooves 30 are cut into the surface ofcore 12. There is a plurality ofadjacent grooves 30 per channel, preferably three as shown, but not limited to only three. The advancinggrooves 30 are generally elliptically tapered. The advancinggrooves 30 are parallel to and have the same helical pitch and first helix angle H1 as the forwardhelical flight 13. The first helix angle H1 is measured relative to a reference line perpendicular to the longitudinal axis A1. The advancinggrooves 30 facilitate the forward flow of the resinous material towards theoutlet port 6. - As shown in
FIG. 3 , the longitudinal portion A of the surface of thecore 12 includes a plurality of staggered rows of noncontinuouscross-cut grooves 37N cut into the surface of thecore 12 and intercept through oneflight 13. The axis of eachcross-cut groove 37N is parallel to the othercross-cut grooves 37N. Thecross-cut grooves 37N are oriented in a neutral direction parallel to the longitudinal axis A1 (i.e., at about ninety degrees relative to a reference line perpendicular to the longitudinal axis). Thecross-cut grooves 37N facilitate mixing of the resinous material during the transport towards theoutlet port 6. While thecross-cut grooves 37N are shown and described as intercepting through oneflight 13, the present invention is not limited in this regard as thecross-cut grooves 37N may intercept more than oneflight 13, for example, two flights 13 (e.g., both leading and trailing flight with respect to the channel 18), as shown inFIG. 4B . - As shown in
FIG. 4A , the longitudinal portion A of the surface of thecore 12 includes has a plurality of staggered rows of noncontinuouscross-cut grooves 37C cut into the surface of thecore 12 and intercept through oneflight 13. The axis of eachcross-cut groove 37C is parallel to the othercross-cut grooves 37C. While thecross-cut grooves 37C are shown and described as being parallel to one another, thecross-cut grooves 37C may be at different angles to one another. Thecross-cut grooves 37C are oriented in the first direction common to that of the helical flight (i.e., a right hand threaded direction). Thecross-cut grooves 37C are oriented at a second helix angle H2 that is different from the first helix angle H1 of the advancinggrooves 30 and thehelical flight 13. The second helix angle H2 shown inFIG. 4B is greater than the first helix angle H1, however in one embodiment, the second helix angle H2 may be greater than the first helix angle H1 and less than 90 degrees. Thecross-cut grooves 37C facilitate mixing of the resinous material during the transport towards theoutlet port 6. While thecross-cut grooves 37C are shown and described as intercepting through oneflight 13, the present invention is not limited in this regard as thecross-cut grooves 37C may intercept more than oneflight 13, for example, two flights 13 (e.g., both leading and trailing flight with respect to the channel 18), as shown inFIG. 4B . - As shown in
FIG. 5 , the longitudinal portion A of the surface of thecore 12 includes a plurality of thecross-cut grooves 37N and a plurality of thecross-cut grooves 37C cut into the surface of thecore 12. Each of the plurality ofcross-cut grooves 37N and each of the plurality ofcross-cut grooves 37C intersect one or bothflights 13. Each of the plurality ofcross-cut grooves 37N is oriented at third helix angle H3 that is about 90 degrees. Some of thecross-cut grooves 37C have a second helix angle H2′ and some of the cross cutgrooves 37C have another second helix angle H2″, wherein the second helix angle H2′ is different than the other second helix angle H2″. The second helix angle H2′ and the other second helix angle H2″ are greater than the first helix angle H1 of theflight 13. Thecross-cut grooves outlet port 6. - As illustrated in
FIG. 6 , the advancinggrooves 30 have different depths and different depth tapers along a longitudinal axis of the advancing groove in a direction of flow Q1 in the advancing groove. The depths are measured from theinner surface 3 of thebarrel 2 to the radially inner most point of the advancinggroove 30. The different depths and different depth tapers of the advancinggrooves 30 facilitate mixing of the resinous material, for example, by changing velocity distributions across the advancinggroove 30. As depicted inFIGS. 2 and 4A-6 , the advancinggrooves 30 promote flow in the direction indicated by thearrow 40. - For example, as shown in
FIG. 7A three adjacent advancinggrooves 30 have different but uniform depths D1, D2 and D3, respectively. In one embodiment, D1 and D3 are greater than D2, with the advancinggroove 30 with the shallow depth D2 being positioned between two advancinggrooves 30 having greater depths D1 and D3. As shown inFIGS. 7A, 7B and 7C there is an undercutsurface 66 that is formed (e.g., machine cut into) at a depth D66 which is greater than the land depth LD. Thus, the undercutsurface 66 is located radially inwardly from theflight surface 14. The undercut surface shown inFIGS. 7A, 7B and 7C has a constant depth D66. - As shown in
FIG. 7B three adjacent advancinggrooves 30 have different but uniform depths D4, D5 and D6, respectively. In one embodiment, D5 and D6 are greater than D4, with the advancinggroove 30 with the shallow depth D4 being positioned adjacent to the two adjacent advancinggrooves 30 having greater depths D5 and D6. - As shown in
FIG. 7C three adjacent advancinggrooves 30 have different but uniform depths D7, D8 and D9, respectively. In one embodiment, D7 and D8 are greater than D9, with the advancinggroove 30 with the shallow depth D9 being positioned adjacent to the two adjacent advancinggrooves 30 having greater depths D7 and D8. - While the undercut surface is shown in
FIGS. 7A, 7B and 7C as having a constant depth D66, the present invention is not limited in this regard. For example, as illustrated inFIG. 7D the undercut surfaces have undercut groove depths that vary in a direction traverse to the longitudinal direction along the direction of flow Q1 including: 1) the undercut surfaces 66 adjacent to theflight 13 each have a depth D66; 2) the undercutsurface 66′ has a depth D66′ that is less than the depth D66 and greater than the land depth LD; and 3) the undercutsurface 66″ has a depth D66″ that is greater than the depth D66′. The traverse change in depths of the undercutsurface groove 30. - In one embodiment, as shown in
FIGS. 6 and 7E the undercut surface has a varying depth in a longitudinal direction along the direction of flow Q1, for example: 1) a portion of the undercutsurface 66 has a constant depth D66; 2) another portion of the undercutsurface 66D has an increasing depth taper along the longitudinal direction of flow Q1 in the advancinggroove 30 wherein a portion of the increasing taper has a depth D66I that is greater than the depth D66; 3) another portion of the undercutsurface 66″ has a constant depth D66″ that is greater than the depth D66 and the depth D66I; 4) another portion of the undercutsurface 66D has a decreasing depth taper along the longitudinal direction of flow Q1 in the advancinggroove 30 wherein a portion of the decreasing depth taper has a depth of D66D that is less than the depth D66″; and 5) another portion of the undercutsurface 66′ has a depth D66′ that is less than the depth D66. - As shown in
FIG. 8A the advancinggroove 30 has a decreasing depth taper in the first direction (i.e., a longitudinal direction along the advancing groove in a direction of flow though the advancing groove) as indicated by the arrow Q1. For example, the decreasing depth taper is defined by a depth D11 that is greater than a depth D10. As shown inFIG. 8B the advancinggroove 30 has a constant depth taper in the first direction as indicated by the arrow Q1. For example, the constant depth taper is defined by a uniform depth D12. - As shown in
FIG. 8C the advancinggroove 30 has an increasing depth taper in the first direction as indicated by the arrow Q1. For example, the increasing depth taper is defined by a depth D13 that is less than a depth D14. - As shown in
FIG. 8D the advancinggroove 30 has a varying depth taper in the first direction as indicated by the arrow Q1. For example, the varying depth taper is defined by: 1) a section of decreasing depth taper wherein a depth D15′ is less than a depth D15; 2) a section of constant depth D16; 3) and a section of increasing depth taper wherein a depth D17′ is greater than a depth D17. - As shown in
FIG. 8E the advancinggroove 30 has varying depth taper in the first direction as indicated by the arrow Q1. For example, the varying depth taper is defined by: 1) a section of constant depth D18; 2) a section of increasing depth taper wherein a depth D19′ is greater than a depth D19; 2) a section of constant depth D20; 4) a section of decreasing depth taper wherein a depth D21 is less than a depth D21′; and 5) a section of constant depth D18. - As shown in
FIG. 8F the advancinggroove 30 has a continuously varying depth D22, D24 such as a wave or sinusoidal pattern. - While the advancing
grooves 30 are shown and described as having different depths and different depth tapers, the present invention is not limited in this regard as the cross-cut grooves may also or in the alternative have different depths and different depth tapers. For example, as shown inFIGS. 9, 10A, 10B, 10C, 11A, 11B, 11C, 11D, 11E, and 11F , thecross-cut grooves cross-cut grooves 37C and in the direction of flow Q2 in thecross-cut grooves 37N. The depths are measured from theinner surface 3 of thebarrel 2 to the radially inner most point of thecross-cut groove cross-cut grooves cross-cut grooves - As shown in
FIGS. 9, 10A and 11A thecross-cut groove 37C has a constant depth D30 along the longitudinal axis of the cross-cut groove in a direction of flow Q3. As shown inFIGS. 9, 10B and 11B thecross-cut groove 37C has a constant depth D32 along the longitudinal axis of the cross-cut 37C groove in a direction of flow Q3. As shown inFIGS. 9, 10C and 11C thecross-cut groove 37N has a constant depth D33 along the longitudinal axis of the cross-cut groove in a direction of flow Q3. The depth D30 is greater than the depth D32 and the depth D32 is greater than the depth D33. Thus, thecross-cut grooves 37C and thecross-cut grooves 37N have different depths relative to other ones of thecross-cut grooves 37C and thecross-cut grooves 37N. While, thecross-cut grooves 37C and thecross-cut grooves 37N are shown and described as having different depths, the present invention is not limited in this regard as thecross-cut grooves 37C and thecross-cut grooves 37N may have equal depths or some of thecross-cut grooves 37C and thecross-cut grooves 37N may have equal depths and other of the cross-cut grooves 37 and thecross-cut grooves 37N may have different depths. - As shown in
FIGS. 9, 11D, 11E and 11F , thecross-cut grooves 37C and thecross-cut grooves 37N have different depth tapers. As shown inFIGS. 9 and 11D , thecross-cut groove 37C has an increasing depth taper along the longitudinal axis of thecross-cut groove 37C in a direction of flow Q3 (e.g., thecross-cut groove 37C has a depth D40 proximate one end thereof and a depth D41 proximate another end thereof, wherein the depth D41 is greater than the depth D40). As shown inFIGS. 9 and 11E , thecross-cut groove 37C has a decreasing depth taper along the longitudinal axis of thecross-cut groove 37C in a direction of flow Q3 (e.g., thecross-cut groove 37C has a depth D44 proximate one end thereof and a depth D43 proximate another end thereof, wherein the depth D44 is greater than the depth D43). As shown inFIGS. 9 and 11F, thecross-cut groove 37N has a varying depth taper along the longitudinal axis of thecross-cut groove 37C in a direction of flow Q3. For example: 1) thecross-cut groove 37N has a depth D50 proximate one end thereof and a depth D53 adjacent thereto, wherein the depth D53 is greater than the depth D50 thereby defining an increasing depth taper; 2) thecross-cut groove 37N has a constant depth D55 along a central section thereof, wherein the depth D55 is greater than the depth D53; 3) thecross-cut groove 37N has a depth D52 proximate another end thereof and a depth D53 adjacent thereto, wherein the depth D53 is greater than the depth D52 thereby defining an decreasing depth taper. - Although the invention has been described with reference to particular embodiments thereof, it will be understood by one of ordinary skill in the art, upon a reading and understanding of the foregoing disclosure that numerous variations and alterations to the disclosed embodiments will fall within the scope of this invention and of the appended claims.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/242,952 US20210245397A1 (en) | 2016-04-06 | 2021-04-28 | Plasticating apparatus screw having grooves of varying angles and depths |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/091,802 US10532490B2 (en) | 2016-04-06 | 2016-04-06 | Plasticating apparatus screw having grooves of varying angles and depths |
US16/697,491 US11192279B2 (en) | 2016-04-06 | 2019-11-27 | Plasticating apparatus screw having grooves of varying angles and depths |
US17/242,952 US20210245397A1 (en) | 2016-04-06 | 2021-04-28 | Plasticating apparatus screw having grooves of varying angles and depths |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/697,491 Division US11192279B2 (en) | 2016-04-06 | 2019-11-27 | Plasticating apparatus screw having grooves of varying angles and depths |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210245397A1 true US20210245397A1 (en) | 2021-08-12 |
Family
ID=58536751
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/091,802 Active 2038-01-17 US10532490B2 (en) | 2016-04-06 | 2016-04-06 | Plasticating apparatus screw having grooves of varying angles and depths |
US16/697,491 Active 2036-07-20 US11192279B2 (en) | 2016-04-06 | 2019-11-27 | Plasticating apparatus screw having grooves of varying angles and depths |
US17/242,952 Abandoned US20210245397A1 (en) | 2016-04-06 | 2021-04-28 | Plasticating apparatus screw having grooves of varying angles and depths |
US17/242,976 Abandoned US20210245398A1 (en) | 2016-04-06 | 2021-04-28 | Plasticating apparatus screw having grooves of varying angles and depths |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/091,802 Active 2038-01-17 US10532490B2 (en) | 2016-04-06 | 2016-04-06 | Plasticating apparatus screw having grooves of varying angles and depths |
US16/697,491 Active 2036-07-20 US11192279B2 (en) | 2016-04-06 | 2019-11-27 | Plasticating apparatus screw having grooves of varying angles and depths |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/242,976 Abandoned US20210245398A1 (en) | 2016-04-06 | 2021-04-28 | Plasticating apparatus screw having grooves of varying angles and depths |
Country Status (7)
Country | Link |
---|---|
US (4) | US10532490B2 (en) |
EP (4) | EP3789172B1 (en) |
JP (1) | JP7009074B2 (en) |
KR (1) | KR102309658B1 (en) |
CN (1) | CN107263844B (en) |
CA (1) | CA2963207C (en) |
MX (4) | MX2017004428A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10532490B2 (en) * | 2016-04-06 | 2020-01-14 | Davis-Standard, Llc | Plasticating apparatus screw having grooves of varying angles and depths |
EP3660421A1 (en) * | 2018-11-29 | 2020-06-03 | Industria Tecnica Valenciana, S.A. | Spindle for an ice machine |
AT522425B1 (en) * | 2019-03-20 | 2022-01-15 | Erema Eng Recycling Maschinen & Anlagen Gmbh | peeling screw |
DE102019127839A1 (en) * | 2019-10-15 | 2021-04-15 | Reifenhäuser GmbH & Co. KG Maschinenfabrik | Mixing part for a plasticizing unit |
US11285652B2 (en) * | 2020-02-17 | 2022-03-29 | Robert A. Barr | No solid bed extruder screw |
CN112391688B (en) * | 2020-11-03 | 2022-07-29 | 广西德福莱医疗器械有限公司 | Melt and spout cloth extruder screw rod feed cylinder |
CN117836115A (en) * | 2021-06-11 | 2024-04-05 | 兰德卡斯特挤压系统公司 | Extruder mixer, extruder mixing section, extruder system and method of using the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU385734A1 (en) * | 1971-04-02 | 1973-06-14 | В. Н. Хом ков, В. И. Рашевский , И. А. Корнилов Завод полимерного машиностроени Л. Б. Красина | WARMER MACHINE FOR PROCESSING POLYMERIC |
JPS50123772A (en) * | 1974-03-19 | 1975-09-29 | ||
JPS50126066A (en) * | 1974-03-23 | 1975-10-03 | ||
JPS53104770U (en) * | 1977-01-26 | 1978-08-23 | ||
JPS5821421U (en) * | 1981-08-04 | 1983-02-09 | 株式会社プラコ− | Screw in plastic extruder |
US20020136084A1 (en) * | 2001-01-19 | 2002-09-26 | Eastman Kodak Company | Multi-staged vented extrusion screw with dual channel depth pumping section |
US20040179425A1 (en) * | 2003-03-13 | 2004-09-16 | Sassi Dario Ivan | Mixing device for extruders |
US20110222363A1 (en) * | 2010-03-11 | 2011-09-15 | Mazzocca Timothy D | Lug type extruder screw |
US11192279B2 (en) * | 2016-04-06 | 2021-12-07 | Davis-Standard, Llc | Plasticating apparatus screw having grooves of varying angles and depths |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3524222A (en) * | 1968-05-13 | 1970-08-18 | Egan Machinery Co | Extruder screw devolatilizing and mixing section |
JPS4950059A (en) * | 1972-05-25 | 1974-05-15 | ||
JPS5251459A (en) * | 1975-10-24 | 1977-04-25 | Toyo Soda Mfg Co Ltd | Thermoplastic resin extruder |
JPS5695662A (en) * | 1979-12-29 | 1981-08-03 | Matsushita Electric Works Ltd | Construction of screw for extrusion molding machine |
FR2483319A1 (en) | 1980-05-30 | 1981-12-04 | El Paso Polyolefins | Mixing extruder screw with long pitch channel of alternating twist - to promote mixing without inhibiting throughput |
JPS6114415Y2 (en) * | 1981-01-12 | 1986-05-06 | ||
JPS5836122U (en) * | 1981-09-01 | 1983-03-09 | 宇部興産株式会社 | Screw for vent type molding machine |
US4639143A (en) | 1985-02-28 | 1987-01-27 | New Castle Industries, Inc. | Extrusion screw |
JPS61227003A (en) * | 1985-04-01 | 1986-10-09 | Toshiba Mach Co Ltd | Screw for plastic molding equipped with subflight |
US4752136A (en) * | 1986-07-23 | 1988-06-21 | Spirex Corporation | Extruder injection apparatus and method |
US5044759A (en) * | 1987-05-20 | 1991-09-03 | Giuseppe Gagliani | Mixing process and screw extruders for carrying out the same |
US5215764A (en) * | 1991-06-10 | 1993-06-01 | Westland Corporation | Extruder mixing screw |
DE4134026C2 (en) * | 1991-10-15 | 1994-04-21 | Werner & Pfleiderer | Co-rotating screw kneader |
JPH08216212A (en) * | 1995-02-15 | 1996-08-27 | Three Bond Co Ltd | Mixing screen structure of injection molding device |
US5599097A (en) * | 1995-12-14 | 1997-02-04 | The Black Clawson Company | Extruder screw for plastic extruders |
US5816698A (en) * | 1996-04-15 | 1998-10-06 | Spirex Corporation | Screw and plasticating apparatus and method |
US5961209A (en) * | 1997-06-11 | 1999-10-05 | Royal Feed Screws, Inc. | Feed screw |
US6136246A (en) * | 1997-11-07 | 2000-10-24 | Rauwendaal Extrusion Engineering | Screw extruder with improved dispersive mixing elements |
US6498399B2 (en) | 1999-09-08 | 2002-12-24 | Alliedsignal Inc. | Low dielectric-constant dielectric for etchstop in dual damascene backend of integrated circuits |
US6547431B1 (en) * | 2000-11-09 | 2003-04-15 | Milacron Inc. | Mixing section for a feed screw and methods of making the same |
US6488399B1 (en) * | 2001-05-17 | 2002-12-03 | Timothy W. Womer | Apparatus for plasticating thermoplastics |
US6497508B1 (en) * | 2001-06-15 | 2002-12-24 | New Castle Industries, Inc. | Plasticating process, apparatus and screw with mixing |
US6712495B2 (en) | 2001-11-20 | 2004-03-30 | E. I. Du Pont De Nemours And Company | Mixing apparatus |
AU2003243861A1 (en) | 2003-06-19 | 2005-01-04 | Husky Injection Molding Systems Ltd. | Improved mixer for a plasticizing screw |
US7387426B2 (en) * | 2005-11-04 | 2008-06-17 | Glycon Corporation | Extruder screw with mixing section |
DE102008046633B3 (en) * | 2008-09-08 | 2010-04-01 | Mülsener Recycling- und Handelsgesellschaft mbH | Extruder i.e. hot spinning extruder, for milling rubber, has inner profile comprising scissor area with groove between recesses, where groove extends transverse to longitudinal axis of stator |
FR2978934B1 (en) * | 2011-08-09 | 2016-09-02 | Rms Equipment Llc | EXTRUDER SCREW TYPE |
US9764496B2 (en) * | 2014-01-17 | 2017-09-19 | Reifenhäuser GmbH & Co. KG, Maschinenfabrik | Mixing section for a plastic extrusion screw |
CN106113457B (en) * | 2016-06-24 | 2018-09-18 | 广东金明精机股份有限公司 | Plastic extruder for producing degradable mulch |
-
2016
- 2016-04-06 US US15/091,802 patent/US10532490B2/en active Active
-
2017
- 2017-03-31 JP JP2017069588A patent/JP7009074B2/en active Active
- 2017-04-04 CA CA2963207A patent/CA2963207C/en active Active
- 2017-04-04 KR KR1020170043478A patent/KR102309658B1/en active IP Right Grant
- 2017-04-05 MX MX2017004428A patent/MX2017004428A/en unknown
- 2017-04-05 MX MX2020013399A patent/MX2020013399A/en unknown
- 2017-04-05 MX MX2020013400A patent/MX2020013400A/en unknown
- 2017-04-05 EP EP20204529.0A patent/EP3789172B1/en active Active
- 2017-04-05 EP EP20204525.8A patent/EP3789171B1/en active Active
- 2017-04-05 EP EP17165071.6A patent/EP3228435B1/en active Active
- 2017-04-05 MX MX2020013401A patent/MX2020013401A/en unknown
- 2017-04-05 EP EP19196515.1A patent/EP3597386B1/en active Active
- 2017-04-06 CN CN201710227492.1A patent/CN107263844B/en active Active
-
2019
- 2019-11-27 US US16/697,491 patent/US11192279B2/en active Active
-
2021
- 2021-04-28 US US17/242,952 patent/US20210245397A1/en not_active Abandoned
- 2021-04-28 US US17/242,976 patent/US20210245398A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU385734A1 (en) * | 1971-04-02 | 1973-06-14 | В. Н. Хом ков, В. И. Рашевский , И. А. Корнилов Завод полимерного машиностроени Л. Б. Красина | WARMER MACHINE FOR PROCESSING POLYMERIC |
JPS50123772A (en) * | 1974-03-19 | 1975-09-29 | ||
JPS50126066A (en) * | 1974-03-23 | 1975-10-03 | ||
JPS53104770U (en) * | 1977-01-26 | 1978-08-23 | ||
JPS5821421U (en) * | 1981-08-04 | 1983-02-09 | 株式会社プラコ− | Screw in plastic extruder |
US20020136084A1 (en) * | 2001-01-19 | 2002-09-26 | Eastman Kodak Company | Multi-staged vented extrusion screw with dual channel depth pumping section |
US20040179425A1 (en) * | 2003-03-13 | 2004-09-16 | Sassi Dario Ivan | Mixing device for extruders |
US20110222363A1 (en) * | 2010-03-11 | 2011-09-15 | Mazzocca Timothy D | Lug type extruder screw |
US11192279B2 (en) * | 2016-04-06 | 2021-12-07 | Davis-Standard, Llc | Plasticating apparatus screw having grooves of varying angles and depths |
Also Published As
Publication number | Publication date |
---|---|
EP3228435B1 (en) | 2019-09-18 |
CN107263844A (en) | 2017-10-20 |
MX2017004428A (en) | 2018-08-16 |
MX2020013401A (en) | 2021-02-15 |
CA2963207C (en) | 2021-09-14 |
EP3789172B1 (en) | 2022-06-01 |
EP3228435A2 (en) | 2017-10-11 |
CN107263844B (en) | 2021-02-02 |
JP2017222156A (en) | 2017-12-21 |
CA2963207A1 (en) | 2017-10-06 |
US10532490B2 (en) | 2020-01-14 |
US20210245398A1 (en) | 2021-08-12 |
JP7009074B2 (en) | 2022-01-25 |
EP3789172A1 (en) | 2021-03-10 |
EP3789171B1 (en) | 2023-08-09 |
EP3597386B1 (en) | 2021-03-31 |
EP3597386A1 (en) | 2020-01-22 |
US20200094439A1 (en) | 2020-03-26 |
US20170291326A1 (en) | 2017-10-12 |
EP3789171A1 (en) | 2021-03-10 |
MX2020013400A (en) | 2021-02-15 |
KR20170114964A (en) | 2017-10-16 |
EP3228435A3 (en) | 2017-10-25 |
KR102309658B1 (en) | 2021-10-12 |
MX2020013399A (en) | 2021-02-15 |
US11192279B2 (en) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11192279B2 (en) | Plasticating apparatus screw having grooves of varying angles and depths | |
US7014353B2 (en) | Plasticating screw and apparatus | |
US10513051B2 (en) | Mixing section for plastic extrusion screw | |
US5816698A (en) | Screw and plasticating apparatus and method | |
JP2011189737A (en) | Projection type extruder screw | |
US6672753B1 (en) | Apparatus for plasticating thermoplastics | |
US6497508B1 (en) | Plasticating process, apparatus and screw with mixing | |
US5178458A (en) | Extruder screw mixing head | |
US6488399B1 (en) | Apparatus for plasticating thermoplastics | |
US20060018186A1 (en) | Apparatus for plasticating thermoplastic resin including polypropylene | |
US20170305057A1 (en) | Plastic processing screw | |
US6752528B1 (en) | Plasticating screw for efficient melting and mixing of polymeric material | |
EP2217425B1 (en) | Plasticating screw for polymeric material | |
KR102401052B1 (en) | Injection Molding Machine for Manufacturing Fiber Reinforced Plastic Moldings | |
US20040166191A1 (en) | Reservoir reducing screw tip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DAVIS-STANDARD, LLC, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHRISTIANO, JOHN P.;REEL/FRAME:056760/0491 Effective date: 20210526 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: BANK OF MONTREAL, AS COLLATERAL AGENT, CANADA Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:DAVIS-STANDARD, LLC;THERMOFORMING SYSTEMS, LLC;REEL/FRAME:058495/0515 Effective date: 20211210 |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, TEXAS Free format text: SECURITY INTEREST;ASSIGNOR:DAVIS-STANDARD, LLC;REEL/FRAME:066308/0392 Effective date: 20240131 |
|
AS | Assignment |
Owner name: THERMOFORMING SYSTEMS, LLC, WASHINGTON Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 058495/0515);ASSIGNOR:BANK OF MONTREAL, AS COLLATERAL AGENT;REEL/FRAME:066627/0842 Effective date: 20240131 Owner name: DAVIS-STANDARD, LLC, CONNECTICUT Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 058495/0515);ASSIGNOR:BANK OF MONTREAL, AS COLLATERAL AGENT;REEL/FRAME:066627/0842 Effective date: 20240131 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |