Nothing Special   »   [go: up one dir, main page]

US20210208254A1 - Ultra-small vertical cavity surface emitting laser (vcsel) and arrays incorporating the same - Google Patents

Ultra-small vertical cavity surface emitting laser (vcsel) and arrays incorporating the same Download PDF

Info

Publication number
US20210208254A1
US20210208254A1 US17/186,798 US202117186798A US2021208254A1 US 20210208254 A1 US20210208254 A1 US 20210208254A1 US 202117186798 A US202117186798 A US 202117186798A US 2021208254 A1 US2021208254 A1 US 2021208254A1
Authority
US
United States
Prior art keywords
type
contacts
laser diode
array
laser diodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/186,798
Inventor
Scott Burroughs
Brent Fisher
James Carter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ouster Inc
Sense Photonics Inc
Original Assignee
Sense Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sense Photonics Inc filed Critical Sense Photonics Inc
Priority to US17/186,798 priority Critical patent/US20210208254A1/en
Assigned to Sense Photonics, Inc. reassignment Sense Photonics, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FISHER, BRENT, BURROUGHS, SCOTT, CARTER, JAMES
Publication of US20210208254A1 publication Critical patent/US20210208254A1/en
Assigned to HERCULES CAPITAL, INC., AS AGENT reassignment HERCULES CAPITAL, INC., AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Ouster, Inc., Sense Photonics, Inc.
Assigned to Ouster, Inc. reassignment Ouster, Inc. RELEASE OF INTELLECTUAL PROPERTY SECURITY INTEREST AT REEL/FRAME NO. 059859/0035 Assignors: HERCULES CAPITAL, INC.
Assigned to Sense Photonics, Inc., Ouster, Inc. reassignment Sense Photonics, Inc. CORRECTIVE ASSIGNMENT TO CORRECT THE ADD THE SECOND ASSIGNEE PREVIOUSLY RECORDED AT REEL: 65350 FRAME: 826. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: HERCULES CAPITAL, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/041Ball lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/045Refractors for light sources of lens shape the lens having discontinuous faces, e.g. Fresnel lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0883Mirrors with a refractive index gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • H01S5/0028Laser diodes used as detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0215Bonding to the substrate
    • H01S5/0216Bonding to the substrate using an intermediate compound, e.g. a glue or solder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0217Removal of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02375Positioning of the laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18347Mesa comprising active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18377Structure of the reflectors, e.g. hybrid mirrors comprising layers of different kind of materials, e.g. combinations of semiconducting with dielectric or metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/1838Reflector bonded by wafer fusion or by an intermediate compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18397Plurality of active layers vertically stacked in a cavity for multi-wavelength emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4018Lasers electrically in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4037Edge-emitting structures with active layers in more than one orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4075Beam steering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • H01S5/426Vertically stacked cavities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/448Array [CCD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Definitions

  • the present invention relates to semiconductor-based lasers and related devices and methods of operation.
  • IoT Internet-of-Things
  • 3D detection and recognition may be needed for indoor navigation, for example, by industrial or household robots or toys.
  • Light based 3D measurements may be superior to radar (low angular accuracy, bulky) or ultra-sound (very low accuracy) in some instances.
  • a light-based 3D sensor system may include a detector (such as a photodiode or camera) and a light emitting device (such as a light emitting diode (LED) or laser diode) as light source, which typically emits light outside of the visible wavelength range.
  • a vertical cavity surface emitting laser (VCSEL) is one type of light emitting device that may be used in light-based sensors for measurement of distance and velocity in 3D space. Arrays of VCSELs may allow for power scaling and can provide very short pulses at higher power density.
  • Some embodiments described herein are directed to a laser diode, such as a VCSEL or other surface-emitting laser diode or edge-emitting laser diode or other semiconductor laser, and arrays incorporating the same.
  • a laser diode such as a VCSEL or other surface-emitting laser diode or edge-emitting laser diode or other semiconductor laser
  • the laser diode may be a surface-emitting laser diode.
  • the laser diode includes a semiconductor structure comprising an n-type layer, an active region (which may comprise at least one quantum well layer), and a p-type layer.
  • One of the n-type and p-type layers comprises a lasing aperture thereon having an optical axis oriented perpendicular to a surface of the active region between the n-type and p-type layers.
  • the laser diode further includes first and second contacts electrically connected to the n-type and p-type layers, respectively. The first and/or second contacts are smaller than the lasing aperture in at least one dimension (e.g., length, width, diameter).
  • the laser diode may be an edge-emitting laser diode.
  • the laser diode includes an n-type layer, an active region, a p-type layer, and first and second contacts electrically connected to the n-type and p-type layers, respectively.
  • a lasing aperture has an optical axis oriented parallel to a surface of the active region between the n-type and p-type layers.
  • the laser diode further includes first and second contacts electrically connected to the n-type and p-type layers, respectively. The first and/or second contacts may be smaller than the lasing aperture in at least one dimension (e.g., length, width, diameter).
  • a laser diode includes a semiconductor structure having an n-type layer, an active region, and a p-type layer.
  • One of the n-type and p-type layers includes a lasing aperture thereon having an optical axis oriented perpendicular to a surface of the active region between the n-type and p-type layers.
  • First and second contacts are electrically connected to the n-type and p-type layers, respectively. The first and/or second contacts are smaller than the lasing aperture in at least one dimension.
  • a contact area of first and/or second contacts may be smaller than an aperture area of the lasing aperture.
  • a ratio of the contact area to the aperture area is between about 0.05 to 30, about 0.1 to 20, about 1 to 10, or about 1 to 3.
  • the n-type and p-type layers may be first and second Bragg reflector layers, respectively, and the laser diode may be a vertical cavity surface emitting laser (VCSEL).
  • VCSEL vertical cavity surface emitting laser
  • a lateral conduction layer may include a surface having the semiconductor structure thereon.
  • One of the first and second contacts may be on the surface of the lateral conduction layer adjacent the semiconductor structure.
  • the semiconductor structure may include a residual tether portion and/or a relief feature at a periphery thereof.
  • the laser diode may be one of a plurality of discrete laser diodes arranged in an array on a surface of a non-native substrate. Electrically conductive thin-film interconnects may extend along the surface of the non-native substrate and onto the first and/or second contacts to electrically connect the laser diode to one or more of the plurality of laser diodes.
  • the laser diode may be free of electrical connections through the non-native substrate or the surface thereof.
  • the non-native substrate (and/or the surface thereof) may be electrically insulating, and/or the non-native substrate may be thermally conducting.
  • a spacing between the laser diode and at an immediately adjacent laser diodes of the plurality of laser diodes may be less than about 500 micrometers, less than about 200 micrometers, less than about 150 micrometers, less than about 100 micrometers, or less than about 50 micrometers, but may be greater than about 30 micrometers, greater than about 20 micrometers, or greater than about 10 micrometers.
  • the surface of the non-native substrate may be planar. In some embodiments, the surface of the non-native substrate may be curved. In some embodiments, the non-native substrate may include a flexible material that is bent to define a radius of curvature of the curved surface.
  • the electrically conductive thin-film interconnects may electrically connect a subset of the plurality of laser diodes in series (or anode-to-cathode), where the subset includes the immediately adjacent laser diodes.
  • the subset of the plurality of laser diodes that are electrically connected in series (or anode-to-cathode) may define a column (or other subset) of the array.
  • a concentration of the plurality of laser diodes at peripheral portions of the array may be less than a concentration of the plurality of laser diodes at a central portion of the array.
  • the array may further include a plurality of driver transistors on a surface of the non-native substrate adjacent the plurality of laser diodes.
  • the electrically conductive thin-film interconnects may electrically connect respective subsets of the plurality of laser diodes in series with respective driver transistors of the plurality of driver transistors.
  • a distance between the respective driver transistors and a closest laser diode of the respective subsets may be less than about 2 millimeters, less than about 1 millimeter, less than about 500 micrometers, less than about 150 micrometers, less than about 100 micrometers, or less than about 50 micrometers, but may be greater than about 30 micrometers, greater than about 20 micrometers, or greater than about 10 micrometers.
  • a method of fabricating a laser diode such as a VCSEL or other surface-emitting or edge-emitting laser diode, is provided.
  • a method of fabricating a laser diode includes providing a semiconductor structure having an n-type layer, an active region, and a p-type layer, and providing first and second contacts electrically connected to the n-type and p-type layers, respectively.
  • One of the n-type and p-type layers includes a lasing aperture thereon having an optical axis oriented perpendicular to a surface of the active region between the n-type and p-type layers.
  • First and second contacts are electrically connected to the n-type and p-type layers, respectively.
  • the first and/or second contacts are smaller than the lasing aperture in at least one dimension.
  • the method may further include fabricating an array of discrete laser diodes, for example, using micro-transfer printing, electrostatic adhesion, and/or other mass transfer techniques.
  • an array of discrete laser diodes (also referred to herein as a laser diode array or laser array) is provided.
  • the array of laser diodes may include surface-emitting laser diodes and/or edge-emitting laser diodes electrically connected in series and/or parallel by thin-film interconnects on non-native rigid and/or flexible substrates.
  • a laser array includes a plurality of laser diodes arranged on a non-native substrate, where each of the laser diodes includes a semiconductor structure having an n-type layer, an active region, and a p-type layer, and where one of the n-type and p-type layers includes a lasing aperture thereon having an optical axis oriented perpendicular to a surface of the active region between the n-type and p-type layers.
  • First and second contacts are electrically connected to the n-type and p-type layers, respectively, where he first and/or second contacts are smaller than the lasing aperture in at least one dimension.
  • the array of laser diodes may further include one or more driver transistors and/or devices of other types/materials (e.g. power capacitors, etc.) integrated in the array.
  • FIG. 1 is a diagram illustrating an example light-based 3D sensor system in accordance with some embodiments described herein.
  • FIG. 2A is a plan view illustrating an example laser diode with reduced anode and cathode contact dimensions in accordance with some embodiments described herein.
  • FIG. 2B is a cross-sectional view of the laser diode of FIG. 2A .
  • FIG. 2C is a perspective view illustrating an example laser diode in accordance with some embodiments described herein in comparison to a conventional VCSEL chip.
  • FIG. 3A is a perspective view illustrating a distributed emitter array including laser diodes in accordance with some embodiments described herein.
  • FIG. 3B is a perspective view illustrating a distributed emitter array including laser diodes on a curved substrate in accordance with some embodiments described herein.
  • FIGS. 4A-4F are perspective views illustrating an example fabrication process for laser diodes in accordance with some embodiments described herein.
  • FIGS. 4A ′- 4 G′ are cross-sectional views illustrating an example fabrication process for laser diodes in accordance with some embodiments described herein.
  • FIGS. 5A-5C are images of VCSEL arrays assembled in accordance with some embodiments described herein.
  • FIGS. 5D-5E are magnified images illustrating broken tether portions and relief features of VCSELs in accordance with some embodiments described herein.
  • FIG. 6A is a perspective view illustrating an example emitter array including heterogeneous integration of distributed laser diodes and distributed driver transistors in accordance with some embodiments described herein.
  • FIG. 6B is schematic view illustrating an equivalent circuit diagram for the distributed emitter array of FIG. 6A .
  • FIG. 6C is a cross-sectional view of the distributed emitter array taken along line 6 C- 6 C′ of FIG. 6A .
  • FIG. 7A is a perspective view illustrating an example LIDAR device in accordance with some embodiments described herein.
  • FIG. 7B is an exploded view illustrating example components of the LIDAR device of FIG. 7A .
  • FIG. 7C is a perspective view illustrating another example LIDAR device in accordance with some embodiments described herein.
  • FIG. 8 is a block diagram illustrating an example system architecture for a LIDAR device in accordance with some embodiments described herein.
  • FIG. 9 is a cross-sectional view illustrating an example laser diode array in accordance with further embodiments described herein.
  • a light-based 3D sensor system 100 such as a Light Detection and Ranging (LIDAR) system, may use time-of-flight (TOF)-based measurement circuit 110 and a 3D image reconstruction circuit 150 based on a signal received from an optical detector circuit 130 and associated optics 140 , with a pulsed light emitting device array 120 as a light source.
  • LIDAR Light Detection and Ranging
  • TOF time-of-flight
  • Some advantages of LIDAR systems may include long range; high accuracy; superior object detection and recognition; higher resolution; higher sampling density of 3D point cloud; and effectivity in diverse lighting and/or weather conditions.
  • Applications of LIDAR systems may include ADAS (Advanced Driver Assistance Systems), autonomous vehicles, UAVs (unmanned aerial vehicles), industrial automation, robotics, biometrics, modeling, augmented and virtual reality, 3D mapping, and security.
  • FIG. 1 illustrates a flash LIDAR system, where the pulsed light emitting device array 120 emits light for short durations over a relatively large area to acquire images, in contrast with some traditional scanning LIDAR techniques (which generate image frames by raster scanning).
  • some traditional scanning LIDAR techniques which generate image frames by raster scanning.
  • light emitting device arrays 120 described herein can be used for implementations of scanning LIDAR as well.
  • the light emitting device array 120 may include a plurality of electrically connected surface-emitting laser diodes, such as VCSELs, and may be operated with strong single pulses at low duty cycle or with pulse trains, typically at wavelengths outside of the visible spectrum. Because of sensitivity to background light and the decrease of the signal with distance, several watts of laser power may be used to detect a target T at a distance d of up to about 100 meters or more.
  • VCSELs surface-emitting laser diodes
  • some conventional VCSELs may have sizes defined by dimensions (e.g., length, width, and/or diameter) of about 150 micrometers ( ⁇ m) to about 200 ⁇ m, which may impose size and/or density constraints on sensor systems including an array of VCSELs.
  • This relatively large VCSEL size may be dictated for use with conventional pick-and-place machines, as well as for sufficient contact surface area for wire bond pads to provide electrical connections to the VCSEL.
  • some conventional solder ball or wire bond technology may require more than about 30 ⁇ m in length for the bond pad alone, while the tip used to pull the wire bond may have an accuracy on the order of tens of micrometers.
  • Some embodiments described herein provide light emitting devices, such as surface-emitting laser diodes (e.g., VCSELs), having reduced dimensions (e.g., lengths and/or widths of about 30 micrometers ( ⁇ m) or less) without affecting the device performance (e.g., power output).
  • the aperture of the VCSEL die (which is the active region where the lasing takes place) may be about 10 ⁇ m to about 20 ⁇ m in diameter.
  • the die length can be reduced to the aperture diameter plus a few microns by reducing or eliminating wasted (non-active) area, and by retaining a few microns (e.g., about 4 ⁇ m to about 6 ⁇ m or less) of combined chip length for the anode and the cathode contacts.
  • This may provide a reduction in dimensions (e.g., length and/or width) by a factor of about 10 or more (e.g., die lengths of about 15 micrometers ( ⁇ m) to about 20 ⁇ m, as compared to some conventional VCELs with die lengths of about 150 ⁇ m to about 200 ⁇ m).
  • these reduced die dimensions may allow for fabrication of emitter arrays including a greater density (e.g., thousands) of VCSELs or other laser diodes.
  • FIGS. 2A and 2B are plan and cross-sectional views illustrating an example surface-emitting light emitting device (shown as a vertical cavity surface emitting laser diode (VCSEL) chip or die 200 , also referred to herein as a VCSEL 200 ) in accordance with some embodiments described herein, which includes anode and cathode contacts 211 , 212 that are smaller than the lasing aperture 210 in at least one dimension (e.g., length, width, and/or diameter).
  • the VCSEL 200 includes an active region 205 with one or more quantum wells 203 for generation and emission of coherent light 209 .
  • the optical cavity axis 208 of the VCSEL 200 is oriented along the direction of current flow (rather than perpendicular to the current flow as in some conventional laser diodes), defining a vertical cavity with a length along the direction of current flow.
  • This cavity length of the active region 205 may be short compared with the lateral dimensions of the active region 205 , so that the radiation 209 emerges from the surface of the cavity rather than from its edge.
  • the active region 205 may be sandwiched between distributed Bragg reflector (DBR) mirror layers (also referred to herein as Bragg reflector layers or Bragg mirrors) 201 and 202 provided on a lateral conduction layer (LCL) 206 .
  • DBR distributed Bragg reflector
  • the LCL 206 may allow for improved electrical and/or optical characteristics (as compared to direct contact to the reflector layer 401 ) in some embodiments.
  • a surface of the LCL layer 206 may provide a print interface 215 including an adhesive layer that improves adhesion with an underlying layer or substrate.
  • the adhesive layer may be optically transparent to one or more wavelength ranges and/or can be refractive-index matched to provide desired optical performance.
  • the reflector layers 201 and 202 at the ends of the cavity may be made from alternating high and low refractive index layers.
  • This vertical construction may increase compatibility with semiconductor manufacturing equipment.
  • VCSELs emit light 209 perpendicular to the active region 205
  • tens of thousands of VCSELs can be processed simultaneously, e.g., by using standard semiconductor wafer processing steps to define the emission area and electrical terminals of the individual VCSELs from a single wafer.
  • the laser diode 200 may include other types of laser diodes that are configured to emit light 209 along an optical axis 208 that is oriented perpendicular to a substrate or other surface on which the device 200 is provided.
  • laser diodes and laser diode arrays as described herein are not so limited, and may include edge-emitting laser structures that are configured to emit light along an optical axis that is oriented parallel to a substrate or other surface on which the device is provided as well, as shown in the example of FIG. 9 .
  • the VCSEL 200 may be formed of materials that are selected to provide light emission at or over a desired wavelength range, which may be outside of the spectrum of light that is visible to the human eye.
  • the VCSEL 200 may be a gallium arsenide (GaAs)-based structure in some embodiments.
  • the active region 205 may include one or more GaAs-based layers (for example, alternating InGaAs/GaAs quantum well and barrier layers), and the Bragg mirrors 201 and 202 may include GaAs and aluminum gallium arsenide (Al x Ga (1-x) As).
  • the lower Bragg mirror 201 may be an n-type structure including alternating layers of n-AlAs/GaAs
  • the upper Bragg mirror 202 may be a p-type structure including alternating layers of p-AlGaAs/GaAs.
  • materials and/or material compositions of the layers 201 , 202 , and/or 205 may be tuned and/or otherwise selected to provide light emission at desired wavelengths, for example, using shorter wavelength (e.g., GaN-based) and/or longer wavelength (e.g., InP-based) emitting materials.
  • the VCSEL 200 includes a lasing aperture 210 having a dimension (illustrated as diameter D) of about 12 ⁇ m, and first and second electrically conductive contact terminals (illustrated as anode contact 211 and cathode contact 212 , also referred to herein as first and second contacts).
  • a first electrically conductive film interconnect 213 is provided on the first contact 211
  • a second electrically conductive film interconnect 213 is provided on the second contact 212 to provide electrical connections to the VCSEL 200 .
  • FIG. 2B more clearly illustrates the anode contact 211 and cathode contact 212 in cross section, with the conductive film interconnects 213 thereon.
  • the first and second contacts 211 and 212 may provide contacts to semiconductor regions of opposite conductivity type (P-type and N-type, respectively). Accordingly, embodiments described herein are configured for transfer of electric energy to the VCSEL contacts 211 and 212 through thin-film interconnects 213 , which may be formed by patterning an electrically conductive film, rather than incorporating wire bonds, ribbons, cables, or leads.
  • the interconnections 213 may be formed after providing the VCSEL 200 on a target substrate (e.g., a non-native substrate that is different from a source substrate on which the VCSEL 200 is formed), for example, using conventional photolithography techniques, and may be constructed to have low resistance.
  • materials for the electrically conductive film interconnects 213 may include aluminum or aluminum alloys, gold, copper, or other metals formed to a thickness of approximately 200 nm to approximately 500 nm.
  • the first and second conductive contacts 211 and 212 are smaller than the aperture 210 in one or more dimensions.
  • the overall dimensions of the VCSEL die 200 can be significantly reduced.
  • a dimension L can be reduced to about 16 ⁇ m (2 ⁇ m anode length+12 ⁇ m aperture+2 ⁇ m cathode length; all measured along dimension L) providing a 16 ⁇ 16 ⁇ m 2 die.
  • a dimension L can be reduced to about 18 ⁇ m (3 ⁇ m anode+12 ⁇ m aperture+3 ⁇ m cathode) providing a 18 ⁇ 18 ⁇ m 2 die.
  • Die dimensions L may be further reduced or slightly increased for smaller aperture dimensions D (e.g., 10 ⁇ m) or larger aperture dimensions D (e.g., 20 ⁇ m).
  • VCSEL dies 200 may achieve a contact area-to-aperture area ratio of about 0.05 to 30, about 0.1 to 20, about 1 to 10, or about 1 to 3, where the contact area refers to the surface area of electrical contacts 211 and/or 212 positioned on or adjacent the aperture 210 on the surface S.
  • the contacts 211 , 212 and interconnections 213 may be provided at other areas of the VCSEL die 200 (e.g., at corners, etc.).
  • VCSELs 200 in accordance with some embodiments described herein may be configured to emit light with greater than about 100 milliwatts (mW) of power within about a 1-10 nanosecond (ns) wide pulse width, which may be useful for LIDAR applications, among others.
  • mW milliwatts
  • ns nanosecond
  • more than 1 Watt peak power output with a 1 ns pulse width at a 10,000:1 duty cycle may be achieved from a single VCSEL element 200 , due for instance to the reduced capacitance (and associated reduction in RLC time constants) as compared to some conventional VCSELs.
  • VCSELs 200 as described herein may thus allow for longer laser lifetime (based upon low laser operating temperatures at high pulsed power), in combination with greater than about 200 meter (m) range (based on very high power emitter and increased detector sensitivity).
  • FIG. 2C is a plan view illustrating the VCSEL chip 200 in accordance with some embodiments described herein in comparison to a conventional VCSEL chip 10 .
  • the conventional VCSEL chip 10 may have a length L of about 200 ⁇ m, to provide sufficient area for the active region 5 and the top conductive wire bond pad 11 , which may function as an n-type or p-type contact.
  • VCSEL chips 200 in accordance with some embodiments described herein may have a length L of about 20 ⁇ m or less.
  • VCSEL chips 200 in accordance with some embodiments described herein require no bond pad, such that the optical aperture 210 occupies a majority of the overall surface area of the emitting surface S.
  • VCSEL chips 200 may thus have dimensions that are 1/100 th of those of some conventional VCSEL chips 10 , allowing for up to one hundred times more power per area of the emitting surface S, as well as reduced capacitance which may substantially reduce the RLC time constants associated with driving fast pulses into these devices.
  • Such an exponential reduction in size may allow for fabrication of VCSEL arrays including thousands of closely-spaced VCSELs 200 , some of which are electrically connected in series (or anode-to-cathode) on a rigid or flexible substrate, which may not be possible for some conventional closely spaced VCSELs that are fabricated on a shared electrical substrate.
  • multiple dies 200 in accordance with some embodiments described herein may be assembled and electrically connected within the footprint of the conventional VCSEL chip 10 .
  • this size reduction and elimination of the bond pad may allow for reduction in cost (of up to one hundred times), device capacitance, and/or device thermal output, as compared to some conventional VCSEL arrays.
  • FIG. 3A is a perspective view illustrating a distributed emitter array 300 a including laser diodes (illustrated as VCSELs 200 ) in accordance with some embodiments described herein.
  • the array 300 a (also referred to herein as a distributed VCSEL array (DVA)) may be assembled on a non-native substrate 307 a , for example, by micro-transfer printing, electrostatic adhesion, or other mass transfer techniques.
  • a non-native substrate also referred to herein as a target substrate
  • a target substrate may refer to a substrate on which the laser diodes 200 are arranged or placed, which differs from a native substrate on which the laser diodes 200 are grown or otherwise formed (also referred to herein as a source substrate).
  • the substrate 307 a may be rigid in some embodiments, or may be flexible in other embodiments, and/or may be selected to provide improved thermal characteristics as compared to the source substrate.
  • the non-native substrate 307 a may be thermally conducting and also electrically insulating (or coated with an insulating material, such as an oxide, nitride, polymer, etc.).
  • Electrically conductive thin-film interconnects 313 may be formed to electrically connect respective contacts of the laser diodes 200 in series and/or parallel configurations, and may be similar to the interconnects 213 described above. This may allow for dynamically adjustable configurations, by controlling operation of subsets of the laser diodes 200 electrically connected by the conductive thin-film interconnects 313 .
  • the array 300 a may include wiring 313 between VCSELs 200 that are not connected in parallel (e.g., connections without a shared or common cathode/anode). That is, the electrically conductive thin-film interconnects 313 may provide numerous variations of series/parallel interconnections, as well as additional circuit elements which may confer good yield (e.g. bypass routes, fuses, etc.).
  • the conductive thin-film interconnects 313 may be formed in a parallel process, before and/or after providing the laser diodes 200 on the substrate 307 a .
  • the conductive thin-film interconnects 313 may be formed by patterning an electrically conductive film on the substrate 307 a using conventional photolithography techniques, such that the laser diodes 200 of the array 300 are free of electrical connections through the substrate 307 a.
  • a spacing or pitch between two immediately adjacent laser diodes 200 is less than about 500 micrometers ( ⁇ m), or in some embodiments, less than about 200 ⁇ m, or less than about 150 ⁇ m, or less than about 100 ⁇ m, or less than about 50 ⁇ m, without connections to a shared or common cathode/anode. While some monolithic arrays may provide inter-laser diode spacings of less than about 100 ⁇ m, the laser diodes of such arrays may electrically share a cathode/anode and may mechanically share a rigid substrate in order to achieve such close spacings.
  • laser diode arrays as described herein can achieve spacings of less than about 150 ⁇ m between immediately adjacent, serially-connected laser diodes 200 (that do not have a common anode or cathode connection), on non-native substrates (e.g., rigid or flexible substrates) in some embodiments.
  • non-native substrates e.g., rigid or flexible substrates
  • some embodiments of the present disclosure may integrate other types of devices and/or devices formed from different materials (e.g. power capacitors, FETs, etc.) in-between laser diodes 200 at the sub-150 ⁇ m spacings described herein.
  • a concentration of the laser diodes 200 per area of the array 300 a may differ at different portions of the array 300 a .
  • some LIDAR sensor applications may benefit from higher resolution in a central portion of the array (corresponding to a forward direction of travel), but may not require such high resolution at peripheral regions of the array.
  • a concentration of VCSELs 200 at peripheral portions of the array 300 a may be less than a concentration of VCSELs 200 at a central portion of the array 300 a in some embodiments.
  • This configuration may be of use in applications where the substrate is flexible and may be curved or bent in a desired shape, as shown in FIG. 3B .
  • FIG. 3B is a perspective view illustrating a distributed emitter array 300 b including laser diodes 200 on a curved, non-native substrate 307 b in accordance with some embodiments described herein.
  • the substrate 307 b is formed of a flexible material that can be bent to provide curved emitting surface, such that VCSELs 200 mounted on a central portion 317 of the substrate 307 b face a forward direction, while VCSELs 200 mounted on peripheral portions 317 ′ of the substrate 307 b face oblique directions.
  • each VCSEL may provide narrow-field illumination (e.g., covering less than about 1 degree), and the arrays 300 a , 300 b may include hundreds or thousands of VCSELs 200 (e.g., an array of 1500 VCSELs, each covering a field of view of about 0.1 degree, can provide a 150 degree field of view).
  • the field of view can be tailored or changed as desired from 0 degrees up to about 180 degrees by altering the curvature of the substrate 307 b .
  • the curvature of the substrate 307 b may or may not be constant radius, and can thereby be designed or otherwise selected to provide a desired power distribution.
  • the substrate 307 b may define a cylindrical, acylindrical, spherical or aspherical curve whose normal surfaces provide a desired distribution of relative amounts of power.
  • the curvature of the substrate 307 b may be dynamically altered by mechanical or electro-mechanical actuation.
  • a mandrel can be used to form the cylindrical or acylindrical shape of the flexible non-native substrate 307 b .
  • the mandrel can also serve as a heat sink in some embodiments.
  • a spatial density or concentration of VCSELs 200 at peripheral portions of the array 300 b may be less than a concentration of VCSELs 200 at a central portion of the array 300 b in some embodiments.
  • the arrays 300 a and 300 b illustrated in FIGS. 3A and 3B may be scalable based on a desired quantity or resolution of laser diodes 200 , allowing for long range and high pulsed power output (on the order of kilowatts (kW)).
  • the spatial density or distribution of the laser diodes 200 on the surfaces of the substrates 307 a and 307 b can be selected to reduce optical power density, providing both long range and eye safety at a desired wavelength of operation (e.g., about 905 nm for GaAs VCSELs; about 1500 nm for InP VCSELs).
  • a desired optical power density may be further achieved by controlling the duty cycle of the signals applied to the VCSELs and/or by altering the curvature of the substrate.
  • the separation or spacing between adjacent laser diodes 200 within the arrays 300 a and 300 b may be selected to provide thermal management and improve heat dissipation during operation, depending on the substrate material.
  • a spacing between two immediately adjacent laser diodes 200 of greater than about 100 ⁇ m micrometers ( ⁇ m) may provide thermal benefits, especially for substrates with limited thermal conductivity.
  • the arrays 300 a and 300 b as described herein may thereby provide greater reliability, by eliminating wire bonds, providing a fault-tolerant architecture, and/or providing lower operating temperatures.
  • self-aligning, low-cost beam forming micro-optics e.g., ball lens arrays
  • the compact arrays 300 a and 300 b shown in FIGS. 3A and 3B may be fabricated in some embodiments using micro-transfer printing (MTP), electrostatic adhesion, and/or other massively parallel chip handling techniques that allow simultaneous assembly and heterogeneous integration of thousands of micro-scale devices on non-native substrates via epitaxial liftoff.
  • MTP micro-transfer printing
  • electrostatic adhesion electrostatic adhesion
  • other massively parallel chip handling techniques that allow simultaneous assembly and heterogeneous integration of thousands of micro-scale devices on non-native substrates via epitaxial liftoff.
  • the arrays of VCSELs 200 can be fabricated using micro-transfer printing processes similar to those described, for example, in U.S. Pat. No. 7,972,875 to Rogers et al. entitled “Optical Systems Fabricated By Printing-Based Assembly,” the disclosure of which is incorporated by reference herein in its entirety.
  • the arrays of VCSELs 200 can alternatively be fabricated using electrostatic adhesion or gripping transfer techniques similar to those described, for example in U.S. Pat. No. 8,789,573 to Bibl et al. entitled “Micro device transfer head heater assembly and method of transferring a micro device,” the disclosure of which is incorporated by reference herein in its entirety.
  • MTP, electrostatic adhesion, and/or other mass transfer techniques may allow for fabrication of VCSEL or other arrays of laser diodes with the small inter-device spacings described herein.
  • FIGS. 4A-4F are perspective views and FIGS. 4A ′- 4 G′ are cross-sectional views illustrating an example fabrication process for laser diodes (illustrated as VCSELs 400 ) in accordance with some embodiments described herein.
  • the VCSELs 200 described herein may also be fabricated using one or more of the processing operations shown in FIGS. 4A-4F in some embodiments.
  • ultra small VCSELs 400 in accordance with embodiments described herein can be grown on source substrates and assembled on a non-native target substrate using micro-transfer printing techniques.
  • FIGS. 4A-4F are perspective views and FIGS. 4A ′- 4 G′ are cross-sectional views illustrating an example fabrication process for laser diodes (illustrated as VCSELs 400 ) in accordance with some embodiments described herein.
  • the VCSELs 200 described herein may also be fabricated using one or more of the processing operations shown in FIGS. 4A-4F in some embodiments.
  • sacrificial layer 408 a lateral conduction layer 406 , a first, n-type distributed Bragg reflector (DBR) layer 401 , an active region 405 , and a second, p-type DBR layer 402 are sequentially formed on a source wafer or substrate 404 .
  • DBR distributed Bragg reflector
  • a plurality of VCSELs 400 may be simultaneously fabricated on the source wafer 404 , with reduced or minimal spacing between adjacent VCSELs 400 to increase or maximize the number of VCSELs that may be simultaneously fabricated on the wafer 404 .
  • a plurality of VCSEL devices may be fabricated on a single die or chiplet that is released from the substrate 404 for printing. Also, the transfer techniques described in greater detail below may allow for reuse of the source wafer 404 for subsequent fabrication of additional VCSELs.
  • the material compositions of the layers 406 , 401 , 405 , and 402 may be selected to provide a desired emission wavelength and emission direction (optical axis).
  • the layers 406 , 401 , 405 , and 402 may be gallium arsenide (GaAs)-based or indium phosphide (InP)-based in some embodiments.
  • GaAs gallium arsenide
  • InP indium phosphide
  • a lateral conduction layer 406 , an AlGaAs n-type high-reflectivity distributed Bragg reflector (DBR), and an active region 405 are sequentially formed on the source wafer 404 .
  • DBR distributed Bragg reflector
  • the active region 405 may be formed to include InAlGaAs strained quantum wells designed to provide light emission over a desired wavelength, and is followed by formation of a p-type DBR output mirror 402 .
  • a top contact metallization process is performed to form a p-contact (e.g., an anode contact) 411 on the p-type DBR layer 402 .
  • a p-contact e.g., an anode contact
  • Ti/Pt/Au ring contacts of different dimensions may be deposited to form the anode or p-contact 411 .
  • An aperture 410 may be defined within a perimeter of the p-contact 411 .
  • an oxide layer may be provided between the active region 405 and the p-type DBR layer 402 to define boundaries of the aperture 410 . The placement and design of the aperture 410 may be selected to minimize optical losses and current spreading.
  • a top mesa etching process is performed to expose the active region 405 and a top surface of the n-type DBR layer 401 , and an oxidation process is performed to oxidize the exposed surfaces, (including the exposed sidewalls of the active region 405 ), and in particular to laterally define boundaries of the optical aperture 410 .
  • a bottom contact metallization process is performed to expose and form an n-type (e.g., cathode) contact 412 on a surface of the lateral conduction layer 406 .
  • the n-type contact 412 may alternatively be formed on the n-type DBR layer 401 to provide the top-side contact.
  • an isolation process is performed to define respective lateral conduction layers 406 , and an anchor material (e.g., photoresist layer) is deposited and etched to define photoresist anchors 499 and inlets to expose sacrificial release layer 408 for epitaxial lift-off.
  • an anchor material e.g., photoresist layer
  • FIGS. 4E and 4E ′ an undercut etching process is performed to remove portions of the sacrificial release layer 408 such that the anchors 499 suspend the VCSEL die 400 over the source wafer 404 .
  • the operations of FIGS. 44E and 4E ′ may be followed by a micro-transfer printing process, as shown in FIGS.
  • 4F and 4F ′ which may utilize an elastomeric and/or other stamp 490 to break the anchors 499 , adhere the VCSEL die 400 (along with multiple other VCSEL dies 400 on the source wafer 404 ) to a surface of the stamp 490 , and simultaneously transfer the multiple VCSEL dies 400 (which have been adhered to the surface of the stamp) to a non-native target substrate 407 by contacting the surface of the stamp including the dies 400 thereon with a surface of the non-native target substrate 407 , as shown in FIG. 4G ′.
  • an electrostatic gripper-based transfer process may utilize an electrostatic transfer head to adhere the VCSEL die 400 (along with multiple other VCSEL dies 400 on the source wafer 404 ) to a surface of the head using the attraction of opposite charges, and simultaneously transfer the VCSEL dies 400 to a non-native target substrate.
  • each VCSEL die 400 may include a broken or fractured tether portion 499 t (e.g., a residual portion of the anchor structure 499 ) protruding from or recessed within an edge or side surface of the die 400 (and/or a corresponding relief feature at a periphery of the die 400 ), which may remain upon transfer of the VCSEL dies 400 to the non-native substrate 407 .
  • a broken or fractured tether portion 499 t e.g., a residual portion of the anchor structure 499
  • the non-native target substrate may be a rigid or flexible destination substrate for the VCSEL array, or may be a smaller interposer or “chiplet” substrate. Where the target substrate is the destination substrate for the array, an interconnection process may form a conductive thin film layer on the target substrate including the assembled VCSEL dies 400 thereon, and may pattern the conductive thin film layer to define thin-film metal interconnects that provide desired electrical connections between the VCSEL dies 400 .
  • the interconnection process may be performed after the VCSEL dies 400 are assembled on the destination substrate, or may be performed in a pre-patterning process on the destination substrate before the VCSEL dies 400 are assembled such that the electrical connections between the VCSEL dies 400 are realized upon assembly (with no interconnection processing required after the transfer of the dies 400 onto the substrate).
  • the target substrate is a chiplet
  • the VCSEL dies 400 may be connected in parallel via the chiplet.
  • the chiplets including the VCSEL dies 400 thereon may then be assembled (via transfer printing, electrostatic adhesion, or other transfer process) onto a destination substrate for the array, which may be pre- or post-patterned to provide electrical connections between the chiplets.
  • the thin-film metal interconnects may be defined on and/or around the broken tether portion 499 t protruding from the edge of the die(s) 400 in some embodiments.
  • the VCSELs 400 may also be thinner than some conventional VCSELs which remain connected to their native substrate, such as the VCSEL 10 of FIG. 2C .
  • the VCSEL 400 may have a thickness t (e.g., a combined thickness of the semiconductor stack including the layers 406 , 401 , 405 , and 402 ) of about 1 micrometers ( ⁇ m) to about 20 ⁇ m.
  • FIGS. 5A-5C are images of VCSEL arrays 500 in accordance with some embodiments described herein, which were assembled using micro-transfer printing processes.
  • FIG. 5A illustrates a VCSEL array 500 of about 11,000 lasers with an inter-VCSEL spacing of about 200 micrometers ( ⁇ m) or less between adjacent VCSELs 200 after assembly on a non-native substrate 507 , with the inset image of FIG. 5B and the image of 5 C illustrating magnified views of portions of the array 500 including about 350 lasers and 9 lasers, respectively, in accordance with some embodiments described herein.
  • the inter-VCSEL spacing between immediately adjacent VCSELs 200 may be less than about 150 ⁇ m, or less than about 100 ⁇ m or less than about 50 ⁇ m on the source substrate in some embodiments.
  • the array 500 may include 100 VCSELs or more within a footprint or area of 5 square millimeters (mm 2 ) or less.
  • FIGS. 5D-5E are magnified images illustrating broken tether portions and relief features of VCSEL structures in accordance with some embodiments described herein.
  • a transfer-printed VCSEL 510 such as one of the VCSELs 200 ) or other laser diode as described herein may include one or more residual or broken tether portions 499 t and/or relief features 599 at a periphery thereof.
  • the relief features 599 may be patterned or otherwise provided along the periphery of VCSEL 510 to partially define the tethers 499 and areas for preferential fracture of the tethers 499 .
  • the broken tether portions 499 t and relief features 599 are illustrated as being present along a periphery of the lateral conduction layer (LCL) 506 ; however, it will be understood that broken tether portions 499 t and/or relief features 599 may be present in or along a periphery of any of the layers that may be provided on a non-native substrate by transfer-printing processes described herein, for example, any of the epitaxially grown layers 406 , 405 , 401 , 402 formed in fabricating the active region 405 on a source wafer or substrate 404 in the examples of FIGS. 4A-4F and 4A ′- 4 G′.
  • LCL lateral conduction layer
  • the broken tether portion 499 t may comprise a material and thickness corresponding to that of the LCL layer 506 (or other layer associated with the active region).
  • peripheral or edge portions of the LCL 506 may be partially etched, and as such, the relief pattern 599 of the tether features 499 t may be thinner than the LCL 506 (or other layer associated with the active region).
  • the fracture of the tethers 499 during the “Pick” operation (such as shown in FIG. 4G ′) may occur in the resist layer 4991 itself, and the broken tether portions 499 t may comprise a material and thickness corresponding to that of the resist layer 4991 .
  • the broken tether portion 499 t may interact with the print adhesive or epoxy, and also remains on the fully processed device, even after resist develop and/or resist removal processes. More generally, some laser diode structures in accordance with embodiments described herein may include at least one of a broken tether portion 499 t or a relief pattern or feature 599 along a periphery or edge of the laser diode structure.
  • some embodiments described herein may use MTP to print and integrate hundreds or thousands of VCSELs or other surface-emitting laser diodes into small-footprint light-emitting arrays.
  • MTP may be advantageous by allowing simultaneous manipulation and wafer-level assembly of thousands of laser diode devices.
  • each of the laser diodes may have aperture dimensions as small as about 1-10 ⁇ m, thereby reducing the size (and cost) of lasers incorporating such VCSEL arrays by a factor of up to 100.
  • Other embodiments may include substrates with aperture dimensions even smaller than about 1 ⁇ m in order to realize different performance such as modified near and far field patterns.
  • MTP allows reuse of the source wafer (e.g., GaAs or InP) for growth of new devices after the transfer printing process, further reducing fabrication costs (in some instances, by up to 50%).
  • MTP may also allow heterogeneous integration and interconnection of laser diodes of different material systems (e.g., GaAs or InP lasers) and/or driver transistors (as discussed below) directly onto silicon integrated circuits (ICs).
  • source wafers may be used and reused in a cost-effective manner, to fabricate laser diodes (e.g., InP-based VCSELs) that can provide high power with eye safety, as well as reduced ambient noise.
  • MTP may be used in some embodiments to reduce emitter costs, and allow fabrication of high power, high resolution distributed VCSEL arrays (DVAs) including multiple hundreds or thousands of VCSELs.
  • embodiments described herein can provide DVAs having a wide field of view (FoV), up to 180 degrees horizontal.
  • the optical power dispersed via the DVA can be configured for eye safety and efficient heat dissipation.
  • low-cost, self-aligning, beam forming micro-optics may be integrated within the curved DVA.
  • FIG. 6A is a perspective view illustrating an example emitter array 600 including heterogeneous integration of distributed surface-emitting laser diodes (illustrated as VCSELs 200 ) and distributed driver transistors 610 in accordance with some embodiments described herein.
  • distributed circuit elements may refer to laser diodes, driver transistors, and/or other circuit elements that are assembled in various desired positions throughout a laser diode array, and such an array of distributed circuit elements is referred to herein as a distributed array.
  • FIG. 6B is schematic view illustrating an equivalent circuit diagram for the distributed emitter array 600 of FIG. 6A
  • FIG. 6C is a cross-sectional view of the distributed emitter array 600 taken along line 6 C- 6 C′ of FIG. 6A .
  • the array 600 (also referred to herein as a DVA) may be assembled on a non-native substrate 607 , for example, by micro-transfer printing or other techniques.
  • the substrate 607 may be rigid in some embodiments, or may be flexible in other embodiments.
  • the array 600 further includes integrated driver transistors 610 that are assembled on the substrate 607 adjacent to one or more of the VCSELs 200 .
  • the drivers 610 and laser diodes 200 may include different semiconductor materials and/or technologies that have incompatible fabrication processes.
  • the driver transistors 610 may be assembled on the substrate 607 using a micro-transfer printing (MTP) process.
  • MTP micro-transfer printing
  • an array including hundreds or thousands of driver transistors 610 may be provided. Electrically conductive thin-film interconnects 613 may be formed to electrically connect respective contacts of the driver transistors 610 and laser diodes 200 in series and/or parallel configurations. Spacings between a driver transistor 610 and an immediately adjacent laser diode 200 may be less than about 2 millimeters, less than about 1 millimeter, less than about 500 micrometers, less than about 150 micrometers ( ⁇ m), or in some embodiments, less than about 100 ⁇ m, or less than about 50 ⁇ m, which may provide reduced parasitic impedance therebetween (e.g., up to 100 times lower than where the driver transistor 610 is located off-chip or off-substrate).
  • the array 600 may include wiring 613 between VCSELs 200 that are not connected in parallel (e.g., no common cathode/anode). Interconnection designs that do not simply place all elements of the array in parallel (e.g., without a common anode or cathode connection) may offer the advantage of lowering current requirements for the array, which can reduce inductive losses and increase switching speed. Varied interconnection designs also provide for the inclusion of other devices embedded or integrated within the electrically interconnected array (e.g., switches, gates, FETs, capacitors, etc.) as well as structures which enable fault tolerance in the manufacture of the array (e.g. fuses, bypass circuits, etc.) and thus confer yield advantages. For example, as illustrated in FIG.
  • the array 600 includes a plurality of strings of VCSELs 200 that are electrically connected in series (or anode-to-cathode) to define columns (or other subsets or sub-arrays) of the array 600 .
  • the array 600 further includes an array of driver transistors 610 , with each driver 610 electrically connected in series with a respective string of serially- or anode-to-cathode-connected VCSELs 200 .
  • the conductive thin-film interconnects 613 may be formed in a parallel process after providing the laser diodes 200 and driver transistors 610 on the substrate 607 , for example by patterning an electrically conductive film using conventional photolithography techniques.
  • the driver transistors 610 and laser diodes 200 of the array 600 are free of wire bonds and/or electrical connections through the substrate 607 . Due to the smaller dimensions of the laser diodes 200 and the driver transistors 610 and the degree of accuracy of the assembly techniques described herein, a spacing between immediately adjacent laser diodes 200 and/or driver transistors 610 may be less than about 150 micrometers ( ⁇ m), or in some embodiments, less than about 100 ⁇ m or less than about 50 ⁇ m.
  • Integrating the driver transistors 610 on the substrate 607 in close proximity to the VCSELs 200 may thus shorten the electrical connections 613 between elements, thereby reducing parasitic resistance, inductance, and capacitance, and allowing for faster switching response.
  • the driver transistors 610 are arranged in an array such that each driver transistor 610 is connected in series with a column (or other subset or sub-array) of serially-connected (or otherwise anode-to-cathode—connected) VCSELs 200 , allowing for individual control of respective columns/strings of VCSELs 200 .
  • a column or other subset or sub-array
  • serially-connected or otherwise anode-to-cathode—connected
  • driver transistors 610 may be provided (e.g., drivers for control of rows of serially-connected VCSELs 200 as well as columns) for finer control of respective VCSELs or groups of VCSELs and/or output power.
  • Another example would be the addition of capacitors or similar electrical storage devices close to the elements of the array for faster pulse generation, for example, on the order of sub-nanosecond (ns), in contrast to some conventional designs that may be on the order of about 1-10 ns or more.
  • the substrate 607 may be flexible in some embodiments; thus, the array 600 may be bent to provide a desired curvature, similar to the array 300 b of FIG. 3B .
  • the array 600 may be scalable based on a desired quantity or resolution of laser diodes 200 , allowing for long range and high pulsed power output (on the order of kilowatts (kW)).
  • the distribution of the laser diodes 200 on the surfaces of the substrate 607 can be selected and/or the operation of the laser diodes can be dynamically adjusted or otherwise controlled (via the transistors 610 ) to reduce optical power density, providing both long range and eye safety at a desired wavelength of operation (e.g., about 905 nm for GaAs VCSELs; about 1500 nm for InP VCSELs).
  • the spacing between elements 200 and/or 610 may be selected to provide thermal management and improve heat dissipation during operation.
  • Arrays 600 as described herein may thereby provide improved reliability, by eliminating wire bonds, providing a fault-tolerant architecture, and/or providing lower operating temperatures.
  • self-aligning, low-cost beam forming micro-optics e.g., ball lens arrays
  • FIG. 7A is a perspective view illustrating a LIDAR device 700 a including surface-emitting laser diodes (such as the VCSELs 200 ) in accordance with embodiments described herein, illustrated relative to a pencil for scale.
  • FIG. 7C is a perspective view illustrating an alternative LIDAR device 700 c in accordance with embodiments described herein.
  • FIGS. 7A and 7C illustrate a distributed vertical-cavity-surface-emitting laser (VCSEL) array-based, solid-state Flash LIDAR device 700 a , 700 c .
  • the LIDAR device 700 a , 700 c is illustrated with reference to a curved array 720 , such as the curved array 300 b of FIG.
  • the LIDAR device 700 a , 700 c is not so limited, and may alternatively implement the array 300 a of FIG. 3A , the array 600 of FIGS. 6A-6C , and/or other arrays of laser diodes 200 that provide features described herein.
  • long range in some instances, greater than about 200 m
  • high resolution in particular embodiments, about 0.1° horizontal and vertical compact size defined by reduced dimensions (in particular embodiments, about 110 ⁇ 40 ⁇ 40 mm)
  • FIG. 7B is an exploded view 700 b illustrating components of the LIDAR device 700 a of FIG. 7A .
  • the device housing or enclosure 701 includes a connector 702 for electrical connection to a power source and/or other external devices.
  • the enclosure 701 is sized to house a light emitter array 720 , a light detector array 730 , electronic circuitry 760 , detector optics 740 (which may include one or more lenses and/or optical filters), and a lens holder 770 .
  • a transparent cover 780 is provided to protect the emitter array 720 and detector optics 740 , and may include beam shaping and/or filtering optics in some embodiments.
  • the light emitter array 720 may be a pulsed laser array, such as any of the VCSEL arrays 300 a , 300 b , 600 described herein.
  • the light emitter array 720 may include a large quantity (e.g., hundreds or even thousands) of distributed, ultra small laser diodes 200 , which are collectively configured to provide very high levels of power (by exploiting benefits of the large number of very small devices).
  • Using a large number of small devices rather than a small number of large devices allows devices that are very fast, low power and that operate at a low temperature to be integrated in an optimal configuration (with other devices, such as transistors, capacitors, etc.) to provide performance not as easily obtained by a small number of larger laser devices.
  • the laser diodes 200 may be transfer printed simultaneously onto a non-native curved or flexible substrate in some embodiments.
  • Beam shaping optics that are configured to project high aspect ratio illumination from the light emitter array 720 onto a target plane may also be provided on or adjacent the light emitter array 720 .
  • the light detector array 730 may include one or more optical detector devices, such as pin, pinFET, linear avalanche photodiode (APD), silicon photomultiplier (SPM), and/or single photon avalanche diode (SPAD) devices, which are formed from materials or otherwise configured to detect the light emitted by the light emitter array 720 .
  • the light detector array 730 may include a quantity of optical detector devices that are sufficient to achieve a desired sensitivity, fill factor, and resolution.
  • the light detector array 730 may be fabricated using micro-transfer printing processes as described herein.
  • the detector optics 740 may be configured to collect high aspect ratio echo and focus target images onto focal plane of the light detector array 730 , and may be held on or adjacent the light detector array 730 by the lens holder 770 .
  • the electronic circuitry 760 integrates the above and other components to provide multiple return LIDAR point cloud data to data analysis. More particularly, the electronic circuitry 760 is configured to control operation of the light emitter array 720 and the light detector array 730 to output filtered, high-quality data, such as 3D point cloud data, to one or more external devices via the connector 702 .
  • the external devices may be configured to exploit proprietary and/or open source 3D point cloud ecosystem and object classification libraries for analysis of the data provided by the LIDAR device 700 a , 700 c .
  • such external devices may include devices configured for applications including but not limited to autonomous vehicles, ADAS, UAVs, industrial automation, robotics, biometrics, modeling, augmented and virtual reality, 3D mapping, and/or security.
  • FIG. 8 is a block diagram illustrating an example system 800 for a LIDAR device, such as the LIDAR device 700 a , 700 b , 700 c of FIGS. 7A-7C , in accordance with some embodiments described herein.
  • the system 800 integrates multiple electrically coupled integrated circuit elements to provide the LIDAR device functionality described herein.
  • the system 800 includes a processor 805 that is coupled to a memory device 810 , an illumination circuit 820 , and a detection circuit 830 .
  • the memory device 810 stores computer readable program code therein, which, when executed by the processor, operates the illumination circuit 820 and the detection circuit 830 to collect, process, and output data, such as 3D point cloud data, indicative of one or more targets in the operating environment.
  • the system 800 may further include a thermistor 842 and associated temperature compensation circuit 843 , as well as a power management circuit 841 that is configured to regulate voltage or power to the system 800 .
  • the illumination circuit 820 includes an array of surface-emitting laser diodes 200 , driver transistor(s) 610 , and associated circuit elements 611 , electrically connected in any of various configurations.
  • the illumination circuit 820 may be a laser array including rows and/or columns of VCSELs 200 , such as any of the VCSEL arrays 300 a , 300 b , 600 described herein. Operation of the illumination circuit 820 to emit light pulses 809 may be controlled by the processor 805 via a modulation and timing circuit 815 to generate a pulsed light output 809 . Beam-shaping and/or focusing optics may also be included in or adjacent the array of laser diodes 200 to shape and/or direct the light pulses 809 .
  • the detection circuit 830 may include a time-of-flight (ToF) detector 851 coupled to a ToF controller 852 .
  • the ToF detector 851 may include one or more optical detector devices, such as an array of pin, pinFET, linear avalanche photodiode (APD), silicon photomultiplier (SPM), and/or single photon avalanche diode (SPAD) devices.
  • the ToF controller 852 may determine the distance to a target by measuring the round trip (“time-of-flight”) of a laser pulse 809 ′ reflected by the target and received at the ToF detector 851 .
  • the reflected laser pulse 809 ′ may be filtered by an optical filter 840 , such as a bandpass filter, prior to detection by the ToF detector 851 .
  • the output of the detection block 830 may be processed to suppress ambient light, and then provided to the processor 805 , which may perform further processing and/or filtering (via signal processor discriminator filter 817 , and may provide the filtered output data (for example, 3D point cloud data) for data analysis.
  • the data analysis may include frame filtering and/or image processing.
  • the data analysis may be performed by an external device, for example, an autonomous vehicle intelligence system.
  • FIG. 9 is a cross-sectional view illustrating an example laser diode array 900 including edge-emitting laser diodes 910 in accordance with further embodiments described herein.
  • a laser diode 910 includes an active region 905 (which may include one or more quantum wells) for generation and emission of coherent light 909 .
  • the active region 905 is provided between p-type and n-type layers 901 and 902 , with contacts 912 and 911 thereon, respectively.
  • a diffraction grating layer may be included to provide feedback for lasing.
  • the optical cavity axis of the laser diode 910 is oriented perpendicular to the direction of current flow, defining an edge-emitting device, so that the radiation 909 emerges from the edge of the device 910 rather than from a top surface thereof.
  • the devices 910 may be assembled on a non-native substrate 907 , for example, by micro-transfer printing, electrostatic adhesion, or other mass transfer techniques.
  • Respective mirror elements may also be assembled on the substrate 907 (for example, by micro-transfer printing, electrostatic adhesion, or other mass transfer techniques), and oriented relative to the optical cavity axis of a laser diode 910 that is to be provided adjacent thereto, such that the radiation 909 from the laser diode 910 is reflected and ultimately emitted in a direction perpendicular to the substrate 907 .
  • the substrate 907 may be rigid in some embodiments, or may be flexible in other embodiments, and electrically conductive thin-film interconnects may be formed to electrically connect respective contacts of the laser diodes 910 in series and/or parallel configurations, at spacings similar to those described with reference to the arrays 300 a , 300 b , and/or 600 herein.
  • the array 900 may include other types of devices and/or devices formed from different materials (e.g., power capacitors, FETs, micro-lens arrays, etc.) integrated with the laser diodes 910 on the substrate 907 at the spacings described herein.
  • first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention.
  • relative terms such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure.
  • Embodiments of the invention are described herein with reference to illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A laser diode includes a semiconductor structure having an n-type layer, an active region, and a p-type layer. One of the n-type and p-type layers includes a lasing aperture thereon having an optical axis oriented perpendicular to a surface of the active region between the n-type and p-type layers. First and second contacts are electrically connected to the n-type and p-type layers, respectively. The first and/or second contacts are smaller than the lasing aperture in at least one dimension. Related arrays and methods of fabrication are also discussed.

Description

    CLAIM OF PRIORITY
  • This application is a continuation of and claims priority from U.S. patent application Ser. No. 15/951,681 filed Apr. 12, 2018, which claims priority from U.S. Provisional Patent Application No. 62/484,701 entitled “LIGHT DETECTION AND RANGING (LIDAR) DEVICES AND METHODS OF FABRICATING THE SAME” filed Apr. 12, 2017, and U.S. Provisional Patent Application No. 62/613,985 entitled “ULTRA-SMALL VERTICAL CAVITY SURFACE EMITTING LASER (VCSEL) AND ARRAYS INCORPORATING THE SAME” filed Jan. 5, 2018, with the United States Patent and Trademark Office, the disclosures of which are incorporated by reference herein.
  • FIELD
  • The present invention relates to semiconductor-based lasers and related devices and methods of operation.
  • BACKGROUND
  • Many emerging technologies, such as Internet-of-Things (IoT) and autonomous navigation, may involve detection and measurement of distance to objects in three-dimensional (3D) space. For example, automobiles that are capable of autonomous driving may require 3D detection and recognition for basic operation, as well as to meet safety requirements. 3D detection and recognition may also be needed for indoor navigation, for example, by industrial or household robots or toys.
  • Light based 3D measurements may be superior to radar (low angular accuracy, bulky) or ultra-sound (very low accuracy) in some instances. For example, a light-based 3D sensor system may include a detector (such as a photodiode or camera) and a light emitting device (such as a light emitting diode (LED) or laser diode) as light source, which typically emits light outside of the visible wavelength range. A vertical cavity surface emitting laser (VCSEL) is one type of light emitting device that may be used in light-based sensors for measurement of distance and velocity in 3D space. Arrays of VCSELs may allow for power scaling and can provide very short pulses at higher power density.
  • SUMMARY
  • Some embodiments described herein are directed to a laser diode, such as a VCSEL or other surface-emitting laser diode or edge-emitting laser diode or other semiconductor laser, and arrays incorporating the same.
  • In some embodiments, the laser diode may be a surface-emitting laser diode. The laser diode includes a semiconductor structure comprising an n-type layer, an active region (which may comprise at least one quantum well layer), and a p-type layer. One of the n-type and p-type layers comprises a lasing aperture thereon having an optical axis oriented perpendicular to a surface of the active region between the n-type and p-type layers. The laser diode further includes first and second contacts electrically connected to the n-type and p-type layers, respectively. The first and/or second contacts are smaller than the lasing aperture in at least one dimension (e.g., length, width, diameter).
  • In some embodiments, the laser diode may be an edge-emitting laser diode. The laser diode includes an n-type layer, an active region, a p-type layer, and first and second contacts electrically connected to the n-type and p-type layers, respectively. A lasing aperture has an optical axis oriented parallel to a surface of the active region between the n-type and p-type layers. The laser diode further includes first and second contacts electrically connected to the n-type and p-type layers, respectively. The first and/or second contacts may be smaller than the lasing aperture in at least one dimension (e.g., length, width, diameter).
  • According to some embodiments, a laser diode includes a semiconductor structure having an n-type layer, an active region, and a p-type layer. One of the n-type and p-type layers includes a lasing aperture thereon having an optical axis oriented perpendicular to a surface of the active region between the n-type and p-type layers. First and second contacts are electrically connected to the n-type and p-type layers, respectively. The first and/or second contacts are smaller than the lasing aperture in at least one dimension.
  • In some embodiments, a contact area of first and/or second contacts may be smaller than an aperture area of the lasing aperture. For example, a ratio of the contact area to the aperture area is between about 0.05 to 30, about 0.1 to 20, about 1 to 10, or about 1 to 3.
  • In some embodiments, the n-type and p-type layers may be first and second Bragg reflector layers, respectively, and the laser diode may be a vertical cavity surface emitting laser (VCSEL).
  • In some embodiments, a lateral conduction layer may include a surface having the semiconductor structure thereon. One of the first and second contacts may be on the surface of the lateral conduction layer adjacent the semiconductor structure.
  • In some embodiments, the semiconductor structure may include a residual tether portion and/or a relief feature at a periphery thereof.
  • In some embodiments, the laser diode may be one of a plurality of discrete laser diodes arranged in an array on a surface of a non-native substrate. Electrically conductive thin-film interconnects may extend along the surface of the non-native substrate and onto the first and/or second contacts to electrically connect the laser diode to one or more of the plurality of laser diodes.
  • In some embodiments, the laser diode may be free of electrical connections through the non-native substrate or the surface thereof. The non-native substrate (and/or the surface thereof) may be electrically insulating, and/or the non-native substrate may be thermally conducting.
  • In some embodiments, a spacing between the laser diode and at an immediately adjacent laser diodes of the plurality of laser diodes may be less than about 500 micrometers, less than about 200 micrometers, less than about 150 micrometers, less than about 100 micrometers, or less than about 50 micrometers, but may be greater than about 30 micrometers, greater than about 20 micrometers, or greater than about 10 micrometers.
  • In some embodiments, the surface of the non-native substrate may be planar. In some embodiments, the surface of the non-native substrate may be curved. In some embodiments, the non-native substrate may include a flexible material that is bent to define a radius of curvature of the curved surface.
  • In some embodiments, the electrically conductive thin-film interconnects may electrically connect a subset of the plurality of laser diodes in series (or anode-to-cathode), where the subset includes the immediately adjacent laser diodes. In some embodiments, the subset of the plurality of laser diodes that are electrically connected in series (or anode-to-cathode) may define a column (or other subset) of the array.
  • In some embodiments, a concentration of the plurality of laser diodes at peripheral portions of the array may be less than a concentration of the plurality of laser diodes at a central portion of the array.
  • In some embodiments, the array may further include a plurality of driver transistors on a surface of the non-native substrate adjacent the plurality of laser diodes. In some embodiments, the electrically conductive thin-film interconnects may electrically connect respective subsets of the plurality of laser diodes in series with respective driver transistors of the plurality of driver transistors. In some embodiments, a distance between the respective driver transistors and a closest laser diode of the respective subsets may be less than about 2 millimeters, less than about 1 millimeter, less than about 500 micrometers, less than about 150 micrometers, less than about 100 micrometers, or less than about 50 micrometers, but may be greater than about 30 micrometers, greater than about 20 micrometers, or greater than about 10 micrometers.
  • In some embodiments, a method of fabricating a laser diode, such as a VCSEL or other surface-emitting or edge-emitting laser diode, is provided. According to some embodiments, a method of fabricating a laser diode includes providing a semiconductor structure having an n-type layer, an active region, and a p-type layer, and providing first and second contacts electrically connected to the n-type and p-type layers, respectively. One of the n-type and p-type layers includes a lasing aperture thereon having an optical axis oriented perpendicular to a surface of the active region between the n-type and p-type layers. First and second contacts are electrically connected to the n-type and p-type layers, respectively. The first and/or second contacts are smaller than the lasing aperture in at least one dimension. The method may further include fabricating an array of discrete laser diodes, for example, using micro-transfer printing, electrostatic adhesion, and/or other mass transfer techniques.
  • In some embodiments, an array of discrete laser diodes (also referred to herein as a laser diode array or laser array) is provided. The array of laser diodes may include surface-emitting laser diodes and/or edge-emitting laser diodes electrically connected in series and/or parallel by thin-film interconnects on non-native rigid and/or flexible substrates. According to some embodiments, a laser array includes a plurality of laser diodes arranged on a non-native substrate, where each of the laser diodes includes a semiconductor structure having an n-type layer, an active region, and a p-type layer, and where one of the n-type and p-type layers includes a lasing aperture thereon having an optical axis oriented perpendicular to a surface of the active region between the n-type and p-type layers. First and second contacts are electrically connected to the n-type and p-type layers, respectively, where he first and/or second contacts are smaller than the lasing aperture in at least one dimension. The array of laser diodes may further include one or more driver transistors and/or devices of other types/materials (e.g. power capacitors, etc.) integrated in the array.
  • Other devices, apparatus, and/or methods according to some embodiments will become apparent to one with skill in the art upon review of the following drawings and detailed description. It is intended that all such additional embodiments, in addition to any and all combinations of the above embodiments, be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram illustrating an example light-based 3D sensor system in accordance with some embodiments described herein.
  • FIG. 2A is a plan view illustrating an example laser diode with reduced anode and cathode contact dimensions in accordance with some embodiments described herein.
  • FIG. 2B is a cross-sectional view of the laser diode of FIG. 2A.
  • FIG. 2C is a perspective view illustrating an example laser diode in accordance with some embodiments described herein in comparison to a conventional VCSEL chip.
  • FIG. 3A is a perspective view illustrating a distributed emitter array including laser diodes in accordance with some embodiments described herein.
  • FIG. 3B is a perspective view illustrating a distributed emitter array including laser diodes on a curved substrate in accordance with some embodiments described herein.
  • FIGS. 4A-4F are perspective views illustrating an example fabrication process for laser diodes in accordance with some embodiments described herein.
  • FIGS. 4A′-4G′ are cross-sectional views illustrating an example fabrication process for laser diodes in accordance with some embodiments described herein.
  • FIGS. 5A-5C are images of VCSEL arrays assembled in accordance with some embodiments described herein.
  • FIGS. 5D-5E are magnified images illustrating broken tether portions and relief features of VCSELs in accordance with some embodiments described herein.
  • FIG. 6A is a perspective view illustrating an example emitter array including heterogeneous integration of distributed laser diodes and distributed driver transistors in accordance with some embodiments described herein.
  • FIG. 6B is schematic view illustrating an equivalent circuit diagram for the distributed emitter array of FIG. 6A.
  • FIG. 6C is a cross-sectional view of the distributed emitter array taken along line 6C-6C′ of FIG. 6A.
  • FIG. 7A is a perspective view illustrating an example LIDAR device in accordance with some embodiments described herein.
  • FIG. 7B is an exploded view illustrating example components of the LIDAR device of FIG. 7A.
  • FIG. 7C is a perspective view illustrating another example LIDAR device in accordance with some embodiments described herein.
  • FIG. 8 is a block diagram illustrating an example system architecture for a LIDAR device in accordance with some embodiments described herein.
  • FIG. 9 is a cross-sectional view illustrating an example laser diode array in accordance with further embodiments described herein.
  • DETAILED DESCRIPTION
  • Embodiments described herein may arise from realization that more compact arrays of light emitters may be advantageous in emerging technologies. For example, as shown in FIG. 1, a light-based 3D sensor system 100, such as a Light Detection and Ranging (LIDAR) system, may use time-of-flight (TOF)-based measurement circuit 110 and a 3D image reconstruction circuit 150 based on a signal received from an optical detector circuit 130 and associated optics 140, with a pulsed light emitting device array 120 as a light source. The time-of-flight measurement circuit 110 may determine the distance d to target T by measuring the round trip (“time-of-flight”; ToF) of a laser pulse 109 reflected by the target T (where d=(speed of light (c)/2)×ToF), which may be used by the 3D image reconstruction circuit 150 to create an accurate 3D map of surroundings. Some advantages of LIDAR systems may include long range; high accuracy; superior object detection and recognition; higher resolution; higher sampling density of 3D point cloud; and effectivity in diverse lighting and/or weather conditions. Applications of LIDAR systems may include ADAS (Advanced Driver Assistance Systems), autonomous vehicles, UAVs (unmanned aerial vehicles), industrial automation, robotics, biometrics, modeling, augmented and virtual reality, 3D mapping, and security. The example of FIG. 1 illustrates a flash LIDAR system, where the pulsed light emitting device array 120 emits light for short durations over a relatively large area to acquire images, in contrast with some traditional scanning LIDAR techniques (which generate image frames by raster scanning). However, it will be understood that light emitting device arrays 120 described herein can be used for implementations of scanning LIDAR as well.
  • Still referring to FIG. 1, the light emitting device array 120 may include a plurality of electrically connected surface-emitting laser diodes, such as VCSELs, and may be operated with strong single pulses at low duty cycle or with pulse trains, typically at wavelengths outside of the visible spectrum. Because of sensitivity to background light and the decrease of the signal with distance, several watts of laser power may be used to detect a target T at a distance d of up to about 100 meters or more.
  • However, some conventional VCSELs may have sizes defined by dimensions (e.g., length, width, and/or diameter) of about 150 micrometers (μm) to about 200 μm, which may impose size and/or density constraints on sensor systems including an array of VCSELs. This relatively large VCSEL size may be dictated for use with conventional pick-and-place machines, as well as for sufficient contact surface area for wire bond pads to provide electrical connections to the VCSEL. For example, some conventional solder ball or wire bond technology may require more than about 30 μm in length for the bond pad alone, while the tip used to pull the wire bond may have an accuracy on the order of tens of micrometers.
  • Some embodiments described herein provide light emitting devices, such as surface-emitting laser diodes (e.g., VCSELs), having reduced dimensions (e.g., lengths and/or widths of about 30 micrometers (μm) or less) without affecting the device performance (e.g., power output). For example, the aperture of the VCSEL die (which is the active region where the lasing takes place) may be about 10 μm to about 20 μm in diameter. The die length can be reduced to the aperture diameter plus a few microns by reducing or eliminating wasted (non-active) area, and by retaining a few microns (e.g., about 4 μm to about 6 μm or less) of combined chip length for the anode and the cathode contacts. This may provide a reduction in dimensions (e.g., length and/or width) by a factor of about 10 or more (e.g., die lengths of about 15 micrometers (μm) to about 20 μm, as compared to some conventional VCELs with die lengths of about 150 μm to about 200 μm). In some embodiments, these reduced die dimensions may allow for fabrication of emitter arrays including a greater density (e.g., thousands) of VCSELs or other laser diodes.
  • FIGS. 2A and 2B are plan and cross-sectional views illustrating an example surface-emitting light emitting device (shown as a vertical cavity surface emitting laser diode (VCSEL) chip or die 200, also referred to herein as a VCSEL 200) in accordance with some embodiments described herein, which includes anode and cathode contacts 211, 212 that are smaller than the lasing aperture 210 in at least one dimension (e.g., length, width, and/or diameter). As shown in FIGS. 2A and 2B, the VCSEL 200 includes an active region 205 with one or more quantum wells 203 for generation and emission of coherent light 209. The optical cavity axis 208 of the VCSEL 200 is oriented along the direction of current flow (rather than perpendicular to the current flow as in some conventional laser diodes), defining a vertical cavity with a length along the direction of current flow. This cavity length of the active region 205 may be short compared with the lateral dimensions of the active region 205, so that the radiation 209 emerges from the surface of the cavity rather than from its edge.
  • The active region 205 may be sandwiched between distributed Bragg reflector (DBR) mirror layers (also referred to herein as Bragg reflector layers or Bragg mirrors) 201 and 202 provided on a lateral conduction layer (LCL) 206. The LCL 206 may allow for improved electrical and/or optical characteristics (as compared to direct contact to the reflector layer 401) in some embodiments. In some embodiments, a surface of the LCL layer 206 may provide a print interface 215 including an adhesive layer that improves adhesion with an underlying layer or substrate. The adhesive layer may be optically transparent to one or more wavelength ranges and/or can be refractive-index matched to provide desired optical performance. The reflector layers 201 and 202 at the ends of the cavity may be made from alternating high and low refractive index layers. For example, the reflector layers 201 and 202 may include alternating layers having thicknesses d1 and d2 with refractive indices n1 and n2 such that n1 dl+n2 d 2=212, to provide wavelength-selective reflectance at the emission wavelength λ. This vertical construction may increase compatibility with semiconductor manufacturing equipment. For example, as VCSELs emit light 209 perpendicular to the active region 205, tens of thousands of VCSELs can be processed simultaneously, e.g., by using standard semiconductor wafer processing steps to define the emission area and electrical terminals of the individual VCSELs from a single wafer. Although described herein primarily with reference to VCSEL structures, it will be understood that embodiments described herein are not limited to VCSELs, and the laser diode 200 may include other types of laser diodes that are configured to emit light 209 along an optical axis 208 that is oriented perpendicular to a substrate or other surface on which the device 200 is provided. It will also be understood that, while described herein primarily with reference to surface-emitting laser structures, laser diodes and laser diode arrays as described herein are not so limited, and may include edge-emitting laser structures that are configured to emit light along an optical axis that is oriented parallel to a substrate or other surface on which the device is provided as well, as shown in the example of FIG. 9.
  • The VCSEL 200 may be formed of materials that are selected to provide light emission at or over a desired wavelength range, which may be outside of the spectrum of light that is visible to the human eye. For example, the VCSEL 200 may be a gallium arsenide (GaAs)-based structure in some embodiments. In particular embodiments, the active region 205 may include one or more GaAs-based layers (for example, alternating InGaAs/GaAs quantum well and barrier layers), and the Bragg mirrors 201 and 202 may include GaAs and aluminum gallium arsenide (AlxGa(1-x)As). For instance, the lower Bragg mirror 201 may be an n-type structure including alternating layers of n-AlAs/GaAs, while the upper Bragg mirror 202 may be a p-type structure including alternating layers of p-AlGaAs/GaAs. Although described by way of example with reference to a GaAs-based VCSEL, it will be understood that materials and/or material compositions of the layers 201, 202, and/or 205 may be tuned and/or otherwise selected to provide light emission at desired wavelengths, for example, using shorter wavelength (e.g., GaN-based) and/or longer wavelength (e.g., InP-based) emitting materials.
  • In the example of FIGS. 2A and 2B, the VCSEL 200 includes a lasing aperture 210 having a dimension (illustrated as diameter D) of about 12 μm, and first and second electrically conductive contact terminals (illustrated as anode contact 211 and cathode contact 212, also referred to herein as first and second contacts). A first electrically conductive film interconnect 213 is provided on the first contact 211, and a second electrically conductive film interconnect 213 is provided on the second contact 212 to provide electrical connections to the VCSEL 200. FIG. 2B more clearly illustrates the anode contact 211 and cathode contact 212 in cross section, with the conductive film interconnects 213 thereon. The first and second contacts 211 and 212 may provide contacts to semiconductor regions of opposite conductivity type (P-type and N-type, respectively). Accordingly, embodiments described herein are configured for transfer of electric energy to the VCSEL contacts 211 and 212 through thin-film interconnects 213, which may be formed by patterning an electrically conductive film, rather than incorporating wire bonds, ribbons, cables, or leads. The interconnections 213 may be formed after providing the VCSEL 200 on a target substrate (e.g., a non-native substrate that is different from a source substrate on which the VCSEL 200 is formed), for example, using conventional photolithography techniques, and may be constructed to have low resistance. In this regard, materials for the electrically conductive film interconnects 213 may include aluminum or aluminum alloys, gold, copper, or other metals formed to a thickness of approximately 200 nm to approximately 500 nm.
  • As shown in FIG. 2A, the first and second conductive contacts 211 and 212 are smaller than the aperture 210 in one or more dimensions. In some embodiments, allowing about 2 μm to about 3 μm for the dimensions of each of the contacts 211, 212, the overall dimensions of the VCSEL die 200 can be significantly reduced. For example, for anode and cathode contacts that are 2 μm in length each, a dimension L can be reduced to about 16 μm (2 μm anode length+12 μm aperture+2 μm cathode length; all measured along dimension L) providing a 16×16 μm2 die. As another example, for anode and cathode contacts that are 3 μm in length each, a dimension L can be reduced to about 18 μm (3 μm anode+12 μm aperture+3 μm cathode) providing a 18×18 μm2 die. Die dimensions L may be further reduced or slightly increased for smaller aperture dimensions D (e.g., 10 μm) or larger aperture dimensions D (e.g., 20 μm). More generally, VCSEL dies 200 according to embodiments herein may achieve a contact area-to-aperture area ratio of about 0.05 to 30, about 0.1 to 20, about 1 to 10, or about 1 to 3, where the contact area refers to the surface area of electrical contacts 211 and/or 212 positioned on or adjacent the aperture 210 on the surface S. Also, although illustrated with reference to contacts 211, 212 and interconnections 213 at particular locations relative to the aperture 210, it will be understood that embodiments described herein are not so limited, and the contacts 211, 212 and interconnections 213 may be provided at other areas of the VCSEL die 200 (e.g., at corners, etc.).
  • VCSELs 200 in accordance with some embodiments described herein may be configured to emit light with greater than about 100 milliwatts (mW) of power within about a 1-10 nanosecond (ns) wide pulse width, which may be useful for LIDAR applications, among others. In some embodiments, more than 1 Watt peak power output with a 1 ns pulse width at a 10,000:1 duty cycle may be achieved from a single VCSEL element 200, due for instance to the reduced capacitance (and associated reduction in RLC time constants) as compared to some conventional VCSELs. VCSELs 200 as described herein may thus allow for longer laser lifetime (based upon low laser operating temperatures at high pulsed power), in combination with greater than about 200 meter (m) range (based on very high power emitter and increased detector sensitivity).
  • FIG. 2C is a plan view illustrating the VCSEL chip 200 in accordance with some embodiments described herein in comparison to a conventional VCSEL chip 10. As shown in FIG. 2C, the conventional VCSEL chip 10 may have a length L of about 200 μm, to provide sufficient area for the active region 5 and the top conductive wire bond pad 11, which may function as an n-type or p-type contact. In contrast, VCSEL chips 200 in accordance with some embodiments described herein may have a length L of about 20 μm or less. As electrical connections to the smaller contacts 211, 212 are provided by thin-film metallization interconnects 213, VCSEL chips 200 in accordance with some embodiments described herein require no bond pad, such that the optical aperture 210 occupies a majority of the overall surface area of the emitting surface S.
  • VCSEL chips 200 according to some embodiments of the present invention may thus have dimensions that are 1/100th of those of some conventional VCSEL chips 10, allowing for up to one hundred times more power per area of the emitting surface S, as well as reduced capacitance which may substantially reduce the RLC time constants associated with driving fast pulses into these devices. Such an exponential reduction in size may allow for fabrication of VCSEL arrays including thousands of closely-spaced VCSELs 200, some of which are electrically connected in series (or anode-to-cathode) on a rigid or flexible substrate, which may not be possible for some conventional closely spaced VCSELs that are fabricated on a shared electrical substrate. For example, as described in greater detail below, multiple dies 200 in accordance with some embodiments described herein may be assembled and electrically connected within the footprint of the conventional VCSEL chip 10. In some applications, this size reduction and elimination of the bond pad may allow for reduction in cost (of up to one hundred times), device capacitance, and/or device thermal output, as compared to some conventional VCSEL arrays.
  • FIG. 3A is a perspective view illustrating a distributed emitter array 300 a including laser diodes (illustrated as VCSELs 200) in accordance with some embodiments described herein. The array 300 a (also referred to herein as a distributed VCSEL array (DVA)) may be assembled on a non-native substrate 307 a, for example, by micro-transfer printing, electrostatic adhesion, or other mass transfer techniques. As used herein, a non-native substrate (also referred to herein as a target substrate) may refer to a substrate on which the laser diodes 200 are arranged or placed, which differs from a native substrate on which the laser diodes 200 are grown or otherwise formed (also referred to herein as a source substrate). The substrate 307 a may be rigid in some embodiments, or may be flexible in other embodiments, and/or may be selected to provide improved thermal characteristics as compared to the source substrate. For example, in some embodiments the non-native substrate 307 a may be thermally conducting and also electrically insulating (or coated with an insulating material, such as an oxide, nitride, polymer, etc.). Electrically conductive thin-film interconnects 313 may be formed to electrically connect respective contacts of the laser diodes 200 in series and/or parallel configurations, and may be similar to the interconnects 213 described above. This may allow for dynamically adjustable configurations, by controlling operation of subsets of the laser diodes 200 electrically connected by the conductive thin-film interconnects 313. In some embodiments, the array 300 a may include wiring 313 between VCSELs 200 that are not connected in parallel (e.g., connections without a shared or common cathode/anode). That is, the electrically conductive thin-film interconnects 313 may provide numerous variations of series/parallel interconnections, as well as additional circuit elements which may confer good yield (e.g. bypass routes, fuses, etc.).
  • The conductive thin-film interconnects 313 may be formed in a parallel process, before and/or after providing the laser diodes 200 on the substrate 307 a. For example, the conductive thin-film interconnects 313 may be formed by patterning an electrically conductive film on the substrate 307 a using conventional photolithography techniques, such that the laser diodes 200 of the array 300 are free of electrical connections through the substrate 307 a.
  • Due to the small dimensions of the laser diodes 200 and the connections provided by the conductive thin-film interconnects 313, a spacing or pitch between two immediately adjacent laser diodes 200 is less than about 500 micrometers (μm), or in some embodiments, less than about 200 μm, or less than about 150 μm, or less than about 100 μm, or less than about 50 μm, without connections to a shared or common cathode/anode. While some monolithic arrays may provide inter-laser diode spacings of less than about 100 μm, the laser diodes of such arrays may electrically share a cathode/anode and may mechanically share a rigid substrate in order to achieve such close spacings. In contrast, laser diode arrays as described herein (such as the array 300 a) can achieve spacings of less than about 150 μm between immediately adjacent, serially-connected laser diodes 200 (that do not have a common anode or cathode connection), on non-native substrates (e.g., rigid or flexible substrates) in some embodiments. In addition, as described below with reference to the examples of FIGS. 6A-6C, some embodiments of the present disclosure may integrate other types of devices and/or devices formed from different materials (e.g. power capacitors, FETs, etc.) in-between laser diodes 200 at the sub-150 μm spacings described herein.
  • Also, in some embodiments, a concentration of the laser diodes 200 per area of the array 300 a may differ at different portions of the array 300 a. For example, some LIDAR sensor applications may benefit from higher resolution in a central portion of the array (corresponding to a forward direction of travel), but may not require such high resolution at peripheral regions of the array. As such, a concentration of VCSELs 200 at peripheral portions of the array 300 a may be less than a concentration of VCSELs 200 at a central portion of the array 300 a in some embodiments. This configuration may be of use in applications where the substrate is flexible and may be curved or bent in a desired shape, as shown in FIG. 3B.
  • FIG. 3B is a perspective view illustrating a distributed emitter array 300 b including laser diodes 200 on a curved, non-native substrate 307 b in accordance with some embodiments described herein. In some embodiments, the substrate 307 b is formed of a flexible material that can be bent to provide curved emitting surface, such that VCSELs 200 mounted on a central portion 317 of the substrate 307 b face a forward direction, while VCSELs 200 mounted on peripheral portions 317′ of the substrate 307 b face oblique directions. As the VCSELs 200 respectively emit light in a direction perpendicular to their active regions, the VCSELs 200 mounted on the central portion 317 emit light 309 in the forward direction, while the VCSELs 200 mounted on peripheral portions 317′ of the substrate 307 b emit light 309′ in oblique directions, providing a wide field of view. In some embodiment, each VCSEL may provide narrow-field illumination (e.g., covering less than about 1 degree), and the arrays 300 a, 300 b may include hundreds or thousands of VCSELs 200 (e.g., an array of 1500 VCSELs, each covering a field of view of about 0.1 degree, can provide a 150 degree field of view).
  • The field of view can be tailored or changed as desired from 0 degrees up to about 180 degrees by altering the curvature of the substrate 307 b. The curvature of the substrate 307 b may or may not be constant radius, and can thereby be designed or otherwise selected to provide a desired power distribution. For example, the substrate 307 b may define a cylindrical, acylindrical, spherical or aspherical curve whose normal surfaces provide a desired distribution of relative amounts of power. In some embodiments, the curvature of the substrate 307 b may be dynamically altered by mechanical or electro-mechanical actuation. For example, a mandrel can be used to form the cylindrical or acylindrical shape of the flexible non-native substrate 307 b. The mandrel can also serve as a heat sink in some embodiments. Also, as mentioned above, a spatial density or concentration of VCSELs 200 at peripheral portions of the array 300 b may be less than a concentration of VCSELs 200 at a central portion of the array 300 b in some embodiments.
  • The arrays 300 a and 300 b illustrated in FIGS. 3A and 3B may be scalable based on a desired quantity or resolution of laser diodes 200, allowing for long range and high pulsed power output (on the order of kilowatts (kW)). The spatial density or distribution of the laser diodes 200 on the surfaces of the substrates 307 a and 307 b can be selected to reduce optical power density, providing both long range and eye safety at a desired wavelength of operation (e.g., about 905 nm for GaAs VCSELs; about 1500 nm for InP VCSELs). A desired optical power density may be further achieved by controlling the duty cycle of the signals applied to the VCSELs and/or by altering the curvature of the substrate. Also, the separation or spacing between adjacent laser diodes 200 within the arrays 300 a and 300 b may be selected to provide thermal management and improve heat dissipation during operation, depending on the substrate material. For example, a spacing between two immediately adjacent laser diodes 200 of greater than about 100 μm micrometers (μm) may provide thermal benefits, especially for substrates with limited thermal conductivity. The arrays 300 a and 300 b as described herein may thereby provide greater reliability, by eliminating wire bonds, providing a fault-tolerant architecture, and/or providing lower operating temperatures. In further embodiments, self-aligning, low-cost beam forming micro-optics (e.g., ball lens arrays) may be integrated on or into the surface of the arrays 300 a and 300 b.
  • The compact arrays 300 a and 300 b shown in FIGS. 3A and 3B may be fabricated in some embodiments using micro-transfer printing (MTP), electrostatic adhesion, and/or other massively parallel chip handling techniques that allow simultaneous assembly and heterogeneous integration of thousands of micro-scale devices on non-native substrates via epitaxial liftoff. For example, the arrays of VCSELs 200 can be fabricated using micro-transfer printing processes similar to those described, for example, in U.S. Pat. No. 7,972,875 to Rogers et al. entitled “Optical Systems Fabricated By Printing-Based Assembly,” the disclosure of which is incorporated by reference herein in its entirety. The arrays of VCSELs 200 can alternatively be fabricated using electrostatic adhesion or gripping transfer techniques similar to those described, for example in U.S. Pat. No. 8,789,573 to Bibl et al. entitled “Micro device transfer head heater assembly and method of transferring a micro device,” the disclosure of which is incorporated by reference herein in its entirety. In some embodiments, MTP, electrostatic adhesion, and/or other mass transfer techniques may allow for fabrication of VCSEL or other arrays of laser diodes with the small inter-device spacings described herein.
  • FIGS. 4A-4F are perspective views and FIGS. 4A′-4G′ are cross-sectional views illustrating an example fabrication process for laser diodes (illustrated as VCSELs 400) in accordance with some embodiments described herein. The VCSELs 200 described herein may also be fabricated using one or more of the processing operations shown in FIGS. 4A-4F in some embodiments. As shown in FIGS. 4A-4F and FIGS. 4A′-4G′, ultra small VCSELs 400 in accordance with embodiments described herein can be grown on source substrates and assembled on a non-native target substrate using micro-transfer printing techniques. In particular, in FIGS. 4A and 4A′, sacrificial layer 408, a lateral conduction layer 406, a first, n-type distributed Bragg reflector (DBR) layer 401, an active region 405, and a second, p-type DBR layer 402 are sequentially formed on a source wafer or substrate 404. Although illustrated with reference to a single VCSEL 400 to show fabrication, it will be understood that a plurality of VCSELs 400 may be simultaneously fabricated on the source wafer 404, with reduced or minimal spacing between adjacent VCSELs 400 to increase or maximize the number of VCSELs that may be simultaneously fabricated on the wafer 404. Also, it will be understood that a plurality of VCSEL devices may be fabricated on a single die or chiplet that is released from the substrate 404 for printing. Also, the transfer techniques described in greater detail below may allow for reuse of the source wafer 404 for subsequent fabrication of additional VCSELs.
  • In some embodiments, the material compositions of the layers 406, 401, 405, and 402 may be selected to provide a desired emission wavelength and emission direction (optical axis). For example, the layers 406, 401, 405, and 402 may be gallium arsenide (GaAs)-based or indium phosphide (InP)-based in some embodiments. As illustrated, a lateral conduction layer 406, an AlGaAs n-type high-reflectivity distributed Bragg reflector (DBR), and an active region 405 are sequentially formed on the source wafer 404. The active region 405 may be formed to include InAlGaAs strained quantum wells designed to provide light emission over a desired wavelength, and is followed by formation of a p-type DBR output mirror 402. A top contact metallization process is performed to form a p-contact (e.g., an anode contact) 411 on the p-type DBR layer 402. For example, Ti/Pt/Au ring contacts of different dimensions may be deposited to form the anode or p-contact 411. An aperture 410 may be defined within a perimeter of the p-contact 411. In some embodiments, an oxide layer may be provided between the active region 405 and the p-type DBR layer 402 to define boundaries of the aperture 410. The placement and design of the aperture 410 may be selected to minimize optical losses and current spreading.
  • In FIGS. 4B and 4B′, a top mesa etching process is performed to expose the active region 405 and a top surface of the n-type DBR layer 401, and an oxidation process is performed to oxidize the exposed surfaces, (including the exposed sidewalls of the active region 405), and in particular to laterally define boundaries of the optical aperture 410. In FIGS. 4C and 4C′, a bottom contact metallization process is performed to expose and form an n-type (e.g., cathode) contact 412 on a surface of the lateral conduction layer 406. It will be understood that, in some embodiments, the n-type contact 412 may alternatively be formed on the n-type DBR layer 401 to provide the top-side contact. In FIGS. 4D and 4D′, an isolation process is performed to define respective lateral conduction layers 406, and an anchor material (e.g., photoresist layer) is deposited and etched to define photoresist anchors 499 and inlets to expose sacrificial release layer 408 for epitaxial lift-off.
  • In FIGS. 4E and 4E′, an undercut etching process is performed to remove portions of the sacrificial release layer 408 such that the anchors 499 suspend the VCSEL die 400 over the source wafer 404. In some embodiments, the operations of FIGS. 44E and 4E′ may be followed by a micro-transfer printing process, as shown in FIGS. 4F and 4F′, which may utilize an elastomeric and/or other stamp 490 to break the anchors 499, adhere the VCSEL die 400 (along with multiple other VCSEL dies 400 on the source wafer 404) to a surface of the stamp 490, and simultaneously transfer the multiple VCSEL dies 400 (which have been adhered to the surface of the stamp) to a non-native target substrate 407 by contacting the surface of the stamp including the dies 400 thereon with a surface of the non-native target substrate 407, as shown in FIG. 4G′. In other embodiments, the operations of FIG. 4F may be followed by an electrostatic gripper-based transfer process, which may utilize an electrostatic transfer head to adhere the VCSEL die 400 (along with multiple other VCSEL dies 400 on the source wafer 404) to a surface of the head using the attraction of opposite charges, and simultaneously transfer the VCSEL dies 400 to a non-native target substrate. As a result of breaking the anchors 499, each VCSEL die 400 may include a broken or fractured tether portion 499 t (e.g., a residual portion of the anchor structure 499) protruding from or recessed within an edge or side surface of the die 400 (and/or a corresponding relief feature at a periphery of the die 400), which may remain upon transfer of the VCSEL dies 400 to the non-native substrate 407.
  • The non-native target substrate may be a rigid or flexible destination substrate for the VCSEL array, or may be a smaller interposer or “chiplet” substrate. Where the target substrate is the destination substrate for the array, an interconnection process may form a conductive thin film layer on the target substrate including the assembled VCSEL dies 400 thereon, and may pattern the conductive thin film layer to define thin-film metal interconnects that provide desired electrical connections between the VCSEL dies 400. The interconnection process may be performed after the VCSEL dies 400 are assembled on the destination substrate, or may be performed in a pre-patterning process on the destination substrate before the VCSEL dies 400 are assembled such that the electrical connections between the VCSEL dies 400 are realized upon assembly (with no interconnection processing required after the transfer of the dies 400 onto the substrate). Where the target substrate is a chiplet, the VCSEL dies 400 may be connected in parallel via the chiplet. The chiplets including the VCSEL dies 400 thereon may then be assembled (via transfer printing, electrostatic adhesion, or other transfer process) onto a destination substrate for the array, which may be pre- or post-patterned to provide electrical connections between the chiplets. The thin-film metal interconnects may be defined on and/or around the broken tether portion 499 t protruding from the edge of the die(s) 400 in some embodiments.
  • Because the VCSELs 400 are completed via epitaxial lift-off and thus are separated from the substrate, and because of the use of thin film interconnects, the VCSELs 400 may also be thinner than some conventional VCSELs which remain connected to their native substrate, such as the VCSEL 10 of FIG. 2C. For example, the VCSEL 400 may have a thickness t (e.g., a combined thickness of the semiconductor stack including the layers 406, 401, 405, and 402) of about 1 micrometers (μm) to about 20 μm.
  • FIGS. 5A-5C are images of VCSEL arrays 500 in accordance with some embodiments described herein, which were assembled using micro-transfer printing processes. In particular, FIG. 5A illustrates a VCSEL array 500 of about 11,000 lasers with an inter-VCSEL spacing of about 200 micrometers (μm) or less between adjacent VCSELs 200 after assembly on a non-native substrate 507, with the inset image of FIG. 5B and the image of 5C illustrating magnified views of portions of the array 500 including about 350 lasers and 9 lasers, respectively, in accordance with some embodiments described herein. Due to the reduction in dimensions of the VCSELs described herein, the inter-VCSEL spacing between immediately adjacent VCSELs 200 may be less than about 150 μm, or less than about 100 μm or less than about 50 μm on the source substrate in some embodiments. In some embodiments, the array 500 may include 100 VCSELs or more within a footprint or area of 5 square millimeters (mm2) or less.
  • FIGS. 5D-5E are magnified images illustrating broken tether portions and relief features of VCSEL structures in accordance with some embodiments described herein. As shown in FIGS. 5D and 5E, a transfer-printed VCSEL 510 (such as one of the VCSELs 200) or other laser diode as described herein may include one or more residual or broken tether portions 499 t and/or relief features 599 at a periphery thereof. The relief features 599 may be patterned or otherwise provided along the periphery of VCSEL 510 to partially define the tethers 499 and areas for preferential fracture of the tethers 499. In the examples of FIGS. 5D-5E, the broken tether portions 499 t and relief features 599 are illustrated as being present along a periphery of the lateral conduction layer (LCL) 506; however, it will be understood that broken tether portions 499 t and/or relief features 599 may be present in or along a periphery of any of the layers that may be provided on a non-native substrate by transfer-printing processes described herein, for example, any of the epitaxially grown layers 406, 405, 401, 402 formed in fabricating the active region 405 on a source wafer or substrate 404 in the examples of FIGS. 4A-4F and 4A′-4G′. As such, in some embodiments, the broken tether portion 499 t may comprise a material and thickness corresponding to that of the LCL layer 506 (or other layer associated with the active region). In further embodiments, to shorten an etch sequence, peripheral or edge portions of the LCL 506 may be partially etched, and as such, the relief pattern 599 of the tether features 499 t may be thinner than the LCL 506 (or other layer associated with the active region). The fracture of the tethers 499 during the “Pick” operation (such as shown in FIG. 4G′) may occur in the resist layer 4991 itself, and the broken tether portions 499 t may comprise a material and thickness corresponding to that of the resist layer 4991. The broken tether portion 499 t may interact with the print adhesive or epoxy, and also remains on the fully processed device, even after resist develop and/or resist removal processes. More generally, some laser diode structures in accordance with embodiments described herein may include at least one of a broken tether portion 499 t or a relief pattern or feature 599 along a periphery or edge of the laser diode structure.
  • Accordingly, some embodiments described herein may use MTP to print and integrate hundreds or thousands of VCSELs or other surface-emitting laser diodes into small-footprint light-emitting arrays. MTP may be advantageous by allowing simultaneous manipulation and wafer-level assembly of thousands of laser diode devices. In some embodiments, each of the laser diodes may have aperture dimensions as small as about 1-10 μm, thereby reducing the size (and cost) of lasers incorporating such VCSEL arrays by a factor of up to 100. Other embodiments may include substrates with aperture dimensions even smaller than about 1 μm in order to realize different performance such as modified near and far field patterns. Still other embodiments may use larger apertures, for example, about 10-100 μm, in order to realize higher power output per VCSEL device. Also, MTP allows reuse of the source wafer (e.g., GaAs or InP) for growth of new devices after the transfer printing process, further reducing fabrication costs (in some instances, by up to 50%). MTP may also allow heterogeneous integration and interconnection of laser diodes of different material systems (e.g., GaAs or InP lasers) and/or driver transistors (as discussed below) directly onto silicon integrated circuits (ICs). Also, source wafers may be used and reused in a cost-effective manner, to fabricate laser diodes (e.g., InP-based VCSELs) that can provide high power with eye safety, as well as reduced ambient noise. As such, MTP may be used in some embodiments to reduce emitter costs, and allow fabrication of high power, high resolution distributed VCSEL arrays (DVAs) including multiple hundreds or thousands of VCSELs.
  • Also, when provided on flexible or curved substrates, embodiments described herein can provide DVAs having a wide field of view (FoV), up to 180 degrees horizontal. In some embodiments, the optical power dispersed via the DVA can be configured for eye safety and efficient heat dissipation. In some embodiments, low-cost, self-aligning, beam forming micro-optics may be integrated within the curved DVA.
  • FIG. 6A is a perspective view illustrating an example emitter array 600 including heterogeneous integration of distributed surface-emitting laser diodes (illustrated as VCSELs 200) and distributed driver transistors 610 in accordance with some embodiments described herein. As used herein, distributed circuit elements may refer to laser diodes, driver transistors, and/or other circuit elements that are assembled in various desired positions throughout a laser diode array, and such an array of distributed circuit elements is referred to herein as a distributed array. For example, integration of distributed high power driver transistors in a distributed VCSEL array may be advantageous for LIDAR applications. FIG. 6B is schematic view illustrating an equivalent circuit diagram for the distributed emitter array 600 of FIG. 6A, and FIG. 6C is a cross-sectional view of the distributed emitter array 600 taken along line 6C-6C′ of FIG. 6A.
  • As shown in FIGS. 6A-6C, the array 600 (also referred to herein as a DVA) may be assembled on a non-native substrate 607, for example, by micro-transfer printing or other techniques. The substrate 607 may be rigid in some embodiments, or may be flexible in other embodiments. The array 600 further includes integrated driver transistors 610 that are assembled on the substrate 607 adjacent to one or more of the VCSELs 200. In some embodiments, the drivers 610 and laser diodes 200 may include different semiconductor materials and/or technologies that have incompatible fabrication processes. For example, the driver transistors 610 may be assembled on the substrate 607 using a micro-transfer printing (MTP) process. In some embodiments, an array including hundreds or thousands of driver transistors 610 may be provided. Electrically conductive thin-film interconnects 613 may be formed to electrically connect respective contacts of the driver transistors 610 and laser diodes 200 in series and/or parallel configurations. Spacings between a driver transistor 610 and an immediately adjacent laser diode 200 may be less than about 2 millimeters, less than about 1 millimeter, less than about 500 micrometers, less than about 150 micrometers (μm), or in some embodiments, less than about 100 μm, or less than about 50 μm, which may provide reduced parasitic impedance therebetween (e.g., up to 100 times lower than where the driver transistor 610 is located off-chip or off-substrate).
  • In some embodiments, the array 600 may include wiring 613 between VCSELs 200 that are not connected in parallel (e.g., no common cathode/anode). Interconnection designs that do not simply place all elements of the array in parallel (e.g., without a common anode or cathode connection) may offer the advantage of lowering current requirements for the array, which can reduce inductive losses and increase switching speed. Varied interconnection designs also provide for the inclusion of other devices embedded or integrated within the electrically interconnected array (e.g., switches, gates, FETs, capacitors, etc.) as well as structures which enable fault tolerance in the manufacture of the array (e.g. fuses, bypass circuits, etc.) and thus confer yield advantages. For example, as illustrated in FIG. 6B, the array 600 includes a plurality of strings of VCSELs 200 that are electrically connected in series (or anode-to-cathode) to define columns (or other subsets or sub-arrays) of the array 600. The array 600 further includes an array of driver transistors 610, with each driver 610 electrically connected in series with a respective string of serially- or anode-to-cathode-connected VCSELs 200.
  • The conductive thin-film interconnects 613 may be formed in a parallel process after providing the laser diodes 200 and driver transistors 610 on the substrate 607, for example by patterning an electrically conductive film using conventional photolithography techniques. As such, the driver transistors 610 and laser diodes 200 of the array 600 are free of wire bonds and/or electrical connections through the substrate 607. Due to the smaller dimensions of the laser diodes 200 and the driver transistors 610 and the degree of accuracy of the assembly techniques described herein, a spacing between immediately adjacent laser diodes 200 and/or driver transistors 610 may be less than about 150 micrometers (μm), or in some embodiments, less than about 100 μm or less than about 50 μm. Integrating the driver transistors 610 on the substrate 607 in close proximity to the VCSELs 200 (for example, at distances less than about 2 millimeters, less than about 1 millimeter, less than about 500 micrometers, less than about 150 micrometers (μm), or in some embodiments, less than about 100 μm, or less than about 50 μm from a nearest VCSEL 200) may thus shorten the electrical connections 613 between elements, thereby reducing parasitic resistance, inductance, and capacitance, and allowing for faster switching response.
  • In the example of FIGS. 6A-6C, the driver transistors 610 are arranged in an array such that each driver transistor 610 is connected in series with a column (or other subset or sub-array) of serially-connected (or otherwise anode-to-cathode—connected) VCSELs 200, allowing for individual control of respective columns/strings of VCSELs 200. However, it will be understood that embodiments described herein are not limited to such a connection configuration. To the contrary, integrating the driver transistors 610 in close proximity to the VCSELs 200 may also allow for greater flexibility in wiring configurations (e.g., in series and/or parallel), which may be used to control current and/or increase or maximize performance. For example, fewer or more driver transistors 610 may be provided (e.g., drivers for control of rows of serially-connected VCSELs 200 as well as columns) for finer control of respective VCSELs or groups of VCSELs and/or output power. Another example would be the addition of capacitors or similar electrical storage devices close to the elements of the array for faster pulse generation, for example, on the order of sub-nanosecond (ns), in contrast to some conventional designs that may be on the order of about 1-10 ns or more. Likewise, although illustrated as a planar array 600, the substrate 607 may be flexible in some embodiments; thus, the array 600 may be bent to provide a desired curvature, similar to the array 300 b of FIG. 3B.
  • As similarly discussed above with reference to the arrays 300 a and 300 b, the array 600 may be scalable based on a desired quantity or resolution of laser diodes 200, allowing for long range and high pulsed power output (on the order of kilowatts (kW)). The distribution of the laser diodes 200 on the surfaces of the substrate 607 can be selected and/or the operation of the laser diodes can be dynamically adjusted or otherwise controlled (via the transistors 610) to reduce optical power density, providing both long range and eye safety at a desired wavelength of operation (e.g., about 905 nm for GaAs VCSELs; about 1500 nm for InP VCSELs). Also, the spacing between elements 200 and/or 610 may be selected to provide thermal management and improve heat dissipation during operation. Arrays 600 as described herein may thereby provide improved reliability, by eliminating wire bonds, providing a fault-tolerant architecture, and/or providing lower operating temperatures. In further embodiments, self-aligning, low-cost beam forming micro-optics (e.g., ball lens arrays) may be integrated on or into the surface of the array 607.
  • FIG. 7A is a perspective view illustrating a LIDAR device 700 a including surface-emitting laser diodes (such as the VCSELs 200) in accordance with embodiments described herein, illustrated relative to a pencil for scale. FIG. 7C is a perspective view illustrating an alternative LIDAR device 700 c in accordance with embodiments described herein. In particular, FIGS. 7A and 7C illustrate a distributed vertical-cavity-surface-emitting laser (VCSEL) array-based, solid-state Flash LIDAR device 700 a, 700 c. The LIDAR device 700 a, 700 c is illustrated with reference to a curved array 720, such as the curved array 300 b of FIG. 3B, but it will be understood that the LIDAR device 700 a, 700 c is not so limited, and may alternatively implement the array 300 a of FIG. 3A, the array 600 of FIGS. 6A-6C, and/or other arrays of laser diodes 200 that provide features described herein. Such features of the device 700 a, 700 c may include, but are not limited to, broad field of view (in particular embodiments, about 0=120° horizontal by 4=10° vertical, or broader); long range (in some instances, greater than about 200 m); high resolution (in particular embodiments, about 0.1° horizontal and vertical) compact size defined by reduced dimensions (in particular embodiments, about 110×40×40 mm); high power (in particular embodiments, about 10,000 w peak, pulsed); and eye safety (in particular embodiments, dispersed optical power can support eye safe, high power, 905 nm (e.g., GaAs) and/or about 1500 nm (e.g., InP) emitters).
  • FIG. 7B is an exploded view 700 b illustrating components of the LIDAR device 700 a of FIG. 7A. As shown in FIG. 7B, the device housing or enclosure 701 includes a connector 702 for electrical connection to a power source and/or other external devices. The enclosure 701 is sized to house a light emitter array 720, a light detector array 730, electronic circuitry 760, detector optics 740 (which may include one or more lenses and/or optical filters), and a lens holder 770. A transparent cover 780 is provided to protect the emitter array 720 and detector optics 740, and may include beam shaping and/or filtering optics in some embodiments.
  • The light emitter array 720 may be a pulsed laser array, such as any of the VCSEL arrays 300 a, 300 b, 600 described herein. As such, the light emitter array 720 may include a large quantity (e.g., hundreds or even thousands) of distributed, ultra small laser diodes 200, which are collectively configured to provide very high levels of power (by exploiting benefits of the large number of very small devices). Using a large number of small devices rather than a small number of large devices allows devices that are very fast, low power and that operate at a low temperature to be integrated in an optimal configuration (with other devices, such as transistors, capacitors, etc.) to provide performance not as easily obtained by a small number of larger laser devices. As described herein the laser diodes 200 may be transfer printed simultaneously onto a non-native curved or flexible substrate in some embodiments. Beam shaping optics that are configured to project high aspect ratio illumination from the light emitter array 720 onto a target plane may also be provided on or adjacent the light emitter array 720.
  • The light detector array 730 may include one or more optical detector devices, such as pin, pinFET, linear avalanche photodiode (APD), silicon photomultiplier (SPM), and/or single photon avalanche diode (SPAD) devices, which are formed from materials or otherwise configured to detect the light emitted by the light emitter array 720. The light detector array 730 may include a quantity of optical detector devices that are sufficient to achieve a desired sensitivity, fill factor, and resolution. In some embodiments, the light detector array 730 may be fabricated using micro-transfer printing processes as described herein. The detector optics 740 may be configured to collect high aspect ratio echo and focus target images onto focal plane of the light detector array 730, and may be held on or adjacent the light detector array 730 by the lens holder 770.
  • The electronic circuitry 760 integrates the above and other components to provide multiple return LIDAR point cloud data to data analysis. More particularly, the electronic circuitry 760 is configured to control operation of the light emitter array 720 and the light detector array 730 to output filtered, high-quality data, such as 3D point cloud data, to one or more external devices via the connector 702. The external devices may be configured to exploit proprietary and/or open source 3D point cloud ecosystem and object classification libraries for analysis of the data provided by the LIDAR device 700 a, 700 c. For example, such external devices may include devices configured for applications including but not limited to autonomous vehicles, ADAS, UAVs, industrial automation, robotics, biometrics, modeling, augmented and virtual reality, 3D mapping, and/or security.
  • FIG. 8 is a block diagram illustrating an example system 800 for a LIDAR device, such as the LIDAR device 700 a, 700 b, 700 c of FIGS. 7A-7C, in accordance with some embodiments described herein. As shown in FIG. 8, the system 800 integrates multiple electrically coupled integrated circuit elements to provide the LIDAR device functionality described herein. In particular, the system 800 includes a processor 805 that is coupled to a memory device 810, an illumination circuit 820, and a detection circuit 830. The memory device 810 stores computer readable program code therein, which, when executed by the processor, operates the illumination circuit 820 and the detection circuit 830 to collect, process, and output data, such as 3D point cloud data, indicative of one or more targets in the operating environment. The system 800 may further include a thermistor 842 and associated temperature compensation circuit 843, as well as a power management circuit 841 that is configured to regulate voltage or power to the system 800.
  • The illumination circuit 820 includes an array of surface-emitting laser diodes 200, driver transistor(s) 610, and associated circuit elements 611, electrically connected in any of various configurations. In some embodiments, the illumination circuit 820 may be a laser array including rows and/or columns of VCSELs 200, such as any of the VCSEL arrays 300 a, 300 b, 600 described herein. Operation of the illumination circuit 820 to emit light pulses 809 may be controlled by the processor 805 via a modulation and timing circuit 815 to generate a pulsed light output 809. Beam-shaping and/or focusing optics may also be included in or adjacent the array of laser diodes 200 to shape and/or direct the light pulses 809.
  • The detection circuit 830 may include a time-of-flight (ToF) detector 851 coupled to a ToF controller 852. The ToF detector 851 may include one or more optical detector devices, such as an array of pin, pinFET, linear avalanche photodiode (APD), silicon photomultiplier (SPM), and/or single photon avalanche diode (SPAD) devices. The ToF controller 852 may determine the distance to a target by measuring the round trip (“time-of-flight”) of a laser pulse 809′ reflected by the target and received at the ToF detector 851. In some embodiments, the reflected laser pulse 809′ may be filtered by an optical filter 840, such as a bandpass filter, prior to detection by the ToF detector 851. The output of the detection block 830 may be processed to suppress ambient light, and then provided to the processor 805, which may perform further processing and/or filtering (via signal processor discriminator filter 817, and may provide the filtered output data (for example, 3D point cloud data) for data analysis. The data analysis may include frame filtering and/or image processing. In some embodiments, the data analysis may be performed by an external device, for example, an autonomous vehicle intelligence system.
  • FIG. 9 is a cross-sectional view illustrating an example laser diode array 900 including edge-emitting laser diodes 910 in accordance with further embodiments described herein. As shown in FIG. 9, a laser diode 910 includes an active region 905 (which may include one or more quantum wells) for generation and emission of coherent light 909. The active region 905 is provided between p-type and n- type layers 901 and 902, with contacts 912 and 911 thereon, respectively. A diffraction grating layer may be included to provide feedback for lasing. The optical cavity axis of the laser diode 910 is oriented perpendicular to the direction of current flow, defining an edge-emitting device, so that the radiation 909 emerges from the edge of the device 910 rather than from a top surface thereof. The devices 910 may be assembled on a non-native substrate 907, for example, by micro-transfer printing, electrostatic adhesion, or other mass transfer techniques. Respective mirror elements (illustrated as micro-steering mirrors 913) may also be assembled on the substrate 907 (for example, by micro-transfer printing, electrostatic adhesion, or other mass transfer techniques), and oriented relative to the optical cavity axis of a laser diode 910 that is to be provided adjacent thereto, such that the radiation 909 from the laser diode 910 is reflected and ultimately emitted in a direction perpendicular to the substrate 907.
  • The substrate 907 may be rigid in some embodiments, or may be flexible in other embodiments, and electrically conductive thin-film interconnects may be formed to electrically connect respective contacts of the laser diodes 910 in series and/or parallel configurations, at spacings similar to those described with reference to the arrays 300 a, 300 b, and/or 600 herein. Likewise, as described above with reference to the examples of FIGS. 6A-6C, the array 900 may include other types of devices and/or devices formed from different materials (e.g., power capacitors, FETs, micro-lens arrays, etc.) integrated with the laser diodes 910 on the substrate 907 at the spacings described herein.
  • The present invention has been described above with reference to the accompanying drawings, in which embodiments of the invention are shown. However, this invention should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the thickness of layers and regions are exaggerated for clarity. Like numbers refer to like elements throughout.
  • It will be understood that when an element is referred to as being “on,” “connected,” or “coupled” to another element, it can be directly on, connected, or coupled to the other element, or intervening elements may be present. In contrast, when an element is referred to as being “directly on,” “directly connected,” or “directly coupled” to another element, there are no intervening elements present.
  • It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention.
  • Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
  • The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “include,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • Embodiments of the invention are described herein with reference to illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the invention.
  • Unless otherwise defined, all terms used in disclosing embodiments of the invention, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs, and are not necessarily limited to the specific definitions known at the time of the present invention being described. Accordingly, these terms can include equivalent terms that are created after such time. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the present specification and in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entireties.
  • Many different embodiments have been disclosed herein, in connection with the above description and the drawings. It will be understood that it would be unduly repetitious and obfuscating to literally describe and illustrate every combination and subcombination of these embodiments. Accordingly, the present specification, including the drawings, shall be construed to constitute a complete written description of all combinations and subcombinations of the embodiments of the present invention described herein, and of the manner and process of making and using them, and shall support claims to any such combination or subcombination.
  • Although the invention has been described herein with reference to various embodiments, it will be appreciated that further variations and modifications may be made within the scope and spirit of the principles of the invention. Although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of embodiments of the present invention being set forth in the following claims.

Claims (20)

That which is claimed:
1. A laser diode, comprising:
a semiconductor structure comprising an n-type layer, an active region, and a p-type layer, one of the n-type and p-type layers comprising a lasing aperture having an optical axis oriented perpendicular to a surface of the active region between the n-type and p-type layers; and
first and second contacts electrically connected to the n-type and p-type layers, respectively, wherein each of the first and second contacts is smaller than the lasing aperture in at least one dimension in plan view.
2. The laser diode of claim 1, wherein a respective contact area of each of the first and second contacts in plan view is smaller than an aperture area of the lasing aperture.
3. The laser diode of claim 1, wherein the laser diode is free of wire bond pads that are electrically connected to the first and second contacts.
4. The laser diode of claim 1, further comprising:
a lateral conduction layer comprising a surface including the semiconductor structure thereon, wherein the lateral conduction layer is distinct from the n-type and p-type layers, and wherein one of the first and second contacts is on the surface of the lateral conduction layer adjacent the semiconductor structure and outside of the n-type and p-type layers.
5. The laser diode of claim 4, wherein the laser diode is freed of a native substrate thereof.
6. The laser diode of claim 5, further comprising:
a non-native substrate including the laser diode on a surface thereof,
wherein the non-native substrate comprises electrically insulating and/or thermally conducting characteristics, and wherein the laser diode is free of electrical connections through the non-native substrate.
7. The laser diode of claim 6, wherein the n-type and p-type layers comprise first and second Bragg reflector layers, respectively, and wherein the laser diode comprises a vertical cavity surface emitting laser (VCSEL).
8. A Light Detection and Ranging (LIDAR) emitter, comprising:
a plurality of laser diodes arranged in an array on a surface of a non-native substrate, wherein each of the laser diodes comprises:
a semiconductor structure comprising an n-type layer, an active region, and a p-type layer, one of the n-type and p-type layers comprising a lasing aperture having an optical axis oriented perpendicular to a surface of the active region between the n-type and p-type layers; and
first and second contacts electrically connected to the n-type and p-type layers, respectively, wherein the first and second contacts are smaller than the lasing aperture in at least one dimension in plan view.
9. The LIDAR emitter of claim 8, wherein the first and second contacts of each of the laser diodes comprise anode and cathode contacts, respectively, and further comprising:
electrically conductive thin-film interconnects that electrically connect the anode and cathode contacts of respective subsets of the plurality of laser diodes anode-to-cathode.
10. The LIDAR emitter of claim 9, further comprising:
a plurality of driver transistors, wherein the respective subsets of the plurality of laser diodes are electrically connected in series with respective driver transistors of the plurality of driver transistors, and wherein the respective driver transistors are configured to control operation of the respective subsets of the plurality of laser diodes independent of one another.
11. The LIDAR emitter of claim 10, wherein the respective subsets of the plurality of laser diodes define rows or columns of the array, and wherein the respective driver transistors are configured to operate the rows or columns at different output power levels.
12. The LIDAR emitter of claim 11, wherein a concentration of the plurality of laser diodes at a first portion of the array is less than a concentration of the plurality of laser diodes at a second portion of the array.
13. The LIDAR emitter of claim 8, wherein the plurality of laser diodes are free of a native substrate thereof.
14. A method of fabricating a laser diode, the method comprising:
separating a semiconductor structure comprising an n-type layer, an active region, and a p-type layer from a native substrate thereof; and
providing first and second contacts electrically connected to the n-type and p-type layers, respectively,
wherein one of the n-type and p-type layers comprises a lasing aperture having an optical axis oriented perpendicular to a surface of the active region between the n-type and p-type layers, and wherein each of the first and second contacts is smaller than the lasing aperture in at least one dimension in plan view.
15. The method of claim 14, wherein a respective contact area of each of the first and second contacts in plan view is smaller than an aperture area of the lasing aperture.
16. The method of claim 14, wherein the laser diode is free of wire bond pads that are electrically connected to the first and second contacts.
17. The method of claim 14, further comprising:
forming the semiconductor structure on a surface of a lateral conduction layer, wherein the lateral conduction layer is distinct from the n-type and p-type layers, and wherein one of the first and second contacts is on the surface of the lateral conduction layer adjacent the semiconductor structure and outside of the n-type and p-type layers.
18. The method of claim 17, further comprising:
providing the laser diode on a surface of a non-native substrate, wherein the non-native substrate comprises electrically insulating and/or thermally conducting characteristics, and wherein the laser diode is free of electrical connections through the non-native substrate.
19. The method of claim 18, wherein the first and second contacts comprise anode and cathode contacts, respectively, and further comprising:
forming electrically conductive thin-film interconnects on the non-native substrate that electrically connect the anode and cathode contacts of the laser diode to cathode and anode contacts, respectively, of adjacent laser diodes on the surface of the non-native substrate.
20. The method of claim 18, wherein the n-type and p-type layers comprise first and second Bragg reflector layers, respectively, and wherein the laser diode comprises a vertical cavity surface emitting laser (VCSEL).
US17/186,798 2017-04-12 2021-02-26 Ultra-small vertical cavity surface emitting laser (vcsel) and arrays incorporating the same Abandoned US20210208254A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/186,798 US20210208254A1 (en) 2017-04-12 2021-02-26 Ultra-small vertical cavity surface emitting laser (vcsel) and arrays incorporating the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762484701P 2017-04-12 2017-04-12
US201862613985P 2018-01-05 2018-01-05
US15/951,681 US10962627B2 (en) 2017-04-12 2018-04-12 Ultra-small vertical cavity surface emitting laser (VCSEL) and arrays incorporating the same
US17/186,798 US20210208254A1 (en) 2017-04-12 2021-02-26 Ultra-small vertical cavity surface emitting laser (vcsel) and arrays incorporating the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/951,681 Continuation US10962627B2 (en) 2017-04-12 2018-04-12 Ultra-small vertical cavity surface emitting laser (VCSEL) and arrays incorporating the same

Publications (1)

Publication Number Publication Date
US20210208254A1 true US20210208254A1 (en) 2021-07-08

Family

ID=63790356

Family Applications (13)

Application Number Title Priority Date Filing Date
US15/951,681 Active US10962627B2 (en) 2017-04-12 2018-04-12 Ultra-small vertical cavity surface emitting laser (VCSEL) and arrays incorporating the same
US15/951,824 Active US10483722B2 (en) 2017-04-12 2018-04-12 Devices with ultra-small vertical cavity surface emitting laser emitters incorporating beam steering
US15/951,760 Active US10522973B2 (en) 2017-04-12 2018-04-12 Beam shaping for ultra-small vertical cavity surface emitting laser (VCSEL) arrays
US15/951,727 Active 2038-06-16 US10530130B2 (en) 2017-04-12 2018-04-12 Emitter structures for ultra-small vertical cavity surface emitting lasers (VCSELs) and arrays incorporating the same
US15/951,884 Active 2038-10-05 US11187789B2 (en) 2017-04-12 2018-04-12 Devices incorporating integrated detectors and ultra-small vertical cavity surface emitting laser emitters
US16/654,538 Active US11061117B2 (en) 2017-04-12 2019-10-16 Devices with ultra-small vertical cavity surface emitting laser emitters incorporating beam steering
US16/691,757 Active US11105899B2 (en) 2017-04-12 2019-11-22 Beam shaping for ultra-small vertical cavity surface emitting laser (VCSEL) arrays
US16/693,666 Active 2038-08-11 US11125862B2 (en) 2017-04-12 2019-11-25 Emitter structures for ultra-small vertical cavity surface emitting lasers (VCSELS) and arrays incorporating the same
US17/186,798 Abandoned US20210208254A1 (en) 2017-04-12 2021-02-26 Ultra-small vertical cavity surface emitting laser (vcsel) and arrays incorporating the same
US17/339,393 Abandoned US20210293965A1 (en) 2017-04-12 2021-06-04 Devices with ultra-small vertical cavity surface emitting laser emitters incorporating beam steering
US17/443,604 Pending US20210356564A1 (en) 2017-04-12 2021-07-27 Beam shaping for ultra-small vertical cavity surface emitting laser (vcsel) arrays
US17/412,739 Active 2040-02-16 US12123769B2 (en) 2017-04-12 2021-08-26 Emitter structures for ultra-small vertical cavity surface emitting lasers (VCSELs) and arrays incorporating the same
US17/511,715 Abandoned US20220120866A1 (en) 2017-04-12 2021-10-27 Devices incorporating integrated dectors and ultra-small vertical cavity surface emitting laser emitters

Family Applications Before (8)

Application Number Title Priority Date Filing Date
US15/951,681 Active US10962627B2 (en) 2017-04-12 2018-04-12 Ultra-small vertical cavity surface emitting laser (VCSEL) and arrays incorporating the same
US15/951,824 Active US10483722B2 (en) 2017-04-12 2018-04-12 Devices with ultra-small vertical cavity surface emitting laser emitters incorporating beam steering
US15/951,760 Active US10522973B2 (en) 2017-04-12 2018-04-12 Beam shaping for ultra-small vertical cavity surface emitting laser (VCSEL) arrays
US15/951,727 Active 2038-06-16 US10530130B2 (en) 2017-04-12 2018-04-12 Emitter structures for ultra-small vertical cavity surface emitting lasers (VCSELs) and arrays incorporating the same
US15/951,884 Active 2038-10-05 US11187789B2 (en) 2017-04-12 2018-04-12 Devices incorporating integrated detectors and ultra-small vertical cavity surface emitting laser emitters
US16/654,538 Active US11061117B2 (en) 2017-04-12 2019-10-16 Devices with ultra-small vertical cavity surface emitting laser emitters incorporating beam steering
US16/691,757 Active US11105899B2 (en) 2017-04-12 2019-11-22 Beam shaping for ultra-small vertical cavity surface emitting laser (VCSEL) arrays
US16/693,666 Active 2038-08-11 US11125862B2 (en) 2017-04-12 2019-11-25 Emitter structures for ultra-small vertical cavity surface emitting lasers (VCSELS) and arrays incorporating the same

Family Applications After (4)

Application Number Title Priority Date Filing Date
US17/339,393 Abandoned US20210293965A1 (en) 2017-04-12 2021-06-04 Devices with ultra-small vertical cavity surface emitting laser emitters incorporating beam steering
US17/443,604 Pending US20210356564A1 (en) 2017-04-12 2021-07-27 Beam shaping for ultra-small vertical cavity surface emitting laser (vcsel) arrays
US17/412,739 Active 2040-02-16 US12123769B2 (en) 2017-04-12 2021-08-26 Emitter structures for ultra-small vertical cavity surface emitting lasers (VCSELs) and arrays incorporating the same
US17/511,715 Abandoned US20220120866A1 (en) 2017-04-12 2021-10-27 Devices incorporating integrated dectors and ultra-small vertical cavity surface emitting laser emitters

Country Status (4)

Country Link
US (13) US10962627B2 (en)
EP (5) EP3593163B1 (en)
CN (6) CN110869796A (en)
WO (5) WO2018191495A1 (en)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10761195B2 (en) 2016-04-22 2020-09-01 OPSYS Tech Ltd. Multi-wavelength LIDAR system
US10436906B2 (en) 2016-12-23 2019-10-08 Waymo Llc Hybrid direct detection and coherent light detection and ranging system
US10830878B2 (en) * 2016-12-30 2020-11-10 Panosense Inc. LIDAR system
KR102592139B1 (en) 2017-03-13 2023-10-23 옵시스 테크 엘티디 Eye-Safe Scanning LIDAR System
EP3593163B1 (en) * 2017-04-12 2024-01-17 Sense Photonics, Inc. Devices incorporating integrated dectors and ultra-small vertical cavity surface emitting laser emitters
EP3419123A1 (en) * 2017-06-22 2018-12-26 Koninklijke Philips N.V. Vertical cavity surface emitting laser (vcsel) with improved gain-switching behavior
JP6865492B2 (en) 2017-07-28 2021-04-28 オプシス テック リミテッド VCSEL array LIDAR transmitter with small angle divergence
JP7388720B2 (en) 2017-11-15 2023-11-29 オプシス テック リミテッド Noise-adaptive solid-state LIDAR system
US10591598B2 (en) 2018-01-08 2020-03-17 SOS Lab co., Ltd Lidar device
WO2019135494A1 (en) 2018-01-08 2019-07-11 주식회사 에스오에스랩 Lidar device
DE102018101847A1 (en) * 2018-01-26 2019-08-01 Sick Ag Optoelectronic sensor and method for detecting objects
DE102018104785A1 (en) * 2018-03-02 2019-09-05 Osram Opto Semiconductors Gmbh Method for producing a plurality of transferable components and component assembly of components
DE102018104778A1 (en) * 2018-03-02 2019-09-05 Osram Opto Semiconductors Gmbh Component assembly of optical components, method for producing a composite component and component with an optical component
EP3775979B1 (en) 2018-04-01 2024-01-17 Opsys Tech Ltd. Noise adaptive solid-state lidar system
CN112105955A (en) 2018-04-09 2020-12-18 感应光子公司 LIDAR automatic gain control for autonomous vehicles
KR102050677B1 (en) * 2018-05-14 2019-12-03 주식회사 에스오에스랩 Lidar device
GB201808980D0 (en) * 2018-06-01 2018-07-18 Secr Defence Method and apparatus for detecting pulsed radiation
EP3814797A4 (en) 2018-07-24 2022-03-02 Sense Photonics, Inc. Phase noise and methods of correction in multi-frequency mode lidar
GB2579689A (en) * 2018-08-07 2020-07-01 Cambridge Mechatronics Ltd Improved 3D sensing
US11598857B2 (en) 2018-08-16 2023-03-07 Sense Photonics, Inc. Integrated lidar image-sensor devices and systems and related methods of operation
WO2020047248A1 (en) 2018-08-29 2020-03-05 Sense Photonics, Inc. Glare mitigation in lidar applications
JP2020038855A (en) * 2018-08-31 2020-03-12 ソニーセミコンダクタソリューションズ株式会社 Light source device, adjustment method, and sensing module
CN112655123B (en) * 2018-09-04 2024-10-11 ams传感器亚洲私人有限公司 Linear Vertical Cavity Surface Emitting Laser Array
JP2022510816A (en) 2018-11-19 2022-01-28 センス・フォトニクス,インコーポレイテッド Digital pixel
EP3903125A4 (en) 2018-12-05 2022-07-20 Sense Photonics, Inc. Hybrid center of mass method (cmm) pixel
US11282786B2 (en) 2018-12-12 2022-03-22 X Display Company Technology Limited Laser-formed interconnects for redundant devices
US11585906B2 (en) 2018-12-26 2023-02-21 Ouster, Inc. Solid-state electronic scanning laser array with high-side and low-side switches for increased channels
CN113272684A (en) 2019-01-04 2021-08-17 感觉光子公司 High dynamic range direct time-of-flight sensor with signal dependent effective readout rate
CN111446345A (en) 2019-01-16 2020-07-24 隆达电子股份有限公司 Packaging structure of light-emitting element
WO2020160349A1 (en) * 2019-01-31 2020-08-06 Sense Photonics, Inc. Strobe window dependent illumination for flash lidar
US11644549B2 (en) * 2019-03-06 2023-05-09 The University Court Of The University Of Edinburgh Extended dynamic range and reduced power imaging for LIDAR detector arrays
IT201900004197A1 (en) 2019-03-22 2020-09-22 St Microelectronics Srl INTEGRATED ELECTRONIC MODULE FOR 3D DETECTION, AND 3D SCANNING DEVICE INCLUDING THE ELECTRONIC MODULE
US11698441B2 (en) * 2019-03-22 2023-07-11 Viavi Solutions Inc. Time of flight-based three-dimensional sensing system
US11294058B2 (en) 2019-04-08 2022-04-05 Sense Photonics, Inc. Motion correction based on phase vector components
WO2020210176A1 (en) 2019-04-09 2020-10-15 OPSYS Tech Ltd. Solid-state lidar transmitter with laser control
DE102019112340A1 (en) * 2019-05-10 2020-11-12 Bircher Reglomat Ag TOF sensor system with a lighting device with an array of individual light sources
KR20220003600A (en) 2019-05-30 2022-01-10 옵시스 테크 엘티디 Eye-safe long-distance LIDAR system using actuators
US11728621B2 (en) * 2019-06-05 2023-08-15 Stmicroelectronics (Research & Development) Limited Voltage controlled steered VCSEL driver
US11579290B2 (en) 2019-06-05 2023-02-14 Stmicroelectronics (Research & Development) Limited LIDAR system utilizing multiple networked LIDAR integrated circuits
EP3980808A4 (en) 2019-06-10 2023-05-31 Opsys Tech Ltd. Eye-safe long-range solid-state lidar system
CN114096882A (en) 2019-06-25 2022-02-25 欧普赛斯技术有限公司 Adaptive multi-pulse LIDAR system
US12117606B2 (en) 2019-08-27 2024-10-15 SCREEN Holdings Co., Ltd. MEMs phased-array for LiDAR applications
EP4031908A4 (en) * 2019-10-01 2023-11-22 Sense Photonics, Inc. Strobe based configurable 3d field of view lidar system
WO2021067911A1 (en) * 2019-10-04 2021-04-08 University Of Rochester Optical phased array structure and fabrication techniques
WO2021076731A1 (en) 2019-10-15 2021-04-22 Sense Photonics, Inc. Strobing flash lidar with full frame utilization
WO2021088647A1 (en) * 2019-11-07 2021-05-14 上海禾赛科技股份有限公司 Multi-pulse laser emitting circuit, laser radar and method for emitting laser beams
CN115210882A (en) * 2020-01-10 2022-10-18 洛克利光子有限公司 Source wafer and method for manufacturing the same
EP4070126A4 (en) 2020-01-27 2024-01-24 Sense Photonics, Inc. Dram-based lidar pixel
US11604283B2 (en) * 2020-02-03 2023-03-14 Analog Devices International Unlimited Company Light source system
US11444432B2 (en) 2020-02-03 2022-09-13 Analog Devices International Unlimited Company Laser driver pulse shaping control
US11600966B2 (en) * 2020-02-03 2023-03-07 Analog Devices International Unlimited Company Light source system
CN111162450A (en) * 2020-02-25 2020-05-15 长春中科长光时空光电技术有限公司 Long wavelength vertical cavity surface emitting semiconductor laser
CN114981679A (en) * 2020-03-02 2022-08-30 华为技术有限公司 Depth acquisition assembly and electronic equipment
CN111313227B (en) * 2020-03-04 2021-07-27 常州纵慧芯光半导体科技有限公司 Vertical cavity surface emitting laser and manufacturing method thereof
US11762212B2 (en) * 2020-03-12 2023-09-19 Stmicroelectronics (Research & Development) Limited Diffuse illumination system having VCSEL emitters and array of nanostructures
JP7447604B2 (en) * 2020-03-25 2024-03-12 富士フイルムビジネスイノベーション株式会社 Light emitting devices, optical devices, measuring devices, and information processing devices
US11355544B2 (en) 2020-03-26 2022-06-07 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with improved light conversion efficiency
US11158759B1 (en) 2020-04-16 2021-10-26 International Business Machines Corporation Chip carrier integrating power harvesting and regulation diodes and fabrication thereof
US20210408338A1 (en) * 2020-06-24 2021-12-30 Epistar Corporation Light-emitting device
EP4172645A4 (en) * 2020-06-29 2024-07-10 Hrl Lab Llc Method and apparatus to increase radar range
CN114185054A (en) * 2020-08-25 2022-03-15 上海禾赛科技有限公司 Laser unit for a lidar and lidar
WO2022094254A1 (en) 2020-10-30 2022-05-05 Waymo Llc Light detection and ranging (lidar) devices having vertical-cavity surface-emitting laser (vcsel) emitters
US20230411926A1 (en) * 2020-11-23 2023-12-21 Sense Photonics, Inc. Multi-wafer integrated vcsel-electronics module
US20220173159A1 (en) * 2020-11-30 2022-06-02 Facebook Technologies, Llc Low resistance current spreading to n-contacts of micro-led array
TWI749951B (en) * 2020-12-17 2021-12-11 華碩電腦股份有限公司 Ultrasonic sensor module
IT202100000227A1 (en) * 2021-01-07 2022-07-07 St Microelectronics Srl ELECTRONIC MODULE FOR THE GENERATION OF LIGHT PULSE FOR LIDAR APPLICATIONS, AND METHOD OF MANUFACTURING THE ELECTRONIC MODULE
CN112731350A (en) * 2021-01-27 2021-04-30 复旦大学 Scanning driving circuit and control method of laser radar
CN112987018B (en) * 2021-02-08 2023-06-13 中国科学院光电技术研究所 Laser imaging optical system for realizing large staring visual field detection by utilizing planar micro-nano structure lens
US12080108B1 (en) * 2021-02-11 2024-09-03 Trackonomy Systems, Inc. System for monitoring vehicles for wear and anomalous events using wireless sensing devices
CN113009506B (en) * 2021-02-22 2022-12-09 西安交通大学 Virtual-real combined real-time laser radar data generation method, system and equipment
JP2022142652A (en) * 2021-03-16 2022-09-30 株式会社リコー Light source module, distance measurement device, and mobile body
US20220299610A1 (en) * 2021-03-22 2022-09-22 Lumentum Operations Llc Driver circuit for an addressable array of optical emitters
CN113031010B (en) * 2021-03-31 2023-04-28 小马易行科技(上海)有限公司 Method, apparatus, computer readable storage medium and processor for detecting weather
US20220344909A1 (en) * 2021-04-26 2022-10-27 Lumentum Operations Llc Matrix addressable vertical cavity surface emitting laser array
EP4125306A1 (en) * 2021-07-30 2023-02-01 Infineon Technologies AG Illumination device for an optical sensor, optical sensor and method for controlling an illumination device
CN114256738B (en) * 2021-11-10 2023-09-12 南京邮电大学 Electric pump nitride suspended waveguide micro-laser and preparation method thereof
DE102021132724A1 (en) 2021-12-10 2023-06-15 Valeo Schalter Und Sensoren Gmbh OPTICAL VEHICLE ENVIRONMENT SENSOR, VEHICLE AND MANUFACTURING PROCESS
US12013462B2 (en) * 2021-12-28 2024-06-18 Suteng Innovation Technology Co., Ltd. Laser emitting module and lidar apparatus
CN114759128A (en) * 2022-03-09 2022-07-15 南方科技大学 Nanometer Bessel laser beam emitter and preparation method thereof
WO2023200169A1 (en) * 2022-04-15 2023-10-19 하나옵트로닉스 주식회사 Vcsel-based optical device having common anode and plurality of insulated cathode structures, and optical module
CN114975649B (en) * 2022-05-11 2024-07-23 南京邮电大学 Silicon substrate gallium nitride photon integrated chip for environment perception and manufacturing method thereof
KR102701389B1 (en) * 2022-05-30 2024-09-02 성균관대학교산학협력단 Light reception and generation elements disposition for three dimensional imaging
DE102022115651A1 (en) 2022-06-23 2023-12-28 Ams-Osram International Gmbh OPTOELECTRONIC SENSOR
GB202210951D0 (en) * 2022-07-27 2022-09-07 Ams Osram Asia Pacific Pte Ltd Illumination Device
CN115347456B (en) * 2022-08-22 2024-09-03 福建慧芯激光科技有限公司 Preparation method of combined reflector type long wavelength VCSEL (vertical cavity surface emitting laser) stripped by single chip
WO2024166107A1 (en) * 2023-02-08 2024-08-15 Heartray Ltd Laser array unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246708B1 (en) * 1997-08-27 2001-06-12 Xerox Corporation Semiconductor laser with associated electronic components integrally formed therewith
US20120293625A1 (en) * 2011-05-18 2012-11-22 Sick Ag 3d-camera and method for the three-dimensional monitoring of a monitoring area
US20150362585A1 (en) * 2013-07-12 2015-12-17 Princeton Optronics Inc. 2-D Planar VCSEL Source for 3-D Imaging
US20160156157A1 (en) * 2013-07-22 2016-06-02 Murata Manufacturing Co., Ltd. Vertical cavity surface emitting laser array and method for manufacturing the same

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4371968A (en) * 1981-07-01 1983-02-01 The United States Of America As Represented By The Secretary Of The Army Monolithic injection laser arrays formed by crystal regrowth techniques
US5034958A (en) * 1990-04-19 1991-07-23 Bell Communications Research, Inc. Front-surface emitting diode laser
JPH0486254A (en) 1990-07-30 1992-03-18 Sekisui Chem Co Ltd Resin coated metallic body
US5283447A (en) * 1992-01-21 1994-02-01 Bandgap Technology Corporation Integration of transistors with vertical cavity surface emitting lasers
JPH07142761A (en) * 1993-11-18 1995-06-02 Mitsubishi Electric Corp Photoreceptor element and its array, device and method for sensing picture
US6277696B1 (en) * 1995-06-27 2001-08-21 Hewlett-Packard Company Surface emitting laser using two wafer bonded mirrors
US5909296A (en) 1997-04-04 1999-06-01 The United States Of America As Represented By The Secretary Of The Air Force Effective wide angle beam steering using spherical laser diode arrays
US6668005B2 (en) * 1998-01-31 2003-12-23 Klaus Streubel Pre-fusion oxidized and wafer-bonded vertical cavity laser
JPH11340572A (en) * 1998-05-26 1999-12-10 Fuji Xerox Co Ltd Semiconductor device and image forming device
JP4016526B2 (en) * 1998-09-08 2007-12-05 富士ゼロックス株式会社 3D object identification device
US6280523B1 (en) * 1999-02-05 2001-08-28 Lumileds Lighting, U.S., Llc Thickness tailoring of wafer bonded AlxGayInzN structures by laser melting
US6341137B1 (en) * 1999-04-27 2002-01-22 Gore Enterprise Holdings, Inc. Wavelength division multiplexed array of long-wavelength vertical cavity lasers
US6233263B1 (en) * 1999-06-04 2001-05-15 Bandwidth9 Monitoring and control assembly for wavelength stabilized optical system
KR100338072B1 (en) 1999-09-13 2002-05-24 윤종용 System for interfacing between handheld wireless terminal and MFP
DE10004398A1 (en) * 2000-02-02 2001-08-16 Infineon Technologies Ag VCSEL with monolithically integrated photodetector
JP2001223384A (en) * 2000-02-08 2001-08-17 Toshiba Corp Semiconductor light-emitting element
US7247892B2 (en) * 2000-04-24 2007-07-24 Taylor Geoff W Imaging array utilizing thyristor-based pixel elements
US6697402B2 (en) * 2001-07-19 2004-02-24 Analog Modules, Inc. High-power pulsed laser diode driver
KR100397371B1 (en) 2001-11-08 2003-09-13 한국전자통신연구원 Long wavelength vertical-cavity surface emitting laser having oxide-aperture and method for fabricating the same
US6717974B2 (en) 2002-04-01 2004-04-06 Lumei Optoelectronics Corporation Apparatus and method for improving electrical conduction structure of a vertical cavity surface emitting laser
JP2004022901A (en) * 2002-06-18 2004-01-22 Seiko Epson Corp Optical interconnection integrated circuit, method for manufacturing optical interconnection integrated circuit, electro-optical device, and electronic apparatus
JP2004063707A (en) * 2002-07-29 2004-02-26 Fuji Xerox Co Ltd Surface emitting type semiconductor laser
US7289547B2 (en) * 2003-10-29 2007-10-30 Cubic Wafer, Inc. Laser and detector device
US6932472B2 (en) * 2003-11-04 2005-08-23 Pacific Beach, Inc. Dual complementary two-color optics which enables a user to see true neutral color, with improved shading design and shadow detail
JP3940395B2 (en) * 2003-11-14 2007-07-04 パイオニア株式会社 Method and apparatus for driving light emitting element
JP4437913B2 (en) * 2003-11-25 2010-03-24 富士ゼロックス株式会社 Surface emitting semiconductor laser device and method for manufacturing the same
JP4599865B2 (en) 2004-03-26 2010-12-15 住友電気工業株式会社 Surface emitting semiconductor laser device
US7330369B2 (en) 2004-04-06 2008-02-12 Bao Tran NANO-electronic memory array
JP2005322857A (en) * 2004-05-11 2005-11-17 Nippon Telegr & Teleph Corp <Ntt> Optical resonator and method for manufacturing same
WO2006034585A1 (en) * 2004-09-28 2006-04-06 UNIVERSITé DE SHERBROOKE Method and system for low radiation computed tomography (ct)
US7295590B2 (en) * 2004-11-15 2007-11-13 Intel Corporation Method for measuring VCSEL reverse bias leakage in an optical module
US8410523B2 (en) 2006-01-11 2013-04-02 Diana L. Huffaker Misfit dislocation forming interfacial self-assembly for growth of highly-mismatched III-SB alloys
US8110823B2 (en) * 2006-01-20 2012-02-07 The Regents Of The University Of California III-V photonic integration on silicon
US7544945B2 (en) 2006-02-06 2009-06-09 Avago Technologies General Ip (Singapore) Pte. Ltd. Vertical cavity surface emitting laser (VCSEL) array laser scanner
WO2007105328A1 (en) * 2006-03-14 2007-09-20 The Furukawa Electric Co., Ltd. Surface emitting laser element array
US7582879B2 (en) * 2006-03-27 2009-09-01 Analogic Corporation Modular x-ray measurement system
KR101612749B1 (en) * 2006-09-06 2016-04-27 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 A two-dimensional stretchable and bendable device
US7892891B2 (en) * 2006-10-11 2011-02-22 SemiLEDs Optoelectronics Co., Ltd. Die separation
KR101636750B1 (en) 2007-01-17 2016-07-06 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Optical systems fabricated by printing-based assembly
JP4086254B1 (en) 2007-10-16 2008-05-14 株式会社トマトInc Laser slimming device
US8301027B2 (en) * 2008-05-02 2012-10-30 Massachusetts Institute Of Technology Agile-beam laser array transmitter
JP5178393B2 (en) * 2008-08-20 2013-04-10 シャープ株式会社 Optical distance measuring sensor and electronic device
US8363894B2 (en) * 2008-12-12 2013-01-29 Silicon Laboratories Inc. Apparatus and method for implementing a touchless slider
US8976158B2 (en) * 2009-02-15 2015-03-10 Neonode Inc. User interface for white goods and associated multi-channel proximity sensors
US7949024B2 (en) * 2009-02-17 2011-05-24 Trilumina Corporation Multibeam arrays of optoelectronic devices for high frequency operation
EP2430652B1 (en) * 2009-05-12 2019-11-20 The Board of Trustees of the University of Illionis Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
JP5639169B2 (en) 2009-07-22 2014-12-10 ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation Dark field inspection system and method for configuring dark field inspection system
TWI396500B (en) 2010-03-26 2013-05-21 Iseki Agricult Mach Deforestation
US9049797B2 (en) * 2010-03-29 2015-06-02 Semprius, Inc. Electrically bonded arrays of transfer printed active components
US8384559B2 (en) * 2010-04-13 2013-02-26 Silicon Laboratories Inc. Sensor device with flexible interface and updatable information store
US8391328B2 (en) 2010-08-09 2013-03-05 Coherent, Inc. Optical pumping of a solid-state gain-medium using a diode-laser bar stack with individually addressable bars
KR20130111577A (en) 2010-11-02 2013-10-10 코닌클리케 필립스 엔.브이. Iii-nitride light emitting device
US8648310B2 (en) * 2011-01-18 2014-02-11 Varian Medical Systems, Inc. Indirect X-ray imager having semi-transparent layers
US9031195B2 (en) * 2011-05-20 2015-05-12 General Electric Company Imaging detector and methods for image detection
KR101235239B1 (en) * 2011-05-20 2013-02-21 서울대학교산학협력단 Semiconductor thin film structure and method of forming the same
KR101433361B1 (en) 2011-05-26 2014-08-22 주식회사 레이칸 polarization-control vertical-cavity surface-emitting laser
US8866064B2 (en) * 2011-07-26 2014-10-21 Avago Technologies General Ip (Singapore) Pte. Ltd. Multi-directional proximity sensor
US8349116B1 (en) 2011-11-18 2013-01-08 LuxVue Technology Corporation Micro device transfer head heater assembly and method of transferring a micro device
JP5275528B1 (en) * 2011-11-22 2013-08-28 パナソニック株式会社 Semiconductor light emitting device
US8675706B2 (en) 2011-12-24 2014-03-18 Princeton Optronics Inc. Optical illuminator
CN103999303B (en) * 2012-01-12 2018-03-13 慧与发展有限责任合伙企业 Integrated sub-wave length grating system
CN104254785B (en) * 2012-03-01 2016-08-24 Iee国际电子工程股份公司 Close-coupled lasing light emitter for the active illumination of hybrid three-dimensional imager
EP2826113A2 (en) * 2012-03-14 2015-01-21 Koninklijke Philips N.V. Vcsel module and manufacture thereof
US9065239B2 (en) 2012-04-17 2015-06-23 Trilumina Corp. Multibeam array of top emitting VCSEL elements
US9506750B2 (en) 2012-09-07 2016-11-29 Apple Inc. Imaging range finding device and method
US20140139467A1 (en) * 2012-11-21 2014-05-22 Princeton Optronics Inc. VCSEL Sourced Touch Screen Sensor Systems
US9126034B1 (en) * 2012-11-30 2015-09-08 Richard Ogden Deroberts Flexible, wearable therapeutic laser array
US8761594B1 (en) * 2013-02-28 2014-06-24 Apple Inc. Spatially dynamic illumination for camera systems
DE102013204264A1 (en) * 2013-03-12 2014-09-18 Siemens Aktiengesellschaft Method for taking an X-ray image and X-ray system
US9231361B2 (en) * 2013-04-30 2016-01-05 Futurewei Technologies, Inc. Tunable laser with high thermal wavelength tuning efficiency
US20150260830A1 (en) * 2013-07-12 2015-09-17 Princeton Optronics Inc. 2-D Planar VCSEL Source for 3-D Imaging
WO2015011983A1 (en) 2013-07-22 2015-01-29 株式会社村田製作所 Vertical-cavity surface-emitting laser array
US10203399B2 (en) * 2013-11-12 2019-02-12 Big Sky Financial Corporation Methods and apparatus for array based LiDAR systems with reduced interference
US9831630B2 (en) 2014-02-06 2017-11-28 GM Global Technology Operations LLC Low cost small size LiDAR for automotive
EP3143323B1 (en) * 2014-04-29 2019-10-09 Cooledge Lighting, Inc. Modular led lighting systems
US20150323379A1 (en) 2014-05-07 2015-11-12 Mao-Jen Wu Optical Inertial Sensing Module
US9484495B2 (en) 2014-06-30 2016-11-01 Sae Magnetics (H.K.) Ltd. Semiconductor light-emitting element and method for manufacturing the same
US9337622B2 (en) * 2014-07-18 2016-05-10 Wisconsin Alumni Research Foundation Compact distributed bragg reflectors
US20160072258A1 (en) * 2014-09-10 2016-03-10 Princeton Optronics Inc. High Resolution Structured Light Source
DE102015203614B3 (en) 2015-02-27 2016-09-01 Mtu Friedrichshafen Gmbh Multi-fuel injector for an internal combustion engine, method for operating a multi-fuel injector, and internal combustion engine
US9625582B2 (en) * 2015-03-25 2017-04-18 Google Inc. Vehicle with multiple light detection and ranging devices (LIDARs)
US10295671B2 (en) * 2015-05-07 2019-05-21 GM Global Technology Operations LLC Array lidar with controllable field of view
US10120076B2 (en) * 2015-05-07 2018-11-06 GM Global Technology Operations LLC Spatio-temporal scanning patterns for array lidar systems
US10374105B2 (en) * 2015-07-01 2019-08-06 The Board Of Trustees Of The University Of Illinois Optoelectronic device including a buried metal grating for extraordinary optical transmission (EOT)
US9728934B2 (en) 2015-08-31 2017-08-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Back-side-emitting vertical cavity surface emitting laser (VCSEL) wafer bonded to a heat-dissipation wafer, devices and methods
JP6176298B2 (en) 2015-09-03 2017-08-09 富士ゼロックス株式会社 Surface emitting semiconductor laser array and method for manufacturing surface emitting semiconductor laser array
US10177127B2 (en) * 2015-09-04 2019-01-08 Hong Kong Beida Jade Bird Display Limited Semiconductor apparatus and method of manufacturing the same
US9952092B2 (en) * 2015-10-30 2018-04-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Matrix arrangement of photodetector for use as a proximity sensor and ambient light sensor
CN105449518A (en) * 2016-01-09 2016-03-30 北京工业大学 Vertical-cavity surface-emitting laser and manufacturing method therefor
CN105552715B (en) * 2016-01-29 2018-07-27 中国科学院长春光学精密机械与物理研究所 It is suitble to the high-gain vertical-cavity-face emitting semiconductor laser of hot operation
EP4194887A1 (en) * 2016-09-20 2023-06-14 Innoviz Technologies Ltd. Lidar systems and methods
EP3593163B1 (en) * 2017-04-12 2024-01-17 Sense Photonics, Inc. Devices incorporating integrated dectors and ultra-small vertical cavity surface emitting laser emitters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246708B1 (en) * 1997-08-27 2001-06-12 Xerox Corporation Semiconductor laser with associated electronic components integrally formed therewith
US20120293625A1 (en) * 2011-05-18 2012-11-22 Sick Ag 3d-camera and method for the three-dimensional monitoring of a monitoring area
US20150362585A1 (en) * 2013-07-12 2015-12-17 Princeton Optronics Inc. 2-D Planar VCSEL Source for 3-D Imaging
US20160156157A1 (en) * 2013-07-22 2016-06-02 Murata Manufacturing Co., Ltd. Vertical cavity surface emitting laser array and method for manufacturing the same

Also Published As

Publication number Publication date
EP3593425A1 (en) 2020-01-15
WO2018191489A1 (en) 2018-10-18
EP3593163B1 (en) 2024-01-17
WO2018191495A1 (en) 2018-10-18
US20210356564A1 (en) 2021-11-18
US20180301589A1 (en) 2018-10-18
EP3593423A4 (en) 2021-01-20
US20180301874A1 (en) 2018-10-18
CN110692171A (en) 2020-01-14
CN110692172A (en) 2020-01-14
WO2018191478A1 (en) 2018-10-18
US11187789B2 (en) 2021-11-30
US10483722B2 (en) 2019-11-19
US20180301875A1 (en) 2018-10-18
US20220120866A1 (en) 2022-04-21
US10522973B2 (en) 2019-12-31
CN114614337A (en) 2022-06-10
CN110692171B (en) 2022-07-22
EP3593163A1 (en) 2020-01-15
EP3593163C0 (en) 2024-01-17
US20200161834A1 (en) 2020-05-21
CN110869796A (en) 2020-03-06
EP3593425A4 (en) 2021-02-17
US20180301872A1 (en) 2018-10-18
WO2018191516A1 (en) 2018-10-18
US11061117B2 (en) 2021-07-13
US12123769B2 (en) 2024-10-22
US10530130B2 (en) 2020-01-07
EP3593422A4 (en) 2021-01-20
WO2018191491A1 (en) 2018-10-18
CN110679049A (en) 2020-01-10
CN110710072A (en) 2020-01-17
EP3593424B1 (en) 2022-09-28
EP3593423A1 (en) 2020-01-15
US11125862B2 (en) 2021-09-21
CN110710072B (en) 2022-07-22
US11105899B2 (en) 2021-08-31
US20210396851A1 (en) 2021-12-23
EP3593163A4 (en) 2021-02-17
US10962627B2 (en) 2021-03-30
US20200161835A1 (en) 2020-05-21
US20210293965A1 (en) 2021-09-23
US20180301865A1 (en) 2018-10-18
EP3593422A1 (en) 2020-01-15
EP3593425B1 (en) 2023-11-22
US20200119522A1 (en) 2020-04-16
EP3593424A4 (en) 2021-01-27
EP3593424A1 (en) 2020-01-15
CN110692172B (en) 2022-02-25

Similar Documents

Publication Publication Date Title
US20210208254A1 (en) Ultra-small vertical cavity surface emitting laser (vcsel) and arrays incorporating the same
EP4111559B1 (en) 3d and lidar sensing modules
CN112335143A (en) VCSEL array with small pulse delay
CN115642473A (en) Laser array and forming method thereof, light source module and laser radar
KR20230109153A (en) Multi-Wafer Integrated VCSEL-Electronic Module

Legal Events

Date Code Title Description
AS Assignment

Owner name: SENSE PHOTONICS, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURROUGHS, SCOTT;FISHER, BRENT;CARTER, JAMES;SIGNING DATES FROM 20180413 TO 20180612;REEL/FRAME:055440/0752

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: HERCULES CAPITAL, INC., AS AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNORS:OUSTER, INC.;SENSE PHOTONICS, INC.;REEL/FRAME:059859/0035

Effective date: 20220429

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: OUSTER, INC., CALIFORNIA

Free format text: RELEASE OF INTELLECTUAL PROPERTY SECURITY INTEREST AT REEL/FRAME NO. 059859/0035;ASSIGNOR:HERCULES CAPITAL, INC.;REEL/FRAME:065350/0826

Effective date: 20231025

AS Assignment

Owner name: SENSE PHOTONICS, INC., NORTH CAROLINA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADD THE SECOND ASSIGNEE PREVIOUSLY RECORDED AT REEL: 65350 FRAME: 826. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:HERCULES CAPITAL, INC.;REEL/FRAME:066432/0458

Effective date: 20231025

Owner name: OUSTER, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADD THE SECOND ASSIGNEE PREVIOUSLY RECORDED AT REEL: 65350 FRAME: 826. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:HERCULES CAPITAL, INC.;REEL/FRAME:066432/0458

Effective date: 20231025