Nothing Special   »   [go: up one dir, main page]

US20210148374A1 - Emergency molten metal pump out - Google Patents

Emergency molten metal pump out Download PDF

Info

Publication number
US20210148374A1
US20210148374A1 US17/157,625 US202117157625A US2021148374A1 US 20210148374 A1 US20210148374 A1 US 20210148374A1 US 202117157625 A US202117157625 A US 202117157625A US 2021148374 A1 US2021148374 A1 US 2021148374A1
Authority
US
United States
Prior art keywords
pump
metal
impeller
base
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/157,625
Inventor
Richard S. Henderson
Jon Tipton
Andrew Horsfall
Peter Cornelis Jetten
Paul Bosworth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pyrotek Inc
Original Assignee
Pyrotek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pyrotek Inc filed Critical Pyrotek Inc
Priority to US17/157,625 priority Critical patent/US20210148374A1/en
Publication of US20210148374A1 publication Critical patent/US20210148374A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/06Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals
    • F04D7/065Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals for liquid metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps

Definitions

  • the present exemplary embodiment relates to a molten metal pump. It finds particular application as a pump suitable for emergency pump out situations, and will be described with particular reference thereto. However, it is to be appreciated that the present exemplary embodiment is also amenable to other like applications.
  • Molten metals such as aluminum, brass, bronze and zinc are commonly used. Of course, to be placed in a molten state, the metal must be exposed to elevated temperatures.
  • furnaces and other devices are used for this purpose, including smelting furnaces for aluminum production, induction furnaces for metal processing, and refractory furnaces for metal recycling. The following paragraphs describe several varied systems in which a molten metal exists.
  • Hall-Heroult manufactures aluminum smelting pots consisting of a rectangular steel box insulated with fire bricks along the bottom and the sides. Carbon blocks containing conductor rods are attached to the bottom brick lining, with the rods protruding from the cell structure. The sides of the cell are lined with carbon on top of the firebricks. Square anode blocks constructed form compressed petroleum, coke and coal tar are fixed to rods and suspended from two beam-like bus-bars attached to the cell structure, which as well as supplying electric current can lower or raise the anode blocks.
  • Alumina is provided to the cell through an ore bin located above the cell and a portable fume extraction hood covers the cell. Aluminum is derived from the added aluminum within the melting pots via an electrolytic process.
  • induction furnaces employ electromagnetic energy to induce electrical currents within a charge of metal or metal alloy.
  • the electrical resistance of the metal produces heat as a natural consequence of the induced currents flowing in the metal.
  • the combination of applied electrical power and frequency can be chosen to induce sufficient heat within the metal to cause it to melt, providing a molten liquid which can be poured into molds or otherwise used to produce a wide variety of metal products.
  • the basic elements of an induction furnace include an electromagnetic induction coil, a vessel having a lining of refractory material, and a support structure for the coil and vessel.
  • metals may be melted in reverberatory furnaces.
  • a reverberatory furnace direct flame and radiation from hot refractory linings heat the metal.
  • a furnace is a steel box lined with alumina or other refractory brick having a flue at one end and a generally vertically lifting door at the other end closing a main entrance for the furnace through which a metal is directly charged into the furnace.
  • the charge of molten metal may be introduced through the main entrance and lies in a shallow hearth having a relatively low roof so that flame passes across the surface of the charge.
  • Conventional oil or gas burners are usually placed on either side of the furnace to heat the refractory lining and to melt the metal.
  • the resulting molten metal is then transferred to a casting machine to produce metal ingot.
  • the object In the hot-dip galvanizing of an object, for example of iron, steel etc., the object is immersed in a bath of molten zinc, the iron and zinc forming alloys with one another.
  • the molten zinc is typically housed in a refractory container during this process.
  • a refractory lined vessel designed to withstand the extreme temperatures associated with molten metals may be employed.
  • the interior surface of the refractory lining that contacts the molten metal can become sintered and brittle because of the extreme temperatures to which it is exposed.
  • the refractory expands and contracts in response to the heating and cooling cycles. Cracks form in the refractory, permitting small amounts of molten metal to migrate into the granular material. Failure can result in a dangerous situation where molten metal could escape containment.
  • each system requires the introduction of energy (e.g. heat or electricity) to keep the metal in a molten state. If the heating system were to fail (or for example power to the system is lost), the molten metal could solidify and ruin the system.
  • energy e.g. heat or electricity
  • molten metal pumps already exist that can remove molten metal from vessels.
  • the pumps are constructed of a refractory material.
  • a refractory pump cannot be immersed in molten metal without a relatively lengthy pre-heating process. Accordingly, a traditional refractory pump is unsuitable for emergency pump-out situations.
  • a molten metal pump comprised of a metal base defining a pumping chamber.
  • the pump further includes a motor mount adapted to receive a motor, at least one metal post extending between the base and the motor mount, and a metal shaft disposed between the motor and an impeller disposed in the pumping chamber.
  • a bearing ring engages the impeller.
  • the pumping chamber will include an inlet and an outlet and a metal riser tube in fluid communication with the outlet is also provided.
  • a method for emergency pump out of a molten metal from a vessel comprises identifying a condition precedent which requires rapid removal of the molten metal from the vessel, and then introducing a pump including at least a metal base, a metal post and a metal riser tube into the molten metal.
  • a pump including at least a metal base, a metal post and a metal riser tube into the molten metal.
  • the impeller By rotating a shaft and impeller combination with a motor, the impeller being disposed within the base and configured to direct molten metal into the riser tube, molten metal is transferred through the riser tube into a second vessel.
  • the present pump constructed primarily from metal, does not require preheating and can be introduced into a molten metal even when the pump components are at a temperature below about 100° C.
  • FIG. 1 is a perspective view of a molten metal pump
  • FIG. 2 is a rear elevation view of the pump of FIG. 1 ;
  • FIG. 3 is a side elevation view of the pump of FIG. 1 ;
  • FIG. 4 is a top plan view of the pump of FIG. 1 ;
  • FIGS. 5A, 5B and 5C are representative of the pump base of FIG. 1 in various phases of assembly ( FIG. 5A is fully exploded, FIG. 5B is partially exploded by part grouping, and FIG. 5C is assembled);
  • FIG. 6 is a cross-sectional view of a pump base
  • FIG. 7 is the molten metal pump of FIG. 1 including an outlet conduit adapter attached to the riser.
  • a motor 111 is attached to a rotatable shaft 113 by a coupling assembly (not visible).
  • the shaft 113 is attached at its lower end to a rotatable impeller 117 which rotates within a pumping chamber 118 defined by base 119 .
  • a birdcage impeller of the type disclosed herein is suitable but alternative impeller embodiments are envisioned to work equally well.
  • the impeller 117 and pumping chamber 118 are in fluid communication with an inlet 134 and an outlet 133 of the base 119 .
  • the use of a graphite or ceramic (refractory materials) impeller can advantageously minimize thermal expansion issues.
  • a first bearing ring pair 121 and a second bearing ring pair 122 are provided to allow proper rotation of the impeller 117 .
  • the bearing rings advantageously prevent erosion so that flow can be maintained.
  • the motor 111 is supported and connected to the base assembly 119 by a pair of posts 125 which are attached to a motor mount platform 129 via bolt assemblies 131 .
  • a riser tube 132 has a first end disposed in fluid communication with the outlet 133 in the base 119 and is secured at a second end to the motor mount platform 129 via a coupling adaptor 137 .
  • the shaft, posts and riser tube can be constructed of any high temperature resistant metal, such as stainless steel.
  • the base assembly is comprised of steel plates 140 , 141 , 142 , 143 and 144 . Of course, it is envisioned that more or fewer than five plates can be used to assemble the base. Three plates is considered to be the most likely minimum number. Interposed between each of the plates is sealing gasket 145 , 146 , 147 and 148 which can be constructed of Graphoil.
  • the plates can be constructed, for example, from 304, 316 and/or 330 stainless steel.
  • Silicon carbide bearing rings particularly outer bearings 121 and 122 are seated within recesses in the base and are similarly surrounded by expansion gaskets (which can be constructed of FryeWrap XFP expanding paper from Unifrax Corporation) 150 , 151 , 152 and 153 , forming an interface between the silicon nitride bonded silicon carbide bearing ring and the adjacent metal surfaces on the outside edge and outer wall.
  • expansion gaskets which can be constructed of FryeWrap XFP expanding paper from Unifrax Corporation
  • the expanding gaskets keep bearing rings aligned notwithstanding dissimilar thermal expansion.
  • sealing gaskets 154 and 155 seal the inside edge of the bearing rings.
  • Shaft 113 is secured to the impeller 117 .
  • graphite impeller 117 can be machined with a quadralobal extension 160 .
  • Extension 160 can be shaped in the same manner as the shaft which is described in U.S. Pat. No. 5,634,770, herein incorporated by reference.
  • the quadralobal mating allows for dissimilar thermal expansions and high torque transfer.
  • a cap member 170 having a cooperatively formed internal surface for receiving the extension 160 is positioned there over.
  • Metal cap 170 includes a threaded head end 171 suitable for receiving a cooperatively threaded end of shaft 113 .
  • the male thread connection allows for field modification to the shaft.
  • a bore 180 through impeller 117 is designed to receive a bolt 181 having a threaded end to receive nut 183 . Tightening of nut 183 draws impeller 117 and cap 170 into a mated relationship.
  • a gasket material 190 (eg. Grafoil) can be positioned between the interface with shaft 113 and cap 170 . Furthermore, a gasket 193 can be provided at the interface between cap 170 and a surface of impeller 117 . A graphite plug 191 can be inserted into the bore 180 of the impeller 117 to seal the bolt 181 from exposure to molten metal.
  • a gasket material 190 eg. Grafoil
  • a gasket 193 can be provided at the interface between cap 170 and a surface of impeller 117 .
  • a graphite plug 191 can be inserted into the bore 180 of the impeller 117 to seal the bolt 181 from exposure to molten metal.
  • Plates 140 - 144 are equipped with aligned passages 200 designed to receive bolt and nut assemblies 201 suitable for simultaneously mating the plates 140 - 144 together to form base 119 and attaching posts 125 to the base 119 .
  • Posts 125 can include cross members 210 which include alignment passages 211 (optionally with bearing rings) serving as a guide for shaft 113 .
  • the pump can generally be approximately at least 3 meters long and maintain its functional stability because of the steel superstructure.
  • Plate 142 can include a plurality of tap holes 220 designed to receive screws 221 suitable for joining riser tube 132 to the base 119 adjacent outlet 133 .
  • Hook elements 230 are secured to the motor mount 129 to facilitate the lifting of the pump assembly into the desired location.
  • the present pump provides a suitable emergency pump out apparatus. More particularly, because thermal expansion mismatches are minimized via the pump design, no preheating is required. Accordingly, the pump can be immediately disposed within a body of molten metal when required.
  • the pump is particularly advantageous because of its steel construction it can be readily disposed within molten aluminum and molten zinc (and other molten metals) whereas a traditional graphite pump requires a super structure above the furnace to keep the pump in place because of its comparatively high buoyancy.
  • the pump may be at least 3 meters in length, in which case each of the shaft 113 , posts 125 and riser tube 132 will be at least 3 meters in length. Moreover, this length is anticipated to be sufficient to allow the base to be deployed adjacent a lower portion of the molten metal containment vessel, wherein molten metal is lifted via riser tube 132 above the height of a sidewall of the containment vessel. Of course, in certain situations, a taller system may be desired.
  • the riser tube may have a length greater than the post/shaft elements.
  • base 119 may be disposed on a bottom floor of the vessel being evaluated, it may be exposed to dross and other occlusions. Accordingly, in selected embodiments, it may be advantageous to provide a steel basket 249 (or screen) surrounding the inlet 134 . Moreover, the basket 249 can define a plurality of relatively smaller openings 251 that can discourage large dross pieces or inclusions from entering and damaging the pump (see FIG. 6 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A molten metal pump comprised of a metal base defining a pumping chamber is provided. The pump further includes a motor mount adapted to receive a motor, at least one metal post extending between the base and the motor mount, and a metal shaft disposed between the motor and an impeller disposed in the pumping chamber. A bearing ring engages the impeller. The pumping chamber will include an inlet and an outlet. A steel riser tube in fluid communication the outlet is also provided.

Description

    EMERGENCY MOLTEN METAL PUMP OUT
  • This application claims the benefit of U.S. Provisional Application 61/832,376, filed Jun. 7, 2013, and is a continuation of U.S. patent application Ser. No. 14/294,858, filed Jun. 3, 2014, the disclosures of which are herein incorporated by reference.
  • BACKGROUND
  • The present exemplary embodiment relates to a molten metal pump. It finds particular application as a pump suitable for emergency pump out situations, and will be described with particular reference thereto. However, it is to be appreciated that the present exemplary embodiment is also amenable to other like applications.
  • Molten metals such as aluminum, brass, bronze and zinc are commonly used. Of course, to be placed in a molten state, the metal must be exposed to elevated temperatures. A variety of types of furnaces and other devices are used for this purpose, including smelting furnaces for aluminum production, induction furnaces for metal processing, and refractory furnaces for metal recycling. The following paragraphs describe several varied systems in which a molten metal exists.
  • For example, Hall-Heroult manufactures aluminum smelting pots consisting of a rectangular steel box insulated with fire bricks along the bottom and the sides. Carbon blocks containing conductor rods are attached to the bottom brick lining, with the rods protruding from the cell structure. The sides of the cell are lined with carbon on top of the firebricks. Square anode blocks constructed form compressed petroleum, coke and coal tar are fixed to rods and suspended from two beam-like bus-bars attached to the cell structure, which as well as supplying electric current can lower or raise the anode blocks. Alumina is provided to the cell through an ore bin located above the cell and a portable fume extraction hood covers the cell. Aluminum is derived from the added aluminum within the melting pots via an electrolytic process.
  • As another example, induction furnaces employ electromagnetic energy to induce electrical currents within a charge of metal or metal alloy. The electrical resistance of the metal produces heat as a natural consequence of the induced currents flowing in the metal. The combination of applied electrical power and frequency can be chosen to induce sufficient heat within the metal to cause it to melt, providing a molten liquid which can be poured into molds or otherwise used to produce a wide variety of metal products. The basic elements of an induction furnace include an electromagnetic induction coil, a vessel having a lining of refractory material, and a support structure for the coil and vessel.
  • As a further example, metals may be melted in reverberatory furnaces. In a reverberatory furnace direct flame and radiation from hot refractory linings heat the metal. At its simplest, such a furnace is a steel box lined with alumina or other refractory brick having a flue at one end and a generally vertically lifting door at the other end closing a main entrance for the furnace through which a metal is directly charged into the furnace. The charge of molten metal may be introduced through the main entrance and lies in a shallow hearth having a relatively low roof so that flame passes across the surface of the charge. Conventional oil or gas burners are usually placed on either side of the furnace to heat the refractory lining and to melt the metal. The resulting molten metal is then transferred to a casting machine to produce metal ingot.
  • In the hot-dip galvanizing of an object, for example of iron, steel etc., the object is immersed in a bath of molten zinc, the iron and zinc forming alloys with one another. The molten zinc is typically housed in a refractory container during this process.
  • Each of these systems—and equipment not mentioned herein—is capable of failure. For example, within each of these systems a refractory lined vessel designed to withstand the extreme temperatures associated with molten metals may be employed. In operation, the interior surface of the refractory lining that contacts the molten metal can become sintered and brittle because of the extreme temperatures to which it is exposed. As the device is used repeatedly, the refractory expands and contracts in response to the heating and cooling cycles. Cracks form in the refractory, permitting small amounts of molten metal to migrate into the granular material. Failure can result in a dangerous situation where molten metal could escape containment.
  • Furthermore, each system requires the introduction of energy (e.g. heat or electricity) to keep the metal in a molten state. If the heating system were to fail (or for example power to the system is lost), the molten metal could solidify and ruin the system.
  • Accordingly, a means for rapid pump-out of molten metal would be advantageous should one of the failure situations described above, or a similar situation, be encountered (condition precedent to emergency pump out).
  • As those skilled in the art understand, molten metal pumps already exist that can remove molten metal from vessels. However, because of the high temperature environment in which these pumps operate, the pumps are constructed of a refractory material. Unfortunately, because of thermal expansion problems, a refractory pump cannot be immersed in molten metal without a relatively lengthy pre-heating process. Accordingly, a traditional refractory pump is unsuitable for emergency pump-out situations.
  • BRIEF DESCRIPTION
  • Various details of the present disclosure are hereinafter summarized to provide a basic understanding. This summary is not an extensive overview of the disclosure and is neither intended to identify certain elements of the disclosure, nor to delineate scope thereof. Rather, the primary purpose of this summary is to present some concepts of the disclosure in a simplified form prior to the more detailed description that is presented hereinafter.
  • In accordance with one aspect of the present exemplary embodiment, a molten metal pump comprised of a metal base defining a pumping chamber is provided. The pump further includes a motor mount adapted to receive a motor, at least one metal post extending between the base and the motor mount, and a metal shaft disposed between the motor and an impeller disposed in the pumping chamber. A bearing ring engages the impeller. The pumping chamber will include an inlet and an outlet and a metal riser tube in fluid communication with the outlet is also provided.
  • According to a further exemplary embodiment, a method for emergency pump out of a molten metal from a vessel is provided. The method comprises identifying a condition precedent which requires rapid removal of the molten metal from the vessel, and then introducing a pump including at least a metal base, a metal post and a metal riser tube into the molten metal. By rotating a shaft and impeller combination with a motor, the impeller being disposed within the base and configured to direct molten metal into the riser tube, molten metal is transferred through the riser tube into a second vessel. The present pump, constructed primarily from metal, does not require preheating and can be introduced into a molten metal even when the pump components are at a temperature below about 100° C.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention consists in the novel parts, construction, arrangements, combinations and improvements, shown and described. The accompanying drawings, which are incorporated in and constitute a part of the specification illustrate one embodiment of the invention and together with the description, serve to explain the principles of the invention.
  • FIG. 1 is a perspective view of a molten metal pump;
  • FIG. 2 is a rear elevation view of the pump of FIG. 1;
  • FIG. 3 is a side elevation view of the pump of FIG. 1;
  • FIG. 4 is a top plan view of the pump of FIG. 1;
  • FIGS. 5A, 5B and 5C are representative of the pump base of FIG. 1 in various phases of assembly (FIG. 5A is fully exploded, FIG. 5B is partially exploded by part grouping, and FIG. 5C is assembled);
  • FIG. 6 is a cross-sectional view of a pump base; and
  • FIG. 7 is the molten metal pump of FIG. 1 including an outlet conduit adapter attached to the riser.
  • DETAILED DESCRIPTION
  • The exemplary embodiment has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding this description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
  • Turning now to the molten metal pump as shown in the figures, a motor 111 is attached to a rotatable shaft 113 by a coupling assembly (not visible). The shaft 113 is attached at its lower end to a rotatable impeller 117 which rotates within a pumping chamber 118 defined by base 119. A birdcage impeller of the type disclosed herein is suitable but alternative impeller embodiments are envisioned to work equally well. The impeller 117 and pumping chamber 118 are in fluid communication with an inlet 134 and an outlet 133 of the base 119. The use of a graphite or ceramic (refractory materials) impeller can advantageously minimize thermal expansion issues.
  • A first bearing ring pair 121 and a second bearing ring pair 122 are provided to allow proper rotation of the impeller 117. The bearing rings advantageously prevent erosion so that flow can be maintained. The motor 111 is supported and connected to the base assembly 119 by a pair of posts 125 which are attached to a motor mount platform 129 via bolt assemblies 131.
  • A riser tube 132 has a first end disposed in fluid communication with the outlet 133 in the base 119 and is secured at a second end to the motor mount platform 129 via a coupling adaptor 137. The shaft, posts and riser tube can be constructed of any high temperature resistant metal, such as stainless steel.
  • The base assembly is comprised of steel plates 140, 141, 142, 143 and 144. Of course, it is envisioned that more or fewer than five plates can be used to assemble the base. Three plates is considered to be the most likely minimum number. Interposed between each of the plates is sealing gasket 145, 146, 147 and 148 which can be constructed of Graphoil. The plates can be constructed, for example, from 304, 316 and/or 330 stainless steel. Silicon carbide bearing rings, particularly outer bearings 121 and 122 are seated within recesses in the base and are similarly surrounded by expansion gaskets (which can be constructed of FryeWrap XFP expanding paper from Unifrax Corporation) 150, 151, 152 and 153, forming an interface between the silicon nitride bonded silicon carbide bearing ring and the adjacent metal surfaces on the outside edge and outer wall. The expanding gaskets keep bearing rings aligned notwithstanding dissimilar thermal expansion. Additionally, sealing gaskets 154 and 155 seal the inside edge of the bearing rings.
  • Shaft 113 is secured to the impeller 117. Particularly, graphite impeller 117 can be machined with a quadralobal extension 160. Extension 160 can be shaped in the same manner as the shaft which is described in U.S. Pat. No. 5,634,770, herein incorporated by reference. Moreover, the quadralobal mating allows for dissimilar thermal expansions and high torque transfer. A cap member 170 having a cooperatively formed internal surface for receiving the extension 160 is positioned there over. Metal cap 170 includes a threaded head end 171 suitable for receiving a cooperatively threaded end of shaft 113. The male thread connection allows for field modification to the shaft. A bore 180 through impeller 117 is designed to receive a bolt 181 having a threaded end to receive nut 183. Tightening of nut 183 draws impeller 117 and cap 170 into a mated relationship.
  • A gasket material 190 (eg. Grafoil) can be positioned between the interface with shaft 113 and cap 170. Furthermore, a gasket 193 can be provided at the interface between cap 170 and a surface of impeller 117. A graphite plug 191 can be inserted into the bore 180 of the impeller 117 to seal the bolt 181 from exposure to molten metal.
  • Plates 140-144 are equipped with aligned passages 200 designed to receive bolt and nut assemblies 201 suitable for simultaneously mating the plates 140-144 together to form base 119 and attaching posts 125 to the base 119. Posts 125 can include cross members 210 which include alignment passages 211 (optionally with bearing rings) serving as a guide for shaft 113. The pump can generally be approximately at least 3 meters long and maintain its functional stability because of the steel superstructure.
  • Plate 142 can include a plurality of tap holes 220 designed to receive screws 221 suitable for joining riser tube 132 to the base 119 adjacent outlet 133. Hook elements 230 are secured to the motor mount 129 to facilitate the lifting of the pump assembly into the desired location.
  • The present pump provides a suitable emergency pump out apparatus. More particularly, because thermal expansion mismatches are minimized via the pump design, no preheating is required. Accordingly, the pump can be immediately disposed within a body of molten metal when required. The pump is particularly advantageous because of its steel construction it can be readily disposed within molten aluminum and molten zinc (and other molten metals) whereas a traditional graphite pump requires a super structure above the furnace to keep the pump in place because of its comparatively high buoyancy.
  • As articulated above, it may be desirable for the pump to be at least 3 meters in length, in which case each of the shaft 113, posts 125 and riser tube 132 will be at least 3 meters in length. Moreover, this length is anticipated to be sufficient to allow the base to be deployed adjacent a lower portion of the molten metal containment vessel, wherein molten metal is lifted via riser tube 132 above the height of a sidewall of the containment vessel. Of course, in certain situations, a taller system may be desired.
  • Furthermore, in certain environments, it may be desirable for the riser tube to have a length greater than the post/shaft elements. For example, with reference to FIG. 7, it may be desirable to provide the riser tube 132 with height extending conduits 229 and 231 and generally u-shaped elbow 233 in fluid communication with an outlet conduit 235. This allows safe discharge into a holding unit.
  • As noted previously, since base 119 may be disposed on a bottom floor of the vessel being evaluated, it may be exposed to dross and other occlusions. Accordingly, in selected embodiments, it may be advantageous to provide a steel basket 249 (or screen) surrounding the inlet 134. Moreover, the basket 249 can define a plurality of relatively smaller openings 251 that can discourage large dross pieces or inclusions from entering and damaging the pump (see FIG. 6).
  • The exemplary embodiment has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims (23)

1. A pump for pumping molten aluminum, said pump comprised of a metal base defining a pumping chamber, an impeller comprised of a first refractory material resistant to molten aluminum located in said pumping chamber, a motor mount adapted to receive a motor, at least two metal posts extending between said base and said motor mount, a metal shaft extending between said motor and said impeller at least two bearing rings comprised of a refractory material disposed adjacent a radial edge of the impeller and engaging the impeller, the pumping chamber including an inlet and an outlet, and a metal riser tube in fluid communication with the outlet receiving the molten aluminum, wherein said base is comprised of at least three mated steel plates having a sealing gasket disposed between adjacent steel plates.
2. (canceled)
3. (canceled)
4. The pump of claim 1 wherein the steel plates are comprised of at least two different thicknesses.
5. The pump of claim 4, wherein the plurality of mated steel plates comprise at least an inner most plate of a greatest thickness, two outermost plates of the thinnest thickness, and two intermediate plates of intermediate thickness.
6. The pump of claim 5 wherein the pumping chamber is defined by the inner most plate.
7. The pump of claim 1, wherein at least two of the plurality of mated steel plates include recesses receiving the bearing rings.
8. The pump of claim 4, wherein a thicker of said steel plates defines the outlet.
9. The pump of claim 8, wherein said thicker steel plate is disposed between at least two thinner steel plates.
10. The pump of claim 7, wherein an expansion gasket is disposed between a radial edge of each bearing ring and an associated plate.
11. (canceled)
12. The pump of claim 10 further including a sealing gasket disposed on an inboard horizontal face of each bearing ring.
13. The pump of claim 1 further including a generally U-shaped connector providing fluid communication between said riser and an outlet conduit.
14. The pump of claim 1 further comprising a coupling joining the shaft and the impeller, said coupling comprising a metal cup having a chamber configured to receive a portion of the impeller and a projection configured to mate with said shaft, a passage extending through a wall defining the cup and through said projection, said passage receiving a bolt such that said bolt passes through an opening in said impeller and is received in said passage through the coupling, a nut being provided on the bolt to secure the coupling to the impeller.
15. The pump of claim 14 wherein said projection includes external threads configured to receive an internally threaded end of the shaft,
16. The pump of claim 1 further comprising a metal basket surrounding the inlet.
17. A method for emergency pump out of a molten metal from a vessel, said method comprises identifying a condition precedent which requires rapid removal of the molten metal from the vessel, and then introducing a pump including at least a metal base, a metal post and a metal riser tube into the molten metal, rotating a shaft and impeller combination with a motor, said impeller disposed within said base and configured to direct molten metal into said riser tube, and introducing metal from said riser tube into a second vessel.
18. The method of claim 17 wherein said pump is introduced into said molten metal at temperature below 100°.
19. The method of claim 17 wherein said shaft is comprised of metal and said impeller is comprised of a refractory material.
20. A molten metal pump comprised of a metal base having a plurality of mated plates, said base defining a pumping chamber, a motor mount adapted to receive a motor, at least one metal post extending between said base and said motor mount, a metal shaft extending between said motor and a refractory impeller located in said pumping chamber, a refractory bearing ring engaging the impeller, the pumping chamber including an inlet and an outlet, a metal riser tube in fluid communication with the outlet, a gasket material disposed between each pair of adjustment metal plates, a gasket material disposed between each bearing ring and a surface of the metal base adjacent to the bearing ring, and a metallic coupling joining said impeller to the metal shaft.
21. The pump of claim 1 further comprising a radial and an axial gasket associated with each bearing ring.
22. The pump of claim 1 further comprising at least 5 mated steel plates with a gasket between each pair of adjacent plates.
23. The pump of claim 1 including at least one cross member extending between said posts, said cross member including a bearing ring through which said metal shaft passes.
US17/157,625 2013-06-07 2021-01-25 Emergency molten metal pump out Pending US20210148374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/157,625 US20210148374A1 (en) 2013-06-07 2021-01-25 Emergency molten metal pump out

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361832376P 2013-06-07 2013-06-07
US14/294,858 US20140363309A1 (en) 2013-06-07 2014-06-03 Emergency molten metal pump out
US17/157,625 US20210148374A1 (en) 2013-06-07 2021-01-25 Emergency molten metal pump out

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/294,858 Continuation US20140363309A1 (en) 2013-06-07 2014-06-03 Emergency molten metal pump out

Publications (1)

Publication Number Publication Date
US20210148374A1 true US20210148374A1 (en) 2021-05-20

Family

ID=51178646

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/294,858 Abandoned US20140363309A1 (en) 2013-06-07 2014-06-03 Emergency molten metal pump out
US17/157,625 Pending US20210148374A1 (en) 2013-06-07 2021-01-25 Emergency molten metal pump out

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/294,858 Abandoned US20140363309A1 (en) 2013-06-07 2014-06-03 Emergency molten metal pump out

Country Status (3)

Country Link
US (2) US20140363309A1 (en)
EP (1) EP2811166B1 (en)
AU (1) AU2014203104B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070253807A1 (en) 2006-04-28 2007-11-01 Cooper Paul V Gas-transfer foot
US8337746B2 (en) 2007-06-21 2012-12-25 Cooper Paul V Transferring molten metal from one structure to another
US9156087B2 (en) 2007-06-21 2015-10-13 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9643247B2 (en) 2007-06-21 2017-05-09 Molten Metal Equipment Innovations, Llc Molten metal transfer and degassing system
US9409232B2 (en) 2007-06-21 2016-08-09 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US9205490B2 (en) 2007-06-21 2015-12-08 Molten Metal Equipment Innovations, Llc Transfer well system and method for making same
US8366993B2 (en) 2007-06-21 2013-02-05 Cooper Paul V System and method for degassing molten metal
US9410744B2 (en) 2010-05-12 2016-08-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US10428821B2 (en) 2009-08-07 2019-10-01 Molten Metal Equipment Innovations, Llc Quick submergence molten metal pump
US8524146B2 (en) 2009-08-07 2013-09-03 Paul V. Cooper Rotary degassers and components therefor
US8444911B2 (en) 2009-08-07 2013-05-21 Paul V. Cooper Shaft and post tensioning device
US8535603B2 (en) 2009-08-07 2013-09-17 Paul V. Cooper Rotary degasser and rotor therefor
US9108244B2 (en) 2009-09-09 2015-08-18 Paul V. Cooper Immersion heater for molten metal
US9903383B2 (en) 2013-03-13 2018-02-27 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US9011761B2 (en) 2013-03-14 2015-04-21 Paul V. Cooper Ladle with transfer conduit
US10052688B2 (en) 2013-03-15 2018-08-21 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US9551091B2 (en) * 2013-12-26 2017-01-24 Hexa Nano Carbon LLC Process and equipment for the production of micro-carbonfibers
US10138892B2 (en) 2014-07-02 2018-11-27 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10947980B2 (en) 2015-02-02 2021-03-16 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US20170175772A1 (en) * 2015-12-21 2017-06-22 Karl E. Greer Post Mounting Assembly and Method for Molten Metal Pump
US10267314B2 (en) 2016-01-13 2019-04-23 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
WO2019018733A1 (en) 2017-07-20 2019-01-24 Pyrotek, Inc. Mold pump engagement apparatus
US11149747B2 (en) 2017-11-17 2021-10-19 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
CN108240328A (en) * 2017-12-29 2018-07-03 菲格瑞特(苏州)汽车科技有限公司 It is a kind of to be used to extract aluminium alloy and the pump and its manufacturing method of zinc alloy melt
CN108916058A (en) * 2018-07-18 2018-11-30 马鞍山马钢表面工程技术有限公司 A kind of quick change zinc liquid pump slag-draining device
CN109973395B (en) * 2019-04-11 2021-02-02 江苏江大流体技术有限公司 Ultra-high temperature metal solution delivery pump
US11471938B2 (en) 2019-05-17 2022-10-18 Molten Metal Equipment Innovations, Llc Smart molten metal pump
US11873845B2 (en) 2021-05-28 2024-01-16 Molten Metal Equipment Innovations, Llc Molten metal transfer device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944496A (en) * 1996-12-03 1999-08-31 Cooper; Paul V. Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection
US6439860B1 (en) * 1999-11-22 2002-08-27 Karl Greer Chambered vane impeller molten metal pump
US20020146313A1 (en) * 2001-04-06 2002-10-10 Thut Bruno H. Molten metal pump with protected inlet
US20030059302A1 (en) * 2000-02-01 2003-03-27 Metaullics Systems Co., L.P. Pump for molten materials with suspended solids
US7425092B1 (en) * 2005-01-18 2008-09-16 Impulse Devices, Inc. Hydraulic actuated cavitation chamber with integrated fluid rotation system
US20110142606A1 (en) * 2009-08-07 2011-06-16 Cooper Paul V Quick submergence molten metal pump
US20130068412A1 (en) * 2011-04-18 2013-03-21 Pyrotek Pump Assembly, System and Method for Controlled Delivery of Molten Metal to Molds
US20130118017A1 (en) * 2010-04-30 2013-05-16 Ge Healthcare Bio-Sciences Corp. Motor driven rotational sampling apparatus with removable cutting tools for material collection
US8714914B2 (en) * 2009-09-08 2014-05-06 Paul V. Cooper Molten metal pump filter
US20140261800A1 (en) * 2013-03-15 2014-09-18 Paul V. Cooper Transfer pump launder system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776660A (en) * 1972-02-22 1973-12-04 Nl Industries Inc Pump for molten salts and metals
US5181828A (en) * 1991-11-22 1993-01-26 The Carborundum Company Molten metal pump
US5634770A (en) 1992-06-12 1997-06-03 Metaullics Systems Co., L.P. Molten metal pump with vaned impeller
WO1998015736A1 (en) * 1996-08-07 1998-04-16 Metaullics System Co., L.P. Molten metal transfer pump
CA2348485C (en) * 1998-11-09 2010-04-06 Metaullics Systems Co., L.P. Shaft and post assemblies for molten metal pumping apparatus
US6887425B2 (en) * 1998-11-09 2005-05-03 Metaullics Systems Co., L.P. Shaft and post assemblies for molten metal apparatus
US6152691A (en) * 1999-02-04 2000-11-28 Thut; Bruno H. Pumps for pumping molten metal
US6187096B1 (en) * 1999-03-02 2001-02-13 Bruno H. Thut Spray assembly for molten metal
US6375422B1 (en) * 2000-07-28 2002-04-23 Bechtel Bwxt Idaho, Llc Apparatus for pumping liquids at or below the boiling point
US6918741B2 (en) * 2002-11-15 2005-07-19 Pyrotek, Inc. Molten metal pump impeller system
DE102004009546B4 (en) * 2004-02-24 2007-05-16 Strikowestofen Gmbh Pumping device for a melting furnace
WO2006014517A2 (en) * 2004-07-07 2006-02-09 Pyrotek Inc. Molten metal pump
US8647058B2 (en) * 2011-06-27 2014-02-11 Bruno H. Thut Cementless pump for pumping molten metal

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944496A (en) * 1996-12-03 1999-08-31 Cooper; Paul V. Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection
US6439860B1 (en) * 1999-11-22 2002-08-27 Karl Greer Chambered vane impeller molten metal pump
US20030059302A1 (en) * 2000-02-01 2003-03-27 Metaullics Systems Co., L.P. Pump for molten materials with suspended solids
US20020146313A1 (en) * 2001-04-06 2002-10-10 Thut Bruno H. Molten metal pump with protected inlet
US7425092B1 (en) * 2005-01-18 2008-09-16 Impulse Devices, Inc. Hydraulic actuated cavitation chamber with integrated fluid rotation system
US20110142606A1 (en) * 2009-08-07 2011-06-16 Cooper Paul V Quick submergence molten metal pump
US8714914B2 (en) * 2009-09-08 2014-05-06 Paul V. Cooper Molten metal pump filter
US20130118017A1 (en) * 2010-04-30 2013-05-16 Ge Healthcare Bio-Sciences Corp. Motor driven rotational sampling apparatus with removable cutting tools for material collection
US20130068412A1 (en) * 2011-04-18 2013-03-21 Pyrotek Pump Assembly, System and Method for Controlled Delivery of Molten Metal to Molds
US20140261800A1 (en) * 2013-03-15 2014-09-18 Paul V. Cooper Transfer pump launder system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Author: FMT Staff Title: Affordable Molten Metal Pump Date published (mm/dd/yyyy): 09/23/2013 Date accessed (mm/dd/yyyy): 06/27/2022 Link:https://www.foundrymag.com/materials/article/21927986/affordable-molten-metal-pump (Year: 2013) *
Author: Wempumps Title: Centrifugal pump for molten zinc and other motlen metals Date published (mm/dd/yyyy): 11/14/2008 Date accessed (mm/dd/yyyy): 06/29/2023 Link: http:/www.wempumpsmfg.net/3pump.html (Year: 2008) *

Also Published As

Publication number Publication date
EP2811166B1 (en) 2018-08-15
EP2811166A1 (en) 2014-12-10
AU2014203104B2 (en) 2018-07-19
US20140363309A1 (en) 2014-12-11
AU2014203104A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
US20210148374A1 (en) Emergency molten metal pump out
US3849587A (en) Cooling devices for protecting refractory linings of furnaces
RU2664073C2 (en) Induction furnace and method for treating metal waste to be stored
US11272584B2 (en) Electric induction melting and holding furnaces for reactive metals and alloys
US20020089099A1 (en) Molten metal holding furnace baffle/heater system
CN112648847A (en) Ultra-high temperature vacuum induction smelting furnace
US10871328B2 (en) Top loading roof for electric arc, metallurgical or refining furnaces and system thereof
US3412195A (en) Intermediate furnace barrier
WO2021204579A1 (en) Electric arc furnace
Beall et al. Production of Titanium Castings
CN105509475A (en) High-sealability high-temperature resistant gate and use method thereof
WO2023200834A1 (en) Battery operated molten metal pump
KR102382705B1 (en) Charging installation of metallurgical reactor
CN111373218A (en) Wear resistant single penetration stave cooler
RU208227U1 (en) ALUMINUM ELECTROLYSER GAS COLLECTOR
US3129274A (en) Reduction furnace provided with superstructure
US12010785B2 (en) Apparatus for lifting graphite electrodes
CN115679132B (en) Copper-steel combined vacuum cooling tank and manufacturing method thereof
De Vries et al. Novel DC Furnace Design for Smelting Nickel and Cobalt Bearing Concentrate from Spent Alumina Catalyst
MacRae Designing Smelting Furnaces to Meet Process Requirements
Dötsch et al. Components and Design of Induction Crucible Furnaces
Mc Dougall et al. PGM Furnace Design, Construction, Improvement, and Performance Optimisation
BR112019015551B1 (en) METHOD FOR REPLACING A DAMAGED PORTION OF A FURNACE ROOF OF A METALLURGICAL OR REFINING FURNACE, AND ROOF ASSEMBLY FOR A METALLURGICAL OR REFINING FURNACE
US20220236007A1 (en) Non-water cooled consumable electrode vacuum arc furnace for continuous process
Harper et al. Design considerations for vacuum metallurgical equipment

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED