Nothing Special   »   [go: up one dir, main page]

US20200368019A1 - Medical devices and delivery systems for delivering medical devices - Google Patents

Medical devices and delivery systems for delivering medical devices Download PDF

Info

Publication number
US20200368019A1
US20200368019A1 US16/989,385 US202016989385A US2020368019A1 US 20200368019 A1 US20200368019 A1 US 20200368019A1 US 202016989385 A US202016989385 A US 202016989385A US 2020368019 A1 US2020368019 A1 US 2020368019A1
Authority
US
United States
Prior art keywords
sheath
delivery system
post
actuator
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/989,385
Inventor
David Paul
Benjamin Sutton
Brian McCollum
Brian D. Brandt
Emma Leung
Kenneth M. Martin
Amr Salahieh
Daniel Hildebrand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42101265&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20200368019(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Boston Scientific Scimed Inc filed Critical Boston Scientific Scimed Inc
Priority to US16/989,385 priority Critical patent/US20200368019A1/en
Publication of US20200368019A1 publication Critical patent/US20200368019A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2439Expansion controlled by filaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/243Deployment by mechanical expansion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/243Deployment by mechanical expansion
    • A61F2/2433Deployment by mechanical expansion using balloon catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9517Instruments specially adapted for placement or removal of stents or stent-grafts handle assemblies therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/954Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/97Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve the outer sleeve being splittable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9528Instruments specially adapted for placement or removal of stents or stent-grafts for retrieval of stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9534Instruments specially adapted for placement or removal of stents or stent-grafts for repositioning of stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0041Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels or rivets, e.g. connecting screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular

Definitions

  • Implantable medical devices can be delivered to a target location within a patient and implanted therein.
  • endoluminal delivery techniques are well known.
  • the delivery system typically includes a sheath and/or a catheter through which the implant is delivered to the target location.
  • the implant is generally deployed from the sheath or catheter at the target location.
  • Some implantable devices are completely self-expanding; they self-expand when released from the sheath or catheter and do not require any further expansion after the self-expanding step.
  • the self-expansion can occur by proximally retracting the sheath or catheter, by pushing the implantable device from the sheath or catheter, or a combination thereof.
  • implantable devices are configured and adapted to be actuated during or after the self-expansion step.
  • Exemplary replacement heart valves which can be actuated after a self-expansion step can be found described in co-pending application Ser. No. 10/982,388, filed Nov. 5, 2004, and application Ser. No. 10/746,120, filed Dec. 23, 2003, the disclosures of which are hereby incorporated by reference herein. It may be advantageous to lock an expandable medical device in a fully deployed and locked configuration to secure the device in the deployed.
  • the medical device can be actuated by the delivery system using one or more actuators.
  • an actuator e.g., in the form of a knob on a handle of the delivery system
  • actuated e.g., turned
  • multiple components of the delivery system need to be actuated to deploy the implant. It may also be necessary to ensure that multiple steps are carried out in a certain order. What are needed are delivery systems which can simplify the deployment procedure of the medical device and/or ensure that multiple steps are performed in a certain order.
  • a medical device system including a delivery system comprising a housing disposed external to a subject, wherein the housing comprises an actuator, wherein the delivery system is configured and arranged such that the actuator is adapted to move a first delivery system component independently of a second delivery system component, and wherein the delivery system is further configured and arranged such that actuator is also adapted to move the second delivery system component independently of the first delivery system component.
  • the delivery system is further configured and arranged such that the actuator is further adapted to actuate the first delivery system component and the second delivery system component simultaneously, and is some instances at different rates when actuating them simultaneously.
  • the delivery system is configured such that actuation of the actuator moves the first and second delivery system components in the same direction. In some embodiments the delivery system is configured such that actuation of the actuator actuates the first and second delivery system components in a specific sequence.
  • the actuator is a single actuator element, and wherein the actuator is configured such that actuation of the actuator in a single type of motion causes both the actuation of the first delivery system component independent of the second delivery system component and the actuation of the second delivery system component independent of the first delivery system component.
  • the first delivery system component is a delivery sheath
  • the medical device system comprises a medical device adapted to be percutaneously delivered to a target location in a patient through the delivery sheath
  • the actuator is adapted to move the delivery sheath independently of and prior to the independent movement of the second delivery system component.
  • the second delivery system component can be reversibly coupled to a portion of the medical device.
  • the actuator can be adapted to independently move both the sheath and the second delivery component proximally when actuated. Actuation of the actuator can be configured to proximally retract the sheath to allow the medical device to expand, and wherein further actuation of the actuator retracts the second delivery system component proximally.
  • the delivery system and actuator are configured such that movement of the actuator in a singular type of motion, such as rotation in a single direction, moves the first delivery system component independently of a second delivery system component and moves the second delivery system component independently of the first delivery system component.
  • the singular type of motion can move the first delivery system component independently of a second delivery system component and moves the second delivery system component independently of the first delivery system component without any intervening actuation steps being performed between the independent movement of the first delivery system component and the independent movement of the second delivery system component.
  • One aspect of the disclosure is a method of using a delivery system to deploy a medical device in a patient.
  • the method includes providing a delivery system comprising a housing disposed external to the patient, wherein the housing comprises an actuator, actuating the actuator to move a first delivery system component independently of a second delivery system component, and actuating the actuator to move the second delivery system component independently of the first delivery system component.
  • actuating the actuator comprises actuating the actuator in a singular type of motion to move the first and second delivery system components independently of one another, as well as to move the first and second delivery system components simultaneously. Actuating the actuator can move the first and second delivery system components at different rates at least during a portion of the time they are being moved simultaneously.
  • actuating the actuator moves the first and second delivery system components in the same direction. In some embodiments actuating the actuator moves the first and second delivery system components in a specific sequence.
  • actuating the actuator comprises actuating the actuator in a singular type of motion, such as rotation in a single direction, to move both the first and second delivery system components independently of one another.
  • the first delivery system component is a delivery sheath
  • actuating the actuator comprises moving the delivery sheath in a proximal direction independently of and prior to the independent movement of the second delivery system component.
  • the second delivery system component can be reversibly coupled to a medical implant, and wherein actuation of the second delivery system component independently moves the second delivery system component in a proximal direction independently of and subsequent to the proximal movement of the delivery sheath.
  • moving the first and second delivery system components comprises moving the first and second delivery system components proximally.
  • actuating the actuator to move the first delivery system component comprises moving a delivery sheath proximally to allow the medical device to expand.
  • One aspect of the disclosure is a delivery system for deploying a medical device in a patient.
  • the system includes a delivery sheath, a delivery catheter adapted to be disposed within the sheath and movable relative to the sheath, a coupling member adapted to be reversibly coupled to a portion of a medical device, wherein the medical device is adapted to be percutaneously delivered to a target location in a patient through the delivery sheath, wherein the delivery sheath is adapted to be moved relative to the medical device to release the medical device from the sheath, and a sheathing assist element, at least a portion of which is disposed between a distal end of the sheath and a proximal portion of the medical device when the delivery sheath is sheathing at least the proximal portion of the medical device.
  • a proximal portion of the sheathing assist element is attached to a distal region of the delivery catheter. In some embodiments a proximal end of the coupling member is attached to the distal region of the delivery catheter.
  • a proximal end of the sheathing assist element is attached to a distal region of the delivery catheter, and wherein a proximal end of the coupling member is attached to the distal region of the delivery catheter, and wherein the sheathing assist element is radially outward relative to the coupling member.
  • the sheathing assist element comprises a plurality of looped elements, wherein a first one of the looped elements has a length that is different than the length of a second one of the looped elements.
  • the medical device comprises a braided element
  • the sheathing assist element comprises a plurality of sheathing assist elements, wherein a first of the plurality of sheathing assist elements is disposed radially outward of a proximal end of the braided element when the sheath is sheathing the braided element, and wherein a second of the plurality of sheathing assist elements extends through the braided element.
  • One aspect of the disclosure is a method of sheathing a medical device within a delivery sheath.
  • the method includes positioning a sheathing assist element between a portion of an expandable medical device and a delivery sheath, and moving the delivery sheath distally relative to the sheathing assist element and the medical device to assist in the collapse of at least a portion of the expandable medical device within the delivery sheath.
  • the positioning step comprises positioning the sheathing assist element between at least a proximal end of the expandable medical device and the distal end of the delivery sheath to reduce the likelihood that the distal end of the sheath will get caught on the proximal end of the medical device as the delivery sheath is moved distally relative to the sheathing assist element.
  • the delivery system further comprises a coupling member, the method further comprising maintaining a reversible coupling between the coupling member and the medical device, wherein positioning the sheathing assist element comprises positioning the sheathing assist element radially outward relative to the coupling member.
  • moving the delivery sheath distally relative to the sheathing assist element causes a radially inward force to be applied from the sheathing assist element to the portion of the expandable medical device.
  • FIG. 1A shows an exemplary replacement heart valve in a deployed and locked configuration.
  • FIG. 1B shows an exemplary replacement heart valve in a collapsed and delivery.
  • FIG. 2A illustrates an exemplary medical device delivery system reversibly coupled to a medical device, wherein the medical device is in a collapsed configuration.
  • FIG. 2B shows an exemplary medical device delivery system reversibly coupled to a medical device, wherein the medical device is in a deployed and locked configuration.
  • FIGS. 3A-3G illustrate an exemplary medical device deployment and locking procedure.
  • FIG. 4 shows an exemplary replacement heart valve reversibly coupled to a portion of a delivery system.
  • FIGS. 5A-5E show an exemplary lock and release mechanism for a medical device.
  • FIGS. 6A and 6B show an exemplary reversible coupling mechanism between a delivery system and a medical device.
  • FIGS. 7A-7D shows an exemplary lock and release mechanism of a medical device.
  • FIGS. 8A-8G shows an exemplary lock and release mechanism of a medical device.
  • FIG. 9 shows an exemplary reversible coupling mechanism between a delivery system and a medical device.
  • FIG. 10 shows an exemplary reversible coupling mechanism between a delivery system and a medical device.
  • FIGS. 11A-11D show an exemplary lock and release mechanism of a medical device.
  • FIGS. 12A-12C show an exemplary lock and release mechanism of a medical device.
  • FIGS. 13-14E show an exemplary lock and release mechanism of a medical device.
  • FIGS. 15A-16B show an exemplary lock and release mechanism of a medical device.
  • FIGS. 17A-17D illustrate a portion of an exemplary delivery system in which a single handle actuation element can move two different delivery system components independently of one another.
  • FIG. 18A-18D illustrate an varying pitch design to vary the rate of travel of an actuation element.
  • FIG. 19 illustrates an exemplary barrel-cam design to control the rate of movement of delivery system components.
  • FIGS. 20A-20C illustrate a portion of an exemplary delivery system in which a single handle actuation element can move two different delivery system components independently of one another.
  • FIGS. 21-22 illustrate exemplary designs for decoupling the motion of the rods and outer sheath.
  • FIGS. 23A-23C illustrate actuating a second actuator to control movement of different portions of the medical device delivery process.
  • FIGS. 24-41 illustrate a variety of medical device sheathing assist elements.
  • the present disclosure describes medical devices and delivery systems for delivering medical devices to a target location in a subject.
  • the medical devices can be implantable or they can be adapted to be temporarily positioned within the subject.
  • the delivery systems can be adapted to deliver a wide variety of suitable medical devices to a target location in a subject, but in some embodiments are configured for minimally invasive delivery procedures, such as endovascular procedures.
  • the medical device is a replacement heart valve (e.g., a replacement aortic heart valve), and the delivery system is configured to deliver the replacement heart valve endovascularly to replace the functionality of the subject's native heart valve.
  • FIGS. 1A and 1B show replacement heart valve 10 including anchoring element 12 , shown comprising a braided material, and replacement valve leaflets 14 (not shown in FIG. 1B for clarity).
  • Replacement heart valve 10 also includes three first locking members 16 , also referred to herein as posts, and three second locking members 18 , also referred to herein as buckles. Three posts and three buckles are shown, each post being associated with one of the buckles.
  • FIG. 1A shows anchoring element 12 , also referred to herein an anchor, in a fully deployed configuration in which anchoring element 12 is locked and maintained in the deployed configuration by the locking interaction between first locking members 16 and second locking members 18 .
  • FIG. 1B shows replacement heart valve 10 in a collapsed delivery configuration in which the replacement heart valve is delivered within a delivery system to a target location within the subject (delivery system not shown).
  • valve leaflets 14 are attached to posts 16 at the valve's three commissures. Posts 16 therefore support the valve within the anchoring element.
  • the posts and buckles (or other suitable first and second locking members) are both coupled to the anchor.
  • each locking element of posts 16 which is configured to lock with a corresponding locking element of buckles 28 is located distally relative to the locking element of the buckle to which is it to adapted to be locked.
  • the locking elements of the buckles which are configured to lock to the locking elements of the posts are located proximally to the locking elements of the posts in the delivery configuration.
  • FIGS. 2A and 2B illustrate an exemplary embodiment of a delivery system 100 and components thereof which can be used to deliver and deploy a medical device at a target location in a subject.
  • Delivery system 100 includes handle 120 , sheath 110 , catheter 108 disposed with sheath 110 , and actuation elements 106 A and 106 B which are reversibly coupled to replacement heart valve 10 .
  • heart valve 10 is in a collapsed delivery configuration (also shown in FIG. 1B ) within sheath 110 .
  • Delivery system 100 also includes guidewire G and nosecone 102 .
  • catheter 108 has central lumen 109 and a plurality of circumferentially disposed lumens Lu.
  • the plurality of actuation elements 106 A are shown reversibly coupled to a proximal region of anchoring element 12 .
  • actuation elements 106 A are reversibly coupled to the proximal end of the anchoring element 12 via a reversible coupling mechanism.
  • Actuation elements 106 B are reversibly coupled to a region of the replacement heart valve distal to the proximal end of the anchoring element.
  • actuation elements 106 B are shown reversibly coupled to posts 16 via a reversible coupling mechanism. Details of this and similar embodiments can be found in U.S. Patent Publication Nos. 2005/0137686 and 2005/0143809, the disclosures of which are incorporated by reference herein.
  • the anchoring element comprises a braided material, such as nitinol, and is formed of one or more strands of material.
  • the anchoring element 12 is formed of a shape memory material and is heat set in a self-expanded configuration, such that when the anchoring element is deployed from the sheath of the delivery system, the braid will begin to naturally begin to shorten and expand from the collapsed delivery configuration to the memory self-expanded configuration.
  • the self-expanded configuration can be thought of as an at-rest or partially deployed configuration, and is described in more detail in U.S. Patent Publication Nos. 2005/0137686 and 2005/0143809.
  • actuators 106 A and 106 B is actuated via an actuator on a handle disposed external to the patient.
  • actuators 106 B can be actuated in the proximal direction relative to the actuation elements 106 A, which applies a proximally directed force to the posts, which applies a proximally directed force to a distal region of the anchoring element.
  • Actuators 106 A can, alternatively or in addition to the proximally directed force, be actuated in a distal direction to apply a distally directed force on a proximal region of the anchoring element.
  • the axially directed forces actively foreshorten the anchoring element, moving the posts closer to the buckles until the posts and buckles lock together to lock the anchoring element in a fully deployed and locked configuration.
  • the locked configuration is therefore shorter than the partially-deployed configuration.
  • FIGS. 3A-3G illustrate an exemplary method of delivering a replacement aortic heart valve in a delivery configuration and deploying it from a delivery sheath to a fully deployed and locked configuration.
  • actuation elements 106 B are reversibly coupled to the posts of the replacement valve, but actuation elements 106 A, which may also be referred to herein as “fingers,” are reversibly coupled to the buckles.
  • replacement valve 10 is delivered in a collapsed delivery configuration within sheath 110 in a retrograde fashion through aorta A over guidewire G and placed across a patient's aortic valve using known percutaneous techniques.
  • sheath 110 is positioned across the native valve as shown in FIG. 3A , sheath 110 is retracted proximally relative to the replacement valve using an actuator on the delivery system handle which is disposed external to the patient (examples of which are described in detail below).
  • an actuator on the delivery system handle which is disposed external to the patient (examples of which are described in detail below).
  • the distal portion of anchoring element 12 begins to self-expand due to the material properties of the anchoring element.
  • the anchoring element can have a memory self-expanded configuration such that as the sheath is withdrawn the anchor begins to self-expand, or return to its memory configuration.
  • the anchoring element continues to self-expand, as shown in FIGS.
  • FIG. 3E the sheath has been retracted proximally such that the distal end of the sheath is disposed proximal to the distal end of fingers 106 A.
  • the sheath is not retracted far enough proximally to allow the fingers to self-expand.
  • the proximal end of the anchor does not expand towards its memory configuration. Only after the sheath has been retracted past the distal end of catheter 108 can the fingers fully self-expand, as is shown in FIG. 3F . This allows the proximal end of the anchoring element to expand.
  • the anchoring element is then actively foreshortened (and potentially further expanded) to the fully deployed and locked configuration shown in FIG. 3G by the application of axially directed forces (proximally and distally directed).
  • a proximally directed force is applied to posts via actuation elements 106 B (not shown in FIGS. 3A-3G but which are coupled to the posts), and/or a distally directed force is applied to buckles via actuation elements 106 A.
  • a proximally directed force is applied to posts through actuation elements 106 B, and fingers 106 A are held in position to apply a distally directed force to the buckles.
  • FIG. 4 shows replacement heart valve 10 and a distal portion of the delivery system, including catheter 208 , which were described in reference to FIGS. 3A-3G .
  • Heart valve 10 is in a fully deployed and locked configuration, with actuation elements 206 A (“fingers”) and 206 B still reversibly coupled to buckles 18 and posts 16 , respectively.
  • the configuration and arrangement in FIG. 4 is therefore similar to that shown in FIG. 3G .
  • the commissure portions of leaflets 14 are affixed to the three posts 16 , while posts 16 are moveably coupled to anchoring element 12 (e.g., via sutures or wires) at a location distal to the proximal end of anchoring element 12 .
  • Replacement heart valve 10 also includes buckles 18 (three are shown) which are affixed (but may be moveably coupled to the anchor similar to the posts) to anchor 12 (e.g., via wires or sutures) at a proximal region of anchor 12 .
  • the actuation elements 206 B are reversibly coupled to posts 16
  • actuation elements 206 A are reversibly coupled to buckles 18 .
  • the delivery system also includes three actuator retaining elements 210 , each of which are adapted to receive therein an actuation element 206 B and an actuation element 206 A.
  • Actuation elements 206 A are shown attached at their proximal end to the distal end of catheter 208 , while actuation elements 206 B are configured and arranged to move axially within catheter 208 . Actuation elements 206 B therefore are configured and arranged to move axially with respect to actuation elements 206 A as well. Fingers 206 A and actuation elements 206 B are maintained closely spaced to one another (at least while the delivery system is coupled to the replacement valve) with actuator retaining elements 210 . Retaining elements 210 have a lumen therein in which fingers 206 A are disposed and through which the actuation elements 206 B can be actuated axially. Fingers 206 A are shown disposed radially outward relative to the actuation elements 206 B, which are shown as generally cylindrical rods. The replacement heart valve in FIG. 4 has not been released from the delivery system.
  • FIGS. 5A-5E illustrate the process of uncoupling the delivery system from the heart valve shown in FIG. 4 (anchoring element is not shown).
  • post 16 has an elongated locking portion 17 which is adapted to be pulled into an internal channel within buckle 18 .
  • Locking portion 17 of post 16 has a locking element in the shape of a groove which is adapted to receive a tooth on the buckle 18 .
  • actuation element 206 B (or “rod”) is reversibly coupled to post 16 .
  • Rod 206 B includes a portion that is disposed within a channel in post 16 such that bore 230 (see FIG. 5E ) in the distal portion of rod 206 B is aligned with bore 232 in post 16 .
  • Pin 234 which is part of pin assembly 236 as can be seen in FIG. 4 , extends through both rod bore 230 and post bore 232 to couple the rod to the post. The distal portion of pin assumes a curled or looped configuration, which prevents rod 206 B from disengaging from post 16 .
  • finger 206 A is reversibly coupled to buckle 18 via the interaction between tooth 239 on buckle 18 and groove 238 on finger 206 A (see FIG. 5E ).
  • collar 22 is positioned over the engagement between tooth 239 and groove 238 to retain the 206 A and buckle 18 in a reversibly coupled configuration.
  • pin 234 is first removed by retraction of pin assembly 236 (see FIG. 4 ) in the proximal direction, which pulls the pin through bores 230 and 232 and uncouples rod 206 B from post 16 , which is shown in FIG. 5B .
  • rod 206 B is pulled back in the proximal direction via actuation of an actuator on the delivery system handle.
  • collar engagement 23 engages collar 22 and pulls it in the proximal direction along with rod 206 B. This causes the collar to be pulled proximally from the position in FIG. 5C to the position in FIG. 5D .
  • the axially directed force vectors applied by the fingers 206 A to the buckles and the rods 206 B to the posts can be in substantially opposite directions to enhance the efficiency of the foreshortening and locking process.
  • An advantage of coupling the fingers directly to the buckles is that the buckles are better aligned with the posts during the foreshortening and locking process. This can help ensure that the post, when pulled proximally, will better align with the buckle such that the post can be efficiently locked with the buckle.
  • FIGS. 6A and 6B illustrate an alternative embodiment of post 250 which is reversible coupled to actuation element 252 .
  • FIG. 6B is a partially exploded view identifying the components shown in FIG. 6A .
  • Actuation element 252 includes rod 254 , tab deflector 256 , and retaining clip 258 .
  • Rod 254 can be actuated in a proximal direction P by actuating an actuator on a handle disposed external to the patient as described herein.
  • Rod 254 is attached to tab deflector 256 and to retaining clip 258 .
  • Rod 254 includes, at its distal end, catch 260 , which engages with clip element 262 of retaining clip 258 .
  • Post 250 has an internal channel therein adapted to slidingly receive retaining clip 258 and tab deflector 256 , each of which are adapted to receive rod 254 therein.
  • Tab deflector 256 includes rib element 264 .
  • Retaining clip 258 includes clip feet 266 . To lock the anchoring element (not shown), rod 254 is pulled in the proximal direction and clip feet 266 engage the distal end of post 250 and pull it in the proximal direction towards the buckle (not shown).
  • FIGS. 7A-7D show side-views of an exemplary locking sequence of post 250 shown in FIGS. 6A and 6B to buckle 268 (anchor not shown).
  • FIG. 7A shows rod 254 being actuated in the proximal directed by an actuation force generated from an actuator on the handle of the delivery system external to the patient.
  • post 250 is still distal to buckle 268 .
  • catch 260 shown in FIG. 6B
  • clip element 262 shown in FIG. 6B
  • clip feet 266 to apply a proximally directed force to the distal end of post 250 .
  • Post 250 , tab deflector 256 , and retaining clip 258 thus move towards buckle 268 , as is shown in FIG. 7A .
  • rod 254 continues to be actuated in the proximal direction. This can be done using the same actuator on the handle or a different actuator as described in more detail below.
  • the continued proximal force to rod 254 causes feet 266 to be pinched inwards towards one another to thereby disengage and uncoupled them from the distal end of post 250 .
  • Continued actuation of the actuator will move the cable, deflector and clip in the proximal direction to the position shown in FIG. 7C .
  • Rib element 264 is disposed proximal to tooth 270 and groove 272 and thus no longer prevents them from locking together. The tooth therefore engages the groove, locking the post to the buckle (shown in FIG. 7C ). The anchor (not shown) is now locked in the fully deployed and locked configuration. Continued actuation of rod 254 pulls the rod, clip, and deflector from the patient, as is shown in FIG. 7D .
  • FIGS. 8A-8G illustrate a side view of a locking and release sequence of an alternative embodiment of a post, buckle, and actuation elements.
  • the system includes actuation element 280 in the form of a rod, buckle 282 , post 286 , and clip 290 .
  • the clip 290 includes feet 294 and rib element 292 .
  • Actuation of an actuator on the handle causes rod 280 to be pulled in the proximal “P” direction, as shown in FIG. 8A .
  • Continued actuation pulls rod 280 , post 286 , and clip 290 through a channel within buckle 282 , as shown in FIG. 8B .
  • FIG. 8G The top view of this position is shown in FIG. 8G .
  • rib element 292 has prevented the post from locking with the buckle.
  • tooth 284 is engaging surface 287 of post 286 .
  • the location of feet 294 ensures post groove 288 has been pulled far enough proximally before the clip 290 is removed from the post. From the position shown in FIG.
  • FIGS. 9 and 10 show two alternative embodiments incorporating features of the lock and release embodiments above.
  • the embodiment in FIG. 9 is similar to that shown in FIGS. 5A-5E , although rod 304 includes feet 306 which are similar to the feet shown in the embodiments in FIGS. 6A-8G .
  • pin 234 from FIGS. 5A-5E is not needed, as the release of rod 304 from post 300 occurs when rod 304 is pulled proximally, causing feet 306 to pinch inwards and disengage from the post.
  • FIG. 10 shows an alternative embodiment which incorporates compressible feet 316 at the distal end of rod 314 and release pin 318 (actuated in the same way as shown in the embodiment in FIGS. 5A-5E ).
  • the embodiment in FIG. 10 can be thought of as a hybrid design between that shown in FIGS. 5A-5E and 9 .
  • One difference between the embodiment in FIGS. 5A-5E and 10 is that in FIGS. 5A-5E there is a slot 230 in the rod that pins the rod to the post. When pin 234 is under tension in FIGS. 5A-5E , the pin is in shear, which increases the likelihood of damaging the pin.
  • FIG. 10 shows an alternative embodiment which incorporates compressible feet 316 at the distal end of rod 314 and release pin 318 (actuated in the same way as shown in the embodiment in FIGS. 5A-5E ).
  • the embodiment in FIG. 10 can be thought of as a hybrid design between that shown in FIGS. 5A-5E and 9 .
  • the slot 230 is not present, but rather the two feet 306 simply extend distally from a distal portion of the rod.
  • Pin 318 maintains feet 316 in the spread-apart position shown in FIG. 10 , essentially holding them open and maintaining the coupling between the feet and the post. In this design, the pin is in compression between the feet, rather than being in shear. Once the pin removed, a lower release force can then be applied to the rod to cause the feet to uncouple from the post. Having the pin in compression rather than shear is less likely to cause damage to the pin.
  • FIGS. 11A-11D shows a side view and perspective view, respectively, of an alternative embodiment including post 320 and actuation element 322 in a sequence wherein post 320 changes configuration from a position in which it is not locked to a corresponding buckle 321 to a locked position, and in which the actuation element 322 is released from the post.
  • Buckle 321 is not shown in the sequence for clarity, although buckle 321 is shown in FIG. 11A to display the relative positions of the post, actuation element, and buckle.
  • FIGS. 12A-12C show the locking and release sequence including buckle 321 .
  • actuation element 322 is reversibly coupled to post 320 .
  • Actuation element 322 includes rod 324 , post lock prevention element 326 , and post lock actuator 328 .
  • Post 320 includes post lock element 330 .
  • FIG. 11A illustrates an initial configuration of the respective components before the post is pulled towards the buckle.
  • the rod 324 is retracted in the proximal direction.
  • Post lock prevention element 326 is initially engaged with post lock element 330 , and thus proximal retraction of rod 324 causes proximal movement of post 320 .
  • Rod 324 continues to be pulled proximally until post 320 is pulled within buckle, as can be seen in FIG. 12A .
  • FIG. 12A In FIG.
  • post lock element 330 is proximal to buckle lock element 332 .
  • a separate actuator (not shown) is actuated to retract the post lock prevention element 326 in the proximal direction to disengage post-lock prevention element 326 from post lock element 330 , as shown in FIGS. 11B and 12B .
  • rod 324 and post lock prevention element 326 may be engaged in a manner such that a continued proximal force applied to rod 324 will disengage post lock prevention element 326 from post lock element 330 .
  • post 320 begins to move in the distal direction. Distal movement of post 320 causes post-lock actuator 328 to apply a radially outward force to post lock element 330 , moving it to a locked configuration shown in FIGS. 11C and 12C .
  • continued proximal retraction of rod 324 causes post-lock actuator 328 to apply a radially outward force on post lock element 330 .
  • FIG. 13 shows an alternative embodiment of post 340 and clip 342 , which includes deformable element 344 .
  • FIGS. 14A-14E show a sequence of locking post 340 to buckle 348 and releasing clip 342 from post 340 .
  • a rod (not shown) is attached to clip 342 , similar to the embodiments described above.
  • the proximal end of deformable element 344 engages surface element 346 of post 340 . This engagement maintains the clip within the post as the clip is pulled proximally. This engagement also pulls the post proximally as the clip is pulled proximally.
  • the actuator is actuated the cable pulls the post and clip within the buckle 348 as shown in FIG. 14B .
  • FIG. 14C shows actuation from the position shown in FIG. 14C .
  • Deforming element 344 allows tooth 350 to engage groove 352 to lock the buckle and post.
  • This step also releases deformable element 344 from engagement with surface 346 , thus releasing the clip from the post, as is shown in FIG. 14D .
  • This step therefore also releases the rod and clip from the post.
  • FIG. 14E shows the clip completely withdrawn proximally from the post.
  • FIGS. 15A, 15B, 16A, and 16B illustrate an alternative embodiment of the post lock and release mechanism.
  • the embodiment in FIGS. 15A-16B works similarly to those described above in that an actuator is actuated to pull the actuation element, or rod, which pulls the post towards the buckle to lock the anchoring elements.
  • Rod 354 includes a clip similar to the clip in the embodiment in FIGS. 6A and 6B .
  • FIG. 15A is a perspective view and FIG. 15B is a side view after rod 354 has been actuated and pulled proximally such that tooth 358 of buckle 352 is locked with groove 362 of post 360 .
  • surface 356 of rod 354 Prior to the position shown in FIGS. 15A and 15B , surface 356 of rod 354 prevented tooth 358 from locking with the groove in the post.
  • the clip at the distal end of the rod is engaged with a deformable element of the post such that continued actuation of the rod causes the deformable element to deform and release the post from the rod.
  • This rod can then be removed from the patient by continued actuation of the actuator.
  • a pin similar to pin 234 in FIGS. 5A-5E can be incorporated into the embodiment, such that the pin is removed when it is desirable to release the rod from the post, as is described above.
  • FIGS. 16A and 16B illustrate an unlocking of the post and buckle which are locked in FIGS. 15A and 15B .
  • This unlocking step must be performed before the heart valve is released from the delivery system.
  • Rod 354 is pushed distally, causing surface 364 (unlocking element) of the rod to engage and disengage tooth 358 from the groove in the post.
  • surface 364 unlocking element
  • the fingers can be made of an alloy that is heat set to a memory expanded configuration.
  • the rods can comprise, for example, stainless steel.
  • the outer tube can be made of, for example, a heat-shrink polymer, but can be any suitable material. The outer tube provides enhanced column strength to the fingers, which can be advantageous when under the forces applied during the active foreshortening of the anchoring element.
  • a delivery system handle disposed external to the subject, which is used to control the actuation of the actuation elements and the sheath.
  • the deployment of the medical implant as described herein can be controlled by actuators (e.g., knobs, levers, etc) on the handle, which are actuated by the physician to control the deployment of the device. It may be desirable to be able to perform multiple deployment steps with as few actuators as possible to simplify the delivery and expansion process. It may further be desirable to perform certain deployment steps with a single actuator, perhaps even actuating a single actuator with a singular type of movement (e.g., rotating a knob in a single direction) to perform multiple parts of the deployment process.
  • the actuation steps of unsheathing the anchoring element and locking the posts with buckles are performed with a single actuator on a handle of the delivery system. Having a single actuator on the handle which can perform multiple deployment steps can simply the overall procedure. Using a single actuator to control multiple deployment steps can also insure that the steps are performed in a specified sequence, and making sure that a second step does not occur before the occurrence of a first step.
  • the singular type of motion can be performed to move more than one delivery system component without any other intervening actuation step being performed.
  • the user can stop the actuation of the actuator in the singular type of motion, and then continued the actuation.
  • a singular type of motion includes embodiments in which a period of time passes without any actuation. That is, the user may start to actuate the actuator, wait a period of time (for example, to determine if the position of the medical device is sufficient based on an imaging technique), then continue to actuate the actuator. This falls under the “singular” type of motion as described here.
  • a potential challenge in using a single actuator to actuate multiple components of a delivery system arises when the actuatable components are to be actuated independently of one another, or when they are to be actuated independently of one another during portions of the procedure but actuated at the same time during other portions of the procedure, or when they must be actuated at the same time but at different rates of movement.
  • actuation of a single actuator actuates a plurality of delivery system components wherein a first of the plurality of components and a second of the plurality of components are each actuated independent of the other.
  • the first and second components are also adapted to be actuated at the same time as one another, and in some embodiments at different rates while they are both being actuated.
  • a single actuator is used to both proximally retract the sheath during the unsheathing process (for example, as shown in the exemplary method in FIGS. 3B-3F ) and to proximally retract the actuation elements which are coupled to the posts. That is, a single actuator is actuated in a single manner to both unsheath the implant as well as to lock the implant in a fully deployed and locked configuration. Incorporating a single actuator into the delivery system which can be actuated in one direction or manner to both deploy the implant from the sheath as well as reconfigure it to its final deployed configuration can greatly simplify the deployment procedure for the physician.
  • the sheath is pulled in the proximal direction, which unsheathes the implant.
  • the posts are pulled proximally, which moves the posts towards the buckles to lock the anchoring element in the locked configuration.
  • both the sheath and the actuation elements reversibly coupled to posts are pulled in the proximal direction, which may result in variable rates of movement of the sheath and the actuation elements.
  • the single actuator must therefore account for both the dependent and independent motions of a plurality of delivery system components.
  • FIGS. 17A-17D illustrate an exemplary delivery system in which a single actuator on a handle selectively actuates a plurality of delivery system components. While this delivery system design can be used to selectively actuate a plurality of delivery system components in almost type of medical device delivery system, it will be described in relation to deployment of a replacement heart valve.
  • the single actuator can be adapted to actuate different types of components than those which are described herein, it will be described as controlling the movement of a sheath and an actuation element which actuates a portion of a replacement heart valve.
  • FIGS. 17A-17D show components of delivery system 370 which are housed inside a handle housing (not shown), including outer tube 380 , rotary actuator 372 (which is adapted to be actuated by a user), lead screw 374 , rod carriage 376 , rod carriage screw 378 , sheath carriage 384 , sheath carriage screw 386 .
  • Proximal movement of rod carriage 376 moves the rods in the proximal direction, which causes a proximally directed force to be applied to the posts described herein (and distal movement of post puller carriage 206 causes a distally directed force to be applied to the posts).
  • Proximal movement of sheath carriage 384 causes the sheath to be retracted proximally to unsheathe the implant (and distal movement of sheath carriage 384 causes the sheath to be moved distally to re-sheath the implant).
  • the sheath has an adapter bonded to its proximal end which is screwed to the sheath carriage. Movement of the sheath carriage, through rotation of the lead screw, therefore directly moves the sheath.
  • the rods are bonded inside a hypotube and the hypotube is pinned to a force limiting member, which is directly attached to the rod carriage. Movement of the rod carriage therefore moves the rods.
  • Rotation of rotary actuator 372 translates rotational movement into linear movement of rod carriage screw 378 and sheath carriage screw 386 .
  • Tube 380 includes an internal female thread including a linear female thread 383 along two portions of tube 380 and a partially helically-shaped female thread 382 along a portion of the tube disposed between the linear female thread portions 383 .
  • Both the rod carriage screw 378 and sheath carriage screw 386 include an internal male thread which engages the female threads of screw 374 and allows rotation of actuator 372 to translate to movement of the rod carriage screw 378 and sheath carriage screw 386 .
  • the sheath carriage screw 386 includes male nub(s) 385 which engage linear female thread 383 in the configuration shown in FIG. 17A .
  • the sheath carriage screw 386 also has an outer male thread 387 (see FIG. 17D ) which engages with an internal female thread in sheath carriage 384 .
  • FIG. 17A shows the delivery system in a configuration in which the implant is sheathed within the sheath and the posts are not locked to the buckles.
  • Initial rotation of actuator 372 causes sheath carriage screw 386 to move linearly in the proximal direction. Because of the interaction between the male thread 387 and the female thread within sheath carriage 384 , proximal movement of sheath carriage screw 386 causes proximal movement of the sheath carriage 384 , as is shown in the transition from FIG. 17A to 17B . This movement causes proximal movement of sheath, such as is required to begin unsheathing the implant to allow it to self-expand.
  • This initial rotation of the actuator 372 does not, however, translate into proximal motion of rod carriage 376 .
  • This initial rotation of actuator 372 causes rod carriage screw 378 to move proximally, but because rod carriage screw 378 has a male nub (not shown) similar to the male nub 385 on the sheath carriage screw, the rod carriage screw rotates within outer tube 380 .
  • the rod carriage 376 has an internal female thread which mates with male thread 379 on the rod carriage screw 378 . These threads allow the rod carriage screw 378 to rotate within rod carriage 376 without causing the rod carriage to move proximally.
  • This initial rotation of actuator 372 thereby results in lost motion of the rod carriage 376 , as is shown in the transition from FIG. 17A to 17B . As the sheath begins to be pulled back, the rods therefore do not pull on the posts.
  • both males nubs of the carriage screws are aligned with the respective linear female threads 383 .
  • Continued rotation of actuator 372 therefore results in proximal movement of both of the carriage screws 386 and 378 .
  • both carriages move in the proximal direction. This is illustrated in the transition from FIG. 17B to 17C .
  • both the sheath and the rods are being pulled in the proximal direction.
  • the movements of the carriages can also be reversed by rotating the actuator in the opposite direction.
  • the female threads on lead screw 374 can have a different pitch along the length of the screw, as is shown in FIGS. 17A-17D (although the pitch of the thread on lead screw 374 may also be constant along the length of lead screw 374 ). As shown, the pitch is greater on the portion where the sheath carriage screw interacts with the lead screw 374 than the pitch where the rod carriage screw interacts with the lead screw 374 . This results in the sheath carriage moving a greater distance that the rod carriage during the transition from FIG. 17B to 17C . Thus, FIGS. 17A-17D illustrate not only lost motion but a different rate of motion of two moving delivery system components based on actuation of a single actuator (e.g., the rotary actuator 202 ).
  • a single actuator e.g., the rotary actuator 202
  • FIGS. 18A-18D illustrates a sequence of movements of male threaded element 412 over female threaded element 400 which has a varying pitch and a varying diameter.
  • the lead screw 374 from FIGS. 17A-17D can have the varying pitch and diameter of female element 400 , and the carriage screws in FIGS. 17A-17D can incorporate the features of male element 412 .
  • Section 402 has a smaller pitch than sections 404 and 406 , while the diameter of section 406 is greater than the diameter in sections 402 and 404 .
  • the lead portion of male thread 410 has a greater height (see FIG. 18D ), which allows it to engage female thread 406 , 404 , as well as 402 .
  • the male threads 408 have a smaller height than the lead portion.
  • the male threads 408 are large enough to engage female threads 406 , but not 404 or 402 .
  • This design allows for varying degrees of movement of male element 412 over the length of female threaded element 400 .
  • the male element 412 moves a greater distance when threaded in section 406 than in section 402 , due to the difference in pitch.
  • This can allow a delivery system component to move at first rate, followed by movement at a second rate (in this case, the second rate of movement is less than the first).
  • This variable pitch design can be incorporated into any of the delivery systems described herein.
  • FIG. 19 illustrates a barrel cam design which functions with a variable pitch in a similar manner to the design shown in FIGS. 18A-18D .
  • threads 433 and 435 in the embodiment in FIG. 19 are integrated into barrel housing 421 instead of a central lead screw.
  • sheathing carriage 425 rotates on first thread 433 and rod carriage 423 rotates on second thread 435 in barrel housing 421 .
  • Lost motion is accounted for by bringing the pitch angle to, or near to, 0 so the carriage rotates but does not translate (or translates a minimal amount) within barrel housing 421 .
  • Each of the carriages also includes nubs 429 for tracking in threads 433 and 435 .
  • the carriages also include holes 427 for guide tubes 431 .
  • FIGS. 20A-20C illustrate an alternative design to account for lost motion including handle housing 452 , a pair of gears 454 , rotary actuator 456 , rod lead screw 458 , rod carriage 460 , rod carriage spring 462 , rod carriage screw 464 , sheathing lead screw 466 , sheath carriage 468 , sheath carriage screw 470 , sheath carriage spring 472 .
  • Rotary actuator 456 turns both gears 454 , one geared to the rod lead screw 458 and one geared to the sheathing lead screw 466 . Different pitches on each lead screw would allow for different linear motion rates for the rod screw 464 and sheathing screw 470 . In an initial configuration shown in FIG.
  • spring 462 is fully compressed and spring 472 is unloaded.
  • Rotation of actuator 456 turns both lead screws 458 and 466 , causing both the rod screw 464 and sheathing screw 470 to move proximally.
  • the resistance to compression of spring 472 between the sheathing carriage 68 and sheathing lead screw 466 causes the sheathing carriage 468 to follow the proximal movement of sheathing screw 470 , as is shown in the transition between FIGS. 20A and 20B .
  • the force unloading of spring 462 causes the rod carriage 460 to remain stationary while rod screw 464 moves proximally, as is shown in the transition from FIG. 20A to FIG. 20B .
  • Actuating the actuator 456 in the reverse direction unlocks the anchor through distal motion of the rod carriage 460 .
  • Compression of spring 472 limits motion of the sheathing carriage 468 until the sheathing screw 470 is fully seated in the sheathing carriage 468 .
  • the two carriages then move together distally until the rod carriage 460 reaches a stop (not shown) causing the rod screw 464 to move distally while the rod carriage 460 does not move and spring 462 is compressed.
  • FIGS. 21-22 illustrate exemplary designs for decoupling the motion of the rods and outer sheath.
  • a single actuator is geared to a gear with a cam on the proximal surface.
  • the cam causes the engagement/disengagement of a clutch that is attached to a lead screw.
  • the lead screw turns which causes a carriage (not shown) to move proximally or distally depending on the direction of movement of the actuator.
  • the clutch is not engaged, the lead screw does not turn and the carriage is stationary.
  • nut 502 (either for the rod or sheath) is connected to the carriage 504 (either for the rod or sheath) via a male tab 506 that engages with a female feature 508 in the carriage 504 .
  • the engagement between the nut 502 and the carriage 504 via the tab 506 causes the carriage 504 to move with the nut 502 as the lead screw 510 is turned (by an actuator not shown).
  • the nut 502 has a nub 512 which travels along a path 514 in the housing. A jog 516 in the path 514 causes the nut 502 to rotate counterclockwise relative to the carriage 504 .
  • This motion causes the tab 506 to disengage from the female feature 508 , releasing the nut 502 from the carriage 504 . Since the nut 502 and carriage 504 are no longer joined, continued actuation (e.g., rotation) of the actuator moves only the nut 502 . Rotating the actuator in the opposite direction causes the nut 502 to move back into contact with the carriage, reseating the nut tab 506 in the carriage and the carriage 504 then moves with the nut 502 .
  • FIG. 22 shows a portion of delivery system 600 including lead screw 602 with region 606 with female thread and region 610 without threads.
  • Sheath carriage 604 includes male threads 614 which engage with female threads 606 on lead screw 602 .
  • Sheath carriage 604 also includes lock element 608 which is adapted to engage with lock lip 612 on lead screw 602 to lock the carriage 604 onto lead screw and prevent the carriage 604 from moving in the distal direction D.
  • Rotation of an actuator on the handle causes lead screw 602 to rotate, which causes the carriage 604 to move proximally. This retracts the sheath in the proximal direction without moving the posts.
  • Continued proximal movement causes lock element 608 to engage and lock with lock lip 612 . Because the lead screw does not have any threads in region 610 , continued rotation of lead screw 602 does not result in movement of the carriage 604 .
  • FIGS. 23A and 23B illustrate a proximal portion of an exemplary handle which is used in the deployment of the heart valve shown in FIGS. 4 and 5A-5B .
  • the handle includes housing 620 , first actuator 624 in the form of a rotary actuator, slidable door 622 , and second actuator 626 which can only be accessed when the door 622 has been slid forward from the first position in FIG. 25A to the second position in 25 B.
  • rotary actuator 624 controls the movement of the sheath (such as is shown in FIGS. 3B-3F ) and the movement of actuation elements 206 B shown in FIGS. 4 and 5A-5B .
  • actuator 624 controls the movement of sheath and the actuation elements as shown in FIGS. 17A-17C , such that actuation of actuator 624 independently and dependently moves the sheath and actuation elements.
  • the physician slides door 622 to the position shown in FIG. 23B and actuates second actuator 626 .
  • Actuation of actuator 626 retracts pin assembly 236 in FIG. 4 , which causes the three pins 234 to be removed from the bores through the posts and actuation elements, uncoupling the posts from the actuation elements 206 B.
  • FIG. 23C illustrates an enlarged portion of handle 630 of an exemplary delivery system with a design which allows continued actuation of actuator 626 to further retract actuation elements 206 B (second actuator 626 from FIGS. 23A and 23B not shown).
  • the locking and sheathing drive ring actuates the locking and sheathing carriages via the lead screw similarly to the method described in reference to FIGS. 17A-17D .
  • Handle 630 includes locking and sheathing drive ring 631 , locking and sheathing lead screw 632 , locking carriage 633 , release pin carriage 635 , lost motion barrel 629 , release pin mandrels 636 (shown within hypotube), rod actuation mandrels 634 (shown within a hypotube), and force limiter 638 .
  • Force limiter 638 includes track 637 in which release pin carriage 635 moves when pulled proximally.
  • the release collar actuates a separate smaller lead screw 639 (normally driven by locking carriage 633 ) which pulls proximally release pin carriage 635 .
  • the second actuator on the handle (not shown) is actuated, which engages the release lead screw 639 , causing it to rotate. This pulls release collar 636 proximally in track 637 , which causes release pin mandrels 636 to be pulled back proximally, releasing the pins from the posts and uncoupling the rods from the posts.
  • Continued actuation of the second actuator continues to pull the release carriage until it reaches the proximal end of force limiter 638 .
  • carriage 635 bottoms out on the proximal end of force limiter 638 it moves the portion of the force limiter in which it sits proximally relative to the other portion of the force limiter. This causes rod mandrels 634 to be pulled proximally, which pulls the rods in the proximal direction.
  • the second actuator can be used to release the pins as well as continue to pull the rods back in the proximal direction.
  • the handle can be designed such that rotary actuator 624 can be further actuated to proximally retract actuation elements 206 B after the pin has been removed.
  • the delivery system can be then removed from the patient.
  • the medical implants described herein can be recollapsed and resheathed at least partially back inside the sheath after the entire implant has initially been deployed from the sheath. This is because at least a portion of the implant remains reversibly coupled to a portion of the delivery system after the implant is deployed from the sheath (e.g., see FIG. 3F ). Even after the anchoring element is locked in the fully deployed configuration, the post can be unlocked from the buckle in some embodiments and thereafter the anchoring element can be resheathed into the sheath. Being able to resheath an implant after it has been deployed from a delivery sheath or catheter is advantageous because it allows for the implant to be removed from the patient or repositioned inside the patient if needed.
  • the functionality and/or positioning of a replacement heart valve can be assessed once the replacement heart valve is in the configuration shown in FIG. 3F (and continually assessed as the anchor begins to be locked in the expanded and locked configuration), and can then be resheathed and subsequently repositioned or removed from the patient if needed.
  • resheathing processes and delivery systems to perform the resheathing described herein make references to replacement heart valves
  • a wide variety of medical devices may benefit from the resheathing aids described herein.
  • an expandable stent which remains reversibly coupled to the delivery system after the stent has been deployed from a delivery catheter or sheath may benefit from having any of the resheathing aids described herein incorporated into the delivery systems thereof.
  • the sheath is advanced distally relative to the catheter.
  • the catheter can be withdrawn proximally relative to the sheath.
  • Distal movement of the sheath relative to the catheter causes the fingers, which are coupled to the distal end of the catheter, to collapse radially inward. This causes the proximal end of the anchor to collapse.
  • Continued distal movement of the sheath causes the rest of the heart valve to elongate and collapse, allowing the sheath to recapture the anchoring element.
  • distal advancement of the sheath may result in portions of the proximal end of the anchor to get caught, or stuck, on the distal end of the sheath. This can prevent resheathing or it can reduce the resheathing efficiency.
  • FIG. 24 illustrates an alternative delivery system 640 including sheath 644 , delivery catheter 646 , and sheathing assist element 642 .
  • Sheathing assist element 642 is a braided structure, and can be similar to the braided anchoring elements described herein.
  • the sheathing assist element 642 generally has a memory configuration in which the distal end of the sheathing assist element 642 has a diameter larger than the diameter of the proximal end of the anchoring element 649 .
  • the delivery system includes fingers 647 (only two can be seen) reversibly coupled to a proximal region of replacement heart valve 648 (replacement leaflets not shown for clarity).
  • the proximal end of sheathing assist element 642 is coupled to the distal end of delivery catheter 646 .
  • Fingers 647 are also coupled to the distal end of catheter 646 , and are generally “within” or radially inward relative to sheathing assist element 642 .
  • FIG. 24 shows a replacement heart valve after the sheath has been withdrawn, allowing the anchoring element to expand to a memory configuration, and has not yet been actively foreshortened.
  • the sheath is advanced distally relative to the catheter and implant. This can be done by actuating an actuator of a handle, as described above. Because the proximal end of the sheathing assist element is fixed to the distal end of the delivery catheter, the distal end of the sheath can easily pass over the proximal end of the sheathing assist element without getting caught. Continued distal movement of the sheath causes at least the distal portion of the sheathing assist element to elongate and partially collapse in diameter. As the sheathing assist element elongates, the distal end of the sheathing assist element moves distal relative to the proximal end of the anchor.
  • the sheathing assist element will therefore provide a surface over which the sheath can pass without the risk of getting caught on the proximal end of the anchor.
  • the sheathing assist element may additionally apply a radially inward force to the proximal end of the anchor, assisting in the collapse of the proximal end of the anchor.
  • the anchor is collapsed and is resheathed back within the sheath.
  • the sheathing assist element is a polymer mesh.
  • the sheathing assist element can also act as an embolic filter. Once unsheathed, the sheathing assist element can trap emboli traveling downstream to the target location, yet allowing blood to pass through the assist element.
  • the distal end of the sheathing assist element can be configured and arranged to have a memory diameter that is as close as possible to the diameter of the lumen in which it is to be disposed. Exemplary materials for embolic filters are known in the art.
  • FIGS. 25-28 illustrate alternative delivery systems with alternative sheathing assist element 660 .
  • Sheathing assist element 660 includes three (3) collapsible blades 662 . The blades are fixed to one another at their proximal ends at hub 664 (see FIG. 28 ).
  • Hub 664 is axially movable relative to fingers 666 and catheter 668 , but the distal region of catheter 668 includes a hub stop 670 which is adapted to engage with the hub and prevent movement of the hub proximally relative to the hub stop.
  • sheath (not shown) is advanced distally over catheter 668 , it begins to collapse fingers 666 . As the fingers collapse radially inward, the hub can then move distally over the fingers.
  • the proximal end of the anchor begins to collapse and the hub continues to be advanced distally.
  • the distal ends of blades 662 cover the proximal end of the anchor, and the sheath can then be advanced over the anchor without getting caught on the proximal end of the anchor.
  • the blades are adapted to collapse inwards on themselves as the sheath applies a force to them.
  • sheathing assist element 660 includes optional finger openings 672 which are adapted to allow the fingers to be passed therethrough. Openings 672 can be designed to have any shape (e.g., rectangular, circular, etc) to allow the hub to be easily moved distally relative to the fingers. In the embodiment in FIG. 28 , the blades have optional slits 674 to assist in their collapse.
  • FIG. 29 shows an embodiment of sheathing assist element 680 which include arms 682 and teeth 684 at their distal ends.
  • the teeth are adapted to engage the crowns of the braid, which are formed where a brand strand turns at an end of the braid (or other proximal region of a non-braided anchor) and allow the sheath to be advanced distally over the anchor.
  • Each arm 682 can have any number of teeth 684 .
  • the arms can be adapted to respond to an applied force from the sheath such that they change to a second configuration with a bend such that a distal portion of the arms are bent radially inward to engage the proximal end of the anchor.
  • FIG. 30 shows an alternative embodiment of a sheathing assist element 670 which is comprised of stent element 672 .
  • Sheathing assist element 670 functions similar to the embodiment shown in FIG. 26 , but is not comprised of a braided material.
  • the stent can be made from, for example, an alloy or any other suitable material as is known in the art of stents.
  • FIG. 31 shows an alternative embodiment of sheathing assist element 680 which includes curled elements 682 (anchor not shown).
  • the proximal end of the curled elements 682 can be coupled to a hub as described above in other embodiments, or each of the curled elements can be individually affixed to the catheter.
  • the force of the sheath causes the distal ends of the curled elements to uncurl and straighten.
  • the distal ends of the straightened element extend over and distal to the proximal end of the anchor, and allow the sheath to be advanced over the proximal end of the anchor without getting caught on the crowns of the anchor.
  • the curled elements can be made of, for example, stainless steel or any other suitable material.
  • sheathing assist element 684 comprises a plurality of arms 686 (twelve arms are shown in FIGS. 32 and 33 ), each which have a distal end with male locking element 688 .
  • Each arm 686 includes female locking element 690 disposed closer to hub 692 than the male locking element 688 .
  • the male locking elements have an arrowhead shape and the female lock elements are slot-shaped.
  • Hub 692 includes an opening 694 therein to allow control wire 696 to pass therethrough.
  • Control wire 696 has an enlarged element at its distal end (not shown) which prevents the enlarged element from being pulled proximally through opening 694 .
  • each arm 686 extends distally from hub 692 and the distal region of each arm distal to the slot is wrapped around a crown of the anchor (see FIG. 33 ).
  • the male lock elements 688 are engaged with female lock elements 690 .
  • a proximally directed force is applied to the control wire 696 , which prevents the crowns from extending radially outward, thus allowing the sheath to be advanced distally over the crowns of the proximal end without getting stuck.
  • a proximal force is not required, and the engagement of arms 686 and the crowns of the anchor prevent the crowns from getting stuck on the sheath.
  • a proximally directed force on the hub will release the arrowheads from the slots, releasing the arms from the anchors. This releases the implant from the arms.
  • the delivery systems include wires or sutures 700 which are coupled at their proximal ends to a delivery system component (e.g., the distal end of catheter 702 , an actuator in a handle, etc.), and are each wrapped around a crown of the anchor.
  • the distal ends of wires or sutures 700 have an enlarged element 704 such as a spherical element which is adapted to engage with annular detent 706 in the outer surface of catheter 702 .
  • Sheath 708 maintains the engagement of the enlarged element 704 and detent 706 .
  • the distal end of the wire or suture 700 can simply comprise one locking element while the catheter outer surface can include a second locking element.
  • the sutures 700 provide a radially inward force to the crowns, helping the sheath extend over them during resheathing. Once the outer sheath is pulled proximally relative to the catheter, the enlarged element is released from the indent, and the wire/suture 700 can be released from the crowns of the anchor.
  • the catheter includes multiple detents 706 .
  • FIGS. 38-41 illustrate an alternative embodiment of sheathing assist 710 , which includes a plurality of arms attached to the distal end of catheter 714 .
  • the arms include two types of arms 718 and 720 , wherein arms 718 are slightly longer than arms 720 .
  • the arms are formed from a wire segment with a bend at their distal ends, wherein the two ends of the arms are coupled together at the proximal end 726 of the sheathing assist 710 .
  • Arms 718 extend from the catheter to the anchor and the distal ends are weaved into the braid of the anchor. That is, the distal ends of arms 718 are disposed radially within the braided anchor, as can be seen in FIGS. 39-41 .
  • Arms 718 are attached to stiffening elements 722 , which are shorter than both arms 718 and arms 720 .
  • Stiffening element 722 is attached to arm 718 at attachment point 724 , which can be, for example, a weld.
  • stiffening elements 722 are disposed within the wire segments of arms 718 , which increases the strength of arms 718 .
  • Sheathing assist also includes arms 720 which are shown shorter than arms 718 , although they could both be substantially the same length. As can be seen in FIG. 38 , two arms 720 are attached together at attachment points 724 . Arms 720 are positioned radially outwards of braid, unlike arms 720 which are weaved into the braid and disposed radially inside the braid.
  • Arms 720 help apply a radially inward force on the braid as the sheath is advanced distally. Arms 718 also help apply a radially inward force on the braid as well, and the two sets of arms ensure that the distal end of the sheath doesn't get caught on the anchor.
  • the proximal crowns of the braided anchor are heat-set in a configuration in which the crowns are bent radially inward (relative to longitudinal axis of the braid and relative to the rest of the anchor), to assist the sheath in the resheathing process.
  • the crowns are bent inward to prevent the sheath from getting caught on the crowns.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 15/207,072 filed Jul. 11, 2016 which is a continuation of U.S. application Ser. No. 14/586,791, filed Dec. 30, 2014, now U.S. Pat. No. 9,387,076, which is a continuation of U.S. application Ser. No. 12/578,447, filed Oct. 13, 2009, now U.S. Pat. No. 8,951,299, which claims priority under 35 U.S.C .sctn. 119 to U.S. Provisional Patent Application Nos. 61/104,509, filed Oct. 10, 2008; and 61/151,814, filed Feb. 11, 2009; which applications are incorporated by reference in their entirety.
  • This application is related to the following patent applications, all of which are incorporated by reference herein: U.S. patent application Ser. No. 10/746,240, filed Dec. 23, 2003 (U.S. Patent Publication No. 2005/1237687); U.S. patent application Ser. No. 10/972,287, filed Oct. 21, 2004 (U.S. Patent Publication No. 2005/0137698); U.S. patent application Ser. No. 10/982,692, filed Nov. 5, 2004 (U.S. Patent Publication No. 2005/0137699); U.S. patent application Ser. No. 11/706,549, filed Feb. 14, 2007 (U.S. Patent Publication No. 2007/0203503); U.S. Provisional Patent Application No. 61/104,509, filed Nov. 10, 2008; U.S. patent application Ser. No. 11/274,889, filed Nov. 14, 2005 (U.S. Patent Publication No. 2007/0112355); U.S. patent application Ser. No. 10/870,340, filed Jun. 16, 2004 (U.S. Patent Publication No. 2005/0283231); and U.S. patent application Ser. No. 11/314,969, filed Dec. 20, 2005 (U.S. Patent Publication No. 2007/0118214).
  • BACKGROUND OF THE INVENTION
  • Implantable medical devices can be delivered to a target location within a patient and implanted therein. For example, endoluminal delivery techniques are well known. The delivery system typically includes a sheath and/or a catheter through which the implant is delivered to the target location. The implant is generally deployed from the sheath or catheter at the target location. Some implantable devices are completely self-expanding; they self-expand when released from the sheath or catheter and do not require any further expansion after the self-expanding step. The self-expansion can occur by proximally retracting the sheath or catheter, by pushing the implantable device from the sheath or catheter, or a combination thereof. Some implantable devices, however, are configured and adapted to be actuated during or after the self-expansion step. Exemplary replacement heart valves which can be actuated after a self-expansion step can be found described in co-pending application Ser. No. 10/982,388, filed Nov. 5, 2004, and application Ser. No. 10/746,120, filed Dec. 23, 2003, the disclosures of which are hereby incorporated by reference herein. It may be advantageous to lock an expandable medical device in a fully deployed and locked configuration to secure the device in the deployed.
  • During the delivery process the medical device can be actuated by the delivery system using one or more actuators. For example, an actuator (e.g., in the form of a knob on a handle of the delivery system) may be actuated (e.g., turned) to cause a component of the delivery system to move relative to another component in the delivery system or relative to the implantable device, or both. It is generally desirable to make the delivery process as easy as possible for the physician, reduce the time needed to complete the procedure, and reduce the mechanical complexity of the delivery system. In some delivery procedures, multiple components of the delivery system need to be actuated to deploy the implant. It may also be necessary to ensure that multiple steps are carried out in a certain order. What are needed are delivery systems which can simplify the deployment procedure of the medical device and/or ensure that multiple steps are performed in a certain order.
  • SUMMARY OF THE INVENTION
  • One aspect of the disclosure describes a medical device system, including a delivery system comprising a housing disposed external to a subject, wherein the housing comprises an actuator, wherein the delivery system is configured and arranged such that the actuator is adapted to move a first delivery system component independently of a second delivery system component, and wherein the delivery system is further configured and arranged such that actuator is also adapted to move the second delivery system component independently of the first delivery system component.
  • In some embodiments the delivery system is further configured and arranged such that the actuator is further adapted to actuate the first delivery system component and the second delivery system component simultaneously, and is some instances at different rates when actuating them simultaneously.
  • In some embodiments the delivery system is configured such that actuation of the actuator moves the first and second delivery system components in the same direction. In some embodiments the delivery system is configured such that actuation of the actuator actuates the first and second delivery system components in a specific sequence.
  • In some embodiments the actuator is a single actuator element, and wherein the actuator is configured such that actuation of the actuator in a single type of motion causes both the actuation of the first delivery system component independent of the second delivery system component and the actuation of the second delivery system component independent of the first delivery system component.
  • In some embodiments the first delivery system component is a delivery sheath, and wherein the medical device system comprises a medical device adapted to be percutaneously delivered to a target location in a patient through the delivery sheath, and wherein the actuator is adapted to move the delivery sheath independently of and prior to the independent movement of the second delivery system component. The second delivery system component can be reversibly coupled to a portion of the medical device. The actuator can be adapted to independently move both the sheath and the second delivery component proximally when actuated. Actuation of the actuator can be configured to proximally retract the sheath to allow the medical device to expand, and wherein further actuation of the actuator retracts the second delivery system component proximally.
  • In some embodiments the delivery system and actuator are configured such that movement of the actuator in a singular type of motion, such as rotation in a single direction, moves the first delivery system component independently of a second delivery system component and moves the second delivery system component independently of the first delivery system component. The singular type of motion can move the first delivery system component independently of a second delivery system component and moves the second delivery system component independently of the first delivery system component without any intervening actuation steps being performed between the independent movement of the first delivery system component and the independent movement of the second delivery system component.
  • One aspect of the disclosure is a method of using a delivery system to deploy a medical device in a patient. The method includes providing a delivery system comprising a housing disposed external to the patient, wherein the housing comprises an actuator, actuating the actuator to move a first delivery system component independently of a second delivery system component, and actuating the actuator to move the second delivery system component independently of the first delivery system component.
  • In some embodiments the further comprises actuating the actuator to move the first and second delivery system components simultaneously. In some embodiments actuating the actuator comprises actuating the actuator in a singular type of motion to move the first and second delivery system components independently of one another, as well as to move the first and second delivery system components simultaneously. Actuating the actuator can move the first and second delivery system components at different rates at least during a portion of the time they are being moved simultaneously.
  • In some embodiments actuating the actuator moves the first and second delivery system components in the same direction. In some embodiments actuating the actuator moves the first and second delivery system components in a specific sequence.
  • In some embodiments actuating the actuator comprises actuating the actuator in a singular type of motion, such as rotation in a single direction, to move both the first and second delivery system components independently of one another.
  • In some embodiments the first delivery system component is a delivery sheath, and wherein actuating the actuator comprises moving the delivery sheath in a proximal direction independently of and prior to the independent movement of the second delivery system component. The second delivery system component can be reversibly coupled to a medical implant, and wherein actuation of the second delivery system component independently moves the second delivery system component in a proximal direction independently of and subsequent to the proximal movement of the delivery sheath.
  • In some embodiments moving the first and second delivery system components comprises moving the first and second delivery system components proximally.
  • In some embodiments actuating the actuator to move the first delivery system component comprises moving a delivery sheath proximally to allow the medical device to expand.
  • One aspect of the disclosure is a delivery system for deploying a medical device in a patient. The system includes a delivery sheath, a delivery catheter adapted to be disposed within the sheath and movable relative to the sheath, a coupling member adapted to be reversibly coupled to a portion of a medical device, wherein the medical device is adapted to be percutaneously delivered to a target location in a patient through the delivery sheath, wherein the delivery sheath is adapted to be moved relative to the medical device to release the medical device from the sheath, and a sheathing assist element, at least a portion of which is disposed between a distal end of the sheath and a proximal portion of the medical device when the delivery sheath is sheathing at least the proximal portion of the medical device.
  • In some embodiments a proximal portion of the sheathing assist element is attached to a distal region of the delivery catheter. In some embodiments a proximal end of the coupling member is attached to the distal region of the delivery catheter.
  • In some embodiments a proximal end of the sheathing assist element is attached to a distal region of the delivery catheter, and wherein a proximal end of the coupling member is attached to the distal region of the delivery catheter, and wherein the sheathing assist element is radially outward relative to the coupling member.
  • In some embodiments the sheathing assist element comprises a plurality of looped elements, wherein a first one of the looped elements has a length that is different than the length of a second one of the looped elements.
  • In some embodiments the medical device comprises a braided element, and wherein the sheathing assist element comprises a plurality of sheathing assist elements, wherein a first of the plurality of sheathing assist elements is disposed radially outward of a proximal end of the braided element when the sheath is sheathing the braided element, and wherein a second of the plurality of sheathing assist elements extends through the braided element.
  • One aspect of the disclosure is a method of sheathing a medical device within a delivery sheath. The method includes positioning a sheathing assist element between a portion of an expandable medical device and a delivery sheath, and moving the delivery sheath distally relative to the sheathing assist element and the medical device to assist in the collapse of at least a portion of the expandable medical device within the delivery sheath.
  • In some embodiments the positioning step comprises positioning the sheathing assist element between at least a proximal end of the expandable medical device and the distal end of the delivery sheath to reduce the likelihood that the distal end of the sheath will get caught on the proximal end of the medical device as the delivery sheath is moved distally relative to the sheathing assist element.
  • In some embodiment the delivery system further comprises a coupling member, the method further comprising maintaining a reversible coupling between the coupling member and the medical device, wherein positioning the sheathing assist element comprises positioning the sheathing assist element radially outward relative to the coupling member.
  • In some embodiments moving the delivery sheath distally relative to the sheathing assist element causes a radially inward force to be applied from the sheathing assist element to the portion of the expandable medical device.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are hereby incorporated by reference herein to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
  • FIG. 1A shows an exemplary replacement heart valve in a deployed and locked configuration.
  • FIG. 1B shows an exemplary replacement heart valve in a collapsed and delivery.
  • FIG. 2A illustrates an exemplary medical device delivery system reversibly coupled to a medical device, wherein the medical device is in a collapsed configuration.
  • FIG. 2B shows an exemplary medical device delivery system reversibly coupled to a medical device, wherein the medical device is in a deployed and locked configuration.
  • FIGS. 3A-3G illustrate an exemplary medical device deployment and locking procedure.
  • FIG. 4 shows an exemplary replacement heart valve reversibly coupled to a portion of a delivery system.
  • FIGS. 5A-5E show an exemplary lock and release mechanism for a medical device.
  • FIGS. 6A and 6B show an exemplary reversible coupling mechanism between a delivery system and a medical device.
  • FIGS. 7A-7D shows an exemplary lock and release mechanism of a medical device.
  • FIGS. 8A-8G shows an exemplary lock and release mechanism of a medical device.
  • FIG. 9 shows an exemplary reversible coupling mechanism between a delivery system and a medical device.
  • FIG. 10 shows an exemplary reversible coupling mechanism between a delivery system and a medical device.
  • FIGS. 11A-11D show an exemplary lock and release mechanism of a medical device.
  • FIGS. 12A-12C show an exemplary lock and release mechanism of a medical device.
  • FIGS. 13-14E show an exemplary lock and release mechanism of a medical device.
  • FIGS. 15A-16B show an exemplary lock and release mechanism of a medical device.
  • FIGS. 17A-17D illustrate a portion of an exemplary delivery system in which a single handle actuation element can move two different delivery system components independently of one another.
  • FIG. 18A-18D illustrate an varying pitch design to vary the rate of travel of an actuation element.
  • FIG. 19 illustrates an exemplary barrel-cam design to control the rate of movement of delivery system components.
  • FIGS. 20A-20C illustrate a portion of an exemplary delivery system in which a single handle actuation element can move two different delivery system components independently of one another.
  • FIGS. 21-22 illustrate exemplary designs for decoupling the motion of the rods and outer sheath.
  • FIGS. 23A-23C illustrate actuating a second actuator to control movement of different portions of the medical device delivery process.
  • FIGS. 24-41 illustrate a variety of medical device sheathing assist elements.
  • DESCRIPTION OF THE INVENTION
  • The present disclosure describes medical devices and delivery systems for delivering medical devices to a target location in a subject. The medical devices can be implantable or they can be adapted to be temporarily positioned within the subject. The delivery systems can be adapted to deliver a wide variety of suitable medical devices to a target location in a subject, but in some embodiments are configured for minimally invasive delivery procedures, such as endovascular procedures. In some embodiments the medical device is a replacement heart valve (e.g., a replacement aortic heart valve), and the delivery system is configured to deliver the replacement heart valve endovascularly to replace the functionality of the subject's native heart valve.
  • FIGS. 1A and 1B show replacement heart valve 10 including anchoring element 12, shown comprising a braided material, and replacement valve leaflets 14 (not shown in FIG. 1B for clarity). Replacement heart valve 10 also includes three first locking members 16, also referred to herein as posts, and three second locking members 18, also referred to herein as buckles. Three posts and three buckles are shown, each post being associated with one of the buckles. FIG. 1A shows anchoring element 12, also referred to herein an anchor, in a fully deployed configuration in which anchoring element 12 is locked and maintained in the deployed configuration by the locking interaction between first locking members 16 and second locking members 18. FIG. 1B shows replacement heart valve 10 in a collapsed delivery configuration in which the replacement heart valve is delivered within a delivery system to a target location within the subject (delivery system not shown).
  • In this embodiment valve leaflets 14 are attached to posts 16 at the valve's three commissures. Posts 16 therefore support the valve within the anchoring element. The posts and buckles (or other suitable first and second locking members) are both coupled to the anchor. When the anchoring element 12 is in the collapsed configuration as shown in FIG. 1B, each locking element of posts 16 which is configured to lock with a corresponding locking element of buckles 28 is located distally relative to the locking element of the buckle to which is it to adapted to be locked. Stated alternatively, the locking elements of the buckles which are configured to lock to the locking elements of the posts are located proximally to the locking elements of the posts in the delivery configuration.
  • FIGS. 2A and 2B illustrate an exemplary embodiment of a delivery system 100 and components thereof which can be used to deliver and deploy a medical device at a target location in a subject. Delivery system 100 includes handle 120, sheath 110, catheter 108 disposed with sheath 110, and actuation elements 106A and 106B which are reversibly coupled to replacement heart valve 10. In FIG. 2A, heart valve 10 is in a collapsed delivery configuration (also shown in FIG. 1B) within sheath 110. Delivery system 100 also includes guidewire G and nosecone 102. In some embodiments catheter 108 has central lumen 109 and a plurality of circumferentially disposed lumens Lu.
  • In FIGS. 2A and 2B, the plurality of actuation elements 106A are shown reversibly coupled to a proximal region of anchoring element 12. Specifically, actuation elements 106A are reversibly coupled to the proximal end of the anchoring element 12 via a reversible coupling mechanism. Actuation elements 106B are reversibly coupled to a region of the replacement heart valve distal to the proximal end of the anchoring element. Specifically, actuation elements 106B are shown reversibly coupled to posts 16 via a reversible coupling mechanism. Details of this and similar embodiments can be found in U.S. Patent Publication Nos. 2005/0137686 and 2005/0143809, the disclosures of which are incorporated by reference herein.
  • In the embodiments shown in FIG. 1A-2B, the anchoring element comprises a braided material, such as nitinol, and is formed of one or more strands of material. In one embodiment the anchoring element 12 is formed of a shape memory material and is heat set in a self-expanded configuration, such that when the anchoring element is deployed from the sheath of the delivery system, the braid will begin to naturally begin to shorten and expand from the collapsed delivery configuration to the memory self-expanded configuration. The self-expanded configuration can be thought of as an at-rest or partially deployed configuration, and is described in more detail in U.S. Patent Publication Nos. 2005/0137686 and 2005/0143809. Once the anchoring element has expanded to the partially deployed configuration, at least one of the actuators 106A and 106B is actuated via an actuator on a handle disposed external to the patient. As is described in more detail in U.S. Patent Publication Nos. 2005/0137686 and 2005/0143809, actuators 106B can be actuated in the proximal direction relative to the actuation elements 106A, which applies a proximally directed force to the posts, which applies a proximally directed force to a distal region of the anchoring element. Actuators 106A can, alternatively or in addition to the proximally directed force, be actuated in a distal direction to apply a distally directed force on a proximal region of the anchoring element. The axially directed forces actively foreshorten the anchoring element, moving the posts closer to the buckles until the posts and buckles lock together to lock the anchoring element in a fully deployed and locked configuration. The locked configuration is therefore shorter than the partially-deployed configuration.
  • FIGS. 3A-3G illustrate an exemplary method of delivering a replacement aortic heart valve in a delivery configuration and deploying it from a delivery sheath to a fully deployed and locked configuration. In this embodiment actuation elements 106B are reversibly coupled to the posts of the replacement valve, but actuation elements 106A, which may also be referred to herein as “fingers,” are reversibly coupled to the buckles. There are three actuation elements 106A reversibly coupled to the three buckles, and there are three actuation elements 106B reversibly coupled to the three posts. As seen in FIG. 3A, replacement valve 10 is delivered in a collapsed delivery configuration within sheath 110 in a retrograde fashion through aorta A over guidewire G and placed across a patient's aortic valve using known percutaneous techniques.
  • Once sheath 110 is positioned across the native valve as shown in FIG. 3A, sheath 110 is retracted proximally relative to the replacement valve using an actuator on the delivery system handle which is disposed external to the patient (examples of which are described in detail below). As the sheath is withdrawn, as seen in FIG. 3B, the distal portion of anchoring element 12 begins to self-expand due to the material properties of the anchoring element. The anchoring element can have a memory self-expanded configuration such that as the sheath is withdrawn the anchor begins to self-expand, or return to its memory configuration. As the sheath continues to be retracted proximally, the anchoring element continues to self-expand, as shown in FIGS. 3C and 3D. In FIG. 3E the sheath has been retracted proximally such that the distal end of the sheath is disposed proximal to the distal end of fingers 106A. In FIG. 3E the sheath is not retracted far enough proximally to allow the fingers to self-expand. As such, although the anchoring element is completely out of the sheath, the proximal end of the anchor does not expand towards its memory configuration. Only after the sheath has been retracted past the distal end of catheter 108 can the fingers fully self-expand, as is shown in FIG. 3F. This allows the proximal end of the anchoring element to expand. 100601 The anchoring element is then actively foreshortened (and potentially further expanded) to the fully deployed and locked configuration shown in FIG. 3G by the application of axially directed forces (proximally and distally directed). To actively foreshorten the anchoring element, a proximally directed force is applied to posts via actuation elements 106B (not shown in FIGS. 3A-3G but which are coupled to the posts), and/or a distally directed force is applied to buckles via actuation elements 106A. In one embodiment a proximally directed force is applied to posts through actuation elements 106B, and fingers 106A are held in position to apply a distally directed force to the buckles. This active foreshortening causes the posts and buckles to move axially closer to one another until they lock together, which maintains the anchoring element in a fully deployed and locked configuration in FIG. 3G. The actuation elements 106A and 106B are then uncoupled released from the buckles and posts, respectively, and the delivery system is then removed from the subject. The details of exemplary locking processes and release processes are described in detail below. Additional details of delivery, deployment, locking, and release processes that may be incorporated into this and other embodiments can be found in U.S. Patent Publication No. 2005/0137699, filed Nov. 5, 2004, U.S. Patent Publication No. 2007/0203503, filed Feb. 14, 2007, and U.S. Patent Publication No. 2005/0137697, filed Nov. 21, 2004, each of which is incorporated by reference herein.
  • FIG. 4 shows replacement heart valve 10 and a distal portion of the delivery system, including catheter 208, which were described in reference to FIGS. 3A-3G. Heart valve 10 is in a fully deployed and locked configuration, with actuation elements 206A (“fingers”) and 206B still reversibly coupled to buckles 18 and posts 16, respectively. The configuration and arrangement in FIG. 4 is therefore similar to that shown in FIG. 3G. The commissure portions of leaflets 14 are affixed to the three posts 16, while posts 16 are moveably coupled to anchoring element 12 (e.g., via sutures or wires) at a location distal to the proximal end of anchoring element 12. Replacement heart valve 10 also includes buckles 18 (three are shown) which are affixed (but may be moveably coupled to the anchor similar to the posts) to anchor 12 (e.g., via wires or sutures) at a proximal region of anchor 12. In FIG. 4, the actuation elements 206B are reversibly coupled to posts 16, while actuation elements 206A are reversibly coupled to buckles 18. The delivery system also includes three actuator retaining elements 210, each of which are adapted to receive therein an actuation element 206B and an actuation element 206A. Actuation elements 206A are shown attached at their proximal end to the distal end of catheter 208, while actuation elements 206B are configured and arranged to move axially within catheter 208. Actuation elements 206B therefore are configured and arranged to move axially with respect to actuation elements 206A as well. Fingers 206A and actuation elements 206B are maintained closely spaced to one another (at least while the delivery system is coupled to the replacement valve) with actuator retaining elements 210. Retaining elements 210 have a lumen therein in which fingers 206A are disposed and through which the actuation elements 206B can be actuated axially. Fingers 206A are shown disposed radially outward relative to the actuation elements 206B, which are shown as generally cylindrical rods. The replacement heart valve in FIG. 4 has not been released from the delivery system.
  • FIGS. 5A-5E illustrate the process of uncoupling the delivery system from the heart valve shown in FIG. 4 (anchoring element is not shown). In FIG. 5A post 16 has an elongated locking portion 17 which is adapted to be pulled into an internal channel within buckle 18. Locking portion 17 of post 16 has a locking element in the shape of a groove which is adapted to receive a tooth on the buckle 18. As the post is pulled into the buckle, the tooth on the buckle will engage the groove on the post and lock the post and buckle together, maintaining the anchoring element in a locked configuration. This configuration is shown in FIG. 5A. In this configuration, actuation element 206B (or “rod”) is reversibly coupled to post 16. Rod 206B includes a portion that is disposed within a channel in post 16 such that bore 230 (see FIG. 5E) in the distal portion of rod 206B is aligned with bore 232 in post 16. Pin 234, which is part of pin assembly 236 as can be seen in FIG. 4, extends through both rod bore 230 and post bore 232 to couple the rod to the post. The distal portion of pin assumes a curled or looped configuration, which prevents rod 206B from disengaging from post 16. In FIG. 5A finger 206A is reversibly coupled to buckle 18 via the interaction between tooth 239 on buckle 18 and groove 238 on finger 206A (see FIG. 5E). In FIG. 5A, collar 22 is positioned over the engagement between tooth 239 and groove 238 to retain the 206A and buckle 18 in a reversibly coupled configuration.
  • Once it has been determined to release the heart valve in place within the subject, pin 234 is first removed by retraction of pin assembly 236 (see FIG. 4) in the proximal direction, which pulls the pin through bores 230 and 232 and uncouples rod 206B from post 16, which is shown in FIG. 5B. Next, rod 206B is pulled back in the proximal direction via actuation of an actuator on the delivery system handle. Once rod 206B has been pulled to the position in FIG. 5C, collar engagement 23 engages collar 22 and pulls it in the proximal direction along with rod 206B. This causes the collar to be pulled proximally from the position in FIG. 5C to the position in FIG. 5D. Retracting the collar to the position in FIG. 5D allows tooth 239 of the buckle to disengage groove 238 with continued retraction of rod 206B, which is shown in FIG. 5E. Both rod 206B and finger 206A are uncoupled from the heart valve, and the delivery system is now retracted from the patient with the medical device implanted in place.
  • In some embodiments the axially directed force vectors applied by the fingers 206A to the buckles and the rods 206B to the posts can be in substantially opposite directions to enhance the efficiency of the foreshortening and locking process. An advantage of coupling the fingers directly to the buckles is that the buckles are better aligned with the posts during the foreshortening and locking process. This can help ensure that the post, when pulled proximally, will better align with the buckle such that the post can be efficiently locked with the buckle. When using an anchor that may become twisted or distorted under high foreshortening and locking forces (such as an anchor comprising a braided material), it can be beneficial to ensure that a buckle which is coupled to the anchor (and thus may fall out of alignment with the post) remains properly aligned with the post. Directly coupling the fingers to the buckle can provide these benefits. This can also increase the general efficiency of proximally directed pulling forces because less force may be required to pull and lock the posts with the buckles. When incorporating actuators on a handle to control delivery and deployment of a medical device, reducing the amount of force that is needed to be applied to the handle actuator can simplify the delivery system design.
  • FIGS. 6A and 6B illustrate an alternative embodiment of post 250 which is reversible coupled to actuation element 252. FIG. 6B is a partially exploded view identifying the components shown in FIG. 6A. Actuation element 252 includes rod 254, tab deflector 256, and retaining clip 258. Rod 254 can be actuated in a proximal direction P by actuating an actuator on a handle disposed external to the patient as described herein.
  • Rod 254 is attached to tab deflector 256 and to retaining clip 258. Rod 254 includes, at its distal end, catch 260, which engages with clip element 262 of retaining clip 258. Post 250 has an internal channel therein adapted to slidingly receive retaining clip 258 and tab deflector 256, each of which are adapted to receive rod 254 therein. Tab deflector 256 includes rib element 264. Retaining clip 258 includes clip feet 266. To lock the anchoring element (not shown), rod 254 is pulled in the proximal direction and clip feet 266 engage the distal end of post 250 and pull it in the proximal direction towards the buckle (not shown).
  • FIGS. 7A-7D show side-views of an exemplary locking sequence of post 250 shown in FIGS. 6A and 6B to buckle 268 (anchor not shown). FIG. 7A shows rod 254 being actuated in the proximal directed by an actuation force generated from an actuator on the handle of the delivery system external to the patient. In FIG. 7A, post 250 is still distal to buckle 268. As rod 254 continues to be pulled in the proximal direction, catch 260 (shown in FIG. 6B) applies a proximally directed force to clip element 262 (shown in FIG. 6B). This causes clip feet 266 to apply a proximally directed force to the distal end of post 250. This causes the post to move in the proximal direction. Post 250, tab deflector 256, and retaining clip 258 thus move towards buckle 268, as is shown in FIG. 7A.
  • Continued actuation of the actuator external to the patient causes the post, the deflector, and the clip to be pulled further in the proximal direction into a position within a channel within buckle 268, as is shown in FIG. 7B. Because rib element 264 of tab deflector 256 is disposed adjacent groove 272 of post 250, rib element 264 prevents buckle tooth 270 from engaging groove 272 of post 250 (shown in FIG. 7B). This prevents the post from locking with the buckle until the physician determines that it is appropriate to do so. Rib element 264 thereby acts as a lock prevention mechanism. The post (and thus the anchor) can be moved distally to lengthen the anchoring element at this point by applying a distally directed force on post 250 using the actuator on the handle.
  • Once the desired position of the anchor has been obtained, rod 254 continues to be actuated in the proximal direction. This can be done using the same actuator on the handle or a different actuator as described in more detail below. The continued proximal force to rod 254 causes feet 266 to be pinched inwards towards one another to thereby disengage and uncoupled them from the distal end of post 250. This pulls feet 266 within the distal opening of post 250. This releases clip 258 from post 250 and uncouples the rod, deflector, and clip from the post. Continued actuation of the actuator will move the cable, deflector and clip in the proximal direction to the position shown in FIG. 7C. Rib element 264 is disposed proximal to tooth 270 and groove 272 and thus no longer prevents them from locking together. The tooth therefore engages the groove, locking the post to the buckle (shown in FIG. 7C). The anchor (not shown) is now locked in the fully deployed and locked configuration. Continued actuation of rod 254 pulls the rod, clip, and deflector from the patient, as is shown in FIG. 7D.
  • FIGS. 8A-8G illustrate a side view of a locking and release sequence of an alternative embodiment of a post, buckle, and actuation elements. The system includes actuation element 280 in the form of a rod, buckle 282, post 286, and clip 290. The clip 290 includes feet 294 and rib element 292. Actuation of an actuator on the handle causes rod 280 to be pulled in the proximal “P” direction, as shown in FIG. 8A. Continued actuation pulls rod 280, post 286, and clip 290 through a channel within buckle 282, as shown in FIG. 8B. As rod 280 continues to be pulled, a surface of buckle tooth 284 slides over surface 295 of clip 290, as shown in FIG. 8B. Feet 294 engage the distal end of buckle 282, as shown in FIG. 8C. The top view of this position is shown in FIG. 8G. Between the positions shown in FIGS. 8B and 8C, rib element 292 has prevented the post from locking with the buckle. In the position shown in FIG. 8C, tooth 284 is engaging surface 287 of post 286. The location of feet 294 ensures post groove 288 has been pulled far enough proximally before the clip 290 is removed from the post. From the position shown in FIG. 8C, continued proximal movement of rod 280 will cause feet 294 to pinch together and retract into the channel in buckle 282. This releases clip 290 from post 286 and pulls the rod and clip in the proximal direction. Once the clip is released from the post, the post will begin to naturally move in the distal direction because the anchoring element (not shown, but in this embodiment comprises a braided material) begins to revert naturally to a self-expanded, partially deployed memory configuration (which is more fully described in the applications incorporated by reference herein). As the post begins to move distally, tooth 284 engages post groove 288 as is shown in FIG. 8E. This locks the post and buckle and locks the anchoring element in a fully deployed and locked configuration. The rod and clip can now be removed from the patient, as is shown in FIG. 8F.
  • FIGS. 9 and 10 show two alternative embodiments incorporating features of the lock and release embodiments above. The embodiment in FIG. 9 is similar to that shown in FIGS. 5A-5E, although rod 304 includes feet 306 which are similar to the feet shown in the embodiments in FIGS. 6A-8G. In this embodiment pin 234 from FIGS. 5A-5E is not needed, as the release of rod 304 from post 300 occurs when rod 304 is pulled proximally, causing feet 306 to pinch inwards and disengage from the post.
  • FIG. 10 shows an alternative embodiment which incorporates compressible feet 316 at the distal end of rod 314 and release pin 318 (actuated in the same way as shown in the embodiment in FIGS. 5A-5E). The embodiment in FIG. 10 can be thought of as a hybrid design between that shown in FIGS. 5A-5E and 9. One difference between the embodiment in FIGS. 5A-5E and 10 is that in FIGS. 5A-5E there is a slot 230 in the rod that pins the rod to the post. When pin 234 is under tension in FIGS. 5A-5E, the pin is in shear, which increases the likelihood of damaging the pin. In the design in FIG. 10, the slot 230 is not present, but rather the two feet 306 simply extend distally from a distal portion of the rod. Pin 318 maintains feet 316 in the spread-apart position shown in FIG. 10, essentially holding them open and maintaining the coupling between the feet and the post. In this design, the pin is in compression between the feet, rather than being in shear. Once the pin removed, a lower release force can then be applied to the rod to cause the feet to uncouple from the post. Having the pin in compression rather than shear is less likely to cause damage to the pin.
  • Each of FIGS. 11A-11D shows a side view and perspective view, respectively, of an alternative embodiment including post 320 and actuation element 322 in a sequence wherein post 320 changes configuration from a position in which it is not locked to a corresponding buckle 321 to a locked position, and in which the actuation element 322 is released from the post. Buckle 321 is not shown in the sequence for clarity, although buckle 321 is shown in FIG. 11A to display the relative positions of the post, actuation element, and buckle. FIGS. 12A-12C show the locking and release sequence including buckle 321.
  • In FIG. 11A actuation element 322 is reversibly coupled to post 320. Actuation element 322 includes rod 324, post lock prevention element 326, and post lock actuator 328. Post 320 includes post lock element 330. FIG. 11A illustrates an initial configuration of the respective components before the post is pulled towards the buckle. To actively foreshorten the anchoring element (not shown), the rod 324 is retracted in the proximal direction. Post lock prevention element 326 is initially engaged with post lock element 330, and thus proximal retraction of rod 324 causes proximal movement of post 320. Rod 324 continues to be pulled proximally until post 320 is pulled within buckle, as can be seen in FIG. 12A. In FIG. 12A the post is not yet locked to the buckle, and post lock element 330 is proximal to buckle lock element 332. To lock post 320 to buckle 321, a separate actuator (not shown) is actuated to retract the post lock prevention element 326 in the proximal direction to disengage post-lock prevention element 326 from post lock element 330, as shown in FIGS. 11B and 12B. Alternatively, rod 324 and post lock prevention element 326 may be engaged in a manner such that a continued proximal force applied to rod 324 will disengage post lock prevention element 326 from post lock element 330. Because the anchoring element has a memory configuration that is longer than the fully expanded and deployed configuration, once post-lock prevention element 326 is disengaged from post lock element 330, the anchor will attempt to return to its elongated memory configuration. Thus, post 320 begins to move in the distal direction. Distal movement of post 320 causes post-lock actuator 328 to apply a radially outward force to post lock element 330, moving it to a locked configuration shown in FIGS. 11C and 12C. Alternatively, or in addition to, once lock prevention element 326 is disengaged from post lock element 330, continued proximal retraction of rod 324 causes post-lock actuator 328 to apply a radially outward force on post lock element 330. Continued distal movement of post 320 causes post lock element 330 to engage with buckle lock element 332, locking post 320 to buckle 321. The lock prevents further distal movement of the post relative to the buckle, locking the anchor in an axially compressed and fully deployed configuration. Actuation element 322 can now be withdrawn proximally and removed from the patient.
  • FIG. 13 shows an alternative embodiment of post 340 and clip 342, which includes deformable element 344. FIGS. 14A-14E show a sequence of locking post 340 to buckle 348 and releasing clip 342 from post 340. A rod (not shown) is attached to clip 342, similar to the embodiments described above. In the position shown in FIG. 14A, the proximal end of deformable element 344 engages surface element 346 of post 340. This engagement maintains the clip within the post as the clip is pulled proximally. This engagement also pulls the post proximally as the clip is pulled proximally. As the actuator is actuated the cable pulls the post and clip within the buckle 348 as shown in FIG. 14B. Continued actuation from the position shown in FIG. 14C causes tooth 350 of buckle 348 to engage and deform deformable element 344. Deforming element 344 allows tooth 350 to engage groove 352 to lock the buckle and post. This step also releases deformable element 344 from engagement with surface 346, thus releasing the clip from the post, as is shown in FIG. 14D. This step therefore also releases the rod and clip from the post. FIG. 14E shows the clip completely withdrawn proximally from the post.
  • FIGS. 15A, 15B, 16A, and 16B illustrate an alternative embodiment of the post lock and release mechanism. The embodiment in FIGS. 15A-16B works similarly to those described above in that an actuator is actuated to pull the actuation element, or rod, which pulls the post towards the buckle to lock the anchoring elements. Rod 354 includes a clip similar to the clip in the embodiment in FIGS. 6A and 6B. FIG. 15A is a perspective view and FIG. 15B is a side view after rod 354 has been actuated and pulled proximally such that tooth 358 of buckle 352 is locked with groove 362 of post 360. Prior to the position shown in FIGS. 15A and 15B, surface 356 of rod 354 prevented tooth 358 from locking with the groove in the post. The clip at the distal end of the rod is engaged with a deformable element of the post such that continued actuation of the rod causes the deformable element to deform and release the post from the rod. This rod can then be removed from the patient by continued actuation of the actuator. Alternatively, a pin similar to pin 234 in FIGS. 5A-5E can be incorporated into the embodiment, such that the pin is removed when it is desirable to release the rod from the post, as is described above.
  • FIGS. 16A and 16B illustrate an unlocking of the post and buckle which are locked in FIGS. 15A and 15B. This unlocking step must be performed before the heart valve is released from the delivery system. Rod 354 is pushed distally, causing surface 364 (unlocking element) of the rod to engage and disengage tooth 358 from the groove in the post. Continued distal movement of the rod pushes the post in a distal direction, which lengthens the anchoring element.
  • In some embodiments, the fingers can be made of an alloy that is heat set to a memory expanded configuration. The rods can comprise, for example, stainless steel. The outer tube can be made of, for example, a heat-shrink polymer, but can be any suitable material. The outer tube provides enhanced column strength to the fingers, which can be advantageous when under the forces applied during the active foreshortening of the anchoring element.
  • In the embodiments above reference was made to a delivery system handle disposed external to the subject, which is used to control the actuation of the actuation elements and the sheath. The deployment of the medical implant as described herein can be controlled by actuators (e.g., knobs, levers, etc) on the handle, which are actuated by the physician to control the deployment of the device. It may be desirable to be able to perform multiple deployment steps with as few actuators as possible to simplify the delivery and expansion process. It may further be desirable to perform certain deployment steps with a single actuator, perhaps even actuating a single actuator with a singular type of movement (e.g., rotating a knob in a single direction) to perform multiple parts of the deployment process. This can make the procedure easier for the physician because a hand used to actuate the handle actuator does not need to be removed from the actuator to perform multiple steps. In some embodiments of the delivery system described below, the actuation steps of unsheathing the anchoring element and locking the posts with buckles are performed with a single actuator on a handle of the delivery system. Having a single actuator on the handle which can perform multiple deployment steps can simply the overall procedure. Using a single actuator to control multiple deployment steps can also insure that the steps are performed in a specified sequence, and making sure that a second step does not occur before the occurrence of a first step.
  • In embodiments described herein in which actuation of a single actuator in a singular type of motion moves a plurality of delivery system components, the singular type of motion can be performed to move more than one delivery system component without any other intervening actuation step being performed. In some embodiments, the user can stop the actuation of the actuator in the singular type of motion, and then continued the actuation. A singular type of motion includes embodiments in which a period of time passes without any actuation. That is, the user may start to actuate the actuator, wait a period of time (for example, to determine if the position of the medical device is sufficient based on an imaging technique), then continue to actuate the actuator. This falls under the “singular” type of motion as described here.
  • A potential challenge in using a single actuator to actuate multiple components of a delivery system arises when the actuatable components are to be actuated independently of one another, or when they are to be actuated independently of one another during portions of the procedure but actuated at the same time during other portions of the procedure, or when they must be actuated at the same time but at different rates of movement. Provided below are delivery systems in which actuation of a single actuator actuates a plurality of delivery system components wherein a first of the plurality of components and a second of the plurality of components are each actuated independent of the other. In some embodiments the first and second components are also adapted to be actuated at the same time as one another, and in some embodiments at different rates while they are both being actuated.
  • In some embodiments of the delivery system, a single actuator is used to both proximally retract the sheath during the unsheathing process (for example, as shown in the exemplary method in FIGS. 3B-3F) and to proximally retract the actuation elements which are coupled to the posts. That is, a single actuator is actuated in a single manner to both unsheath the implant as well as to lock the implant in a fully deployed and locked configuration. Incorporating a single actuator into the delivery system which can be actuated in one direction or manner to both deploy the implant from the sheath as well as reconfigure it to its final deployed configuration can greatly simplify the deployment procedure for the physician.
  • During a first portion of the deployment of the implant only the sheath is pulled in the proximal direction, which unsheathes the implant. During a second portion of the deployment only the posts are pulled proximally, which moves the posts towards the buckles to lock the anchoring element in the locked configuration. During a third portion of the procedure both the sheath and the actuation elements reversibly coupled to posts are pulled in the proximal direction, which may result in variable rates of movement of the sheath and the actuation elements. The single actuator must therefore account for both the dependent and independent motions of a plurality of delivery system components.
  • FIGS. 17A-17D illustrate an exemplary delivery system in which a single actuator on a handle selectively actuates a plurality of delivery system components. While this delivery system design can be used to selectively actuate a plurality of delivery system components in almost type of medical device delivery system, it will be described in relation to deployment of a replacement heart valve. In addition, while the single actuator can be adapted to actuate different types of components than those which are described herein, it will be described as controlling the movement of a sheath and an actuation element which actuates a portion of a replacement heart valve.
  • FIGS. 17A-17D show components of delivery system 370 which are housed inside a handle housing (not shown), including outer tube 380, rotary actuator 372 (which is adapted to be actuated by a user), lead screw 374, rod carriage 376, rod carriage screw 378, sheath carriage 384, sheath carriage screw 386. Proximal movement of rod carriage 376 moves the rods in the proximal direction, which causes a proximally directed force to be applied to the posts described herein (and distal movement of post puller carriage 206 causes a distally directed force to be applied to the posts). Proximal movement of sheath carriage 384 causes the sheath to be retracted proximally to unsheathe the implant (and distal movement of sheath carriage 384 causes the sheath to be moved distally to re-sheath the implant). In one embodiment, the sheath has an adapter bonded to its proximal end which is screwed to the sheath carriage. Movement of the sheath carriage, through rotation of the lead screw, therefore directly moves the sheath. In one embodiment the rods are bonded inside a hypotube and the hypotube is pinned to a force limiting member, which is directly attached to the rod carriage. Movement of the rod carriage therefore moves the rods. Rotation of rotary actuator 372 translates rotational movement into linear movement of rod carriage screw 378 and sheath carriage screw 386.
  • Tube 380 includes an internal female thread including a linear female thread 383 along two portions of tube 380 and a partially helically-shaped female thread 382 along a portion of the tube disposed between the linear female thread portions 383. Both the rod carriage screw 378 and sheath carriage screw 386 include an internal male thread which engages the female threads of screw 374 and allows rotation of actuator 372 to translate to movement of the rod carriage screw 378 and sheath carriage screw 386. The sheath carriage screw 386 includes male nub(s) 385 which engage linear female thread 383 in the configuration shown in FIG. 17A. The sheath carriage screw 386 also has an outer male thread 387 (see FIG. 17D) which engages with an internal female thread in sheath carriage 384. FIG. 17A shows the delivery system in a configuration in which the implant is sheathed within the sheath and the posts are not locked to the buckles. Initial rotation of actuator 372 causes sheath carriage screw 386 to move linearly in the proximal direction. Because of the interaction between the male thread 387 and the female thread within sheath carriage 384, proximal movement of sheath carriage screw 386 causes proximal movement of the sheath carriage 384, as is shown in the transition from FIG. 17A to 17B. This movement causes proximal movement of sheath, such as is required to begin unsheathing the implant to allow it to self-expand.
  • This initial rotation of the actuator 372 does not, however, translate into proximal motion of rod carriage 376. This initial rotation of actuator 372 causes rod carriage screw 378 to move proximally, but because rod carriage screw 378 has a male nub (not shown) similar to the male nub 385 on the sheath carriage screw, the rod carriage screw rotates within outer tube 380. The rod carriage 376 has an internal female thread which mates with male thread 379 on the rod carriage screw 378. These threads allow the rod carriage screw 378 to rotate within rod carriage 376 without causing the rod carriage to move proximally. This initial rotation of actuator 372 thereby results in lost motion of the rod carriage 376, as is shown in the transition from FIG. 17A to 17B. As the sheath begins to be pulled back, the rods therefore do not pull on the posts.
  • In the configuration in FIG. 17B, both males nubs of the carriage screws are aligned with the respective linear female threads 383. Continued rotation of actuator 372 therefore results in proximal movement of both of the carriage screws 386 and 378. Because of the threaded interaction between the carriages and their respective screws, both carriages move in the proximal direction. This is illustrated in the transition from FIG. 17B to 17C. During this portion of the procedure, both the sheath and the rods are being pulled in the proximal direction.
  • In the configuration in FIG. 17C, the bottom male nub 385 (not shown) engages helical thread 382. Continued rotation of actuator 372 therefore results in rotation of sheath carriage screw 386 relative to outer tube 380. This causes sheath carriage screw 386 to unscrew from sheath carriage 384, as is shown in the transition from FIG. 17C to FIG. 17D. This results in the sheath carriage not moving in the proximal direction (i.e., lost motion). The threaded interaction between rod carriage 376 and rod carriage screw 378, however, translates into proximal movement of the rod carriage 376, as is shown in the transition from FIG. 17C to 17D. During this portion of the procedure, the rods are being pulled proximally but the sheath is not being actuated.
  • The movements of the carriages can also be reversed by rotating the actuator in the opposite direction.
  • It should be noted that the female threads on lead screw 374 can have a different pitch along the length of the screw, as is shown in FIGS. 17A-17D (although the pitch of the thread on lead screw 374 may also be constant along the length of lead screw 374). As shown, the pitch is greater on the portion where the sheath carriage screw interacts with the lead screw 374 than the pitch where the rod carriage screw interacts with the lead screw 374. This results in the sheath carriage moving a greater distance that the rod carriage during the transition from FIG. 17B to 17C. Thus, FIGS. 17A-17D illustrate not only lost motion but a different rate of motion of two moving delivery system components based on actuation of a single actuator (e.g., the rotary actuator 202).
  • FIGS. 18A-18D illustrates a sequence of movements of male threaded element 412 over female threaded element 400 which has a varying pitch and a varying diameter. The lead screw 374 from FIGS. 17A-17D can have the varying pitch and diameter of female element 400, and the carriage screws in FIGS. 17A-17D can incorporate the features of male element 412. Section 402 has a smaller pitch than sections 404 and 406, while the diameter of section 406 is greater than the diameter in sections 402 and 404. The lead portion of male thread 410 has a greater height (see FIG. 18D), which allows it to engage female thread 406, 404, as well as 402. The male threads 408 have a smaller height than the lead portion. The male threads 408 are large enough to engage female threads 406, but not 404 or 402. This design allows for varying degrees of movement of male element 412 over the length of female threaded element 400. The male element 412 moves a greater distance when threaded in section 406 than in section 402, due to the difference in pitch. This can allow a delivery system component to move at first rate, followed by movement at a second rate (in this case, the second rate of movement is less than the first). This variable pitch design can be incorporated into any of the delivery systems described herein.
  • FIG. 19 illustrates a barrel cam design which functions with a variable pitch in a similar manner to the design shown in FIGS. 18A-18D. One difference between the two embodiments is that threads 433 and 435 in the embodiment in FIG. 19 are integrated into barrel housing 421 instead of a central lead screw. As shown in FIG. 19, sheathing carriage 425 rotates on first thread 433 and rod carriage 423 rotates on second thread 435 in barrel housing 421. Lost motion is accounted for by bringing the pitch angle to, or near to, 0 so the carriage rotates but does not translate (or translates a minimal amount) within barrel housing 421. Each of the carriages also includes nubs 429 for tracking in threads 433 and 435. The carriages also include holes 427 for guide tubes 431.
  • FIGS. 20A-20C illustrate an alternative design to account for lost motion including handle housing 452, a pair of gears 454, rotary actuator 456, rod lead screw 458, rod carriage 460, rod carriage spring 462, rod carriage screw 464, sheathing lead screw 466, sheath carriage 468, sheath carriage screw 470, sheath carriage spring 472. Rotary actuator 456 turns both gears 454, one geared to the rod lead screw 458 and one geared to the sheathing lead screw 466. Different pitches on each lead screw would allow for different linear motion rates for the rod screw 464 and sheathing screw 470. In an initial configuration shown in FIG. 20A, spring 462 is fully compressed and spring 472 is unloaded. Rotation of actuator 456 turns both lead screws 458 and 466, causing both the rod screw 464 and sheathing screw 470 to move proximally. The resistance to compression of spring 472 between the sheathing carriage 68 and sheathing lead screw 466 causes the sheathing carriage 468 to follow the proximal movement of sheathing screw 470, as is shown in the transition between FIGS. 20A and 20B. The force unloading of spring 462 causes the rod carriage 460 to remain stationary while rod screw 464 moves proximally, as is shown in the transition from FIG. 20A to FIG. 20B.
  • When the rod screw 464 reaches the proximal end of the rod carriage 460, continued rotation of actuator 456 causes both carriages to move, as is shown in FIG. 20B (both carriages in motion). Upon continued actuation of actuator 456, a stop (not shown in FIG. 20C) causes the sheathing carriage 468 to stop moving proximally. Continued rotation of the actuator 456 causes the continued movement of the sheath carriage screw 470 (but not sheath carriage 468) and the compression of spring 472. This allows for the locking of the anchor through proximal movement of the rod carriage 460 without motion of the sheath.
  • Actuating the actuator 456 in the reverse direction unlocks the anchor through distal motion of the rod carriage 460. Compression of spring 472 limits motion of the sheathing carriage 468 until the sheathing screw 470 is fully seated in the sheathing carriage 468. The two carriages then move together distally until the rod carriage 460 reaches a stop (not shown) causing the rod screw 464 to move distally while the rod carriage 460 does not move and spring 462 is compressed.
  • FIGS. 21-22 illustrate exemplary designs for decoupling the motion of the rods and outer sheath. In FIG. 21, a single actuator is geared to a gear with a cam on the proximal surface. The cam causes the engagement/disengagement of a clutch that is attached to a lead screw. When the clutch is engaged, the lead screw turns which causes a carriage (not shown) to move proximally or distally depending on the direction of movement of the actuator. When the clutch is not engaged, the lead screw does not turn and the carriage is stationary.
  • In FIG. 21 nut 502 (either for the rod or sheath) is connected to the carriage 504 (either for the rod or sheath) via a male tab 506 that engages with a female feature 508 in the carriage 504. The engagement between the nut 502 and the carriage 504 via the tab 506 causes the carriage 504 to move with the nut 502 as the lead screw 510 is turned (by an actuator not shown). The nut 502 has a nub 512 which travels along a path 514 in the housing. A jog 516 in the path 514 causes the nut 502 to rotate counterclockwise relative to the carriage 504. This motion causes the tab 506 to disengage from the female feature 508, releasing the nut 502 from the carriage 504. Since the nut 502 and carriage 504 are no longer joined, continued actuation (e.g., rotation) of the actuator moves only the nut 502. Rotating the actuator in the opposite direction causes the nut 502 to move back into contact with the carriage, reseating the nut tab 506 in the carriage and the carriage 504 then moves with the nut 502.
  • FIG. 22 shows a portion of delivery system 600 including lead screw 602 with region 606 with female thread and region 610 without threads. Sheath carriage 604 includes male threads 614 which engage with female threads 606 on lead screw 602. Sheath carriage 604 also includes lock element 608 which is adapted to engage with lock lip 612 on lead screw 602 to lock the carriage 604 onto lead screw and prevent the carriage 604 from moving in the distal direction D. Rotation of an actuator on the handle (not shown) causes lead screw 602 to rotate, which causes the carriage 604 to move proximally. This retracts the sheath in the proximal direction without moving the posts. Continued proximal movement causes lock element 608 to engage and lock with lock lip 612. Because the lead screw does not have any threads in region 610, continued rotation of lead screw 602 does not result in movement of the carriage 604.
  • FIGS. 23A and 23B illustrate a proximal portion of an exemplary handle which is used in the deployment of the heart valve shown in FIGS. 4 and 5A-5B. The handle includes housing 620, first actuator 624 in the form of a rotary actuator, slidable door 622, and second actuator 626 which can only be accessed when the door 622 has been slid forward from the first position in FIG. 25A to the second position in 25B. In this embodiment, rotary actuator 624 controls the movement of the sheath (such as is shown in FIGS. 3B-3F) and the movement of actuation elements 206B shown in FIGS. 4 and 5A-5B. In one embodiment, actuator 624 controls the movement of sheath and the actuation elements as shown in FIGS. 17A-17C, such that actuation of actuator 624 independently and dependently moves the sheath and actuation elements. Once the anchoring element is locked by the locking of posts to buckles, the physician slides door 622 to the position shown in FIG. 23B and actuates second actuator 626. Actuation of actuator 626 retracts pin assembly 236 in FIG. 4, which causes the three pins 234 to be removed from the bores through the posts and actuation elements, uncoupling the posts from the actuation elements 206B.
  • In one embodiment, continued actuation of actuator 626 also further retracts the actuation elements 206B from the position shown in FIG. 5B to the position shown in 5E. FIG. 23C illustrates an enlarged portion of handle 630 of an exemplary delivery system with a design which allows continued actuation of actuator 626 to further retract actuation elements 206B (second actuator 626 from FIGS. 23A and 23B not shown). The locking and sheathing drive ring actuates the locking and sheathing carriages via the lead screw similarly to the method described in reference to FIGS. 17A-17D. Handle 630 includes locking and sheathing drive ring 631, locking and sheathing lead screw 632, locking carriage 633, release pin carriage 635, lost motion barrel 629, release pin mandrels 636 (shown within hypotube), rod actuation mandrels 634 (shown within a hypotube), and force limiter 638. Force limiter 638 includes track 637 in which release pin carriage 635 moves when pulled proximally. The release collar actuates a separate smaller lead screw 639 (normally driven by locking carriage 633) which pulls proximally release pin carriage 635. When the physician is ready to remove the pins, the second actuator on the handle (not shown) is actuated, which engages the release lead screw 639, causing it to rotate. This pulls release collar 636 proximally in track 637, which causes release pin mandrels 636 to be pulled back proximally, releasing the pins from the posts and uncoupling the rods from the posts. Continued actuation of the second actuator continues to pull the release carriage until it reaches the proximal end of force limiter 638. When carriage 635 bottoms out on the proximal end of force limiter 638, it moves the portion of the force limiter in which it sits proximally relative to the other portion of the force limiter. This causes rod mandrels 634 to be pulled proximally, which pulls the rods in the proximal direction. Thus, the second actuator can be used to release the pins as well as continue to pull the rods back in the proximal direction.
  • Alternatively, the handle can be designed such that rotary actuator 624 can be further actuated to proximally retract actuation elements 206B after the pin has been removed. The delivery system can be then removed from the patient.
  • The medical implants described herein can be recollapsed and resheathed at least partially back inside the sheath after the entire implant has initially been deployed from the sheath. This is because at least a portion of the implant remains reversibly coupled to a portion of the delivery system after the implant is deployed from the sheath (e.g., see FIG. 3F). Even after the anchoring element is locked in the fully deployed configuration, the post can be unlocked from the buckle in some embodiments and thereafter the anchoring element can be resheathed into the sheath. Being able to resheath an implant after it has been deployed from a delivery sheath or catheter is advantageous because it allows for the implant to be removed from the patient or repositioned inside the patient if needed. For example, the functionality and/or positioning of a replacement heart valve can be assessed once the replacement heart valve is in the configuration shown in FIG. 3F (and continually assessed as the anchor begins to be locked in the expanded and locked configuration), and can then be resheathed and subsequently repositioned or removed from the patient if needed.
  • While the resheathing processes and delivery systems to perform the resheathing described herein make references to replacement heart valves, a wide variety of medical devices may benefit from the resheathing aids described herein. For example, an expandable stent which remains reversibly coupled to the delivery system after the stent has been deployed from a delivery catheter or sheath may benefit from having any of the resheathing aids described herein incorporated into the delivery systems thereof.
  • To resheath the heart valve, the sheath is advanced distally relative to the catheter. Alternatively, the catheter can be withdrawn proximally relative to the sheath. Distal movement of the sheath relative to the catheter causes the fingers, which are coupled to the distal end of the catheter, to collapse radially inward. This causes the proximal end of the anchor to collapse. Continued distal movement of the sheath causes the rest of the heart valve to elongate and collapse, allowing the sheath to recapture the anchoring element.
  • In embodiments in which the anchoring element comprises a braided material, distal advancement of the sheath may result in portions of the proximal end of the anchor to get caught, or stuck, on the distal end of the sheath. This can prevent resheathing or it can reduce the resheathing efficiency.
  • FIG. 24 illustrates an alternative delivery system 640 including sheath 644, delivery catheter 646, and sheathing assist element 642. Sheathing assist element 642 is a braided structure, and can be similar to the braided anchoring elements described herein. The sheathing assist element 642 generally has a memory configuration in which the distal end of the sheathing assist element 642 has a diameter larger than the diameter of the proximal end of the anchoring element 649. The delivery system includes fingers 647 (only two can be seen) reversibly coupled to a proximal region of replacement heart valve 648 (replacement leaflets not shown for clarity). The proximal end of sheathing assist element 642 is coupled to the distal end of delivery catheter 646. Fingers 647 are also coupled to the distal end of catheter 646, and are generally “within” or radially inward relative to sheathing assist element 642. FIG. 24 shows a replacement heart valve after the sheath has been withdrawn, allowing the anchoring element to expand to a memory configuration, and has not yet been actively foreshortened.
  • To resheath the implant, the sheath is advanced distally relative to the catheter and implant. This can be done by actuating an actuator of a handle, as described above. Because the proximal end of the sheathing assist element is fixed to the distal end of the delivery catheter, the distal end of the sheath can easily pass over the proximal end of the sheathing assist element without getting caught. Continued distal movement of the sheath causes at least the distal portion of the sheathing assist element to elongate and partially collapse in diameter. As the sheathing assist element elongates, the distal end of the sheathing assist element moves distal relative to the proximal end of the anchor. Continued distal movement of the sheath continues to collapse the distal end of the sheathing assist element and at least a distal region of the sheathing assist element will engage at least the proximal end of the anchor. The sheathing assist element will therefore provide a surface over which the sheath can pass without the risk of getting caught on the proximal end of the anchor. The sheathing assist element may additionally apply a radially inward force to the proximal end of the anchor, assisting in the collapse of the proximal end of the anchor. As the sheath continues to be advanced distally, the anchor is collapsed and is resheathed back within the sheath. In some embodiments the sheathing assist element is a polymer mesh.
  • In some embodiments the sheathing assist element can also act as an embolic filter. Once unsheathed, the sheathing assist element can trap emboli traveling downstream to the target location, yet allowing blood to pass through the assist element. In such embodiments, the distal end of the sheathing assist element can be configured and arranged to have a memory diameter that is as close as possible to the diameter of the lumen in which it is to be disposed. Exemplary materials for embolic filters are known in the art.
  • FIGS. 25-28 illustrate alternative delivery systems with alternative sheathing assist element 660. Sheathing assist element 660 includes three (3) collapsible blades 662. The blades are fixed to one another at their proximal ends at hub 664 (see FIG. 28). Hub 664 is axially movable relative to fingers 666 and catheter 668, but the distal region of catheter 668 includes a hub stop 670 which is adapted to engage with the hub and prevent movement of the hub proximally relative to the hub stop. As sheath (not shown) is advanced distally over catheter 668, it begins to collapse fingers 666. As the fingers collapse radially inward, the hub can then move distally over the fingers. As the fingers collapse, the proximal end of the anchor begins to collapse and the hub continues to be advanced distally. Eventually the distal ends of blades 662 cover the proximal end of the anchor, and the sheath can then be advanced over the anchor without getting caught on the proximal end of the anchor. In some embodiments the blades are adapted to collapse inwards on themselves as the sheath applies a force to them.
  • In the embodiment shown in FIG. 26, sheathing assist element 660 includes optional finger openings 672 which are adapted to allow the fingers to be passed therethrough. Openings 672 can be designed to have any shape (e.g., rectangular, circular, etc) to allow the hub to be easily moved distally relative to the fingers. In the embodiment in FIG. 28, the blades have optional slits 674 to assist in their collapse.
  • FIG. 29 shows an embodiment of sheathing assist element 680 which include arms 682 and teeth 684 at their distal ends. The teeth are adapted to engage the crowns of the braid, which are formed where a brand strand turns at an end of the braid (or other proximal region of a non-braided anchor) and allow the sheath to be advanced distally over the anchor. Each arm 682 can have any number of teeth 684. The arms can be adapted to respond to an applied force from the sheath such that they change to a second configuration with a bend such that a distal portion of the arms are bent radially inward to engage the proximal end of the anchor.
  • FIG. 30 shows an alternative embodiment of a sheathing assist element 670 which is comprised of stent element 672. Sheathing assist element 670 functions similar to the embodiment shown in FIG. 26, but is not comprised of a braided material. The stent can be made from, for example, an alloy or any other suitable material as is known in the art of stents.
  • FIG. 31 shows an alternative embodiment of sheathing assist element 680 which includes curled elements 682 (anchor not shown). The proximal end of the curled elements 682 can be coupled to a hub as described above in other embodiments, or each of the curled elements can be individually affixed to the catheter. As the sheath is advanced distally, the force of the sheath causes the distal ends of the curled elements to uncurl and straighten. The distal ends of the straightened element extend over and distal to the proximal end of the anchor, and allow the sheath to be advanced over the proximal end of the anchor without getting caught on the crowns of the anchor. The curled elements can be made of, for example, stainless steel or any other suitable material.
  • In an alternative embodiment shown in FIGS. 32 and 33, sheathing assist element 684 comprises a plurality of arms 686 (twelve arms are shown in FIGS. 32 and 33), each which have a distal end with male locking element 688. Each arm 686 includes female locking element 690 disposed closer to hub 692 than the male locking element 688. In FIGS. 32 and 33, the male locking elements have an arrowhead shape and the female lock elements are slot-shaped. Hub 692 includes an opening 694 therein to allow control wire 696 to pass therethrough. Control wire 696 has an enlarged element at its distal end (not shown) which prevents the enlarged element from being pulled proximally through opening 694. In the delivery configuration, each arm 686 extends distally from hub 692 and the distal region of each arm distal to the slot is wrapped around a crown of the anchor (see FIG. 33). The male lock elements 688 are engaged with female lock elements 690. When the replacement heart valve is to be resheathed, a proximally directed force is applied to the control wire 696, which prevents the crowns from extending radially outward, thus allowing the sheath to be advanced distally over the crowns of the proximal end without getting stuck. Alternatively, a proximal force is not required, and the engagement of arms 686 and the crowns of the anchor prevent the crowns from getting stuck on the sheath. A proximally directed force on the hub will release the arrowheads from the slots, releasing the arms from the anchors. This releases the implant from the arms.
  • In alternative embodiments shown in FIGS. 34-37, the delivery systems include wires or sutures 700 which are coupled at their proximal ends to a delivery system component (e.g., the distal end of catheter 702, an actuator in a handle, etc.), and are each wrapped around a crown of the anchor. The distal ends of wires or sutures 700 have an enlarged element 704 such as a spherical element which is adapted to engage with annular detent 706 in the outer surface of catheter 702. Sheath 708 maintains the engagement of the enlarged element 704 and detent 706. The distal end of the wire or suture 700 can simply comprise one locking element while the catheter outer surface can include a second locking element. The sutures 700 provide a radially inward force to the crowns, helping the sheath extend over them during resheathing. Once the outer sheath is pulled proximally relative to the catheter, the enlarged element is released from the indent, and the wire/suture 700 can be released from the crowns of the anchor. In the alternative exemplary embodiment shown in FIG. 35 the catheter includes multiple detents 706.
  • FIGS. 38-41 illustrate an alternative embodiment of sheathing assist 710, which includes a plurality of arms attached to the distal end of catheter 714. The arms include two types of arms 718 and 720, wherein arms 718 are slightly longer than arms 720. The arms are formed from a wire segment with a bend at their distal ends, wherein the two ends of the arms are coupled together at the proximal end 726 of the sheathing assist 710. Arms 718 extend from the catheter to the anchor and the distal ends are weaved into the braid of the anchor. That is, the distal ends of arms 718 are disposed radially within the braided anchor, as can be seen in FIGS. 39-41. Arms 718 are attached to stiffening elements 722, which are shorter than both arms 718 and arms 720. Stiffening element 722 is attached to arm 718 at attachment point 724, which can be, for example, a weld. As can be seen, stiffening elements 722 are disposed within the wire segments of arms 718, which increases the strength of arms 718. Sheathing assist also includes arms 720 which are shown shorter than arms 718, although they could both be substantially the same length. As can be seen in FIG. 38, two arms 720 are attached together at attachment points 724. Arms 720 are positioned radially outwards of braid, unlike arms 720 which are weaved into the braid and disposed radially inside the braid. Arms 720 help apply a radially inward force on the braid as the sheath is advanced distally. Arms 718 also help apply a radially inward force on the braid as well, and the two sets of arms ensure that the distal end of the sheath doesn't get caught on the anchor.
  • In an alternative embodiment, the proximal crowns of the braided anchor are heat-set in a configuration in which the crowns are bent radially inward (relative to longitudinal axis of the braid and relative to the rest of the anchor), to assist the sheath in the resheathing process. The crowns are bent inward to prevent the sheath from getting caught on the crowns.
  • Although the present disclosure has been described in connection with the exemplary embodiments described above, those of ordinary skill in the art will understand that many modifications can be made thereto. Accordingly, it is not intended that the scope of the present disclosure in any way be limited by the above exemplary embodiments.

Claims (1)

What is claimed:
1) A medical device system, comprising: a delivery system including an outer sheath and an inner member slidably received within the outer sheath, the inner member having a detent proximate a distal end of the inner member; and a replacement heart valve implant including an expandable anchoring element, the expandable anchoring element being releasably coupled to the distal end of the inner member; wherein the expandable anchoring element is releasable from the inner member when the detent proximate the distal end of the inner member is disposed outside of the outer sheath.
US16/989,385 2008-10-10 2020-08-10 Medical devices and delivery systems for delivering medical devices Abandoned US20200368019A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/989,385 US20200368019A1 (en) 2008-10-10 2020-08-10 Medical devices and delivery systems for delivering medical devices

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US10450908P 2008-10-10 2008-10-10
US15181409P 2009-02-11 2009-02-11
US12/578,447 US8951299B2 (en) 2003-12-23 2009-10-13 Medical devices and delivery systems for delivering medical devices
US14/586,791 US9387076B2 (en) 2003-12-23 2014-12-30 Medical devices and delivery systems for delivering medical devices
US15/207,072 US10772724B2 (en) 2003-12-23 2016-07-11 Medical devices and delivery systems for delivering medical devices
US16/989,385 US20200368019A1 (en) 2008-10-10 2020-08-10 Medical devices and delivery systems for delivering medical devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/207,072 Continuation US10772724B2 (en) 2003-12-23 2016-07-11 Medical devices and delivery systems for delivering medical devices

Publications (1)

Publication Number Publication Date
US20200368019A1 true US20200368019A1 (en) 2020-11-26

Family

ID=42101265

Family Applications (9)

Application Number Title Priority Date Filing Date
US12/578,463 Active 2025-02-25 US8328868B2 (en) 2003-12-23 2009-10-13 Medical devices and delivery systems for delivering medical devices
US12/578,447 Active 2031-05-07 US8951299B2 (en) 2003-12-23 2009-10-13 Medical devices and delivery systems for delivering medical devices
US13/287,420 Expired - Lifetime US8617236B2 (en) 2003-12-23 2011-11-02 Medical devices and delivery systems for delivering medical devices
US14/144,899 Expired - Lifetime US9358110B2 (en) 2003-12-23 2013-12-31 Medical devices and delivery systems for delivering medical devices
US14/586,791 Active US9387076B2 (en) 2003-12-23 2014-12-30 Medical devices and delivery systems for delivering medical devices
US15/174,644 Expired - Lifetime US9872768B2 (en) 2003-12-23 2016-06-06 Medical devices and delivery systems for delivering medical devices
US15/207,072 Active 2031-12-18 US10772724B2 (en) 2003-12-23 2016-07-11 Medical devices and delivery systems for delivering medical devices
US15/877,623 Expired - Lifetime US10531952B2 (en) 2004-11-05 2018-01-23 Medical devices and delivery systems for delivering medical devices
US16/989,385 Abandoned US20200368019A1 (en) 2008-10-10 2020-08-10 Medical devices and delivery systems for delivering medical devices

Family Applications Before (8)

Application Number Title Priority Date Filing Date
US12/578,463 Active 2025-02-25 US8328868B2 (en) 2003-12-23 2009-10-13 Medical devices and delivery systems for delivering medical devices
US12/578,447 Active 2031-05-07 US8951299B2 (en) 2003-12-23 2009-10-13 Medical devices and delivery systems for delivering medical devices
US13/287,420 Expired - Lifetime US8617236B2 (en) 2003-12-23 2011-11-02 Medical devices and delivery systems for delivering medical devices
US14/144,899 Expired - Lifetime US9358110B2 (en) 2003-12-23 2013-12-31 Medical devices and delivery systems for delivering medical devices
US14/586,791 Active US9387076B2 (en) 2003-12-23 2014-12-30 Medical devices and delivery systems for delivering medical devices
US15/174,644 Expired - Lifetime US9872768B2 (en) 2003-12-23 2016-06-06 Medical devices and delivery systems for delivering medical devices
US15/207,072 Active 2031-12-18 US10772724B2 (en) 2003-12-23 2016-07-11 Medical devices and delivery systems for delivering medical devices
US15/877,623 Expired - Lifetime US10531952B2 (en) 2004-11-05 2018-01-23 Medical devices and delivery systems for delivering medical devices

Country Status (7)

Country Link
US (9) US8328868B2 (en)
EP (3) EP2617388B2 (en)
JP (1) JP5607639B2 (en)
CN (1) CN102245256B (en)
CA (1) CA2739961A1 (en)
ES (2) ES2627860T3 (en)
WO (1) WO2010042950A2 (en)

Families Citing this family (442)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
US7381220B2 (en) * 2000-09-20 2008-06-03 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US7763063B2 (en) 2003-09-03 2010-07-27 Bolton Medical, Inc. Self-aligning stent graft delivery system, kit, and method
US20070198078A1 (en) 2003-09-03 2007-08-23 Bolton Medical, Inc. Delivery system and method for self-centering a Proximal end of a stent graft
US11596537B2 (en) 2003-09-03 2023-03-07 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US8292943B2 (en) 2003-09-03 2012-10-23 Bolton Medical, Inc. Stent graft with longitudinal support member
US9198786B2 (en) 2003-09-03 2015-12-01 Bolton Medical, Inc. Lumen repair device with capture structure
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
EP2529699B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
ES2725721T3 (en) 2004-02-03 2019-09-26 V Wave Ltd Device and method to control pressure in vivo
EP3308744B2 (en) 2004-03-11 2023-08-02 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
WO2006097931A2 (en) 2005-03-17 2006-09-21 Valtech Cardio, Ltd. Mitral valve treatment techniques
US8333777B2 (en) 2005-04-22 2012-12-18 Benvenue Medical, Inc. Catheter-based tissue remodeling devices and methods
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8092520B2 (en) 2005-11-10 2012-01-10 CardiAQ Technologies, Inc. Vascular prosthesis connecting stent
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9681948B2 (en) 2006-01-23 2017-06-20 V-Wave Ltd. Heart anchor device
WO2007097983A2 (en) 2006-02-14 2007-08-30 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US20080004696A1 (en) * 2006-06-29 2008-01-03 Valvexchange Inc. Cardiovascular valve assembly with resizable docking station
US20090306768A1 (en) 2006-07-28 2009-12-10 Cardiaq Valve Technologies, Inc. Percutaneous valve prosthesis and system and method for implanting same
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
EP3360509B1 (en) 2006-07-31 2022-06-22 Syntheon TAVR, LLC Sealable endovascular implants
CA2764601A1 (en) * 2006-10-23 2008-05-02 Valvexchange Inc. Cardiovascular valve and assembly
US8926695B2 (en) 2006-12-05 2015-01-06 Valtech Cardio, Ltd. Segmented ring placement
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US8460369B2 (en) * 2007-01-18 2013-06-11 Valvexchange Inc. Tools for removal and installation of exchangeable cardiovascular valves
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US9814611B2 (en) 2007-07-31 2017-11-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
CA2696055C (en) 2007-08-21 2013-12-10 Valvexchange Inc. Method and apparatus for prosthetic valve removal
CA2697364C (en) 2007-08-23 2017-10-17 Direct Flow Medical, Inc. Translumenally implantable heart valve with formed in place support
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US8157853B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9833240B2 (en) * 2008-02-18 2017-12-05 Covidien Lp Lock bar spring and clip for implant deployment device
US9301826B2 (en) * 2008-02-18 2016-04-05 Covidien Lp Lock bar spring and clip for implant deployment device
US9034002B2 (en) 2008-02-18 2015-05-19 Covidien Lp Lock bar spring and clip for implant deployment device
US9393002B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US9393093B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US9398944B2 (en) 2008-02-18 2016-07-26 Covidien Lp Lock bar spring and clip for implant deployment device
US9044235B2 (en) 2008-02-18 2015-06-02 Covidien Lp Magnetic clip for implant deployment device
BR112012021347A2 (en) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
ES2882876T3 (en) 2008-06-06 2021-12-03 Edwards Lifesciences Corp Low Profile Transcatheter Heart Valve
CA2728078A1 (en) 2008-06-16 2010-01-14 Valtech Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
JP5484458B2 (en) 2008-06-30 2014-05-07 ボルトン メディカル インコーポレイテッド Abdominal aortic aneurysm system
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
EP2331015A1 (en) * 2008-09-12 2011-06-15 ValveXchange Inc. Valve assembly with exchangeable valve member and a tool set for exchanging the valve member
EP2367505B1 (en) 2008-09-29 2020-08-12 Edwards Lifesciences CardiAQ LLC Heart valve
EP2845569A1 (en) 2008-10-01 2015-03-11 Cardiaq Valve Technologies, Inc. Delivery system for vascular implant
ES2627860T3 (en) * 2008-10-10 2017-07-31 Boston Scientific Scimed, Inc. Medical devices and placement systems for placing medical devices
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
WO2010073246A2 (en) 2008-12-22 2010-07-01 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
ES2812228T3 (en) 2009-03-13 2021-03-16 Bolton Medical Inc System for deploying an endoluminal prosthesis at a surgical site
EP3708123A1 (en) 2009-03-30 2020-09-16 JC Medical, Inc. Sutureless valve prostheses and devices and methods for delivery
WO2010121076A2 (en) 2009-04-15 2010-10-21 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
US20210161637A1 (en) 2009-05-04 2021-06-03 V-Wave Ltd. Shunt for redistributing atrial blood volume
US10076403B1 (en) 2009-05-04 2018-09-18 V-Wave Ltd. Shunt for redistributing atrial blood volume
US9034034B2 (en) 2010-12-22 2015-05-19 V-Wave Ltd. Devices for reducing left atrial pressure, and methods of making and using same
EP2427143B1 (en) 2009-05-04 2017-08-02 V-Wave Ltd. Device for regulating pressure in a heart chamber
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
JP5744028B2 (en) 2009-08-27 2015-07-01 メドトロニック,インコーポレイテッド Transcatheter valve delivery system and method
US8562673B2 (en) * 2009-09-21 2013-10-22 Medtronic, Inc. Stented transcatheter prosthetic heart valve delivery system and method
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
EP2506777B1 (en) 2009-12-02 2020-11-25 Valtech Cardio, Ltd. Combination of spool assembly coupled to a helical anchor and delivery tool for implantation thereof
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US8518106B2 (en) * 2010-02-17 2013-08-27 Medtronic, Inc. Catheter assembly with valve crimping accessories
WO2011111047A2 (en) 2010-03-10 2011-09-15 Mitraltech Ltd. Prosthetic mitral valve with tissue anchors
US8512400B2 (en) 2010-04-09 2013-08-20 Medtronic, Inc. Transcatheter heart valve delivery system with reduced area moment of inertia
US8998980B2 (en) 2010-04-09 2015-04-07 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with recapturing feature and method
US8512401B2 (en) 2010-04-12 2013-08-20 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with funnel recapturing feature and method
US8623075B2 (en) 2010-04-21 2014-01-07 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method with controlled expansion of prosthetic heart valve
US8876892B2 (en) 2010-04-21 2014-11-04 Medtronic, Inc. Prosthetic heart valve delivery system with spacing
US8740976B2 (en) 2010-04-21 2014-06-03 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with flush report
US8568474B2 (en) 2010-04-26 2013-10-29 Medtronic, Inc. Transcatheter prosthetic heart valve post-dilatation remodeling devices and methods
US8876893B2 (en) 2010-04-27 2014-11-04 Medtronic, Inc. Transcatheter prosthetic heart valve delivery device with passive trigger release
US8852271B2 (en) 2010-04-27 2014-10-07 Medtronic Vascular, Inc. Transcatheter prosthetic heart valve delivery device with biased release features
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US9603708B2 (en) 2010-05-19 2017-03-28 Dfm, Llc Low crossing profile delivery catheter for cardiovascular prosthetic implant
IT1400327B1 (en) * 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT.
AU2011257298B2 (en) 2010-05-25 2014-07-31 Jenavalve Technology Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US9561102B2 (en) 2010-06-02 2017-02-07 Medtronic, Inc. Transcatheter delivery system and method with controlled expansion and contraction of prosthetic heart valve
EP2582326B2 (en) 2010-06-21 2024-07-03 Edwards Lifesciences CardiAQ LLC Replacement heart valve
DE112011102305T5 (en) 2010-07-09 2013-05-16 Highlife Sas Transcatheter atrioventricular valve prosthesis
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
WO2012012761A2 (en) * 2010-07-23 2012-01-26 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
BR112013004264A2 (en) 2010-08-24 2016-08-02 St Jude Medical device, system and method of placement for a collapsible prosthetic heart valve
US9039759B2 (en) 2010-08-24 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Repositioning of prosthetic heart valve and deployment
EP2428189A1 (en) * 2010-09-10 2012-03-14 Symetis Sa Catheter delivery system for stent valve
EP3342377B1 (en) 2010-09-10 2022-06-15 Boston Scientific Limited Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
AU2011302640B2 (en) 2010-09-17 2014-11-06 St. Jude Medical, Cardiology Division, Inc. Staged deployment devices and methods for transcatheter heart valve delivery
EP4176842A1 (en) 2010-09-20 2023-05-10 St. Jude Medical, Cardiology Division, Inc. Valve leaflet attachment in collapsible prosthetic valves
EP2618784B1 (en) 2010-09-23 2016-05-25 Edwards Lifesciences CardiAQ LLC Replacement heart valves and delivery devices
GB201017921D0 (en) 2010-10-22 2010-12-01 Ucl Business Plc Prothesis delivery system
US8562663B2 (en) * 2010-10-26 2013-10-22 Medtronic Ventor Technologies Ltd. Devices and methods for loading a prosthesis onto a delivery system
US9717593B2 (en) 2011-02-01 2017-08-01 St. Jude Medical, Cardiology Division, Inc. Leaflet suturing to commissure points for prosthetic heart valve
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
EP2688516B1 (en) 2011-03-21 2022-08-17 Cephea Valve Technologies, Inc. Disk-based valve apparatus
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
US9522064B2 (en) 2011-05-16 2016-12-20 Hlt, Inc. Inversion delivery device and method for a prosthesis
US9101471B2 (en) 2011-06-13 2015-08-11 Edwards Lifesciences Corporation Systems and delivery handles for delivering prosthetic heart valves disposed on valve holders
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
WO2013009975A1 (en) 2011-07-12 2013-01-17 Boston Scientific Scimed, Inc. Coupling system for medical devices
CA2841952C (en) 2011-07-20 2018-07-03 Boston Scientific Scimed, Inc. Heart valve replacement
EP2734157B1 (en) * 2011-07-21 2018-09-05 4Tech Inc. Apparatus for tricuspid valve repair using tension
US9629715B2 (en) 2011-07-28 2017-04-25 V-Wave Ltd. Devices for reducing left atrial pressure having biodegradable constriction, and methods of making and using same
US11135054B2 (en) 2011-07-28 2021-10-05 V-Wave Ltd. Interatrial shunts having biodegradable material, and methods of making and using same
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021375A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9060860B2 (en) 2011-08-18 2015-06-23 St. Jude Medical, Cardiology Division, Inc. Devices and methods for transcatheter heart valve delivery
EP2763708B1 (en) * 2011-10-05 2022-01-05 Boston Scientific Scimed, Inc. Profile reduction seal for prosthetic heart valve
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8858623B2 (en) * 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP3656434B1 (en) 2011-11-08 2021-10-20 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
EP2779958B1 (en) 2011-11-15 2020-12-23 Boston Scientific Scimed, Inc. Medical device with one or more sheathing transition members
US20130123796A1 (en) 2011-11-15 2013-05-16 Boston Scientific Scimed, Inc. Medical device with keyed locking structures
US8851286B2 (en) 2011-11-15 2014-10-07 Boston Scientific Scimed Inc. Dual sterilization containment vessel
EP2596767B1 (en) 2011-11-24 2016-05-18 Biotronik AG Release device for detaching a medical implant from an insertion device and an insertion device comprising a release device
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
CN104203157B (en) 2011-12-12 2016-02-03 戴维·阿隆 Heart valve repair apparatus
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
WO2013096644A1 (en) 2011-12-20 2013-06-27 Boston Scientific Scimed, Inc. Apparatus for endovascularly replacing a heart valve
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
WO2013120082A1 (en) 2012-02-10 2013-08-15 Kassab Ghassan S Methods and uses of biological tissues for various stent and other medical applications
EP2641569B1 (en) 2012-03-23 2015-01-28 Sorin Group Italia S.r.l. A collapsible valve prosthesis
EP2846743B1 (en) 2012-04-12 2016-12-14 Bolton Medical Inc. Vascular prosthetic delivery device
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9393140B2 (en) * 2012-04-27 2016-07-19 Medtronic Vascular, Inc. Reconfigurable stent-graft delivery system and method of use
US20130289699A1 (en) * 2012-04-30 2013-10-31 St. Jude Medical, Cardiology Division, Inc. Aortic valve holder with stent protection and/or ability to decrease valve profile
US9445897B2 (en) 2012-05-01 2016-09-20 Direct Flow Medical, Inc. Prosthetic implant delivery device with introducer catheter
CA2871153A1 (en) 2012-05-09 2013-11-14 Boston Scientific Scimed, Inc. Reduced profile valve with locking elements
WO2013167458A1 (en) * 2012-05-10 2013-11-14 Biotronik Ag Unit and device having a unit for positioning a prosthetic component
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US8961594B2 (en) 2012-05-31 2015-02-24 4Tech Inc. Heart valve repair system
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
WO2013191892A2 (en) 2012-06-19 2013-12-27 Boston Scientific Scimed, Inc. Valvuloplasty device
US8956405B2 (en) * 2012-07-13 2015-02-17 Boston Scientific Scimed, Inc. Collapsible caged-ball prosthetic valve for transcatheter delivery and method of use
ES2735536T3 (en) 2012-08-10 2019-12-19 Sorin Group Italia Srl A valve prosthesis and a kit
WO2014043235A1 (en) 2012-09-12 2014-03-20 Boston Scientific Scimed, Inc. Sensing cardiac conduction system during valve deployment
CA2885354A1 (en) 2012-09-29 2014-04-03 Mitralign, Inc. Plication lock delivery system and method of use thereof
US10524909B2 (en) * 2012-10-12 2020-01-07 St. Jude Medical, Cardiology Division, Inc. Retaining cage to permit resheathing of a tavi aortic-first transapical system
EP3517052A1 (en) 2012-10-23 2019-07-31 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
EP4162902A1 (en) 2012-11-21 2023-04-12 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic heart valves
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
EP2943132B1 (en) 2013-01-09 2018-03-28 4Tech Inc. Soft tissue anchors
EP2948103B1 (en) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventricularly-anchored prosthetic valves
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
EP2953580A2 (en) 2013-02-11 2015-12-16 Cook Medical Technologies LLC Expandable support frame and medical device
WO2014134183A1 (en) 2013-02-26 2014-09-04 Mitralign, Inc. Devices and methods for percutaneous tricuspid valve repair
US9301838B2 (en) 2013-02-26 2016-04-05 The Cleveland Clinic Foundation Apparatus and method for delivering a structure to a desired target site
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US9333077B2 (en) 2013-03-12 2016-05-10 Medtronic Vascular Galway Limited Devices and methods for preparing a transcatheter heart valve system
US11259923B2 (en) 2013-03-14 2022-03-01 Jc Medical, Inc. Methods and devices for delivery of a prosthetic valve
US9907681B2 (en) 2013-03-14 2018-03-06 4Tech Inc. Stent with tether interface
US10307241B2 (en) 2013-03-14 2019-06-04 Suzhou Jiecheng Medical Technology Co., Ltd. Embolic protection devices and methods of use
US20140277427A1 (en) 2013-03-14 2014-09-18 Cardiaq Valve Technologies, Inc. Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US11406497B2 (en) 2013-03-14 2022-08-09 Jc Medical, Inc. Heart valve prosthesis
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
WO2014152503A1 (en) 2013-03-15 2014-09-25 Mitralign, Inc. Translation catheters, systems, and methods of use thereof
US9439751B2 (en) 2013-03-15 2016-09-13 Bolton Medical, Inc. Hemostasis valve and delivery systems
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
ES2800029T3 (en) 2013-05-21 2020-12-23 V Wave Ltd Apparatus for applying devices to reduce left atrial pressure
US20140371844A1 (en) * 2013-06-18 2014-12-18 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve and delivery system
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
EP2835112B1 (en) 2013-08-08 2021-01-27 Sorin Group Italia S.r.l. Heart valve prosthesis
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10201265B2 (en) 2013-09-06 2019-02-12 Covidien Lp Microwave ablation catheter, handle, and system
AU2014317930B2 (en) 2013-09-06 2018-11-08 Covidien Lp Microwave ablation catheter, handle, and system
EP3043755B1 (en) * 2013-09-12 2022-10-19 St. Jude Medical, Cardiology Division, Inc. Atraumatic interface in an implant delivery device
WO2015057995A2 (en) * 2013-10-16 2015-04-23 Cedars-Sinai Medical Center Modular dis-assembly of transcatheter valve replacement devices and uses thereof
US9925045B2 (en) 2013-10-21 2018-03-27 Medtronic Vascular Galway Systems, devices and methods for transcatheter valve delivery
US9421094B2 (en) 2013-10-23 2016-08-23 Caisson Interventional, LLC Methods and systems for heart valve therapy
WO2015059699A2 (en) 2013-10-23 2015-04-30 Valtech Cardio, Ltd. Anchor magazine
WO2015065910A2 (en) * 2013-10-30 2015-05-07 The Regents Of The University Of Michigan System and method to limit cerebral ischemia
US10039643B2 (en) 2013-10-30 2018-08-07 4Tech Inc. Multiple anchoring-point tension system
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
EP3068344A1 (en) 2013-11-12 2016-09-21 St. Jude Medical, Cardiology Division, Inc. Pneumatically power-assisted tavi delivery system
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
CA2938614C (en) * 2014-02-21 2024-01-23 Edwards Lifesciences Cardiaq Llc Delivery device for controlled deployement of a replacement valve
USD755384S1 (en) 2014-03-05 2016-05-03 Edwards Lifesciences Cardiaq Llc Stent
USRE49792E1 (en) 2014-05-14 2024-01-09 Corcym S.R.L. Implant device and implantation kit
US9532870B2 (en) 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
US9855140B2 (en) 2014-06-10 2018-01-02 St. Jude Medical, Cardiology Division, Inc. Stent cell bridge for cuff attachment
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
JP6559161B2 (en) 2014-06-19 2019-08-14 4テック インコーポレイテッド Tightening heart tissue
US10524910B2 (en) 2014-07-30 2020-01-07 Mitraltech Ltd. 3 Ariel Sharon Avenue Articulatable prosthetic valve
JP2017525534A (en) * 2014-08-15 2017-09-07 ディーエフエム、 エルエルシー Artificial implant delivery device
US20160067040A1 (en) 2014-09-09 2016-03-10 Boston Scientific Scimed, Inc. Valve locking mechanism
EP3206632B1 (en) * 2014-10-13 2023-01-04 Hlt, Inc. Inversion delivery device for a prosthesis
WO2016059639A1 (en) 2014-10-14 2016-04-21 Valtech Cardio Ltd. Leaflet-restraining techniques
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
JP6717820B2 (en) 2014-12-02 2020-07-08 4テック インコーポレイテッド Eccentric tissue anchor
EP3226810A4 (en) 2014-12-04 2018-08-15 Edwards Lifesciences Corporation Percutaneous clip for repairing a heart valve
EP4306080A3 (en) 2014-12-09 2024-04-10 Cephea Valve Technologies, Inc. Replacement cardiac valves and method of manufacture
US10449043B2 (en) 2015-01-16 2019-10-22 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US9788942B2 (en) * 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
CN110141399B (en) 2015-02-05 2021-07-27 卡迪尔维尔福股份有限公司 Prosthetic valve with axially sliding frame
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
US10426617B2 (en) * 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US12121461B2 (en) 2015-03-20 2024-10-22 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath
WO2016153888A1 (en) 2015-03-20 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Mitral valve loading tool
FR3034307B1 (en) * 2015-04-03 2021-10-22 Univ Grenoble 1 IMPLANTABLE INTESTINAL REACTOR
US10441416B2 (en) 2015-04-21 2019-10-15 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
WO2016174669A1 (en) 2015-04-30 2016-11-03 Valtech Cardio Ltd. Annuloplasty technologies
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
WO2016178171A1 (en) 2015-05-07 2016-11-10 The Medical Research Infrastructure And Health Services Fund Of The Tel-Aviv Medical Center Temporary interatrial shunts
WO2016183523A1 (en) 2015-05-14 2016-11-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
AU2016262564B2 (en) 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves
CN115836929A (en) 2015-05-14 2023-03-24 爱德华兹生命科学公司 Heart valve sealing device and delivery device thereof
US10603195B1 (en) 2015-05-20 2020-03-31 Paul Sherburne Radial expansion and contraction features of medical devices
WO2016209970A1 (en) 2015-06-22 2016-12-29 Edwards Lifescience Cardiaq Llc Actively controllable heart valve implant and methods of controlling same
US10092400B2 (en) 2015-06-23 2018-10-09 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
WO2017004377A1 (en) 2015-07-02 2017-01-05 Boston Scientific Scimed, Inc. Adjustable nosecone
WO2017019483A1 (en) * 2015-07-28 2017-02-02 Boston Scientific Scimed, Inc. Valve delivery system with pinless release mechanism
US10327892B2 (en) 2015-08-11 2019-06-25 Boston Scientific Scimed Inc. Integrated adaptive seal for prosthetic heart valves
US10179041B2 (en) * 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10925726B2 (en) * 2015-08-12 2021-02-23 Boston Scientific Scimed, Inc. Everting leaflet delivery system with pivoting
US10709553B2 (en) 2015-08-12 2020-07-14 Boston Scientific Scimed, Inc. V-Clip post with pivoting
US10117744B2 (en) 2015-08-26 2018-11-06 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
US10350066B2 (en) 2015-08-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
US10925762B2 (en) 2015-09-01 2021-02-23 Cook Medical Technologies Llc Threaded modular handle for a prosthesis delivery device
US10779940B2 (en) 2015-09-03 2020-09-22 Boston Scientific Scimed, Inc. Medical device handle
EP3349671B1 (en) * 2015-09-18 2024-01-24 Terumo Corporation Pushable implant delivery system
DK3370641T3 (en) * 2015-11-04 2020-11-23 Rapid Medical Ltd INTRALUMINAL DEVICE
CN108992210B (en) 2015-11-06 2021-08-27 麦克尔有限公司 Mitral valve prosthesis
ES2925250T3 (en) 2015-12-15 2022-10-14 Neovasc Tiara Inc Transseptal Administration System
EP3960127A1 (en) 2015-12-30 2022-03-02 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
WO2017117370A2 (en) 2015-12-30 2017-07-06 Mitralign, Inc. System and method for reducing tricuspid regurgitation
US11833034B2 (en) 2016-01-13 2023-12-05 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
WO2017127939A1 (en) 2016-01-29 2017-08-03 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US11219746B2 (en) 2016-03-21 2022-01-11 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10835714B2 (en) 2016-03-21 2020-11-17 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799675B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Cam controlled multi-direction steerable handles
US10799677B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799676B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
WO2017187312A1 (en) 2016-04-25 2017-11-02 Valfix Medical Ltd. Percutaneous valve repair and replacement
USD815744S1 (en) 2016-04-28 2018-04-17 Edwards Lifesciences Cardiaq Llc Valve frame for a delivery system
EP3454788B1 (en) 2016-05-13 2020-02-05 St. Jude Medical, Cardiology Division, Inc. Mitral valve delivery device
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
WO2017195125A1 (en) 2016-05-13 2017-11-16 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11116630B2 (en) * 2016-05-16 2021-09-14 Boston Scientific Scimed, Inc. Sheathing aid
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US10835394B2 (en) 2016-05-31 2020-11-17 V-Wave, Ltd. Systems and methods for making encapsulated hourglass shaped stents
US20170340460A1 (en) 2016-05-31 2017-11-30 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
EP3471665B1 (en) 2016-06-17 2023-10-11 Cephea Valve Technologies, Inc. Cardiac valve delivery devices
US10973638B2 (en) 2016-07-07 2021-04-13 Edwards Lifesciences Corporation Device and method for treating vascular insufficiency
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
US20190231525A1 (en) 2016-08-01 2019-08-01 Mitraltech Ltd. Minimally-invasive delivery systems
US10856975B2 (en) 2016-08-10 2020-12-08 Cardiovalve Ltd. Prosthetic valve with concentric frames
EP3500214A4 (en) 2016-08-19 2019-07-24 Edwards Lifesciences Corporation Steerable delivery system for replacement mitral valve and methods of use
EP4454613A2 (en) 2016-08-26 2024-10-30 Edwards Lifesciences Corporation Multi-portion replacement heart valve prosthesis
US11426276B2 (en) 2016-10-12 2022-08-30 Medtronic Vascular, Inc. Stented prosthetic heart valve delivery system having an expandable bumper
US10758348B2 (en) 2016-11-02 2020-09-01 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US10653862B2 (en) 2016-11-07 2020-05-19 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
US10814128B2 (en) 2016-11-21 2020-10-27 Covidien Lp Electroporation catheter
US20180140419A1 (en) 2016-11-21 2018-05-24 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
EP3547965A1 (en) 2016-12-02 2019-10-09 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with two modes of actuation
EP3547964A1 (en) 2016-12-02 2019-10-09 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with transverse wheel actuation
US10603165B2 (en) * 2016-12-06 2020-03-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
JP2018096468A (en) * 2016-12-14 2018-06-21 キヤノン株式会社 Drive device and imaging device
CN108245292B (en) * 2016-12-29 2019-11-08 先健科技(深圳)有限公司 Conveying device and transportation system
US10905554B2 (en) 2017-01-05 2021-02-02 Edwards Lifesciences Corporation Heart valve coaptation device
US11083613B2 (en) 2017-01-23 2021-08-10 Baronova, Inc. Gastric obstruction device deployment assembly and methods of delivering and deploying a gastric obstruction device
AU2018203053B2 (en) 2017-01-23 2020-03-05 Cephea Valve Technologies, Inc. Replacement mitral valves
JP7046078B2 (en) 2017-01-23 2022-04-01 セフィア・バルブ・テクノロジーズ,インコーポレイテッド Replacement mitral valve
WO2018138658A1 (en) 2017-01-27 2018-08-02 Jenavalve Technology, Inc. Heart valve mimicry
WO2018142275A1 (en) * 2017-02-02 2018-08-09 Valfix Medical Ltd. Percutaneous valve repair and replacement
AU2018228451B2 (en) 2017-03-03 2022-12-08 V-Wave Ltd. Shunt for redistributing atrial blood volume
US11291807B2 (en) 2017-03-03 2022-04-05 V-Wave Ltd. Asymmetric shunt for redistributing atrial blood volume
CN110621263B (en) * 2017-03-14 2021-10-22 波士顿科学国际有限公司 Medical device with internal components
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11224511B2 (en) 2017-04-18 2022-01-18 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
EP3558169B1 (en) 2017-04-18 2022-01-19 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10799312B2 (en) 2017-04-28 2020-10-13 Edwards Lifesciences Corporation Medical device stabilizing apparatus and method of use
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
EP3624739A1 (en) 2017-05-15 2020-03-25 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with wheel actuation
US10828154B2 (en) 2017-06-08 2020-11-10 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
US11123186B2 (en) 2017-07-06 2021-09-21 Edwards Lifesciences Corporation Steerable delivery system and components
CN109248012B (en) * 2017-07-14 2020-12-25 先健科技(深圳)有限公司 Implant delivery system
EP3661458A1 (en) 2017-08-01 2020-06-10 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US12064347B2 (en) 2017-08-03 2024-08-20 Cardiovalve Ltd. Prosthetic heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
WO2019035966A1 (en) 2017-08-16 2019-02-21 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
CN111263622A (en) 2017-08-25 2020-06-09 内奥瓦斯克迪亚拉公司 Sequentially deployed transcatheter mitral valve prosthesis
US20190070002A1 (en) * 2017-09-05 2019-03-07 Boston Scientific Scimed, Inc. Medical device delivery system with flexible coupler
US11051940B2 (en) 2017-09-07 2021-07-06 Edwards Lifesciences Corporation Prosthetic spacer device for heart valve
US11065117B2 (en) 2017-09-08 2021-07-20 Edwards Lifesciences Corporation Axisymmetric adjustable device for treating mitral regurgitation
US10856982B2 (en) 2017-09-19 2020-12-08 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve delivery system
US11040174B2 (en) 2017-09-19 2021-06-22 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
EP3501453A1 (en) * 2017-12-21 2019-06-26 Biotronik AG Catheter device with ring structure for facilitating the reinsertion (resheathing) of a partially released heart valve prosthesis
CN209933071U (en) 2018-01-07 2020-01-14 苏州杰成医疗科技有限公司 Heart valve prosthesis
US10111751B1 (en) 2018-01-09 2018-10-30 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10231837B1 (en) 2018-01-09 2019-03-19 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10245144B1 (en) 2018-01-09 2019-04-02 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10136993B1 (en) 2018-01-09 2018-11-27 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10159570B1 (en) 2018-01-09 2018-12-25 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10105222B1 (en) 2018-01-09 2018-10-23 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10123873B1 (en) 2018-01-09 2018-11-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10076415B1 (en) 2018-01-09 2018-09-18 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10973639B2 (en) 2018-01-09 2021-04-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
LT3964175T (en) 2018-01-09 2024-10-25 Edwards Lifesciences Corporation Native valve repair devices
US10238493B1 (en) 2018-01-09 2019-03-26 Edwards Lifesciences Corporation Native valve repair devices and procedures
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
EP3740170A1 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
US11458287B2 (en) 2018-01-20 2022-10-04 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US10898698B1 (en) 2020-05-04 2021-01-26 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
EP3740163A1 (en) 2018-01-20 2020-11-25 V-Wave Ltd. Devices and methods for providing passage between heart chambers
EP3743015A1 (en) 2018-01-24 2020-12-02 Valtech Cardio, Ltd. Contraction of an annuloplasty structure
EP3720390B1 (en) 2018-01-25 2024-05-01 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post- deployment
WO2019145941A1 (en) 2018-01-26 2019-08-01 Valtech Cardio, Ltd. Techniques for facilitating heart valve tethering and chord replacement
WO2019157156A1 (en) 2018-02-07 2019-08-15 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
EP3758651B1 (en) 2018-02-26 2022-12-07 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11051934B2 (en) 2018-02-28 2021-07-06 Edwards Lifesciences Corporation Prosthetic mitral valve with improved anchors and seal
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
US11389297B2 (en) 2018-04-12 2022-07-19 Edwards Lifesciences Corporation Mitral valve spacer device
US11207181B2 (en) 2018-04-18 2021-12-28 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
CN112399836B (en) 2018-05-15 2024-10-15 波士顿科学国际有限公司 Replacement heart valve commissure assembly
WO2019224577A1 (en) 2018-05-23 2019-11-28 Sorin Group Italia S.R.L. A cardiac valve prosthesis
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
CN112584799A (en) * 2018-06-29 2021-03-30 阿万泰血管公司 Systems and methods for implants and deployment devices
CN112384175A (en) 2018-07-12 2021-02-19 瓦尔泰克卡迪欧有限公司 Annuloplasty system and locking tool therefor
CN110786975B (en) * 2018-08-03 2022-07-05 先健科技(深圳)有限公司 Handle assembly of conveyor, conveyor and conveying system
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
EP3860519A4 (en) 2018-10-05 2022-07-06 Shifamed Holdings, LLC Prosthetic cardiac valve devices, systems, and methods
US10945844B2 (en) 2018-10-10 2021-03-16 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11109969B2 (en) * 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
CN111067682B (en) * 2018-10-22 2022-06-07 东莞市先健医疗有限公司 Assembly and system for controlling release of implantable device
AU2019374743B2 (en) 2018-11-08 2022-03-03 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
JP2022517224A (en) 2019-01-14 2022-03-07 ヴァルフィックス メディカル リミテッド Anchors and locks for percutaneous valve implants
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
CN114206264A (en) 2019-02-14 2022-03-18 爱德华兹生命科学公司 Heart valve sealing device and delivery device thereof
CA3132162A1 (en) 2019-03-05 2020-09-10 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
CA3132873A1 (en) * 2019-03-08 2020-09-17 Neovasc Tiara Inc. Retrievable prosthesis delivery system
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
WO2020191216A1 (en) 2019-03-19 2020-09-24 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
US11602429B2 (en) 2019-04-01 2023-03-14 Neovasc Tiara Inc. Controllably deployable prosthetic valve
US11612385B2 (en) 2019-04-03 2023-03-28 V-Wave Ltd. Systems and methods for delivering implantable devices across an atrial septum
AU2020271896B2 (en) 2019-04-10 2022-10-13 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
CN111821068B (en) * 2019-04-16 2023-05-16 乐普(北京)医疗器械股份有限公司 Connection release structure and system thereof
US20200330251A1 (en) * 2019-04-16 2020-10-22 Lepu Medical Technology (Beijing) Co., Ltd. Connection release structure and system thereof
EP3965701A4 (en) 2019-05-04 2023-02-15 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
US20220296879A1 (en) * 2019-05-20 2022-09-22 The Regents Of The University Of California Percutaneous medical device delivery system
AU2020279750B2 (en) 2019-05-20 2023-07-13 Neovasc Tiara Inc. Introducer with hemostasis mechanism
CN114096205B (en) 2019-05-20 2024-05-24 V-波有限责任公司 System and method for producing room shunt
AU2020295566B2 (en) 2019-06-20 2023-07-20 Neovasc Tiara Inc. Low profile prosthetic mitral valve
CN110448395B (en) * 2019-08-05 2024-06-14 中南大学湘雅二医院 Airway support capable of enhancing supporting force by utilizing parallelogram principle
WO2021035032A1 (en) 2019-08-20 2021-02-25 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
CN114630665A (en) 2019-08-26 2022-06-14 维迪内股份有限公司 Laterally deliverable transcatheter prosthetic valve and methods of delivery and anchoring thereof
CR20210640A (en) 2019-10-29 2022-05-30 Valtech Cardio Ltd Annuloplasty and tissue anchor technologies
CA3143010A1 (en) * 2019-12-02 2021-06-10 Edwards Lifesciences Corporation Frame with varied strut widths for prosthetic implant
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
CN115916114A (en) 2020-05-20 2023-04-04 心脏植入物有限公司 Reducing the diameter of the annulus by independently controlling each anchor fired into the heart valve annulus
US12053371B2 (en) 2020-08-31 2024-08-06 Shifamed Holdings, Llc Prosthetic valve delivery system
US11234702B1 (en) 2020-11-13 2022-02-01 V-Wave Ltd. Interatrial shunt having physiologic sensor
RU2763840C1 (en) * 2020-12-30 2022-01-11 Акционерное общество "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" Apparatus for delivering a cylindrical sample of a cardioimplant
US12016777B2 (en) 2021-01-26 2024-06-25 Boston Scientific Scimed, Inc. Medical device including attachable components
WO2023146662A1 (en) * 2022-01-25 2023-08-03 Edwards Lifesciences Corporation Releasable retaining mechanisms for an actuator assembly of a delivery apparatus for an expandable prosthetic device
AU2023252664A1 (en) 2022-04-14 2024-10-17 V-Wave Ltd. Interatrial shunt with expanded neck region

Family Cites Families (854)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US15192A (en) 1856-06-24 Tubular
US2682057A (en) 1951-07-24 1954-06-29 Harry A Lord Heart valve
US2701559A (en) 1951-08-02 1955-02-08 William A Cooper Apparatus for exfoliating and collecting diagnostic material from inner walls of hollow viscera
US2832078A (en) 1956-10-17 1958-04-29 Battelle Memorial Institute Heart valve
US3029819A (en) 1959-07-30 1962-04-17 J L Mcatee Artery graft and method of producing artery grafts
US3099016A (en) 1960-08-11 1963-07-30 Edwards Miles Lowell Heart valve
US3130418A (en) 1960-11-25 1964-04-28 Louis R Head Artificial heart valve and method for making same
US3113586A (en) 1962-09-17 1963-12-10 Physio Control Company Inc Artificial heart valve
US3221006A (en) 1962-11-13 1965-11-30 Eastman Kodak Co 5-amino-3-substituted-1,2,4-thiadiazole azo compounds
US3143742A (en) 1963-03-19 1964-08-11 Surgitool Inc Prosthetic sutureless heart valve
US3367364A (en) 1964-10-19 1968-02-06 Univ Minnesota Prosthetic heart valve
US3334629A (en) 1964-11-09 1967-08-08 Bertram D Cohn Occlusive device for inferior vena cava
US3365728A (en) 1964-12-18 1968-01-30 Edwards Lab Inc Upholstered heart valve having a sealing ring adapted for dispensing medicaments
GB1127325A (en) 1965-08-23 1968-09-18 Henry Berry Improved instrument for inserting artificial heart valves
US3587115A (en) 1966-05-04 1971-06-28 Donald P Shiley Prosthetic sutureless heart valves and implant tools therefor
US3445916A (en) 1967-04-19 1969-05-27 Rudolf R Schulte Method for making an anatomical check valve
US3548417A (en) 1967-09-05 1970-12-22 Ronnie G Kischer Heart valve having a flexible wall which rotates between open and closed positions
US3540431A (en) 1968-04-04 1970-11-17 Kazi Mobin Uddin Collapsible filter for fluid flowing in closed passageway
US3570014A (en) 1968-09-16 1971-03-16 Warren D Hancock Stent for heart valve
US3671979A (en) 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3628535A (en) 1969-11-12 1971-12-21 Nibot Corp Surgical instrument for implanting a prosthetic heart valve or the like
US3592184A (en) 1969-12-16 1971-07-13 David H Watkins Heart assist method and catheter
US3642004A (en) 1970-01-05 1972-02-15 Life Support Equipment Corp Urethral valve
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3714671A (en) 1970-11-30 1973-02-06 Cutter Lab Tissue-type heart valve with a graft support ring or stent
US3725961A (en) 1970-12-29 1973-04-10 Baxter Laboratories Inc Prosthetic heart valve having fabric suturing element
US3755823A (en) 1971-04-23 1973-09-04 Hancock Laboratories Inc Flexible stent for heart valve
US3868956A (en) 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US3839741A (en) 1972-11-17 1974-10-08 J Haller Heart valve and retaining means therefor
US3795246A (en) 1973-01-26 1974-03-05 Bard Inc C R Venocclusion device
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4291420A (en) 1973-11-09 1981-09-29 Medac Gesellschaft Fur Klinische Spezialpraparate Mbh Artificial heart valve
US3983581A (en) 1975-01-20 1976-10-05 William W. Angell Heart valve stent
US3997923A (en) 1975-04-28 1976-12-21 St. Jude Medical, Inc. Heart valve prosthesis and suturing assembly and method of implanting a heart valve prosthesis in a heart
US4055858A (en) 1975-06-23 1977-11-01 Traenkle William J Within-the-shoe sock having removable retaining device
US4035849A (en) 1975-11-17 1977-07-19 William W. Angell Heart valve stent and process for preparing a stented heart valve prosthesis
CA1069652A (en) 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4084268A (en) 1976-04-22 1978-04-18 Shiley Laboratories, Incorporated Prosthetic tissue heart valve
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US5876419A (en) 1976-10-02 1999-03-02 Navius Corporation Stent and method for making a stent
US4297749A (en) 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
US4233690A (en) 1978-05-19 1980-11-18 Carbomedics, Inc. Prosthetic device couplings
US4222126A (en) 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US4265694A (en) 1978-12-14 1981-05-05 The United States Of America As Represented By The Department Of Health, Education And Welfare Method of making unitized three leaflet heart valve
US4574803A (en) 1979-01-19 1986-03-11 Karl Storz Tissue cutter
GB2056023B (en) 1979-08-06 1983-08-10 Ross D N Bodnar E Stent for a cardiac valve
US4373216A (en) 1980-10-27 1983-02-15 Hemex, Inc. Heart valves having edge-guided occluders
US4326306A (en) 1980-12-16 1982-04-27 Lynell Medical Technology, Inc. Intraocular lens and manipulating tool therefor
US4339831A (en) 1981-03-27 1982-07-20 Medtronic, Inc. Dynamic annulus heart valve and reconstruction ring
US4470157A (en) 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
US4323358A (en) 1981-04-30 1982-04-06 Vascor, Inc. Method for inhibiting mineralization of natural tissue during implantation
US4345340A (en) 1981-05-07 1982-08-24 Vascor, Inc. Stent for mitral/tricuspid heart valve
US4501030A (en) 1981-08-17 1985-02-26 American Hospital Supply Corporation Method of leaflet attachment for prosthetic heart valves
US4865600A (en) 1981-08-25 1989-09-12 Baxter International Inc. Mitral valve holder
US4425908A (en) 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4406022A (en) 1981-11-16 1983-09-27 Kathryn Roy Prosthetic valve means for cardiovascular surgery
US4423809A (en) 1982-02-05 1984-01-03 Staar Surgical Company, Inc. Packaging system for intraocular lens structures
FR2523810B1 (en) 1982-03-23 1988-11-25 Carpentier Alain ORGANIC GRAFT FABRIC AND PROCESS FOR ITS PREPARATION
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4484579A (en) 1982-07-19 1984-11-27 University Of Pittsburgh Commissurotomy catheter apparatus and method
IT1212547B (en) 1982-08-09 1989-11-30 Iorio Domenico INSTRUMENT FOR SURGICAL USE INTENDED TO MAKE INTERVENTIONS FOR THE IMPLANTATION OF BIOPROTESIS IN HUMAN ORGANS EASIER AND SAFER
DE3230858C2 (en) * 1982-08-19 1985-01-24 Ahmadi, Ali, Dr. med., 7809 Denzlingen Ring prosthesis
US5215541A (en) 1982-11-12 1993-06-01 Baxter International Inc. Surfactant treatment of implantable biological tissue to inhibit calcification
US4885005A (en) 1982-11-12 1989-12-05 Baxter International Inc. Surfactant treatment of implantable biological tissue to inhibit calcification
US4680031A (en) 1982-11-29 1987-07-14 Tascon Medical Technology Corporation Heart valve prosthesis
GB8300636D0 (en) 1983-01-11 1983-02-09 Black M M Heart valve replacements
US4535483A (en) 1983-01-17 1985-08-20 Hemex, Inc. Suture rings for heart valves
US4610688A (en) 1983-04-04 1986-09-09 Pfizer Hospital Products Group, Inc. Triaxially-braided fabric prosthesis
US4834755A (en) 1983-04-04 1989-05-30 Pfizer Hospital Products Group, Inc. Triaxially-braided fabric prosthesis
AR229309A1 (en) 1983-04-20 1983-07-15 Barone Hector Daniel MOUNT FOR CARDIAC VALVES
US4612011A (en) 1983-07-22 1986-09-16 Hans Kautzky Central occluder semi-biological heart valve
US4531943A (en) 1983-08-08 1985-07-30 Angiomedics Corporation Catheter with soft deformable tip
US4665906A (en) 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4585705A (en) 1983-11-09 1986-04-29 Dow Corning Corporation Hard organopolysiloxane release coating
US5693083A (en) 1983-12-09 1997-12-02 Endovascular Technologies, Inc. Thoracic graft and delivery catheter
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US4627436A (en) 1984-03-01 1986-12-09 Innoventions Biomedical Inc. Angioplasty catheter and method for use thereof
US4617932A (en) 1984-04-25 1986-10-21 Elliot Kornberg Device and method for performing an intraluminal abdominal aortic aneurysm repair
US4592340A (en) 1984-05-02 1986-06-03 Boyles Paul W Artificial catheter means
US5007896A (en) 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
US4979939A (en) 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
DE3426300A1 (en) 1984-07-17 1986-01-30 Doguhan Dr.med. 6000 Frankfurt Baykut TWO-WAY VALVE AND ITS USE AS A HEART VALVE PROSTHESIS
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
DE3442088A1 (en) 1984-11-17 1986-05-28 Beiersdorf Ag, 2000 Hamburg HEART VALVE PROSTHESIS
SU1271508A1 (en) 1984-11-29 1986-11-23 Горьковский государственный медицинский институт им.С.М.Кирова Artificial heart valve
US4759758A (en) 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
US4662885A (en) 1985-09-03 1987-05-05 Becton, Dickinson And Company Percutaneously deliverable intravascular filter prosthesis
GB2181057B (en) 1985-10-23 1989-09-27 Blagoveshchensk G Med Inst Prosthetic valve holder
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
US4710192A (en) 1985-12-30 1987-12-01 Liotta Domingo S Diaphragm and method for occlusion of the descending thoracic aorta
SU1371700A1 (en) 1986-02-21 1988-02-07 МВТУ им.Н.Э.Баумана Prosthesis of heart valve
CH672247A5 (en) 1986-03-06 1989-11-15 Mo Vysshee Tekhnicheskoe Uchil
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4777951A (en) 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
IL83966A (en) 1986-09-26 1992-03-29 Schering Ag Amides of aminopolycarboxylic acids and pharmaceutical compositions containing them
DE3750480T2 (en) 1986-11-29 1995-03-02 Terumo Corp BALLOONED CATHETER.
US4878495A (en) 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4872874A (en) 1987-05-29 1989-10-10 Taheri Syde A Method and apparatus for transarterial aortic graft insertion and implantation
US4796629A (en) 1987-06-03 1989-01-10 Joseph Grayzel Stiffened dilation balloon catheter device
US4829990A (en) 1987-06-25 1989-05-16 Thueroff Joachim Implantable hydraulic penile erector
JPH088933B2 (en) 1987-07-10 1996-01-31 日本ゼオン株式会社 Catheter
US4851001A (en) 1987-09-17 1989-07-25 Taheri Syde A Prosthetic valve for a blood vein and an associated method of implantation of the valve
US5159937A (en) 1987-09-30 1992-11-03 Advanced Cardiovascular Systems, Inc. Steerable dilatation catheter
US4755181A (en) 1987-10-08 1988-07-05 Matrix Medica, Inc. Anti-suture looping device for prosthetic heart valves
US4819751A (en) 1987-10-16 1989-04-11 Baxter Travenol Laboratories, Inc. Valvuloplasty catheter and method
US4873978A (en) 1987-12-04 1989-10-17 Robert Ginsburg Device and method for emboli retrieval
JPH01290639A (en) 1988-05-17 1989-11-22 Daikin Ind Ltd Production of 1,1,1-trifluoro-2,2-dichloroethane
US4909252A (en) 1988-05-26 1990-03-20 The Regents Of The Univ. Of California Perfusion balloon catheter
US5032128A (en) 1988-07-07 1991-07-16 Medtronic, Inc. Heart valve prosthesis
US4917102A (en) 1988-09-14 1990-04-17 Advanced Cardiovascular Systems, Inc. Guidewire assembly with steerable adjustable tip
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
DE8815082U1 (en) 1988-11-29 1989-05-18 Biotronik Meß- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin, 1000 Berlin Heart valve prosthesis
US4927426A (en) 1989-01-03 1990-05-22 Dretler Stephen P Catheter device
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4966604A (en) 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
US5425739A (en) 1989-03-09 1995-06-20 Avatar Design And Development, Inc. Anastomosis stent and stent selection system
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
DK0474748T3 (en) 1989-05-31 1995-05-01 Baxter Int Biological flap prosthesis
US5609626A (en) 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
US5047041A (en) 1989-08-22 1991-09-10 Samuels Peter B Surgical apparatus for the excision of vein valves in situ
DE3930138A1 (en) 1989-09-09 1991-03-21 Bayer Ag POLYURETHANE REACTIVE ADHESIVES WITH FINE DISPERSED POLYMERS
US4986830A (en) 1989-09-22 1991-01-22 Schneider (U.S.A.) Inc. Valvuloplasty catheter with balloon which remains stable during inflation
US5089015A (en) 1989-11-28 1992-02-18 Promedica International Method for implanting unstented xenografts and allografts
US5002559A (en) 1989-11-30 1991-03-26 Numed PTCA catheter
US5591185A (en) 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US5141494A (en) 1990-02-15 1992-08-25 Danforth Biomedical, Inc. Variable wire diameter angioplasty dilatation balloon catheter
US5238004A (en) 1990-04-10 1993-08-24 Boston Scientific Corporation High elongation linear elastic guidewire
US5037434A (en) 1990-04-11 1991-08-06 Carbomedics, Inc. Bioprosthetic heart valve with elastic commissures
US5085635A (en) 1990-05-18 1992-02-04 Cragg Andrew H Valved-tip angiographic catheter
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5122154A (en) 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5197979A (en) 1990-09-07 1993-03-30 Baxter International Inc. Stentless heart valve and holder
ES1015196Y (en) 1990-09-21 1992-01-01 Rosello Barbara Mariano SURGICAL INSTRUMENT.
US5161547A (en) 1990-11-28 1992-11-10 Numed, Inc. Method of forming an intravascular radially expandable stent
US5217483A (en) 1990-11-28 1993-06-08 Numed, Inc. Intravascular radially expandable stent
US6165292A (en) 1990-12-18 2000-12-26 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US5152771A (en) 1990-12-31 1992-10-06 The Board Of Supervisors Of Louisiana State University Valve cutter for arterial by-pass surgery
US5282847A (en) 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
WO1992015358A1 (en) 1991-03-01 1992-09-17 Applied Medical Resources, Inc. Cholangiography catheter
JPH05184611A (en) 1991-03-19 1993-07-27 Kenji Kusuhara Valvular annulation retaining member and its attaching method
US5295958A (en) 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5167628A (en) 1991-05-02 1992-12-01 Boyles Paul W Aortic balloon catheter assembly for indirect infusion of the coronary arteries
US5350398A (en) 1991-05-13 1994-09-27 Dusan Pavcnik Self-expanding filter for percutaneous insertion
US5397351A (en) 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
IT1245750B (en) 1991-05-24 1994-10-14 Sorin Biomedica Emodialisi S R CARDIAC VALVE PROSTHESIS, PARTICULARLY FOR REPLACING THE AORTIC VALVE
US5209741A (en) 1991-07-08 1993-05-11 Endomedix Corporation Surgical access device having variable post-insertion cross-sectional geometry
US6866650B2 (en) 1991-07-16 2005-03-15 Heartport, Inc. System for cardiac procedures
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US5571215A (en) 1993-02-22 1996-11-05 Heartport, Inc. Devices and methods for intracardiac procedures
US5769812A (en) 1991-07-16 1998-06-23 Heartport, Inc. System for cardiac procedures
CA2117088A1 (en) 1991-09-05 1993-03-18 David R. Holmes Flexible tubular device for use in medical applications
US5258042A (en) 1991-12-16 1993-11-02 Henry Ford Health System Intravascular hydrogel implant
US5756476A (en) 1992-01-14 1998-05-26 The United States Of America As Represented By The Department Of Health And Human Services Inhibition of cell proliferation using antisense oligonucleotides
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
EP0552579B1 (en) 1992-01-22 1996-01-03 Guy-Henri Muller Prosthetic implants for plastic surgery
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US5163953A (en) 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5258023A (en) 1992-02-12 1993-11-02 Reger Medical Development, Inc. Prosthetic heart valve
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
AU678350B2 (en) 1992-05-08 1997-05-29 Schneider (Usa) Inc. Esophageal stent and delivery tool
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
FR2693366B1 (en) 1992-07-09 1994-09-02 Celsa Lg Device forming a vascular prosthesis usable for the treatment of aneurysms.
US5409019A (en) 1992-10-30 1995-04-25 Wilk; Peter J. Coronary artery by-pass method
EP0637947B1 (en) 1993-01-14 2001-12-19 Meadox Medicals, Inc. Radially expandable tubular prosthesis
US5713951A (en) 1993-02-22 1998-02-03 Heartport, Inc. Thoracoscopic valve prosthesis delivery device
US5431676A (en) 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
US5772609A (en) 1993-05-11 1998-06-30 Target Therapeutics, Inc. Guidewire with variable flexibility due to polymeric coatings
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
GB9312666D0 (en) 1993-06-18 1993-08-04 Vesely Ivan Bioprostetic heart valve
US5415633A (en) 1993-07-28 1995-05-16 Active Control Experts, Inc. Remotely steered catheterization device
US5443495A (en) 1993-09-17 1995-08-22 Scimed Lifesystems Inc. Polymerization angioplasty balloon implant device
KR970004845Y1 (en) 1993-09-27 1997-05-21 주식회사 수호메디테크 Stent for expanding a lumen
US5782904A (en) 1993-09-30 1998-07-21 Endogad Research Pty Limited Intraluminal graft
US5545209A (en) 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US5389106A (en) 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5480424A (en) 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US5713950A (en) 1993-11-01 1998-02-03 Cox; James L. Method of replacing heart valves using flexible tubes
EP0657147B1 (en) 1993-11-04 1999-08-04 C.R. Bard, Inc. Non-migrating vascular prosthesis
WO1995013033A1 (en) 1993-11-08 1995-05-18 Lazarus Harrison M Intraluminal vascular graft and method
RU2089131C1 (en) 1993-12-28 1997-09-10 Сергей Апполонович Пульнев Stent-expander
DE4401227C2 (en) 1994-01-18 1999-03-18 Ernst Peter Prof Dr M Strecker Endoprosthesis implantable percutaneously in a patient's body
US5476506A (en) 1994-02-08 1995-12-19 Ethicon, Inc. Bi-directional crimped graft
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5443477A (en) * 1994-02-10 1995-08-22 Stentco, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5556413A (en) 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5695607A (en) 1994-04-01 1997-12-09 James River Corporation Of Virginia Soft-single ply tissue having very low sidedness
US5476510A (en) 1994-04-21 1995-12-19 Medtronic, Inc. Holder for heart valve
DE4415359C2 (en) 1994-05-02 1997-10-23 Aesculap Ag Surgical tubular shaft instrument
US6139510A (en) 1994-05-11 2000-10-31 Target Therapeutics Inc. Super elastic alloy guidewire
US5765418A (en) 1994-05-16 1998-06-16 Medtronic, Inc. Method for making an implantable medical device from a refractory metal
CA2149290C (en) 1994-05-26 2006-07-18 Carl T. Urban Optical trocar
US5824041A (en) 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US5728068A (en) 1994-06-14 1998-03-17 Cordis Corporation Multi-purpose balloon catheter
US5522881A (en) 1994-06-28 1996-06-04 Meadox Medicals, Inc. Implantable tubular prosthesis having integral cuffs
DE69536046D1 (en) 1994-07-08 2010-04-01 Ev3 Inc System for performing an intravascular procedure
DE4424242A1 (en) 1994-07-09 1996-01-11 Ernst Peter Prof Dr M Strecker Endoprosthesis implantable percutaneously in a patient's body
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
AU708360B2 (en) 1994-09-15 1999-08-05 C.R. Bard Inc. Hooked endoprosthesis
US5545133A (en) 1994-09-16 1996-08-13 Scimed Life Systems, Inc. Balloon catheter with improved pressure source
AU4298696A (en) 1994-12-21 1996-07-10 Novo Nordisk A/S A method for enzymatic treatment of wool
US5674277A (en) 1994-12-23 1997-10-07 Willy Rusch Ag Stent for placement in a body tube
BE1009085A3 (en) 1995-02-10 1996-11-05 De Fays Robert Dr Intra-aortic prosthesis and surgical instruments for the introduction, implementation and fixing in the aortic prosthesis.
US5575818A (en) 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
AU719980B2 (en) 1995-02-22 2000-05-18 Menlo Care, Inc. Covered expanding mesh stent
US5681345A (en) 1995-03-01 1997-10-28 Scimed Life Systems, Inc. Sleeve carrying stent
EP0819014B1 (en) 1995-03-30 2003-02-05 Heartport, Inc. Endovascular cardiac venting catheter
ATE269742T1 (en) 1995-03-30 2004-07-15 Heartport Inc SYSTEM FOR PERFORMING ENDOVASCULAR PROCEDURES
US5709713A (en) 1995-03-31 1998-01-20 Cardiovascular Concepts, Inc. Radially expansible vascular prosthesis having reversible and other locking structures
US5667523A (en) 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5824064A (en) 1995-05-05 1998-10-20 Taheri; Syde A. Technique for aortic valve replacement with simultaneous aortic arch graft insertion and apparatus therefor
US5534007A (en) 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5716417A (en) 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
US5728152A (en) 1995-06-07 1998-03-17 St. Jude Medical, Inc. Bioresorbable heart valve support
US5571175A (en) 1995-06-07 1996-11-05 St. Jude Medical, Inc. Suture guard for prosthetic heart valve
WO1996040011A1 (en) 1995-06-07 1996-12-19 St. Jude Medical, Inc. Direct suture orifice for mechanical heart valve
DE19532846A1 (en) 1995-09-06 1997-03-13 Georg Dr Berg Valve for use in heart
US5769882A (en) 1995-09-08 1998-06-23 Medtronic, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US5735842A (en) 1995-09-11 1998-04-07 St. Jude Medical, Inc. Low profile manipulators for heart valve prostheses
US5807405A (en) 1995-09-11 1998-09-15 St. Jude Medical, Inc. Apparatus for attachment of heart valve holder to heart valve prosthesis
US6193745B1 (en) 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
US5824037A (en) 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US6287336B1 (en) 1995-10-16 2001-09-11 Medtronic, Inc. Variable flexibility stent
US5591195A (en) 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
DE19546692C2 (en) 1995-12-14 2002-11-07 Hans-Reiner Figulla Self-expanding heart valve prosthesis for implantation in the human body via a catheter system
US5861028A (en) 1996-09-09 1999-01-19 Shelhigh Inc Natural tissue heart valve and stent prosthesis and method for making the same
US5855602A (en) 1996-09-09 1999-01-05 Shelhigh, Inc. Heart valve prosthesis
ATE290832T1 (en) 1996-01-05 2005-04-15 Medtronic Inc EXPANDABLE ENDOLUMINAL PROSTHESES
US5843158A (en) 1996-01-05 1998-12-01 Medtronic, Inc. Limited expansion endoluminal prostheses and methods for their use
DE69716779T2 (en) 1996-01-30 2003-07-17 Medtronic, Inc. PRODUCTS AND METHOD FOR PRODUCING DILATERS
JPH09215753A (en) 1996-02-08 1997-08-19 Schneider Usa Inc Self-expanding stent made of titanium alloy
US6402736B1 (en) 1996-02-16 2002-06-11 Joe E. Brown Apparatus and method for filtering intravascular fluids and for delivering diagnostic and therapeutic agents
US5716370A (en) 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US6402780B2 (en) 1996-02-23 2002-06-11 Cardiovascular Technologies, L.L.C. Means and method of replacing a heart valve in a minimally invasive manner
US5695498A (en) 1996-02-28 1997-12-09 Numed, Inc. Stent implantation system
US5720391A (en) 1996-03-29 1998-02-24 St. Jude Medical, Inc. Packaging and holder for heart valve prosthesis
US5891191A (en) 1996-04-30 1999-04-06 Schneider (Usa) Inc Cobalt-chromium-molybdenum alloy stent and stent-graft
US5885228A (en) 1996-05-08 1999-03-23 Heartport, Inc. Valve sizer and method of use
CA2254831C (en) 1996-05-14 2006-10-17 Embol-X, Inc. Aortic occluder with associated filter and methods of use during cardiac surgery
EP0808614B1 (en) 1996-05-23 2003-02-26 Samsung Electronics Co., Ltd. Flexible self-expandable stent and method for making the same
US7238197B2 (en) 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
EP1595513A3 (en) 1996-06-20 2010-09-15 Vascutek Limited Prosthetic repair of body passages
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5843161A (en) 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
US5662671A (en) 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5755783A (en) 1996-07-29 1998-05-26 Stobie; Robert Suture rings for rotatable artificial heart valves
US6702851B1 (en) 1996-09-06 2004-03-09 Joseph A. Chinn Prosthetic heart valve with surface modification
US6764509B2 (en) 1996-09-06 2004-07-20 Carbomedics Inc. Prosthetic heart valve with surface modification
US6254628B1 (en) 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US5800531A (en) 1996-09-30 1998-09-01 Baxter International Inc. Bioprosthetic heart valve implantation device
US6022370A (en) 1996-10-01 2000-02-08 Numed, Inc. Expandable stent
US5749890A (en) 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
NL1004827C2 (en) 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
US6206911B1 (en) 1996-12-19 2001-03-27 Simcha Milo Stent combination
US5776142A (en) 1996-12-19 1998-07-07 Medtronic, Inc. Controllable stent delivery system and method
US6015431A (en) 1996-12-23 2000-01-18 Prograft Medical, Inc. Endolumenal stent-graft with leak-resistant seal
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
GB9701479D0 (en) 1997-01-24 1997-03-12 Aortech Europ Ltd Heart valve
US6241757B1 (en) 1997-02-04 2001-06-05 Solco Surgical Instrument Co., Ltd. Stent for expanding body's lumen
JP3237585B2 (en) 1997-09-02 2001-12-10 住友電装株式会社 Waterproof structure of wire end
WO1998036790A1 (en) 1997-02-19 1998-08-27 Condado Medical Devices Corporation Multi-purpose catheters, catheter systems, and radiation treatment
US6152946A (en) 1998-03-05 2000-11-28 Scimed Life Systems, Inc. Distal protection device and method
US5830229A (en) 1997-03-07 1998-11-03 Micro Therapeutics Inc. Hoop stent
US6416510B1 (en) 1997-03-13 2002-07-09 Biocardia, Inc. Drug delivery catheters that attach to tissue and methods for their use
US5817126A (en) 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
US5824053A (en) 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US5824055A (en) 1997-03-25 1998-10-20 Endotex Interventional Systems, Inc. Stent graft delivery system and methods of use
US5928281A (en) 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US5868783A (en) 1997-04-16 1999-02-09 Numed, Inc. Intravascular stent with limited axial shrinkage
US5860966A (en) 1997-04-16 1999-01-19 Numed, Inc. Method of securing a stent on a balloon catheter
US6258115B1 (en) 1997-04-23 2001-07-10 Artemis Medical, Inc. Bifurcated stent and distal protection system
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US6206917B1 (en) 1997-05-02 2001-03-27 St. Jude Medical, Inc. Differential treatment of prosthetic devices
US6245102B1 (en) 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US5855597A (en) 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US6162245A (en) 1997-05-07 2000-12-19 Iowa-India Investments Company Limited Stent valve and stent graft
US5911734A (en) 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6676682B1 (en) 1997-05-08 2004-01-13 Scimed Life Systems, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6258120B1 (en) 1997-12-23 2001-07-10 Embol-X, Inc. Implantable cerebral protection device and methods of use
US6007575A (en) 1997-06-06 1999-12-28 Samuels; Shaun Laurence Wilkie Inflatable intraluminal stent and method for affixing same within the human body
JP3645399B2 (en) 1997-06-09 2005-05-11 住友金属工業株式会社 Endovascular stent
WO1998057599A2 (en) 1997-06-17 1998-12-23 Sante Camilli Implantable valve for blood vessels
US6635080B1 (en) 1997-06-19 2003-10-21 Vascutek Limited Prosthesis for repair of body passages
US5861024A (en) * 1997-06-20 1999-01-19 Cardiac Assist Devices, Inc Electrophysiology catheter and remote actuator therefor
US5906619A (en) 1997-07-24 1999-05-25 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US6340367B1 (en) 1997-08-01 2002-01-22 Boston Scientific Scimed, Inc. Radiopaque markers and methods of using the same
US5984957A (en) 1997-08-12 1999-11-16 Schneider (Usa) Inc Radially expanded prostheses with axial diameter control
US6306164B1 (en) 1997-09-05 2001-10-23 C. R. Bard, Inc. Short body endoprosthesis
US5954766A (en) 1997-09-16 1999-09-21 Zadno-Azizi; Gholam-Reza Body fluid flow control device
US6056722A (en) 1997-09-18 2000-05-02 Iowa-India Investments Company Limited Of Douglas Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use
US5984959A (en) * 1997-09-19 1999-11-16 United States Surgical Heart valve replacement tools and procedures
US6361545B1 (en) 1997-09-26 2002-03-26 Cardeon Corporation Perfusion filter catheter
US5925063A (en) 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
US6071308A (en) 1997-10-01 2000-06-06 Boston Scientific Corporation Flexible metal wire stent
JP4328888B2 (en) 1997-11-07 2009-09-09 サルヴィアック・リミテッド Embolic protection device
AU1724099A (en) 1997-12-15 1999-07-05 Prolifix Medical, Inc. Vascular stent for reduction of restenosis
US6695864B2 (en) 1997-12-15 2004-02-24 Cardeon Corporation Method and apparatus for cerebral embolic protection
WO1999030800A1 (en) 1997-12-15 1999-06-24 Domnick Hunter Limited Filter assembly
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
JP2002518066A (en) 1997-12-29 2002-06-25 ザ クリーブランド クリニック ファウンデーション System for inserting bioprosthetic heart valves with minimal invasion
US6096074A (en) * 1998-01-27 2000-08-01 United States Surgical Stapling apparatus and method for heart valve replacement
US5944738A (en) 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
JP2002502626A (en) 1998-02-10 2002-01-29 アーテミス・メディカル・インコーポレイテッド Supplementary device and method of using the same
ATE454098T1 (en) 1998-02-10 2010-01-15 Artemis Medical Inc OCCLUSION, ANCHORING, CHIPING OR POWER CONTROL DEVICE
EP0935978A1 (en) 1998-02-16 1999-08-18 Medicorp S.A. Angioplasty and stent delivery catheter
US6623521B2 (en) 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
US5938697A (en) 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US7491232B2 (en) * 1998-09-18 2009-02-17 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods with implantation force resolution
EP0943300A1 (en) 1998-03-17 1999-09-22 Medicorp S.A. Reversible action endoprosthesis delivery device.
US6656215B1 (en) 2000-11-16 2003-12-02 Cordis Corporation Stent graft having an improved means for attaching a stent to a graft
US6776791B1 (en) 1998-04-01 2004-08-17 Endovascular Technologies, Inc. Stent and method and device for packing of same
EP1067883A1 (en) 1998-04-02 2001-01-17 Salviac Limited An implant comprising a support structure and a transition material made of porous plastics material
US6074418A (en) * 1998-04-20 2000-06-13 St. Jude Medical, Inc. Driver tool for heart valve prosthesis fasteners
US6450989B2 (en) 1998-04-27 2002-09-17 Artemis Medical, Inc. Dilating and support apparatus with disease inhibitors and methods for use
US6319241B1 (en) 1998-04-30 2001-11-20 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or a brain
US6059827A (en) * 1998-05-04 2000-05-09 Axya Medical, Inc. Sutureless cardiac valve prosthesis, and devices and methods for implanting them
WO1999056663A2 (en) 1998-05-05 1999-11-11 Scimed Life Systems, Inc. Stent with smooth ends
US6352554B2 (en) 1998-05-08 2002-03-05 Sulzer Vascutek Limited Prosthetic tubular aortic conduit and method for manufacturing the same
US6093203A (en) 1998-05-13 2000-07-25 Uflacker; Renan Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
US7452371B2 (en) 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
KR20010052481A (en) 1998-06-02 2001-06-25 쿡 인코포레이티드 Multiple-sided intraluminal medical device
US6630001B2 (en) 1998-06-24 2003-10-07 International Heart Institute Of Montana Foundation Compliant dehyrated tissue for implantation and process of making the same
AU749930B2 (en) 1998-07-10 2002-07-04 Shin Ishimaru Stent (or stent graft) indwelling device
US6159239A (en) 1998-08-14 2000-12-12 Prodesco, Inc. Woven stent/graft structure
US6179860B1 (en) 1998-08-19 2001-01-30 Artemis Medical, Inc. Target tissue localization device and method
US6312461B1 (en) 1998-08-21 2001-11-06 John D. Unsworth Shape memory tubular stent
US6358276B1 (en) 1998-09-30 2002-03-19 Impra, Inc. Fluid containing endoluminal stent
US6203550B1 (en) * 1998-09-30 2001-03-20 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US6051014A (en) 1998-10-13 2000-04-18 Embol-X, Inc. Percutaneous filtration catheter for valve repair surgery and methods of use
US6475239B1 (en) 1998-10-13 2002-11-05 Sulzer Carbomedics Inc. Method for making polymer heart valves with leaflets having uncut free edges
US6254612B1 (en) 1998-10-22 2001-07-03 Cordis Neurovascular, Inc. Hydraulic stent deployment system
US6146366A (en) 1998-11-03 2000-11-14 Ras Holding Corp Device for the treatment of macular degeneration and other eye disorders
GB2347685B (en) 1998-11-06 2002-12-18 Furukawa Electric Co Ltd NiTi-based medical guidewire and method of producing the same
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
US6336937B1 (en) 1998-12-09 2002-01-08 Gore Enterprise Holdings, Inc. Multi-stage expandable stent-graft
DE19857887B4 (en) 1998-12-15 2005-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring support for a heart valve prosthesis
US6363938B2 (en) 1998-12-22 2002-04-02 Angiotrax, Inc. Methods and apparatus for perfusing tissue and/or stimulating revascularization and tissue growth
FR2788217A1 (en) 1999-01-12 2000-07-13 Brice Letac PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL
US6736845B2 (en) 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
ATE465693T1 (en) 1999-01-27 2010-05-15 Medtronic Inc DEVICE FOR HEART VALVE PROCEDURES
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
IL144646A0 (en) 1999-02-01 2002-05-23 Univ Texas Woven intravascular and methods for making the same and apparatus for delivery of the same
DK1148839T3 (en) 1999-02-01 2008-12-15 Univ Texas Woven two-branched and three-branched stents and methods of making them
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
EP1582179A3 (en) 1999-02-01 2009-04-01 Board of Regents, The University of Texas System Apparatus for delivery of woven intravascular devices delivery of the same
DE19904975A1 (en) 1999-02-06 2000-09-14 Impella Cardiotech Ag Device for intravascular heart valve surgery
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
US20020138094A1 (en) 1999-02-12 2002-09-26 Thomas Borillo Vascular filter system
DE19907646A1 (en) 1999-02-23 2000-08-24 Georg Berg Valve for blood vessels uses flap holders and counterpart holders on stent to latch together in place and all channeled for guide wire.
US6171327B1 (en) 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6905743B1 (en) 1999-02-25 2005-06-14 Boston Scientific Scimed, Inc. Dimensionally stable balloons
US6231551B1 (en) 1999-03-01 2001-05-15 Coaxia, Inc. Partial aortic occlusion devices and methods for cerebral perfusion augmentation
US6743196B2 (en) 1999-03-01 2004-06-01 Coaxia, Inc. Partial aortic occlusion devices and methods for cerebral perfusion augmentation
US6673089B1 (en) 1999-03-11 2004-01-06 Mindguard Ltd. Implantable stroke treating device
IL128938A0 (en) 1999-03-11 2000-02-17 Mind Guard Ltd Implantable stroke treating device
US6319281B1 (en) 1999-03-22 2001-11-20 Kumar R. Patel Artificial venous valve and sizing catheter
US6156055A (en) * 1999-03-23 2000-12-05 Nitinol Medical Technologies Inc. Gripping device for implanting, repositioning or extracting an object within a body vessel
US7563267B2 (en) * 1999-04-09 2009-07-21 Evalve, Inc. Fixation device and methods for engaging tissue
US7147663B1 (en) 1999-04-23 2006-12-12 St. Jude Medical Atg, Inc. Artificial heart valve attachment apparatus and methods
WO2000067661A2 (en) 1999-05-12 2000-11-16 Spence Paul A Heart valve and apparatus for replacement thereof, blood vessel leak detector and temporary pacemaker lead
US6309417B1 (en) 1999-05-12 2001-10-30 Paul A. Spence Heart valve and apparatus for replacement thereof
US6858034B1 (en) 1999-05-20 2005-02-22 Scimed Life Systems, Inc. Stent delivery system for prevention of kinking, and method of loading and using same
US6790229B1 (en) 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
JP3755862B2 (en) 1999-05-26 2006-03-15 キヤノン株式会社 Synchronized position control apparatus and method
EP1057460A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Replacement valve assembly and method of implanting same
EP1057459A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Radially expandable stent
US7628803B2 (en) 2001-02-05 2009-12-08 Cook Incorporated Implantable vascular device
DE19932766A1 (en) 1999-07-14 2001-01-18 Henkel Kgaa Process for treating the circulating water in paint booths
AU6000200A (en) 1999-07-16 2001-02-05 Biocompatibles Limited Braided stent
US6179859B1 (en) 1999-07-16 2001-01-30 Baff Llc Emboli filtration system and methods of use
US6312465B1 (en) 1999-07-23 2001-11-06 Sulzer Carbomedics Inc. Heart valve prosthesis with a resiliently deformable retaining member
US6544279B1 (en) 2000-08-09 2003-04-08 Incept, Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US6371970B1 (en) 1999-07-30 2002-04-16 Incept Llc Vascular filter having articulation region and methods of use in the ascending aorta
US6142987A (en) 1999-08-03 2000-11-07 Scimed Life Systems, Inc. Guided filter with support wire and methods of use
US6346116B1 (en) 1999-08-03 2002-02-12 Medtronic Ave, Inc. Distal protection device
US6235044B1 (en) 1999-08-04 2001-05-22 Scimed Life Systems, Inc. Percutaneous catheter and guidewire for filtering during ablation of mycardial or vascular tissue
US6168579B1 (en) 1999-08-04 2001-01-02 Scimed Life Systems, Inc. Filter flush system and methods of use
US8500795B2 (en) 1999-08-09 2013-08-06 Cardiokinetix, Inc. Retrievable devices for improving cardiac function
US6299637B1 (en) 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
US6187016B1 (en) 1999-09-14 2001-02-13 Daniel G. Hedges Stent retrieval device
US6829497B2 (en) 1999-09-21 2004-12-07 Jamil Mogul Steerable diagnostic catheters
IT1307268B1 (en) 1999-09-30 2001-10-30 Sorin Biomedica Cardio Spa DEVICE FOR HEART VALVE REPAIR OR REPLACEMENT.
US6371983B1 (en) 1999-10-04 2002-04-16 Ernest Lane Bioprosthetic heart valve
US6364895B1 (en) 1999-10-07 2002-04-02 Prodesco, Inc. Intraluminal filter
FR2799364B1 (en) 1999-10-12 2001-11-23 Jacques Seguin MINIMALLY INVASIVE CANCELING DEVICE
US6383171B1 (en) 1999-10-12 2002-05-07 Allan Will Methods and devices for protecting a passageway in a body when advancing devices through the passageway
US6352708B1 (en) 1999-10-14 2002-03-05 The International Heart Institute Of Montana Foundation Solution and method for treating autologous tissue for implant operation
WO2001026584A1 (en) 1999-10-14 2001-04-19 United Stenting, Inc. Stents with multilayered struts
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US6585758B1 (en) 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
FR2815844B1 (en) 2000-10-31 2003-01-17 Jacques Seguin TUBULAR SUPPORT FOR THE PERCUTANEOUS POSITIONING OF A REPLACEMENT HEART VALVE
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US6379383B1 (en) 1999-11-19 2002-04-30 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US7195641B2 (en) 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US6849085B2 (en) 1999-11-19 2005-02-01 Advanced Bio Prosthetic Surfaces, Ltd. Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6663667B2 (en) 1999-12-29 2003-12-16 Edwards Lifesciences Corporation Towel graft means for enhancing tissue ingrowth in vascular grafts
US6872226B2 (en) 2001-01-29 2005-03-29 3F Therapeutics, Inc. Method of cutting material for use in implantable medical device
EP1251804B1 (en) 2000-01-27 2008-07-02 3F Therapeutics, Inc Prosthetic heart valve
US6652571B1 (en) 2000-01-31 2003-11-25 Scimed Life Systems, Inc. Braided, branched, implantable device and processes for manufacture thereof
US6622604B1 (en) 2000-01-31 2003-09-23 Scimed Life Systems, Inc. Process for manufacturing a braided bifurcated stent
US6398807B1 (en) 2000-01-31 2002-06-04 Scimed Life Systems, Inc. Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor
ES2286097T7 (en) 2000-01-31 2009-11-05 Cook Biotech, Inc ENDOPROTESIS VALVES.
US6797002B2 (en) 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
US6540782B1 (en) 2000-02-02 2003-04-01 Robert V. Snyders Artificial heart valve
US20050267560A1 (en) 2000-02-03 2005-12-01 Cook Incorporated Implantable bioabsorbable valve support frame
US6540768B1 (en) 2000-02-09 2003-04-01 Cordis Corporation Vascular filter system
US6344044B1 (en) 2000-02-11 2002-02-05 Edwards Lifesciences Corp. Apparatus and methods for delivery of intraluminal prosthesis
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
DE10010073B4 (en) 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
WO2001066038A2 (en) 2000-03-03 2001-09-13 Cook Incorporated Endovascular device having a stent
ES2282246T3 (en) 2000-03-10 2007-10-16 Anthony T. Don Michael VASCULAR EMBOLIA PREVENTION DEVICE USING FILTERS.
US6695865B2 (en) 2000-03-20 2004-02-24 Advanced Bio Prosthetic Surfaces, Ltd. Embolic protection device
US6468303B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Retrievable self expanding shunt
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
GB2369575A (en) 2000-04-20 2002-06-05 Salviac Ltd An embolic protection system
US6729356B1 (en) 2000-04-27 2004-05-04 Endovascular Technologies, Inc. Endovascular graft for providing a seal with vasculature
CA2403276C (en) 2000-05-04 2009-10-20 Oregon Health Sciences University Endovascular stent graft
IL136213A0 (en) 2000-05-17 2001-05-20 Xtent Medical Inc Selectively expandable and releasable stent
US20050043757A1 (en) 2000-06-12 2005-02-24 Michael Arad Medical devices formed from shape memory alloys displaying a stress-retained martensitic state and method for use thereof
SE522805C2 (en) 2000-06-22 2004-03-09 Jan Otto Solem Stent Application System
US6676698B2 (en) 2000-06-26 2004-01-13 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
US6527800B1 (en) 2000-06-26 2003-03-04 Rex Medical, L.P. Vascular device and method for valve leaflet apposition
WO2002001999A2 (en) 2000-06-30 2002-01-10 Viacor, Incorporated Method and apparatus for performing a procedure on a cardiac valve
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US6572643B1 (en) * 2000-07-19 2003-06-03 Vascular Architects, Inc. Endoprosthesis delivery catheter assembly and method
EP1305078B1 (en) 2000-07-24 2011-06-29 Jeffrey Grayzel Stiffened balloon catheter for dilatation and stenting
US6773454B2 (en) 2000-08-02 2004-08-10 Michael H. Wholey Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms
US6485501B1 (en) 2000-08-11 2002-11-26 Cordis Corporation Vascular filter system with guidewire and capture mechanism
US6572652B2 (en) 2000-08-29 2003-06-03 Venpro Corporation Method and devices for decreasing elevated pulmonary venous pressure
US6846325B2 (en) 2000-09-07 2005-01-25 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US6543610B1 (en) 2000-09-12 2003-04-08 Alok Nigam System for packaging and handling an implant and method of use
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US7381220B2 (en) 2000-09-20 2008-06-03 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US6893459B1 (en) 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US6602288B1 (en) 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
DE10049814B4 (en) 2000-10-09 2006-10-19 Universitätsklinikum Freiburg Device for supporting surgical procedures within a vessel, in particular for minimally invasive explantation and implantation of heart valves
DE10049813C1 (en) 2000-10-09 2002-04-18 Universitaetsklinikum Freiburg Instrument for the local removal of built-up matter at an aortic valve, in a human or animal heart, is a hollow catheter with a cutting unit at the far end within a closure cap for minimum invasion
DE10049812B4 (en) 2000-10-09 2004-06-03 Universitätsklinikum Freiburg Device for filtering out macroscopic particles from the bloodstream during local removal of an aortic valve on the human or animal heart
DE10049815B4 (en) 2000-10-09 2005-10-13 Universitätsklinikum Freiburg Device for local ablation of an aortic valve on the human or animal heart
CA2424306A1 (en) 2000-10-18 2002-04-25 Nmt Medical, Inc. Medical implant delivery system
US6814754B2 (en) 2000-10-30 2004-11-09 Secant Medical, Llc Woven tubular graft with regions of varying flexibility
WO2002076281A2 (en) 2000-11-07 2002-10-03 Artemis Medical Inc. Tissue separator assembly and method
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
US6843802B1 (en) 2000-11-16 2005-01-18 Cordis Corporation Delivery apparatus for a self expanding retractable stent
US7267685B2 (en) 2000-11-16 2007-09-11 Cordis Corporation Bilateral extension prosthesis and method of delivery
US6974476B2 (en) 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
EP1335683B1 (en) 2000-11-21 2005-08-10 Rex Medical, LP Percutaneous aortic valve
WO2002041931A2 (en) 2000-11-27 2002-05-30 Medtronic, Inc. Stents and methods for preparing stents
US6953332B1 (en) 2000-11-28 2005-10-11 St. Jude Medical, Inc. Mandrel for use in forming valved prostheses having polymer leaflets by dip coating
US6663588B2 (en) 2000-11-29 2003-12-16 C.R. Bard, Inc. Active counterforce handle for use in bidirectional deflectable tip instruments
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
ATE310470T1 (en) 2000-12-15 2005-12-15 Angiomed Ag STENT WITH HEART VALVE
US6471708B2 (en) 2000-12-21 2002-10-29 Bausch & Lomb Incorporated Intraocular lens and additive packaging system
US20020120328A1 (en) 2000-12-21 2002-08-29 Pathak Chandrashekhar Prabhakar Mechanical heart valve packaged in a liquid
US6468660B2 (en) 2000-12-29 2002-10-22 St. Jude Medical, Inc. Biocompatible adhesives
WO2002056955A1 (en) 2001-01-18 2002-07-25 Edwards Lifesciences Corporation Arterial cannula with perforated filter lumen
AU2002255486A1 (en) 2001-01-19 2002-09-19 Walid Najib Aboul-Hosn Apparatus and method for maintaining flow through a vessel or duct
US6699274B2 (en) * 2001-01-22 2004-03-02 Scimed Life Systems, Inc. Stent delivery system and method of manufacturing same
US6610077B1 (en) 2001-01-23 2003-08-26 Endovascular Technologies, Inc. Expandable emboli filter and thrombectomy device
US6863688B2 (en) 2001-02-15 2005-03-08 Spinecore, Inc. Intervertebral spacer device utilizing a spirally slotted belleville washer having radially spaced concentric grooves
US6623518B2 (en) 2001-02-26 2003-09-23 Ev3 Peripheral, Inc. Implant delivery system with interlock
CA2435416C (en) 2001-02-28 2012-11-13 Rex Medical, L.P. Apparatus for delivering ablation fluid to treat lesions
US20020123755A1 (en) 2001-03-01 2002-09-05 Scimed Life Systems, Inc. Embolic protection filter delivery sheath
US6562058B2 (en) 2001-03-02 2003-05-13 Jacques Seguin Intravascular filter system
US6488704B1 (en) 2001-05-07 2002-12-03 Biomed Solutions, Llc Implantable particle measuring apparatus
US20030057156A1 (en) 2001-03-08 2003-03-27 Dean Peterson Atrial filter implants
US6503272B2 (en) 2001-03-21 2003-01-07 Cordis Corporation Stent-based venous valves
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7556646B2 (en) * 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6773456B1 (en) 2001-03-23 2004-08-10 Endovascular Technologies, Inc. Adjustable customized endovascular graft
DE60104647T2 (en) 2001-03-27 2005-08-11 William Cook Europe Aps Vascular graft for the aorta
JP2002293678A (en) 2001-03-28 2002-10-09 Fuji Photo Film Co Ltd Method for forming image
US6911036B2 (en) 2001-04-03 2005-06-28 Medtronic Vascular, Inc. Guidewire apparatus for temporary distal embolic protection
WO2002083224A2 (en) 2001-04-17 2002-10-24 Salviac Limited A catheter
US6676692B2 (en) * 2001-04-27 2004-01-13 Intek Technology L.L.C. Apparatus for delivering, repositioning and/or retrieving self-expanding stents
ATE373449T1 (en) 2001-04-27 2007-10-15 Bard Inc C R HANDLE DESIGN FOR A MEDICAL CATHETER
US20050021123A1 (en) * 2001-04-30 2005-01-27 Jurgen Dorn Variable speed self-expanding stent delivery system and luer locking connector
US6746469B2 (en) 2001-04-30 2004-06-08 Advanced Cardiovascular Systems, Inc. Balloon actuated apparatus having multiple embolic filters, and method of use
DE10121210B4 (en) 2001-04-30 2005-11-17 Universitätsklinikum Freiburg Anchoring element for the intraluminal anchoring of a heart valve replacement and method for its production
US7374560B2 (en) 2001-05-01 2008-05-20 St. Jude Medical, Cardiology Division, Inc. Emboli protection devices and related methods of use
US6682558B2 (en) 2001-05-10 2004-01-27 3F Therapeutics, Inc. Delivery system for a stentless valve bioprosthesis
US6716238B2 (en) 2001-05-10 2004-04-06 Scimed Life Systems, Inc. Stent with detachable tethers and method of using same
US6663663B2 (en) 2001-05-14 2003-12-16 M.I. Tech Co., Ltd. Stent
US6936067B2 (en) 2001-05-17 2005-08-30 St. Jude Medical Inc. Prosthetic heart valve with slit stent
US6821291B2 (en) * 2001-06-01 2004-11-23 Ams Research Corporation Retrievable stent and method of use thereof
KR100393548B1 (en) 2001-06-05 2003-08-02 주식회사 엠아이텍 Stent
DE60115104T2 (en) 2001-06-08 2006-08-03 Rex Medical, L.P. VASCULAR FLAP DEVICE FOR APPROACHING THE VESSEL WALL
US7510571B2 (en) 2001-06-11 2009-03-31 Boston Scientific, Scimed, Inc. Pleated composite ePTFE/textile hybrid covering
US6818013B2 (en) * 2001-06-14 2004-11-16 Cordis Corporation Intravascular stent device
GB0114918D0 (en) 2001-06-19 2001-08-08 Vortex Innovation Ltd Devices for repairing aneurysms
US6676693B1 (en) * 2001-06-27 2004-01-13 Advanced Cardiovascular Systems, Inc. Apparatus and method for delivering a self-expanding stent
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
US7377938B2 (en) 2001-07-19 2008-05-27 The Cleveland Clinic Foundation Prosthetic cardiac value and method for making same
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US6755854B2 (en) * 2001-07-31 2004-06-29 Advanced Cardiovascular Systems, Inc. Control device and mechanism for deploying a self-expanding medical device
FR2828263B1 (en) 2001-08-03 2007-05-11 Philipp Bonhoeffer DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE
US6896002B2 (en) 2001-08-21 2005-05-24 Scimed Life Systems, Inc Pressure transducer protection valve
EP1427469A4 (en) 2001-08-22 2007-03-28 Hasan Semih Oktay Flexible mems actuated controlled expansion stent
US7097665B2 (en) 2003-01-16 2006-08-29 Synecor, Llc Positioning tools and methods for implanting medical devices
US20070112358A1 (en) 2001-09-06 2007-05-17 Ryan Abbott Systems and Methods for Treating Septal Defects
US20030229390A1 (en) 2001-09-17 2003-12-11 Control Delivery Systems, Inc. On-stent delivery of pyrimidines and purine analogs
US6616682B2 (en) 2001-09-19 2003-09-09 Jomed Gmbh Methods and apparatus for distal protection during a medical procedure
DE10148185B4 (en) * 2001-09-28 2005-08-11 Alveolus, Inc. Instrument for implanting vascular prostheses
US20030065386A1 (en) 2001-09-28 2003-04-03 Weadock Kevin Shaun Radially expandable endoprosthesis device with two-stage deployment
US6976974B2 (en) 2002-10-23 2005-12-20 Scimed Life Systems, Inc. Rotary manifold syringe
US7172572B2 (en) 2001-10-04 2007-02-06 Boston Scientific Scimed, Inc. Manifold system for a medical device
US6790237B2 (en) 2001-10-09 2004-09-14 Scimed Life Systems, Inc. Medical stent with a valve and related methods of manufacturing
AU2002347855A1 (en) 2001-10-09 2003-04-22 Endoscopic Technologies, Inc. Method and apparatus for improved stiffness in the linkage assembly of a flexible arm
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6866669B2 (en) 2001-10-12 2005-03-15 Cordis Corporation Locking handle deployment mechanism for medical device and method
US6939352B2 (en) * 2001-10-12 2005-09-06 Cordis Corporation Handle deployment mechanism for medical device and method
US7192441B2 (en) 2001-10-16 2007-03-20 Scimed Life Systems, Inc. Aortic artery aneurysm endovascular prosthesis
US7144363B2 (en) 2001-10-16 2006-12-05 Extensia Medical, Inc. Systems for heart treatment
AUPR847201A0 (en) 2001-10-26 2001-11-15 Cook Incorporated Endoluminal graft
GB0125925D0 (en) 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
ATE543392T1 (en) * 2001-11-16 2012-02-15 Merial Ltd AUTOMATIC POULTRY INJECTION DEVICE
US6712843B2 (en) 2001-11-20 2004-03-30 Scimed Life Systems, Inc Stent with differential lengthening/shortening members
US7147657B2 (en) 2003-10-23 2006-12-12 Aptus Endosystems, Inc. Prosthesis delivery systems and methods
US6890340B2 (en) 2001-11-29 2005-05-10 Medtronic Vascular, Inc. Apparatus for temporary intraluminal protection
US7294146B2 (en) 2001-12-03 2007-11-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
EP2604310B1 (en) 2001-12-05 2018-05-02 Keystone Heart Ltd. Endovascular device for entrapment of particulate matter
US7041139B2 (en) 2001-12-11 2006-05-09 Boston Scientific Scimed, Inc. Ureteral stents and related methods
US6676668B2 (en) 2001-12-12 2004-01-13 C.R. Baed Articulating stone basket
US7189258B2 (en) 2002-01-02 2007-03-13 Medtronic, Inc. Heart valve system
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
US20030130729A1 (en) 2002-01-04 2003-07-10 David Paniagua Percutaneously implantable replacement heart valve device and method of making same
US6723116B2 (en) 2002-01-14 2004-04-20 Syde A. Taheri Exclusion of ascending/descending aorta and/or aortic arch aneurysm
US20030135162A1 (en) * 2002-01-17 2003-07-17 Scimed Life Systems, Inc. Delivery and retrieval manifold for a distal protection filter
US6730377B2 (en) 2002-01-23 2004-05-04 Scimed Life Systems, Inc. Balloons made from liquid crystal polymer blends
US6911040B2 (en) 2002-01-24 2005-06-28 Cordis Corporation Covered segmented stent
US6689144B2 (en) 2002-02-08 2004-02-10 Scimed Life Systems, Inc. Rapid exchange catheter and methods for delivery of vaso-occlusive devices
US6974464B2 (en) 2002-02-28 2005-12-13 3F Therapeutics, Inc. Supportless atrioventricular heart valve and minimally invasive delivery systems thereof
DE60315425T2 (en) 2002-03-05 2008-06-26 Salviac Ltd. SYSTEM FOR PROTECTION FROM EMBOLICS
CA2478822C (en) 2002-03-11 2016-07-12 Altea Therapeutics Corporation Transdermal drug delivery patch system, method of making same and method of using same
US20030176884A1 (en) 2002-03-12 2003-09-18 Marwane Berrada Everted filter device
US7163556B2 (en) 2002-03-21 2007-01-16 Providence Health System - Oregon Bioprosthesis and method for suturelessly making same
US20030187495A1 (en) 2002-04-01 2003-10-02 Cully Edward H. Endoluminal devices, embolic filters, methods of manufacture and use
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
US7052511B2 (en) 2002-04-04 2006-05-30 Scimed Life Systems, Inc. Delivery system and method for deployment of foreshortening endoluminal devices
US20030195609A1 (en) 2002-04-10 2003-10-16 Scimed Life Systems, Inc. Hybrid stent
US7125418B2 (en) 2002-04-16 2006-10-24 The International Heart Institute Of Montana Foundation Sigmoid valve and method for its percutaneous implantation
WO2003088873A1 (en) 2002-04-16 2003-10-30 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US20030199759A1 (en) 2002-04-18 2003-10-23 Richard Merwin F. Coronary catheter with radiopaque length markers
US20030199971A1 (en) 2002-04-23 2003-10-23 Numed, Inc. Biological replacement valve assembly
US8721713B2 (en) 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
US7105016B2 (en) 2002-04-23 2006-09-12 Medtronic Vascular, Inc. Integrated mechanical handle with quick slide mechanism
US20030204249A1 (en) 2002-04-25 2003-10-30 Michel Letort Endovascular stent graft and fixation cuff
US7331993B2 (en) 2002-05-03 2008-02-19 The General Hospital Corporation Involuted endovascular valve and method of construction
US8070769B2 (en) 2002-05-06 2011-12-06 Boston Scientific Scimed, Inc. Inverted embolic protection filter
US7141064B2 (en) 2002-05-08 2006-11-28 Edwards Lifesciences Corporation Compressed tissue for heart valve leaflets
US6830575B2 (en) 2002-05-08 2004-12-14 Scimed Life Systems, Inc. Method and device for providing full protection to a stent
EP2149350A3 (en) 2002-05-10 2010-04-28 Cordis Corporation Method of making a medical device having a thin wall tubular membrane over a structural frame
US7351256B2 (en) 2002-05-10 2008-04-01 Cordis Corporation Frame based unidirectional flow prosthetic implant
DE10221076A1 (en) 2002-05-11 2003-11-27 Ruesch Willy Gmbh stent
US20030225445A1 (en) 2002-05-14 2003-12-04 Derus Patricia M. Surgical stent delivery devices and methods
US20040117004A1 (en) 2002-05-16 2004-06-17 Osborne Thomas A. Stent and method of forming a stent with integral barbs
US7585309B2 (en) 2002-05-16 2009-09-08 Boston Scientific Scimed, Inc. Aortic filter
WO2003096932A1 (en) 2002-05-17 2003-11-27 Bionethos Holding Gmbh Medical device for the treatment of a body vessel or another tubular structure in the body
EP1513440A2 (en) 2002-05-30 2005-03-16 The Board of Trustees of The Leland Stanford Junior University Apparatus and method for coronary sinus access
US7264632B2 (en) 2002-06-07 2007-09-04 Medtronic Vascular, Inc. Controlled deployment delivery system
US7717934B2 (en) 2002-06-14 2010-05-18 Ev3 Inc. Rapid exchange catheters usable with embolic protection devices
US7044962B2 (en) 2002-06-25 2006-05-16 Scimed Life Systems, Inc. Implantable prosthesis with displaceable skirt
US7166120B2 (en) 2002-07-12 2007-01-23 Ev3 Inc. Catheter with occluding cuff
US7232452B2 (en) 2002-07-12 2007-06-19 Ev3 Inc. Device to create proximal stasis
US7141063B2 (en) 2002-08-06 2006-11-28 Icon Medical Corp. Stent with micro-latching hinge joints
EP1388328A1 (en) 2002-08-07 2004-02-11 Abbott Laboratories Vascular Enterprises Limited Apparatus for delivering and deployment of an expandable stent within a blood vessel
US6969395B2 (en) 2002-08-07 2005-11-29 Boston Scientific Scimed, Inc. Electroactive polymer actuated medical devices
DE20321838U1 (en) 2002-08-13 2011-02-10 JenaValve Technology Inc., Wilmington Device for anchoring and aligning heart valve prostheses
US6863668B2 (en) 2002-08-16 2005-03-08 Edwards Lifesciences Corporation Articulation mechanism for medical devices
US7041132B2 (en) * 2002-08-16 2006-05-09 3F Therapeutics, Inc, Percutaneously delivered heart valve and delivery means thereof
AU2003272226A1 (en) 2002-08-20 2004-03-11 Cook Incorporated Stent graft with improved proximal end
US8114114B2 (en) 2002-08-27 2012-02-14 Emboline, Inc. Embolic protection device
CA2714875C (en) 2002-08-28 2014-01-07 Heart Leaflet Technologies, Inc. Method and device for treating diseased valve
ES2349952T3 (en) 2002-08-29 2011-01-13 St. Jude Medical, Cardiology Division, Inc. IMPLANTABLE DEVICES FOR CONTROLLING THE INTERNAL CIRCUMFERENCE OF AN ANATOMICAL ORIFICE OR LUMEN.
US7083633B2 (en) 2002-09-03 2006-08-01 Advanced Vascular Technologies Llc Arterial embolic filter deployed from catheter
KR100442330B1 (en) 2002-09-03 2004-07-30 주식회사 엠아이텍 Stent and manufacturing method the same
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
CO5500017A1 (en) 2002-09-23 2005-03-31 3F Therapeutics Inc MITRAL PROTESTIC VALVE
US20040059409A1 (en) 2002-09-24 2004-03-25 Stenzel Eric B. Method of applying coatings to a medical device
US7998163B2 (en) 2002-10-03 2011-08-16 Boston Scientific Scimed, Inc. Expandable retrieval device
US6824041B2 (en) 2002-10-21 2004-11-30 Agilent Technologies, Inc. High temperature eutectic solder ball attach
US7416557B2 (en) 2002-10-24 2008-08-26 Boston Scientific Scimed, Inc. Venous valve apparatus and method
US7481823B2 (en) 2002-10-25 2009-01-27 Boston Scientific Scimed, Inc. Multiple membrane embolic protection filter
TWI227874B (en) 2002-10-31 2005-02-11 Teac Corp Disk device
US6814746B2 (en) 2002-11-01 2004-11-09 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
EP1567087B1 (en) 2002-11-08 2009-04-01 Jacques Seguin Endoprosthesis for vascular bifurcation
AU2003294293A1 (en) 2002-11-13 2004-06-03 Viacor, Inc. Cardiac valve procedure methods and devices
US7255706B2 (en) 2002-11-13 2007-08-14 Rosengart Todd K Apparatus and method for cutting a heart valve
US20040098022A1 (en) 2002-11-14 2004-05-20 Barone David D. Intraluminal catheter with hydraulically collapsible self-expanding protection device
US7527636B2 (en) 2002-11-14 2009-05-05 Medtronic Vascular, Inc Intraluminal guidewire with hydraulically collapsible self-expanding protection device
US7141061B2 (en) 2002-11-14 2006-11-28 Synecor, Llc Photocurable endoprosthesis system
AU2003291541A1 (en) * 2002-11-15 2004-06-15 Paracor Medical, Inc. Cardiac harness delivery device
US7001425B2 (en) 2002-11-15 2006-02-21 Scimed Life Systems, Inc. Braided stent method for its manufacture
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
FR2847155B1 (en) 2002-11-20 2005-08-05 Younes Boudjemline METHOD FOR MANUFACTURING A MEDICAL IMPLANT WITH ADJUSTED STRUCTURE AND IMPLANT OBTAINED THEREBY
WO2004050137A2 (en) 2002-11-29 2004-06-17 Mindguard Ltd. Braided intraluminal device for stroke prevention
US7678068B2 (en) 2002-12-02 2010-03-16 Gi Dynamics, Inc. Atraumatic delivery devices
US7025791B2 (en) 2002-12-02 2006-04-11 Gi Dynamics, Inc. Bariatric sleeve
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US6984242B2 (en) 2002-12-20 2006-01-10 Gore Enterprise Holdings, Inc. Implantable medical device assembly
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US6849084B2 (en) 2002-12-31 2005-02-01 Intek Technology L.L.C. Stent delivery system
US6830585B1 (en) 2003-01-14 2004-12-14 3F Therapeutics, Inc. Percutaneously deliverable heart valve and methods of implantation
US20040138694A1 (en) 2003-01-15 2004-07-15 Scimed Life Systems, Inc. Intravascular filtering membrane and method of making an embolic protection filter device
US7753945B2 (en) 2003-01-17 2010-07-13 Gore Enterprise Holdings, Inc. Deployment system for an endoluminal device
EP1589902A1 (en) 2003-01-27 2005-11-02 Medtronic Vascular Connaught Improved packaging for stent delivery systems
GB2398245B (en) 2003-02-06 2007-03-28 Great Ormond Street Hospital F Valve prosthesis
US7740644B2 (en) 2003-02-24 2010-06-22 Boston Scientific Scimed, Inc. Embolic protection filtering device that can be adapted to be advanced over a guidewire
US20040220655A1 (en) 2003-03-03 2004-11-04 Sinus Rhythm Technologies, Inc. Electrical conduction block implant device
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
GB2407146B (en) 2003-03-20 2006-04-26 Aortech Internat Plc Valve leaflet for use in cardiac valve prosthesis
US20060271081A1 (en) 2003-03-30 2006-11-30 Fidel Realyvasquez Apparatus and methods for valve repair
WO2004089253A1 (en) 2003-04-01 2004-10-21 Cook Incorporated Percutaneously deployed vascular valves
US7530995B2 (en) 2003-04-17 2009-05-12 3F Therapeutics, Inc. Device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US7175656B2 (en) 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US7591832B2 (en) 2003-04-24 2009-09-22 Medtronic, Inc. Expandable guide sheath and apparatus with distal protection and methods for use
EP1472996B1 (en) 2003-04-30 2009-09-30 Medtronic Vascular, Inc. Percutaneously delivered temporary valve
US6969396B2 (en) 2003-05-07 2005-11-29 Scimed Life Systems, Inc. Filter membrane with increased surface area
US7235093B2 (en) 2003-05-20 2007-06-26 Boston Scientific Scimed, Inc. Mechanism to improve stent securement
US7625364B2 (en) 2003-05-27 2009-12-01 Cardia, Inc. Flexible center connection for occlusion device
US20040243221A1 (en) 2003-05-27 2004-12-02 Fawzi Natalie V. Endovascular graft including substructure for positioning and sealing within vasculature
US7041127B2 (en) 2003-05-28 2006-05-09 Ledergerber Walter J Textured and drug eluting coronary artery stent
DE602004029159D1 (en) 2003-05-28 2010-10-28 Cook Inc
AU2003237985A1 (en) 2003-06-09 2005-01-28 3F Therapeutics, Inc. Atrioventricular heart valve and minimally invasive delivery systems thereof
US7201772B2 (en) 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
AU2004253375B2 (en) 2003-07-08 2011-07-14 Ventor Technologies Ltd. Implantable prosthetic devices particularly for transarterial delivery in the treatment of aortic stenosis, and methods of implanting such devices
US7744620B2 (en) 2003-07-18 2010-06-29 Intervalve, Inc. Valvuloplasty catheter
CA2533353A1 (en) 2003-07-21 2005-02-03 The Trustees Of The University Of Pennsylvania Percutaneous heart valve
DE10334868B4 (en) 2003-07-29 2013-10-17 Pfm Medical Ag Implantable device as a replacement organ valve, its manufacturing process and basic body and membrane element for it
WO2005011535A2 (en) 2003-07-31 2005-02-10 Cook Incorporated Prosthetic valve for implantation in a body vessel
EP1659992B1 (en) 2003-07-31 2013-03-27 Cook Medical Technologies LLC Prosthetic valve devices and methods of making such devices
DE10340265A1 (en) 2003-08-29 2005-04-07 Sievers, Hans-Hinrich, Prof. Dr.med. Prosthesis for the replacement of the aortic and / or mitral valve of the heart
US20050049692A1 (en) 2003-09-02 2005-03-03 Numamoto Michael J. Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US9198786B2 (en) 2003-09-03 2015-12-01 Bolton Medical, Inc. Lumen repair device with capture structure
WO2005023358A1 (en) 2003-09-03 2005-03-17 Acumen Medical, Inc. Expandable sheath for delivering instruments and agents into a body lumen
US8500792B2 (en) 2003-09-03 2013-08-06 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US7993384B2 (en) * 2003-09-12 2011-08-09 Abbott Cardiovascular Systems Inc. Delivery system for medical devices
US8535344B2 (en) 2003-09-12 2013-09-17 Rubicon Medical, Inc. Methods, systems, and devices for providing embolic protection and removing embolic material
US7758625B2 (en) * 2003-09-12 2010-07-20 Abbott Vascular Solutions Inc. Delivery system for medical devices
EG24012A (en) 2003-09-24 2008-03-23 Wael Mohamed Nabil Lotfy Valved balloon stent
US10219899B2 (en) 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
CA2545874C (en) 2003-10-06 2012-02-21 3F Therapeutics, Inc. Minimally invasive valve replacement system
US20050075728A1 (en) 2003-10-06 2005-04-07 Nguyen Tuoc Tan Minimally invasive valve replacement system
EP1711613B1 (en) 2003-10-09 2013-04-10 E.I. Du Pont De Nemours And Company Gene silencing by using micro-rna molecules
US7967829B2 (en) 2003-10-09 2011-06-28 Boston Scientific Scimed, Inc. Medical device delivery system
WO2005037338A1 (en) 2003-10-14 2005-04-28 Cook Incorporated Hydrophilic coated medical device
US7666219B2 (en) 2003-10-15 2010-02-23 Cook Incorporated Prosthesis deployment system retention device
US7175654B2 (en) 2003-10-16 2007-02-13 Cordis Corporation Stent design having stent segments which uncouple upon deployment
US7004176B2 (en) 2003-10-17 2006-02-28 Edwards Lifesciences Ag Heart valve leaflet locator
US20050084595A1 (en) 2003-10-20 2005-04-21 Shukla Triveni P. Processed cheeses comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid
US7419498B2 (en) 2003-10-21 2008-09-02 Nmt Medical, Inc. Quick release knot attachment system
US7347869B2 (en) 2003-10-31 2008-03-25 Cordis Corporation Implantable valvular prosthesis
US7070616B2 (en) 2003-10-31 2006-07-04 Cordis Corporation Implantable valvular prosthesis
WO2005048883A1 (en) 2003-11-13 2005-06-02 Fidel Realyvasquez Methods and apparatus for valve repair
US6972025B2 (en) 2003-11-18 2005-12-06 Scimed Life Systems, Inc. Intravascular filter with bioabsorbable centering element
US20050113904A1 (en) * 2003-11-25 2005-05-26 Shank Peter J. Composite stent with inner and outer stent elements and method of using the same
US7186265B2 (en) 2003-12-10 2007-03-06 Medtronic, Inc. Prosthetic cardiac valves and systems and methods for implanting thereof
US20050251189A1 (en) 2004-05-07 2005-11-10 Usgi Medical Inc. Multi-position tissue manipulation assembly
US20050137683A1 (en) 2003-12-19 2005-06-23 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US7261732B2 (en) 2003-12-22 2007-08-28 Henri Justino Stent mounted valve
EP2529699B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US7445631B2 (en) * 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7824443B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US7824442B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US20050137686A1 (en) 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US8579962B2 (en) * 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US20050137696A1 (en) 2003-12-23 2005-06-23 Sadra Medical Apparatus and methods for protecting against embolization during endovascular heart valve replacement
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
ES2458243T3 (en) 2003-12-23 2014-04-30 Sadra Medical, Inc. Replaceable heart valve
US8343213B2 (en) * 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US20120041550A1 (en) * 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20070156225A1 (en) 2003-12-23 2007-07-05 Xtent, Inc. Automated control mechanisms and methods for custom length stent apparatus
US20050137691A1 (en) 2003-12-23 2005-06-23 Sadra Medical Two piece heart valve and anchor
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US20050228495A1 (en) 2004-01-15 2005-10-13 Macoviak John A Suspended heart valve devices, systems, and methods for supplementing, repairing, or replacing a native heart valve
US7468070B2 (en) 2004-01-23 2008-12-23 Boston Scientific Scimed, Inc. Stent delivery catheter
US7597711B2 (en) 2004-01-26 2009-10-06 Arbor Surgical Technologies, Inc. Heart valve assembly with slidable coupling connections
US20050203818A9 (en) 2004-01-26 2005-09-15 Cibc World Markets System and method for creating tradeable financial units
EP1718246A4 (en) 2004-02-05 2009-11-18 Childrens Medical Center Transcatheter delivery of a replacement heart valve
US7311730B2 (en) 2004-02-13 2007-12-25 Shlomo Gabbay Support apparatus and heart valve prosthesis for sutureless implantation
US7785341B2 (en) 2004-02-27 2010-08-31 Aortx, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
US20050203549A1 (en) 2004-03-09 2005-09-15 Fidel Realyvasquez Methods and apparatus for off pump aortic valve replacement with a valve prosthesis
EP3308744B2 (en) 2004-03-11 2023-08-02 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
US20050222674A1 (en) 2004-03-31 2005-10-06 Med Institute, Inc. Endoluminal graft with a prosthetic valve
EP1737390A1 (en) 2004-04-08 2007-01-03 Cook Incorporated Implantable medical device with optimized shape
AU2005234793B2 (en) 2004-04-23 2012-01-19 3F Therapeutics, Inc. Implantable prosthetic valve
ATE367132T1 (en) 2004-05-25 2007-08-15 Cook William Europ STENT AND STENT REMOVING DEVICE
US7122020B2 (en) 2004-06-25 2006-10-17 Mogul Enterprises, Inc. Linkage steering mechanism for deflectable catheters
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
US8500785B2 (en) 2004-07-13 2013-08-06 Boston Scientific Scimed, Inc. Catheter
US7763065B2 (en) 2004-07-21 2010-07-27 Reva Medical, Inc. Balloon expandable crush-recoverable stent device
RU2396289C2 (en) 2004-08-13 2010-08-10 Рева Медикал, Инк. Multi-purpose bioresorbable, inherently radio-opaque polymers
FR2874813B1 (en) 2004-09-07 2007-06-22 Perouse Soc Par Actions Simpli VALVULAR PROSTHESIS
US6951571B1 (en) 2004-09-30 2005-10-04 Rohit Srivastava Valve implanting device
US7641687B2 (en) 2004-11-02 2010-01-05 Carbomedics Inc. Attachment of a sewing cuff to a heart valve
US20060161249A1 (en) 2004-11-22 2006-07-20 Fidel Realyvasquez Ring-shaped valve prosthesis attachment device
US8292944B2 (en) 2004-12-17 2012-10-23 Reva Medical, Inc. Slide-and-lock stent
US7989157B2 (en) 2005-01-11 2011-08-02 Medtronic, Inc. Solution for storing bioprosthetic tissue used in a biological prosthesis
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US7918880B2 (en) * 2005-02-16 2011-04-05 Boston Scientific Scimed, Inc. Self-expanding stent and delivery system
ES2558534T3 (en) 2005-02-18 2016-02-05 The Cleveland Clinic Foundation Device to replace a heart valve
US20060195186A1 (en) 2005-02-28 2006-08-31 Drews Michael J Connectors for two piece heart valves and methods for implanting such heart valves
US7402168B2 (en) 2005-04-11 2008-07-22 Xtent, Inc. Custom-length stent delivery system with independently operable expansion elements
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
EP1883375B1 (en) 2005-05-24 2016-12-07 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
US8974523B2 (en) 2005-05-27 2015-03-10 Hlt, Inc. Stentless support structure
US7938851B2 (en) 2005-06-08 2011-05-10 Xtent, Inc. Devices and methods for operating and controlling interventional apparatus
US20060287668A1 (en) 2005-06-16 2006-12-21 Fawzi Natalie V Apparatus and methods for intravascular embolic protection
US7618413B2 (en) 2005-06-22 2009-11-17 Boston Scientific Scimed, Inc. Medical device control system
EP1981432B1 (en) * 2005-06-30 2012-10-03 Abbott Laboratories Delivery system for a medical device
US20070016288A1 (en) 2005-07-13 2007-01-18 Gurskis Donnell W Two-piece percutaneous prosthetic heart valves and methods for making and using them
US8038704B2 (en) * 2005-07-27 2011-10-18 Paul S. Sherburne Stent and other objects removal from a body
US7914574B2 (en) 2005-08-02 2011-03-29 Reva Medical, Inc. Axially nested slide and lock expandable device
US8968379B2 (en) 2005-09-02 2015-03-03 Medtronic Vascular, Inc. Stent delivery system with multiple evenly spaced pullwires
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
US20080188928A1 (en) 2005-09-16 2008-08-07 Amr Salahieh Medical device delivery sheath
US20070173918A1 (en) 2005-09-30 2007-07-26 Dreher James H Apparatus and methods for locating an ostium of a vessel
US8112291B2 (en) 2005-10-07 2012-02-07 Cerner Innovation, Inc. User interface for prioritizing opportunities for clinical process improvement
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
DE102005052628B4 (en) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
US8052715B2 (en) 2005-12-01 2011-11-08 Atritech, Inc. Method and apparatus for recapturing an implant from the left atrial appendage
US20070135826A1 (en) 2005-12-01 2007-06-14 Steve Zaver Method and apparatus for delivering an implant without bias to a left atrial appendage
FR2894131B1 (en) 2005-12-02 2008-12-05 Perouse Soc Par Actions Simpli DEVICE FOR TREATING A BLOOD VESSEL, AND ASSOCIATED TREATMENT NECESSARY.
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
WO2007097983A2 (en) 2006-02-14 2007-08-30 Sadra Medical, Inc. Systems and methods for delivering a medical implant
WO2008029296A2 (en) 2006-02-16 2008-03-13 Endocor Pte Ltd. Minimally invasive heart valve replacement
US8518098B2 (en) 2006-02-21 2013-08-27 Cook Medical Technologies Llc Split sheath deployment system
US8403981B2 (en) 2006-02-27 2013-03-26 CardiacMC, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US20070239254A1 (en) 2006-04-07 2007-10-11 Chris Chia System for percutaneous delivery and removal of a prosthetic valve
EP2366364B1 (en) 2006-04-27 2014-09-10 Cook Medical Technologies LLC Deploying medical implants
EP2023860A2 (en) 2006-04-29 2009-02-18 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
CN101506538A (en) 2006-06-20 2009-08-12 奥尔特克斯公司 Torque shaft and torque drive
US8439961B2 (en) * 2006-07-31 2013-05-14 Boston Scientific Scimed, Inc. Stent retaining mechanisms
US20080033541A1 (en) 2006-08-02 2008-02-07 Daniel Gelbart Artificial mitral valve
US8840655B2 (en) 2006-08-09 2014-09-23 Coherex Medical, Inc. Systems and devices for reducing the size of an internal tissue opening
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US20080082165A1 (en) 2006-09-28 2008-04-03 Heart Leaflet Technologies, Inc. Delivery Tool For Percutaneous Delivery Of A Prosthesis
AU2007317191B2 (en) 2006-11-07 2014-02-20 Corvia Medical, Inc. Devices and methods for the treatment of heart failure
EP2104470B1 (en) * 2006-12-06 2022-10-26 Medtronic Corevalve, LLC. System and method for transapical delivery of an annulus anchored self-expanding valve
US8070799B2 (en) * 2006-12-19 2011-12-06 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
WO2008091493A1 (en) 2007-01-08 2008-07-31 California Institute Of Technology In-situ formation of a valve
US7704275B2 (en) 2007-01-26 2010-04-27 Reva Medical, Inc. Circumferentially nested expandable device
ES2441801T3 (en) 2007-02-05 2014-02-06 Boston Scientific Limited Percutaneous valve and supply system
WO2008100600A1 (en) * 2007-02-16 2008-08-21 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US8070802B2 (en) 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US20080208328A1 (en) 2007-02-23 2008-08-28 Endovalve, Inc. Systems and Methods For Placement of Valve Prosthesis System
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
EP2143404B1 (en) 2007-04-27 2012-02-15 Terumo Kabushiki Kaisha Stent delivery system
CN101720211B (en) 2007-05-15 2013-06-05 耶拿阀门科技公司 Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent
US20090012541A1 (en) * 2007-06-11 2009-01-08 Valentx, Inc. Expandable fastener system with flower petal-shaped retention elements
AU2008269018B2 (en) 2007-06-26 2014-07-31 St. Jude Medical, Inc. Apparatus and methods for implanting collapsible/expandable prosthetic heart valves
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US9814611B2 (en) 2007-07-31 2017-11-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8192351B2 (en) 2007-08-13 2012-06-05 Paracor Medical, Inc. Medical device delivery system having integrated introducer
CN101827566B (en) * 2007-09-07 2013-07-24 爱德华兹生命科学公司 Active holder for annuloplasty ring delivery
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
WO2009067432A1 (en) 2007-11-19 2009-05-28 Cook Incorporated Valve frame
US8366603B2 (en) 2007-12-21 2013-02-05 Boston Scientific Scimed, Inc. Endoscope including a multifunction conductor
US20090171456A1 (en) 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
CA2712749A1 (en) * 2008-01-24 2009-07-30 Medtronic Vascular Inc. Infundibular reducer device delivery system and related methods
US8157853B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8317858B2 (en) 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
DE102008012113A1 (en) 2008-03-02 2009-09-03 Transcatheter Technologies Gmbh Implant e.g. heart-valve-carrying stent, for e.g. arresting blood vessel, has fiber by which section of implant is reducible according to increasing of implant at extended diameter by unfolding or expansion of diameter with expansion unit
US8052607B2 (en) 2008-04-22 2011-11-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Ultrasound imaging catheter with pivoting head
CN102083391B (en) 2008-04-23 2015-02-18 麦德托尼克公司 Stented heart valve devices
US8696743B2 (en) 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
EP2367505B1 (en) 2008-09-29 2020-08-12 Edwards Lifesciences CardiAQ LLC Heart valve
EP2845569A1 (en) 2008-10-01 2015-03-11 Cardiaq Valve Technologies, Inc. Delivery system for vascular implant
ES2627860T3 (en) * 2008-10-10 2017-07-31 Boston Scientific Scimed, Inc. Medical devices and placement systems for placing medical devices
JP5559798B2 (en) 2008-10-10 2014-07-23 レヴァ メディカル、 インコーポレイテッド Expandable slide and locking stent
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
ES2551694T3 (en) 2008-12-23 2015-11-23 Sorin Group Italia S.R.L. Expandable prosthetic valve with anchoring appendages
US9402720B2 (en) 2009-01-12 2016-08-02 Valve Medical Ltd. Modular percutaneous valve structure and delivery method
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
JP5659168B2 (en) 2009-02-27 2015-01-28 セント・ジュード・メディカル,インコーポレイテッド Foldable prosthetic heart valve stent features
EP3708123A1 (en) 2009-03-30 2020-09-16 JC Medical, Inc. Sutureless valve prostheses and devices and methods for delivery
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
WO2010121076A2 (en) 2009-04-15 2010-10-21 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
JP5744028B2 (en) 2009-08-27 2015-07-01 メドトロニック,インコーポレイテッド Transcatheter valve delivery system and method
EP4257083A3 (en) 2009-11-05 2024-01-17 The Trustees of the University of Pennsylvania Valve prosthesis
EP2509538B1 (en) 2009-12-08 2017-09-20 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
DE102010008360A1 (en) 2010-02-17 2011-09-29 Transcatheter Technologies Gmbh Medical implant in which gaps remain during crimping or folding, method and device for moving
ES2922283T3 (en) 2010-03-05 2022-09-12 Edwards Lifesciences Corp Retention mechanisms for prosthetic valves
US8523936B2 (en) 2010-04-10 2013-09-03 Reva Medical, Inc. Expandable slide and lock stent
US8623079B2 (en) 2010-04-23 2014-01-07 Medtronic, Inc. Stents for prosthetic heart valves
EP2560589B1 (en) 2010-04-23 2018-06-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US8876893B2 (en) 2010-04-27 2014-11-04 Medtronic, Inc. Transcatheter prosthetic heart valve delivery device with passive trigger release
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
AU2011257298B2 (en) 2010-05-25 2014-07-31 Jenavalve Technology Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
WO2012012761A2 (en) 2010-07-23 2012-01-26 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
JP2013540481A (en) 2010-09-17 2013-11-07 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Retainer for transcatheter heart valve delivery system
GB201017921D0 (en) 2010-10-22 2010-12-01 Ucl Business Plc Prothesis delivery system
DE102011010671A1 (en) 2011-02-08 2012-08-09 Continental Automotive Gmbh oil pump
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US20120283715A1 (en) * 2011-05-02 2012-11-08 Teresa Ann Mihalik Electrical sensing systems and methods of use for treating tissue
US9486604B2 (en) * 2011-05-12 2016-11-08 Medtronic, Inc. Packaging and preparation tray for a delivery system
US9144494B2 (en) * 2011-05-12 2015-09-29 Medtronic, Inc. Delivery catheter system with micro and macro movement control
US8945209B2 (en) 2011-05-20 2015-02-03 Edwards Lifesciences Corporation Encapsulated heart valve
WO2013009975A1 (en) 2011-07-12 2013-01-17 Boston Scientific Scimed, Inc. Coupling system for medical devices
US9339384B2 (en) * 2011-07-27 2016-05-17 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US8852272B2 (en) * 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
CA2957442C (en) 2011-08-11 2019-06-04 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9131926B2 (en) * 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US20130123796A1 (en) 2011-11-15 2013-05-16 Boston Scientific Scimed, Inc. Medical device with keyed locking structures
EP2779958B1 (en) * 2011-11-15 2020-12-23 Boston Scientific Scimed, Inc. Medical device with one or more sheathing transition members
US8940014B2 (en) * 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
US8851286B2 (en) * 2011-11-15 2014-10-07 Boston Scientific Scimed Inc. Dual sterilization containment vessel
EP2787926B1 (en) 2011-12-09 2022-07-06 Edwards Lifesciences Corporation Prosthetic heart valve improved commissure supports
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
WO2013096644A1 (en) 2011-12-20 2013-06-27 Boston Scientific Scimed, Inc. Apparatus for endovascularly replacing a heart valve
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US20130253342A1 (en) * 2012-03-26 2013-09-26 Medtronic, Inc. Pass-through implantable medical device delivery catheter
CA2871153A1 (en) 2012-05-09 2013-11-14 Boston Scientific Scimed, Inc. Reduced profile valve with locking elements
RU2017102580A (en) 2012-05-15 2018-12-20 Вэлв Медикал Лтд. INSERTED THROUGH THE SKIN MODULAR VALVE DEVICE AND VALVE MODULE FOR SUCH DEVICE
CA2875669C (en) 2012-07-12 2017-02-14 Boston Scientific Scimed, Inc. Low profile heart valve delivery system and method
US9248037B2 (en) * 2013-03-15 2016-02-02 Cook Medical Technologies Llc Automatic wireless medical device release mechanism
US9757232B2 (en) 2014-05-22 2017-09-12 Edwards Lifesciences Corporation Crimping apparatus for crimping prosthetic valve with protruding anchors
KR20170055990A (en) 2014-09-18 2017-05-22 이턴 에스알엘 Rocker arm assembly for engine braking
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
AU2016262564B2 (en) * 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves

Also Published As

Publication number Publication date
US20100121434A1 (en) 2010-05-13
US8617236B2 (en) 2013-12-31
CN102245256A (en) 2011-11-16
CA2739961A1 (en) 2010-04-15
EP3238661B1 (en) 2019-05-22
JP5607639B2 (en) 2014-10-15
US20180214266A1 (en) 2018-08-02
EP2617388A2 (en) 2013-07-24
JP2012505061A (en) 2012-03-01
US20170027693A1 (en) 2017-02-02
EP2340075B1 (en) 2013-03-06
EP3238661A1 (en) 2017-11-01
US20120046740A1 (en) 2012-02-23
US9387076B2 (en) 2016-07-12
ES2409693T3 (en) 2013-06-27
EP2340075A4 (en) 2012-02-29
US20100280495A1 (en) 2010-11-04
EP2617388B2 (en) 2019-11-06
CN102245256B (en) 2014-07-23
US8951299B2 (en) 2015-02-10
US10531952B2 (en) 2020-01-14
US20150209142A1 (en) 2015-07-30
US9872768B2 (en) 2018-01-23
WO2010042950A2 (en) 2010-04-15
EP2340075A2 (en) 2011-07-06
WO2010042950A3 (en) 2010-07-15
US9358110B2 (en) 2016-06-07
EP2617388A3 (en) 2013-08-07
US20140114405A1 (en) 2014-04-24
US8328868B2 (en) 2012-12-11
ES2627860T3 (en) 2017-07-31
US10772724B2 (en) 2020-09-15
US20170065414A1 (en) 2017-03-09
EP2617388B1 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
US20200368019A1 (en) Medical devices and delivery systems for delivering medical devices
US11918461B2 (en) Methods for treating a deficient native mitral valve
CN113365578A (en) Mechanically expandable prosthetic heart valve and delivery device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION