US20200034997A1 - An image processing method and apparauts - Google Patents
An image processing method and apparauts Download PDFInfo
- Publication number
- US20200034997A1 US20200034997A1 US15/735,537 US201715735537A US2020034997A1 US 20200034997 A1 US20200034997 A1 US 20200034997A1 US 201715735537 A US201715735537 A US 201715735537A US 2020034997 A1 US2020034997 A1 US 2020034997A1
- Authority
- US
- United States
- Prior art keywords
- brightness value
- brightness
- pixels
- value
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 39
- 238000012935 Averaging Methods 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/94—Dynamic range modification of images or parts thereof based on local image properties, e.g. for local contrast enhancement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/001—Texturing; Colouring; Generation of texture or colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/40—Image enhancement or restoration using histogram techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
Definitions
- the present invention is related to a field of image processing, and particularly to a method and apparatus of processing an image.
- Image processing includes emphasizing the overall or local characteristics of an image, making an originally unclear image become clear or emphasizing certain features of interest, widening the difference between the features of different objects in the image, and suppressing uninteresting features, so as to improve the image quality, to rich information, to strengthen image interpretation and recognition effects, and to meet the needs of some special analysis.
- grayscale produced by a camera is constrained, some detail may be lost in taking pictures with the camera.
- high brightness pixels will get together and become bigger if the area to be focused is a dark area in brightness, and thus the detail in higher brightness will be lost.
- low brightness pixels will get together and become bigger if the area to be focused is a bright area in brightness, and thus the detail in darker brightness will be lost.
- a main problem to be solved by the present invention is to provide an image processing method and apparatus which can enhance the details of an image by enlarging a display range around a central brightness region and adjusting the brightness distribution of the image.
- a technical solution adopted by the present invention is to provide an image processing method, which includes: acquiring a target image; obtaining a gray value of each pixel in the target image as a brightness value when the target image is a grayscale image; obtaining a brightness value of one color component of each pixel in the target image when the target image is a color image; establishing a brightness value-pixel quantity histogram with the brightness value as an abscissa and the number of pixels as a vertical coordinate; determining an initial central brightness value that maximum numbers of pixels have and determining an average brightness value of the target image; and adjusting a quantity distribution of the pixels in the target image at different brightness values, so as to make a new central brightness values that maximum number of pixels have closer to the average brightness value than the initial central brightness value, and to expand a range of pixel brightness values having preset brightness thresholds in which the new central brightness value is included.
- one technical solution adopted by the present invention is to provide an image processing method, which comprises: counting the number of pixels distributing in different brightness values in the target image; determining an initial central brightness value that maximum numbers of pixels have and determining an average brightness value of the target image; and adjusting a quantity distribution of the pixels in the target image at different brightness values, so as to make a new central brightness values that maximum number of pixels have closer to the average brightness value than the initial central brightness value, and to expand a range of pixel brightness values having preset brightness thresholds in which the new central brightness value is included.
- one technical solution adopted by the present invention is to provide an image processing apparatus comprising a memory, a processor, and an input/output device, connected to each other, the memory being configured to store a computer program and the computer program being implementing the above method when it is executed by the processor.
- the present invention discloses an image processing method and apparatus, wherein the method comprises the steps of: counting the number of pixels distributing in different brightness values in the target image; determining an initial central brightness value that maximum numbers of pixels have and determining an average brightness value of the target image; and adjusting a quantity distribution of the pixels in the target image at different brightness values, so as to make a new central brightness values that maximum number of pixels have closer to the average brightness value than the initial central brightness value, and to expand a range of pixel brightness values having preset brightness thresholds in which the new central brightness value is included; and transferring the brightness values into image pixel values to get an adjusted image.
- the present invention discloses an image processing method and apparatus, which enlarges the range around the central brightness value for display and adjusts the brightness distribution of the image to enhance the details of the image.
- FIG. 1 is a schematic flow chart of an embodiment of an image processing method provided by the present invention
- FIG. 2 is a brightness value-pixel quantity schematic diagram of the target image according to an embodiment of the image processing method provided by the present invention
- FIG. 3 is a brightness value-pixel quantity schematic diagram of the target image after an adjustment according to an embodiment of the image processing method provided by the present invention
- FIG. 4 is a schematic flow chart of another embodiment of the image processing method provided by the present invention.
- FIG. 5 is a schematic flow chat of adjusting a low brightness value according to another embodiment of the image processing method provided by the present invention.
- FIG. 6 is a schematic flow chart of adjusting a high brightness value according to another embodiment of the image processing method provided by the present invention.
- FIG. 7 a is a brightness value-pixel quantity schematic diagram of a low brightness value according to another embodiment of the image processing method provided by the present invention.
- FIG. 7 b is a brightness value-pixel quantity schematic diagram of a low brightness value after an adjustment according to another embodiment of the image processing method provided by the present invention.
- FIG. 8 a is a brightness value-pixel quantity schematic diagram of a high brightness value according to another embodiment of the image processing method provided by the present invention.
- FIG. 8 b is a brightness value-pixel quantity schematic diagram of a high brightness value after an adjustment according to another embodiment of the image processing method provided by the present invention.
- FIG. 9 is a schematic structural diagram of the image processing apparatus according to an embodiment of the present invention.
- FIG. 1 is a schematic flow chart of an embodiment of an image processing method according to the present invention.
- the image processing method includes the following steps.
- step 11 a step of counting the number of pixels distributing in different brightness values in the target image is performed.
- the so-called brightness value is generally for a grayscale image (black-and-white images) for expressing the brightness of the grayscale image.
- the brightness value may be the brightness of a certain color component in the color image.
- a brightness value of a pixel in an RGB image may be a brightness value of a R, G, or B color components therein.
- 2 8 256 brightness values can be used, that is, 0-255. Gray scale of 0 represents black, and gray scale of 255 represents white.
- this step may further include a step of acquiring a target image.
- the target image is a grayscale image
- a brightness value is equal to a grayscale value
- a grayscale of each pixel in the target image can be acquired as a brightness value.
- the target image is a color image
- a brightness value of one color component of each pixel in the target image is acquired.
- a method of calculating the brightness value of one pixel in the color image comprises using a Y value in a (Y, Cr, Cb) color space to represent the brightness value L, and using Cr and Cb to denote the chromas of red and blue colors respectively.
- RGB components in a (R, G, B) color space can be used for brightness values.
- a brightness value can be equal to 0.299R+0.587G+0.114B or Max (R, G, B).
- a (L, a, b) color space can be used to represent the brightness value, wherein L, a, and b are the chroma coordinates and the like.
- the step 11 can be consolidated as obtaining a brightness value of the target image, establishing a brightness value-pixel quantity histogram with the brightness value as an abscissa and the number of pixels as a vertical coordinate.
- FIG. 2 is a brightness value-pixel quantity schematic diagram of the target image according to an embodiment of the image processing method provided by the present invention, wherein the x-axis represents the brightness value, the y-axis represents the number of pixels, N is the number of pixels, Z1 and Z2 are the brightness values corresponding to N pixels.
- Step 12 a step of determining an initial central brightness value that maximum numbers of pixels have and determining an average brightness value of the target image is performed.
- a brightness value corresponding to the number of pixels having a maximum number is obtained as the initial central brightness value, and the brightness values of the target image is averaged to obtain the average brightness value.
- Step 13 a step of adjusting a quantity distribution of the pixels in the target image at different brightness values, so as to make a new central brightness values that maximum number of pixels have closer to the average brightness value than the initial central brightness value, and to expand a range of pixel brightness values having preset brightness thresholds in which the new central brightness value is included is performed.
- FIG. 3 is a brightness value-pixel quantity schematic diagram of the target image after an adjustment according to an embodiment of the image processing method provided by the present invention, wherein the x axis represents the brightness value, the y axis represents the pixel number, Z3 and Z4 are the brightness values corresponding to N pixels. It can be seen that, compared with FIG. 2 , the brightness range in the vicinity of the central pixel of the processed target image becomes wider.
- the brightness value of each pixel is converted into a corresponding pixel value.
- the brightness value is a grayscale value, and thus the image pixel value is the adjusted brightness value.
- the pixel value of an image is obtained.
- a color space is required to convert the brightness value into an image pixel value to obtain an adjusted image.
- the image processing method disclosed in the present embodiment first counts the number of pixels in different target distributing in different brightness values, determines the initial central brightness value with the largest number of pixels, determines an average brightness value of the target images; and adjust a quantity distribution of the pixels in the target image at different brightness values, so as to make a new central brightness values that maximum number of pixels have closer to the average brightness value than the initial central brightness value, and to expand a range of pixel brightness values having preset brightness thresholds in which the new central brightness value is included.
- FIG. 4 is a schematic flow chart of another embodiment of an image processing method according to the present invention. The method includes the following steps.
- Step 41 a step of establishing a brightness value-pixel quantity histogram with the brightness value as the abscissa and the number of pixels as the ordinate is performed.
- Step 42 a step of determining a brightness value corresponding to a maximum value of the number of pixels in the brightness value-pixel number histogram as an initial central brightness value; determining a high brightness value and a low brightness value by using the brightness value-pixel number histogram; and averaging brightness values of the image to obtain the average brightness value is performed.
- Step 42 of using the brightness value-pixel quantity histogram to determine the high brightness value and the low brightness value, and averaging the brightness values of the target image to obtain an average brightness value can be implemented by the following method.
- the method comprises the steps of starting from the number of pixel having the lowest brightness value, accumulating it by adding a preset number of pixels, setting the brightness value of the last accumulated number of pixels as the low brightness value. Similarly, the method further comprises the steps of accumulating the number of pixels having the highest brightness value by adding the present number of pixels, and setting the brightness value of the last accumulated number of pixels as the high brightness value.
- the target image is a grayscale image and 40 is the preset number of pixels
- the brightness values corresponding to the number of 40 pixels in the brightness value-pixel quantity histogram are 50 and 200, respectively, then the low brightness value is 50 and the high brightness value is 200.
- the brightness value corresponding to the smallest number is selected, for example, the brightness value corresponding to the number of 39 or 41 pixels.
- Step 43 a step of weighting the average brightness value and taking the weighted average brightness value as the new central brightness value is performed.
- the weighting coefficient of the weighting process when the initial central brightness value is larger than the average brightness value, the weighting coefficient of the weighting process is larger than 1, and when the initial central brightness value is less than the average brightness value, the weighting coefficient of the weighting process is less than 1.
- Step 44 a step of reducing the low brightness value when the low brightness value is larger than a preset low brightness threshold; and increasing the high brightness value when the high brightness value is less than a preset high brightness threshold is performed.
- the step 44 may specifically include the details below.
- the low brightness value is weighted, and the low brightness value L 1 is multiplied by a low brightness adjustment coefficient R 1 .
- the weighted low brightness value is taken as a new low brightness value.
- the low brightness threshold is taken as the new low brightness value.
- the high brightness value is weighted.
- the weighted high brightness value is taken as a new high brightness value.
- the high brightness threshold is used as the new high brightness value.
- step 44 is described in detail by using two schematic diagrams below.
- FIG. 5 is a schematic flow chart of adjusting a low brightness value according to another embodiment of the image processing method provided by the present invention.
- the low brightness value is less than the preset low brightness threshold, the low brightness value is unchanged. That is, the new low brightness value is equal to the original low brightness value.
- the low brightness value is greater than the preset low brightness threshold, the low brightness value is decreased. Its detail includes the follows.
- the low brightness value is weighted to multiply the low brightness value L 1 by the low brightness adjustment coefficient R 1 .
- the weighted low brightness value is taken as the new low brightness value when the weighted low brightness value L 2 is less than the preset low brightness threshold T 1 .
- FIG. 6 is a schematic flow chart of adjusting a high brightness value according to another embodiment of an image processing method provided by the present invention.
- the high brightness value is greater than the preset high brightness threshold, the high brightness value is unchanged, that is, the new high brightness value is equal to the original high brightness value.
- the high brightness value is less than the preset high brightness threshold, the high brightness value is increased. Its detail includes the follows.
- the high brightness value is weighted to multiply the high brightness value H 2 by a high brightness adjustment factor R 2 .
- the weighted high brightness value is taken as the new high brightness value when the weighted high brightness value H 2 is greater than the preset high brightness threshold T 2 .
- FIG. 7 a is a brightness value-pixel quantity schematic diagram of a low brightness value according to another embodiment of the image processing method provided by the present invention
- FIG. 7 b is a brightness value-pixel quantity schematic diagram of a low brightness value after an adjustment according to another embodiment of the image processing method provided by the present invention, wherein N1 is the number of pixels, G1 is a low brightness value corresponding to the number of pixels, and G2 is a new low brightness value corresponding to the number of pixels.
- N1 is the number of pixels
- G1 is a low brightness value corresponding to the number of pixels
- G2 is a new low brightness value corresponding to the number of pixels.
- FIG. 8 a is a brightness value-pixel quantity schematic diagram of a high brightness value according to another embodiment of the image processing method provided by the present invention
- FIG. 8 b is a brightness value-pixel quantity schematic diagram of a high brightness value after an adjustment according to another embodiment of the image processing method provided by the present invention, wherein N2 is the number of pixels, K1 is a high brightness value corresponding to the number of pixels, and K2 is a new high brightness value corresponding to the number of pixels.
- N2 is the number of pixels
- K1 is a high brightness value corresponding to the number of pixels
- K2 is a new high brightness value corresponding to the number of pixels.
- Step 45 a step of obtaining the brightness value of each pixel after the brightness adjustment is performed.
- the image size is M ⁇ N (M, N is a positive integer)
- the brightness value of each pixel after brightness adjustment is obtained for each pixel by the following formula:
- L is the brightness value of each pixel
- L′ is the brightness value of the corresponding pixel after the brightness adjustment
- L 1 is the low brightness value
- L 2 is the new low brightness value
- H 1 is the high brightness value
- H 2 is the new high brightness value
- M 1 is the initial central brightness value
- M 2 is the new central brightness value.
- the image with the adjusted brightness values is also displayed. If the target image is a grayscale image, the image can be directly output according to the brightness value. If the target image is a color image, it is need to transform the brightness values to get the output image.
- the R, G, B components of the adjusted color image are obtained according to the following formula.
- (L, a, b) color space is transformed into (X, Y, Z) color space.
- (X,Y,Z) color space is transformed into (R,G,B) color space.
- the brightness information of each pixel can be converted into the color component information of the image, so as to implement the adjustment to the brightness of the target image, to enhance the details of the image in the area where the main brightness is allocated.
- FIG. 9 is a schematic structural diagram of an embodiment of an image processing apparatus according to the present invention.
- the brightness defect detection apparatus 90 includes an input/output device 91 , a memory 92 , and a processor 93 .
- the memory is configured to store a computer program.
- the computer program when executed by the processor, is configured to implement the steps of:
- the processor 93 is further configured to establish a brightness value-pixel quantity histogram with the brightness value as an abscissa and the number of pixels as an ordinate.
- the processor 93 is further configured to execute the step of determining, by using the brightness value-pixel quantity histogram, a brightness value corresponding to a maximum value of the number of pixels as the initial central brightness value; using the brightness value-pixel quantity histogram to determine a high brightness value and a low brightness value, and averaging the brightness values of the target image to obtain the average brightness value.
- the processor 93 is further configured to execute a step of accumulating a preset number of pixels from the number of pixels with the lowest brightness value and using the brightness value of the last accumulated pixel number as the low brightness value; and accumulating the number of pixels from the number of pixels with the highest brightness value by adding the preset number of pixels, and setting the brightness value of the last accumulated pixel as the high brightness value.
- the processor 93 is further configured to decrease the low brightness value when the low brightness value is greater than a preset low brightness threshold; and to increase the high brightness value when the high brightness value is less than a preset high brightness threshold.
- the processor 93 is further configured to execute the following steps.
- a weighting process on the low brightness value is performed.
- the weighted low brightness value is taken as a new low brightness value.
- the weighted low brightness value is taken as the new low brightness value.
- the high brightness value is less than a preset high brightness threshold
- a weighting process on the high brightness value to increase the high brightness value is performed.
- the weighted high brightness value is greater than the preset high brightness threshold
- the weighted high brightness value is used as a new high brightness value.
- the preset high brightness threshold is used as the new high brightness value.
- the processor 93 is further configured to obtain, by using the following formula, a brightness value of each pixel after being done for brightness adjustment.
- L is a brightness value of each pixel
- L′ is a brightness value of a corresponding pixel after brightness adjustment
- L 1 is a low brightness value
- L 2 is a new low brightness value
- H 1 is a high brightness value
- H 2 is a new high brightness value
- M 1 is an initial central brightness value
- M 2 is a new central brightness value.
- the processor 93 is further configured to perform a weighting process on the average brightness value to use the weighted average brightness value as a new central brightness value.
- the weighting coefficient of the weighting process is greater than 1, and when the initial central brightness value is less than the average brightness value, the weighting coefficient of the weighting process is less than 1.
- the processor 93 is further configured to acquire a target image.
- the target image is a grayscale image
- a grayscale value of each pixel in the target image is acquired as a brightness value.
- the target image is a color image
- a brightness value of a color component of each pixel in the target image is obtained.
- the image processing apparatus can be a display or an independent device that can be connected to a display.
- the disclosed method and apparatus may be implemented in other manners.
- the device implementation described above is merely exemplary.
- the module or unit division is merely logical function division and may be other division in actual implementation.
- a plurality of units or components may be combined or may be integrated into another system, or some of the features may be ignored or not performed.
- the units described as separate components may or may not be physically separated.
- the components shown as units may or may not be physical units, that is, may be located in one place or may also be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiments.
- each functional unit in the embodiments of the present invention may be integrated in one processing unit, or each unit may exist physically alone, or two or more units may be integrated in one unit.
- the above-mentioned integrated unit can be implemented in the form of hardware or in the form of software functional unit.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
Description
- The present application is a National Phase of International Application Number PCT/CN2017/112480, filed Nov. 23, 2017, and claims the priority of China Application No. 201710893737.4, filed Sep. 27, 2017.
- The present invention is related to a field of image processing, and particularly to a method and apparatus of processing an image.
- Image processing includes emphasizing the overall or local characteristics of an image, making an originally unclear image become clear or emphasizing certain features of interest, widening the difference between the features of different objects in the image, and suppressing uninteresting features, so as to improve the image quality, to rich information, to strengthen image interpretation and recognition effects, and to meet the needs of some special analysis.
- Due to the affection from many of the scene conditions, visual effect of a captured image is poor. An image processing technology to improve visual effects to human is thus required, such as highlighting some of the characteristics of the target object in the image and extracting characteristic parameters of the target object from the digital image. These are good for recognizing, tracking and understanding the target in the image.
- Because the grayscale produced by a camera is constrained, some detail may be lost in taking pictures with the camera. When the picture is taken, high brightness pixels will get together and become bigger if the area to be focused is a dark area in brightness, and thus the detail in higher brightness will be lost. However, low brightness pixels will get together and become bigger if the area to be focused is a bright area in brightness, and thus the detail in darker brightness will be lost.
- A main problem to be solved by the present invention is to provide an image processing method and apparatus which can enhance the details of an image by enlarging a display range around a central brightness region and adjusting the brightness distribution of the image.
- In order to solve the above technical problem, a technical solution adopted by the present invention is to provide an image processing method, which includes: acquiring a target image; obtaining a gray value of each pixel in the target image as a brightness value when the target image is a grayscale image; obtaining a brightness value of one color component of each pixel in the target image when the target image is a color image; establishing a brightness value-pixel quantity histogram with the brightness value as an abscissa and the number of pixels as a vertical coordinate; determining an initial central brightness value that maximum numbers of pixels have and determining an average brightness value of the target image; and adjusting a quantity distribution of the pixels in the target image at different brightness values, so as to make a new central brightness values that maximum number of pixels have closer to the average brightness value than the initial central brightness value, and to expand a range of pixel brightness values having preset brightness thresholds in which the new central brightness value is included.
- In order to solve the above technical problem, one technical solution adopted by the present invention is to provide an image processing method, which comprises: counting the number of pixels distributing in different brightness values in the target image; determining an initial central brightness value that maximum numbers of pixels have and determining an average brightness value of the target image; and adjusting a quantity distribution of the pixels in the target image at different brightness values, so as to make a new central brightness values that maximum number of pixels have closer to the average brightness value than the initial central brightness value, and to expand a range of pixel brightness values having preset brightness thresholds in which the new central brightness value is included.
- In order to solve the above technical problem, one technical solution adopted by the present invention is to provide an image processing apparatus comprising a memory, a processor, and an input/output device, connected to each other, the memory being configured to store a computer program and the computer program being implementing the above method when it is executed by the processor.
- By means of the above solution, the beneficial effects of the present invention are as follows. The present invention discloses an image processing method and apparatus, wherein the method comprises the steps of: counting the number of pixels distributing in different brightness values in the target image; determining an initial central brightness value that maximum numbers of pixels have and determining an average brightness value of the target image; and adjusting a quantity distribution of the pixels in the target image at different brightness values, so as to make a new central brightness values that maximum number of pixels have closer to the average brightness value than the initial central brightness value, and to expand a range of pixel brightness values having preset brightness thresholds in which the new central brightness value is included; and transferring the brightness values into image pixel values to get an adjusted image. The present invention discloses an image processing method and apparatus, which enlarges the range around the central brightness value for display and adjusts the brightness distribution of the image to enhance the details of the image.
- Accompanying drawings are for providing further understanding of embodiments of the disclosure. The drawings form a part of the disclosure and are for illustrating the principle of the embodiments of the disclosure along with the literal description. Apparently, the drawings in the description below are merely some embodiments of the disclosure, a person skilled in the art can obtain other drawings according to these drawings without creative efforts. In the figures:
-
FIG. 1 is a schematic flow chart of an embodiment of an image processing method provided by the present invention; -
FIG. 2 is a brightness value-pixel quantity schematic diagram of the target image according to an embodiment of the image processing method provided by the present invention; -
FIG. 3 is a brightness value-pixel quantity schematic diagram of the target image after an adjustment according to an embodiment of the image processing method provided by the present invention; -
FIG. 4 is a schematic flow chart of another embodiment of the image processing method provided by the present invention; -
FIG. 5 is a schematic flow chat of adjusting a low brightness value according to another embodiment of the image processing method provided by the present invention; -
FIG. 6 is a schematic flow chart of adjusting a high brightness value according to another embodiment of the image processing method provided by the present invention; -
FIG. 7a is a brightness value-pixel quantity schematic diagram of a low brightness value according to another embodiment of the image processing method provided by the present invention; -
FIG. 7b is a brightness value-pixel quantity schematic diagram of a low brightness value after an adjustment according to another embodiment of the image processing method provided by the present invention; -
FIG. 8a is a brightness value-pixel quantity schematic diagram of a high brightness value according to another embodiment of the image processing method provided by the present invention; -
FIG. 8b is a brightness value-pixel quantity schematic diagram of a high brightness value after an adjustment according to another embodiment of the image processing method provided by the present invention; and -
FIG. 9 is a schematic structural diagram of the image processing apparatus according to an embodiment of the present invention. - The specific structural and functional details disclosed herein are only representative and are intended for describing exemplary embodiments of the disclosure. However, the disclosure can be embodied in many forms of substitution, and should not be interpreted as merely limited to the embodiments described herein.
- Referring to
FIG. 1 ,FIG. 1 is a schematic flow chart of an embodiment of an image processing method according to the present invention. The image processing method includes the following steps. - In
step 11, a step of counting the number of pixels distributing in different brightness values in the target image is performed. - It can be understood that the so-called brightness value is generally for a grayscale image (black-and-white images) for expressing the brightness of the grayscale image. For a color image, however, the brightness value may be the brightness of a certain color component in the color image. Taking an RGB image as an example, a brightness value of a pixel in an RGB image may be a brightness value of a R, G, or B color components therein.
- In one embodiment, 28=256 brightness values can be used, that is, 0-255. Gray scale of 0 represents black, and gray scale of 255 represents white.
- Optionally, before this step, it may further include a step of acquiring a target image. When the target image is a grayscale image, since a brightness value is equal to a grayscale value, a grayscale of each pixel in the target image can be acquired as a brightness value. When the target image is a color image, a brightness value of one color component of each pixel in the target image is acquired.
- Optionally, a method of calculating the brightness value of one pixel in the color image comprises using a Y value in a (Y, Cr, Cb) color space to represent the brightness value L, and using Cr and Cb to denote the chromas of red and blue colors respectively. Alternatively, RGB components in a (R, G, B) color space can be used for brightness values. For example, a brightness value can be equal to 0.299R+0.587G+0.114B or Max (R, G, B). Alternatively, a (L, a, b) color space can be used to represent the brightness value, wherein L, a, and b are the chroma coordinates and the like.
- In a specific embodiment, the
step 11 can be consolidated as obtaining a brightness value of the target image, establishing a brightness value-pixel quantity histogram with the brightness value as an abscissa and the number of pixels as a vertical coordinate. - Referring to
FIG. 2 ,FIG. 2 is a brightness value-pixel quantity schematic diagram of the target image according to an embodiment of the image processing method provided by the present invention, wherein the x-axis represents the brightness value, the y-axis represents the number of pixels, N is the number of pixels, Z1 and Z2 are the brightness values corresponding to N pixels. - In
Step 12, a step of determining an initial central brightness value that maximum numbers of pixels have and determining an average brightness value of the target image is performed. - According to the brightness value-pixel quantity histogram, a brightness value corresponding to the number of pixels having a maximum number is obtained as the initial central brightness value, and the brightness values of the target image is averaged to obtain the average brightness value.
- In
Step 13, a step of adjusting a quantity distribution of the pixels in the target image at different brightness values, so as to make a new central brightness values that maximum number of pixels have closer to the average brightness value than the initial central brightness value, and to expand a range of pixel brightness values having preset brightness thresholds in which the new central brightness value is included is performed. - Referring to
FIG. 3 ,FIG. 3 is a brightness value-pixel quantity schematic diagram of the target image after an adjustment according to an embodiment of the image processing method provided by the present invention, wherein the x axis represents the brightness value, the y axis represents the pixel number, Z3 and Z4 are the brightness values corresponding to N pixels. It can be seen that, compared withFIG. 2 , the brightness range in the vicinity of the central pixel of the processed target image becomes wider. - Optionally, after the brightness value of the target image is adjusted, the brightness value of each pixel is converted into a corresponding pixel value. For a grayscale image, the brightness value is a grayscale value, and thus the image pixel value is the adjusted brightness value. According to the adjusted brightness value, the pixel value of an image is obtained. For a color image, a color space is required to convert the brightness value into an image pixel value to obtain an adjusted image.
- Being different from the prior art, the image processing method disclosed in the present embodiment first counts the number of pixels in different target distributing in different brightness values, determines the initial central brightness value with the largest number of pixels, determines an average brightness value of the target images; and adjust a quantity distribution of the pixels in the target image at different brightness values, so as to make a new central brightness values that maximum number of pixels have closer to the average brightness value than the initial central brightness value, and to expand a range of pixel brightness values having preset brightness thresholds in which the new central brightness value is included.
- By means of expanding the range around the central brightness value and adjusting the image brightness distribution, an enhancement to the image detail is achieved. For example, where the number of pixels N is 100, its brightness value of Z1 is 100 and its brightness value of Z2 is 150, its central brightness value 130. After adjustment, its brightness value of Z3 is 90 and its brightness value of Z4 is 165, the new central brightness value is 128. Thus, in terms of the 100 pixels, its original range of corresponding brightness values is 50, but its adjusted range of brightness values becomes 75.
- Referring to
FIG. 4 ,FIG. 4 is a schematic flow chart of another embodiment of an image processing method according to the present invention. The method includes the following steps. - In
Step 41, a step of establishing a brightness value-pixel quantity histogram with the brightness value as the abscissa and the number of pixels as the ordinate is performed. - In
Step 42, a step of determining a brightness value corresponding to a maximum value of the number of pixels in the brightness value-pixel number histogram as an initial central brightness value; determining a high brightness value and a low brightness value by using the brightness value-pixel number histogram; and averaging brightness values of the image to obtain the average brightness value is performed. - Optionally, the details in
Step 42 of using the brightness value-pixel quantity histogram to determine the high brightness value and the low brightness value, and averaging the brightness values of the target image to obtain an average brightness value, can be implemented by the following method. - That is, the method comprises the steps of starting from the number of pixel having the lowest brightness value, accumulating it by adding a preset number of pixels, setting the brightness value of the last accumulated number of pixels as the low brightness value. Similarly, the method further comprises the steps of accumulating the number of pixels having the highest brightness value by adding the present number of pixels, and setting the brightness value of the last accumulated number of pixels as the high brightness value.
- For example, if the target image is a grayscale image and 40 is the preset number of pixels, the brightness values corresponding to the number of 40 pixels in the brightness value-pixel quantity histogram are 50 and 200, respectively, then the low brightness value is 50 and the high brightness value is 200. If the number of 40 pixels does not have a corresponding brightness value, then the brightness value corresponding to the smallest number is selected, for example, the brightness value corresponding to the number of 39 or 41 pixels.
- In
Step 43, a step of weighting the average brightness value and taking the weighted average brightness value as the new central brightness value is performed. - In this step, when the initial central brightness value is larger than the average brightness value, the weighting coefficient of the weighting process is larger than 1, and when the initial central brightness value is less than the average brightness value, the weighting coefficient of the weighting process is less than 1.
- In
Step 44, a step of reducing the low brightness value when the low brightness value is larger than a preset low brightness threshold; and increasing the high brightness value when the high brightness value is less than a preset high brightness threshold is performed. - Optionally, the
step 44 may specifically include the details below. - When the low brightness value is greater than the preset low brightness threshold, the low brightness value is weighted, and the low brightness value L1 is multiplied by a low brightness adjustment coefficient R1. When the low brightness value after the weighting process is less than the preset low brightness threshold, the weighted low brightness value is taken as a new low brightness value. When the weighted low brightness value is greater than the preset low brightness threshold, the low brightness threshold is taken as the new low brightness value.
- Moreover, when the high brightness value is less than the preset high brightness threshold, the high brightness value is weighted. When the high brightness value after the weighting process is greater than the preset high brightness threshold, the weighted high brightness value is taken as a new high brightness value. When the weighted high brightness value is less than the preset high brightness threshold, the high brightness threshold is used as the new high brightness value.
- Optionally, the
step 44 is described in detail by using two schematic diagrams below. - Referring to
FIG. 5 ,FIG. 5 is a schematic flow chart of adjusting a low brightness value according to another embodiment of the image processing method provided by the present invention. - When the low brightness value is less than the preset low brightness threshold, the low brightness value is unchanged. That is, the new low brightness value is equal to the original low brightness value.
- When the low brightness value is greater than the preset low brightness threshold, the low brightness value is decreased. Its detail includes the follows.
- When the low brightness value is greater than the preset low brightness threshold, the low brightness value is weighted to multiply the low brightness value L1 by the low brightness adjustment coefficient R1.
- The weighted low brightness value is taken as the new low brightness value when the weighted low brightness value L2 is less than the preset low brightness threshold T1. When the weighted low brightness value is greater than the preset low brightness threshold, the low brightness threshold is taken as the new low brightness value, that is, L2=min {T1*R1, T1}.
- Referring to
FIG. 6 ,FIG. 6 is a schematic flow chart of adjusting a high brightness value according to another embodiment of an image processing method provided by the present invention. - When the high brightness value is greater than the preset high brightness threshold, the high brightness value is unchanged, that is, the new high brightness value is equal to the original high brightness value.
- When the high brightness value is less than the preset high brightness threshold, the high brightness value is increased. Its detail includes the follows.
- When the high brightness value is smaller than the preset high brightness threshold, the high brightness value is weighted to multiply the high brightness value H2 by a high brightness adjustment factor R2.
- The weighted high brightness value is taken as the new high brightness value when the weighted high brightness value H2 is greater than the preset high brightness threshold T2. When the weighted high brightness value is less than the preset high brightness threshold, the high brightness threshold is taken as the new high brightness value, that is, H2=min {T2*R2, T2}.
- As shown in
FIGS. 7a and 7b ,FIG. 7a is a brightness value-pixel quantity schematic diagram of a low brightness value according to another embodiment of the image processing method provided by the present invention;FIG. 7b is a brightness value-pixel quantity schematic diagram of a low brightness value after an adjustment according to another embodiment of the image processing method provided by the present invention, wherein N1 is the number of pixels, G1 is a low brightness value corresponding to the number of pixels, and G2 is a new low brightness value corresponding to the number of pixels. It can be seen from the graph that the range for the low brightness value is widened. For example, N1=70, G1=100, G2=80, the low brightness value moves leftward and the range for the low brightness value is expanded. - As shown in
FIGS. 8a and 8b ,FIG. 8a is a brightness value-pixel quantity schematic diagram of a high brightness value according to another embodiment of the image processing method provided by the present invention;FIG. 8b is a brightness value-pixel quantity schematic diagram of a high brightness value after an adjustment according to another embodiment of the image processing method provided by the present invention, wherein N2 is the number of pixels, K1 is a high brightness value corresponding to the number of pixels, and K2 is a new high brightness value corresponding to the number of pixels. It can be seen from the graph that the range for the high brightness value is widened. For example, N2=70, K1=180, K2=200, the high brightness value moves to the right and the range for the high brightness value is expanded. - In Step 45, a step of obtaining the brightness value of each pixel after the brightness adjustment is performed.
- Furthermore, the details of adjusting the quantity distribution of the pixels of the target image at different brightness values include the follows.
- First, it is assumed that the image size is M×N (M, N is a positive integer), the brightness value of each pixel after brightness adjustment is obtained for each pixel by the following formula:
-
- In the formula, L is the brightness value of each pixel, L′ is the brightness value of the corresponding pixel after the brightness adjustment, L1 is the low brightness value, L2 is the new low brightness value, H1 is the high brightness value, H2 is the new high brightness value, M1 is the initial central brightness value and M2 is the new central brightness value.
- After the above steps, the image with the adjusted brightness values is also displayed. If the target image is a grayscale image, the image can be directly output according to the brightness value. If the target image is a color image, it is need to transform the brightness values to get the output image.
- For example, if the color image uses L in the (L, a, b) color space as the brightness value, the R, G, B components of the adjusted color image are obtained according to the following formula.
- First, (L, a, b) color space is transformed into (X, Y, Z) color space.
-
L=116f(Y/Y 0)−16 -
a=500[f(X/X 0)−f(Y/Y 0)] -
b=200[f(Y/Y 0)−f(Z/Z 0)] - Wherein,
-
- Secondly, (X,Y,Z) color space is transformed into (R,G,B) color space.
-
- According to the above steps, the brightness information of each pixel can be converted into the color component information of the image, so as to implement the adjustment to the brightness of the target image, to enhance the details of the image in the area where the main brightness is allocated. By means of adjusting the low brightness value of the image to be smaller and the image's higher brightness value higher, the scope of the image that has high displaying brightness is thereby increased.
- Referring to
FIG. 9 ,FIG. 9 is a schematic structural diagram of an embodiment of an image processing apparatus according to the present invention. The brightnessdefect detection apparatus 90 includes an input/output device 91, amemory 92, and aprocessor 93. The memory is configured to store a computer program. The computer program, when executed by the processor, is configured to implement the steps of: - counting the number of pixels distributing in different brightness values in the target image; determining an initial central brightness value that maximum numbers of pixels have and determining an average brightness value of the target image; and adjusting a quantity distribution of the pixels in the target image at different brightness values, so as to make a new central brightness values that maximum number of pixels have closer to the average brightness value than the initial central brightness value, and to expand a range of pixel brightness values having preset brightness thresholds in which the new central brightness value is included; and transferring the brightness values into image pixel values to get an adjusted image.
- Optionally, the
processor 93 is further configured to establish a brightness value-pixel quantity histogram with the brightness value as an abscissa and the number of pixels as an ordinate. - Optionally, the
processor 93 is further configured to execute the step of determining, by using the brightness value-pixel quantity histogram, a brightness value corresponding to a maximum value of the number of pixels as the initial central brightness value; using the brightness value-pixel quantity histogram to determine a high brightness value and a low brightness value, and averaging the brightness values of the target image to obtain the average brightness value. - Optionally, the
processor 93 is further configured to execute a step of accumulating a preset number of pixels from the number of pixels with the lowest brightness value and using the brightness value of the last accumulated pixel number as the low brightness value; and accumulating the number of pixels from the number of pixels with the highest brightness value by adding the preset number of pixels, and setting the brightness value of the last accumulated pixel as the high brightness value. - Optionally, the
processor 93 is further configured to decrease the low brightness value when the low brightness value is greater than a preset low brightness threshold; and to increase the high brightness value when the high brightness value is less than a preset high brightness threshold. - Optionally, the
processor 93 is further configured to execute the following steps. When the low brightness value is greater than the preset low brightness threshold, a weighting process on the low brightness value is performed. When the low brightness value after weighting process is less than the preset low brightness threshold, the weighted low brightness value is taken as a new low brightness value. When the weighted low brightness value is greater than the preset low brightness threshold, the low brightness threshold is taken as the new low brightness value. When the high brightness value is less than a preset high brightness threshold, a weighting process on the high brightness value to increase the high brightness value is performed. When the weighted high brightness value is greater than the preset high brightness threshold, the weighted high brightness value is used as a new high brightness value. When the weighted brightness value is smaller than the preset high brightness threshold, the preset high brightness threshold is used as the new high brightness value. - Optionally, the
processor 93 is further configured to obtain, by using the following formula, a brightness value of each pixel after being done for brightness adjustment. -
- wherein L is a brightness value of each pixel, L′ is a brightness value of a corresponding pixel after brightness adjustment, L1 is a low brightness value, L2 is a new low brightness value, H1 is a high brightness value, H2 is a new high brightness value, M1 is an initial central brightness value, and M2 is a new central brightness value.
- Optionally, the
processor 93 is further configured to perform a weighting process on the average brightness value to use the weighted average brightness value as a new central brightness value. When the initial central brightness value is greater than the average brightness value, the weighting coefficient of the weighting process is greater than 1, and when the initial central brightness value is less than the average brightness value, the weighting coefficient of the weighting process is less than 1. - Optionally, the
processor 93 is further configured to acquire a target image. When the target image is a grayscale image, a grayscale value of each pixel in the target image is acquired as a brightness value. When the target image is a color image, a brightness value of a color component of each pixel in the target image is obtained. - Optionally, the image processing apparatus can be a display or an independent device that can be connected to a display.
- It can be understood that the steps and working principles performed by the image processing apparatus provided in this embodiment are similar to those in the foregoing embodiments, and details are not described herein again.
- In the several embodiments provided in the present invention, it should be understood that the disclosed method and apparatus may be implemented in other manners. For example, the device implementation described above is merely exemplary. For example, the module or unit division is merely logical function division and may be other division in actual implementation. For example, a plurality of units or components may be combined or may be integrated into another system, or some of the features may be ignored or not performed.
- The units described as separate components may or may not be physically separated. The components shown as units may or may not be physical units, that is, may be located in one place or may also be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiments.
- In addition, each functional unit in the embodiments of the present invention may be integrated in one processing unit, or each unit may exist physically alone, or two or more units may be integrated in one unit. The above-mentioned integrated unit can be implemented in the form of hardware or in the form of software functional unit.
- The above is only the embodiments of the present invention, and does not intend to limit the scope of the present invention. All equivalent structures or equivalent process changes made by using the present specification and the accompanying drawings as well as direct or indirect use in other related technologies are all included in the scope of the patent protection of the present invention.
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710893737.4 | 2017-09-27 | ||
CN201710893737.4A CN107680056B (en) | 2017-09-27 | 2017-09-27 | Image processing method and device |
CN201710893737 | 2017-09-27 | ||
PCT/CN2017/112480 WO2019061766A1 (en) | 2017-09-27 | 2017-11-23 | Image processing method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200034997A1 true US20200034997A1 (en) | 2020-01-30 |
US10565742B1 US10565742B1 (en) | 2020-02-18 |
Family
ID=61137831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/735,537 Expired - Fee Related US10565742B1 (en) | 2017-09-27 | 2017-11-23 | Image processing method and apparatus |
Country Status (3)
Country | Link |
---|---|
US (1) | US10565742B1 (en) |
CN (1) | CN107680056B (en) |
WO (1) | WO2019061766A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111681201A (en) * | 2020-04-20 | 2020-09-18 | 深圳市鸿富瀚科技股份有限公司 | Image processing method, image processing device, computer equipment and storage medium |
CN112348761A (en) * | 2020-11-30 | 2021-02-09 | 广州绿怡信息科技有限公司 | Equipment appearance image brightness adjusting method and device |
US20210251601A1 (en) * | 2018-08-22 | 2021-08-19 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Method for ultrasound imaging and related equipment |
GB2619496A (en) * | 2022-05-30 | 2023-12-13 | Rheinmetall Electronics Uk Ltd | Non-linear image contrast enhancement |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108550348B (en) * | 2018-04-02 | 2020-04-03 | 深圳市华星光电技术有限公司 | Image processing method for display device |
CN112070682B (en) * | 2019-06-10 | 2024-06-07 | 杭州海康慧影科技有限公司 | Method and device for compensating image brightness |
CN110430369B (en) * | 2019-07-19 | 2020-12-22 | 合肥工业大学 | Cooperative control method and device of cavity mirror light source based on central processing unit |
CN110880299B (en) * | 2019-11-08 | 2021-03-16 | 深圳市华星光电半导体显示技术有限公司 | Picture display method and picture display device |
CN110890063B (en) * | 2019-11-22 | 2021-10-08 | 深圳市华星光电半导体显示技术有限公司 | Method and device for reducing power consumption of display panel |
CN111736788B (en) * | 2020-06-28 | 2024-07-23 | 广州励丰文化科技股份有限公司 | Image processing method, electronic device and storage medium |
CN112261438B (en) * | 2020-10-16 | 2022-04-15 | 腾讯科技(深圳)有限公司 | Video enhancement method, device, equipment and storage medium |
CN113592739B (en) * | 2021-07-30 | 2024-07-02 | 浙江大华技术股份有限公司 | Lens shading correction method, device and storage medium |
CN113989895A (en) * | 2021-11-04 | 2022-01-28 | 展讯通信(天津)有限公司 | Face skin segmentation method, electronic device and storage medium |
CN114863886A (en) * | 2022-07-05 | 2022-08-05 | 惠科股份有限公司 | Display panel brightness correction method and device and display equipment |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4868651A (en) * | 1988-05-17 | 1989-09-19 | S&S Inficon, Inc. | Digital radiography with image brightness and contrast normalization |
JP4687526B2 (en) * | 2005-07-27 | 2011-05-25 | セイコーエプソン株式会社 | Moving image display device and moving image display method |
CN100345160C (en) * | 2005-08-22 | 2007-10-24 | 上海广电(集团)有限公司中央研究院 | Histogram equalizing method for controlling average brightness |
KR100755676B1 (en) * | 2005-08-26 | 2007-09-05 | 삼성전자주식회사 | Video display device and method for improving brightness and controlling power |
KR100791387B1 (en) * | 2006-10-25 | 2008-01-07 | 삼성전자주식회사 | Image processing method and device |
WO2008136629A1 (en) * | 2007-05-03 | 2008-11-13 | Mtekvision Co., Ltd. | Image brightness controlling apparatus and method thereof |
WO2009044785A1 (en) * | 2007-10-03 | 2009-04-09 | Kabushiki Kaisha Toshiba | Visual examination device and visual examination method |
CN101437114B (en) * | 2008-12-12 | 2010-06-02 | 深圳市斯尔顿科技有限公司 | Method and system for regulating image brightness |
CN101510302B (en) * | 2009-03-25 | 2014-05-21 | 北京中星微电子有限公司 | Method and apparatus for enhancing image |
CN102750672A (en) * | 2011-11-30 | 2012-10-24 | 新奥特(北京)视频技术有限公司 | Method for realizing special effect through brightness adjustment |
US9536290B2 (en) * | 2012-06-10 | 2017-01-03 | Apple Inc. | Tempered auto-adjusting, image-editing operation |
KR20140140867A (en) * | 2013-05-30 | 2014-12-10 | 주식회사 케이엠더블유 | Brightness control device for lighting apparatus |
CN104637030B (en) * | 2013-11-08 | 2017-08-25 | 浙江大华技术股份有限公司 | A kind of image enhancement processing method and device |
CN103702034A (en) * | 2014-01-09 | 2014-04-02 | 厦门美图之家科技有限公司 | Photographic method and device for improving brightness distribution of picture |
JP6443857B2 (en) * | 2014-06-05 | 2018-12-26 | キヤノン株式会社 | Image processing apparatus, image processing method, and program |
CN104240666B (en) * | 2014-09-17 | 2016-08-17 | 深圳市华星光电技术有限公司 | A kind of method for processing video frequency and device |
CN104517268B (en) * | 2014-12-24 | 2017-09-26 | 小米科技有限责任公司 | Adjust the method and device of brightness of image |
JP6440278B2 (en) * | 2015-06-16 | 2018-12-19 | 株式会社日立国際電気 | Imaging apparatus and image processing method |
CN105657301B (en) * | 2016-02-22 | 2019-06-11 | 深圳市华星光电技术有限公司 | Show the method and device of image |
CN105528994B (en) * | 2016-02-22 | 2019-03-15 | 深圳市华星光电技术有限公司 | A kind of method and system reducing display panel power consumption |
KR101866867B1 (en) * | 2016-12-07 | 2018-06-14 | 주식회사 쓰리이 | Method for detecting center of pupil |
KR102317601B1 (en) * | 2017-07-27 | 2021-10-26 | 삼성전자주식회사 | Display apparatus and control method thereof |
-
2017
- 2017-09-27 CN CN201710893737.4A patent/CN107680056B/en active Active
- 2017-11-23 WO PCT/CN2017/112480 patent/WO2019061766A1/en active Application Filing
- 2017-11-23 US US15/735,537 patent/US10565742B1/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210251601A1 (en) * | 2018-08-22 | 2021-08-19 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Method for ultrasound imaging and related equipment |
US12167933B2 (en) * | 2018-08-22 | 2024-12-17 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Method for ultrasound imaging and related equipment |
CN111681201A (en) * | 2020-04-20 | 2020-09-18 | 深圳市鸿富瀚科技股份有限公司 | Image processing method, image processing device, computer equipment and storage medium |
CN112348761A (en) * | 2020-11-30 | 2021-02-09 | 广州绿怡信息科技有限公司 | Equipment appearance image brightness adjusting method and device |
GB2619496A (en) * | 2022-05-30 | 2023-12-13 | Rheinmetall Electronics Uk Ltd | Non-linear image contrast enhancement |
GB2619496B (en) * | 2022-05-30 | 2024-07-10 | Rheinmetall Electronics Uk Ltd | Non-linear image contrast enhancement |
Also Published As
Publication number | Publication date |
---|---|
WO2019061766A1 (en) | 2019-04-04 |
CN107680056A (en) | 2018-02-09 |
US10565742B1 (en) | 2020-02-18 |
CN107680056B (en) | 2020-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10565742B1 (en) | Image processing method and apparatus | |
CN109325922B (en) | Image self-adaptive enhancement method and device and image processing equipment | |
US11113795B2 (en) | Image edge processing method, electronic device, and computer readable storage medium | |
US8723982B2 (en) | Image processing device, storage medium, and image processing method that corrects saturation, specific color and spatial frequency of an obtained image | |
EP2624204B1 (en) | Image processing apparatus and method of controlling the same | |
JP6615917B2 (en) | Real-time video enhancement method, terminal, and non-transitory computer-readable storage medium | |
US8284271B2 (en) | Chroma noise reduction for cameras | |
US10521887B2 (en) | Image processing device and image processing method | |
JP7508135B2 (en) | IMAGE PROCESSING METHOD, IMAGE PROCESSING APPARATUS, ELECTRONIC DEVICE, AND COMPUTER PROGRAM | |
CN102045490A (en) | Image processing device and image processing method | |
WO2022121893A1 (en) | Image processing method and apparatus, and computer device and storage medium | |
CN110298812B (en) | Image fusion processing method and device | |
JP2004310475A (en) | Image processor, cellular phone for performing image processing, and image processing program | |
CN114298935B (en) | Image enhancement method, device and computer readable storage medium | |
CN104008535B (en) | Image enhancement method and system based on CbCr angle normalized histogram | |
WO2023134235A1 (en) | Image processing method and electronic device | |
CN112422940A (en) | Self-adaptive color correction method | |
WO2022111269A1 (en) | Method and device for enhancing video details, mobile terminal, and storage medium | |
CN113379631B (en) | Image defogging method and device | |
CN113068011B (en) | Image sensor, image processing method and system | |
CN114998122A (en) | Low-illumination image enhancement method | |
CN114037641A (en) | Low-illumination image enhancement method, device, equipment and medium | |
CN110136085B (en) | Image noise reduction method and device | |
CN114266803A (en) | Image processing method, image processing device, electronic equipment and storage medium | |
CN109509161B (en) | Image enhancement device and image enhancement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHENZHEN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZENG, YUCHAO;HWANG, TAI-JIUN;REEL/FRAME:044829/0842 Effective date: 20171128 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240218 |