US20190368823A1 - Heat dissipation plate and method for manufacturing the same - Google Patents
Heat dissipation plate and method for manufacturing the same Download PDFInfo
- Publication number
- US20190368823A1 US20190368823A1 US16/422,562 US201916422562A US2019368823A1 US 20190368823 A1 US20190368823 A1 US 20190368823A1 US 201916422562 A US201916422562 A US 201916422562A US 2019368823 A1 US2019368823 A1 US 2019368823A1
- Authority
- US
- United States
- Prior art keywords
- plate
- grooves
- capillary structure
- heat dissipation
- angled grooves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 121
- 238000000034 method Methods 0.000 title description 24
- 238000004519 manufacturing process Methods 0.000 title description 4
- 239000002826 coolant Substances 0.000 claims abstract description 104
- 239000012530 fluid Substances 0.000 claims abstract description 70
- 238000004891 communication Methods 0.000 claims description 14
- 238000003466 welding Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000003507 refrigerant Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 239000012809 cooling fluid Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/03—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
- F28D1/0308—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/02—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
- B21D53/04—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of sheet metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/02—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
- B21D53/04—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of sheet metal
- B21D53/045—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of sheet metal by inflating partially united plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/08—Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
- F28F3/10—Arrangements for sealing the margins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/12—Elements constructed in the shape of a hollow panel, e.g. with channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/12—Elements constructed in the shape of a hollow panel, e.g. with channels
- F28F3/14—Elements constructed in the shape of a hollow panel, e.g. with channels by separating portions of a pair of joined sheets to form channels, e.g. by inflation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4871—Bases, plates or heatsinks
- H01L21/4882—Assembly of heatsink parts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20336—Heat pipes, e.g. wicks or capillary pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D39/00—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
- B21D39/03—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal otherwise than by folding
- B21D39/031—Joining superposed plates by locally deforming without slitting or piercing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/04—Tubular or hollow articles
- B23K2101/14—Heat exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/26—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D2015/0216—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having particular orientation, e.g. slanted, or being orientation-independent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/06—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes composite, e.g. polymers with fillers or fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/08—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes pressed; stamped; deep-drawn
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/18—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/06—Fastening; Joining by welding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
- Y10T29/49366—Sheet joined to sheet
- Y10T29/49368—Sheet joined to sheet with inserted tubes
Definitions
- Example embodiments relate to a heat dissipation device, more particularly a heat dissipation plate having a capillary structure and a method for manufacturing the same.
- heat dissipation devices such as a heat dissipation plate
- the heat dissipation plate includes a circulation channel filled with coolant.
- a heat source such as an electrical component
- the coolant in the circulation channel absorbs heat generated by the electronic component to cool the electronic component.
- FIG. 1 is a perspective view of a heat dissipation plate according to an exemplary embodiment.
- FIG. 2 is an exploded view of the heat dissipation plate in FIG. 1 .
- FIG. 3 is a partial cross-sectional view of the heat dissipation plate in FIG. 1 .
- FIG. 4 is an exploded view of a heat dissipation plate according to an exemplary embodiment.
- FIG. 5 is a schematic view of the heat dissipation plate in FIG. 1 in thermal contact with two heat sources and including a coolant;
- FIG. 6 is a perspective view of a heat dissipation plate according to an exemplary embodiment.
- FIG. 7 is an exploded view of the heat dissipation plate in FIG. 6 .
- FIG. 8 is a partial cross-sectional view of the heat dissipation plate in FIG. 6 .
- FIG. 9 is a schematic view of the heat dissipation plate in FIG. 6 in thermal contact with two heat sources and including a coolant.
- FIG. 10 is a perspective view of a heat dissipation plate according to an exemplary embodiment.
- FIG. 11 is an exploded view of the heat dissipation plate in FIG. 10 .
- FIG. 12 is a partial cross-sectional view of the heat dissipation plate in FIG. 10 .
- FIG. 13 is a schematic view of the heat dissipation plate in FIG. 10 in thermal contact with two heat sources and including a coolant.
- FIG. 14 is a perspective view of a roll-bonded heat exchanger according to an exemplary embodiment.
- FIG. 15 is a front view of the roll-bonded heat exchanger in FIG. 14 .
- FIG. 16 is a partial cross-sectional view of the roll-bonded heat exchanger of FIG. 14 taken along line 16 - 16 in FIG. 15 .
- FIG. 17 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment.
- FIG. 18 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment.
- FIG. 19 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment.
- FIG. 20 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment.
- FIG. 21 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment.
- FIG. 22 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment.
- FIG. 23 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment.
- FIG. 24 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment.
- FIG. 25 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment.
- FIG. 26 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment.
- FIGS. 27, 28, and 29 are views showing a process of forming capillary structure in the roll-bonded heat exchanger in FIG. 26 .
- first and second features are formed in direct contact
- additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
- Various features may be arbitrarily drawn in different scales for simplicity and clarity.
- spatially relative terms such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures.
- the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
- the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
- the term “made of” may mean either “comprising” or “consisting of.”
- Embodiments in the present disclosure are directed to a heat dissipation device that improves the circulation of cooling fluid (also referred to as a coolant) in the heat dissipation device.
- the heat dissipation device permits the cooling fluid to flow in a direction opposite the force of gravity when the heat dissipation device is not completely filled with cooling fluid.
- the coolant circulating in the fluid channel of the heat dissipation device does not flow towards the heat source due to the gravitational force. Thus, heat generated by the heat source cannot be effectively dissipated by the cooling fluid.
- FIG. 1 is a perspective view of a heat dissipation device 10 according to an exemplary embodiment.
- FIG. 2 is an exploded view of the heat dissipation device 10 in FIG. 1 .
- FIG. 3 is a partial cross-sectional view of the heat dissipation device 10 in FIG. 1 .
- the heat dissipation device 10 in FIG. 1 is a plate-type device, referred to herein as a heat dissipation plate 10 . It should be noted that embodiments as discussed herein are not applicable only to plate-type heat dissipation devices, but are equally applicable to heat dissipation devices of any shape, without departing from the spirit and scope of the disclosure.
- the heat dissipation plate 10 includes a first plate 100 , a second plate 200 , and a capillary structure 300 .
- the first plate 100 and the second plate 200 are disposed opposite each other and the capillary structure 300 is disposed between the first plate 100 and the second plate 200 .
- the first plate 100 has a first longitudinal edge (or side) 101 and a second longitudinal edge (or side) 102 opposite each other.
- the first plate 100 further has a first plurality of inclined or angled grooves 110 disposed in the longitudinal direction (or the X-direction in FIG. 1 ) and spaced apart from each other.
- Each groove 110 is a recess (or a concavity) that extends into the body of the first plate 100 and extends (in the Y-direction) between the first longitudinal edge 101 and the second longitudinal edge 102 .
- each groove 110 includes a first end 151 adjacent the first longitudinal edge 101 and a second end 152 adjacent the second longitudinal edge 102 and opposite the first end 151 .
- the first end 151 is located higher than the second end 152 , and, as a result, the grooves 110 are disposed at an angle in the first plate 100 .
- the first plate 100 also includes a first longitudinal groove 120 and a second longitudinal groove 130 , both extending in the X-direction.
- the first longitudinal groove 120 is located adjacent the first longitudinal edge 101 and the second longitudinal groove 130 is located adjacent the second longitudinal edge 102 .
- the first ends 151 of the grooves 110 are in fluid communication with the first longitudinal groove 120 and the second ends 152 of the grooves 110 are in fluid communication with the second longitudinal groove 130 .
- the grooves 110 are in fluid communication with each other through the first and second longitudinal grooves 120 and 130 .
- the first plate 100 is shown disposed vertically, and the direction indicated by the arrow G indicates the direction of the force of gravity.
- the second plate 200 has a first longitudinal edge 201 and a second longitudinal edge 202 opposite each other.
- the second plate 200 also includes a second plurality of inclined or angled grooves 210 disposed in the longitudinal direction (or the X-direction in FIG. 1 ) and spaced apart from each other.
- Each groove 210 is a recess (or concavity) that extends into the body of the second plate 200 and extends (in the Y-direction) between the first longitudinal edge 201 and the second longitudinal edge 202 .
- each groove 210 includes a first end 171 adjacent the first longitudinal edge 201 and a second end 172 adjacent the second longitudinal edge 202 and opposite the first end 171 .
- the first end 171 is located higher than the second end 172 , and, as a result, the grooves 210 are disposed at an angle in the second plate 200 .
- the second plate 200 includes a first longitudinal groove 220 and a second longitudinal groove 230 , both extending in the X-direction.
- the first longitudinal groove 220 is located adjacent the first longitudinal edge 201 and the second longitudinal groove 230 is located adjacent the second longitudinal edge 202 .
- the first ends 171 of the grooves 210 are in fluid communication with the first longitudinal groove 220 and the second ends 172 of the grooves 210 are in fluid communication with the second longitudinal groove 230 .
- the grooves 210 are in fluid communication with each other through the first and second longitudinal grooves 220 and 230 .
- the second plate 200 is coupled to the first plate 100 , such that the grooves 110 are parallel to the grooves 210 and misaligned with the grooves 210 .
- grooves 110 and grooves 210 are offset from each other.
- grooves 110 and grooves 210 partially overlap each other.
- the groove 210 is located between two grooves 110 .
- the first and second longitudinal grooves 120 and 130 of the first plate 100 are respectively aligned and fluidly connected to the first and second longitudinal grooves 220 and 230 of the second plate 200 .
- the grooves 110 and the grooves 210 are connected to each other via the first and second longitudinal grooves 120 and 130 of the first plate 100 and the first and second longitudinal grooves 220 and 230 of the second plate 200 to form a fluid channel C ( FIG. 3 ) that allows coolant to flow therethrough.
- the fluid channel C is continuous throughout the heat dissipation plate 10 , although, as discussed below, the entire fluid channel C may not be filled with coolant L.
- the heat dissipation plate 10 includes an inlet O defined by the second longitudinal groove 130 of the first plate 100 and the second longitudinal groove 230 of the second plate 200 .
- the inlet O permits coolant to be introduced into the fluid channel C. As illustrated, the inlet O is aligned with the second longitudinal groove 130 and the second longitudinal groove 230 .
- the capillary structure 300 is located in the fluid channel C.
- the coolant does not completely fill the fluid channel C and only part of the fluid channel C is occupied by the coolant.
- the capillary structure 300 extends from a position below a surface of the coolant to a position above the surface of the coolant. As such, the capillary structure 300 is partially immersed in the coolant.
- the capillary structure 300 is located in the grooves 210 and both of the first and second longitudinal grooves 220 and 230 of the second plate 200 .
- the capillary structure 300 may be located in the grooves 210 and only one of the first and second longitudinal grooves 220 and 230 of the second plate 200 .
- a capillary structure 300 A is located in the grooves 210 and the second longitudinal groove 230 of the second plate 200 .
- the groove 110 may be referred to as a vapor channel and groove 210 may be referred to as the flow channel.
- the capillary structure 300 may not completely overlap the grooves 210 and the first and second longitudinal grooves 220 and 230 of the second plate 200 . Stated otherwise, the capillary structure 300 may not completely line the grooves 210 and the first and second longitudinal grooves 220 and 230 of the second plate 200 . In another embodiment, the capillary structure 300 may partially overlap or line the grooves 210 and the first and second longitudinal grooves 220 and 230 of the second plate 200 . In yet another embodiment, if the first longitudinal groove 220 is adjacent a heat generating source, then the groove 210 and first longitudinal groove 220 above the surface S of the coolant L are completely lined with the capillary structure 300 . The second longitudinal groove 230 does not include a capillary structure.
- the groove 210 and second longitudinal groove 230 above the surface S of the coolant L are completely lined with the capillary structure 300 .
- the first longitudinal groove 220 does not include a capillary structure.
- FIG. 3 illustrates a partial cross-sectional view of the heat dissipation plate 10 including the capillary structure 300 in the fluid channel C defined by groove 210 of the second plate 200 .
- the capillary structure 300 lines the groove 210 , but does not completely fill (or occupy) the fluid channel C.
- FIG. 5 is a schematic view of the heat dissipation plate 10 of FIG. 1 in thermal contact with two heat sources H 1 and H 2 and including coolant L. As illustrated in FIG. 5 , the coolant L partially fills the fluid channel C.
- the heat dissipation plate 10 is positioned vertically, and the first heat source H 1 and the second heat source H 2 are in thermal contact with the heat dissipation plate 10 and respectively located below and above the surface S of the coolant L.
- the first heat source H 1 is generating heat (e.g., during operation)
- the coolant L in liquid form absorbs heat generated by the first heat source H 1 and changes to vapor that flows in a direction opposite the arrow G to a relatively cooler portion of the heat dissipation plate 10 .
- the relatively cooler portion of the heat dissipation plate 10 is to the right in FIG. 5 adjacent to the second longitudinal groove 230 .
- the coolant L in vapor form condenses to liquid again and flows back to the lower portion of the fluid channel C (e.g., the relatively hotter portion of the heat dissipation plate 10 ) along the second longitudinal groove 230 .
- the circulation of the coolant in the heat dissipation plate 10 is indicated by the arrow F.
- the coolant Due to the heat generated by the second heat source H 2 (e.g., during operation), the coolant is drawn from the lower portion of the fluid channel C via the capillary structure 300 to the second heat source H 2 .
- the coolant L changes to vapor that flows in the direction indicated by the arrow D 1 towards the relatively cooler portion of the heat dissipation plate 10 .
- the coolant in vapor form flowing away from the second heat source H 2 condenses to liquid due to the relatively cooler portion of the heat dissipation plate 10 .
- the condensed coolant in liquid form is transported toward the heat source H 2 as indicated by the arrow D 2 .
- the coolant flow due to the second heat source H 2 has a relatively smaller circulation path compared to coolant flow when dissipating heat from the first heat source H 1 .
- the heat dissipation plate 10 is able to dissipate heat generated by a heat source whether it is located below or above the surface of the coolant.
- the heat dissipation plate 10 can be manufactured using a composite plate including a welding material, or by using a non-composite (e.g., aluminum) plate not including a welding material.
- a composite plate including a welding material or by using a non-composite (e.g., aluminum) plate not including a welding material.
- one or more stamping processes are performed on two plates both having the welding material to obtain the first plate 100 having the first plurality of inclined grooves 110 and the first and second longitudinal grooves 120 and 130 , and to obtain the second plate 200 having the second plurality of inclined grooves 210 and the first and second longitudinal grooves 220 and 230 .
- the shapes and sizes of the grooves 110 and 210 and the longitudinal grooves 120 , 130 , 220 , and 230 are not limited to any particular shape and size, and the shapes and sizes can vary as required by design and/or application.
- the grooves 110 and 120 and the longitudinal grooves 120 , 130 , 220 , and 230 may have different shapes and/or sizes in order to create a pressure difference for controlling the flowing direction of the vaporized coolant.
- the one or more grooves 110 of the first plate 100 may have a different cross-sectional shape or size.
- the grooves 110 and the longitudinal grooves 120 and 130 of the first plate 100 may have a different cross-sectional shape or size.
- the grooves 110 of the first plate 100 and the grooves 210 of the second plate 200 may have a different cross-sectional shape or size.
- powder is deposited in the second grooves 210 and the first and second longitudinal grooves 220 and 230 of the second plate 200 and the second plate 200 is heated to form the capillary structure 300 via sintering.
- a welding flux is provided on a welding surface of the second plate 200 that is not covered by the powder in order to clean the welding surface, and thereby improve the welding quality.
- the welding flux is omitted.
- the first plate 100 and the second plate 200 are coupled to each other (e.g., the plates may be stacked over each other) and are aligned with each other by a fixture and then welded. Thus, the welding and sintering operations are performed simultaneously.
- the fixture resists the stress occurring during the welding process and thus prevents the deformation of the first plate 100 and the second plate 200 .
- the fixture is made of graphite or other materials which do not interact with the welding material.
- the first plate 100 and the second plate 200 are heated to melt the welding material and fix the first plate 100 and the second plate 200 to each other.
- the heating also sinters the powder to obtain the capillary structure 300 .
- a pipe is welded to the inlet O to suck out the air from the fluid channel C and to then introduce coolant L into the fluid channel C.
- one or more stamping processes are performed on two plates not having welding material so as to obtain the first plate 100 having the first plurality of inclined grooves 110 and the first and second longitudinal grooves 120 and 130 , and to obtain the second plate 200 having the second plurality of inclined grooves 210 and the first groove 220 and the second groove 230 .
- the shapes and sizes of the grooves 110 and 210 and the longitudinal grooves 120 , 130 , 220 , and 230 are not limited to any particular shape and size, and the shapes and sizes can vary as required by design and/or application.
- the grooves 110 and 120 and the longitudinal grooves 120 , 130 , 220 , and 230 may have different shapes and/or sizes in order to create a pressure difference for controlling the flowing direction of the vaporized coolant.
- the one or more grooves 110 of the first plate 100 may have a different cross-sectional shape or size.
- the grooves 110 and the longitudinal grooves 120 and 130 of the first plate 100 may have a different cross-sectional shape or size.
- the grooves 110 of the first plate 100 and the grooves 210 of the second plate 200 may have a different cross-sectional shape or size.
- the powder is deposited in the grooves 210 and the first and second longitudinal grooves 220 and 230 of the second plate 200 .
- the powder is sintered to obtain the capillary structure 300 .
- the powder may be disposed in the grooves 210 and only one of the first and second longitudinal grooves 220 and 230 of the second plate 200 .
- a welding material is provided on a surface to be welded of the second plate 200 that is not covered by the powder.
- a welding flux is then provided on the welding material disposed on the second plate 200 to improve the welding quality.
- the first plate 100 and the second plate 200 are coupled to each other (e.g., the plates may be stacked over each other) and are aligned with each other by a fixture.
- the fixture resists the stress occurring during the welding process and thus prevents the deformation of the first plate 100 and the second plate 200 .
- the fixture is made of graphite or other materials which do not interact with the welding material.
- the first plate 100 and the second plate 200 are welded together. Air in the fluid channel C is removed through the inlet O and coolant L is introduced into the fluid channel C through the inlet O.
- a pipe may be welded to the inlet O of the heat dissipation plate 10 to and air may be sucked out of the fluid channel C via the pipe. Coolant L is then introduced into the fluid channel C using the pipe.
- the capillary structure 300 is formed by disposing the powder at the grooves 210 and the first and second longitudinal grooves 220 and 230 of the second plate 200 and sintering it, but the present disclosure is not limited thereto.
- the capillary structure may be first formed from the capillary powder, and then installed into the grooves 210 and the first and second longitudinal grooves 220 and 230 of the second plate 200 .
- the capillary structure can be formed in the first plate 100 and the second plate 200 .
- FIG. 6 is a perspective view of a heat dissipation plate 10 a according to another embodiment.
- FIG. 7 is an exploded view of the heat dissipation plate 10 a in FIG. 6 .
- FIG. 8 is a partial cross-sectional view of the heat dissipation plate 10 a in FIG. 6 .
- the heat dissipation plate 10 a includes a first plate 100 a , a second plate 200 a and a capillary structure 300 a .
- the first plate 100 a and the second plate 200 a are disposed opposite each other and the capillary structure 300 is disposed between the first plate 100 a and the second plate 200 a.
- the first plate 100 a has a first longitudinal edge (or side) 101 a and a second longitudinal edge (or side) 102 a opposite each other.
- the first plate 100 a further has a first plurality of inclined or angled grooves 110 a disposed in the longitudinal direction (or the X-direction in FIG. 6 ) and spaced apart from each other.
- Each groove 110 a is a recess (or a concavity) that extends into the body of the first plate 100 a and extends (in the Y-direction) between the first longitudinal edge 101 a and the second longitudinal edge 102 a .
- each groove 110 a includes a first end 151 a adjacent the first longitudinal edge 101 a and a second end 152 a adjacent the second longitudinal edge 102 a and opposite the first end 151 a .
- the first end 151 a is located lower than the second end 152 a , and, as a result, the grooves 110 a are disposed at an angle in the first plate 100 a . It will be understood that the grooves 110 a are considered angled or inclined with reference to the top (or bottom) edge of the first plate 100 a.
- the first plate 100 a also includes a longitudinal groove 130 a extending in the X-direction.
- the longitudinal groove 130 a is located adjacent the second longitudinal edge 102 a .
- the second ends 152 a of the grooves 110 a are in fluid communication with the longitudinal groove 130 a .
- the grooves 110 a are in fluid communication with each other through the longitudinal groove 130 a .
- the first plate 100 a is shown disposed vertically, and the direction indicated by the arrow G is the direction of the force of gravity.
- the second plate 200 a has a first longitudinal edge 201 a and a second longitudinal edge 202 a opposite each other.
- the second plate 200 a also includes a second plurality of inclined or angled grooves 210 a disposed in the longitudinal direction (or the X-direction in FIG. 6 ) and spaced apart from each other.
- Each groove 210 a is a recess (or concavity) that extends into the body of the second plate 200 a and extends (in the Y-direction) between the first longitudinal edge 201 a and the second longitudinal edge 202 a .
- each groove 210 a includes a first end 171 a adjacent the first longitudinal edge 201 a and a second end 172 a adjacent the second longitudinal edge 202 a and opposite the first end 171 a .
- the first end 171 a is located higher than the second end 172 a , and, as a result, the grooves 210 a are disposed at an angle in the second plate 200 a .
- the longitudinal grooves 110 a and 210 a are orientated in opposite directions. It will be understood that the grooves 210 a are considered angled or inclined with reference to the top (or bottom) edge of the second plate 200 a.
- the second plate 200 a includes a longitudinal groove 220 a extending in the X-direction.
- the longitudinal groove 220 a is located adjacent the first longitudinal edge 201 a .
- the first ends 171 a of the grooves 210 are in fluid communication with the longitudinal groove 220 a .
- the grooves 210 a are in fluid communication with each other through the longitudinal groove 220 a.
- the second plate 200 a is coupled to the first plate 100 a such that portions of the inclined grooves 110 a and portions of the inclined grooves 210 a intersect each other and the inclined grooves 110 a are connected in fluid communication with each other via the inclined groove 210 a and the longitudinal groove 130 a .
- the inclined grooves 110 a , the inclined grooves 210 a , the longitudinal groove 120 a and the longitudinal groove 220 a together form a fluid channel C that allows coolant L to flow therethrough.
- the fluid channel C is continuous throughout the heat dissipation plate 10 a , although, as discussed below, the entire fluid channel C may not be filled with coolant L.
- the longitudinal groove 130 a and the longitudinal groove 220 a are located at two opposite ends of the grooves 110 a , but embodiments are not limited in this regard. In other embodiments, the longitudinal groove 130 a and the longitudinal groove 220 a may be located at the same end of the grooves 110 a.
- the heat dissipation plate 10 a has an inlet O formed by the topmost groove 110 a and the topmost groove 210 a , each proximate the top of the heat dissipation plate 10 a .
- the inlet O allows coolant L to be introduced into the fluid channel C.
- the capillary structure 300 a is located in the fluid channel C.
- the coolant does not completely fill the fluid channel C and only part of the fluid channel C is occupied by the coolant L.
- the capillary structure 300 a extends from below a surface S of the coolant L to above the surface S of the coolant L. Stated otherwise, the capillary structure 300 a is partially submerged in coolant. As illustrated, the capillary structure 300 a is located in the grooves 210 a and the longitudinal groove 220 a of the second plate 200 a.
- the capillary structure 300 a may be disposed in the first plate 100 a .
- the heat dissipation plate 10 a may have two capillary structures respectively disposed on the first plate 100 a and the second plate 200 a.
- the capillary structure 300 a may not be completely overlapped with the grooves 210 a and the longitudinal groove 220 a of the second plate 200 a . Stated otherwise, the capillary structure 300 a may not completely line the grooves 210 a and the longitudinal groove 220 a . In another embodiment, the capillary structure 300 a may partially overlap or line the grooves 210 a and the longitudinal groove 220 a of the second plate 200 a.
- FIG. 8 illustrates a partial cross-sectional view of the heat dissipation plate 10 a including the capillary structure 300 a in the fluid channel C defined by grooves 110 a and 210 a .
- the capillary structure 300 a lines the groove 210 a , but does not completely fill (or occupy) the fluid channel C.
- FIG. 9 is a schematic view of the heat dissipation plate 10 a in FIG. 6 in thermal contact with two heat sources H 1 and H 2 and including coolant L.
- coolant L partially fills the fluid channel C.
- the heat dissipation plate 10 a is positioned vertically, and the first heat source H 1 and the second heat source H 2 are in thermal contact with the heat dissipation plate 10 a and respectively located below and above the surface S of the coolant L.
- the coolant L in liquid form absorbs heat generated by the first heat source H 1 and changes to vapor that flows in a direction opposite the arrow G to a relatively cooler portion of the heat dissipation plate 10 a .
- the coolant L in vapor form condenses to liquid and flows back to the lower portion of the fluid channel C (e.g., the relatively hotter portion of the heat dissipation plate 10 a ).
- the circulation of the coolant in the heat dissipation plate 10 a is indicated by the arrow F.
- coolant Due to the heat generated by the second heat source H 2 , coolant is drawn from the lower portion of the fluid channel C via the capillary structure 300 a to the second heat source H 2 .
- the coolant L changes to vapor that flows in the direction of arrow D 1 towards the relatively cooler portion of the heat dissipation plate 10 a .
- the coolant in the vapor form flowing away from the second heat source H 2 condenses to liquid due to the relatively cooler portion of the heat dissipation plate 10 a .
- the condensed coolant is transported towards the heat source H 2 as indicated by the arrow D 2 .
- the coolant flow due to the second heat source H 2 has a relatively smaller circulation path compared to the coolant flow due to the first heat source H 1 .
- the heat dissipation plate 10 a is able to dissipate heat generated by the heat source whether it is located below or above the surface of the coolant.
- the manufacturing process of the heat dissipation plate 10 a is similar to that of the heat dissipation plate 10 , thus a discussion thereof is omitted for the sake of brevity.
- FIG. 10 is a perspective view of a heat dissipation plate 10 b according to an exemplary embodiment.
- FIG. 11 is an exploded view of the heat dissipation plate 10 b in FIG. 10 .
- FIG. 12 is a partial cross-sectional view of the heat dissipation plate 10 b in FIG. 10 .
- the heat dissipation plate 10 b includes a first plate 100 b , a second plate 200 b and a plurality of capillary structures 300 b .
- the first plate 100 b and the second plate 200 b are disposed opposite each other and the capillary structures 300 b are disposed between the first plate 100 b and the second plate 200 b.
- the first plate 100 b has a first longitudinal edge (or side) 101 b and a second longitudinal edge (or side) 102 b opposite each other.
- the first plate 100 b further has a first plurality of inclined or angled grooves 110 b disposed in the longitudinal direction (or the X-direction in FIG. 10 ) and spaced apart from each other.
- Each groove 110 b is a recess (or a concavity) that extends into the body of the first plate 100 b and extends (in the Y-direction) between the first longitudinal edge 101 b and the second longitudinal edge 102 b .
- each groove 110 b includes a first end 151 b adjacent the first longitudinal edge 101 b and a second end 152 b adjacent the second longitudinal edge 102 b and opposite the first end 151 b .
- the first end 151 b is located lower than the second end 152 b , and, as a result, the grooves 110 b are disposed at an angle in the first plate 100 b . It will be understood that the grooves 110 b are considered angled or inclined with reference to the top (or bottom) edge of the first plate 100 b.
- the first plate 100 b is shown disposed vertically, and the direction indicated by the arrow G is the direction of the force of gravity.
- the second plate 200 b has a first longitudinal edge 201 b and a second longitudinal edge 202 b opposite each other.
- the second plate 200 b includes a second plurality of inclined or angled grooves 210 b disposed in the longitudinal direction (or the X-direction in FIG. 6 ) and spaced apart from each other.
- Each groove 210 b is a recess (or concavity) that extends into the body of the second plate 200 b and extends (in the Y-direction) between the first longitudinal edge 201 b and the second longitudinal edge 202 b .
- each groove 210 b includes a first end 171 b adjacent the first longitudinal edge 201 b and a second end 172 b adjacent the second longitudinal edge 202 b and opposite the first end 171 b .
- the first end 171 b is located higher than the second end 172 b , and, as a result, the grooves 210 b are disposed at an angle in the second plate 200 b .
- the grooves 210 b are considered angled or inclined with reference to the top (or bottom) edge of the second plate 200 b . Referring to FIG. 11 , it will be understood that the grooves 110 b and 220 b are orientated in opposite directions.
- the second plate 200 b is coupled to the first plate 100 b such that portions of the first grooves 110 b and portions of the inclined grooves 210 b intersect each other and the inclined grooves 110 b are connected in fluid communication with each other via the inclined grooves 210 b .
- the inclined grooves 110 b and the inclined grooves 210 b together form a fluid channel C that allows coolant L to flow therethrough.
- the fluid channel C is continuous throughout the heat dissipation plate 10 b , although, as discussed below, the entire fluid channel C may not be filled with coolant L.
- the heat dissipation plate 10 b has an inlet O formed by topmost groove 110 b and the topmost groove 210 b , each located proximate the top of the heat dissipation plate 10 b .
- the inlet O allows coolant L to be introduced into the fluid channel C.
- the capillary structures 300 b are located in the fluid channel C.
- the coolant L does not completely fill the fluid channel C and only part of the fluid channel C is occupied by the coolant L.
- the capillary structures 300 b are arranged from below a surface S of the coolant L to above the surface S of the coolant L. Stated otherwise, the capillary structure 300 b is partially submerged in coolant.
- the capillary structures 300 b are located in corresponding grooves 210 b of the second plate 200 b .
- the capillary structures 300 b may be disposed in the first plate 100 b .
- the capillary structures 300 b may be disposed in both the first plate 100 b and the second plate 200 b.
- the capillary structures 300 b may not completely overlapped or lined with the grooves 210 b of the second plate 200 b . In yet another embodiment, the capillary structures 300 b may partially overlap or line the second grooves 210 b of the second plate 200 b.
- FIG. 12 illustrates a partial cross-sectional view of the heat dissipation plate 10 b including the capillary structure 300 b in the fluid channel C defined by grooves 110 b and 210 b .
- the capillary structure 300 b lines the groove 210 b , but does not completely fill (or occupy) the fluid channel C.
- FIG. 13 is a schematic view of the heat dissipation plate 10 b in FIG. 10 in thermal contact with two heat sources H 1 and H 2 and including coolant L.
- coolant L partially fills the fluid channel C.
- the heat dissipation plate 10 b is positioned vertically, and the first heat source H 1 and the second heat source H 2 are in thermal contact with the heat dissipation plate 10 b and respectively located below and above the surface S of the coolant L.
- the coolant L in liquid form absorbs heat generated by the first heat source H 1 and changes to vapor that flows in a direction opposite the arrow G to a relatively cooler portion of the heat dissipation plate 10 b .
- the coolant L in vapor form condenses to the liquid and flows back to the lower portion of the fluid channel C (e.g., the relatively hotter portion of the heat dissipation plate 10 b ).
- the circulation of the coolant in the heat dissipation plate 10 b is indicated by the arrow F.
- coolant Due to the heat generated by the second heat source H 2 , coolant is drawn from the lower portion of the fluid channel C via the capillary structure 300 b to the second heat source H 2 .
- the coolant L changes to vapor that flows in the direction of arrow D 1 towards the relatively cooler portion of the heat dissipation plate 10 b .
- the coolant in vapor form flowing away from the second heat source H 2 condenses to liquid due to the relatively cooler portion of the heat dissipation plate 10 b .
- the condensed coolant is transported towards the second heat source H 2 as indicated by the arrow D 2 .
- the coolant flow due to the second heat source H 2 has a relatively smaller circulation path compared to the coolant flow due to the first heat source H 1 .
- the heat dissipation plate 10 b is able to dissipate heat generated by the heat sources whether it is located below or above the surface of the coolant.
- the manufacturing process of the heat dissipation plate 10 b is similar to that of the heat dissipation plate 10 , and therefore a discussion thereof is omitted for the sake of brevity.
- first plate and the second plate both have inclined grooves, but the disclosure is not limited in this regard. In other embodiments, only one of the first plate and the second plate may have inclined grooves.
- the capillary structure is disposed in the fluid channel, such that the coolant is able to flow against the force of gravity via the capillary structure and to the portion of the fluid channel close to the heat source located above the surface of the coolant. Therefore, the heat dissipation plate according to example embodiments is capable of dissipating heat generated by the heat source located below or above the surface of the coolant.
- FIG. 14 is a perspective view of a roll-bonded heat exchanger 140 a according to an exemplary embodiment.
- FIG. 15 is a front view of the roll-bonded heat exchanger 140 a viewed in the direction of arrow M.
- FIG. 16 is a partial cross-sectional view of the roll-bonded heat exchanger 140 a along line 16 - 16 in FIG. 15 . It should be noted that, although example embodiments are discussed below with reference to a roll-bonded heat exchanger, the example embodiments are not limited thereto and are equally applicable to other types of heat dissipating devices without departing from the spirit and scope of the disclosure.
- the roll-bonded heat exchanger 140 a dissipates heat generated by a heat source (e.g., an electronic circuit) that is in thermal contact with the roll-bonded heat exchanger 140 a .
- the heat source is, for example, a central processing unit (CPU), but embodiments are not limited thereto.
- the roll-bonded heat exchanger 140 a includes a heat conducting plate structure 1400 a and a capillary structure 1610 a enclosed within the heat conducting plate structure 1400 a .
- the heat conducting plate structure 1400 a includes a channel 1405 a and an opening 1406 a that are connected to each other.
- the channel 1405 a is sized and shaped (or otherwise configured) to include a coolant (not shown).
- the coolant is, for example, water or refrigerant, but embodiments are not limited thereto.
- the coolant may occupy about 30 to 70 percent of the volume of the channel 1405 a .
- the volume of the channel 1405 a occupied by the coolant can be more or less as required.
- the coolant can be introduced into the channel 1405 a via the opening 1406 a.
- the heat conducting plate structure 1400 a includes a first plate 1410 a and a second plate 1420 a sealingly bonded with each other.
- the first plate 1410 a includes a first surface 1412 a that defines (or otherwise includes) a first recess (or a concavity) 1411 a .
- the second plate 1420 a includes a second surface 1422 a that is planar.
- the second surface 1422 a faces the first surface 1412 a when the first plate 1410 a and the second plate 1420 a are bonded with each other.
- the first recess 1411 a is located between the first surface 1412 a and the second surface 1422 a .
- the first surface 1412 a and the second surface 1422 a cooperatively define the channel 1405 a.
- the roll-bonded heat exchanger 140 a includes a refrigerant area A 1 , a cooling area A 2 and a heat absorbing area A 3 .
- the refrigerant area A 1 is located below the heat absorbing area A 3
- the cooling area A 2 is located between the refrigerant area A 1 and the heat absorbing area A 3 .
- the heat absorbing area A 3 , the cooling area A 2 , and the refrigerant area A 1 are arranged along a gravitational direction indicated by the arrow G with the refrigerant area A 1 being the bottom-most portion of the roll-bonded heat exchanger 140 a .
- the refrigerant area A 1 of the roll-bonded heat exchanger 140 a is configured to store the coolant.
- the cooling area A 2 of the roll-bonded heat exchanger 140 a is configured to release the heat in the gas-phase coolant and thereby condense the gas-phase coolant to the liquid-phase coolant.
- the heat absorbing area A 3 of the roll-bonded heat exchanger 140 a is configured to be in thermal contact with the heat source to absorb the heat generated by the heat source.
- the capillary structure 1610 a is located in the channel 1405 a and disposed on the entire first surface 1412 a and extends from the refrigerant area A 1 to the heat absorbing area A 3 .
- the coolant in the heat absorbing area A 3 of the roll-bonded heat exchanger 140 a absorbs the heat generated by the heat source, the coolant is vaporized to the gas phase.
- the pressure difference is created in the roll-bonded heat exchanger 140 a and this causes the vaporized coolant to flow from the heat absorbing area A 3 to the cooling area A 2 .
- the vaporized coolant is condensed to the liquid phase in the cooling area A 2 .
- the liquid-phase coolant flows back to the heat absorbing area A 3 along a direction indicated by the arrow H opposite to the gravitational direction via the capillary structure 1610 a .
- a portion of the liquid-phase coolant also flows to the refrigerant area A 1 .
- the coolant is thus circulated in the channel 1405 a.
- the capillary structure may also be disposed on the second surface 1422 a of the second plate 1420 a .
- FIG. 17 illustrates a partial cross-sectional view of the roll-bonded heat exchanger 140 a according to an exemplary embodiment. As illustrated, a capillary structure 1610 b is disposed over the entire second surface 1422 a of the second plate 1420 a in addition to the capillary structure 1610 a being disposed over the entire first surface 1412 a of the first plate 1410 a . However, embodiments are not limited in this regard and in other embodiments, the capillary structure 1610 b may be disposed on only portions of the second surface 1422 a.
- FIG. 18 is a partial cross-sectional view of the roll-bonded heat exchanger 140 a according to an exemplary embodiment. As shown in FIG. 18 , the roll-bonded heat exchanger 140 a includes two capillary structures 1610 c and 1620 c spaced apart from each other and arranged adjacent opposite ends of the first surface 1412 a in the first recess 1411 a.
- FIG. 19 is a partial cross-sectional view of the roll-bonded heat exchanger 140 a according to an exemplary embodiment.
- the roll-bonded heat exchanger 140 a includes a single capillary structure 1610 d disposed on the first surface 1412 a and in the first recess 1411 a and spaced from two opposite edges 1421 d of the first recess 1411 a .
- the capillary structure 1610 d may be located centrally in the first recess 1411 a on the first surface 1412 a.
- FIG. 20 is a partial cross-sectional view of the roll-bonded heat exchanger 140 a according to an exemplary embodiment.
- the roll-bonded heat exchanger 140 a includes multiple capillary structures on the first surface 1412 a in the first recess 1411 a .
- the roll-bonded heat exchanger 140 a includes a first capillary structure 1610 e , a second capillary structure 1620 e , a third capillary structure 1630 e , and a fourth capillary structure 1640 e on the first surface 1412 a in the first recess 1411 a .
- the first capillary structure 1610 e , the second capillary structure 1620 e , the third capillary structure 1630 e , and the fourth capillary structure 1640 e are spaced apart from each other.
- the first capillary structure 1610 e and the second capillary structure 1620 e are arranged adjacent two opposite ends of the first surface 1412 a .
- the third capillary structure 1630 e and fourth capillary structure 1640 e are arranged on the first surface 1412 a between the first capillary structure 1610 e and the second capillary structure 1620 e.
- FIG. 21 is a partial cross-sectional view of the roll-bonded heat exchanger 140 a according to an exemplary embodiment.
- the second surface 1422 a of the second plate 1420 a defines (or includes) a second recess (or concavity) 1421 f .
- the second recess 1421 f is aligned with the first recess 1411 a such that the ends of the first recess 1411 a contact the ends of the second recess 1421 f .
- the first surface 1412 a in the first recess 1411 a and the second surface 1422 a in the second recess 1421 f cooperatively define the channel 1405 a of the roll-bonded heat exchanger 140 a .
- Capillary structure 1610 a is located in the channel 1405 a and disposed on the entire first surface 1412 a in the first recess 1411 a .
- embodiments are not limited in this regard. In other embodiments, the capillary structure 1610 a may be disposed only on a portion of the first surface 1412 a.
- FIG. 22 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment.
- capillary structure 1610 b is disposed on the entire second surface 1422 a in addition to the capillary structure 1610 a disposed on the entire first surface 1412 a .
- the capillary structures 1610 a and 1610 b may be disposed only on portions of the respective first and second surfaces 1412 a and 1422 a.
- FIG. 23 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment.
- the channel 1405 a includes two capillary structures 1610 h and 1620 h spaced apart from each other and respectively disposed adjacent the two opposite ends of the first surface 1412 a .
- capillary structures 1610 h and 1620 h may be disposed adjacent the two opposite ends of the second surface 1422 a .
- capillary structures may be disposed on both the first surface 1412 a and the second surface 1422 a.
- FIG. 24 is a partial cross-sectional view of a roll-bonded heat exchanger 140 a according to an exemplary embodiment.
- the roll-bonded heat exchanger 140 a includes a single capillary structure 210 i disposed on the first surface 1412 a and in the first recess 1411 a and spaced from the opposite edges 1421 d of the first recess 1411 a .
- the capillary structure 210 i may be located centrally in the first recess 1411 a on the first surface 1412 a .
- the capillary structure 210 i may be disposed on the second surface 1422 a in the recess 1421 a .
- capillary structures may be disposed on both the first surface 1412 a and the second surface 1422 a.
- FIG. 25 is a partial cross-sectional view of the roll-bonded heat exchanger 140 a according to an exemplary embodiment.
- the roll-bonded heat exchanger 140 a includes the first capillary structure 1610 e , the second capillary structure 1620 e , the third capillary structure 1630 e , and the fourth capillary structure 1640 e on the first surface 1412 a in the first recess 1411 a .
- the first capillary structure 1610 e , the second capillary structure 1620 e , the third capillary structure 1630 e , and the fourth capillary structure 1640 e are spaced apart from each other.
- the first capillary structure 1610 e and the second capillary structure 1620 e are respectively located on two opposite ends of the first surface 1412 a .
- the third capillary structure 1630 e and fourth capillary structure 1640 e are spaced apart from each other and arranged on the first surface 1412 a between the first capillary structure 1610 e and the second capillary structure 1620 e .
- the first capillary structure 1610 e , the second capillary structure 1620 e , the third capillary structure 1630 e , and the fourth capillary structure 1640 e may be disposed on the second surface 1422 a in the recess 1421 a .
- the four capillary structures may be disposed on both the first surface 1412 a and the second surface 1422 a.
- the capillary structures 1610 a , 1610 b , 1610 c , 1620 c , 1610 d , 1610 e , 1620 e , 1630 e , 1640 e , 1610 h , and 1620 h may be made of or otherwise include a metal, such as aluminum, copper, nickel or titanium.
- the capillary structures 1610 a , 1610 b , 1610 c , 1620 c , 1610 d , 1610 e , 1620 e , 1630 e , 1640 e , 1610 h , and 1620 h may be made of or otherwise include a non-metallic material, such as carbon tube, graphite, glass fiber or polymer.
- the capillary structures 1610 a , 1610 b , 1610 c , 1620 c , 1610 d , 1610 e , 1620 e , 1630 e , 1640 e , 1610 h , and 1620 h may include vent holes, grooves, planar or three-dimensional woven meshes (or tube bundles), or the combination thereof.
- the capillary structures 1610 a , 1610 b , 1610 c , 1620 c , 1610 d , 1610 e , 1620 e , 1630 e , 1640 e , 1610 h , and 1620 h may be manufactured by (1) filling powder in the channel 1405 a and sintering the powder, (2) inserting a molded capillary structure in the channel, or (3) placing a molded capillary structure in graphite printing tubes in the bottom and top metal plates (e.g., plates 1410 a and 1420 a ). Briefly, in graphite printing, a pre-determined pattern of the capillary structures is printed on surfaces of the top and bottom plates prior to roll bonding the plates. This prevents the top and bottom plates from completely bonded together.
- the capillary structures 1610 a , 1610 b , 1610 c , 1620 c , 1610 d , 1610 e , 1620 e , 1630 e , 1640 e , 1610 h , and 1620 h may also be manufactured by directly replacing the material of the graphite printing tubes by the capillary structure made from a carbon tube or polymer, a stamping process, sandblasting surfaces of the bottom and top metal plates (e.g., plates 1410 a and 1420 a ), or etching the surfaces of the bottom and top metal plates (e.g., plates 1410 a and 1420 a ).
- FIG. 26 is an isometric view of a roll-bonded heat exchanger 140 k according to an exemplary embodiment.
- FIG. 27 , FIG. 28 , and FIG. 29 are views showing a process of forming a capillary structure of the roll-bonded heat exchanger 140 k in FIG. 26 .
- a roll-bonded heat exchanger 140 k includes a heat conducting plate body 1400 k having a plurality of angled channels 1405 k formed as grooves (or recesses) in the bottom plate of the heat conducting plate body 1400 k and a plurality of angled channels 1403 k formed as grooves (or recesses) in the top plate of the heat conducting plate body 1400 k that are orientated opposite angled channels 1405 k .
- the angled channels 1403 k and 1405 k extend in a straight line (without any bends or curves) in the body of the roll-bonded heat exchanger 140 k .
- Each angled channel 1405 k includes a single capillary structure 1610 k . It will be understood that the angled channels 1403 k and 1405 k are considered angled or inclined with reference to the top (or bottom) edge of the heat conducting plate body 1400 k.
- the capillary structures 1610 k are placed into the roll-bonded heat exchanger 140 k prior to roll bonding the top and bottom plates of the roll-bonded heat exchanger 140 k .
- the roll-bonded heat exchanger 140 k may be similar in some aspects to the roll-bonded heat exchanger 140 a and may include two plates (similar to the plates 1410 a and 1420 a ) bonded to each other.
- the capillary structures 1610 k are placed in the channels 1405 k after roll bonding the two plates forming the heat conducting plate body 1400 k.
- the capillary structures 1610 k are formed on the surfaces of plates that form the heat conducting plate body 1400 k by, for example, disposing metal woven mesh on the surfaces of at least one of the plates facing each other.
- the top and bottom plates of the roll-bonded heat exchanger 140 k are stamped to form the channels 1403 k and 1405 k , respectively, and the metal woven mesh is disposed in one of the channels 1403 k and 1405 k .
- the metal woven mesh is depicted as disposed in channel 1405 k .
- the metal woven mesh forms the capillary structure of the heat conducting plate body 1400 k .
- the metal woven mesh is welded to the surface of the plates.
- the surfaces of the plates are chemically etched to create micro pores or micro structures for forming the capillary structure of the heat conducting plate body 1400 k .
- the surfaces of the plates are sandblasted to form the capillary structure of the heat conducting plate body 1400 k.
- top and bottom plates are contacted against each other and the edges of the plates are sealingly bonded to each other by, for example, a roll bonding process.
- a blow molding process is then performed to create the channels 1405 k .
- indentations are provided at predetermined locations on opposite surfaces of the top and bottom plates.
- gas is pumped into the opening 1406 a .
- the pressure of the gas will thus blow up the channels 1405 k along the paths defined by the indentations.
- the air in the roll-bonded heat exchanger 140 k is removed and the opening 1406 a is sealed by welding, for example.
- the heat conducting plate body 1400 k is cut along the line B shown in FIG. 26 , such that, the angled channels 1403 k and 1405 k are exposed (See FIG. 27 ) via openings 1407 k .
- the capillary structures 1610 k are respectively placed into the angled channels 1405 k via the openings 1407 k along a direction D.
- FIG. 28 illustrates the heat conducting plate body 1400 k with the capillary structures 1610 k placed in the angled channels 1405 k .
- the angled channels 1405 k are referred to as flow channels since liquid flows through the capillary structures 1610 k in these channels.
- the angled channels 1403 k are referred to as vapor channel since vapor that is generated after interaction with a heat generating source flows through these channels.
- a roll bonding process is performed to seal the openings 1407 k and create a flat structure 150 k .
- the ends of the flat structure 150 k are welded to seal the roll-bonded heat exchanger.
- the capillary structures 1610 k may be formed in the angled channels 1405 k by three different methods.
- a first method copper braids or rolled-up metal meshes or copper cloths are introduced in the angled channel 1405 k via the openings 1407 k .
- copper powder is sintered to obtain the capillary structures 1610 k in shape of pillars and the pillars are placed in the inclined channels 1405 k .
- fixtures e.g., stick-like structures
- copper powder is poured in the space between the angled channels 1405 k and the fixtures to fill the space.
- the roll-bonded heat exchanger 140 k is subjected to vibrations so that the copper powder is more uniformly filled in the angled channels 1405 k .
- the copper power is sintered to obtain the capillary structures 1610 k.
- the roll-bonded heat exchangers provide a guiding structure and a capillary structure to assist coolant to flow opposite to the force of gravity, so that the coolant in the cooling area located below the heat absorbing area is able to flow back to the heat absorbing area and thereby circulate in the roll-bonded heat exchanger. Therefore, the heat dissipation efficiency of the roll-bonded heat exchanger is improved. Compared to conventional vapor chambers, the heat dissipation efficiency of the vapor chamber according to example embodiments is increased by at least 30 percent.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
- This non-provisional application claims priority under 35 U.S.C. § 119 to U.S. Provisional Application No. 62/677,329 filed May 29, 2018, U.S. Provisional Application No. 62/824,531 filed Mar. 27, 2019, and U.S. Provisional Application No. 62/824,540 filed Mar. 27, 2019. The entire contents of the foregoing applications are hereby incorporated by reference.
- Example embodiments relate to a heat dissipation device, more particularly a heat dissipation plate having a capillary structure and a method for manufacturing the same.
- As technology progresses, performance of electronic components has increased, and as a result, a large amount of heat is released during operation. To dissipate the generated heat, heat dissipation devices, such as a heat dissipation plate, are used with the electronic components. The heat dissipation plate includes a circulation channel filled with coolant. When the heat dissipation plate is in thermal contact with a heat source, such as an electrical component, the coolant in the circulation channel absorbs heat generated by the electronic component to cool the electronic component.
- The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale and are used for illustration purposes only. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
-
FIG. 1 is a perspective view of a heat dissipation plate according to an exemplary embodiment. -
FIG. 2 is an exploded view of the heat dissipation plate inFIG. 1 . -
FIG. 3 is a partial cross-sectional view of the heat dissipation plate inFIG. 1 . -
FIG. 4 is an exploded view of a heat dissipation plate according to an exemplary embodiment. -
FIG. 5 is a schematic view of the heat dissipation plate inFIG. 1 in thermal contact with two heat sources and including a coolant; -
FIG. 6 is a perspective view of a heat dissipation plate according to an exemplary embodiment. -
FIG. 7 is an exploded view of the heat dissipation plate inFIG. 6 . -
FIG. 8 is a partial cross-sectional view of the heat dissipation plate inFIG. 6 . -
FIG. 9 is a schematic view of the heat dissipation plate inFIG. 6 in thermal contact with two heat sources and including a coolant. -
FIG. 10 is a perspective view of a heat dissipation plate according to an exemplary embodiment. -
FIG. 11 is an exploded view of the heat dissipation plate inFIG. 10 . -
FIG. 12 is a partial cross-sectional view of the heat dissipation plate inFIG. 10 . -
FIG. 13 is a schematic view of the heat dissipation plate inFIG. 10 in thermal contact with two heat sources and including a coolant. -
FIG. 14 is a perspective view of a roll-bonded heat exchanger according to an exemplary embodiment. -
FIG. 15 is a front view of the roll-bonded heat exchanger inFIG. 14 . -
FIG. 16 is a partial cross-sectional view of the roll-bonded heat exchanger ofFIG. 14 taken along line 16-16 inFIG. 15 . -
FIG. 17 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment. -
FIG. 18 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment. -
FIG. 19 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment. -
FIG. 20 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment. -
FIG. 21 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment. -
FIG. 22 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment. -
FIG. 23 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment. -
FIG. 24 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment. -
FIG. 25 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment. -
FIG. 26 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment. -
FIGS. 27, 28, and 29 are views showing a process of forming capillary structure in the roll-bonded heat exchanger inFIG. 26 . - It is to be understood that the following disclosure provides many different embodiments, and examples, for implementing different features of the disclosure. Specific embodiments or examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, dimensions of elements are not limited to the disclosed range or values, but may depend upon process conditions and/or desired properties of the device. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Various features may be arbitrarily drawn in different scales for simplicity and clarity.
- Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly. In addition, the term “made of” may mean either “comprising” or “consisting of.”
- Embodiments in the present disclosure are directed to a heat dissipation device that improves the circulation of cooling fluid (also referred to as a coolant) in the heat dissipation device. The heat dissipation device, according to the example embodiments, permits the cooling fluid to flow in a direction opposite the force of gravity when the heat dissipation device is not completely filled with cooling fluid. In prior art heat dissipating devices, when a heat source is in thermal contact with the heat dissipation device above the surface of the cooling fluid in the heat dissipation device, the coolant circulating in the fluid channel of the heat dissipation device does not flow towards the heat source due to the gravitational force. Thus, heat generated by the heat source cannot be effectively dissipated by the cooling fluid.
-
FIG. 1 is a perspective view of aheat dissipation device 10 according to an exemplary embodiment.FIG. 2 is an exploded view of theheat dissipation device 10 inFIG. 1 .FIG. 3 is a partial cross-sectional view of theheat dissipation device 10 inFIG. 1 . In an example, and as illustrated, theheat dissipation device 10 inFIG. 1 is a plate-type device, referred to herein as aheat dissipation plate 10. It should be noted that embodiments as discussed herein are not applicable only to plate-type heat dissipation devices, but are equally applicable to heat dissipation devices of any shape, without departing from the spirit and scope of the disclosure. - As illustrated, the
heat dissipation plate 10 includes afirst plate 100, asecond plate 200, and acapillary structure 300. Thefirst plate 100 and thesecond plate 200 are disposed opposite each other and thecapillary structure 300 is disposed between thefirst plate 100 and thesecond plate 200. - The
first plate 100 has a first longitudinal edge (or side) 101 and a second longitudinal edge (or side) 102 opposite each other. Thefirst plate 100 further has a first plurality of inclined orangled grooves 110 disposed in the longitudinal direction (or the X-direction inFIG. 1 ) and spaced apart from each other. Eachgroove 110 is a recess (or a concavity) that extends into the body of thefirst plate 100 and extends (in the Y-direction) between the firstlongitudinal edge 101 and the secondlongitudinal edge 102. Referring toFIG. 2 , eachgroove 110 includes afirst end 151 adjacent the firstlongitudinal edge 101 and asecond end 152 adjacent the secondlongitudinal edge 102 and opposite thefirst end 151. As illustrated, thefirst end 151 is located higher than thesecond end 152, and, as a result, thegrooves 110 are disposed at an angle in thefirst plate 100. - The
first plate 100 also includes a firstlongitudinal groove 120 and a secondlongitudinal groove 130, both extending in the X-direction. The firstlongitudinal groove 120 is located adjacent the firstlongitudinal edge 101 and the secondlongitudinal groove 130 is located adjacent the secondlongitudinal edge 102. The first ends 151 of thegrooves 110 are in fluid communication with the firstlongitudinal groove 120 and the second ends 152 of thegrooves 110 are in fluid communication with the secondlongitudinal groove 130. Thus, thegrooves 110 are in fluid communication with each other through the first and secondlongitudinal grooves FIG. 2 , thefirst plate 100 is shown disposed vertically, and the direction indicated by the arrow G indicates the direction of the force of gravity. - The
second plate 200 has a firstlongitudinal edge 201 and a secondlongitudinal edge 202 opposite each other. Thesecond plate 200 also includes a second plurality of inclined orangled grooves 210 disposed in the longitudinal direction (or the X-direction inFIG. 1 ) and spaced apart from each other. Eachgroove 210 is a recess (or concavity) that extends into the body of thesecond plate 200 and extends (in the Y-direction) between the firstlongitudinal edge 201 and the secondlongitudinal edge 202. Referring toFIG. 2 , eachgroove 210 includes afirst end 171 adjacent the firstlongitudinal edge 201 and asecond end 172 adjacent the secondlongitudinal edge 202 and opposite thefirst end 171. Thefirst end 171 is located higher than thesecond end 172, and, as a result, thegrooves 210 are disposed at an angle in thesecond plate 200. - The
second plate 200 includes a firstlongitudinal groove 220 and a secondlongitudinal groove 230, both extending in the X-direction. The firstlongitudinal groove 220 is located adjacent the firstlongitudinal edge 201 and the secondlongitudinal groove 230 is located adjacent the secondlongitudinal edge 202. The first ends 171 of thegrooves 210 are in fluid communication with the firstlongitudinal groove 220 and the second ends 172 of thegrooves 210 are in fluid communication with the secondlongitudinal groove 230. Thus, thegrooves 210 are in fluid communication with each other through the first and secondlongitudinal grooves - As illustrated in
FIG. 1 , thesecond plate 200 is coupled to thefirst plate 100, such that thegrooves 110 are parallel to thegrooves 210 and misaligned with thegrooves 210. In such an arrangement,grooves 110 andgrooves 210 are offset from each other. In one embodiment,grooves 110 andgrooves 210 partially overlap each other. In another embodiment, thegroove 210 is located between twogrooves 110. Further, in this arrangement, the first and secondlongitudinal grooves first plate 100 are respectively aligned and fluidly connected to the first and secondlongitudinal grooves second plate 200. As such, thegrooves 110 and thegrooves 210 are connected to each other via the first and secondlongitudinal grooves first plate 100 and the first and secondlongitudinal grooves second plate 200 to form a fluid channel C (FIG. 3 ) that allows coolant to flow therethrough. The fluid channel C is continuous throughout theheat dissipation plate 10, although, as discussed below, the entire fluid channel C may not be filled with coolant L. - Furthermore, the
heat dissipation plate 10 includes an inlet O defined by the secondlongitudinal groove 130 of thefirst plate 100 and the secondlongitudinal groove 230 of thesecond plate 200. The inlet O permits coolant to be introduced into the fluid channel C. As illustrated, the inlet O is aligned with the secondlongitudinal groove 130 and the secondlongitudinal groove 230. - The
capillary structure 300 is located in the fluid channel C. The coolant does not completely fill the fluid channel C and only part of the fluid channel C is occupied by the coolant. Thecapillary structure 300 extends from a position below a surface of the coolant to a position above the surface of the coolant. As such, thecapillary structure 300 is partially immersed in the coolant. In one embodiment, thecapillary structure 300 is located in thegrooves 210 and both of the first and secondlongitudinal grooves second plate 200. However, embodiments are not limited in this regard. In other embodiments, thecapillary structure 300 may be located in thegrooves 210 and only one of the first and secondlongitudinal grooves second plate 200. For example, as shown inFIG. 4 , acapillary structure 300A is located in thegrooves 210 and the secondlongitudinal groove 230 of thesecond plate 200. Thegroove 110 may be referred to as a vapor channel and groove 210 may be referred to as the flow channel. - In some embodiments, the
capillary structure 300 may not completely overlap thegrooves 210 and the first and secondlongitudinal grooves second plate 200. Stated otherwise, thecapillary structure 300 may not completely line thegrooves 210 and the first and secondlongitudinal grooves second plate 200. In another embodiment, thecapillary structure 300 may partially overlap or line thegrooves 210 and the first and secondlongitudinal grooves second plate 200. In yet another embodiment, if the firstlongitudinal groove 220 is adjacent a heat generating source, then thegroove 210 and firstlongitudinal groove 220 above the surface S of the coolant L are completely lined with thecapillary structure 300. The secondlongitudinal groove 230 does not include a capillary structure. Similarly, if the secondlongitudinal groove 230 is adjacent a heat generating source, then thegroove 210 and secondlongitudinal groove 230 above the surface S of the coolant L are completely lined with thecapillary structure 300. The firstlongitudinal groove 220 does not include a capillary structure. -
FIG. 3 illustrates a partial cross-sectional view of theheat dissipation plate 10 including thecapillary structure 300 in the fluid channel C defined bygroove 210 of thesecond plate 200. As illustrated, thecapillary structure 300 lines thegroove 210, but does not completely fill (or occupy) the fluid channel C. -
FIG. 5 is a schematic view of theheat dissipation plate 10 ofFIG. 1 in thermal contact with two heat sources H1 and H2 and including coolant L. As illustrated inFIG. 5 , the coolant L partially fills the fluid channel C. Theheat dissipation plate 10 is positioned vertically, and the first heat source H1 and the second heat source H2 are in thermal contact with theheat dissipation plate 10 and respectively located below and above the surface S of the coolant L. When the first heat source H1 is generating heat (e.g., during operation), the coolant L in liquid form absorbs heat generated by the first heat source H1 and changes to vapor that flows in a direction opposite the arrow G to a relatively cooler portion of theheat dissipation plate 10. Because, the second heat source H2 is also generating heat, the relatively cooler portion of theheat dissipation plate 10 is to the right inFIG. 5 adjacent to the secondlongitudinal groove 230. The coolant L in vapor form condenses to liquid again and flows back to the lower portion of the fluid channel C (e.g., the relatively hotter portion of the heat dissipation plate 10) along the secondlongitudinal groove 230. The circulation of the coolant in theheat dissipation plate 10 is indicated by the arrow F. - Due to the heat generated by the second heat source H2 (e.g., during operation), the coolant is drawn from the lower portion of the fluid channel C via the
capillary structure 300 to the second heat source H2. The coolant L changes to vapor that flows in the direction indicated by the arrow D1 towards the relatively cooler portion of theheat dissipation plate 10. The coolant in vapor form flowing away from the second heat source H2 condenses to liquid due to the relatively cooler portion of theheat dissipation plate 10. The condensed coolant in liquid form is transported toward the heat source H2 as indicated by the arrow D2. As such, the coolant flow due to the second heat source H2 has a relatively smaller circulation path compared to coolant flow when dissipating heat from the first heat source H1. - Accordingly, the
heat dissipation plate 10 is able to dissipate heat generated by a heat source whether it is located below or above the surface of the coolant. - The
heat dissipation plate 10 can be manufactured using a composite plate including a welding material, or by using a non-composite (e.g., aluminum) plate not including a welding material. - In the method using a composite plate including a welding material, one or more stamping processes are performed on two plates both having the welding material to obtain the
first plate 100 having the first plurality ofinclined grooves 110 and the first and secondlongitudinal grooves second plate 200 having the second plurality ofinclined grooves 210 and the first and secondlongitudinal grooves - The shapes and sizes of the
grooves longitudinal grooves grooves longitudinal grooves - For example, the one or
more grooves 110 of thefirst plate 100 may have a different cross-sectional shape or size. Similarly, thegrooves 110 and thelongitudinal grooves first plate 100 may have a different cross-sectional shape or size. In other examples, thegrooves 110 of thefirst plate 100 and thegrooves 210 of thesecond plate 200 may have a different cross-sectional shape or size. - Then, powder is deposited in the
second grooves 210 and the first and secondlongitudinal grooves second plate 200 and thesecond plate 200 is heated to form thecapillary structure 300 via sintering. - At the same time, a welding flux is provided on a welding surface of the
second plate 200 that is not covered by the powder in order to clean the welding surface, and thereby improve the welding quality. However, in other embodiments, the welding flux is omitted. - The
first plate 100 and thesecond plate 200 are coupled to each other (e.g., the plates may be stacked over each other) and are aligned with each other by a fixture and then welded. Thus, the welding and sintering operations are performed simultaneously. The fixture resists the stress occurring during the welding process and thus prevents the deformation of thefirst plate 100 and thesecond plate 200. The fixture is made of graphite or other materials which do not interact with the welding material. - Then, the
first plate 100 and thesecond plate 200 are heated to melt the welding material and fix thefirst plate 100 and thesecond plate 200 to each other. In addition, the heating also sinters the powder to obtain thecapillary structure 300. - Then, air in the fluid channel C is removed through the inlet O and then coolant L is filled into the fluid channel C through the inlet O. In one embodiment, a pipe is welded to the inlet O to suck out the air from the fluid channel C and to then introduce coolant L into the fluid channel C.
- In the method using a non-composite plate not including a welding material (e.g., welding by using a solder), one or more stamping processes are performed on two plates not having welding material so as to obtain the
first plate 100 having the first plurality ofinclined grooves 110 and the first and secondlongitudinal grooves second plate 200 having the second plurality ofinclined grooves 210 and thefirst groove 220 and thesecond groove 230. - The shapes and sizes of the
grooves longitudinal grooves grooves longitudinal grooves - For example, the one or
more grooves 110 of thefirst plate 100 may have a different cross-sectional shape or size. Similarly, thegrooves 110 and thelongitudinal grooves first plate 100 may have a different cross-sectional shape or size. In other examples, thegrooves 110 of thefirst plate 100 and thegrooves 210 of thesecond plate 200 may have a different cross-sectional shape or size. - Then, powder is deposited in the
grooves 210 and the first and secondlongitudinal grooves second plate 200. The powder is sintered to obtain thecapillary structure 300. As discussed above, in one embodiment, the powder may be disposed in thegrooves 210 and only one of the first and secondlongitudinal grooves second plate 200. - Then, a welding material is provided on a surface to be welded of the
second plate 200 that is not covered by the powder. - A welding flux is then provided on the welding material disposed on the
second plate 200 to improve the welding quality. - The
first plate 100 and thesecond plate 200 are coupled to each other (e.g., the plates may be stacked over each other) and are aligned with each other by a fixture. The fixture resists the stress occurring during the welding process and thus prevents the deformation of thefirst plate 100 and thesecond plate 200. The fixture is made of graphite or other materials which do not interact with the welding material. - The
first plate 100 and thesecond plate 200 are welded together. Air in the fluid channel C is removed through the inlet O and coolant L is introduced into the fluid channel C through the inlet O. In one embodiment, a pipe may be welded to the inlet O of theheat dissipation plate 10 to and air may be sucked out of the fluid channel C via the pipe. Coolant L is then introduced into the fluid channel C using the pipe. - The
capillary structure 300 is formed by disposing the powder at thegrooves 210 and the first and secondlongitudinal grooves second plate 200 and sintering it, but the present disclosure is not limited thereto. In other embodiments, the capillary structure may be first formed from the capillary powder, and then installed into thegrooves 210 and the first and secondlongitudinal grooves second plate 200. As a result, the capillary structure can be formed in thefirst plate 100 and thesecond plate 200. -
FIG. 6 is a perspective view of aheat dissipation plate 10 a according to another embodiment.FIG. 7 is an exploded view of theheat dissipation plate 10 a inFIG. 6 .FIG. 8 is a partial cross-sectional view of theheat dissipation plate 10 a inFIG. 6 . - The
heat dissipation plate 10 a includes afirst plate 100 a, asecond plate 200 a and acapillary structure 300 a. Thefirst plate 100 a and thesecond plate 200 a are disposed opposite each other and thecapillary structure 300 is disposed between thefirst plate 100 a and thesecond plate 200 a. - The
first plate 100 a has a first longitudinal edge (or side) 101 a and a second longitudinal edge (or side) 102 a opposite each other. Thefirst plate 100 a further has a first plurality of inclined orangled grooves 110 a disposed in the longitudinal direction (or the X-direction inFIG. 6 ) and spaced apart from each other. Eachgroove 110 a is a recess (or a concavity) that extends into the body of thefirst plate 100 a and extends (in the Y-direction) between the firstlongitudinal edge 101 a and the secondlongitudinal edge 102 a. Referring toFIG. 7 , eachgroove 110 a includes afirst end 151 a adjacent the firstlongitudinal edge 101 a and asecond end 152 a adjacent the secondlongitudinal edge 102 a and opposite thefirst end 151 a. As illustrated, thefirst end 151 a is located lower than thesecond end 152 a, and, as a result, thegrooves 110 a are disposed at an angle in thefirst plate 100 a. It will be understood that thegrooves 110 a are considered angled or inclined with reference to the top (or bottom) edge of thefirst plate 100 a. - The
first plate 100 a also includes alongitudinal groove 130 a extending in the X-direction. Thelongitudinal groove 130 a is located adjacent the secondlongitudinal edge 102 a. The second ends 152 a of thegrooves 110 a are in fluid communication with thelongitudinal groove 130 a. Thus, thegrooves 110 a are in fluid communication with each other through thelongitudinal groove 130 a. InFIG. 6 , thefirst plate 100 a is shown disposed vertically, and the direction indicated by the arrow G is the direction of the force of gravity. - The
second plate 200 a has a firstlongitudinal edge 201 a and a secondlongitudinal edge 202 a opposite each other. Thesecond plate 200 a also includes a second plurality of inclined orangled grooves 210 a disposed in the longitudinal direction (or the X-direction inFIG. 6 ) and spaced apart from each other. Eachgroove 210 a is a recess (or concavity) that extends into the body of thesecond plate 200 a and extends (in the Y-direction) between the firstlongitudinal edge 201 a and the secondlongitudinal edge 202 a. Referring toFIG. 7 , eachgroove 210 a includes afirst end 171 a adjacent the firstlongitudinal edge 201 a and asecond end 172 a adjacent the secondlongitudinal edge 202 a and opposite thefirst end 171 a. Thefirst end 171 a is located higher than thesecond end 172 a, and, as a result, thegrooves 210 a are disposed at an angle in thesecond plate 200 a. Referring toFIG. 7 , it will be understood that thelongitudinal grooves grooves 210 a are considered angled or inclined with reference to the top (or bottom) edge of thesecond plate 200 a. - The
second plate 200 a includes alongitudinal groove 220 a extending in the X-direction. Thelongitudinal groove 220 a is located adjacent the firstlongitudinal edge 201 a. The first ends 171 a of thegrooves 210 are in fluid communication with thelongitudinal groove 220 a. Thus, thegrooves 210 a are in fluid communication with each other through thelongitudinal groove 220 a. - As illustrated in
FIG. 6 , thesecond plate 200 a is coupled to thefirst plate 100 a such that portions of theinclined grooves 110 a and portions of theinclined grooves 210 a intersect each other and theinclined grooves 110 a are connected in fluid communication with each other via theinclined groove 210 a and thelongitudinal groove 130 a. Theinclined grooves 110 a, theinclined grooves 210 a, the longitudinal groove 120 a and thelongitudinal groove 220 a together form a fluid channel C that allows coolant L to flow therethrough. The fluid channel C is continuous throughout theheat dissipation plate 10 a, although, as discussed below, the entire fluid channel C may not be filled with coolant L. - As illustrated, the
longitudinal groove 130 a and thelongitudinal groove 220 a are located at two opposite ends of thegrooves 110 a, but embodiments are not limited in this regard. In other embodiments, thelongitudinal groove 130 a and thelongitudinal groove 220 a may be located at the same end of thegrooves 110 a. - The
heat dissipation plate 10 a has an inlet O formed by thetopmost groove 110 a and thetopmost groove 210 a, each proximate the top of theheat dissipation plate 10 a. The inlet O allows coolant L to be introduced into the fluid channel C. - The
capillary structure 300 a is located in the fluid channel C. The coolant does not completely fill the fluid channel C and only part of the fluid channel C is occupied by the coolant L. Thecapillary structure 300 a extends from below a surface S of the coolant L to above the surface S of the coolant L. Stated otherwise, thecapillary structure 300 a is partially submerged in coolant. As illustrated, thecapillary structure 300 a is located in thegrooves 210 a and thelongitudinal groove 220 a of thesecond plate 200 a. - However embodiments are not limited in this regard. In other embodiments, the
capillary structure 300 a may be disposed in thefirst plate 100 a. In other embodiments, theheat dissipation plate 10 a may have two capillary structures respectively disposed on thefirst plate 100 a and thesecond plate 200 a. - Furthermore, the
capillary structure 300 a may not be completely overlapped with thegrooves 210 a and thelongitudinal groove 220 a of thesecond plate 200 a. Stated otherwise, thecapillary structure 300 a may not completely line thegrooves 210 a and thelongitudinal groove 220 a. In another embodiment, thecapillary structure 300 a may partially overlap or line thegrooves 210 a and thelongitudinal groove 220 a of thesecond plate 200 a. -
FIG. 8 illustrates a partial cross-sectional view of theheat dissipation plate 10 a including thecapillary structure 300 a in the fluid channel C defined bygrooves capillary structure 300 a lines thegroove 210 a, but does not completely fill (or occupy) the fluid channel C. -
FIG. 9 is a schematic view of theheat dissipation plate 10 a inFIG. 6 in thermal contact with two heat sources H1 and H2 and including coolant L. InFIG. 9 , coolant L partially fills the fluid channel C. Theheat dissipation plate 10 a is positioned vertically, and the first heat source H1 and the second heat source H2 are in thermal contact with theheat dissipation plate 10 a and respectively located below and above the surface S of the coolant L. When the first heat source H1 is generating heat (e.g., during operation), the coolant L in liquid form absorbs heat generated by the first heat source H1 and changes to vapor that flows in a direction opposite the arrow G to a relatively cooler portion of theheat dissipation plate 10 a. The coolant L in vapor form condenses to liquid and flows back to the lower portion of the fluid channel C (e.g., the relatively hotter portion of theheat dissipation plate 10 a). The circulation of the coolant in theheat dissipation plate 10 a is indicated by the arrow F. - Due to the heat generated by the second heat source H2, coolant is drawn from the lower portion of the fluid channel C via the
capillary structure 300 a to the second heat source H2. The coolant L changes to vapor that flows in the direction of arrow D1 towards the relatively cooler portion of theheat dissipation plate 10 a. The coolant in the vapor form flowing away from the second heat source H2 condenses to liquid due to the relatively cooler portion of theheat dissipation plate 10 a. The condensed coolant is transported towards the heat source H2 as indicated by the arrow D2. As such, the coolant flow due to the second heat source H2 has a relatively smaller circulation path compared to the coolant flow due to the first heat source H1. - Accordingly, the
heat dissipation plate 10 a is able to dissipate heat generated by the heat source whether it is located below or above the surface of the coolant. - The manufacturing process of the
heat dissipation plate 10 a is similar to that of theheat dissipation plate 10, thus a discussion thereof is omitted for the sake of brevity. -
FIG. 10 is a perspective view of aheat dissipation plate 10 b according to an exemplary embodiment.FIG. 11 is an exploded view of theheat dissipation plate 10 b inFIG. 10 .FIG. 12 is a partial cross-sectional view of theheat dissipation plate 10 b inFIG. 10 . - The
heat dissipation plate 10 b includes afirst plate 100 b, asecond plate 200 b and a plurality ofcapillary structures 300 b. Thefirst plate 100 b and thesecond plate 200 b are disposed opposite each other and thecapillary structures 300 b are disposed between thefirst plate 100 b and thesecond plate 200 b. - The
first plate 100 b has a first longitudinal edge (or side) 101 b and a second longitudinal edge (or side) 102 b opposite each other. Thefirst plate 100 b further has a first plurality of inclined orangled grooves 110 b disposed in the longitudinal direction (or the X-direction inFIG. 10 ) and spaced apart from each other. Eachgroove 110 b is a recess (or a concavity) that extends into the body of thefirst plate 100 b and extends (in the Y-direction) between the firstlongitudinal edge 101 b and the secondlongitudinal edge 102 b. Referring toFIG. 11 , eachgroove 110 b includes afirst end 151 b adjacent the firstlongitudinal edge 101 b and asecond end 152 b adjacent the secondlongitudinal edge 102 b and opposite thefirst end 151 b. As illustrated, thefirst end 151 b is located lower than thesecond end 152 b, and, as a result, thegrooves 110 b are disposed at an angle in thefirst plate 100 b. It will be understood that thegrooves 110 b are considered angled or inclined with reference to the top (or bottom) edge of thefirst plate 100 b. - In
FIG. 10 , thefirst plate 100 b is shown disposed vertically, and the direction indicated by the arrow G is the direction of the force of gravity. - The
second plate 200 b has a firstlongitudinal edge 201 b and a secondlongitudinal edge 202 b opposite each other. Thesecond plate 200 b includes a second plurality of inclined orangled grooves 210 b disposed in the longitudinal direction (or the X-direction inFIG. 6 ) and spaced apart from each other. Eachgroove 210 b is a recess (or concavity) that extends into the body of thesecond plate 200 b and extends (in the Y-direction) between the firstlongitudinal edge 201 b and the secondlongitudinal edge 202 b. Referring toFIG. 11 , eachgroove 210 b includes afirst end 171 b adjacent the firstlongitudinal edge 201 b and asecond end 172 b adjacent the secondlongitudinal edge 202 b and opposite thefirst end 171 b. Thefirst end 171 b is located higher than thesecond end 172 b, and, as a result, thegrooves 210 b are disposed at an angle in thesecond plate 200 b. It will be understood that thegrooves 210 b are considered angled or inclined with reference to the top (or bottom) edge of thesecond plate 200 b. Referring toFIG. 11 , it will be understood that thegrooves 110 b and 220 b are orientated in opposite directions. - As illustrated in
FIG. 10 , thesecond plate 200 b is coupled to thefirst plate 100 b such that portions of thefirst grooves 110 b and portions of theinclined grooves 210 b intersect each other and theinclined grooves 110 b are connected in fluid communication with each other via theinclined grooves 210 b. Theinclined grooves 110 b and theinclined grooves 210 b together form a fluid channel C that allows coolant L to flow therethrough. The fluid channel C is continuous throughout theheat dissipation plate 10 b, although, as discussed below, the entire fluid channel C may not be filled with coolant L. - The
heat dissipation plate 10 b has an inlet O formed bytopmost groove 110 b and thetopmost groove 210 b, each located proximate the top of theheat dissipation plate 10 b. The inlet O allows coolant L to be introduced into the fluid channel C. - The
capillary structures 300 b are located in the fluid channel C. The coolant L does not completely fill the fluid channel C and only part of the fluid channel C is occupied by the coolant L. Thecapillary structures 300 b are arranged from below a surface S of the coolant L to above the surface S of the coolant L. Stated otherwise, thecapillary structure 300 b is partially submerged in coolant. In one embodiment and as illustrated, thecapillary structures 300 b are located incorresponding grooves 210 b of thesecond plate 200 b. However, embodiments are not restricted in this regard. In other embodiments, thecapillary structures 300 b may be disposed in thefirst plate 100 b. In still other embodiments, thecapillary structures 300 b may be disposed in both thefirst plate 100 b and thesecond plate 200 b. - The
capillary structures 300 b may not completely overlapped or lined with thegrooves 210 b of thesecond plate 200 b. In yet another embodiment, thecapillary structures 300 b may partially overlap or line thesecond grooves 210 b of thesecond plate 200 b. -
FIG. 12 illustrates a partial cross-sectional view of theheat dissipation plate 10 b including thecapillary structure 300 b in the fluid channel C defined bygrooves capillary structure 300 b lines thegroove 210 b, but does not completely fill (or occupy) the fluid channel C. -
FIG. 13 is a schematic view of theheat dissipation plate 10 b inFIG. 10 in thermal contact with two heat sources H1 and H2 and including coolant L. InFIG. 13 , coolant L partially fills the fluid channel C. Theheat dissipation plate 10 b is positioned vertically, and the first heat source H1 and the second heat source H2 are in thermal contact with theheat dissipation plate 10 b and respectively located below and above the surface S of the coolant L. When the first heat source H1 is generating heat (e.g., during operation), the coolant L in liquid form absorbs heat generated by the first heat source H1 and changes to vapor that flows in a direction opposite the arrow G to a relatively cooler portion of theheat dissipation plate 10 b. The coolant L in vapor form condenses to the liquid and flows back to the lower portion of the fluid channel C (e.g., the relatively hotter portion of theheat dissipation plate 10 b). The circulation of the coolant in theheat dissipation plate 10 b is indicated by the arrow F. - Due to the heat generated by the second heat source H2, coolant is drawn from the lower portion of the fluid channel C via the
capillary structure 300 b to the second heat source H2. The coolant L changes to vapor that flows in the direction of arrow D1 towards the relatively cooler portion of theheat dissipation plate 10 b. The coolant in vapor form flowing away from the second heat source H2 condenses to liquid due to the relatively cooler portion of theheat dissipation plate 10 b. The condensed coolant is transported towards the second heat source H2 as indicated by the arrow D2. As such, the coolant flow due to the second heat source H2 has a relatively smaller circulation path compared to the coolant flow due to the first heat source H1. - Accordingly, the
heat dissipation plate 10 b is able to dissipate heat generated by the heat sources whether it is located below or above the surface of the coolant. - The manufacturing process of the
heat dissipation plate 10 b is similar to that of theheat dissipation plate 10, and therefore a discussion thereof is omitted for the sake of brevity. - In the aforementioned example embodiments, the first plate and the second plate both have inclined grooves, but the disclosure is not limited in this regard. In other embodiments, only one of the first plate and the second plate may have inclined grooves.
- According to the heat dissipation plate according to example embodiments discussed above, the capillary structure is disposed in the fluid channel, such that the coolant is able to flow against the force of gravity via the capillary structure and to the portion of the fluid channel close to the heat source located above the surface of the coolant. Therefore, the heat dissipation plate according to example embodiments is capable of dissipating heat generated by the heat source located below or above the surface of the coolant.
-
FIG. 14 is a perspective view of a roll-bondedheat exchanger 140 a according to an exemplary embodiment.FIG. 15 is a front view of the roll-bondedheat exchanger 140 a viewed in the direction of arrow M.FIG. 16 is a partial cross-sectional view of the roll-bondedheat exchanger 140 a along line 16-16 inFIG. 15 . It should be noted that, although example embodiments are discussed below with reference to a roll-bonded heat exchanger, the example embodiments are not limited thereto and are equally applicable to other types of heat dissipating devices without departing from the spirit and scope of the disclosure. - The roll-bonded
heat exchanger 140 a dissipates heat generated by a heat source (e.g., an electronic circuit) that is in thermal contact with the roll-bondedheat exchanger 140 a. The heat source is, for example, a central processing unit (CPU), but embodiments are not limited thereto. Referring toFIG. 16 , the roll-bondedheat exchanger 140 a includes a heat conductingplate structure 1400 a and acapillary structure 1610 a enclosed within the heat conductingplate structure 1400 a. The heat conductingplate structure 1400 a includes achannel 1405 a and anopening 1406 a that are connected to each other. Thechannel 1405 a is sized and shaped (or otherwise configured) to include a coolant (not shown). The coolant is, for example, water or refrigerant, but embodiments are not limited thereto. The coolant may occupy about 30 to 70 percent of the volume of thechannel 1405 a. However, in other embodiments, the volume of thechannel 1405 a occupied by the coolant can be more or less as required. The coolant can be introduced into thechannel 1405 a via theopening 1406 a. - The heat conducting
plate structure 1400 a includes afirst plate 1410 a and asecond plate 1420 a sealingly bonded with each other. Thefirst plate 1410 a includes afirst surface 1412 a that defines (or otherwise includes) a first recess (or a concavity) 1411 a. Thesecond plate 1420 a includes asecond surface 1422 a that is planar. Thesecond surface 1422 a faces thefirst surface 1412 a when thefirst plate 1410 a and thesecond plate 1420 a are bonded with each other. As illustrated, in such an arrangement, thefirst recess 1411 a is located between thefirst surface 1412 a and thesecond surface 1422 a. Thefirst surface 1412 a and thesecond surface 1422 a cooperatively define thechannel 1405 a. - As shown in
FIG. 15 , the roll-bondedheat exchanger 140 a includes a refrigerant area A1, a cooling area A2 and a heat absorbing area A3. The refrigerant area A1 is located below the heat absorbing area A3, and the cooling area A2 is located between the refrigerant area A1 and the heat absorbing area A3. When the roll-bondedheat exchanger 140 a is used to dissipate heat from a heat source, the heat absorbing area A3, the cooling area A2, and the refrigerant area A1 are arranged along a gravitational direction indicated by the arrow G with the refrigerant area A1 being the bottom-most portion of the roll-bondedheat exchanger 140 a. The refrigerant area A1 of the roll-bondedheat exchanger 140 a is configured to store the coolant. The cooling area A2 of the roll-bondedheat exchanger 140 a is configured to release the heat in the gas-phase coolant and thereby condense the gas-phase coolant to the liquid-phase coolant. The heat absorbing area A3 of the roll-bondedheat exchanger 140 a is configured to be in thermal contact with the heat source to absorb the heat generated by the heat source. - The
capillary structure 1610 a is located in thechannel 1405 a and disposed on the entirefirst surface 1412 a and extends from the refrigerant area A1 to the heat absorbing area A3. - When the coolant in the heat absorbing area A3 of the roll-bonded
heat exchanger 140 a absorbs the heat generated by the heat source, the coolant is vaporized to the gas phase. The pressure difference is created in the roll-bondedheat exchanger 140 a and this causes the vaporized coolant to flow from the heat absorbing area A3 to the cooling area A2. Then, the vaporized coolant is condensed to the liquid phase in the cooling area A2. The liquid-phase coolant flows back to the heat absorbing area A3 along a direction indicated by the arrow H opposite to the gravitational direction via thecapillary structure 1610 a. A portion of the liquid-phase coolant also flows to the refrigerant area A1. The coolant is thus circulated in thechannel 1405 a. - In other embodiments, the capillary structure may also be disposed on the
second surface 1422 a of thesecond plate 1420 a.FIG. 17 illustrates a partial cross-sectional view of the roll-bondedheat exchanger 140 a according to an exemplary embodiment. As illustrated, acapillary structure 1610 b is disposed over the entiresecond surface 1422 a of thesecond plate 1420 a in addition to thecapillary structure 1610 a being disposed over the entirefirst surface 1412 a of thefirst plate 1410 a. However, embodiments are not limited in this regard and in other embodiments, thecapillary structure 1610 b may be disposed on only portions of thesecond surface 1422 a. - It should be noted that the number of capillary structures in the roll-bonded
heat exchanger 140 a is not limited in any regard.FIG. 18 is a partial cross-sectional view of the roll-bondedheat exchanger 140 a according to an exemplary embodiment. As shown inFIG. 18 , the roll-bondedheat exchanger 140 a includes twocapillary structures first surface 1412 a in thefirst recess 1411 a. -
FIG. 19 is a partial cross-sectional view of the roll-bondedheat exchanger 140 a according to an exemplary embodiment. As shown inFIG. 19 , the roll-bondedheat exchanger 140 a includes asingle capillary structure 1610 d disposed on thefirst surface 1412 a and in thefirst recess 1411 a and spaced from twoopposite edges 1421 d of thefirst recess 1411 a. In one embodiment, thecapillary structure 1610 d may be located centrally in thefirst recess 1411 a on thefirst surface 1412 a. -
FIG. 20 is a partial cross-sectional view of the roll-bondedheat exchanger 140 a according to an exemplary embodiment. As shown inFIG. 20 , the roll-bondedheat exchanger 140 a includes multiple capillary structures on thefirst surface 1412 a in thefirst recess 1411 a. As illustrated, the roll-bondedheat exchanger 140 a includes afirst capillary structure 1610 e, asecond capillary structure 1620 e, athird capillary structure 1630 e, and afourth capillary structure 1640 e on thefirst surface 1412 a in thefirst recess 1411 a. Thefirst capillary structure 1610 e, thesecond capillary structure 1620 e, thethird capillary structure 1630 e, and thefourth capillary structure 1640 e are spaced apart from each other. Thefirst capillary structure 1610 e and thesecond capillary structure 1620 e are arranged adjacent two opposite ends of thefirst surface 1412 a. Thethird capillary structure 1630 e andfourth capillary structure 1640 e are arranged on thefirst surface 1412 a between thefirst capillary structure 1610 e and thesecond capillary structure 1620 e. - In example embodiments, the
second surface 1422 a of the roll-bondedheat exchanger 140 a may not be planar.FIG. 21 is a partial cross-sectional view of the roll-bondedheat exchanger 140 a according to an exemplary embodiment. As shown inFIG. 21 , thesecond surface 1422 a of thesecond plate 1420 a defines (or includes) a second recess (or concavity) 1421 f. Thesecond recess 1421 f is aligned with thefirst recess 1411 a such that the ends of thefirst recess 1411 a contact the ends of thesecond recess 1421 f. Thefirst surface 1412 a in thefirst recess 1411 a and thesecond surface 1422 a in thesecond recess 1421 f cooperatively define thechannel 1405 a of the roll-bondedheat exchanger 140 a.Capillary structure 1610 a is located in thechannel 1405 a and disposed on the entirefirst surface 1412 a in thefirst recess 1411 a. However, embodiments are not limited in this regard. In other embodiments, thecapillary structure 1610 a may be disposed only on a portion of thefirst surface 1412 a. -
FIG. 22 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment. Compared to the embodiment shown inFIG. 21 , in the embodiment inFIG. 22 ,capillary structure 1610 b is disposed on the entiresecond surface 1422 a in addition to thecapillary structure 1610 a disposed on the entirefirst surface 1412 a. However, embodiments are not limited in this regard. In other embodiments, thecapillary structures second surfaces -
FIG. 23 is a partial cross-sectional view of a roll-bonded heat exchanger according to an exemplary embodiment. Compared to the embodiment shown inFIG. 22 , in the embodiment inFIG. 23 , thechannel 1405 a includes twocapillary structures first surface 1412 a. However, in other embodiments,capillary structures second surface 1422 a. In still other embodiments, capillary structures may be disposed on both thefirst surface 1412 a and thesecond surface 1422 a. -
FIG. 24 is a partial cross-sectional view of a roll-bondedheat exchanger 140 a according to an exemplary embodiment. As shown inFIG. 24 , the roll-bondedheat exchanger 140 a includes a single capillary structure 210 i disposed on thefirst surface 1412 a and in thefirst recess 1411 a and spaced from theopposite edges 1421 d of thefirst recess 1411 a. In one embodiment, the capillary structure 210 i may be located centrally in thefirst recess 1411 a on thefirst surface 1412 a. However, in other embodiments, the capillary structure 210 i may be disposed on thesecond surface 1422 a in therecess 1421 a. In still other embodiments, capillary structures may be disposed on both thefirst surface 1412 a and thesecond surface 1422 a. -
FIG. 25 is a partial cross-sectional view of the roll-bondedheat exchanger 140 a according to an exemplary embodiment. As shown inFIG. 25 , the roll-bondedheat exchanger 140 a includes thefirst capillary structure 1610 e, thesecond capillary structure 1620 e, thethird capillary structure 1630 e, and thefourth capillary structure 1640 e on thefirst surface 1412 a in thefirst recess 1411 a. Thefirst capillary structure 1610 e, thesecond capillary structure 1620 e, thethird capillary structure 1630 e, and thefourth capillary structure 1640 e are spaced apart from each other. Thefirst capillary structure 1610 e and thesecond capillary structure 1620 e are respectively located on two opposite ends of thefirst surface 1412 a. Thethird capillary structure 1630 e andfourth capillary structure 1640 e are spaced apart from each other and arranged on thefirst surface 1412 a between thefirst capillary structure 1610 e and thesecond capillary structure 1620 e. However, in other embodiments, thefirst capillary structure 1610 e, thesecond capillary structure 1620 e, thethird capillary structure 1630 e, and thefourth capillary structure 1640 e may be disposed on thesecond surface 1422 a in therecess 1421 a. In still other embodiments, the four capillary structures may be disposed on both thefirst surface 1412 a and thesecond surface 1422 a. - The
capillary structures capillary structures capillary structures - The
capillary structures channel 1405 a and sintering the powder, (2) inserting a molded capillary structure in the channel, or (3) placing a molded capillary structure in graphite printing tubes in the bottom and top metal plates (e.g.,plates - The
capillary structures plates plates -
FIG. 26 is an isometric view of a roll-bondedheat exchanger 140 k according to an exemplary embodiment.FIG. 27 ,FIG. 28 , andFIG. 29 are views showing a process of forming a capillary structure of the roll-bondedheat exchanger 140 k inFIG. 26 . As illustrated, a roll-bondedheat exchanger 140 k includes a heat conductingplate body 1400 k having a plurality ofangled channels 1405 k formed as grooves (or recesses) in the bottom plate of the heat conductingplate body 1400 k and a plurality ofangled channels 1403 k formed as grooves (or recesses) in the top plate of the heat conductingplate body 1400 k that are orientated oppositeangled channels 1405 k. Theangled channels heat exchanger 140 k. Eachangled channel 1405 k includes asingle capillary structure 1610 k. It will be understood that theangled channels plate body 1400 k. - There are two methods for forming the
capillary structures 1610 k in the roll-bondedheat exchanger 140 k. In a first method, thecapillary structures 1610 k are placed into the roll-bondedheat exchanger 140 k prior to roll bonding the top and bottom plates of the roll-bondedheat exchanger 140 k. The roll-bondedheat exchanger 140 k may be similar in some aspects to the roll-bondedheat exchanger 140 a and may include two plates (similar to theplates capillary structures 1610 k are placed in thechannels 1405 k after roll bonding the two plates forming the heat conductingplate body 1400 k. - In the first method, the
capillary structures 1610 k are formed on the surfaces of plates that form the heat conductingplate body 1400 k by, for example, disposing metal woven mesh on the surfaces of at least one of the plates facing each other. Specifically, the top and bottom plates of the roll-bondedheat exchanger 140 k are stamped to form thechannels channels channel 1405 k. The metal woven mesh forms the capillary structure of the heat conductingplate body 1400 k. In one embodiment, the metal woven mesh is welded to the surface of the plates. Alternatively, the surfaces of the plates are chemically etched to create micro pores or micro structures for forming the capillary structure of the heat conductingplate body 1400 k. In another embodiment, the surfaces of the plates are sandblasted to form the capillary structure of the heat conductingplate body 1400 k. - Then, the top and bottom plates are contacted against each other and the edges of the plates are sealingly bonded to each other by, for example, a roll bonding process. A blow molding process is then performed to create the
channels 1405 k. Briefly, in the blow molding process, indentations are provided at predetermined locations on opposite surfaces of the top and bottom plates. After bonding the two plates together, gas is pumped into theopening 1406 a. The pressure of the gas will thus blow up thechannels 1405 k along the paths defined by the indentations. The air in the roll-bondedheat exchanger 140 k is removed and theopening 1406 a is sealed by welding, for example. - In the second method, the heat conducting
plate body 1400 k is cut along the line B shown inFIG. 26 , such that, theangled channels FIG. 27 ) viaopenings 1407 k. Thecapillary structures 1610 k are respectively placed into theangled channels 1405 k via theopenings 1407 k along a direction D.FIG. 28 illustrates the heat conductingplate body 1400 k with thecapillary structures 1610 k placed in theangled channels 1405 k. Theangled channels 1405 k are referred to as flow channels since liquid flows through thecapillary structures 1610 k in these channels. Theangled channels 1403 k are referred to as vapor channel since vapor that is generated after interaction with a heat generating source flows through these channels. As shown inFIG. 29 , a roll bonding process is performed to seal theopenings 1407 k and create a flat structure 150 k. The ends of the flat structure 150 k are welded to seal the roll-bonded heat exchanger. - The
capillary structures 1610 k may be formed in theangled channels 1405 k by three different methods. In a first method, copper braids or rolled-up metal meshes or copper cloths are introduced in theangled channel 1405 k via theopenings 1407 k. In a second method (illustrated inFIG. 27 ), copper powder is sintered to obtain thecapillary structures 1610 k in shape of pillars and the pillars are placed in theinclined channels 1405 k. In the third method, fixtures (e.g., stick-like structures) are inserted into theangled channels 1405 k and then copper powder is poured in the space between theangled channels 1405 k and the fixtures to fill the space. The roll-bondedheat exchanger 140 k is subjected to vibrations so that the copper powder is more uniformly filled in theangled channels 1405 k. The copper power is sintered to obtain thecapillary structures 1610 k. - The roll-bonded heat exchangers according to example embodiments discussed above, provide a guiding structure and a capillary structure to assist coolant to flow opposite to the force of gravity, so that the coolant in the cooling area located below the heat absorbing area is able to flow back to the heat absorbing area and thereby circulate in the roll-bonded heat exchanger. Therefore, the heat dissipation efficiency of the roll-bonded heat exchanger is improved. Compared to conventional vapor chambers, the heat dissipation efficiency of the vapor chamber according to example embodiments is increased by at least 30 percent.
- The foregoing outlines features of several embodiments or examples so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments or examples introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
Claims (35)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/422,562 US20190368823A1 (en) | 2018-05-29 | 2019-05-24 | Heat dissipation plate and method for manufacturing the same |
CN201922301582.8U CN211959873U (en) | 2019-03-27 | 2019-12-19 | Heat sink device |
CN201911321565.9A CN111757636A (en) | 2019-03-27 | 2019-12-19 | Heat sink and method for manufacturing heat sink |
TW110137873A TWI769939B (en) | 2019-03-27 | 2020-01-15 | Heat dissipation plate |
TW109101416A TWI769428B (en) | 2019-03-27 | 2020-01-15 | Heat dissipation plate and method for manufacturing the same |
US17/568,466 US11680752B2 (en) | 2018-05-29 | 2022-01-04 | Heat dissipation plate and method for manufacturing the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862677329P | 2018-05-29 | 2018-05-29 | |
US201962824540P | 2019-03-27 | 2019-03-27 | |
US201962824531P | 2019-03-27 | 2019-03-27 | |
US16/422,562 US20190368823A1 (en) | 2018-05-29 | 2019-05-24 | Heat dissipation plate and method for manufacturing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/568,466 Division US11680752B2 (en) | 2018-05-29 | 2022-01-04 | Heat dissipation plate and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190368823A1 true US20190368823A1 (en) | 2019-12-05 |
Family
ID=68693573
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/422,562 Abandoned US20190368823A1 (en) | 2018-05-29 | 2019-05-24 | Heat dissipation plate and method for manufacturing the same |
US16/422,586 Active 2039-10-11 US11131511B2 (en) | 2018-05-29 | 2019-05-24 | Heat dissipation plate and method for manufacturing the same |
US17/412,164 Active US11448470B2 (en) | 2018-05-29 | 2021-08-25 | Heat dissipation plate and method for manufacturing the same |
US17/568,466 Active US11680752B2 (en) | 2018-05-29 | 2022-01-04 | Heat dissipation plate and method for manufacturing the same |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/422,586 Active 2039-10-11 US11131511B2 (en) | 2018-05-29 | 2019-05-24 | Heat dissipation plate and method for manufacturing the same |
US17/412,164 Active US11448470B2 (en) | 2018-05-29 | 2021-08-25 | Heat dissipation plate and method for manufacturing the same |
US17/568,466 Active US11680752B2 (en) | 2018-05-29 | 2022-01-04 | Heat dissipation plate and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
US (4) | US20190368823A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180369972A1 (en) * | 2017-06-22 | 2018-12-27 | Hs Marston Aerospace Limited | Method of forming a component for a heat exchanger |
USD903070S1 (en) * | 2019-07-05 | 2020-11-24 | Cooler Master Co., Ltd. | Heat dissipation plate |
DE102020200427A1 (en) * | 2020-01-15 | 2021-07-15 | Robert Bosch Gesellschaft mit beschränkter Haftung | Electrical machine and method for producing such an electrical machine |
US20220003507A1 (en) * | 2020-07-03 | 2022-01-06 | Delta Electronics, Inc. | Thin vapor-chamber structure |
US11221162B2 (en) * | 2019-05-27 | 2022-01-11 | Asia Vital Components (China) Co., Ltd. | Roll bond plate evaporator structure |
EP4064808A4 (en) * | 2020-03-12 | 2023-01-04 | ZTE Corporation | Heat dissipation tooth piece and preparation method therefor, heat dissipation apparatus and electronic device |
JP2023053746A (en) * | 2021-10-01 | 2023-04-13 | 均賀科技股▲ふん▼有限公司 | heat exchanger structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116984773B (en) * | 2023-09-26 | 2023-12-12 | 江苏辅星电子有限公司 | Copper mesh capillary element assembly equipment and method |
Family Cites Families (176)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2827774A (en) | 1955-03-10 | 1958-03-25 | Avco Mfg Corp | Integral evaporator and accumulator and method of operating the same |
US3255702A (en) | 1964-02-27 | 1966-06-14 | Molten Metal Systems Inc | Hot liquid metal pumps |
US3746081A (en) | 1971-03-16 | 1973-07-17 | Gen Electric | Heat transfer device |
US4148204A (en) * | 1971-05-07 | 1979-04-10 | Siemens Aktiengesellschaft | Process of mechanically shaping metal articles |
US3757856A (en) * | 1971-10-15 | 1973-09-11 | Union Carbide Corp | Primary surface heat exchanger and manufacture thereof |
US3913664A (en) | 1973-01-12 | 1975-10-21 | Grumman Aerospace Corp | Self-filling arterial heat pipe |
US4058160A (en) | 1974-03-11 | 1977-11-15 | General Electric Company | Heat transfer device |
US4116266A (en) | 1974-08-02 | 1978-09-26 | Agency Of Industrial Science & Technology | Apparatus for heat transfer |
US4019571A (en) | 1974-10-31 | 1977-04-26 | Grumman Aerospace Corporation | Gravity assisted wick system for condensers, evaporators and heat pipes |
GB1484831A (en) | 1975-03-17 | 1977-09-08 | Hughes Aircraft Co | Heat pipe thermal mounting plate for cooling circuit card-mounted electronic components |
US4604460A (en) | 1977-02-15 | 1986-08-05 | Shionogi & Co., Ltd. | 1-oxadethiacepham compounds |
US4166266A (en) | 1978-03-06 | 1979-08-28 | Gould Inc. | Electric fuse having composite support for fusible element |
US4253636A (en) | 1979-01-15 | 1981-03-03 | Grady Clyde C | Concrete molding machine |
US4523636A (en) | 1982-09-20 | 1985-06-18 | Stirling Thermal Motors, Inc. | Heat pipe |
US4770238A (en) | 1987-06-30 | 1988-09-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Capillary heat transport and fluid management device |
GB8910966D0 (en) * | 1989-05-12 | 1989-06-28 | Du Pont Canada | Panel heat exchangers formed from thermoplastic polymers |
US5176205A (en) * | 1991-06-27 | 1993-01-05 | General Motors Corp. | Corrosion resistant clad aluminum alloy brazing stock |
US5125454A (en) * | 1991-08-27 | 1992-06-30 | Thermal Components, Inc. | Manifold assembly for a parallel flow heat exchanger |
US5377901A (en) * | 1993-04-27 | 1995-01-03 | General Motors Corporation | Method for improving corrosion resistance of plate-type vacuum brazed evaporators |
US5465782A (en) | 1994-06-13 | 1995-11-14 | Industrial Technology Research Institute | High-efficiency isothermal heat pipe |
US6269866B1 (en) | 1997-02-13 | 2001-08-07 | The Furukawa Electric Co., Ltd. | Cooling device with heat pipe |
US6745825B1 (en) | 1997-03-13 | 2004-06-08 | Fujitsu Limited | Plate type heat pipe |
TW407455B (en) | 1997-12-09 | 2000-10-01 | Diamond Electric Mfg | Heat pipe and its processing method |
US6148906A (en) | 1998-04-15 | 2000-11-21 | Scientech Corporation | Flat plate heat pipe cooling system for electronic equipment enclosure |
US6427765B1 (en) | 1998-09-29 | 2002-08-06 | Korea Electronics Telecomm | Heat-pipe having woven-wired wick and method for manufacturing the same |
JP2000161878A (en) | 1998-11-30 | 2000-06-16 | Furukawa Electric Co Ltd:The | Planar heat pipe |
WO2000045106A1 (en) * | 1999-01-29 | 2000-08-03 | Norsk Hydro Asa | Manifold for heat exchanger |
US6302192B1 (en) | 1999-05-12 | 2001-10-16 | Thermal Corp. | Integrated circuit heat pipe heat spreader with through mounting holes |
JP2001208489A (en) | 2000-01-28 | 2001-08-03 | Hitachi Cable Ltd | Flat heat pipe and method for manufacturing the same |
US6382309B1 (en) | 2000-05-16 | 2002-05-07 | Swales Aerospace | Loop heat pipe incorporating an evaporator having a wick that is liquid superheat tolerant and is resistant to back-conduction |
US7011142B2 (en) | 2000-12-21 | 2006-03-14 | Dana Canada Corporation | Finned plate heat exchanger |
US6536510B2 (en) | 2001-07-10 | 2003-03-25 | Thermal Corp. | Thermal bus for cabinets housing high power electronics equipment |
US7857037B2 (en) | 2001-11-27 | 2010-12-28 | Thermotek, Inc. | Geometrically reoriented low-profile phase plane heat pipes |
TW506523U (en) | 2002-03-29 | 2002-10-11 | Hon Hai Prec Ind Co Ltd | Heat pipe |
RU2334604C2 (en) * | 2002-04-22 | 2008-09-27 | Алкоа Инк. | Flux-covered soldering sheets |
JP4057455B2 (en) | 2002-05-08 | 2008-03-05 | 古河電気工業株式会社 | Thin sheet heat pipe |
US6880626B2 (en) | 2002-08-28 | 2005-04-19 | Thermal Corp. | Vapor chamber with sintered grooved wick |
US20040067414A1 (en) | 2002-10-02 | 2004-04-08 | Ronghua Wei | Thermal control device and method of use therefor |
US6984192B2 (en) | 2002-11-01 | 2006-01-10 | Eaton Corporation | Throttle ramp rate control system for a vehicle |
TW553371U (en) | 2002-12-02 | 2003-09-11 | Tai Sol Electronics Co Ltd | Liquid/vapor phase heat dissipation apparatus |
US20040118553A1 (en) | 2002-12-23 | 2004-06-24 | Graftech, Inc. | Flexible graphite thermal management devices |
KR100505554B1 (en) | 2003-01-24 | 2005-08-03 | 아이큐리랩 홀딩스 리미티드 | Cooling device of hybrid-type |
JP2004251544A (en) | 2003-02-20 | 2004-09-09 | Sharp Corp | Oscillating stream type heat pipe and instrument using the oscillating stream type heat pipe |
TW577538U (en) | 2003-04-04 | 2004-02-21 | Chin-Wen Wang | Sheet type heat pipe structure with support |
JP2004309002A (en) | 2003-04-04 | 2004-11-04 | Hitachi Cable Ltd | Plate type heat pipe and its manufacturing method |
US6782942B1 (en) | 2003-05-01 | 2004-08-31 | Chin-Wen Wang | Tabular heat pipe structure having support bodies |
US20050173098A1 (en) | 2003-06-10 | 2005-08-11 | Connors Matthew J. | Three dimensional vapor chamber |
US20050139995A1 (en) | 2003-06-10 | 2005-06-30 | David Sarraf | CTE-matched heat pipe |
US6938680B2 (en) | 2003-07-14 | 2005-09-06 | Thermal Corp. | Tower heat sink with sintered grooved wick |
US6796373B1 (en) | 2003-08-27 | 2004-09-28 | Inventec Corporation | Heat sink module |
US6918429B2 (en) | 2003-11-05 | 2005-07-19 | Cpumate Inc. | Dual-layer heat dissipating structure |
US7048175B2 (en) | 2003-12-19 | 2006-05-23 | The Boeing Company | Friction welded structural assembly and preform and method for same |
US20050178532A1 (en) | 2004-02-18 | 2005-08-18 | Huang Meng-Cheng | Structure for expanding thermal conducting performance of heat sink |
JP2005268658A (en) * | 2004-03-19 | 2005-09-29 | Denso Corp | Boiling cooler |
US7275588B2 (en) | 2004-06-02 | 2007-10-02 | Hul-Chun Hsu | Planar heat pipe structure |
TWI284190B (en) | 2004-11-11 | 2007-07-21 | Taiwan Microloops Corp | Bendable heat spreader with metallic screens based micro-structure and method for fabricating same |
US7322102B2 (en) | 2005-01-05 | 2008-01-29 | Cpumate Inc. | Isothermal plate assembly with predetermined shape and method for manufacturing the same |
US7159647B2 (en) | 2005-01-27 | 2007-01-09 | Hul-Chun Hsu | Heat pipe assembly |
CN100437005C (en) | 2005-07-08 | 2008-11-26 | 富准精密工业(深圳)有限公司 | Flat type heat-pipe |
TWI329184B (en) | 2005-07-29 | 2010-08-21 | Delta Electronics Inc | Vapor chamber and manufacturing method thereof |
JP2007150013A (en) | 2005-11-29 | 2007-06-14 | Matsushita Electric Ind Co Ltd | Sheet-shaped heat pipe and structure for cooling electronic equipment |
CN100561105C (en) | 2006-02-17 | 2009-11-18 | 富准精密工业(深圳)有限公司 | Heat pipe |
JP2007266153A (en) | 2006-03-28 | 2007-10-11 | Sony Corp | Plate-shape heat transport device and electronic device |
CN100561108C (en) | 2006-04-14 | 2009-11-18 | 富准精密工业(深圳)有限公司 | Heat pipe |
TWM299458U (en) | 2006-04-21 | 2006-10-11 | Taiwan Microloops Corp | Heat spreader with composite micro-structure |
JP4714638B2 (en) | 2006-05-25 | 2011-06-29 | 富士通株式会社 | heatsink |
US20070277962A1 (en) | 2006-06-01 | 2007-12-06 | Abb Research Ltd. | Two-phase cooling system for cooling power electronic components |
US20090250196A1 (en) | 2006-08-09 | 2009-10-08 | Batty J Clair | Relieved-channel, bonded heat exchanger |
US7886816B2 (en) | 2006-08-11 | 2011-02-15 | Oracle America, Inc. | Intelligent cooling method combining passive and active cooling components |
TWI325047B (en) | 2006-09-29 | 2010-05-21 | Delta Electronics Inc | Heat pipe and manufacturing method thereof |
KR100837704B1 (en) | 2006-09-29 | 2008-06-13 | 한국전자통신연구원 | Method for transmitting data in evolved UMTS network system |
US20080080133A1 (en) | 2006-10-02 | 2008-04-03 | Hsiu-Wei Yang | Flat type heat pipe device and method of fabrication thereof |
CN100583470C (en) | 2006-12-15 | 2010-01-20 | 富准精密工业(深圳)有限公司 | LED radiating device combination |
US7651247B2 (en) | 2006-12-18 | 2010-01-26 | Mei-Liang Lo | Heat dissipating design for lamp |
US20100108297A1 (en) | 2007-04-28 | 2010-05-06 | Jen-Shyan Chen | Heat Pipe and Making Method Thereof |
US20100132930A1 (en) * | 2007-05-02 | 2010-06-03 | Creare, Inc. | Flexible Heat/Mass Exchanger |
US7766691B2 (en) | 2007-06-27 | 2010-08-03 | Intel Corporation | Land grid array (LGA) socket loading mechanism for mobile platforms |
US7443677B1 (en) | 2007-07-12 | 2008-10-28 | Fu Zhun Industry (Shen Zhen) Co., Ltd. | Heat dissipation device |
US20090025910A1 (en) | 2007-07-27 | 2009-01-29 | Paul Hoffman | Vapor chamber structure with improved wick and method for manufacturing the same |
US20090040726A1 (en) | 2007-08-09 | 2009-02-12 | Paul Hoffman | Vapor chamber structure and method for manufacturing the same |
CN101398272A (en) | 2007-09-28 | 2009-04-01 | 富准精密工业(深圳)有限公司 | Hot pipe |
US8919426B2 (en) | 2007-10-22 | 2014-12-30 | The Peregrine Falcon Corporation | Micro-channel pulsating heat pipe |
EP2248406A4 (en) | 2008-02-27 | 2012-10-24 | Hewlett Packard Development Co | Heat sink device |
CA2665782A1 (en) * | 2008-05-15 | 2009-11-15 | Manitowoc Foodservice Companies, Inc. | Heat exchanger, particularly for use in a beverage dispenser |
US20090323276A1 (en) | 2008-06-25 | 2009-12-31 | Mongia Rajiv K | High performance spreader for lid cooling applications |
TWI426859B (en) | 2008-08-28 | 2014-02-11 | Delta Electronics Inc | Heat dissipation module, flat heat column thereof and manufacturing method for flat heat column |
TWI459889B (en) | 2008-09-18 | 2014-11-01 | Pegatron Corp | Vapor chamber |
US20100071879A1 (en) | 2008-09-19 | 2010-03-25 | Foxconn Technology Co., Ltd. | Method for manufacturing a plate-type heat pipe and a plate-type heat pipe obtained thereby |
JP4473925B1 (en) | 2008-12-16 | 2010-06-02 | 株式会社東芝 | Loop heat pipe and electronic equipment |
CN101749977A (en) | 2008-12-22 | 2010-06-23 | 富瑞精密组件(昆山)有限公司 | Heat pipe and manufacturing method thereof |
TW201038896A (en) | 2009-04-16 | 2010-11-01 | Yeh Chiang Technology Corp | Ultra-thin heat pipe |
TW201100736A (en) | 2009-06-17 | 2011-01-01 | Yeh Chiang Technology Corp | Superthin heat pipe |
US20100326629A1 (en) | 2009-06-26 | 2010-12-30 | Meyer Iv George Anthony | Vapor chamber with separator |
IT1399277B1 (en) * | 2009-08-03 | 2013-04-11 | Sis Ter Spa | THERMAL EXCHANGE CIRCUIT. |
CN101988811B (en) | 2009-08-05 | 2013-07-03 | 富准精密工业(深圳)有限公司 | Flat plate heat pipe and manufacturing method thereof |
JP2011085311A (en) | 2009-10-15 | 2011-04-28 | Sony Corp | Heat transport device, method for manufacturing heat transport device and electronic device |
CN201532142U (en) | 2009-10-30 | 2010-07-21 | 昆山巨仲电子有限公司 | Flat heat pipe with hooked capillary structure |
CN101900507B (en) | 2010-01-15 | 2011-12-21 | 富瑞精密组件(昆山)有限公司 | Flat and thin type heat pipe |
US20110220328A1 (en) | 2010-03-09 | 2011-09-15 | Kunshan Jue-Chung Electronics Co., Ltd. | Flexible heat pipe and manufacturing method thereof |
JP5714836B2 (en) | 2010-04-17 | 2015-05-07 | モレックス インコーポレイテドMolex Incorporated | Heat transport unit, electronic board, electronic equipment |
CN102243030A (en) | 2010-05-14 | 2011-11-16 | 富瑞精密组件(昆山)有限公司 | Flat heat conduction pipe and method for manufacturing same |
SE536042C2 (en) * | 2010-06-16 | 2013-04-09 | Titanx Engine Cooling Holding Ab | Heat exchanger with extended heat transfer surface around attachment points |
US20120048516A1 (en) | 2010-08-27 | 2012-03-01 | Forcecon Technology Co., Ltd. | Flat heat pipe with composite capillary structure |
JP5506944B2 (en) * | 2010-10-18 | 2014-05-28 | 三菱電機株式会社 | Refrigeration cycle apparatus and refrigerant circulation method |
CN102469744A (en) | 2010-11-09 | 2012-05-23 | 富准精密工业(深圳)有限公司 | Flat plate type heat pipe |
TWI398616B (en) | 2011-01-26 | 2013-06-11 | Asia Vital Components Co Ltd | Micro - temperature plate structure improvement |
TW201248108A (en) | 2011-05-31 | 2012-12-01 | Asia Vital Components Co Ltd | Vapor chamber structure and manufacturing method thereof |
US8857502B2 (en) | 2011-07-26 | 2014-10-14 | Kunshan Jue-Chung Electronics Co., Ltd. | Vapor chamber having heated protrusion |
US20130037242A1 (en) | 2011-08-09 | 2013-02-14 | Cooler Master Co., Ltd. | Thin-type heat pipe structure |
TWM426988U (en) | 2011-10-27 | 2012-04-11 | Cooler Master Co Ltd | Thin type heat pipe |
US8780559B2 (en) | 2011-12-29 | 2014-07-15 | General Electric Company | Heat exchange assembly for use with electrical devices and methods of assembling an electrical device |
US8811014B2 (en) | 2011-12-29 | 2014-08-19 | General Electric Company | Heat exchange assembly and methods of assembling same |
US9364889B2 (en) | 2012-01-05 | 2016-06-14 | Ic Patterns, Llc | Foam pattern techniques |
JP6355561B2 (en) | 2012-01-06 | 2018-07-11 | ユーティ−バテル・リミテッド・ライアビリティ・カンパニーUt−Battelle, Llc | Large scale production of high quality single and multilayer graphene by chemical vapor deposition |
US8720062B2 (en) | 2012-01-09 | 2014-05-13 | Forcecon Technology Co., Ltd. | Molding method for a thin-profile composite capillary structure |
US20130174966A1 (en) | 2012-01-11 | 2013-07-11 | Forcecon Technology Co., Ltd. | Molding method of a heat pipe for capillary structure with controllable sintering position |
US10598442B2 (en) | 2012-03-12 | 2020-03-24 | Cooler Master Development Corporation | Flat heat pipe structure |
EP2677261B1 (en) | 2012-06-20 | 2018-10-10 | ABB Schweiz AG | Two-phase cooling system for electronic components |
US20140131013A1 (en) | 2012-11-15 | 2014-05-15 | Chin-Hsing Horng | Low-profile heat pipe |
US20140182819A1 (en) | 2013-01-01 | 2014-07-03 | Asia Vital Components Co., Ltd. | Heat dissipating device |
US9685393B2 (en) | 2013-03-04 | 2017-06-20 | The Hong Kong University Of Science And Technology | Phase-change chamber with patterned regions of high and low affinity to a phase-change medium for electronic device cooling |
US20150144309A1 (en) * | 2013-03-13 | 2015-05-28 | Brayton Energy, Llc | Flattened Envelope Heat Exchanger |
CN104112724A (en) | 2013-04-22 | 2014-10-22 | 华硕电脑股份有限公司 | Radiating element |
US20140345832A1 (en) | 2013-05-23 | 2014-11-27 | Cooler Master Co., Ltd. | Plate-type heat pipe |
US20150026981A1 (en) * | 2013-07-24 | 2015-01-29 | Asia Vital Components Co., Ltd. | Manufacturing mehtod of vapor chamber structure |
US20150041103A1 (en) | 2013-08-06 | 2015-02-12 | Aall Power Heatsinks, Inc. | Vapor chamber with improved wicking structure |
US9453688B2 (en) | 2013-09-24 | 2016-09-27 | Asia Vital Components Co., Ltd. | Heat dissipation unit |
US20150101784A1 (en) | 2013-10-15 | 2015-04-16 | Hao Pai | Heat pipe with ultra-thin flat wick structure |
TW201527707A (en) | 2014-01-14 | 2015-07-16 | Hao Pai | Heat pipe structure having shape-kept strip wick |
TW201527705A (en) | 2014-01-14 | 2015-07-16 | Hao Pai | Heat pipe having strip capillary with supporting end |
JP5685656B1 (en) | 2014-01-17 | 2015-03-18 | 株式会社フジクラ | heat pipe |
CN203934263U (en) | 2014-07-04 | 2014-11-05 | 讯凯国际股份有限公司 | There is the heat abstractor of capillary member |
JP5759600B1 (en) | 2014-07-16 | 2015-08-05 | 株式会社フジクラ | Flat heat pipe |
US20160069616A1 (en) | 2014-09-05 | 2016-03-10 | Asia Vital Components Co., Ltd. | Heat pipe with complex capillary structure |
TWI530656B (en) | 2014-10-30 | 2016-04-21 | 鴻準精密工業股份有限公司 | wick wires, wick structures having the wick wires and heat pipes having the wick structures |
CN105764300B (en) | 2014-12-19 | 2018-09-07 | 鹏鼎控股(深圳)股份有限公司 | Temperature-uniforming plate and its manufacturing method |
US20160201992A1 (en) | 2015-01-09 | 2016-07-14 | Delta Electronics, Inc. | Heat pipe |
US10215500B2 (en) | 2015-05-22 | 2019-02-26 | Micron Technology, Inc. | Semiconductor device assembly with vapor chamber |
TWI588439B (en) | 2015-05-25 | 2017-06-21 | 訊凱國際股份有限公司 | 3d heat conducting structures and manufacturing method thereof |
CN105140194B (en) | 2015-07-03 | 2018-02-02 | 浙江嘉熙科技有限公司 | Hot superconducting radiator and its manufacture method |
US10502498B2 (en) * | 2015-07-20 | 2019-12-10 | Delta Electronics, Inc. | Slim vapor chamber |
US20170082378A1 (en) | 2015-09-18 | 2017-03-23 | Chaun-Choung Technology Corp. | Vapor chamber structure |
US20170122672A1 (en) | 2015-10-28 | 2017-05-04 | Taiwan Microloops Corp. | Vapor chamber and manufacturing method thereof |
TWM517314U (en) | 2015-11-17 | 2016-02-11 | Asia Vital Components Co Ltd | Heat dissipation apparatus |
US10119766B2 (en) | 2015-12-01 | 2018-11-06 | Asia Vital Components Co., Ltd. | Heat dissipation device |
KR101983108B1 (en) | 2015-12-18 | 2019-09-10 | 가부시키가이샤후지쿠라 | Vapor chamber |
TWI639806B (en) * | 2016-02-05 | 2018-11-01 | 業強科技股份有限公司 | Heat conduction device and manufacturing method thereof |
CN107044790A (en) | 2016-02-05 | 2017-08-15 | 讯凯国际股份有限公司 | Solid heat transferring device |
US10330392B2 (en) | 2016-02-05 | 2019-06-25 | Cooler Master Co., Ltd. | Three-dimensional heat transfer device |
CN107345771A (en) | 2016-05-05 | 2017-11-14 | 讯凯国际股份有限公司 | The heat-pipe apparatus of antigravity formula |
US10112272B2 (en) | 2016-02-25 | 2018-10-30 | Asia Vital Components Co., Ltd. | Manufacturing method of vapor chamber |
CN107278089B (en) | 2016-04-07 | 2019-07-19 | 讯凯国际股份有限公司 | Heat conductive structure |
US10349561B2 (en) | 2016-04-15 | 2019-07-09 | Google Llc | Cooling electronic devices in a data center |
US20170312871A1 (en) | 2016-04-30 | 2017-11-02 | Taiwan Microloops Corp. | Assembly structure of heat pipe and vapor chamber and assembly method threreof |
JP6597892B2 (en) | 2016-05-09 | 2019-10-30 | 富士通株式会社 | Loop heat pipe, manufacturing method thereof, and electronic device |
US9939204B2 (en) * | 2016-05-26 | 2018-04-10 | Fujikura Ltd. | Heat spreading module |
US10077945B2 (en) | 2016-05-27 | 2018-09-18 | Asia Vital Components Co., Ltd. | Heat dissipation device |
TWM532046U (en) | 2016-06-02 | 2016-11-11 | Tai Sol Electronics Co Ltd | Vapor chamber with liquid-vapor separating structure |
US10663231B2 (en) | 2016-06-08 | 2020-05-26 | Delta Electronics, Inc. | Manufacturing method of heat conducting device |
US11168583B2 (en) | 2016-07-22 | 2021-11-09 | General Electric Company | Systems and methods for cooling components within a gas turbine engine |
US10012445B2 (en) | 2016-09-08 | 2018-07-03 | Taiwan Microloops Corp. | Vapor chamber and heat pipe combined structure |
US10288356B2 (en) | 2016-10-14 | 2019-05-14 | Taiwan Microloops Corp. | Vapor chamber and heat pipe combined structure and combining method thereof |
US20180320997A1 (en) | 2017-05-05 | 2018-11-08 | Forcecon Technology Co., Ltd. | Temperature-uniforming plate with supporting effect |
US10048015B1 (en) | 2017-05-24 | 2018-08-14 | Taiwan Microloops Corp. | Liquid-vapor separating type heat conductive structure |
US10483190B2 (en) | 2017-06-06 | 2019-11-19 | Taiwan Microloops Corp. | Thermal conduction structrure and manufacturing method thereof |
US20180369971A1 (en) * | 2017-06-22 | 2018-12-27 | Asia Vital Components Co., Ltd. | Method of manufacturing a heat dissipation device |
US20190027424A1 (en) | 2017-07-19 | 2019-01-24 | Heatscape.Com, Inc. | High strength high performance reinforced vapor chamber and related heatsinks |
US11209216B2 (en) | 2017-07-28 | 2021-12-28 | Dana Canada Corporation | Ultra thin heat exchangers for thermal management |
TWI757553B (en) | 2017-10-13 | 2022-03-11 | 訊凱國際股份有限公司 | Impulse uniform temperature plate |
TWI639379B (en) | 2017-12-26 | 2018-10-21 | 訊凱國際股份有限公司 | Heat dissipation structure |
US20190310030A1 (en) | 2018-04-05 | 2019-10-10 | United Technologies Corporation | Heat augmentation features in a cast heat exchanger |
TW201947180A (en) | 2018-05-04 | 2019-12-16 | 泰碩電子股份有限公司 | Loop vapor chamber conducive to separation of liquid and gas |
TWM577538U (en) | 2018-11-14 | 2019-05-01 | 宏碁股份有限公司 | Touch device |
CN111414056B (en) | 2019-01-08 | 2024-06-25 | 达纳加拿大公司 | Ultra-thin two-phase heat exchanger with structured wicking |
US11549626B2 (en) | 2019-06-17 | 2023-01-10 | GM Global Technology Operations LLC | Method of forming a cooling plate |
TWI738602B (en) | 2020-01-22 | 2021-09-01 | 訊凱國際股份有限公司 | Multi-channel thin heat exchanger |
-
2019
- 2019-05-24 US US16/422,562 patent/US20190368823A1/en not_active Abandoned
- 2019-05-24 US US16/422,586 patent/US11131511B2/en active Active
-
2021
- 2021-08-25 US US17/412,164 patent/US11448470B2/en active Active
-
2022
- 2022-01-04 US US17/568,466 patent/US11680752B2/en active Active
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180369972A1 (en) * | 2017-06-22 | 2018-12-27 | Hs Marston Aerospace Limited | Method of forming a component for a heat exchanger |
US10974353B2 (en) * | 2017-06-22 | 2021-04-13 | Hs Marston Aerospace Limited | Method of forming a component for a heat exchanger |
US11221162B2 (en) * | 2019-05-27 | 2022-01-11 | Asia Vital Components (China) Co., Ltd. | Roll bond plate evaporator structure |
USD903070S1 (en) * | 2019-07-05 | 2020-11-24 | Cooler Master Co., Ltd. | Heat dissipation plate |
DE102020200427A1 (en) * | 2020-01-15 | 2021-07-15 | Robert Bosch Gesellschaft mit beschränkter Haftung | Electrical machine and method for producing such an electrical machine |
EP4064808A4 (en) * | 2020-03-12 | 2023-01-04 | ZTE Corporation | Heat dissipation tooth piece and preparation method therefor, heat dissipation apparatus and electronic device |
US12048120B2 (en) | 2020-03-12 | 2024-07-23 | Zte Corporation | Heat dissipation tooth piece and preparation method therefor, heat dissipation apparatus and electronic device |
US20220003507A1 (en) * | 2020-07-03 | 2022-01-06 | Delta Electronics, Inc. | Thin vapor-chamber structure |
US11835299B2 (en) * | 2020-07-03 | 2023-12-05 | Delta Electronics, Inc. | Thin vapor-chamber structure |
JP2023053746A (en) * | 2021-10-01 | 2023-04-13 | 均賀科技股▲ふん▼有限公司 | heat exchanger structure |
JP7304919B2 (en) | 2021-10-01 | 2023-07-07 | 均賀科技股▲ふん▼有限公司 | heat exchanger structure |
Also Published As
Publication number | Publication date |
---|---|
US11680752B2 (en) | 2023-06-20 |
US11131511B2 (en) | 2021-09-28 |
US20220128313A1 (en) | 2022-04-28 |
US11448470B2 (en) | 2022-09-20 |
US20210381775A1 (en) | 2021-12-09 |
US20190366418A1 (en) | 2019-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11680752B2 (en) | Heat dissipation plate and method for manufacturing the same | |
CN107949238A (en) | A kind of soaking plate heat dissipating device with support column arrangement and preparation method thereof | |
EP3715767A1 (en) | Heat dissipation plate and method for manufacturing the same | |
US11085703B2 (en) | Heatsink | |
JPWO2011145618A1 (en) | Boiling cooler | |
EP3839400B1 (en) | Vapor chamber heatsink assembly | |
WO2020213464A1 (en) | Heat sink | |
JP6358872B2 (en) | Boiling cooler for heating element | |
WO2017127153A1 (en) | Multi-level oscillating heat pipe implementation in an electronic circuit card module | |
JP6782326B2 (en) | heatsink | |
US20150129175A1 (en) | Thermosyphon heat sink | |
US11913726B2 (en) | Vapor chamber heatsink assembly | |
TW202041825A (en) | Heat sink | |
JPWO2013005622A1 (en) | Cooling device and manufacturing method thereof | |
US11369042B2 (en) | Heat exchanger with integrated two-phase heat spreader | |
WO2011159251A1 (en) | Thermosyphon for cooling electronic components | |
JP6024665B2 (en) | Flat plate cooling device and method of using the same | |
TWI534402B (en) | Heat sink with impinging cooling mechanism and micro-channel cooling mechanism and chip heat sink having the same | |
CN221264325U (en) | Radiator and heat radiation system | |
WO2018139656A1 (en) | Vapor chamber | |
TWM660137U (en) | Direct Plug-in Heat Sink |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COOLER MASTER CO., LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAN, WEI-LUNG;CHENG, WEN-TI;SIGNING DATES FROM 20190524 TO 20190527;REEL/FRAME:049871/0771 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |