US20190006299A1 - Method to improve cmp scratch resistance for non planar surfaces - Google Patents
Method to improve cmp scratch resistance for non planar surfaces Download PDFInfo
- Publication number
- US20190006299A1 US20190006299A1 US16/121,666 US201816121666A US2019006299A1 US 20190006299 A1 US20190006299 A1 US 20190006299A1 US 201816121666 A US201816121666 A US 201816121666A US 2019006299 A1 US2019006299 A1 US 2019006299A1
- Authority
- US
- United States
- Prior art keywords
- layer
- protective material
- substrate
- top surface
- recess
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 113
- 229910052751 metal Inorganic materials 0.000 claims abstract description 92
- 239000002184 metal Substances 0.000 claims abstract description 92
- 239000000463 material Substances 0.000 claims abstract description 78
- 230000001681 protective effect Effects 0.000 claims abstract description 72
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 238000007517 polishing process Methods 0.000 claims abstract 7
- 239000003989 dielectric material Substances 0.000 claims description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- 229920002120 photoresistant polymer Polymers 0.000 claims description 4
- 238000004528 spin coating Methods 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 172
- 238000004377 microelectronic Methods 0.000 description 31
- 239000002002 slurry Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000011241 protective layer Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- 238000000231 atomic layer deposition Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 238000005546 reactive sputtering Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- -1 silicon carbide nitride Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/03—Manufacturing methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/042—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31051—Planarisation of the insulating layers
- H01L21/31053—Planarisation of the insulating layers involving a dielectric removal step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31127—Etching organic layers
- H01L21/31133—Etching organic layers by chemical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31127—Etching organic layers
- H01L21/31133—Etching organic layers by chemical means
- H01L21/31138—Etching organic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/32115—Planarisation
- H01L21/3212—Planarisation by chemical mechanical polishing [CMP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76853—Barrier, adhesion or liner layers characterized by particular after-treatment steps
- H01L21/76865—Selective removal of parts of the layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31058—After-treatment of organic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/034—Manufacturing methods by blanket deposition of the material of the bonding area
- H01L2224/03444—Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
- H01L2224/0345—Physical vapour deposition [PVD], e.g. evaporation, or sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/034—Manufacturing methods by blanket deposition of the material of the bonding area
- H01L2224/03444—Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
- H01L2224/03452—Chemical vapour deposition [CVD], e.g. laser CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/034—Manufacturing methods by blanket deposition of the material of the bonding area
- H01L2224/0346—Plating
- H01L2224/03462—Electroplating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/034—Manufacturing methods by blanket deposition of the material of the bonding area
- H01L2224/0346—Plating
- H01L2224/03464—Electroless plating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/034—Manufacturing methods by blanket deposition of the material of the bonding area
- H01L2224/03466—Conformal deposition, i.e. blanket deposition of a conformal layer on a patterned surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/038—Post-treatment of the bonding area
- H01L2224/0382—Applying permanent coating, e.g. in-situ coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/038—Post-treatment of the bonding area
- H01L2224/0383—Reworking, e.g. shaping
- H01L2224/03845—Chemical mechanical polishing [CMP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/039—Methods of manufacturing bonding areas involving a specific sequence of method steps
- H01L2224/0391—Forming a passivation layer after forming the bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04042—Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/0502—Disposition
- H01L2224/05026—Disposition the internal layer being disposed in a recess of the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05073—Single internal layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/05124—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05147—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05155—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05163—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/05164—Palladium [Pd] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05163—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/05171—Chromium [Cr] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/05186—Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05541—Structure
- H01L2224/05547—Structure comprising a core and a coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05556—Shape in side view
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/05571—Disposition the external layer being disposed in a recess of the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05617—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/05624—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05644—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05663—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/05664—Palladium [Pd] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05663—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/05669—Platinum [Pt] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05663—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/05676—Ruthenium [Ru] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/0601—Structure
- H01L2224/0603—Bonding areas having different sizes, e.g. different heights or widths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/061—Disposition
- H01L2224/06102—Disposition the bonding areas being at different heights
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
Definitions
- This invention relates to the field of microelectronic devices. More particularly, this invention relates to fabrication methods of microelectronic devices.
- Some integrated circuits have a protective overcoat (PO) layer over a top metallization layer containing bond pads, with openings in the PO layer exposing the bond pads.
- PO protective overcoat
- the integrated circuits are fabricated by forming a metal liner, suitable for wire bonding, over the PO layer, extending into the PO layer openings and onto the exposed bond pads.
- the metal liner over the top surface of the PO layer is subsequently removed by a chemical mechanical polish (CMP) process, leaving the metal liner on the bond pads.
- CMP process uses a slurry with abrasive particles and corrosive chemicals to remove the metal liner; the abrasive particles and corrosive chemicals attack the metal liner on the bond pads, causing corrosion of the bond pads and reliability problems for the integrated circuit.
- Increasing the thickness of the metal liner increases the cost and complexity of the deposition process and the CMP process, and has not demonstrated desired reduction of damage to the metal liner from the CMP slurry. Adding additional pattern steps or plating processes to protect the metal liner also undesirably increase the fabrication cost and complexity. Using thicker top metal increases the difficulty of patterning and limits the minimum features and line separations.
- a microelectronic device is formed by forming a PO layer over an interconnect region with a bond pad so that the PO layer has an opening which forms a recess; the bond pad being exposed in the recess.
- a metal liner is formed over the PO layer, extending into the recess and onto the bond pad.
- a protective layer is formed over the metal liner, extending into the recess.
- a CMP process removes the protective layer and the metal liner from over the top surface of the PO layer, leaving the protective layer and the metal liner in the recess. The protective layer is subsequently removed from the recess, leaving the metal liner in the recess over the bond pad.
- a microelectronic device is formed by providing a substrate having a recess at a top surface, and a liner layer formed over the top surface of the substrate, extending into the recess.
- a protective layer is formed over the liner layer, extending into the recess.
- a CMP process removes the protective layer and the liner layer from over the top surface of the substrate, leaving the protective layer and the liner layer in the recess. The protective layer is subsequently removed from the recess, leaving the liner layer in the recess.
- FIG. 1A through FIG. 1G are cross sections of a microelectronic device depicted in successive stages of an example formation sequence.
- FIG. 2A through FIG. 2I are cross sections of another microelectronic device depicted in successive stages of an example formation sequence.
- FIG. 3A through FIG. 3C are cross sections of an alternate microelectronic device depicted in successive stages of an example formation sequence.
- FIG. 1A through FIG. 1G are cross sections of a microelectronic device depicted in successive stages of an example formation sequence.
- the microelectronic device 100 includes a substrate 102 and an interconnect region 104 formed over the substrate 102 .
- Active components 106 depicted in FIG. 1A as metal oxide semiconductor (MOS) transistors, are formed in the substrate 102 .
- the interconnect region 104 includes dielectric material 108 such as layers of silicon dioxide-based materials, possibly with silicon nitride layers, silicon carbide nitride, silicon oxynitride or other dielectric layers providing etch stops and cap layers.
- the contacts 110 may be formed by etching contact holes in a pre-metal dielectric (PMD) layer of the dielectric material 108 down to the substrate 102 , sputtering a layer of titanium on the PMD layer and in the contact holes followed by forming a layer of titanium nitride by atomic layer deposition (ALD). Tungsten is formed on the titanium nitride layer, filling the contact hole, by a metal organic chemical vapor deposition (MOCVD) process.
- PMD pre-metal dielectric
- ALD atomic layer deposition
- MOCVD metal organic chemical vapor deposition
- the tungsten, titanium nitride and titanium are removed from a top surface of the PMD layer by a CMP process and/or an etchback process.
- Other methods of forming the contacts 110 are within the scope of the instant example.
- the metal lines 112 may be formed with a single damascene copper process by forming a trench mask to expose areas for the metal lines 112 , etching interconnect trenches in an intra-metal dielectric (IMD) layer of the dielectric material 108 to expose tops of the contacts 110 .
- IMD intra-metal dielectric
- a liner of tantalum, tantalum nitride, or other suitable metal is formed over the ILD layer and in the interconnect trenches, followed by a layer of sputtered copper to provide an electroplating seed layer.
- the metal lines 112 may be formed with an etch-defined process by depositing a metal layer stack of an adhesion layer, an aluminum layer and optionally a cap layer on the PMD layer and the tops of the contacts 110 .
- An interconnect etch mask is formed over the metal layer stack so as to cover areas for the metal lines 112 and the metal layer stack exposed by the interconnect etch mask is removed by a reactive ion etch (RIE) process using chlorine radicals.
- RIE reactive ion etch
- the vias 114 may be formed in an inter-level dielectric (ILD) layer of the dielectric material 108 by a process similar to the contact process described herein, or may be formed by a single damascene copper process or a dual damascene copper process, similar to the metal line process described herein. Other methods of forming the vias are within the scope of the instant example.
- the contacts 110 , metal lines 112 , vias 114 and bond pads 116 provide electrical connections to the active components 106 and other components, if present, in the microelectronic device 100 .
- the interconnect region 104 may possibly include additional levels of the metal lines 112 and the vias 114 .
- the bond pads 116 are formed by a single damascene copper process, so that top surfaces 118 of the bond pads 116 are substantially coplanar with a top surface 120 of the dielectric material 108 .
- a PO layer 122 is formed over the top surfaces 118 of the bond pads 116 and the top surface 120 of the dielectric material 108 .
- the PO layer 122 includes one or more layers of dielectric material, such as silicon dioxide, silicon nitride, silicon oxynitride, polyimide and/or other dielectric material.
- the PO layer 122 is patterned to have recesses 124 which expose portions of the top surfaces 118 of the bond pads 116 .
- the recesses 124 may have widths 126 of, for example, 50 microns to 150 microns, to accommodate typical wire bonds to the bond pads 116 .
- Depths 128 of the recesses 124 which corresponds to a thickness of the PO layer 122 , may be, for example, 2 microns to 4 microns.
- a top surface 130 of the PO layer 122 is substantially planar over the microelectronic device 100 outside of the recesses 124 .
- a metal liner 132 is formed over the PO layer 122 , extending into the recesses 124 and onto the exposed portions of the top surfaces 118 of the bond pads 116 .
- the metal liner 132 on the top surface 118 of the bond pads 116 in the recesses 124 is below the top surface 130 of the PO layer 122 adjacent to the recesses 124 .
- the metal liner 132 may be a layer stack including an adhesion layer 134 contacting the bond pads 116 and a bond layer 136 providing a bonding surface.
- the adhesion layer 134 may include, for example, titanium, titanium nitride, titanium tungsten, tantalum, tantalum nitride, chromium or nickel.
- the bond layer 136 may include, for example, aluminum, palladium, ruthenium, platinum, or gold.
- the metal liner 132 may optionally include one or more metal layers, such as palladium, aluminum or nickel, between the adhesion layer 134 and the bond layer 136 .
- the metal liner 132 may be 100 nanometers to 3 microns thick, advantageously providing low process cost for the metal liner 132 formation compared to thicker metal liners.
- the layers of the metal liner 132 may be formed by any combination of sputtering, evaporation, electroplating, electroless plating, ALD, reactive sputtering, MOCVD or other thin film formation method.
- a layer of protective material 138 is formed over the metal liner 132 .
- the layer of protective material 138 may be an organic polymer material such as photoresist or novolac resin, mixed with a solvent.
- the layer of protective material 138 may be dispensed in a thick layer which fills the recesses 124 , as part of a spin coat process.
- the layer of protective material 138 may be a material which is used in other processes in the fabrication sequence for the microelectronic device 100 , and the method of forming the layer of protective material 138 may use equipment which is used in other processes in the fabrication sequence for the microelectronic device 100 , thus advantageously eliminating a need to install dedicated equipment and provide dedicated material to form the layer of protective material 138 .
- the substrate 102 is rotated at a spin speed of 10 revolutions per minute (rpm) to 100 rpm as part of the spin coat process, to distribute the layer of protective material 138 .
- the substrate 102 is rotated at a higher spin speed as part of the spin coat process, for example 500 rpm to 2,000 rpm, to obtain a desired thickness of the layer of protective material 138 , which is a few microns.
- a portion of the solvent evaporates during the spin process, so that the layer of protective material 138 may dip in the recesses 124 .
- the layer of protective material 138 is heated to 100° C. to 200° C. as part of a bake process to remove more solvent and to provide a desired CMP removal rate.
- the layer of protective material 138 may be heated by applying heat 140 to the substrate 102 from a hot plate or oven chamber.
- the layer of protective material 138 is continuous over the metal liner 132 after the bake process is completed.
- the layer of protective material 138 may be, for example 1 micron to 3 microns thick over the PO layer 122 away from the recesses 124 .
- the layer of protective material 138 is not patterned through a process using a photolithographic operation, advantageously reducing fabrication cost and complexity of the microelectronic device 100 .
- a CMP process 142 removes the layer of protective material 138 over the PO layer 122 while leaving a portion of the protective material 138 in the recesses 124 .
- the CMP process 142 may use a slurry which includes both abrasive particles, such as silica or ceria, and corrosive chemicals.
- the slurry may be acidic with a pH value of 2 to 5, for example.
- the slurry may be caustic with a pH value of 9 to 12, for example.
- FIG. 1D depicts the CMP process 142 partway to completion.
- the CMP process 142 removes the layer of protective material 138 and the metal liner 132 from over the PO layer 122 outside the recesses 124 , while leaving the metal liner 132 and at least a portion of the protective material 138 in the recesses 124 .
- the CMP process 142 may be timed or endpointed.
- the CMP process 142 may possibly alter the chemicals or abrasives in the slurry after removing the layer of protective material 138 to obtain a desired selectivity in removing the metal liner 132 from over the PO layer 122 .
- the protective material 138 in the recesses 124 advantageously protects the metal liner 132 from both the abrasive particles and the corrosive chemicals in the slurry of the CMP process 142 , allowing more process latitude for an aggressive the CMP process 142 and thus providing a lower cost for the CMP process 142 .
- FIG. 1E depicts the CMP process 142 at completion.
- the recesses 124 may have widths 126 of 50 microns to 150 microns, and depths 128 of 2 microns to 4 microns.
- the metal liner 132 in the recesses 124 is protected from the CMP slurry in the instant example, whereas metal liners in recesses with these dimensions without the protective material have demonstrated degradation from the CMP slurry.
- the protective material 138 is removed from the recesses 124 .
- the protective material 138 may be removed by an ash process 144 using oxygen radicals.
- the ash process 144 may be followed by a wet clean to remove any residue.
- the metal liner 132 remains in the recesses 124 .
- Other methods for removing the protective material 138 from the recesses 124 are within the scope of the instant example.
- FIG. 1G depicts the microelectronic device 100 after the protective material 138 of FIG. 1F has been removed.
- the metal liner 132 in the recesses 124 may be advantageously free of cracks, corrosion and scratches as a result of being protected during the CMP process of FIG. 1D and FIG. 1E by the protective material 138 .
- Wire bonds or bump bonds may be formed on the metal liner 132 in the recesses 124 .
- FIG. 2A through FIG. 2I are cross sections of another microelectronic device depicted in successive stages of an example formation sequence.
- the microelectronic device 200 includes a substrate 202 and an interconnect region 204 formed over the substrate 202 .
- An active component 206 depicted in FIG. 2A as an MOS transistor, is formed in the substrate 202 .
- the interconnect region 204 includes layer of dielectric material 208 , with contacts 210 , one or more levels of metal lines 212 , one or more levels of vias 214 and bond pads 216 , formed in the interconnect region 204 .
- the bond pads 216 are electrically coupled to the active component 206 and other active components, if present, in the microelectronic device 200 , through the contacts 210 , metal lines 212 and vias 214 .
- the microelectronic device 200 may optionally include dummy bond pads 246 which are formed concurrently with the bond pads 216 and are disposed so as to provide a more uniform distribution of the combined bond pads 216 and dummy bond pads 246 , which may advantageously improve uniformity and process latitude of processes used to form the bond pads 216 , and subsequent metal liners on the bond pads 216 .
- the dummy bond pads 246 may optionally be electrically coupled to the substrate 202 through some of the contacts 210 , metal lines 212 and vias 214 .
- the bond pads 216 are formed by an etch-defined process, so that top surfaces 218 of the bond pads 216 are higher than a top surface 220 of the dielectric material 208 .
- a PO layer 222 comprising a first PO sub-layer 248 and a second PO sub-layer 250 , is formed over the top surfaces 218 of the bond pads 216 and the top surface 220 of the dielectric material 208 .
- the first PO sub-layer 248 includes one or more layers of inorganic dielectric material, such as silicon dioxide, silicon nitride and/or silicon oxynitride.
- the second PO sub-layer 250 is formed over the first PO sub-layer 248 .
- the second PO sub-layer 250 includes organic dielectric material such as polyimide.
- the PO layer 222 is patterned to have recesses 224 which expose portions of the top surfaces 218 of the bond pads 216 and the dummy bond pads 246 .
- a top surface 230 of the PO layer 222 is not planar over the microelectronic device 200 outside of the recesses 224 .
- a metal liner 232 is formed over the PO layer 222 , extending into the recesses 224 and onto the bond pads 216 and dummy bond pads 246 .
- the metal liner 232 on the top surface 218 of the bond pads 216 and dummy bond pads 246 in the recesses 224 is below the top surface 230 of the PO layer 222 adjacent to the recesses 224 .
- the metal liner 232 may be a single metal layer or layer stack including an adhesion layer and a bond layer.
- the metal liner 232 may include, for example, the metals listed in reference to FIG. 1A .
- the metal liner 232 may be 100 nanometers to 3 microns thick, advantageously providing low process cost for the metal liner 232 formation compared to thicker metal liners.
- the metal liner 232 may be formed by any combination of sputtering, evaporation, electroplating, ALD, reactive sputtering, MOCVD or other thin film formation method.
- a first sub-layer 252 of a layer of protective material 238 is formed over the metal liner 232 .
- the first sub-layer 252 may be an organic polymer material, mixed with a solvent.
- the first sub-layer 252 may be applied by a first spray process 254 ; the first sub-layer 252 extends into the recesses 224 and onto the bond pads 216 and the dummy bond pads 246 .
- Spray application of the first sub-layer 252 may advantageously provide more uniform coverage for a large or irregularly shaped substrate 202 compared to spin coating.
- the first sub-layer 252 may use material and equipment which are used in other processes in the fabrication sequence for the microelectronic device 200 , accruing the advantage discussed in reference to FIG. 1A .
- the first sub-layer 252 of the layer of protective material 238 is heated to 100° C. to 200° C. as part of a bake process to remove solvent and to provide a desired CMP removal rate.
- the first sub-layer 252 may be heated by applying heat 240 to the substrate 202 from a hot plate or oven chamber.
- the first sub-layer 252 is continuous over the metal liner 232 after the bake process is completed.
- the first sub-layer 252 may be, for example 1 micron to 2 microns thick over the PO layer 222 away from the recesses 224 .
- a second sub-layer 256 of the layer of protective material 238 is formed over the first sub-layer 252 .
- the second sub-layer 256 may be an organic polymer material that is the same as the first sub-layer 252 .
- the second sub-layer 256 may use a different material from the first sub-layer 252 .
- the second sub-layer 256 may also be dispensed by a second spray process 258 ; the second sub-layer 256 covers the first sub-layer 252 in the recesses 224 .
- the first sub-layer 252 and the second sub-layer 256 of the layer of protective material 238 are heated to 100° C. to 200° C. as part of a bake process to remove solvent and to provide a desired CMP removal rate.
- the first sub-layer 252 and the second sub-layer 256 may be heated by applying infrared radiation 260 from a heat lamp.
- the first sub-layer 252 and the second sub-layer 256 are both continuous over the metal liner 232 after the bake process is completed.
- the layer of protective material 238 may be, for example 2 micron to 4 microns thick over the PO layer 222 away from the recesses 224 .
- the second sub-layer 256 and first sub-layer 252 combined may advantageously provide more protection for the metal liner 232 in the recesses 224 during a subsequent CMP process than a single layer alone.
- an etchback process 262 removes a portion of the layer of protective material 238 across the microelectronic device 200 .
- the etchback process 262 may include, for example, an RIE process using oxygen radicals.
- a substantially uniform amount of the layer of protective material 238 may be removed across the microelectronic device 200 , advantageously reducing an amount of the layer of protective material 238 to be removed in a subsequent CMP process.
- the etchback process 262 may not expose the metal liner 232 .
- a CMP process 242 removes the layer of protective material 238 , which in the instant example comprise the first sub-layer 252 and the second sub-layer 256 , and the metal liner 232 from over the PO layer 222 while leaving a portion of the second sub-layer 256 , and possibly a portion of the first sub-layer 252 , in the recesses 224 .
- the CMP process 242 may use a slurry which includes both abrasive particles, such as silica or ceria, and corrosive chemicals, as described in reference to FIG. 1D .
- the dummy bond pads 246 may advantageously improve uniformity of the CMP process 242 .
- FIG. 2F depicts the CMP process 242 partway to completion.
- the CMP process 242 removes the first sub-layer 252 and the second sub-layer 256 of the layer of protective material 238 and the metal liner 232 from over the PO layer 222 outside the recesses 224 , while leaving the metal liner 232 and at least a portion of the first sub-layer 252 in the recesses 224 .
- the CMP process 242 may also remove a portion of the PO layer 222 , for example a portion of the second PO sub-layer 250 , immediately under the metal liner 232 , if the original top surface 230 of FIG. 2D of the PO layer 222 outside the recesses 224 is not planar.
- Forming the second PO sub-layer 250 of an organic material such as polyimide with a high CMP removal rate compared to the inorganic dielectric material in the first PO sub-layer 248 advantageously facilitates removal of all of the metal liner 232 outside of the recesses 224 .
- the protective material 238 in the recesses 224 advantageously protects the metal liner 232 from both the abrasive particles and the corrosive chemicals in the slurry of the CMP process 242 , allowing more process latitude for an aggressive CMP process 242 and thus providing a lower cost for the CMP process 242 .
- FIG. 2G depicts the CMP process 242 at completion.
- the protective material 238 is removed from the recesses 224 .
- the protective material 238 is removed by a wet dissolution process 264 .
- the wet dissolution process 264 may use an organic solvent such as propylene glycol monomethyl ether acetate (PGMEA).
- PMEA propylene glycol monomethyl ether acetate
- the wet dissolution process 264 may use an aqueous solution of a weak acid or a weak base.
- the metal liner 232 remains in the recesses 224 .
- Other methods for removing the protective material 238 from the recesses 224 are within the scope of the instant example.
- protective material 238 comprising positive tone photoresist may be removed by a blanket exposure followed by a develop process, and a subsequent descum ash process to remove residue.
- FIG. 2I depicts the microelectronic device 200 after the protective material 238 of FIG. 2H has been removed.
- the metal liner 232 in the recesses 224 may be advantageously free of cracks, corrosion and scratches as a result of being protected during the CMP process of FIG. 2F and FIG. 2G by the protective material 238 .
- Wire bonds or bump bonds may be formed on the metal liner 232 in the recesses 224 .
- FIG. 3A through FIG. 3C are cross sections of an alternate microelectronic device depicted in successive stages of an example formation sequence.
- the microelectronic device 300 may be an integrated circuit, a discrete semiconductor component, a microelectronic mechanical system (MEMS) device, an optoelectronic device or a microelectronic fluidic device.
- the microelectronic device 300 includes a substrate 302 , which may include one or more layers of semiconductor, dielectric material or metals.
- the substrate 302 may contain electrical components, optical components, micromechanical components, and/or fluid microchannels.
- Recesses 324 are formed in the substrate 302 extending from a top surface 320 of the substrate 302 .
- the recesses 324 may not necessarily have equal widths 326 , depths 328 or profiles 366 .
- the widths 326 may range, for example, from 1 micron to 200 microns.
- the depths 328 may range, for example, from 0.5 microns to 10 microns.
- the profiles 366 may be, for example, vertical, sloped, or curved.
- the recesses 324 may be formed, for example, by etching into the substrate 302 . Other methods of forming the recesses 324 are within the scope of the instant example.
- a liner layer 332 is formed over the top surface 320 of the substrate 302 , extending into the recesses 324 .
- the liner layer 332 may be one or more layers of metal, semiconductor or dielectric material.
- the liner layer 332 may be formed, for example, by any combination of sputtering, evaporation, electroplating, ALD, reactive sputtering, MOCVD, or vapor phase transfer. In the instant example, the liner layer 332 does not fill the recesses 324 .
- a layer of protective material 338 is formed over the liner layer 332 , covering the liner layer 332 in the recesses 324 .
- the layer of protective material 338 may include one or more layers of material, such as photoresist, resin, or polymer, possibly mixed with a solvent to obtain a desired thickness.
- the layer of protective material 338 may be formed, for example, by spin coating, spray or vapor phase transfer.
- the layer of protective material 338 may be baked, cured or otherwise treated to remove solvent and obtain a desired CMP removal rate.
- the layer of protective material 338 is not patterned through a process using a photolithographic operation, advantageously reducing fabrication cost and complexity of the microelectronic device 300 .
- a CMP process 342 removes the layer of protective material 338 and the liner layer 332 from over the top surface 320 of the substrate 302 while leaving a portion of the layer of protective material 338 in the recesses 324 .
- the protective material 338 in the recesses 324 advantageously protects the liner layer 332 from the slurry of the CMP process 342 .
- the layer of protective material 338 may have a higher CMP removal rate than the liner layer 332 , which may advantageously provide a higher process latitude for the CMP process 342 .
- the CMP process 342 may be timed or endpointed.
- the protective material 338 of FIG. 3B is removed from the recesses 324 , leaving the liner layer 332 in the recesses 324 . Additional layers may be formed over the liner layer 332 and the top surface 320 of the substrate 302 to continue formation of the microelectronic device 300 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
An electronic device is formed by providing a substrate having a recess at a top surface. A layer of an organic protective material is formed over the substrate, with the organic protective material extending into the recess. A polishing process is performed on the layer of protective material. The polishing process may remove a portion of an underlying metal layer over the top surface while protecting the underlying metal layer within the recess.
Description
- Under 35 U.S.C. § 120, this continuation application claims the benefit of and priority to U.S. patent application Ser. No. 14/818,275, filed Aug. 4, 2015, now issued as U.S. Pat. No. 9,604,338, the entirety of which is hereby incorporated herein by reference. This application is further related to U.S. patent application Ser. No. 15/434,406, a divisional of Ser. No. 14/818,275, which has been allowed and is incorporated herein by reference in its entirety.
- This invention relates to the field of microelectronic devices. More particularly, this invention relates to fabrication methods of microelectronic devices.
- Some integrated circuits have a protective overcoat (PO) layer over a top metallization layer containing bond pads, with openings in the PO layer exposing the bond pads. The integrated circuits are fabricated by forming a metal liner, suitable for wire bonding, over the PO layer, extending into the PO layer openings and onto the exposed bond pads. The metal liner over the top surface of the PO layer is subsequently removed by a chemical mechanical polish (CMP) process, leaving the metal liner on the bond pads. The CMP process uses a slurry with abrasive particles and corrosive chemicals to remove the metal liner; the abrasive particles and corrosive chemicals attack the metal liner on the bond pads, causing corrosion of the bond pads and reliability problems for the integrated circuit.
- Increasing the thickness of the metal liner increases the cost and complexity of the deposition process and the CMP process, and has not demonstrated desired reduction of damage to the metal liner from the CMP slurry. Adding additional pattern steps or plating processes to protect the metal liner also undesirably increase the fabrication cost and complexity. Using thicker top metal increases the difficulty of patterning and limits the minimum features and line separations.
- The following presents a simplified summary in order to provide a basic understanding of one or more aspects of the invention. This summary is not an extensive overview of the invention, and is neither intended to identify key or critical elements of the invention, nor to delineate the scope thereof. Rather, the primary purpose of the summary is to present some concepts of the invention in a simplified form as a prelude to a more detailed description that is presented later.
- A microelectronic device is formed by forming a PO layer over an interconnect region with a bond pad so that the PO layer has an opening which forms a recess; the bond pad being exposed in the recess. A metal liner is formed over the PO layer, extending into the recess and onto the bond pad. A protective layer is formed over the metal liner, extending into the recess. A CMP process removes the protective layer and the metal liner from over the top surface of the PO layer, leaving the protective layer and the metal liner in the recess. The protective layer is subsequently removed from the recess, leaving the metal liner in the recess over the bond pad.
- A microelectronic device is formed by providing a substrate having a recess at a top surface, and a liner layer formed over the top surface of the substrate, extending into the recess. A protective layer is formed over the liner layer, extending into the recess. A CMP process removes the protective layer and the liner layer from over the top surface of the substrate, leaving the protective layer and the liner layer in the recess. The protective layer is subsequently removed from the recess, leaving the liner layer in the recess.
-
FIG. 1A throughFIG. 1G are cross sections of a microelectronic device depicted in successive stages of an example formation sequence. -
FIG. 2A throughFIG. 2I are cross sections of another microelectronic device depicted in successive stages of an example formation sequence. -
FIG. 3A throughFIG. 3C are cross sections of an alternate microelectronic device depicted in successive stages of an example formation sequence. - The present invention is described with reference to the attached figures. The figures are not drawn to scale and they are provided merely to illustrate the invention. Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide an understanding of the invention. One skilled in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operations are not shown in detail to avoid obscuring the invention. The present invention is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present invention.
-
FIG. 1A throughFIG. 1G are cross sections of a microelectronic device depicted in successive stages of an example formation sequence. Referring toFIG. 1A , themicroelectronic device 100 includes asubstrate 102 and aninterconnect region 104 formed over thesubstrate 102.Active components 106, depicted inFIG. 1A as metal oxide semiconductor (MOS) transistors, are formed in thesubstrate 102. Theinterconnect region 104 includesdielectric material 108 such as layers of silicon dioxide-based materials, possibly with silicon nitride layers, silicon carbide nitride, silicon oxynitride or other dielectric layers providing etch stops and cap layers.Contacts 110,metal lines 112,vias 114 andbond pads 116 are formed in theinterconnect region 104. Thecontacts 110 may be formed by etching contact holes in a pre-metal dielectric (PMD) layer of thedielectric material 108 down to thesubstrate 102, sputtering a layer of titanium on the PMD layer and in the contact holes followed by forming a layer of titanium nitride by atomic layer deposition (ALD). Tungsten is formed on the titanium nitride layer, filling the contact hole, by a metal organic chemical vapor deposition (MOCVD) process. The tungsten, titanium nitride and titanium are removed from a top surface of the PMD layer by a CMP process and/or an etchback process. Other methods of forming thecontacts 110 are within the scope of the instant example. Themetal lines 112 may be formed with a single damascene copper process by forming a trench mask to expose areas for themetal lines 112, etching interconnect trenches in an intra-metal dielectric (IMD) layer of thedielectric material 108 to expose tops of thecontacts 110. A liner of tantalum, tantalum nitride, or other suitable metal is formed over the ILD layer and in the interconnect trenches, followed by a layer of sputtered copper to provide an electroplating seed layer. Copper is electroplated on the seed layer, filling the interconnect trenches. The copper and the liner is removed from over a top surface of the ILD layer by a copper CMP process. Alternatively, themetal lines 112 may be formed with an etch-defined process by depositing a metal layer stack of an adhesion layer, an aluminum layer and optionally a cap layer on the PMD layer and the tops of thecontacts 110. An interconnect etch mask is formed over the metal layer stack so as to cover areas for themetal lines 112 and the metal layer stack exposed by the interconnect etch mask is removed by a reactive ion etch (RIE) process using chlorine radicals. Dielectric material is subsequently formed between themetal lines 112 to provide the IMD layer. Other methods of forming themetal lines 112 are within the scope of the instant example. Thevias 114 may be formed in an inter-level dielectric (ILD) layer of thedielectric material 108 by a process similar to the contact process described herein, or may be formed by a single damascene copper process or a dual damascene copper process, similar to the metal line process described herein. Other methods of forming the vias are within the scope of the instant example. Thecontacts 110,metal lines 112, vias 114 andbond pads 116 provide electrical connections to theactive components 106 and other components, if present, in themicroelectronic device 100. Theinterconnect region 104 may possibly include additional levels of themetal lines 112 and thevias 114. - In the instant example, the
bond pads 116 are formed by a single damascene copper process, so thattop surfaces 118 of thebond pads 116 are substantially coplanar with atop surface 120 of thedielectric material 108. APO layer 122 is formed over thetop surfaces 118 of thebond pads 116 and thetop surface 120 of thedielectric material 108. ThePO layer 122 includes one or more layers of dielectric material, such as silicon dioxide, silicon nitride, silicon oxynitride, polyimide and/or other dielectric material. ThePO layer 122 is patterned to haverecesses 124 which expose portions of thetop surfaces 118 of thebond pads 116. Therecesses 124 may havewidths 126 of, for example, 50 microns to 150 microns, to accommodate typical wire bonds to thebond pads 116.Depths 128 of therecesses 124, which corresponds to a thickness of thePO layer 122, may be, for example, 2 microns to 4 microns. In the instant example, atop surface 130 of thePO layer 122 is substantially planar over themicroelectronic device 100 outside of therecesses 124. - A
metal liner 132 is formed over thePO layer 122, extending into therecesses 124 and onto the exposed portions of thetop surfaces 118 of thebond pads 116. Themetal liner 132 on thetop surface 118 of thebond pads 116 in therecesses 124 is below thetop surface 130 of thePO layer 122 adjacent to therecesses 124. Themetal liner 132 may be a layer stack including anadhesion layer 134 contacting thebond pads 116 and abond layer 136 providing a bonding surface. Theadhesion layer 134 may include, for example, titanium, titanium nitride, titanium tungsten, tantalum, tantalum nitride, chromium or nickel. Thebond layer 136 may include, for example, aluminum, palladium, ruthenium, platinum, or gold. Themetal liner 132 may optionally include one or more metal layers, such as palladium, aluminum or nickel, between theadhesion layer 134 and thebond layer 136. Themetal liner 132 may be 100 nanometers to 3 microns thick, advantageously providing low process cost for themetal liner 132 formation compared to thicker metal liners. The layers of themetal liner 132 may be formed by any combination of sputtering, evaporation, electroplating, electroless plating, ALD, reactive sputtering, MOCVD or other thin film formation method. - A layer of
protective material 138 is formed over themetal liner 132. In the instant example, the layer ofprotective material 138 may be an organic polymer material such as photoresist or novolac resin, mixed with a solvent. The layer ofprotective material 138 may be dispensed in a thick layer which fills therecesses 124, as part of a spin coat process. The layer ofprotective material 138 may be a material which is used in other processes in the fabrication sequence for themicroelectronic device 100, and the method of forming the layer ofprotective material 138 may use equipment which is used in other processes in the fabrication sequence for themicroelectronic device 100, thus advantageously eliminating a need to install dedicated equipment and provide dedicated material to form the layer ofprotective material 138. - Referring to
FIG. 1B , thesubstrate 102 is rotated at a spin speed of 10 revolutions per minute (rpm) to 100 rpm as part of the spin coat process, to distribute the layer ofprotective material 138. Subsequently thesubstrate 102 is rotated at a higher spin speed as part of the spin coat process, for example 500 rpm to 2,000 rpm, to obtain a desired thickness of the layer ofprotective material 138, which is a few microns. A portion of the solvent evaporates during the spin process, so that the layer ofprotective material 138 may dip in therecesses 124. - Referring to
FIG. 1C , the layer ofprotective material 138 is heated to 100° C. to 200° C. as part of a bake process to remove more solvent and to provide a desired CMP removal rate. The layer ofprotective material 138 may be heated by applyingheat 140 to thesubstrate 102 from a hot plate or oven chamber. The layer ofprotective material 138 is continuous over themetal liner 132 after the bake process is completed. The layer ofprotective material 138 may be, for example 1 micron to 3 microns thick over thePO layer 122 away from therecesses 124. In the instant example, the layer ofprotective material 138 is not patterned through a process using a photolithographic operation, advantageously reducing fabrication cost and complexity of themicroelectronic device 100. - Referring to
FIG. 1D , aCMP process 142 removes the layer ofprotective material 138 over thePO layer 122 while leaving a portion of theprotective material 138 in therecesses 124. TheCMP process 142 may use a slurry which includes both abrasive particles, such as silica or ceria, and corrosive chemicals. The slurry may be acidic with a pH value of 2 to 5, for example. Alternatively, the slurry may be caustic with a pH value of 9 to 12, for example.FIG. 1D depicts theCMP process 142 partway to completion. - Referring to
FIG. 1E , theCMP process 142 removes the layer ofprotective material 138 and themetal liner 132 from over thePO layer 122 outside therecesses 124, while leaving themetal liner 132 and at least a portion of theprotective material 138 in therecesses 124. TheCMP process 142 may be timed or endpointed. TheCMP process 142 may possibly alter the chemicals or abrasives in the slurry after removing the layer ofprotective material 138 to obtain a desired selectivity in removing themetal liner 132 from over thePO layer 122. Theprotective material 138 in therecesses 124 advantageously protects themetal liner 132 from both the abrasive particles and the corrosive chemicals in the slurry of theCMP process 142, allowing more process latitude for an aggressive theCMP process 142 and thus providing a lower cost for theCMP process 142.FIG. 1E depicts theCMP process 142 at completion. As disclosed in reference toFIG. 1A , therecesses 124 may havewidths 126 of 50 microns to 150 microns, anddepths 128 of 2 microns to 4 microns. Themetal liner 132 in therecesses 124 is protected from the CMP slurry in the instant example, whereas metal liners in recesses with these dimensions without the protective material have demonstrated degradation from the CMP slurry. - Referring to
FIG. 1F , theprotective material 138 is removed from therecesses 124. In the instant example, theprotective material 138 may be removed by anash process 144 using oxygen radicals. Theash process 144 may be followed by a wet clean to remove any residue. Themetal liner 132 remains in therecesses 124. Other methods for removing theprotective material 138 from therecesses 124 are within the scope of the instant example. -
FIG. 1G depicts themicroelectronic device 100 after theprotective material 138 ofFIG. 1F has been removed. Themetal liner 132 in therecesses 124 may be advantageously free of cracks, corrosion and scratches as a result of being protected during the CMP process ofFIG. 1D andFIG. 1E by theprotective material 138. Wire bonds or bump bonds may be formed on themetal liner 132 in therecesses 124. -
FIG. 2A throughFIG. 2I are cross sections of another microelectronic device depicted in successive stages of an example formation sequence. Referring toFIG. 2A , themicroelectronic device 200 includes asubstrate 202 and aninterconnect region 204 formed over thesubstrate 202. Anactive component 206, depicted inFIG. 2A as an MOS transistor, is formed in thesubstrate 202. Theinterconnect region 204 includes layer ofdielectric material 208, withcontacts 210, one or more levels ofmetal lines 212, one or more levels ofvias 214 andbond pads 216, formed in theinterconnect region 204. Thebond pads 216 are electrically coupled to theactive component 206 and other active components, if present, in themicroelectronic device 200, through thecontacts 210,metal lines 212 andvias 214. Themicroelectronic device 200 may optionally includedummy bond pads 246 which are formed concurrently with thebond pads 216 and are disposed so as to provide a more uniform distribution of the combinedbond pads 216 anddummy bond pads 246, which may advantageously improve uniformity and process latitude of processes used to form thebond pads 216, and subsequent metal liners on thebond pads 216. Thedummy bond pads 246 may optionally be electrically coupled to thesubstrate 202 through some of thecontacts 210,metal lines 212 andvias 214. - In the instant example, the
bond pads 216 are formed by an etch-defined process, so thattop surfaces 218 of thebond pads 216 are higher than atop surface 220 of thedielectric material 208. APO layer 222, comprising afirst PO sub-layer 248 and asecond PO sub-layer 250, is formed over thetop surfaces 218 of thebond pads 216 and thetop surface 220 of thedielectric material 208. Thefirst PO sub-layer 248 includes one or more layers of inorganic dielectric material, such as silicon dioxide, silicon nitride and/or silicon oxynitride. Thesecond PO sub-layer 250 is formed over thefirst PO sub-layer 248. Thesecond PO sub-layer 250 includes organic dielectric material such as polyimide. ThePO layer 222 is patterned to haverecesses 224 which expose portions of thetop surfaces 218 of thebond pads 216 and thedummy bond pads 246. In the instant example, atop surface 230 of thePO layer 222 is not planar over themicroelectronic device 200 outside of therecesses 224. - A
metal liner 232 is formed over thePO layer 222, extending into therecesses 224 and onto thebond pads 216 anddummy bond pads 246. Themetal liner 232 on thetop surface 218 of thebond pads 216 anddummy bond pads 246 in therecesses 224 is below thetop surface 230 of thePO layer 222 adjacent to therecesses 224. Themetal liner 232 may be a single metal layer or layer stack including an adhesion layer and a bond layer. Themetal liner 232 may include, for example, the metals listed in reference toFIG. 1A . Themetal liner 232 may be 100 nanometers to 3 microns thick, advantageously providing low process cost for themetal liner 232 formation compared to thicker metal liners. Themetal liner 232 may be formed by any combination of sputtering, evaporation, electroplating, ALD, reactive sputtering, MOCVD or other thin film formation method. - A
first sub-layer 252 of a layer ofprotective material 238 is formed over themetal liner 232. In the instant example, thefirst sub-layer 252 may be an organic polymer material, mixed with a solvent. Thefirst sub-layer 252 may be applied by afirst spray process 254; thefirst sub-layer 252 extends into therecesses 224 and onto thebond pads 216 and thedummy bond pads 246. Spray application of thefirst sub-layer 252 may advantageously provide more uniform coverage for a large or irregularly shapedsubstrate 202 compared to spin coating. Thefirst sub-layer 252 may use material and equipment which are used in other processes in the fabrication sequence for themicroelectronic device 200, accruing the advantage discussed in reference toFIG. 1A . - Referring to
FIG. 2B , thefirst sub-layer 252 of the layer ofprotective material 238 is heated to 100° C. to 200° C. as part of a bake process to remove solvent and to provide a desired CMP removal rate. Thefirst sub-layer 252 may be heated by applyingheat 240 to thesubstrate 202 from a hot plate or oven chamber. Thefirst sub-layer 252 is continuous over themetal liner 232 after the bake process is completed. Thefirst sub-layer 252 may be, for example 1 micron to 2 microns thick over thePO layer 222 away from therecesses 224. - Referring to
FIG. 2C , asecond sub-layer 256 of the layer ofprotective material 238 is formed over thefirst sub-layer 252. Thesecond sub-layer 256 may be an organic polymer material that is the same as thefirst sub-layer 252. Alternatively, thesecond sub-layer 256 may use a different material from thefirst sub-layer 252. Thesecond sub-layer 256 may also be dispensed by asecond spray process 258; thesecond sub-layer 256 covers thefirst sub-layer 252 in therecesses 224. - Referring to
FIG. 2D , thefirst sub-layer 252 and thesecond sub-layer 256 of the layer ofprotective material 238 are heated to 100° C. to 200° C. as part of a bake process to remove solvent and to provide a desired CMP removal rate. Thefirst sub-layer 252 and thesecond sub-layer 256 may be heated by applyinginfrared radiation 260 from a heat lamp. Thefirst sub-layer 252 and thesecond sub-layer 256 are both continuous over themetal liner 232 after the bake process is completed. The layer ofprotective material 238 may be, for example 2 micron to 4 microns thick over thePO layer 222 away from therecesses 224. Thesecond sub-layer 256 andfirst sub-layer 252 combined may advantageously provide more protection for themetal liner 232 in therecesses 224 during a subsequent CMP process than a single layer alone. - Referring to
FIG. 2E , anetchback process 262 removes a portion of the layer ofprotective material 238 across themicroelectronic device 200. Theetchback process 262 may include, for example, an RIE process using oxygen radicals. A substantially uniform amount of the layer ofprotective material 238 may be removed across themicroelectronic device 200, advantageously reducing an amount of the layer ofprotective material 238 to be removed in a subsequent CMP process. In the instant example, theetchback process 262 may not expose themetal liner 232. - Referring to
FIG. 2F aCMP process 242 removes the layer ofprotective material 238, which in the instant example comprise thefirst sub-layer 252 and thesecond sub-layer 256, and themetal liner 232 from over thePO layer 222 while leaving a portion of thesecond sub-layer 256, and possibly a portion of thefirst sub-layer 252, in therecesses 224. TheCMP process 242 may use a slurry which includes both abrasive particles, such as silica or ceria, and corrosive chemicals, as described in reference toFIG. 1D . Thedummy bond pads 246 may advantageously improve uniformity of theCMP process 242.FIG. 2F depicts theCMP process 242 partway to completion. - Referring to
FIG. 2G , theCMP process 242 removes thefirst sub-layer 252 and thesecond sub-layer 256 of the layer ofprotective material 238 and themetal liner 232 from over thePO layer 222 outside therecesses 224, while leaving themetal liner 232 and at least a portion of thefirst sub-layer 252 in therecesses 224. TheCMP process 242 may also remove a portion of thePO layer 222, for example a portion of thesecond PO sub-layer 250, immediately under themetal liner 232, if the originaltop surface 230 ofFIG. 2D of thePO layer 222 outside therecesses 224 is not planar. Forming thesecond PO sub-layer 250 of an organic material such as polyimide with a high CMP removal rate compared to the inorganic dielectric material in thefirst PO sub-layer 248 advantageously facilitates removal of all of themetal liner 232 outside of therecesses 224. Theprotective material 238 in therecesses 224 advantageously protects themetal liner 232 from both the abrasive particles and the corrosive chemicals in the slurry of theCMP process 242, allowing more process latitude for anaggressive CMP process 242 and thus providing a lower cost for theCMP process 242.FIG. 2G depicts theCMP process 242 at completion. - Referring to
FIG. 2H , theprotective material 238 is removed from therecesses 224. In the instant example, theprotective material 238 is removed by awet dissolution process 264. Thewet dissolution process 264 may use an organic solvent such as propylene glycol monomethyl ether acetate (PGMEA). Alternatively, thewet dissolution process 264 may use an aqueous solution of a weak acid or a weak base. Themetal liner 232 remains in therecesses 224. Other methods for removing theprotective material 238 from therecesses 224 are within the scope of the instant example. For example,protective material 238 comprising positive tone photoresist may be removed by a blanket exposure followed by a develop process, and a subsequent descum ash process to remove residue. -
FIG. 2I depicts themicroelectronic device 200 after theprotective material 238 ofFIG. 2H has been removed. Themetal liner 232 in therecesses 224 may be advantageously free of cracks, corrosion and scratches as a result of being protected during the CMP process ofFIG. 2F andFIG. 2G by theprotective material 238. Wire bonds or bump bonds may be formed on themetal liner 232 in therecesses 224. -
FIG. 3A throughFIG. 3C are cross sections of an alternate microelectronic device depicted in successive stages of an example formation sequence. Referring toFIG. 3A , themicroelectronic device 300 may be an integrated circuit, a discrete semiconductor component, a microelectronic mechanical system (MEMS) device, an optoelectronic device or a microelectronic fluidic device. Themicroelectronic device 300 includes asubstrate 302, which may include one or more layers of semiconductor, dielectric material or metals. Thesubstrate 302 may contain electrical components, optical components, micromechanical components, and/or fluid microchannels.Recesses 324 are formed in thesubstrate 302 extending from atop surface 320 of thesubstrate 302. Therecesses 324 may not necessarily haveequal widths 326,depths 328 or profiles 366. Thewidths 326 may range, for example, from 1 micron to 200 microns. Thedepths 328 may range, for example, from 0.5 microns to 10 microns. Theprofiles 366 may be, for example, vertical, sloped, or curved. Therecesses 324 may be formed, for example, by etching into thesubstrate 302. Other methods of forming therecesses 324 are within the scope of the instant example. - A
liner layer 332 is formed over thetop surface 320 of thesubstrate 302, extending into therecesses 324. Theliner layer 332 may be one or more layers of metal, semiconductor or dielectric material. Theliner layer 332 may be formed, for example, by any combination of sputtering, evaporation, electroplating, ALD, reactive sputtering, MOCVD, or vapor phase transfer. In the instant example, theliner layer 332 does not fill therecesses 324. - A layer of
protective material 338 is formed over theliner layer 332, covering theliner layer 332 in therecesses 324. The layer ofprotective material 338 may include one or more layers of material, such as photoresist, resin, or polymer, possibly mixed with a solvent to obtain a desired thickness. The layer ofprotective material 338 may be formed, for example, by spin coating, spray or vapor phase transfer. The layer ofprotective material 338 may be baked, cured or otherwise treated to remove solvent and obtain a desired CMP removal rate. In the instant example, the layer ofprotective material 338 is not patterned through a process using a photolithographic operation, advantageously reducing fabrication cost and complexity of themicroelectronic device 300. - Referring to
FIG. 3B , aCMP process 342 removes the layer ofprotective material 338 and theliner layer 332 from over thetop surface 320 of thesubstrate 302 while leaving a portion of the layer ofprotective material 338 in therecesses 324. Theprotective material 338 in therecesses 324 advantageously protects theliner layer 332 from the slurry of theCMP process 342. The layer ofprotective material 338 may have a higher CMP removal rate than theliner layer 332, which may advantageously provide a higher process latitude for theCMP process 342. TheCMP process 342 may be timed or endpointed. - Referring to
FIG. 3C , theprotective material 338 ofFIG. 3B is removed from therecesses 324, leaving theliner layer 332 in therecesses 324. Additional layers may be formed over theliner layer 332 and thetop surface 320 of thesubstrate 302 to continue formation of themicroelectronic device 300. - While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only and not limitation. Numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit or scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments. Rather, the scope of the invention should be defined in accordance with the following claims and their equivalents.
Claims (16)
1. A method of forming an electronic device, comprising:
providing a substrate having a recess in a top surface of the substrate;
forming a layer of an organic protective material over the substrate, the layer of organic protective material extending into the recess and covering the top surface;
performing a polishing process on the layer of protective material.
2. The method of claim 1 , wherein the layer of protective material comprises photoresist.
3. The method of claim 1 , wherein the layer of protective material comprises a resin.
4. The method of claim 1 , wherein the layer of protective material comprises polymer.
5. The method of claim 1 , wherein the layer of protective material comprises a material mixed with a solvent.
6. The method of claim 5 , wherein the layer of protective material is treated to remove solvent.
7. The method of claim 1 , wherein forming a layer of an organic protective material includes spin-coating the organic protective material onto the top surface.
8. The method of claim 1 , wherein the top surface of the substrate comprises a dielectric material.
9. The method of claim 1 , wherein the polishing processes comprises chemical-mechanical polishing.
10. The method of claim 1 , wherein a metal layer is located over the substrate surface and within the recess prior to forming a layer of an organic protective material over the substrate, and the polishing process removes the metal layer from over the top surface and leaves a remaining portion of the metal layer within the recess.
11. The method of claim 10 , wherein the metal layer comprises a first metal sublayer and a different second metal sublayer.
12. The method of claim 10 , wherein the remaining portion is conductively coupled to an underlying electronic circuit.
13. The method of claim 10 , wherein the protective material has a higher removal rate than does the metal layer for the polishing process.
14. The method of claim 10 , wherein the remaining portion is located directly on a copper pad.
15. The method of claim 14 , wherein the copper pad is a dummy bond pad.
16. A method of forming an electronic device, comprising:
providing a substrate having a recess in a top surface of the substrate;
forming a layer of an organic protective material over the substrate, the layer of organic protective material extending into the recess and covering the top surface;
performing a polishing process on the layer of protective material, thereby removing a portion of an underlying metal layer located over the top surface while protecting the underlying metal layer within the recess.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/121,666 US20190006299A1 (en) | 2015-08-04 | 2018-09-05 | Method to improve cmp scratch resistance for non planar surfaces |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/818,275 US9604338B2 (en) | 2015-08-04 | 2015-08-04 | Method to improve CMP scratch resistance for non planar surfaces |
US15/434,406 US10090264B2 (en) | 2015-08-04 | 2017-02-16 | Method to improve CMP scratch resistance for non planar surfaces |
US16/121,666 US20190006299A1 (en) | 2015-08-04 | 2018-09-05 | Method to improve cmp scratch resistance for non planar surfaces |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/434,406 Continuation US10090264B2 (en) | 2015-08-04 | 2017-02-16 | Method to improve CMP scratch resistance for non planar surfaces |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190006299A1 true US20190006299A1 (en) | 2019-01-03 |
Family
ID=57943728
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/818,275 Active US9604338B2 (en) | 2015-08-04 | 2015-08-04 | Method to improve CMP scratch resistance for non planar surfaces |
US15/434,406 Active US10090264B2 (en) | 2015-08-04 | 2017-02-16 | Method to improve CMP scratch resistance for non planar surfaces |
US16/121,666 Abandoned US20190006299A1 (en) | 2015-08-04 | 2018-09-05 | Method to improve cmp scratch resistance for non planar surfaces |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/818,275 Active US9604338B2 (en) | 2015-08-04 | 2015-08-04 | Method to improve CMP scratch resistance for non planar surfaces |
US15/434,406 Active US10090264B2 (en) | 2015-08-04 | 2017-02-16 | Method to improve CMP scratch resistance for non planar surfaces |
Country Status (4)
Country | Link |
---|---|
US (3) | US9604338B2 (en) |
JP (1) | JP2018523312A (en) |
CN (1) | CN107851554A (en) |
WO (1) | WO2017024186A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9604338B2 (en) * | 2015-08-04 | 2017-03-28 | Texas Instruments Incorporated | Method to improve CMP scratch resistance for non planar surfaces |
US10319601B2 (en) * | 2017-03-23 | 2019-06-11 | Applied Materials, Inc. | Slurry for polishing of integrated circuit packaging |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030203633A1 (en) * | 2002-04-25 | 2003-10-30 | Nishant Sinha | Methods for forming capacitor structures; and methods for removal of organic materials |
US20060082000A1 (en) * | 2004-03-18 | 2006-04-20 | Lei Li | Structure and method for contact pads having a recessed bondable metal plug over of copper-metallized integrated circuits |
US9604338B2 (en) * | 2015-08-04 | 2017-03-28 | Texas Instruments Incorporated | Method to improve CMP scratch resistance for non planar surfaces |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0712040B2 (en) * | 1985-04-09 | 1995-02-08 | 富士ゼロックス株式会社 | Method for manufacturing semiconductor device |
US4687552A (en) | 1985-12-02 | 1987-08-18 | Tektronix, Inc. | Rhodium capped gold IC metallization |
JPH11135613A (en) * | 1997-10-29 | 1999-05-21 | Hitachi Ltd | Manufacture of semiconductor device |
US6251528B1 (en) * | 1998-01-09 | 2001-06-26 | International Business Machines Corporation | Method to plate C4 to copper stud |
TW392325B (en) * | 1998-05-01 | 2000-06-01 | United Microelectronics Corp | Structure of metallization and process thereof |
SG73683A1 (en) * | 1998-11-24 | 2000-06-20 | Texas Instruments Inc | Stabilized slurry compositions |
JP2001196413A (en) * | 2000-01-12 | 2001-07-19 | Mitsubishi Electric Corp | Semiconductor device, method of manufacturing the same, cmp device and method |
JP4392974B2 (en) * | 2000-09-22 | 2010-01-06 | シャープ株式会社 | Manufacturing method of semiconductor device |
US6747353B2 (en) | 2000-11-27 | 2004-06-08 | Texas Instruments Incorporated | Barrier layer for copper metallization in integrated circuit fabrication |
JP2003037126A (en) * | 2001-07-24 | 2003-02-07 | Toshiba Corp | Semiconductor device and method for manufacturing the same |
TWI241626B (en) * | 2003-06-02 | 2005-10-11 | Toshiba Corp | Chemical mechanical polishing method of organic film and method of manufacturing semiconductor device |
JP4202826B2 (en) * | 2003-06-02 | 2008-12-24 | 株式会社東芝 | Chemical mechanical polishing method of organic film and manufacturing method of semiconductor device |
US7345350B2 (en) * | 2003-09-23 | 2008-03-18 | Micron Technology, Inc. | Process and integration scheme for fabricating conductive components, through-vias and semiconductor components including conductive through-wafer vias |
CN1998074A (en) * | 2004-06-17 | 2007-07-11 | 德克萨斯仪器股份有限公司 | Semiconductor assembly having substrate with electroplated contact pads |
WO2006050127A2 (en) | 2004-10-29 | 2006-05-11 | Flipchip International, Llc | Semiconductor device package with bump overlying a polymer layer |
JP2007227818A (en) * | 2006-02-27 | 2007-09-06 | Consortium For Advanced Semiconductor Materials & Related Technologies | Method of manufacturing semiconductor device |
JP2009123782A (en) * | 2007-11-12 | 2009-06-04 | Toshiba Corp | Method for manufacturing semiconductor device |
KR101116360B1 (en) * | 2010-06-04 | 2012-03-09 | 주식회사 하이닉스반도체 | Semiconductor device with buried bitline and method for manufacturing the same |
US10026706B2 (en) | 2010-11-11 | 2018-07-17 | Texas Instruments Incorporated | Adding cap to copper passivation flow for electroless plating |
US9018054B2 (en) * | 2013-03-15 | 2015-04-28 | Applied Materials, Inc. | Metal gate structures for field effect transistors and method of fabrication |
-
2015
- 2015-08-04 US US14/818,275 patent/US9604338B2/en active Active
-
2016
- 2016-08-04 CN CN201680045484.9A patent/CN107851554A/en active Pending
- 2016-08-04 WO PCT/US2016/045660 patent/WO2017024186A1/en active Application Filing
- 2016-08-04 JP JP2018506187A patent/JP2018523312A/en active Pending
-
2017
- 2017-02-16 US US15/434,406 patent/US10090264B2/en active Active
-
2018
- 2018-09-05 US US16/121,666 patent/US20190006299A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030203633A1 (en) * | 2002-04-25 | 2003-10-30 | Nishant Sinha | Methods for forming capacitor structures; and methods for removal of organic materials |
US20060082000A1 (en) * | 2004-03-18 | 2006-04-20 | Lei Li | Structure and method for contact pads having a recessed bondable metal plug over of copper-metallized integrated circuits |
US9604338B2 (en) * | 2015-08-04 | 2017-03-28 | Texas Instruments Incorporated | Method to improve CMP scratch resistance for non planar surfaces |
US10090264B2 (en) * | 2015-08-04 | 2018-10-02 | Texas Instruments Incorporated | Method to improve CMP scratch resistance for non planar surfaces |
Also Published As
Publication number | Publication date |
---|---|
US20170036317A1 (en) | 2017-02-09 |
US9604338B2 (en) | 2017-03-28 |
US10090264B2 (en) | 2018-10-02 |
US20170162526A1 (en) | 2017-06-08 |
WO2017024186A1 (en) | 2017-02-09 |
JP2018523312A (en) | 2018-08-16 |
CN107851554A (en) | 2018-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6071809A (en) | Methods for forming high-performing dual-damascene interconnect structures | |
US6071808A (en) | Method of passivating copper interconnects in a semiconductor | |
JP3501280B2 (en) | Manufacturing method of semiconductor device | |
US6143641A (en) | Structure and method for controlling copper diffusion and for utilizing low K materials for copper interconnects in integrated circuit structures | |
US6500750B1 (en) | Semiconductor device and method of formation | |
US5705028A (en) | Method of manufacturing a semiconductor device with flattened multi-layer wirings | |
US6100181A (en) | Low dielectric constant coating of conductive material in a damascene process for semiconductors | |
US20160218062A1 (en) | Thin film resistor integration in copper damascene metallization | |
KR20060055336A (en) | Inter-metal dielectric scheme for semiconductors | |
US6495448B1 (en) | Dual damascene process | |
US20030064582A1 (en) | Mask layer and interconnect structure for dual damascene semiconductor manufacturing | |
US20190006299A1 (en) | Method to improve cmp scratch resistance for non planar surfaces | |
US7300866B2 (en) | Method for fabricating metal line in a semiconductor | |
US20080157384A1 (en) | Alignment Key of Semiconductor Device and Method of Manufacturing the Same | |
US6803327B1 (en) | Cost effective polymide process to solve passivation extrusion or damage and SOG delminates | |
US7528059B2 (en) | Method for reducing polish-induced damage in a contact structure by forming a capping layer | |
WO2002054483A2 (en) | A dual damascene integration scheme using a bilayer interlevel dielectric | |
US7662711B2 (en) | Method of forming dual damascene pattern | |
US12107008B2 (en) | Maskless alignment scheme for BEOL memory array manufacturing | |
JP2002217284A (en) | Semiconductor device and manufacturing method thereof | |
KR100289672B1 (en) | Metallization of Self-arranged Unlanded Vias | |
KR100241521B1 (en) | Method for manufacturing semiconductor device | |
US20150170983A1 (en) | Probe pad design to reduce saw defects | |
KR100840475B1 (en) | Metallization method of semiconductor device | |
US6455413B1 (en) | Pre-fill CMP and electroplating method for integrated circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |