US20180294307A1 - Solid-state image sensing element and imaging system - Google Patents
Solid-state image sensing element and imaging system Download PDFInfo
- Publication number
- US20180294307A1 US20180294307A1 US16/005,507 US201816005507A US2018294307A1 US 20180294307 A1 US20180294307 A1 US 20180294307A1 US 201816005507 A US201816005507 A US 201816005507A US 2018294307 A1 US2018294307 A1 US 2018294307A1
- Authority
- US
- United States
- Prior art keywords
- pixel
- pixels
- photoelectric conversion
- conversion layer
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000003384 imaging method Methods 0.000 title claims description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 106
- 238000012545 processing Methods 0.000 claims description 22
- 238000000926 separation method Methods 0.000 claims description 19
- 239000004065 semiconductor Substances 0.000 claims description 18
- 230000003287 optical effect Effects 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 153
- 239000010408 film Substances 0.000 description 40
- 238000010586 diagram Methods 0.000 description 16
- 230000000903 blocking effect Effects 0.000 description 15
- 238000001514 detection method Methods 0.000 description 15
- 238000009825 accumulation Methods 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 229910016570 AlCu Inorganic materials 0.000 description 9
- 239000011229 interlayer Substances 0.000 description 9
- 239000002356 single layer Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 3
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910017115 AlSb Inorganic materials 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910017875 a-SiN Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- VBVAVBCYMYWNOU-UHFFFAOYSA-N coumarin 6 Chemical compound C1=CC=C2SC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 VBVAVBCYMYWNOU-UHFFFAOYSA-N 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical compound N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14609—Pixel-elements with integrated switching, control, storage or amplification elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1462—Coatings
- H01L27/14621—Colour filter arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1462—Coatings
- H01L27/14623—Optical shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14625—Optical elements or arrangements associated with the device
- H01L27/14627—Microlenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14625—Optical elements or arrangements associated with the device
- H01L27/14629—Reflectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1463—Pixel isolation structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14665—Imagers using a photoconductor layer
-
- H01L27/307—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/028—Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/09—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/095—Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/745—Circuitry for generating timing or clock signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/7795—Circuitry for generating timing or clock signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
-
- H04N5/3765—
-
- H04N5/378—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K39/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
- H10K39/30—Devices controlled by radiation
- H10K39/32—Organic image sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Definitions
- the present disclosure relates to a solid-state image sensing element in which a photoelectric conversion layer is formed above a substrate, and an imaging system.
- Solid-state image sensing elements each having a configuration in which a pixel is included, the pixel including a light receiving portion in which a photoelectric conversion layer is formed above a substrate.
- Japanese Patent Laid-Open No. 2014-67948 describes use of an organic photoelectric conversion layer as a photoelectric conversion layer.
- Japanese Patent Laid-Open No. 2014-67948 further describes that a pair of pixels for phase difference detection (hereinafter referred to as “phase-difference-detection-use pixels”) is provided in order to realize pupil division phase difference detection.
- the phase-difference-detection-use pixels have a light shielding film between a protection layer and a microlens provided above a photoelectric conversion layer, the light shielding film being used to shield a portion of incident light.
- phase-difference-detection-use pixels since only the phase-difference-detection-use pixels have a light shielding film, it is difficult to uniformly form layers above a photoelectric conversion film, such as a color filter layer and a microlens. As a result, there may be the case where the sensitivity of pixels becomes different from desired characteristics since the phase-difference-detection-use pixels differ from pixels for capturing images (hereinafter referred to as “imaging-use pixels”) in terms of film thickness of the color filter or shape of the microlens.
- the layers provided on a photoelectric conversion unit may be easily and uniformly formed.
- the present disclosure provides a solid-state image sensing element including a plurality of pixels arranged in two dimensions, each of the plurality of pixels including a photoelectric conversion unit including a pixel electrode, a photoelectric conversion layer provided above the pixel electrode, and a counter electrode provided so as to sandwich the photoelectric conversion layer between the counter electrode and the pixel electrode, and a microlens arranged above the photoelectric conversion unit.
- the plurality of pixels includes a first pixel and a plurality of second pixels, at least either the pixel electrodes of the plurality of second pixels are smaller than the pixel electrode of the first pixel or the counter electrodes of the plurality of second pixels are smaller than the counter electrode of the first pixel, and a configuration between the counter electrode and the microlens of the first pixel is the same as a configuration between the counter electrode and the microlens of each of the plurality of second pixels.
- FIG. 1 is a block diagram for illustrating an example of the configuration of a solid-state image sensing element.
- FIG. 2 is a diagram for illustrating an example of a plan-view configuration of a pixel array.
- FIG. 3 is a diagram for illustrating an example of a cross section configuration of the pixel array.
- FIG. 4 is an equivalent circuit diagram for illustrating an example of the configuration of a pixel.
- FIG. 5 is a potential diagram of a photoelectric conversion unit for describing a signal readout operation.
- FIG. 6 is a diagram for illustrating an example of a cross section configuration of the pixel array.
- FIG. 7 is a diagram for illustrating an example of a cross section configuration of the pixel array.
- FIG. 8 is a diagram for illustrating an example of a cross section configuration of the pixel array.
- FIG. 9 is a diagram for illustrating an example of a cross section configuration of the pixel array.
- FIG. 10 is a block diagram for illustrating an example of the configuration of an imaging system.
- FIG. 1 is a block diagram for illustrating an example of the configuration of a solid-state image sensing element 1000 .
- the solid-state image sensing element 1000 includes a pixel array 110 , in which a plurality of pixels 100 are two-dimensionally arranged, a row driving circuit 120 , vertical signal lines 130 , a signal processing unit 140 , a column-selection circuit 150 , an output amplifier 170 , and a constant current source 180 .
- FIG. 1 illustrates the case where there are pixels 100 arranged in four rows and four columns; however, the number of pixels 100 included in the pixel array 110 is not limited to this.
- the row driving circuit 120 is a circuit that controls the plurality of pixels 100 per row and, for example, includes a shift register and an address decoder. In the first embodiment, the row driving circuit 120 outputs signals pRes(M), PADD(M), Va(M), Vb(M), and pSEL(M). M denotes a number representing a certain row.
- a plurality of pixels 100 belonging to the same column are connected to a vertical signal line 130 , which is common to the pixels 100 . Signals output from the pixels 100 are transferred to the signal processing unit 140 via the vertical signal line 130 .
- the signal processing unit 140 includes a plurality of column signal processing units provided so as to correspond to respective columns of the pixel array 110 .
- Each column signal processing unit may include a CDS circuit for reducing noise, an amplifier for amplifying a signal, a sample-and-hold circuit for holding a signal, and the like.
- the column signal processing unit outputs a signal upon being selected by a signal CSEL(N) supplied from the column-selection circuit 150 , and the output signal is transferred to the output amplifier 170 .
- N denotes a number representing a certain column.
- the plurality of pixels 100 include imaging-use pixels IP serving as first pixels and also phase-difference-detection-use pixels AP serving as second pixels.
- FIG. 2 is a diagram for illustrating an example of a plan-view configuration of the pixel array 110 according to the first embodiment. Here illustrates the case where two pixels are phase-difference-detection-use pixels AP and the other pixels are imaging-use pixels IP.
- Each of the pixels includes a pixel electrode, which will be described later, and the phase-difference-detection-use pixels AP have smaller pixel electrodes than the imaging-use pixels IP.
- FIG. 3 illustrates an example of a configuration taken along line A-A illustrated in FIG. 2 .
- the pixel array 110 includes a silicon substrate (a Si substrate) 300 , a bottom insulating layer 301 provided on the Si substrate 300 , and a wiring layer 302 arranged in the bottom insulating layer 301 .
- a MOS transistor is formed on the Si substrate 300 , and a wiring line for supplying power to the MOS transistor and a wiring line for transferring a signal to control the MOS transistor are also included in the wiring layer 302 .
- Some of the wiring lines included in the wiring layer 302 connect a signal readout circuit, not illustrated, formed on the Si substrate 300 to pixel electrodes 303 . As illustrated also in FIG.
- the pixel electrodes 303 of the phase-difference-detection-use pixels AP are smaller than the pixel electrodes 303 of the imaging-use pixels IP.
- An interlayer insulating layer 304 , a photoelectric conversion layer 305 , a blocking layer 306 , a counter electrode 307 , a color filter layer 308 , and a microlens layer 309 having a plurality of microlenses are provided on the pixel electrodes 303 .
- the counter electrode 307 is provided such that the counter electrode 307 is common to a plurality of pixels.
- a Bayer pattern may be used as a color filter arrangement of the color filter layer 308 .
- phase-difference-detection-use pixels AP For the phase-difference-detection-use pixels AP, not R (red) and B (blue) filters but G (green) filters may be used to obtain luminance information.
- the pixels to which G filters are arranged in the Bayer pattern may be phase-difference-detection-use pixels AP.
- R and B filters are replaced with G filters for some of the pixels located at positions to which R and B filters are arranged in the Bayer pattern, and such pixels may be phase-difference-detection-use pixels AP.
- any color filter among R (red), G, and B (blue) filters may be arranged for each imaging-use pixel IP, and clear filters may be arranged only for phase-difference-detection-use pixels AP.
- the interlayer insulating layer 304 provided on the pixel electrodes 303 is a layer for preventing electrons and holes from flowing between the pixel electrodes 303 and the photoelectric conversion layer 305 , and is formed using, for example, hydrogenated amorphous silicon nitride (a-SiN:H).
- the thickness of the interlayer insulating layer 304 is set to a certain value that is enough to prevent electrons and holes from flowing through the interlayer insulating layer 304 by a tunneling effect. Specifically, the thickness is preferably 50 nm or greater.
- the photoelectric conversion layer 305 which is provided above the pixel electrodes 303 with the interlayer insulating layer 304 interposed therebetween, is a layer with the ability to perform photoelectric conversion in which electron-hole pairs are generated upon reception of incident light.
- a material composing the photoelectric conversion layer 305 intrinsic hydrogenated amorphous silicon (a-Si:H), a compound semiconductor, or an organic semiconductor may be used.
- III-VI compound semiconductors such as BN, GaAs, GaP, AlSb, and GaAlAsP
- II-IV compound semiconductors such as CdSe, ZnS, and HdTe.
- examples of such an organic semiconductor include phthalocyanine-based materials and naphthalocyanine-based materials such as a fullerene, coumarin 6 (C6), Rhodamine 6G (R6G), quinacridon, and zinc phthalocyanine (ZnPc).
- phthalocyanine-based materials such as a fullerene, coumarin 6 (C6), Rhodamine 6G (R6G), quinacridon, and zinc phthalocyanine (ZnPc).
- a quantum dot film using such a compound semiconductor described above as a raw material may be used for the photoelectric conversion layer 305 .
- An amorphous silicon film, an organic semiconductor film, and a quantum dot film may be used since thin film formation is easy.
- Intrinsic semiconductors are superior in that a wide depletion layer width may be realized by using such an intrinsic semiconductor for the photoelectric conversion layer 305 since intrinsic semiconductors have low carrier concentrations; however, an n-type or p-type semiconductor may also be used.
- the blocking layer 306 is provided on the photoelectric conversion layer 305 .
- the blocking layer 306 according to the first embodiment is a layer having a function through which holes are prevented from being injected from the counter electrode 307 to the photoelectric conversion layer 305 and, for example, N+ type hydrogenated amorphous silicon is used.
- N+ type a-SiH is used to prevent holes from being injected.
- P+ type a-SiH is used.
- the blocking layer 306 is expected to prevent either one of an electron and a hole, which is a conductive carrier, from being injected from the counter electrode 307 to the photoelectric conversion layer 305 .
- a P-type or N-type semiconductor which is a semiconductor material used for the photoelectric conversion layer 305 , may be used for the blocking layer 306 .
- the impurity concentration of the semiconductor used for the blocking layer 306 is designed to be higher than the impurity concentration of the semiconductor used for the photoelectric conversion layer 305 .
- the counter electrode 307 which is provided above the photoelectric conversion layer 305 with the blocking layer 306 interposed therebetween, is formed using a material that allows light entering through the microlens layer 309 and the color filter layer 308 to flow therethrough and enter the photoelectric conversion layer 305 .
- a material that allows light entering through the microlens layer 309 and the color filter layer 308 to flow therethrough and enter the photoelectric conversion layer 305 Specifically, a compound, an oxide, or the like including indium and tin such as ITO is used.
- a light transparent layer may further be provided between the counter electrode 307 and the microlens layer 309 .
- the microlens layer 309 , the color filter layer 308 , and the light transparent layer may be designed such that the focal point of the microlens layer 309 is at the photoelectric conversion layer 305 .
- the light transparent layer may be formed using an inorganic substance such as Si oxide or silicon nitride, or may also be formed using an organic substance.
- FIG. 4 is an equivalent circuit diagram of a pixel 100 according to the first embodiment.
- the imaging-use pixels IP and the phase-difference-detection-use pixels AP have the same configuration.
- the pixel 100 includes a photoelectric conversion unit including the blocking layer 306 , the photoelectric conversion layer 305 , and the interlayer insulating layer 304 , and a signal readout circuit 400 .
- the signal readout circuit 400 includes a reset transistor 401 , a driving capacitor 402 , an amplifying transistor 403 , and a selection transistor 404 .
- a reset voltage is applied to one of main nodes of the reset transistor 401 , and the other main node is connected to a control node of the amplifying transistor 403 . This node is denoted as a node N 1 .
- a reset signal pRES is supplied to a control node of the reset transistor 401 .
- a bias voltage Vb is applied to one of nodes of the driving capacitor 402 and the other node is connected to the node N 1 .
- the photoelectric conversion unit is connected to the node N 1 via the pixel electrode 303 .
- a fixed voltage is applied to one of main node of the amplifying transistor 403 and the other main node is connected to the vertical signal line 130 via the selection transistor 404 .
- a pixel selection signal pSEL is supplied to a control node of the selection transistor 404 .
- the amplifying transistor 403 serving as an in-pixel amplifier operates together with the constant current source 180 as a source follower circuit, and a voltage output corresponding to the electric potential of the node N 1 is input, as a pixel signal from the pixel 100 , to the signal processing unit 140 .
- the node N 1 is an input portion of the in-pixel amplifier.
- the in-pixel amplifier is not limited to a source follower circuit, and may also be a common-source amplification circuit or may also be an inverter or a differential amplifier composed of a plurality of transistors.
- FIG. 5 is a potential diagram of the photoelectric conversion unit for describing a signal readout operation.
- the lower the position in FIG. 5 the lower the potential with respect to electrons.
- the potentials of regions including the counter electrode 307 , the photoelectric conversion layer 305 , the interlayer insulating layer 304 , and the pixel electrode 303 (corresponding to the node N 1 ) in this order starting from the left are illustrated.
- the blocking layer 306 is omitted.
- black circles represent electrons and white circles represent holes.
- the reset voltage is 1 [V] and a bias voltage Vs for driving the photoelectric conversion unit is 3 [V], the bias voltage Vs being applied to a top electrode.
- the bias voltage Vb may be switched between 5 [V] and 0 [V] by a control circuit, which is not illustrated.
- a readout operation of the pixel 100 is realized by performing the following a) to f) operations.
- the node N 1 is reset to 1 [V] by causing the reset transistor 401 to enter an on state. Thereafter, when the reset transistor 401 is caused to enter an off state, kTC noise (kTC 1 ) is generated by an operation of the reset transistor 401 . As a result, the electric potential of the node N 1 , that is, the pixel electrode 303 becomes 1 [V]+kTC 1 ( FIG. 5A ).
- the photoelectric conversion layer 305 When the photoelectric conversion layer 305 absorbs incident light, electron-hole pairs are generated in accordance with the light intensity of the incident light. The generated electrons are discharged from the counter electrode 307 and the generated holes move inside the photoelectric conversion layer 305 and reach the interface to the interlayer insulating layer 304 . However, since holes are unable to move into the interlayer insulating layer 304 , the holes are accumulated inside the photoelectric conversion layer 305 ( FIG. 5C ). The holes accumulated in this manner are used as signal electric charge based on the incident light. Due to the holes accumulated inside the photoelectric conversion layer 305 , the electric potential of the node N 1 is increased by Vp and the electric potential of the node N 1 becomes 1 [V]+kTC 1 +Vp 1 .
- the node N 1 is reset to 1 [V] by temporarily switching the reset transistor 401 to on. Since noise (kTC 2 ) is generated by an operation of the reset transistor 401 , the electric potential of the node N 1 becomes 1 [V]+kTC 2 .
- the noise kTC 1 generated by the pre-accumulation reset and the noise kTC 2 generated by the post-accumulation reset have no correlation therebetween and are so-called random noise components.
- the selection transistor 404 is switched on, and a signal corresponding to the electric potential of the node N 1 at this time is output to the vertical signal line 130 .
- the output signal is held by, for example, the column signal processing unit.
- the bias voltage Vb is changed from 0 [V] to 5[V].
- the electric potential of the node N 1 changes.
- the amount of change in electric potential is determined by the ratio of the capacitance of the photoelectric conversion unit to the capacitance of the driving capacitor 402 .
- the capacitance of the photoelectric conversion unit is denoted as C 1
- the capacitance of the driving capacitor 402 is denoted as C 2
- the amount of positive change in bias voltage Vb is denoted as ⁇ Vb.
- the amount of change ⁇ VN 1 in electric potential of the node N 1 is expressed as in the following expression.
- the capacitance C 1 of the driving capacitor 402 is four times greater than the capacitance C 2 of the photoelectric conversion unit, the amount of change in electric potential of the node N 1 becomes 4 [V] when the bias voltage Vb is changed to 5 [V].
- the bias voltage Vb is changed to 0 [V] again, the electric potential of the node N 1 becomes negative with respect to the electric potential of the counter electrode 307 .
- the electrons injected to the photoelectric conversion layer 305 when the bias voltage Vb is 5 [V] are discharged from the photoelectric conversion layer 305 via the blocking layer 306 .
- the number of electrons discharged in this manner is equal to the number of electrons injected to the photoelectric conversion layer 305 . Signal readout is thus not affected.
- the bias voltage Vb is changed to 0 [V]
- the electric potential of the node N 1 tries to return to 1 [V]+kTC 2 .
- the blocking layer 306 is provided between the counter electrode 307 and the photoelectric conversion layer 305 , holes are not injected to the photoelectric conversion layer 305 .
- a signal based on the holes accumulated by a photocarrier accumulation operation in the photoelectric conversion layer 305 remains as an optical signal component Vp. Consequently, the electric potential of the node N 1 becomes 1 [V]+kTC 2 +Vp.
- the selection transistor 404 is switched on, and a signal corresponding to the electric potential of the node N 1 at this time is output to the vertical signal line 130 .
- the output signal is held by, for example, the column signal processing unit. Since kTC 2 , which is a noise component, is canceled by performing differential processing on the signal obtained in this step and the signal obtained by performing the N signal readout of d), a signal corresponding to the optical signal component Vp is thus obtained.
- the selection transistor 404 may also be maintained in the on state after the N signal readout.
- a pixel signal may be read out.
- the two phase-difference-detection-use pixels AP are configured such that one of the phase-difference-detection-use pixels AP has the pixel electrode 303 only in its left side portion and the other one of the phase-difference-detection-use pixels AP has the pixel electrode 303 only in its right side portion.
- phase difference detection may be realized using signals obtained from these two phase-difference-detection-use pixels AP.
- one of the pixel electrodes 303 may also be provided only in a top side portion of one of the phase-difference-detection-use pixels AP and the other pixel electrode 303 may also be provided only in a bottom side portion of the other one of the phase-difference-detection-use pixels AP. That is, for the two phase-difference-detection-use pixels, the pixel electrodes 303 have only to be provided such that the pixel electrodes 303 are arranged symmetrically to each other.
- the imaging-use pixels IP and the phase-difference-detection-use pixels AP have the same configuration between the counter electrode 307 and the microlenses.
- two pixels having the same configuration refer to that the two pixels have the same layer structure.
- the configurations of the pixels are different.
- the configurations of the pixels are different.
- the imaging-use pixels IP and the phase-difference-detection-use pixels AP have the same configuration between the counter electrode 307 and the microlenses.
- the color filter layer 308 and the microlens layer 309 may be easily and uniformly formed. Consequently, it may be prevented that the sensitivity of the imaging-use pixels IP becomes different from desired characteristics.
- FIG. 6 is a cross section illustrating the configuration of the pixels taken along line A-A of FIG. 2 .
- the configuration illustrated in FIG. 6 differs from that illustrated in FIG. 3 in that light shielding films 601 and a protection layer 602 are provided between the counter electrode 307 and the color filter layer 308 .
- Each of the light shielding films 601 is provided between adjacent pixels corresponding to the light shielding film 601 .
- the amount of light entering adjacent pixels may be reduced by providing the light shielding films 601 such that each light shielding film 601 lies astride the boundary between two adjacent pixels corresponding to the light shielding film 601 .
- the degree of color mixture is reduced for the imaging-use pixels IP, and the performance of phase difference detection is improved for the phase-difference-detection-use pixels AP.
- Each of the light shielding films 601 may be a metal film having one layer or may also be a metal film having a layered structure composed of a plurality of layers. Some specific examples may be a W single layer, a WSi single layer, an AlCu single layer, a W/TiN multilayer, an AlCu/TiN multilayer, and an AlCu/TiN/Ti multilayer. There may be provided, between the light shielding films 601 , a film made of a material the same as that of the protection layer 602 or a film made of a material different from that of the protection layer 602 .
- the light shielding films 601 may contact the counter electrode 307 or may be separated from the counter electrode 307 by an insulating member. What is important is that the phase-difference-detection-use pixels AP and the imaging-use pixels IP have the light shielding films 601 having the same configuration. That is, the light shielding films 601 of the phase-difference-detection-use pixels AP have the same film thickness as the light shielding films 601 of the imaging-use pixels IP.
- the protection layer 602 is a layer made of an insulating film such as a SiO film or a SiN film and is provided such that the protection layer 602 covers the light shielding films 601 . Unevenness caused by providing the light shielding films 601 may be smoothed by providing the protection layer 602 . Thus, the protection layer 602 is effective in improving optical characteristics. Before formation of a color filter on the protection layer 602 , planarization processing may be performed on the protection layer 602 .
- the protection layer 602 of the phase-difference-detection-use pixels AP and the protection layer 602 of the imaging-use pixels IP have the same configuration. That is, the protection layer 602 of the phase-difference-detection-use pixels AP has the same film thickness as the protection layer 602 of the imaging-use pixels IP.
- FIG. 6 illustrates, as an example, the case where the protection layer 602 is included; however, the protection layer 602 does not have to be included.
- the effects similar to those of the first embodiment are obtained and the degree of color mixture may be reduced and the performance of phase difference detection may be improved by providing each of the light shielding films 601 between adjacent pixels corresponding to the light shielding film 601 . Furthermore, optical characteristics may be improved by providing the protection layer 602 .
- FIG. 7 is a cross section illustrating the configuration of the pixels taken along line A-A of FIG. 2 .
- the photoelectric conversion layer 305 is formed as a continuous layer for a plurality of pixels.
- the configuration illustrated in FIG. 7 differs from that illustrated in FIG. 3 in that photoelectric conversion layer separation units 701 are included, each of which is provided between two adjacent pixels corresponding to the photoelectric conversion layer separation unit 701 so as to divide the photoelectric conversion layer 305 .
- each of the photoelectric conversion layer separation units 701 is formed such that the photoelectric conversion layer separation unit 701 lies astride the boundary between the two adjacent pixels corresponding to the photoelectric conversion layer separation unit 701 , photoelectric conversion is not performed near the boundary between the pixels.
- the degree of color mixture may be reduced and the performance of phase difference detection may be improved.
- the photoelectric conversion layer separation units 701 may be made of an insulating member such as a SiO film or a SiN film, or may also be made of a light shielding member such as a W single layer, a WSi single layer, an AlCu single layer, a W/TiN multilayer, an AlCu/TiN multilayer, or an AlCu/TiN/Ti multilayer. In the case where a light shielding member is used, the photoelectric conversion layer separation units 701 may contact either the pixel electrodes 303 or the counter electrode 307 but may not contact both the pixel electrodes 303 and the counter electrode 307 . By using the photoelectric conversion layer separation units 701 made of a light shielding member, the degree of color mixture may further be reduced and the performance of phase difference detection may further be improved.
- the effects similar to those of the first embodiment are obtained and also the degree of color mixture may be reduced and the performance of phase difference detection may be improved by providing the photoelectric conversion layer separation units 701 . Furthermore, by using the photoelectric conversion layer separation units 701 made of a light shielding member, the degree of color mixture may further be reduced and the performance of phase difference detection may further be improved.
- FIG. 8 is a cross section illustrating the configuration of the pixels taken along line A-A of FIG. 2 .
- the photoelectric conversion layer 305 is formed as a continuous layer for a plurality of pixels.
- the configuration illustrated in FIG. 8 differs from that illustrated in FIG. 3 in that photoelectric conversion layers 305 A of the phase-difference-detection-use pixels AP are smaller than photoelectric conversion layers 3051 of the imaging-use pixels IP.
- the charge generated in the region sandwiched between the pixel electrode 303 and the counter electrode 307 in the photoelectric conversion layer 305 is used as signal electric charge.
- photoelectric conversion is performed also in a region that is not sandwiched between the pixel electrode 303 and the counter electrode 307 .
- the charge generated in such a region may move to the region sandwiched between the pixel electrode 303 and the counter electrode 307 .
- pixel signals read out from the phase-difference-detection-use pixels AP may include unnecessary signal components.
- a photoelectric conversion layer portion that does not correspond to the pixel electrodes 303 and regions near the pixel electrodes 303 is eliminated and a photoelectric conversion layer separation unit 801 is provided.
- photoelectric conversion is not performed in the region that is not sandwiched between the pixel electrode 303 and the counter electrode 307 . Consequently, the degree of color mixture may be reduced and the performance of phase difference detection may be improved.
- the photoelectric conversion layer separation unit 801 may be made of an insulating member such as a SiO film or a SiN film, or may also be made of a light shielding member such as a W single layer, a WSi single layer, an AlCu single layer, a W/TiN multilayer, an AlCu/TiN multilayer, or an AlCu/TiN/Ti multilayer. In the case where a light shielding member is used, the photoelectric conversion layer separation unit 801 may contact either the pixel electrodes 303 or the counter electrode 307 but may not contact both the pixel electrodes 303 and the counter electrode 307 . By using the photoelectric conversion layer separation unit 801 made of a light shielding member, the degree of color mixture may further be reduced and the performance of phase difference detection may further be improved.
- the effects similar to those of the first embodiment are obtained and the degree of color mixture may be reduced and the performance of phase difference detection may be improved by providing the photoelectric conversion layer separation unit 801 . Furthermore, by using the photoelectric conversion layer separation unit 801 made of a light shielding member, the degree of color mixture may further be reduced and the performance of phase difference detection may further be improved.
- the photoelectric conversion layer 3051 of each imaging-use pixel IP and the photoelectric conversion layer 305 A of the phase-difference-detection-use pixel AP corresponding to the imaging-use pixel IP are integrally formed.
- the photoelectric conversion layer separation unit 801 may also be provided between the imaging-use pixel IP and the phase-difference-detection-use pixel AP. As a result, the degree of color mixture may further be reduced and the performance of phase difference detection may further be improved.
- FIG. 9 is a cross section illustrating the configuration of the pixels taken along line A-A of FIG. 2 .
- the configuration illustrated in FIG. 9 differs from that illustrated in FIG. 3 in that the counter electrodes 307 of the phase-difference-detection-use pixels AP are smaller than the counter electrodes 307 of the imaging-use pixels IP and in that the pixel electrodes 303 of the imaging-use pixels IP are the same size as the pixel electrodes 303 of the phase-difference-detection-use pixels AP.
- counter electrodes 307 A of the phase-difference-detection-use pixels AP are smaller than counter electrodes 3071 of the imaging-use pixels IP.
- portions sandwiched between the pixel electrodes 303 and the counter electrodes 307 in the photoelectric conversion layer 305 in the phase-difference-detection-use pixels AP are smaller than such portions in the imaging-use pixels IP.
- the two phase-difference-detection-use pixels AP are configured such that one of the phase-difference-detection-use pixels AP has the counter electrode 307 only in its left side portion and the other one of the phase-difference-detection-use pixels AP has the counter electrode 307 only in its right side portion.
- phase difference detection may be realized using signals obtained from these phase-difference-detection-use pixels AP.
- a signal may be read out by the same operation as in the first embodiment.
- FIG. 9 has illustrated the case where the pixel electrodes 303 of the imaging-use pixels IP are the same size as the pixel electrodes 303 of the phase-difference-detection-use pixels AP. However, similarly to as in FIG. 3 , the pixel electrodes 303 of the phase-difference-detection-use pixels AP may be made smaller than the pixel electrodes 303 of the imaging-use pixels IP.
- the pixel electrodes 303 of the phase-difference-detection-use pixels AP have only to be smaller than the pixel electrodes 303 of the imaging-use pixels IP or the counter electrodes 307 of the phase-difference-detection-use pixels AP have only to be smaller than the counter electrodes 307 of the imaging-use pixels IP.
- the imaging-use pixels IP and the phase-difference-detection-use pixels AP have the same configuration between the counter electrodes 307 and the microlenses.
- the color filter layer 308 and the microlens layer 309 may be easily and uniformly formed. Consequently, it may be prevented that the sensitivity of the imaging-use pixels IP becomes different from desired characteristics.
- FIG. 10 is a diagram illustrating an example of the configuration of an imaging system.
- An imaging system 800 includes, for example, an optical unit 810 , the solid-state image sensing element 1000 , a video signal processing unit 830 , a recording-and-communication unit 840 , a timing controller 850 , a system controller 860 , and a playback-and-display unit 870 .
- An image pickup device 820 includes the solid-state image sensing element 1000 and the video signal processing unit 830 . As the solid-state image sensing element 1000 , the solid-state image sensing element described in the above-described embodiments is used.
- the optical unit 810 is an optical system such as a lens, and causes image formation to be performed onto a pixel unit 10 of the solid-state image sensing element 1000 using light from an object, in the pixel unit 10 a plurality of pixels being arranged two-dimensionally, and forms an image of the object.
- the solid-state image sensing element 1000 outputs a signal corresponding to the light with which image formation has been performed onto the pixel unit 10 , at a timing based on a signal from the timing controller 850 .
- the signal output from the solid-state image sensing element 1000 is input to the video signal processing unit 830 , which is a video signal processing unit, and the video signal processing unit 830 performs signal processing in accordance with a method defined by a program or the like.
- the signal obtained as a result of processing performed by the video signal processing unit 830 is sent as image data to the recording-and-communication unit 840 .
- the recording-and-communication unit 840 sends a signal to be used for formation of an image to the playback-and-display unit 870 , and causes the playback-and-display unit 870 to play back and display a moving image or a still image.
- the recording-and-communication unit 840 communicates with the system controller 860 and also performs an operation for recording the signal to be used for formation of an image in a recording medium, which is not illustrated.
- the system controller 860 performs centralized control on operations of the imaging system 800 , and controls driving of the optical unit 810 , the timing controller 850 , the recording-and-communication unit 840 , and the playback-and-display unit 870 .
- the system controller 860 includes a storage device, which is not illustrated and an example of which is a recording medium, and programs and the like necessary to control the operations of the imaging system 800 are recorded in the storage device.
- the system controller 860 supplies, inside the imaging system 800 , a signal for switching the drive mode or sensitivity of the imaging system 800 in accordance with, for example, an operation of a user.
- the sensitivity of the imaging system 800 is switched in accordance with an input of a user, the sensitivity of the solid-state image sensing element 1000 is also switched in accordance with this switching. That is, the system controller 860 has a function serving as a sensitivity selection unit for selecting the sensitivity of the imaging system 800 , and the sensitivity of the solid-state image sensing element 1000 is switched in accordance with the selected sensitivity.
- the timing controller 850 controls a driving timing of the solid-state image sensing element 1000 and a driving timing of the video signal processing unit 830 in accordance with control performed by the system controller 860 .
- the timing controller 850 may also function as a sensitivity setting unit that sets an image pickup sensitivity of the solid-state image sensing element 1000 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Inorganic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Automatic Focus Adjustment (AREA)
- Focusing (AREA)
Abstract
Each of a plurality of pixels arranged in two dimensions includes a photoelectric conversion unit including a pixel electrode, a photoelectric conversion layer provided above the pixel electrode, and a counter electrode provided so as to sandwich the photoelectric conversion layer between the counter electrode and the pixel electrode, and a microlens arranged above the photoelectric conversion unit. The plurality of pixels includes a first pixel and a plurality of second pixels. At least either the pixel electrodes of the plurality of second pixels are smaller than the pixel electrode of the first pixel or the counter electrodes of the plurality of second pixels are smaller than the counter electrode of the first pixel, and a configuration between the counter electrode and the microlens of the first pixel is the same as a configuration between the counter electrode and the microlens of each of the plurality of second pixels.
Description
- The present application is a continuation of U.S. patent application Ser. No. 14/811,659, filed on Jul. 28, 2015, which claims priority from Japanese Patent Application No. 2014-156790, filed 31 Jul. 2014, which is hereby incorporated by reference herein in its entirety.
- The present disclosure relates to a solid-state image sensing element in which a photoelectric conversion layer is formed above a substrate, and an imaging system.
- Solid-state image sensing elements are known each having a configuration in which a pixel is included, the pixel including a light receiving portion in which a photoelectric conversion layer is formed above a substrate. Japanese Patent Laid-Open No. 2014-67948 describes use of an organic photoelectric conversion layer as a photoelectric conversion layer. Japanese Patent Laid-Open No. 2014-67948 further describes that a pair of pixels for phase difference detection (hereinafter referred to as “phase-difference-detection-use pixels”) is provided in order to realize pupil division phase difference detection. The phase-difference-detection-use pixels have a light shielding film between a protection layer and a microlens provided above a photoelectric conversion layer, the light shielding film being used to shield a portion of incident light.
- With the configuration described in Japanese Patent Laid-Open No. 2014-67948, since only the phase-difference-detection-use pixels have a light shielding film, it is difficult to uniformly form layers above a photoelectric conversion film, such as a color filter layer and a microlens. As a result, there may be the case where the sensitivity of pixels becomes different from desired characteristics since the phase-difference-detection-use pixels differ from pixels for capturing images (hereinafter referred to as “imaging-use pixels”) in terms of film thickness of the color filter or shape of the microlens.
- According to the present invention, the layers provided on a photoelectric conversion unit may be easily and uniformly formed.
- The present disclosure provides a solid-state image sensing element including a plurality of pixels arranged in two dimensions, each of the plurality of pixels including a photoelectric conversion unit including a pixel electrode, a photoelectric conversion layer provided above the pixel electrode, and a counter electrode provided so as to sandwich the photoelectric conversion layer between the counter electrode and the pixel electrode, and a microlens arranged above the photoelectric conversion unit. The plurality of pixels includes a first pixel and a plurality of second pixels, at least either the pixel electrodes of the plurality of second pixels are smaller than the pixel electrode of the first pixel or the counter electrodes of the plurality of second pixels are smaller than the counter electrode of the first pixel, and a configuration between the counter electrode and the microlens of the first pixel is the same as a configuration between the counter electrode and the microlens of each of the plurality of second pixels.
- Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
-
FIG. 1 is a block diagram for illustrating an example of the configuration of a solid-state image sensing element. -
FIG. 2 is a diagram for illustrating an example of a plan-view configuration of a pixel array. -
FIG. 3 is a diagram for illustrating an example of a cross section configuration of the pixel array. -
FIG. 4 is an equivalent circuit diagram for illustrating an example of the configuration of a pixel. -
FIG. 5 is a potential diagram of a photoelectric conversion unit for describing a signal readout operation. -
FIG. 6 is a diagram for illustrating an example of a cross section configuration of the pixel array. -
FIG. 7 is a diagram for illustrating an example of a cross section configuration of the pixel array. -
FIG. 8 is a diagram for illustrating an example of a cross section configuration of the pixel array. -
FIG. 9 is a diagram for illustrating an example of a cross section configuration of the pixel array. -
FIG. 10 is a block diagram for illustrating an example of the configuration of an imaging system. -
FIG. 1 is a block diagram for illustrating an example of the configuration of a solid-stateimage sensing element 1000. The solid-stateimage sensing element 1000 includes apixel array 110, in which a plurality ofpixels 100 are two-dimensionally arranged, arow driving circuit 120,vertical signal lines 130, asignal processing unit 140, a column-selection circuit 150, anoutput amplifier 170, and a constantcurrent source 180. -
FIG. 1 illustrates the case where there arepixels 100 arranged in four rows and four columns; however, the number ofpixels 100 included in thepixel array 110 is not limited to this. - The
row driving circuit 120 is a circuit that controls the plurality ofpixels 100 per row and, for example, includes a shift register and an address decoder. In the first embodiment, therow driving circuit 120 outputs signals pRes(M), PADD(M), Va(M), Vb(M), and pSEL(M). M denotes a number representing a certain row. - A plurality of
pixels 100 belonging to the same column are connected to avertical signal line 130, which is common to thepixels 100. Signals output from thepixels 100 are transferred to thesignal processing unit 140 via thevertical signal line 130. - The
signal processing unit 140 includes a plurality of column signal processing units provided so as to correspond to respective columns of thepixel array 110. Each column signal processing unit may include a CDS circuit for reducing noise, an amplifier for amplifying a signal, a sample-and-hold circuit for holding a signal, and the like. The column signal processing unit outputs a signal upon being selected by a signal CSEL(N) supplied from the column-selection circuit 150, and the output signal is transferred to theoutput amplifier 170. N denotes a number representing a certain column. - In the first embodiment, the plurality of
pixels 100 include imaging-use pixels IP serving as first pixels and also phase-difference-detection-use pixels AP serving as second pixels.FIG. 2 is a diagram for illustrating an example of a plan-view configuration of thepixel array 110 according to the first embodiment. Here illustrates the case where two pixels are phase-difference-detection-use pixels AP and the other pixels are imaging-use pixels IP. Each of the pixels includes a pixel electrode, which will be described later, and the phase-difference-detection-use pixels AP have smaller pixel electrodes than the imaging-use pixels IP. -
FIG. 3 illustrates an example of a configuration taken along line A-A illustrated inFIG. 2 . Thepixel array 110 includes a silicon substrate (a Si substrate) 300, a bottominsulating layer 301 provided on theSi substrate 300, and awiring layer 302 arranged in the bottominsulating layer 301. A MOS transistor is formed on theSi substrate 300, and a wiring line for supplying power to the MOS transistor and a wiring line for transferring a signal to control the MOS transistor are also included in thewiring layer 302. Some of the wiring lines included in thewiring layer 302 connect a signal readout circuit, not illustrated, formed on theSi substrate 300 topixel electrodes 303. As illustrated also inFIG. 2 , thepixel electrodes 303 of the phase-difference-detection-use pixels AP are smaller than thepixel electrodes 303 of the imaging-use pixels IP. Aninterlayer insulating layer 304, aphotoelectric conversion layer 305, ablocking layer 306, acounter electrode 307, acolor filter layer 308, and amicrolens layer 309 having a plurality of microlenses are provided on thepixel electrodes 303. In the first embodiment, thecounter electrode 307 is provided such that thecounter electrode 307 is common to a plurality of pixels. A Bayer pattern may be used as a color filter arrangement of thecolor filter layer 308. For the phase-difference-detection-use pixels AP, not R (red) and B (blue) filters but G (green) filters may be used to obtain luminance information. Thus, the pixels to which G filters are arranged in the Bayer pattern may be phase-difference-detection-use pixels AP. In addition, R and B filters are replaced with G filters for some of the pixels located at positions to which R and B filters are arranged in the Bayer pattern, and such pixels may be phase-difference-detection-use pixels AP. In addition, any color filter among R (red), G, and B (blue) filters may be arranged for each imaging-use pixel IP, and clear filters may be arranged only for phase-difference-detection-use pixels AP. - The
interlayer insulating layer 304 provided on thepixel electrodes 303 is a layer for preventing electrons and holes from flowing between thepixel electrodes 303 and thephotoelectric conversion layer 305, and is formed using, for example, hydrogenated amorphous silicon nitride (a-SiN:H). The thickness of theinterlayer insulating layer 304 is set to a certain value that is enough to prevent electrons and holes from flowing through theinterlayer insulating layer 304 by a tunneling effect. Specifically, the thickness is preferably 50 nm or greater. - The
photoelectric conversion layer 305, which is provided above thepixel electrodes 303 with theinterlayer insulating layer 304 interposed therebetween, is a layer with the ability to perform photoelectric conversion in which electron-hole pairs are generated upon reception of incident light. As a material composing thephotoelectric conversion layer 305, intrinsic hydrogenated amorphous silicon (a-Si:H), a compound semiconductor, or an organic semiconductor may be used. Examples of such a compound semiconductor include III-VI compound semiconductors such as BN, GaAs, GaP, AlSb, and GaAlAsP, and II-IV compound semiconductors such as CdSe, ZnS, and HdTe. In addition, examples of such an organic semiconductor include phthalocyanine-based materials and naphthalocyanine-based materials such as a fullerene, coumarin 6 (C6), Rhodamine 6G (R6G), quinacridon, and zinc phthalocyanine (ZnPc). - Furthermore, a quantum dot film using such a compound semiconductor described above as a raw material may be used for the
photoelectric conversion layer 305. An amorphous silicon film, an organic semiconductor film, and a quantum dot film may be used since thin film formation is easy. - Intrinsic semiconductors are superior in that a wide depletion layer width may be realized by using such an intrinsic semiconductor for the
photoelectric conversion layer 305 since intrinsic semiconductors have low carrier concentrations; however, an n-type or p-type semiconductor may also be used. - The
blocking layer 306 is provided on thephotoelectric conversion layer 305. Theblocking layer 306 according to the first embodiment is a layer having a function through which holes are prevented from being injected from thecounter electrode 307 to thephotoelectric conversion layer 305 and, for example, N+ type hydrogenated amorphous silicon is used. In this example, N+ type a-SiH is used to prevent holes from being injected. In order to prevent electrons from being injected, P+ type a-SiH is used. Theblocking layer 306 is expected to prevent either one of an electron and a hole, which is a conductive carrier, from being injected from thecounter electrode 307 to thephotoelectric conversion layer 305. A P-type or N-type semiconductor, which is a semiconductor material used for thephotoelectric conversion layer 305, may be used for theblocking layer 306. In this case, the impurity concentration of the semiconductor used for theblocking layer 306 is designed to be higher than the impurity concentration of the semiconductor used for thephotoelectric conversion layer 305. - The
counter electrode 307, which is provided above thephotoelectric conversion layer 305 with theblocking layer 306 interposed therebetween, is formed using a material that allows light entering through themicrolens layer 309 and thecolor filter layer 308 to flow therethrough and enter thephotoelectric conversion layer 305. Specifically, a compound, an oxide, or the like including indium and tin such as ITO is used. - A light transparent layer may further be provided between the
counter electrode 307 and themicrolens layer 309. Themicrolens layer 309, thecolor filter layer 308, and the light transparent layer may be designed such that the focal point of themicrolens layer 309 is at thephotoelectric conversion layer 305. The light transparent layer may be formed using an inorganic substance such as Si oxide or silicon nitride, or may also be formed using an organic substance. -
FIG. 4 is an equivalent circuit diagram of apixel 100 according to the first embodiment. In an equivalent circuit diagram, the imaging-use pixels IP and the phase-difference-detection-use pixels AP have the same configuration. Thepixel 100 includes a photoelectric conversion unit including theblocking layer 306, thephotoelectric conversion layer 305, and the interlayer insulatinglayer 304, and asignal readout circuit 400. - The
signal readout circuit 400 includes areset transistor 401, a drivingcapacitor 402, an amplifyingtransistor 403, and aselection transistor 404. A reset voltage is applied to one of main nodes of thereset transistor 401, and the other main node is connected to a control node of the amplifyingtransistor 403. This node is denoted as a node N1. A reset signal pRES is supplied to a control node of thereset transistor 401. A bias voltage Vb is applied to one of nodes of the drivingcapacitor 402 and the other node is connected to the node N1. The photoelectric conversion unit is connected to the node N1 via thepixel electrode 303. A fixed voltage is applied to one of main node of the amplifyingtransistor 403 and the other main node is connected to thevertical signal line 130 via theselection transistor 404. A pixel selection signal pSEL is supplied to a control node of theselection transistor 404. When theselection transistor 404 is switched on, the amplifyingtransistor 403 serving as an in-pixel amplifier operates together with the constantcurrent source 180 as a source follower circuit, and a voltage output corresponding to the electric potential of the node N1 is input, as a pixel signal from thepixel 100, to thesignal processing unit 140. The node N1 is an input portion of the in-pixel amplifier. The in-pixel amplifier is not limited to a source follower circuit, and may also be a common-source amplification circuit or may also be an inverter or a differential amplifier composed of a plurality of transistors. - Next, an operation for reading a signal out from a
pixel 100 according to the first embodiment will be described.FIG. 5 is a potential diagram of the photoelectric conversion unit for describing a signal readout operation. The lower the position inFIG. 5 , the lower the potential with respect to electrons. InFIG. 5 , the potentials of regions including thecounter electrode 307, thephotoelectric conversion layer 305, theinterlayer insulating layer 304, and the pixel electrode 303 (corresponding to the node N1) in this order starting from the left are illustrated. Here, for brevity's sake, theblocking layer 306 is omitted. InFIG. 5 , black circles represent electrons and white circles represent holes. - In the first embodiment, suppose that the reset voltage is 1 [V] and a bias voltage Vs for driving the photoelectric conversion unit is 3 [V], the bias voltage Vs being applied to a top electrode. Furthermore, the bias voltage Vb may be switched between 5 [V] and 0 [V] by a control circuit, which is not illustrated.
- A readout operation of the
pixel 100 is realized by performing the following a) to f) operations. - In the following, the steps described above will be described in detail.
- In a state in which the bias voltage Vb is set to 0 [V], the node N1 is reset to 1 [V] by causing the
reset transistor 401 to enter an on state. Thereafter, when thereset transistor 401 is caused to enter an off state, kTC noise (kTC1) is generated by an operation of thereset transistor 401. As a result, the electric potential of the node N1, that is, thepixel electrode 303 becomes 1 [V]+kTC1 (FIG. 5A ). - In a state in which light enters the
photoelectric conversion layer 305, when pre-accumulation reset is completed, a photocarrier accumulation operation is started. During photocarrier accumulation, the bias voltage Vb is maintained at 0 [V]. Thus, the electric potential of thepixel electrode 303 becomes a negative electric potential with respect to that of thecounter electrode 307, to which a voltage of 3 [V] is applied. As a result, electrons in thephotoelectric conversion layer 305 are guided toward thecounter electrode 307 and discharged from thecounter electrode 307 via theblocking layer 306. In contrast, holes are guided toward thepixel electrode 303. Note that since theblocking layer 306 is present, injection is not performed from thecounter electrode 307 to the photoelectric conversion layer 305 (FIG. 5B )). - When the
photoelectric conversion layer 305 absorbs incident light, electron-hole pairs are generated in accordance with the light intensity of the incident light. The generated electrons are discharged from thecounter electrode 307 and the generated holes move inside thephotoelectric conversion layer 305 and reach the interface to theinterlayer insulating layer 304. However, since holes are unable to move into theinterlayer insulating layer 304, the holes are accumulated inside the photoelectric conversion layer 305 (FIG. 5C ). The holes accumulated in this manner are used as signal electric charge based on the incident light. Due to the holes accumulated inside thephotoelectric conversion layer 305, the electric potential of the node N1 is increased by Vp and the electric potential of the node N1 becomes 1 [V]+kTC1+Vp1. - The node N1 is reset to 1 [V] by temporarily switching the
reset transistor 401 to on. Since noise (kTC2) is generated by an operation of thereset transistor 401, the electric potential of the node N1 becomes 1 [V]+kTC2. The noise kTC1 generated by the pre-accumulation reset and the noise kTC2 generated by the post-accumulation reset have no correlation therebetween and are so-called random noise components. - Note that even when the node N1 is reset by the
reset transistor 401, the holes accumulated in thephotoelectric conversion layer 305 stay in the photoelectric conversion layer 305 (FIG. 5D ). - The
selection transistor 404 is switched on, and a signal corresponding to the electric potential of the node N1 at this time is output to thevertical signal line 130. The output signal is held by, for example, the column signal processing unit. - The bias voltage Vb is changed from 0 [V] to 5[V]. As a result, the electric potential of the node N1 changes. The amount of change in electric potential is determined by the ratio of the capacitance of the photoelectric conversion unit to the capacitance of the driving
capacitor 402. Suppose that the capacitance of the photoelectric conversion unit is denoted as C1, the capacitance of the drivingcapacitor 402 is denoted as C2, and the amount of positive change in bias voltage Vb is denoted as ΔVb. In this case, the amount of change ΔVN1 in electric potential of the node N1 is expressed as in the following expression. -
ΔVN1=ΔVb×C1/(C1+C2) (1) - In the first embodiment, if the capacitance C1 of the driving
capacitor 402 is four times greater than the capacitance C2 of the photoelectric conversion unit, the amount of change in electric potential of the node N1 becomes 4 [V] when the bias voltage Vb is changed to 5 [V]. - When the electric potential of the node N1 increases by 4 [V] and becomes 5 [V]+kTC2, the electric potential of the node N1 becomes positive with respect to the electric potential of the
counter electrode 307. As a result, the gradient of the potential in thephotoelectric conversion layer 305 is inverted (FIG. 5E ). As a result, electrons are injected from thecounter electrode 307 to thephotoelectric conversion layer 305 via theblocking layer 306. In addition, the holes accumulated inside thephotoelectric conversion layer 305 are guided toward thecounter electrode 307, and recombine with electrons and disappear in theblocking layer 306. As a result, all the holes accumulated inside thephotoelectric conversion layer 305 are discharged from thephotoelectric conversion layer 305. That is, a complete transfer is achieved by full depletion of the photoelectric conversion layer 305 (FIG. 5F ). - Next, if the bias voltage Vb is changed to 0 [V] again, the electric potential of the node N1 becomes negative with respect to the electric potential of the
counter electrode 307. Thus, the electrons injected to thephotoelectric conversion layer 305 when the bias voltage Vb is 5 [V] are discharged from thephotoelectric conversion layer 305 via theblocking layer 306. Ideally, the number of electrons discharged in this manner is equal to the number of electrons injected to thephotoelectric conversion layer 305. Signal readout is thus not affected. When the bias voltage Vb is changed to 0 [V], the electric potential of the node N1 tries to return to 1 [V]+kTC2. However, since theblocking layer 306 is provided between thecounter electrode 307 and thephotoelectric conversion layer 305, holes are not injected to thephotoelectric conversion layer 305. Thus, a signal based on the holes accumulated by a photocarrier accumulation operation in thephotoelectric conversion layer 305 remains as an optical signal component Vp. Consequently, the electric potential of the node N1 becomes 1 [V]+kTC2+Vp. - The
selection transistor 404 is switched on, and a signal corresponding to the electric potential of the node N1 at this time is output to thevertical signal line 130. The output signal is held by, for example, the column signal processing unit. Since kTC2, which is a noise component, is canceled by performing differential processing on the signal obtained in this step and the signal obtained by performing the N signal readout of d), a signal corresponding to the optical signal component Vp is thus obtained. - The
selection transistor 404 may also be maintained in the on state after the N signal readout. - By performing the above-described operation, a pixel signal may be read out.
- As understood from the above-described description, the holes generated in the region sandwiched between the
pixel electrode 303 and thecounter electrode 307 in thephotoelectric conversion layer 305 are used as signal electric charge. Thus, each of the phase-difference-detection-use pixels AP, thepixel electrodes 303 of which are smaller than thepixel electrodes 303 of the imaging-use pixels IP, obtains only a signal corresponding to light entering a region smaller than such an imaging-use pixel IP. As illustrated inFIG. 2 , the two phase-difference-detection-use pixels AP are configured such that one of the phase-difference-detection-use pixels AP has thepixel electrode 303 only in its left side portion and the other one of the phase-difference-detection-use pixels AP has thepixel electrode 303 only in its right side portion. As a result, phase difference detection may be realized using signals obtained from these two phase-difference-detection-use pixels AP. In addition to the configuration illustrated inFIG. 2 , one of thepixel electrodes 303 may also be provided only in a top side portion of one of the phase-difference-detection-use pixels AP and theother pixel electrode 303 may also be provided only in a bottom side portion of the other one of the phase-difference-detection-use pixels AP. That is, for the two phase-difference-detection-use pixels, thepixel electrodes 303 have only to be provided such that thepixel electrodes 303 are arranged symmetrically to each other. - Furthermore, in the first embodiment, the imaging-use pixels IP and the phase-difference-detection-use pixels AP have the same configuration between the
counter electrode 307 and the microlenses. Here, two pixels having the same configuration refer to that the two pixels have the same layer structure. For example, in the case where one of the pixels has a layer that the other one of the pixels does not have, the configurations of the pixels are different. For example, in the configuration illustrated in FIG. 2 of Japanese Patent Laid-Open No. 2014-67948, there are phase-difference-detection-use pixels having a light shielding film 19 provided above a counter electrode layer 16 and pixels that do not have the light shielding film 19 above the counter electrode layer 16. Thus, the configurations of the pixels are different. - According to the first embodiment, the imaging-use pixels IP and the phase-difference-detection-use pixels AP have the same configuration between the
counter electrode 307 and the microlenses. As a result, thecolor filter layer 308 and themicrolens layer 309 may be easily and uniformly formed. Consequently, it may be prevented that the sensitivity of the imaging-use pixels IP becomes different from desired characteristics. - Another example of the configuration of the
pixel array 110 will be described.FIG. 6 is a cross section illustrating the configuration of the pixels taken along line A-A ofFIG. 2 . - The configuration illustrated in
FIG. 6 differs from that illustrated inFIG. 3 in thatlight shielding films 601 and aprotection layer 602 are provided between thecounter electrode 307 and thecolor filter layer 308. - Each of the
light shielding films 601 is provided between adjacent pixels corresponding to thelight shielding film 601. The amount of light entering adjacent pixels may be reduced by providing thelight shielding films 601 such that eachlight shielding film 601 lies astride the boundary between two adjacent pixels corresponding to thelight shielding film 601. As a result, the degree of color mixture is reduced for the imaging-use pixels IP, and the performance of phase difference detection is improved for the phase-difference-detection-use pixels AP. - Each of the
light shielding films 601 may be a metal film having one layer or may also be a metal film having a layered structure composed of a plurality of layers. Some specific examples may be a W single layer, a WSi single layer, an AlCu single layer, a W/TiN multilayer, an AlCu/TiN multilayer, and an AlCu/TiN/Ti multilayer. There may be provided, between thelight shielding films 601, a film made of a material the same as that of theprotection layer 602 or a film made of a material different from that of theprotection layer 602. - The
light shielding films 601 may contact thecounter electrode 307 or may be separated from thecounter electrode 307 by an insulating member. What is important is that the phase-difference-detection-use pixels AP and the imaging-use pixels IP have thelight shielding films 601 having the same configuration. That is, thelight shielding films 601 of the phase-difference-detection-use pixels AP have the same film thickness as thelight shielding films 601 of the imaging-use pixels IP. - The
protection layer 602 is a layer made of an insulating film such as a SiO film or a SiN film and is provided such that theprotection layer 602 covers thelight shielding films 601. Unevenness caused by providing thelight shielding films 601 may be smoothed by providing theprotection layer 602. Thus, theprotection layer 602 is effective in improving optical characteristics. Before formation of a color filter on theprotection layer 602, planarization processing may be performed on theprotection layer 602. - Also in the case where the
protection layer 602 is provided, theprotection layer 602 of the phase-difference-detection-use pixels AP and theprotection layer 602 of the imaging-use pixels IP have the same configuration. That is, theprotection layer 602 of the phase-difference-detection-use pixels AP has the same film thickness as theprotection layer 602 of the imaging-use pixels IP. -
FIG. 6 illustrates, as an example, the case where theprotection layer 602 is included; however, theprotection layer 602 does not have to be included. - According to the second embodiment, the effects similar to those of the first embodiment are obtained and the degree of color mixture may be reduced and the performance of phase difference detection may be improved by providing each of the
light shielding films 601 between adjacent pixels corresponding to thelight shielding film 601. Furthermore, optical characteristics may be improved by providing theprotection layer 602. - Another example of the configuration of the
pixel array 110 will be described.FIG. 7 is a cross section illustrating the configuration of the pixels taken along line A-A ofFIG. 2 . - In
FIG. 3 , thephotoelectric conversion layer 305 is formed as a continuous layer for a plurality of pixels. The configuration illustrated inFIG. 7 differs from that illustrated inFIG. 3 in that photoelectric conversionlayer separation units 701 are included, each of which is provided between two adjacent pixels corresponding to the photoelectric conversionlayer separation unit 701 so as to divide thephotoelectric conversion layer 305. - In the case where each of the photoelectric conversion
layer separation units 701 is formed such that the photoelectric conversionlayer separation unit 701 lies astride the boundary between the two adjacent pixels corresponding to the photoelectric conversionlayer separation unit 701, photoelectric conversion is not performed near the boundary between the pixels. Thus, the degree of color mixture may be reduced and the performance of phase difference detection may be improved. - The photoelectric conversion
layer separation units 701 may be made of an insulating member such as a SiO film or a SiN film, or may also be made of a light shielding member such as a W single layer, a WSi single layer, an AlCu single layer, a W/TiN multilayer, an AlCu/TiN multilayer, or an AlCu/TiN/Ti multilayer. In the case where a light shielding member is used, the photoelectric conversionlayer separation units 701 may contact either thepixel electrodes 303 or thecounter electrode 307 but may not contact both thepixel electrodes 303 and thecounter electrode 307. By using the photoelectric conversionlayer separation units 701 made of a light shielding member, the degree of color mixture may further be reduced and the performance of phase difference detection may further be improved. - According to the third embodiment, the effects similar to those of the first embodiment are obtained and also the degree of color mixture may be reduced and the performance of phase difference detection may be improved by providing the photoelectric conversion
layer separation units 701. Furthermore, by using the photoelectric conversionlayer separation units 701 made of a light shielding member, the degree of color mixture may further be reduced and the performance of phase difference detection may further be improved. - Another example of the configuration of the
pixel array 110 will be described.FIG. 8 is a cross section illustrating the configuration of the pixels taken along line A-A ofFIG. 2 . - In
FIG. 3 , thephotoelectric conversion layer 305 is formed as a continuous layer for a plurality of pixels. The configuration illustrated inFIG. 8 differs from that illustrated inFIG. 3 in that photoelectric conversion layers 305A of the phase-difference-detection-use pixels AP are smaller thanphotoelectric conversion layers 3051 of the imaging-use pixels IP. - As described above, in the photoelectric conversion unit, the charge generated in the region sandwiched between the
pixel electrode 303 and thecounter electrode 307 in thephotoelectric conversion layer 305 is used as signal electric charge. However, in thephotoelectric conversion layer 305, photoelectric conversion is performed also in a region that is not sandwiched between thepixel electrode 303 and thecounter electrode 307. Thus, the charge generated in such a region may move to the region sandwiched between thepixel electrode 303 and thecounter electrode 307. As a result, pixel signals read out from the phase-difference-detection-use pixels AP may include unnecessary signal components. Thus, in the fourth embodiment, in the phase-difference-detection-use pixels AP, a photoelectric conversion layer portion that does not correspond to thepixel electrodes 303 and regions near thepixel electrodes 303 is eliminated and a photoelectric conversionlayer separation unit 801 is provided. As a result, photoelectric conversion is not performed in the region that is not sandwiched between thepixel electrode 303 and thecounter electrode 307. Consequently, the degree of color mixture may be reduced and the performance of phase difference detection may be improved. - The photoelectric conversion
layer separation unit 801 may be made of an insulating member such as a SiO film or a SiN film, or may also be made of a light shielding member such as a W single layer, a WSi single layer, an AlCu single layer, a W/TiN multilayer, an AlCu/TiN multilayer, or an AlCu/TiN/Ti multilayer. In the case where a light shielding member is used, the photoelectric conversionlayer separation unit 801 may contact either thepixel electrodes 303 or thecounter electrode 307 but may not contact both thepixel electrodes 303 and thecounter electrode 307. By using the photoelectric conversionlayer separation unit 801 made of a light shielding member, the degree of color mixture may further be reduced and the performance of phase difference detection may further be improved. - According to the fourth embodiment, the effects similar to those of the first embodiment are obtained and the degree of color mixture may be reduced and the performance of phase difference detection may be improved by providing the photoelectric conversion
layer separation unit 801. Furthermore, by using the photoelectric conversionlayer separation unit 801 made of a light shielding member, the degree of color mixture may further be reduced and the performance of phase difference detection may further be improved. - In addition, in the fourth embodiment, the
photoelectric conversion layer 3051 of each imaging-use pixel IP and thephotoelectric conversion layer 305A of the phase-difference-detection-use pixel AP corresponding to the imaging-use pixel IP are integrally formed. However, as illustrated in the third embodiment, the photoelectric conversionlayer separation unit 801 may also be provided between the imaging-use pixel IP and the phase-difference-detection-use pixel AP. As a result, the degree of color mixture may further be reduced and the performance of phase difference detection may further be improved. - Another example of the configuration of the
pixel array 110 will be described.FIG. 9 is a cross section illustrating the configuration of the pixels taken along line A-A ofFIG. 2 . - The configuration illustrated in
FIG. 9 differs from that illustrated inFIG. 3 in that thecounter electrodes 307 of the phase-difference-detection-use pixels AP are smaller than thecounter electrodes 307 of the imaging-use pixels IP and in that thepixel electrodes 303 of the imaging-use pixels IP are the same size as thepixel electrodes 303 of the phase-difference-detection-use pixels AP. - In the fifth embodiment,
counter electrodes 307A of the phase-difference-detection-use pixels AP are smaller thancounter electrodes 3071 of the imaging-use pixels IP. As a result, portions sandwiched between thepixel electrodes 303 and thecounter electrodes 307 in thephotoelectric conversion layer 305 in the phase-difference-detection-use pixels AP are smaller than such portions in the imaging-use pixels IP. Similarly to thepixel electrodes 303 illustrated inFIG. 2 , the two phase-difference-detection-use pixels AP are configured such that one of the phase-difference-detection-use pixels AP has thecounter electrode 307 only in its left side portion and the other one of the phase-difference-detection-use pixels AP has thecounter electrode 307 only in its right side portion. Thus, phase difference detection may be realized using signals obtained from these phase-difference-detection-use pixels AP. - Also in the fifth embodiment, a signal may be read out by the same operation as in the first embodiment.
-
FIG. 9 has illustrated the case where thepixel electrodes 303 of the imaging-use pixels IP are the same size as thepixel electrodes 303 of the phase-difference-detection-use pixels AP. However, similarly to as inFIG. 3 , thepixel electrodes 303 of the phase-difference-detection-use pixels AP may be made smaller than thepixel electrodes 303 of the imaging-use pixels IP. For the imaging-use pixels IP and the phase-difference-detection-use pixels AP, at least either thepixel electrodes 303 of the phase-difference-detection-use pixels AP have only to be smaller than thepixel electrodes 303 of the imaging-use pixels IP or thecounter electrodes 307 of the phase-difference-detection-use pixels AP have only to be smaller than thecounter electrodes 307 of the imaging-use pixels IP. - Also in the fifth embodiment, the imaging-use pixels IP and the phase-difference-detection-use pixels AP have the same configuration between the
counter electrodes 307 and the microlenses. As a result, thecolor filter layer 308 and themicrolens layer 309 may be easily and uniformly formed. Consequently, it may be prevented that the sensitivity of the imaging-use pixels IP becomes different from desired characteristics. -
FIG. 10 is a diagram illustrating an example of the configuration of an imaging system. Animaging system 800 includes, for example, anoptical unit 810, the solid-stateimage sensing element 1000, a videosignal processing unit 830, a recording-and-communication unit 840, atiming controller 850, asystem controller 860, and a playback-and-display unit 870. Animage pickup device 820 includes the solid-stateimage sensing element 1000 and the videosignal processing unit 830. As the solid-stateimage sensing element 1000, the solid-state image sensing element described in the above-described embodiments is used. - The
optical unit 810 is an optical system such as a lens, and causes image formation to be performed onto a pixel unit 10 of the solid-stateimage sensing element 1000 using light from an object, in the pixel unit 10 a plurality of pixels being arranged two-dimensionally, and forms an image of the object. The solid-stateimage sensing element 1000 outputs a signal corresponding to the light with which image formation has been performed onto the pixel unit 10, at a timing based on a signal from thetiming controller 850. The signal output from the solid-stateimage sensing element 1000 is input to the videosignal processing unit 830, which is a video signal processing unit, and the videosignal processing unit 830 performs signal processing in accordance with a method defined by a program or the like. The signal obtained as a result of processing performed by the videosignal processing unit 830 is sent as image data to the recording-and-communication unit 840. The recording-and-communication unit 840 sends a signal to be used for formation of an image to the playback-and-display unit 870, and causes the playback-and-display unit 870 to play back and display a moving image or a still image. In addition, upon receiving a signal from the videosignal processing unit 830, the recording-and-communication unit 840 communicates with thesystem controller 860 and also performs an operation for recording the signal to be used for formation of an image in a recording medium, which is not illustrated. - The
system controller 860 performs centralized control on operations of theimaging system 800, and controls driving of theoptical unit 810, thetiming controller 850, the recording-and-communication unit 840, and the playback-and-display unit 870. In addition, thesystem controller 860 includes a storage device, which is not illustrated and an example of which is a recording medium, and programs and the like necessary to control the operations of theimaging system 800 are recorded in the storage device. In addition, thesystem controller 860 supplies, inside theimaging system 800, a signal for switching the drive mode or sensitivity of theimaging system 800 in accordance with, for example, an operation of a user. Specific examples include changing of a row to be read out or a row to be reset, changing of a field angle with electronic zooming, shifting of a field angle with an electronic anti-vibration function, and the like. When the sensitivity of theimaging system 800 is switched in accordance with an input of a user, the sensitivity of the solid-stateimage sensing element 1000 is also switched in accordance with this switching. That is, thesystem controller 860 has a function serving as a sensitivity selection unit for selecting the sensitivity of theimaging system 800, and the sensitivity of the solid-stateimage sensing element 1000 is switched in accordance with the selected sensitivity. - The
timing controller 850 controls a driving timing of the solid-stateimage sensing element 1000 and a driving timing of the videosignal processing unit 830 in accordance with control performed by thesystem controller 860. In addition, thetiming controller 850 may also function as a sensitivity setting unit that sets an image pickup sensitivity of the solid-stateimage sensing element 1000. - The above-described embodiments are mere examples and modifications may be made without departing from the scope of the present invention.
- While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
Claims (11)
1. A solid-state image sensing element comprising:
a pixel array having a plurality of pixels arranged in two dimensions,
each of the plurality of pixels including:
a photoelectric conversion unit including a pixel electrode, a photoelectric conversion layer provided above the pixel electrode, and a counter electrode provided so as to sandwich the photoelectric conversion layer between the counter electrode and the pixel electrode, and
a microlens arranged above the photoelectric conversion unit,
wherein
the plurality of pixels includes a first pixel and a plurality of second pixels,
at least either the pixel electrodes of the plurality of second pixels are smaller than the pixel electrode of the first pixel or the counter electrodes of the plurality of second pixels are smaller than the counter electrode of the first pixel, and
the first pixel is provided between one second pixel that is provided closest to a first outermost periphery of the pixel array and the first outermost periphery of the pixel array, another second pixel is provided between the one second pixel and a second outermost periphery of the pixel array, the second outermost periphery being located at an opposite side of the first outermost periphery, and the another second pixel is adjacent to the one second pixel.
2. The solid-state image sensing element according to claim 1 , wherein the plurality of pixels further includes a photoelectric conversion layer separation unit configured to divide the photoelectric conversion layer of two adjacent pixels among the plurality of pixels.
3. The solid-state image sensing element according to claim 2 , wherein the photoelectric conversion layer separation unit includes at least one of an insulating member and a light shielding member.
4. The solid-state image sensing element according to claim 1 , wherein a photoelectric conversion layer of each of the plurality of second pixels is smaller than a photoelectric conversion layer of the first pixel.
5. The solid-state image sensing element according to claim 4 , further comprises a light shielding member provided between the photoelectric conversion layer of a second pixel among the second pixels and the photoelectric conversion layer of a pixel adjacent to the second pixel.
6. The solid-state image sensing element according to claim 1 , wherein each of the plurality of pixels further includes a color filter between the counter electrode and the microlens.
7. The solid-state image sensing element according to claim 6 , wherein a light shielding film is provided between the counter electrode and the color filter and between adjacent pixels.
8. The solid-state image sensing element according to claim 7 , wherein a protective film is provided between the light shielding film and the color filter.
9. The solid-state image sensing element according to claim 1 , wherein the photoelectric conversion layer is made of any of intrinsic hydrogenated amorphous silicon, a compound semiconductor, and an organic semiconductor.
10. The solid-state image sensing element according to claim 1 , wherein
wherein each of the plurality of pixels further includes a signal readout circuit, wherein
the signal readout circuit includes an in-pixel amplifier, and
the pixel electrode is connected to an input portion of the in-pixel amplifier.
11. An imaging system comprising:
the solid-state image sensing element according to claim 1 ;
an optical system configured to form an image onto the plurality of pixels; and
a video signal processing unit configured to process a signal output from the solid-state image sensing element and generate image data.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/005,507 US20180294307A1 (en) | 2014-07-31 | 2018-06-11 | Solid-state image sensing element and imaging system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014156790A JP6521586B2 (en) | 2014-07-31 | 2014-07-31 | Solid-state imaging device and imaging system |
JP2014-156790 | 2014-07-31 | ||
US14/811,659 US10020340B2 (en) | 2014-07-31 | 2015-07-28 | Solid-state image sensing element and imaging system |
US16/005,507 US20180294307A1 (en) | 2014-07-31 | 2018-06-11 | Solid-state image sensing element and imaging system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/811,659 Continuation US10020340B2 (en) | 2014-07-31 | 2015-07-28 | Solid-state image sensing element and imaging system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180294307A1 true US20180294307A1 (en) | 2018-10-11 |
Family
ID=53785429
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/811,659 Active 2035-08-21 US10020340B2 (en) | 2014-07-31 | 2015-07-28 | Solid-state image sensing element and imaging system |
US16/005,507 Abandoned US20180294307A1 (en) | 2014-07-31 | 2018-06-11 | Solid-state image sensing element and imaging system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/811,659 Active 2035-08-21 US10020340B2 (en) | 2014-07-31 | 2015-07-28 | Solid-state image sensing element and imaging system |
Country Status (4)
Country | Link |
---|---|
US (2) | US10020340B2 (en) |
EP (1) | EP2980852B1 (en) |
JP (1) | JP6521586B2 (en) |
CN (2) | CN109346490A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113544870A (en) * | 2019-04-26 | 2021-10-22 | 松下知识产权经营株式会社 | Image pickup device |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014089432A (en) * | 2012-03-01 | 2014-05-15 | Sony Corp | Solid-state imaging device, microlens forming method of solid-state imaging device and electronic apparatus |
JP6179776B2 (en) * | 2014-06-09 | 2017-08-16 | ソニー株式会社 | Imaging device, electronic device, and manufacturing method |
JP6521586B2 (en) * | 2014-07-31 | 2019-05-29 | キヤノン株式会社 | Solid-state imaging device and imaging system |
US10825858B2 (en) * | 2014-09-24 | 2020-11-03 | Sony Corporation | Image pickup element, image pickup apparatus, and method of manufacturing image pickup element |
JP6555867B2 (en) * | 2014-09-26 | 2019-08-07 | キヤノン株式会社 | Imaging device |
EP3425900B1 (en) * | 2016-02-29 | 2023-08-30 | Sony Group Corporation | Solid-state imaging element |
CN109314124B (en) * | 2016-07-20 | 2023-05-12 | 索尼公司 | Light receiving element, method of manufacturing the same, imaging device, and electronic apparatus |
US10341590B2 (en) * | 2016-08-12 | 2019-07-02 | Semiconductor Components Industries, Llc | Methods and apparatus for a CCD image sensor |
JP2018107725A (en) * | 2016-12-27 | 2018-07-05 | キヤノン株式会社 | Photoelectric conversion device and imaging system |
CN108807434B (en) * | 2017-04-26 | 2023-12-05 | 松下知识产权经营株式会社 | Image pickup apparatus and camera system |
JP7026336B2 (en) * | 2017-06-06 | 2022-02-28 | パナソニックIpマネジメント株式会社 | Imaging device and camera system |
KR102554689B1 (en) * | 2018-10-10 | 2023-07-13 | 삼성전자주식회사 | Semiconductor device including transparent electrode |
WO2020179494A1 (en) * | 2019-03-07 | 2020-09-10 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor device and imaging device |
CN110061025A (en) * | 2019-04-30 | 2019-07-26 | 德淮半导体有限公司 | Imaging sensor and its manufacturing method |
JPWO2021059676A1 (en) * | 2019-09-27 | 2021-04-01 | ||
KR20220043556A (en) * | 2020-09-29 | 2022-04-05 | 에스케이하이닉스 주식회사 | image sensing device |
KR20220072116A (en) | 2020-11-24 | 2022-06-02 | 삼성전자주식회사 | Image sensors |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080211954A1 (en) * | 2007-02-14 | 2008-09-04 | Fujifilm Corporation | Image pickup apparatus |
US20100060769A1 (en) * | 2008-09-11 | 2010-03-11 | Fujifilm Corporation | Solid-state imaging device and imaging apparatus |
US20100245656A1 (en) * | 2009-03-31 | 2010-09-30 | Sony Corporation | Imaging device and focus detecting method |
US20100309357A1 (en) * | 2009-06-05 | 2010-12-09 | Sony Corporation | Solid-state imaging device, method of driving the same, and electronic system including the device |
US20150195466A1 (en) * | 2013-06-24 | 2015-07-09 | Panasonic Intellectual Property Management Co., Ltd. | Solid-state imaging device |
US20160133865A1 (en) * | 2013-09-02 | 2016-05-12 | Sony Corporation | Solid-state imaging element, production method thereof, and electronic device |
US10020340B2 (en) * | 2014-07-31 | 2018-07-10 | Canon Kabushiki Kaisha | Solid-state image sensing element and imaging system |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6093893A (en) * | 1983-10-28 | 1985-05-25 | Toshiba Corp | Color solid-state image pickup device |
JPS60123059A (en) * | 1983-12-08 | 1985-07-01 | Toshiba Corp | Adhesion type color image sensor |
JPS6152061A (en) * | 1984-08-22 | 1986-03-14 | Toshiba Corp | Close-adhering-type color image sensor |
JPS6184057A (en) * | 1984-10-01 | 1986-04-28 | Fuji Xerox Co Ltd | Manufacture of semiconductor device |
JPH1197664A (en) * | 1997-09-20 | 1999-04-09 | Semiconductor Energy Lab Co Ltd | Electronic apparatus and manufacture thereof |
US20050012840A1 (en) * | 2002-08-27 | 2005-01-20 | Tzu-Chiang Hsieh | Camera with MOS or CMOS sensor array |
KR100906060B1 (en) * | 2007-09-28 | 2009-07-03 | 주식회사 동부하이텍 | Image Seonsor and Method for Manufacturing thereof |
KR101776955B1 (en) * | 2009-02-10 | 2017-09-08 | 소니 주식회사 | Solid-state imaging device, method of manufacturing the same, and electronic apparatus |
JP5537905B2 (en) * | 2009-11-10 | 2014-07-02 | 富士フイルム株式会社 | Imaging device and imaging apparatus |
JP4779054B1 (en) * | 2010-03-31 | 2011-09-21 | 富士フイルム株式会社 | Solid-state imaging device and imaging apparatus |
JP2011258729A (en) | 2010-06-08 | 2011-12-22 | Panasonic Corp | Solid-state imaging device and method of manufacturing the same |
US8949730B2 (en) | 2010-07-14 | 2015-02-03 | Biocad Medical, Inc. | Library selection in dental prosthesis design |
JP2012064822A (en) * | 2010-09-17 | 2012-03-29 | Panasonic Corp | Solid-state imaging device and manufacturing method therefor |
KR20130038035A (en) * | 2011-10-07 | 2013-04-17 | 삼성전자주식회사 | Image sensor |
JP5556823B2 (en) * | 2012-01-13 | 2014-07-23 | 株式会社ニコン | Solid-state imaging device and electronic camera |
JP2013258168A (en) * | 2012-06-11 | 2013-12-26 | Fujifilm Corp | Solid-state imaging element, and imaging device |
US8933527B2 (en) * | 2012-07-31 | 2015-01-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Elevated photodiodes with crosstalk isolation |
US9786702B2 (en) * | 2012-09-20 | 2017-10-10 | Semiconductor Components Industries, Llc | Backside illuminated image sensors having buried light shields with absorptive antireflective coating |
JP2014067948A (en) | 2012-09-27 | 2014-04-17 | Fujifilm Corp | Solid-state imaging device and imaging apparatus |
JP6458343B2 (en) * | 2014-02-27 | 2019-01-30 | 株式会社ニコン | Imaging device |
-
2014
- 2014-07-31 JP JP2014156790A patent/JP6521586B2/en active Active
-
2015
- 2015-07-15 EP EP15176842.1A patent/EP2980852B1/en active Active
- 2015-07-28 US US14/811,659 patent/US10020340B2/en active Active
- 2015-07-31 CN CN201811117287.0A patent/CN109346490A/en active Pending
- 2015-07-31 CN CN201510463213.2A patent/CN105321971B/en active Active
-
2018
- 2018-06-11 US US16/005,507 patent/US20180294307A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080211954A1 (en) * | 2007-02-14 | 2008-09-04 | Fujifilm Corporation | Image pickup apparatus |
US20100060769A1 (en) * | 2008-09-11 | 2010-03-11 | Fujifilm Corporation | Solid-state imaging device and imaging apparatus |
US20100245656A1 (en) * | 2009-03-31 | 2010-09-30 | Sony Corporation | Imaging device and focus detecting method |
US20100309357A1 (en) * | 2009-06-05 | 2010-12-09 | Sony Corporation | Solid-state imaging device, method of driving the same, and electronic system including the device |
US20150195466A1 (en) * | 2013-06-24 | 2015-07-09 | Panasonic Intellectual Property Management Co., Ltd. | Solid-state imaging device |
US20160133865A1 (en) * | 2013-09-02 | 2016-05-12 | Sony Corporation | Solid-state imaging element, production method thereof, and electronic device |
US10020340B2 (en) * | 2014-07-31 | 2018-07-10 | Canon Kabushiki Kaisha | Solid-state image sensing element and imaging system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113544870A (en) * | 2019-04-26 | 2021-10-22 | 松下知识产权经营株式会社 | Image pickup device |
Also Published As
Publication number | Publication date |
---|---|
US10020340B2 (en) | 2018-07-10 |
CN105321971A (en) | 2016-02-10 |
CN109346490A (en) | 2019-02-15 |
JP6521586B2 (en) | 2019-05-29 |
JP2016033982A (en) | 2016-03-10 |
EP2980852B1 (en) | 2019-11-27 |
EP2980852A1 (en) | 2016-02-03 |
CN105321971B (en) | 2018-10-12 |
US20160035780A1 (en) | 2016-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180294307A1 (en) | Solid-state image sensing element and imaging system | |
US11159756B2 (en) | Solid-state image pickup element and image pickup system | |
US20200235150A1 (en) | Solid-state image pickup device and method of driving the same | |
KR102430114B1 (en) | Solid-state imaging element, method for manufacturing same, and electronic device | |
US8106983B2 (en) | Solid-state imaging device and camera | |
US20220359587A1 (en) | Solid-state imaging device and electronic apparatus | |
CN109863602B (en) | Image sensor with enhanced wide angle performance | |
CN106851136B (en) | Image pickup apparatus and image pickup system | |
US8624305B2 (en) | Solid-state imaging device and method for manufacturing solid-state imaging device, and electronic device | |
JP6236635B2 (en) | Solid-state imaging device and driving method thereof | |
US7345328B2 (en) | Solid-state image pick-up device of photoelectric converting film lamination type | |
US11812170B2 (en) | Solid-state imaging element and electronic device | |
GB2545101A (en) | Imaging apparatus and imaging system | |
JP2009253276A (en) | Image sensor and driving method using binary optical signal | |
TWI709235B (en) | Solid-state imaging element, its manufacturing method and electronic equipment | |
US20160037116A1 (en) | Photoelectric conversion apparatus and photoelectric conversion system | |
TW201448599A (en) | Solid imaging element and imaging device | |
US11647641B2 (en) | Photo-sensitive device and a method for light detection in a photo-sensitive device | |
JP7134911B2 (en) | Solid-state image sensor and imaging system | |
JP2005303284A (en) | Photoelectric film laminated solid-state imaging device | |
JP7402635B2 (en) | Solid-state imaging device, imaging device, and method for suppressing white scratches |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |