Nothing Special   »   [go: up one dir, main page]

US20180256329A1 - Systems, methods and devices for prosthetic heart valve with single valve leaflet - Google Patents

Systems, methods and devices for prosthetic heart valve with single valve leaflet Download PDF

Info

Publication number
US20180256329A1
US20180256329A1 US15/913,509 US201815913509A US2018256329A1 US 20180256329 A1 US20180256329 A1 US 20180256329A1 US 201815913509 A US201815913509 A US 201815913509A US 2018256329 A1 US2018256329 A1 US 2018256329A1
Authority
US
United States
Prior art keywords
valve
leaflet
valve support
base side
annulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/913,509
Other versions
US12029647B2 (en
Inventor
Jeffrey W. Chambers
Saravana B. Kumar
Joseph P. Higgins
Robert J. Thatcher
Jason S. Diedering
Jeffrey R. Stone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
4C Medical Technologies Inc
Original Assignee
4C Medical Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/913,509 priority Critical patent/US12029647B2/en
Application filed by 4C Medical Technologies Inc filed Critical 4C Medical Technologies Inc
Priority to AU2018231187A priority patent/AU2018231187B2/en
Priority to CN201880024605.0A priority patent/CN110505854B/en
Priority to PCT/US2018/021244 priority patent/WO2018165225A1/en
Priority to CA3054814A priority patent/CA3054814C/en
Priority to JP2019548635A priority patent/JP2020509835A/en
Priority to EP18764951.2A priority patent/EP3592296A4/en
Publication of US20180256329A1 publication Critical patent/US20180256329A1/en
Assigned to 4C MEDICAL TECHNOLOGIES, INC. reassignment 4C MEDICAL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAMBERS, JEFFREY W., STONE, JEFFREY R., KUMAR, Saravana B., DIEDERING, Jason S., HIGGINS, JOSEPH P., THATCHER, ROBERT J.
Application granted granted Critical
Publication of US12029647B2 publication Critical patent/US12029647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2463Implants forming part of the valve leaflets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0091Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements connected by a hinged linkage mechanism, e.g. of the single-bar or multi-bar linkage type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0071Three-dimensional shapes spherical

Definitions

  • the invention relates to supplementing and/or replacing native heart valve leaflet function.
  • the human heart comprises four chambers and four heart valves that assist in the forward (antegrade) flow of blood through the heart.
  • the chambers include the left atrium, left ventricle, right atrium and left ventricle.
  • the four heart valves include the mitral valve, the tricuspid valve, the aortic valve and the pulmonary valve.
  • the mitral valve is located between the left atrium and left ventricle and helps control the flow of blood from the left atrium to the left ventricle by acting as a one-way valve to prevent backflow into the left atrium.
  • the tricuspid valve is located between the right atrium and the right ventricle, while the aortic valve and the pulmonary valve are semilunar valves located in arteries flowing blood away from the heart.
  • the valves are all one-way valves, with leaflets that open to allow forward (antegrade) blood flow. The normally functioning valve leaflets close under the pressure exerted by reverse blood to prevent backflow (retrograde) of the blood into the chamber it just flowed out of.
  • Native heart valves may be, or become, dysfunctional for a variety of reasons and/or conditions including but not limited to disease, trauma, congenital malformations, and aging. These types of conditions may cause the valve structure to either fail to properly open (stenotic failure) and/or fail to close properly (regurgitant).
  • Mitral valve regurgitation is a specific problem resulting from a dysfunctional mitral valve. Mitral regurgitation results from the mitral valve allowing at least some retrograde blood flow back into the left atrium from the left ventricle. This backflow of blood places a burden on the left ventricle with a volume load that may lead to a series of left ventricular compensatory adaptations and adjustments, including remodeling of the ventricular chamber size and shape, that vary considerably during the prolonged clinical course of mitral regurgitation.
  • Tricuspid regurgitation also known as tricuspid insufficiency, occurs when the tricuspid valve doesn't properly close, causing blood to flow back up into the right atrium when the right ventricle contracts.
  • Various embodiments of the present invention discussed herein may apply to mitral valve and/or tricuspid valve regurgitation.
  • Native heart valves generally, e.g., mitral valves, therefore, may require functional repair and/or assistance, including a partial or complete replacement.
  • Such intervention may take several forms including open heart surgery or open heart implantation of a replacement heart valve. See e.g., U.S. Pat. No. 4,106,129 (Carpentier), for a procedure that is highly invasive, fraught with patient risks, and requiring not only an extended hospitalization but also a highly painful recovery period.
  • This self-expanded form also presents problems when, as is often the case, the device is not properly positioned in the first positioning attempt and, therefore, must be recaptured and positionally adjusted.
  • This recapturing process in the case of a fully, or even partially, expanded device requires re-collapsing the device to a point that allows the operator to retract the collapsed device back into a delivery sheath or catheter, adjust the inbound position for the device and then re-expand to the proper position by redeploying the positionally adjusted device distally out of the delivery sheath or catheter. Collapsing the already expanded device is difficult because the expanded stent or wire network is generally designed to achieve the expanded state which also resists contractive or collapsing forces.
  • gaining access to the valve of interest is achieved percutaneously via one of at least the following known access and delivery routes: femoral access, venous access, trans-apical, trans-aortic, trans-septal, trans-atrial, retrograde from the aorta delivery techniques.
  • replacement heart valves are intended for full replacement of the native heart valve. Therefore, these replacement heart valves physically engage the annular throat and/or valve leaflets, thereby eliminating all remaining functionality of the native valve and making the patient completely reliant on the replacement valve.
  • native valve has either lost virtually complete functionality before the interventional implantation procedure, or the native valve continues to lose functionality after the implantation procedure.
  • the preferred solution is delivery and implantation of a valve device that will function both as an adjunctive and/or supplementary functional valve as well as be fully capable of replacing the native function of a valve that has lost most or all of its functionality.
  • inventive solutions described infra will apply generally to all types and forms of heart valve devices, unless otherwise specified.
  • stents in the left atrium, with anchoring or tethering (disposed downward through the native annulus or annular throat) connected from the stent device down through the annular throat, with the sub-annular surface within the left ventricle, the left ventricular chordae tendineae and even into the left ventricle wall surface(s). See, e.g., the MitraClip® marketed by the Abbott Group and currently the only US approved repair device.
  • a catheter containing the MitraClip® is inserted into the femoral vein.
  • the device enters the heart through the inferior vena cava to the right atrium and delivered trans-septally.
  • the MitraClip® passes through the annulus into the left ventricle and sits below the leaflets, clipping the leaflets to decrease regurgitation.
  • Such 2-chamber and native annular solutions are unnecessary bulky and therefore more difficult to deliver and to position/recapture/reposition from a strictly structural perspective. Further, the 2-chamber solutions present difficulties in terms of making the ventricular anchoring and/or tethering connections required to hold position. Moreover, these solutions interfere with the native valve functionality as described above because the device portions that are disposed within the left ventricle must be routed through the native annulus and/or annular throat and native mitral valve, thereby disrupting any remaining coaptation capability of the native leaflets. In addition, the 2-chamber solutions generally require an invasive anchoring of some of the native tissue, resulting in unnecessary trauma and potential complication.
  • known prosthetic cardiac valves consist of two or three leaflets that are arranged to act as a one-way valve, permitting fluid flow therethrough in the antegrade direction while preventing retrograde flow.
  • the mitral valve is located retrosternally at the fourth costal cartilage, consisting of an anterior and posterior leaflet, chordae tendinae, papillary muscles, ventricular wall and annulus connected to the atria.
  • Each leaflet is supported by chordae tendinae that are attached to papillary muscles which become taut with each ventricular contraction preserving valvular competence.
  • Both the anterior and posterior leaflets of the valve are attached via primary, secondary and tertiary chordae to both the antero-lateral and posterio-medial papillary muscles.
  • a disruption in either papillary muscle in the setting of myocardial injury can result in dysfunction of either the anterior or posterior leaflet of the mitral valve.
  • Other mechanisms may result in failure of one, or both of the mitral leaflets.
  • the regurgitation may take the form of a non-central, eccentric jet of blood back into the left atrium.
  • Other leaflet failures may comprise a more centralized regurgitation jet.
  • Known prosthetic valve replacements generally comprise leaflets which are arranged to mimic the native valve structure, which may over time become susceptible to similar regurgitation outcomes.
  • FIG. 1A illustrates a side view of one embodiment of the present invention.
  • FIG. 1B illustrates a bottom cutaway view of one embodiment of the present invention.
  • FIG. 2A illustrates a cutaway bottom view of one embodiment of the present invention.
  • FIG. 2B illustrates a cutaway bottom view of one embodiment of the present invention.
  • FIG. 2C illustrates a cutaway bottom view of one embodiment of the present invention.
  • FIG. 3 illustrates a side view of one embodiment of the present invention.
  • FIG. 4 illustrates a side view of one embodiment of the present invention.
  • FIG. 5 illustrates a side view of one embodiment of the present invention.
  • FIG. 6 illustrates a side view of one embodiment of the present invention.
  • FIG. 7 illustrates a side view of one embodiment of the present invention.
  • FIG. 8 illustrates a bottom perspective view of one embodiment of the present invention.
  • FIG. 9 illustrates a bottom view of one embodiment of the present invention.
  • FIG. 10 illustrates a side view of one embodiment of the present invention.
  • FIGS. 1A and 1B provides an exemplary expanded prosthetic valve device 100 adapted for implantation within a heart chamber, e.g., the left atrium.
  • An anchoring portion 102 is shown with a wire, e.g., a stent, construction that may be open, or at least partially open, when expanded within an exemplary left atrium.
  • Anchoring portion 102 may be hollow and may provide a flow channel, shown in dashed lines at 103 in FIG. 1A , therethrough for blood flowing into the open wire construction of the anchoring portion 102 from the left pulmonary veins L into the left atrium where the device 100 is expanded and positioned for implantation.
  • a lower section of anchoring portion 102 that is the section of the anchoring portion 102 that is located below the incoming blood flow points at the left pulmonary veins L, may be covered by fabric and/or tissue, either on the luminal side, the abluminal side, or on both the luminal and abluminal sides of the anchoring portion 102 to help channel the incoming blood flow into the flow channel 103 and to prevent paravalvular leakage.
  • the flow channel in FIGS. 1A and 1B terminates at a lower edge 104 of the anchoring portion with an exemplary prosthetic leaflet 106 hingedly attached thereto.
  • the lower edge 104 may comprise a generally circular profile, though other shapes are within the scope of the present invention.
  • the undeformed expanded profile of the anchoring portion 102 and, in some cases, of the lower edge 104 may differ from a deformed expanded profile of anchoring portion 102 and lower edge 104 when the device 100 expands against atrial walls and the upper surface of the annulus.
  • the embodiment illustrated in FIG. 1B comprises a single support wire, though a thicker configuration, e.g., a sewing ring, may also be provided.
  • lower edge 104 comprises a structure that allows a hinged or flexing connection with the single prosthetic leaflet 106 .
  • a single prosthetic leaflet 106 may comprise a perimeter 108 and a leaflet attachment zone 110 located along a portion of the perimeter 108 .
  • leaflet 106 may be connected with the lower edge 104 of the anchoring structure 102 or may be a separate structure that is attached or connected with the lower edge 104 of anchoring portion 102 .
  • Perimeter 108 in these leaflets 106 comprise a width, and in some cases a thickness, that may be formed of a material that differs from the material of the inner region 105 to facilitate attachment to the lower edge 104 of anchoring portion 102 .
  • leaflet 106 may comprise a single material throughout as in FIG. 2C , wherein the perimeter 108 (shown in dashed lines) may comprise the same material as the inner region 105 , though perimeter 108 may comprise a reinforced, e.g., double layer or folded layer of material.
  • the leaflet 106 may comprise a circular or a geometric, e.g., hexagonal, outer profile, see e.g. FIGS. 2A and 2B . These are simply exemplary shapes, all other shapes are within the scope of the present invention, so long as the leaflet 106 covers the opening defined by the lower edge 104 of the anchoring portion 102 . Accordingly, lower edge 104 may be shaped with a variety of shapes, e.g., circular, semi-circular, when either expanded and deformed or expanded and undeformed. Any shape for lower edge 104 of the anchoring portion 102 is within the scope of the present invention, so long as the leaflet 106 is sized and shaped to cover the opening defined by lower edge 104 .
  • FIGS. 2A-2C The attachment mechanism between the valve leaflet 106 and support structure's leaflet attachment zone 110 may be seen with exemplary connection methods, and leaflet 106 structures, in FIGS. 2A-2C .
  • FIG. 2 illustrates a series of connecting points which may be sutures or some other equivalent connective structure and that covers part of the outer surface of an exemplary circular valve leaflet such that the valve leaflet may swing open and closed using the connecting points as a hinge point.
  • FIG. 3 illustrates an exemplary hexagonal valve leaflet with a series of connecting points within a leaflet attachment zone along one side of the hexagonal valve leaflet.
  • the connecting points within the leaflet attachment zone 110 may comprise a structure that consists of one or more unbroken connectors, including but not limited to adhesive or gluing, continuous stitching, integrally forming the valve leaflet 106 with the anchoring structure 102 , preferably with the lower edge 104 thereof, and/or clamping the valve along the leaflet attachment zone 110 to the anchoring structure, again preferably with the lower edge 104 thereof.
  • the prosthetic valve leaflet 106 thus acts like a hinged door in that it may rotate or swing between a closed position and an open position relative to the lower edge 104 of anchoring portion 102 with a portion of the leaflet 106 secured to a portion of the lower edge 104 of the anchoring portion 102 along the leaflet attachment zone 110 by, e.g., a plurality of sutures or the equivalent.
  • the closed position results in a temporary engagement and sealing of an outer portion of the upper surface of the valve leaflet against the bottom surface of the lower edge 104 of the structure 102 , the prosthetic valve leaflet 106 being of a size and shape to cover the opening defined by lower edge 104 of anchoring portion 102 , thereby preventing retrograde blood flow therethrough.
  • the open position disengages the upper surface of the valve leaflet 106 from the bottom surface of the lower edge 104 to allow blood to flow therethrough.
  • a preferred positioning within the left atrium may comprise positioning at least a portion of the bottom surface of the anchoring structure 102 on at least a portion of the upper annular surface of the left atrium as in FIG. 1A .
  • the prosthetic leaflet 106 may be positioned above, or spaced away from, the native valve leaflets so that physical interference does not occur between the prosthetic valve leaflet 106 and the native leaflets and to maintain the remaining functionality of the native leaflets.
  • device 100 will function to supplement the native leaflet functionality and, if and when needed, will begin to take over progressively more functionality as the native leaflets deteriorate. Eventually, the device 100 will function to replace all, or virtually all of the native leaflet functionality. The result is a device 100 that adapts to progressively assume the functionality of the native leaflets as they deteriorate, from supplementation through full replacement.
  • valve leaflet 106 may be elevated or spaced above the native annular surface so that at least a portion of the valve leaflet 106 in the opened position is also elevated or spaced above at least the upper annular surface. In other cases at least a portion of the valve leaflet 106 in the open position may be disposed above the native valve leaflets so as to not physically interfere with them, or minimize physical interaction therewith. In these embodiments, the prosthetic leaflet may serve at least a supplementary function to the native leaflet function.
  • a support for the prosthetic leaflet may be disposed within the native annulus or annular throat, effectively pinning the native leaflets and requiring the inventive valve leaflet to completely replace the native leaflet function.
  • the prosthetic leaflet will open in response to increased fluid pressure in the left atrium and allow blood to flow down to the spaced away native leaflets which also open, enabling blood flow to the left ventricle.
  • the native leaflets will then close to the extent possible in response to increased fluid pressure in the left ventricle and, in response to the regurgitation pressure in the space between the native leaflets and the prosthetic leaflet, the prosthetic leaflet will then close, preventing retrograde blood flow into the left atrium.
  • the prosthetic leaflet will completely handle and manage the blood flow between the left atrium and ventricle.
  • prosthetic leaflet 106 opening and leaflet attachment zone 110 it is part of the present invention to orient the prosthetic leaflet 106 opening and leaflet attachment zone 110 to optimize the supplemental and/or replacement function, for example and without limitation in the case where a single native leaflet is dysfunctional and a result is an eccentric, non-central regurgitation jet.
  • the new valve leaflet 106 may be oriented, e.g., so that the eccentric regurgitation jet is focused at the bottom surface of a distal end (away from the leaflet attachment zone 110 ) of the valve leaflet 106 , in the middle of the valve leaflet (as measured relative to the distal end and the leaflet attachment zone 110 ), or closer to the leaflet attachment zone 110 , or at points between the distal end and midpoint, or between the midpoint and the leaflet attachment zone 110 in order to maximize closure efficiency of the prosthetic leaflet 106 .
  • the exit flow direction and/or position may be affected by the positioning/orientation of the leaflet attachment zone 110 as well as the degree to which the valve leaflet 106 is allowed to open, so as to direct the blood flow to an optimal location on the native valve leaflets.
  • a fully opened prosthetic valve leaflet 106 may comprise opening to a position that is approximately 90 degrees from its closed position. Opening positions for the prosthetic valve leaflet 106 of less than 90 degrees from the closed position will channel the blood flow in a direction along the length of the opened leaflet 106 toward a target on the native leaflets.
  • leaflet 106 may be fully opened to approximately a 45 degree angle relative to its closed position against lower edge 104 of the anchoring structure 102 .
  • This configuration will direct the incoming blood flow 103 generally along the same direction as the open position of the leaflet 106 . Therefore, not only is the opening angle of the leaflet 106 important, but so is the orientation of the anchoring structure 102 on expansion which will dictate the location of the leaflet attachment zone 110 which, in turn, dictates the location of the opening leaflet 106 and resultant blood flow therealong.
  • Another variable relative to locating the blood flow along the opened leaflet 106 is the distance of the distal end of the opened leaflet 106 from the target region in the native leaflets.
  • FIG. 3 illustrates an alternate embodiment for a prosthetic valve device 200 that is similar to the prosthetic valve device 100 discussed above in certain respects.
  • the anchoring structure 202 has the same or similar features and characteristics as the anchoring structure 102 of device 100 , e.g., a collapsible and expandable structure that may comprise a stent-like structure with open cells.
  • the valve support structure 204 as illustrated in FIG. 3 comprises two basic elements arranged on opposing sides of a lower opening 201 defined by the anchoring structure 202 .
  • a first fixed base side 212 that may be more stiff than, or of similar stiffness to, the structure comprising the dome and extends a distance D away from the lower opening 201 and may comprise an expanded and collapsed configurations.
  • Positioned across the lower opening 201 from the first fixed base side 212 of valve support 204 is a moveable, rotatable valve member 214 that is connected to, or operatively engaged with, or attached to, or integrally formed with, a second fixed base side 216 that may be of similar stiffness, or different stiffness, as the first fixed base side 212 and may also comprise expanded and collapsed configurations.
  • the rotatable valve member 214 may be formed of a tissue or fabric that is less stiff than the second fixed base side 216 and may comprise sizes and shapes as describe above regarding the prosthetic valve of FIG. 1A .
  • Fluid flow force generated by blood flow from the left atrium will be sufficient to push the rotatable valve member 214 to an open position as shown in FIG. 4 , thereby enabling fluid communication of the atrial blood with the left ventricle.
  • those forces cause the valve member 214 to rotate up and close against the first fixed base side 212 , preventing regurgitant blood from flowing into the interior of the anchoring structure 202 .
  • the rotatable valve member 214 may be biased in the closed position, pressed with a predetermined amount of biasing force against the first fixed base side 212 , so that the closed position for valve member 214 is the biased position. This requires that the blood flow from the atrium exert sufficient force to overcome the biasing force of the valve member 214 against first fixed base side 212 to cause the valve member 214 to rotate into an open position.
  • the valve member 214 may, when closed and as shown, overlap with the inner edge of the first fixed base side 212 , so that the upper (upstream) side U of valve member 214 engages the inner edge I of the first fixed base side 212 in the closed position.
  • the distal end 220 of valve member 214 may fit against the distal end 220 of the first base fixed side 212 to provide a generally sealed closure.
  • the device of FIG. 3 may be positioned within the left atrium so that the first and second sides of the base 212 , 216 rest upon the upper annular surface with the prosthetic rotatable leaflet 214 positioned over the annulus as in FIG. 4 so that the distal end 220 of leaflet 214 may extend into the annulus when in an open position.
  • the distance D of extension of the first and second sides of the base 212 , 216 may be used to locate and/or position the device 200 slightly within the annulus, with the first and second sides 212 , 216 of the base extending downward (downstream) into the annulus as in FIG. 5 .
  • the location of blood flow through device 200 and across rotatable leaflet 214 may be optimized as a system by configuring the degree of angle of maximum opening for leaflet 214 , the rotational location of the leaflet 214 , specifically the end of the leaflet located away from the point of flexion 218 , and the distance or spacing of the end of the leaflet located furthermost from the point of flexion 218 when opened in the open position, i.e., maximum degree of opening.
  • system elements that may be optimized for locating the blood flow onto native leaflets comprise the distance of extension of the first base side 212 over the annulus.
  • the first base side 212 may not extend over the annulus, instead the distal end 222 of the first base side 212 may be coextensive with an edge of the annulus, see e.g., FIG. 4 . In other cases, the distal end 222 of the first base side 212 may extend a distance beyond the annular edge and, therefore, over the annulus the same distance.
  • a modified embodiment of the device 200 of FIG. 3 may locate the prosthetic rotatable leaflet 214 at a position that is located above the native annular surface, i.e., in a super annular position, that does not result in any physical touching of the native valve leaflets.
  • device 300 comprises an anchoring support 302 and a valve support 330 .
  • the valve support comprises an inflow end 332 and an outflow end 334 and defines a flow channel therebetween.
  • a first base side 336 may be attached along the flow channel of the valve support 330 and a prosthetic leaflet 338 attached at a position along the flow channel of the valve support 330 that enables engagement of the first base side 336 by the prosthetic leaflet 338 when in a closed position.
  • the prosthetic leaflet 338 and first base side 336 may be positioned and spaced above the upper annular surface at exemplary position A, though it is understood that the prosthetic leaflet 338 and first base side 336 may be positioned at any point along the flow channel of the valve support 330 .
  • the prosthetic leaflet 338 and first base side 336 may be positioned at any point between the inflow and outflow ends 332 , 334 of the valve support 330 including, but not limited to, a location that is coplanar with the upper annular surface.
  • first base side 336 may comprise a very small lip structure to stop the upward rotation of the valve 338 and achieve the closed position to prevent regurgitation.
  • the lip structure may surround valve support 338 to form a temporary seal between lip structure/first base side 336 and the closed prosthetic leaflet 338 .
  • Valve support 330 may be a cylindrical structure as illustrated or may comprise a section of a cone, with increasing distance between the cone sides moving from the inflow end to the outflow end of the valve support 330 .
  • the valve support 330 may comprise a conical section with decreasing distance between the cone sides moving from the inflow end 332 to the outflow end 334 of the valve support 330 .
  • Other configurations for the valve support 330 may present themselves to the skilled artisan, each being within the scope of the present invention.
  • the valve support 330 , prosthetic leaflet 338 and fixed first side 336 may be positioned as extended downstream into the native annulus as indicated by position B.
  • the valve support 330 terminates at a point above the native leaflets, while in other cases the valve support 330 may extend to and perhaps beyond the native leaflets within the annulus, thereby pinning the native leaflets against the annulus.
  • the location of the prosthetic leaflet 338 and fixed first side 336 may be positioned at any point within the valve support 330 between the inflow end 332 and the outflow end 334 .
  • Valve support 330 in FIGS. 6 and 7 may comprise a separate structure that is mechanically connected with the lower opening of the anchoring structure 302 .
  • the anchoring structure 302 comprises an expandable and collapsible transition section 340 whereby the anchoring structure turns radially inwardly to form the valve support 330 .
  • the valve support 330 , transition section 340 , and anchoring structure 302 comprise a unitary structure that may comprise different characteristics in each of the valve support 330 , transition section 340 and anchoring structure 302 .
  • stent cell sizes and/or arrangements may differ between the afore-mentioned device elements 330 , 340 and/or 302 .
  • the unitary construction allows the device of FIG.
  • FIG. 7 This capability is highly advantageous during transition of the collapsed device through a delivery catheter to the heart chamber as the collapsed turned-out device of, e.g., FIG. 7 , comprises only two layers as opposed to the non-turned-out device of FIG. 6 which, in the region of the valve support 330 comprises four layers and is, therefore, two layers thicker.
  • the device of FIG. 7 is desired in the expanded configuration to position the valve support 330 within the annulus. In other cases, the device of FIG. 6 is desired for positioning the valve support 330 radially within the anchoring support 302 and for allowing location of the prosthetic valve 338 at, or above, the annular surface.
  • the device 300 will be reconfigured after release from the distal end of the delivery catheter by pulling the valve support 330 radially back into the anchoring support 302 interior space to achieve the structure of the exemplary device of FIG. 6 .
  • the embodiment of FIG. 6 comprises the inflow end 332 of the valve support 330 is located at a position that is radially within the interior of anchoring structure 302 and the transition section 340 forms the outflow end 334 of the valve support 302 , wherein the inflow end 332 of valve support 330 is spaced radially inward and away from the transition section 340 .
  • the inflow end 332 of the valve support 330 is defined by and substantially coextensive with the transition section 340 , with the outflow end 334 of the valve support 330 extending radially outwardly away from the transition section 340 .
  • Valve support section 404 comprises a first valve flap 406 and a second valve flap 408 that open and close against a lower opening 410 defined by anchoring section 402 and adapted to hingedly engage first and second valve flaps 406 , 408 .
  • Each of the first and second valve flaps 406 , 408 may comprise a relatively stiff or rigid outer frame 412 in the general shape of a half circle, or other curvilinear form, and comprise a material on the inner portion 414 of the outer frame, e.g., tissue or fabric or other material with a central straight or linear section 411 connecting the two ends of the half-circle-shaped outer frame 412 .
  • At least one flexion, or hinging, region 416 is provided to bias the first and second valve flaps 406 , 408 in the closed position (as shown) and to allow opening of the first and second valve flaps 406 , 408 when the biasing force is overcome by blood flow pressure force as described above.
  • first and second valve flaps 406 , 408 may comprise a sealing engagement together at the central straight or linear section 411 of the outer frame 412 .
  • This may be a total or partial seal and may be supplemented by a biocompatible and flexible gasket or liner 420 on one or both of the central straight or linear section 411 of the outer frame 412 to ensure sealing when the flaps close together.
  • FIG. 10 may comprise the first and second valve flaps 406 , 408 comprising a sail feature 422 attached at one end to the first and second valve flaps 406 , 408 and free to move at the opposing end and comprising material having a generally downwardly curving profile, when engaged by blood flow from below, may catch upwardly flowing fluid, similar to the way sails catching wind, to flex and aid in generating upward force to close the flaps 406 , 408 more efficiently and quickly to prevent regurgitation.
  • any prosthetic valve devices described herein including for example the anchoring portions as described herein, as well as the prosthetic valve leaflets or prosthetic valve flaps and/or valve support structures as described herein may comprise a releasable amount of a therapeutic agent thereon for localized application to the heart chamber tissue and/or to the native valves, annulus or other structure.
  • the therapeutic agent disposed in or on the prosthetic device may target blood vessels, bodily conduits, or specific organs contacted by the circulatory system to treat, and/or prevent, a bodily disorder and/or accelerate a desired bodily response, e.g., and without limitation endotheliazation.
  • Body disorder refers to any condition that adversely affects the function of the body.
  • treatment includes prevention, reduction, delay, stabilization, and/or elimination of a bodily disorder, e.g., a failing cardiac valve or a vascular disorder.
  • a bodily disorder e.g., a failing cardiac valve or a vascular disorder.
  • treatment comprises repairing damage cause by the bodily, e.g., valvular or vascular, disorder and/or intervention of same, including but not limited to mechanical intervention.
  • a “therapeutic agent” comprises any substance capable of exerting an effect including, but not limited to therapeutic, prophylactic or diagnostic.
  • therapeutic agents may comprise anti-inflammatories, anti-infectives, analgesics, anti-proliferatives, and the like including but not limited to antirestenosis drugs and therapeutic agents that accelerate endothelial coverage and endotheliazation, including but certainly not limited to a therapy stent marketed by OrbusNeichTM that is designed to repair vessel injury and regenerate the endothelium, to foster vessel healing achieved by accelerating endothelial coverage and controlling neo-intimal proliferation with a combination of endothelial progenitor cell capture and a sirolimus drug elution.
  • Therapeutic agent as used and defined herein further comprises mammalian stem cells.
  • Therapeutic agent as used herein further includes other drugs, genetic materials and biological materials.
  • the genetic materials mean DNA or RNA, including, without limitation, of DNA/RNA encoding a useful protein, intended to be inserted into a human body including viral vectors and non-viral vectors.
  • Viral vectors include adenoviruses, gutted adenoviruses, adeno-associated virus, retroviruses, alpha virus, lentiviruses, herpes simplex virus, ex vivo modified cells (e.g., stem cells, fibroblasts, myoblasts, satellite cells, pericytes, cardiomyocytes, skeletal myocytes, macrophage), replication competent viruses, and hybrid vectors.
  • Non-viral vectors include artificial chromosomes and mini-chromosomes, plasmid DNA vectors, cationic polymers, graft copolymers, neutral polymers PVP, SP1017, lipids or lipoplexes, nanoparticles and microparticles with and without targeting sequences such as the protein transduction domain (PTD).
  • the biological materials include cells, yeasts, bacteria, proteins, peptides, cytokines and hormones. Examples for peptides and proteins include growth factors (FGF, FGF-1, FGF-2, VEGF, Endotherial Mitogenic Growth Factors, and epidermal growth factors, transforming growth factor .alpha.
  • platelet derived endothelial growth factor platelet derived growth factor
  • platelet derived growth factor platelet derived growth factor
  • tumor necrosis factor .alpha. hepatocyte growth factor and insulin like growth factor
  • transcription factors proteinkinases, CD inhibitors, thymidine kinase, and bone morphogenic proteins.
  • dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules.
  • Therapeutic agents further include cells that may be of human origin (autologous or allogeneic) or from an animal source (xenogeneic), genetically engineered, if desired, to deliver proteins of interest at the transplant site.
  • Cells within the definition of therapeutic agents herein further include whole bone marrow, bone marrow derived mono-nuclear cells, progenitor cells (e.g., endothelial progenitor cells) stem cells (e.g., mesenchymal, hematopoietic, neuronal), pluripotent stem cells, fibroblasts, macrophage, and satellite cells.
  • Therapeutic agent also includes non-genetic substances, such as: anti-thrombogenic agents such as heparin, heparin derivatives, and urokinase; anti-proliferative agents such as enoxaprin, angiopeptin, or monoclonal antibodies capable of blocking smooth muscle cell proliferation, hirudin, and acetylsalicylic acid, amlodipine and doxazosin; anti-inflammatory agents such as glucocorticoids, betamethasone, dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, and mesalamine; antineoplastic/antiproliferative/anti-miotic agents such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, methotrexate, azathioprine, adriamycin and mutamycin; endostatin
  • the biologically active material can be used with (a) biologically non-active material(s) including a solvent, a carrier or an excipient, such as sucrose acetate isobutyrate, ethanol, n-methyl pyrolidone, dimethyl sulfoxide, benzyl benzoate and benzyl acetate.
  • a biologically non-active material(s) including a solvent, a carrier or an excipient, such as sucrose acetate isobutyrate, ethanol, n-methyl pyrolidone, dimethyl sulfoxide, benzyl benzoate and benzyl acetate.
  • therapeutic agent includes, in particular in a preferred therapeutic method of the present invention comprising the administration of at least one therapeutic agent to a procedurally traumatized, e.g., by an angioplasty or atherectomy procedure, mammalian vessel to inhibit restenosis.
  • the therapeutic agent is a cytoskeletal inhibitor or a smooth muscle inhibitor, including, for example, taxol and functional analogs, equivalents or derivatives thereof such as taxotere, paclitaxel, AbraxaneTM, CoroxaneTM or a cytochalasin, such as cytochalasin B, cytochalasin C, cytochalasin A, cytochalasin D, or analogs or derivatives thereof.
  • the therapeutic agent delivery system of the present invention i.e., the prosthetic valve device, may be used to apply the therapeutic agent to any surface of cardiac chambers, e.g., the left atrium, as well as cardiac chambers in fluid or operative communication with the left atrium, e.g., the left ventricle and/or annulus located therebetween.
  • the delivery system may be used to deliver an effective amount of therapeutic agent(s) to a body lumen in fluid and/or operative communication with the left atrium and related circulatory system.
  • body lumens include, inter alia, blood vessels, urinary tract, coronary vasculature, esophagus, trachea, colon, and biliary tract.
  • the therapeutic agent(s) may be coated to some, or all, of the prosthetic valve device as in known in the art to enable a time-release of the therapeutic agent(s) to the target(s) within the patient's body and may be provided so as to enable administration and delivery of an effective dose of the therapeutic agent(s) to the target(s).
  • Delivery of the agent(s) may be achieved through pressured contact of the therapeutic agent(s) on or in the prosthetic valve device as it expands against the cardiac chamber when positioned, similar to a coated expandable intravascular balloon or stent.
  • the therapeutic agent(s) will then diffuse into the tissue.
  • the therapeutic agent(s) may be swept into the blood flow with delivery to other non-cardiac chamber targets, e.g., tissues, organs, lumens, etc., including but not limited to the dysfunctioning native valve structure including leaflets.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

Devices and methods for supplementing and/or replacing native cardiac valve functionality, e.g., the mitral valve with a single prosthetic leaflet. An exemplary device is directed to dysfunctional mitral valves. In some cases, the entire device, including the single prosthetic leaflet, will be arranged entirely above the dysfunctional mitral valves and, therefore, disposed entirely within the left atrium. In other cases, the valve support and/or single prosthetic leaflet may extend a distance into the annulus between the left atrium and left ventricle. In some cases, the device will not physically interact with the native leaflets. In other cases, the device may physically interact with the native leaflets.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application Ser. No. 62/468,112, filed Mar. 7, 2017, and titled SYSTEMS, METHODS AND DEVICES FOR PROSTHETIC HEART VALVE WITH SINGLE VALVE LEAFLET, the entire contents of which are incorporated herein by reference.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable
  • INCORPORATION BY REFERENCE
  • All references, including but not limited to publications, patent applications and patents mentioned in this specification are hereby incorporated by reference to the same extent and with the same effect as if each reference was specifically and individually indicated to be incorporated by reference.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • The invention relates to supplementing and/or replacing native heart valve leaflet function.
  • Description of the Related Art
  • The human heart comprises four chambers and four heart valves that assist in the forward (antegrade) flow of blood through the heart. The chambers include the left atrium, left ventricle, right atrium and left ventricle. The four heart valves include the mitral valve, the tricuspid valve, the aortic valve and the pulmonary valve.
  • The mitral valve is located between the left atrium and left ventricle and helps control the flow of blood from the left atrium to the left ventricle by acting as a one-way valve to prevent backflow into the left atrium. Similarly, the tricuspid valve is located between the right atrium and the right ventricle, while the aortic valve and the pulmonary valve are semilunar valves located in arteries flowing blood away from the heart. The valves are all one-way valves, with leaflets that open to allow forward (antegrade) blood flow. The normally functioning valve leaflets close under the pressure exerted by reverse blood to prevent backflow (retrograde) of the blood into the chamber it just flowed out of.
  • Native heart valves may be, or become, dysfunctional for a variety of reasons and/or conditions including but not limited to disease, trauma, congenital malformations, and aging. These types of conditions may cause the valve structure to either fail to properly open (stenotic failure) and/or fail to close properly (regurgitant).
  • Mitral valve regurgitation is a specific problem resulting from a dysfunctional mitral valve. Mitral regurgitation results from the mitral valve allowing at least some retrograde blood flow back into the left atrium from the left ventricle. This backflow of blood places a burden on the left ventricle with a volume load that may lead to a series of left ventricular compensatory adaptations and adjustments, including remodeling of the ventricular chamber size and shape, that vary considerably during the prolonged clinical course of mitral regurgitation.
  • A similar problem may occur when the tricuspid valve weakens or begins to fail. The tricuspid valve separates the right atrium and right ventricle. Tricuspid regurgitation, also known as tricuspid insufficiency, occurs when the tricuspid valve doesn't properly close, causing blood to flow back up into the right atrium when the right ventricle contracts. Various embodiments of the present invention discussed herein may apply to mitral valve and/or tricuspid valve regurgitation.
  • Native heart valves generally, e.g., mitral valves, therefore, may require functional repair and/or assistance, including a partial or complete replacement. Such intervention may take several forms including open heart surgery or open heart implantation of a replacement heart valve. See e.g., U.S. Pat. No. 4,106,129 (Carpentier), for a procedure that is highly invasive, fraught with patient risks, and requiring not only an extended hospitalization but also a highly painful recovery period.
  • Less invasive methods and devices for replacing a dysfunctional heart valve are also known and involve percutaneous access and catheter-facilitated delivery of the replacement valve. Most of these solutions involve a replacement heart valve attached to a structural support such as a stent, commonly known in the art, or other form of wire network designed to expand upon release from a delivery catheter. See, e.g., U.S. Pat. No. 3,657,744 (Ersek); U.S. Pat. No. 5,411,552 (Andersen). The self-expansion variants of the supporting stent assist in positioning the valve, and holding the expanded device in position, within the subject heart chamber or vessel. This self-expanded form also presents problems when, as is often the case, the device is not properly positioned in the first positioning attempt and, therefore, must be recaptured and positionally adjusted. This recapturing process in the case of a fully, or even partially, expanded device requires re-collapsing the device to a point that allows the operator to retract the collapsed device back into a delivery sheath or catheter, adjust the inbound position for the device and then re-expand to the proper position by redeploying the positionally adjusted device distally out of the delivery sheath or catheter. Collapsing the already expanded device is difficult because the expanded stent or wire network is generally designed to achieve the expanded state which also resists contractive or collapsing forces.
  • Besides the open heart surgical approach discussed above, gaining access to the valve of interest is achieved percutaneously via one of at least the following known access and delivery routes: femoral access, venous access, trans-apical, trans-aortic, trans-septal, trans-atrial, retrograde from the aorta delivery techniques.
  • Generally, the art is focused on systems and methods that, using one of the above-described known access routes, allow a partial delivery of the collapsed valve device, wherein one end of the device is released from a delivery sheath or catheter and expanded for an initial positioning followed by full release and expansion when proper positioning is achieved. See, e.g., U.S. Pat. No. 8,852,271 (Murray. III); U.S. Pat. No. 8,747,459 (Nguyen); U.S. Pat. No. 8,814,931 (Wang); U.S. Pat. No. 9,402,720 (Richter); U.S. Pat. No. 8,986,372 (Murray, III); and U.S. Pat. No. 9,277,991 (Salahieh); and U.S. Pat. Pub. Nos. 2015/0272731 (Racchini); and 2016/0235531 (Ciobanu).
  • However, known delivery systems, devices and methods still suffer from significant flaws in delivery methodology including, inter alia, positioning and recapture capability and efficiency.
  • In addition, known “replacement” heart valves are intended for full replacement of the native heart valve. Therefore, these replacement heart valves physically engage the annular throat and/or valve leaflets, thereby eliminating all remaining functionality of the native valve and making the patient completely reliant on the replacement valve. Generally speaking, it is a preferred solution that maintains and/or retains the native function of a heart valve, thus supplementation of the valve is preferred rather than full replacement. Obviously, there will be cases when native valve has either lost virtually complete functionality before the interventional implantation procedure, or the native valve continues to lose functionality after the implantation procedure. The preferred solution is delivery and implantation of a valve device that will function both as an adjunctive and/or supplementary functional valve as well as be fully capable of replacing the native function of a valve that has lost most or all of its functionality. However, the inventive solutions described infra will apply generally to all types and forms of heart valve devices, unless otherwise specified.
  • Further, known solutions for, e.g., the mitral valve replacement systems, devices and methods require 2-chamber solutions, i.e., there is involvement and engagement of the implanted replacement valve device in the left atrium and the left ventricle. Generally, these solutions include a radially expanding stent in the left atrium, with anchoring or tethering (disposed downward through the native annulus or annular throat) connected from the stent device down through the annular throat, with the sub-annular surface within the left ventricle, the left ventricular chordae tendineae and even into the left ventricle wall surface(s). See, e.g., the MitraClip® marketed by the Abbott Group and currently the only US approved repair device. With the MitraClip® a catheter containing the MitraClip® is inserted into the femoral vein. The device enters the heart through the inferior vena cava to the right atrium and delivered trans-septally. The MitraClip® passes through the annulus into the left ventricle and sits below the leaflets, clipping the leaflets to decrease regurgitation.
  • Such 2-chamber and native annular solutions are unnecessary bulky and therefore more difficult to deliver and to position/recapture/reposition from a strictly structural perspective. Further, the 2-chamber solutions present difficulties in terms of making the ventricular anchoring and/or tethering connections required to hold position. Moreover, these solutions interfere with the native valve functionality as described above because the device portions that are disposed within the left ventricle must be routed through the native annulus and/or annular throat and native mitral valve, thereby disrupting any remaining coaptation capability of the native leaflets. In addition, the 2-chamber solutions generally require an invasive anchoring of some of the native tissue, resulting in unnecessary trauma and potential complication.
  • It will be further recognized that the 2-chamber mitral valve solutions require sub-annular and/or ventricular engagement with anchors, tethers and the like precisely because the atrial portion of the device fails to adequately anchor itself to the atrial chamber and/or upper portion of the annulus. Again, some of the embodiments, or portions thereof, described herein are readily applicable to single or 2-chamber solutions, unless otherwise indicated.
  • Finally, known prosthetic cardiac valves consist of two or three leaflets that are arranged to act as a one-way valve, permitting fluid flow therethrough in the antegrade direction while preventing retrograde flow. The mitral valve is located retrosternally at the fourth costal cartilage, consisting of an anterior and posterior leaflet, chordae tendinae, papillary muscles, ventricular wall and annulus connected to the atria. Each leaflet is supported by chordae tendinae that are attached to papillary muscles which become taut with each ventricular contraction preserving valvular competence. Both the anterior and posterior leaflets of the valve are attached via primary, secondary and tertiary chordae to both the antero-lateral and posterio-medial papillary muscles. A disruption in either papillary muscle in the setting of myocardial injury, can result in dysfunction of either the anterior or posterior leaflet of the mitral valve. Other mechanisms may result in failure of one, or both of the mitral leaflets. In the case of a single leaflet failure, the regurgitation may take the form of a non-central, eccentric jet of blood back into the left atrium. Other leaflet failures may comprise a more centralized regurgitation jet. Known prosthetic valve replacements generally comprise leaflets which are arranged to mimic the native valve structure, which may over time become susceptible to similar regurgitation outcomes.
  • Various embodiments of the present invention address these, inter alia, issues.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1A illustrates a side view of one embodiment of the present invention.
  • FIG. 1B illustrates a bottom cutaway view of one embodiment of the present invention.
  • FIG. 2A illustrates a cutaway bottom view of one embodiment of the present invention.
  • FIG. 2B illustrates a cutaway bottom view of one embodiment of the present invention.
  • FIG. 2C illustrates a cutaway bottom view of one embodiment of the present invention.
  • FIG. 3 illustrates a side view of one embodiment of the present invention.
  • FIG. 4 illustrates a side view of one embodiment of the present invention.
  • FIG. 5 illustrates a side view of one embodiment of the present invention.
  • FIG. 6 illustrates a side view of one embodiment of the present invention.
  • FIG. 7 illustrates a side view of one embodiment of the present invention.
  • FIG. 8 illustrates a bottom perspective view of one embodiment of the present invention.
  • FIG. 9 illustrates a bottom view of one embodiment of the present invention.
  • FIG. 10 illustrates a side view of one embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIGS. 1A and 1B provides an exemplary expanded prosthetic valve device 100 adapted for implantation within a heart chamber, e.g., the left atrium. An anchoring portion 102 is shown with a wire, e.g., a stent, construction that may be open, or at least partially open, when expanded within an exemplary left atrium. Anchoring portion 102 may be hollow and may provide a flow channel, shown in dashed lines at 103 in FIG. 1A, therethrough for blood flowing into the open wire construction of the anchoring portion 102 from the left pulmonary veins L into the left atrium where the device 100 is expanded and positioned for implantation. A lower section of anchoring portion 102, that is the section of the anchoring portion 102 that is located below the incoming blood flow points at the left pulmonary veins L, may be covered by fabric and/or tissue, either on the luminal side, the abluminal side, or on both the luminal and abluminal sides of the anchoring portion 102 to help channel the incoming blood flow into the flow channel 103 and to prevent paravalvular leakage.
  • The flow channel in FIGS. 1A and 1B terminates at a lower edge 104 of the anchoring portion with an exemplary prosthetic leaflet 106 hingedly attached thereto. As seen in FIG. 1B, the lower edge 104 may comprise a generally circular profile, though other shapes are within the scope of the present invention. Particularly, the undeformed expanded profile of the anchoring portion 102 and, in some cases, of the lower edge 104, may differ from a deformed expanded profile of anchoring portion 102 and lower edge 104 when the device 100 expands against atrial walls and the upper surface of the annulus. The embodiment illustrated in FIG. 1B comprises a single support wire, though a thicker configuration, e.g., a sewing ring, may also be provided. As the skilled artisan will readily recognize, lower edge 104 comprises a structure that allows a hinged or flexing connection with the single prosthetic leaflet 106.
  • As shown in FIGS. 2A and 2B, a single prosthetic leaflet 106 may comprise a perimeter 108 and a leaflet attachment zone 110 located along a portion of the perimeter 108. Thus, leaflet 106 may be connected with the lower edge 104 of the anchoring structure 102 or may be a separate structure that is attached or connected with the lower edge 104 of anchoring portion 102. Perimeter 108 in these leaflets 106 comprise a width, and in some cases a thickness, that may be formed of a material that differs from the material of the inner region 105 to facilitate attachment to the lower edge 104 of anchoring portion 102. In some embodiments, leaflet 106 may comprise a single material throughout as in FIG. 2C, wherein the perimeter 108 (shown in dashed lines) may comprise the same material as the inner region 105, though perimeter 108 may comprise a reinforced, e.g., double layer or folded layer of material.
  • In addition, the leaflet 106 may comprise a circular or a geometric, e.g., hexagonal, outer profile, see e.g. FIGS. 2A and 2B. These are simply exemplary shapes, all other shapes are within the scope of the present invention, so long as the leaflet 106 covers the opening defined by the lower edge 104 of the anchoring portion 102. Accordingly, lower edge 104 may be shaped with a variety of shapes, e.g., circular, semi-circular, when either expanded and deformed or expanded and undeformed. Any shape for lower edge 104 of the anchoring portion 102 is within the scope of the present invention, so long as the leaflet 106 is sized and shaped to cover the opening defined by lower edge 104.
  • The attachment mechanism between the valve leaflet 106 and support structure's leaflet attachment zone 110 may be seen with exemplary connection methods, and leaflet 106 structures, in FIGS. 2A-2C. FIG. 2 illustrates a series of connecting points which may be sutures or some other equivalent connective structure and that covers part of the outer surface of an exemplary circular valve leaflet such that the valve leaflet may swing open and closed using the connecting points as a hinge point. FIG. 3 illustrates an exemplary hexagonal valve leaflet with a series of connecting points within a leaflet attachment zone along one side of the hexagonal valve leaflet. Other shapes besides the circular and hexagonal valve leaflets shown here, e.g., oval, square, rectangle, pentagon, octagon, polygon, etc., are now readily recognized by the skilled artisan and within the scope of the present invention. Moreover, the connecting points within the leaflet attachment zone 110 may comprise a structure that consists of one or more unbroken connectors, including but not limited to adhesive or gluing, continuous stitching, integrally forming the valve leaflet 106 with the anchoring structure 102, preferably with the lower edge 104 thereof, and/or clamping the valve along the leaflet attachment zone 110 to the anchoring structure, again preferably with the lower edge 104 thereof.
  • The prosthetic valve leaflet 106 thus acts like a hinged door in that it may rotate or swing between a closed position and an open position relative to the lower edge 104 of anchoring portion 102 with a portion of the leaflet 106 secured to a portion of the lower edge 104 of the anchoring portion 102 along the leaflet attachment zone 110 by, e.g., a plurality of sutures or the equivalent.
  • The closed position results in a temporary engagement and sealing of an outer portion of the upper surface of the valve leaflet against the bottom surface of the lower edge 104 of the structure 102, the prosthetic valve leaflet 106 being of a size and shape to cover the opening defined by lower edge 104 of anchoring portion 102, thereby preventing retrograde blood flow therethrough. The open position disengages the upper surface of the valve leaflet 106 from the bottom surface of the lower edge 104 to allow blood to flow therethrough.
  • A preferred positioning within the left atrium may comprise positioning at least a portion of the bottom surface of the anchoring structure 102 on at least a portion of the upper annular surface of the left atrium as in FIG. 1A. However, in other embodiments, the prosthetic leaflet 106 may be positioned above, or spaced away from, the native valve leaflets so that physical interference does not occur between the prosthetic valve leaflet 106 and the native leaflets and to maintain the remaining functionality of the native leaflets. In this case, device 100 will function to supplement the native leaflet functionality and, if and when needed, will begin to take over progressively more functionality as the native leaflets deteriorate. Eventually, the device 100 will function to replace all, or virtually all of the native leaflet functionality. The result is a device 100 that adapts to progressively assume the functionality of the native leaflets as they deteriorate, from supplementation through full replacement.
  • Thus, in certain embodiments, the valve leaflet 106 may be elevated or spaced above the native annular surface so that at least a portion of the valve leaflet 106 in the opened position is also elevated or spaced above at least the upper annular surface. In other cases at least a portion of the valve leaflet 106 in the open position may be disposed above the native valve leaflets so as to not physically interfere with them, or minimize physical interaction therewith. In these embodiments, the prosthetic leaflet may serve at least a supplementary function to the native leaflet function.
  • In other cases, a support for the prosthetic leaflet may be disposed within the native annulus or annular throat, effectively pinning the native leaflets and requiring the inventive valve leaflet to completely replace the native leaflet function.
  • In the embodiments with the support structure and valve leaflets are elevated or spaced above at least the native leaflets and/or the upper annular surface, the prosthetic leaflet will open in response to increased fluid pressure in the left atrium and allow blood to flow down to the spaced away native leaflets which also open, enabling blood flow to the left ventricle. The native leaflets will then close to the extent possible in response to increased fluid pressure in the left ventricle and, in response to the regurgitation pressure in the space between the native leaflets and the prosthetic leaflet, the prosthetic leaflet will then close, preventing retrograde blood flow into the left atrium.
  • In the event of eventual complete native leaflet failure, the prosthetic leaflet will completely handle and manage the blood flow between the left atrium and ventricle.
  • It is part of the present invention to orient the prosthetic leaflet 106 opening and leaflet attachment zone 110 to optimize the supplemental and/or replacement function, for example and without limitation in the case where a single native leaflet is dysfunctional and a result is an eccentric, non-central regurgitation jet. The new valve leaflet 106 may be oriented, e.g., so that the eccentric regurgitation jet is focused at the bottom surface of a distal end (away from the leaflet attachment zone 110) of the valve leaflet 106, in the middle of the valve leaflet (as measured relative to the distal end and the leaflet attachment zone 110), or closer to the leaflet attachment zone 110, or at points between the distal end and midpoint, or between the midpoint and the leaflet attachment zone 110 in order to maximize closure efficiency of the prosthetic leaflet 106.
  • In addition, the exit flow direction and/or position may be affected by the positioning/orientation of the leaflet attachment zone 110 as well as the degree to which the valve leaflet 106 is allowed to open, so as to direct the blood flow to an optimal location on the native valve leaflets. A fully opened prosthetic valve leaflet 106 may comprise opening to a position that is approximately 90 degrees from its closed position. Opening positions for the prosthetic valve leaflet 106 of less than 90 degrees from the closed position will channel the blood flow in a direction along the length of the opened leaflet 106 toward a target on the native leaflets. Thus, as seen in FIG. 1A, leaflet 106 may be fully opened to approximately a 45 degree angle relative to its closed position against lower edge 104 of the anchoring structure 102. This configuration will direct the incoming blood flow 103 generally along the same direction as the open position of the leaflet 106. Therefore, not only is the opening angle of the leaflet 106 important, but so is the orientation of the anchoring structure 102 on expansion which will dictate the location of the leaflet attachment zone 110 which, in turn, dictates the location of the opening leaflet 106 and resultant blood flow therealong. Another variable relative to locating the blood flow along the opened leaflet 106 is the distance of the distal end of the opened leaflet 106 from the target region in the native leaflets. It will be obvious now that, in order to optimize delivery location targeting of the blood flow moving across the opened leaflet 106, that the following parameters will require systemic optimization: the maximum opened angle at the open position for the prosthetic valve leaflet 106; the orientation of the distal end of the prosthetic valve leaflet 106 when the device 100 is expanded; and the distance, height or spacing of the distal end of the prosthetic valve leaflet 106 from the targeted location on the native valve leaflets. Optimization of this system allows consistent targeting of an area of the native valve leaflets for the blood flow moving through the prosthetic valve device 100.
  • FIG. 3 illustrates an alternate embodiment for a prosthetic valve device 200 that is similar to the prosthetic valve device 100 discussed above in certain respects. Accordingly, the anchoring structure 202 has the same or similar features and characteristics as the anchoring structure 102 of device 100, e.g., a collapsible and expandable structure that may comprise a stent-like structure with open cells.
  • The valve support structure 204, as illustrated in FIG. 3 comprises two basic elements arranged on opposing sides of a lower opening 201 defined by the anchoring structure 202. A first fixed base side 212 that may be more stiff than, or of similar stiffness to, the structure comprising the dome and extends a distance D away from the lower opening 201 and may comprise an expanded and collapsed configurations. Positioned across the lower opening 201 from the first fixed base side 212 of valve support 204 is a moveable, rotatable valve member 214 that is connected to, or operatively engaged with, or attached to, or integrally formed with, a second fixed base side 216 that may be of similar stiffness, or different stiffness, as the first fixed base side 212 and may also comprise expanded and collapsed configurations. The rotatable valve member 214 may be formed of a tissue or fabric that is less stiff than the second fixed base side 216 and may comprise sizes and shapes as describe above regarding the prosthetic valve of FIG. 1A.
  • In either case, there may be a region or point of flexion 218 comprising a decreased stiffness and/or increased flexibility that allows the rotatable valve 214 to move upward to engage the first fixed base side 212 when the valve 214 is in a closed position and to move downward away from the first fixed base side 212 when the valve member 214 is in an open position. Fluid flow force generated by blood flow from the left atrium will be sufficient to push the rotatable valve member 214 to an open position as shown in FIG. 4, thereby enabling fluid communication of the atrial blood with the left ventricle. When the atrial to ventricular blood flow is complete and regurgitation forces are present, those forces cause the valve member 214 to rotate up and close against the first fixed base side 212, preventing regurgitant blood from flowing into the interior of the anchoring structure 202.
  • In a preferred embodiment, the rotatable valve member 214 may be biased in the closed position, pressed with a predetermined amount of biasing force against the first fixed base side 212, so that the closed position for valve member 214 is the biased position. This requires that the blood flow from the atrium exert sufficient force to overcome the biasing force of the valve member 214 against first fixed base side 212 to cause the valve member 214 to rotate into an open position. The valve member 214 may, when closed and as shown, overlap with the inner edge of the first fixed base side 212, so that the upper (upstream) side U of valve member 214 engages the inner edge I of the first fixed base side 212 in the closed position. Alternatively, the distal end 220 of valve member 214 may fit against the distal end 220 of the first base fixed side 212 to provide a generally sealed closure.
  • The device of FIG. 3 may be positioned within the left atrium so that the first and second sides of the base 212, 216 rest upon the upper annular surface with the prosthetic rotatable leaflet 214 positioned over the annulus as in FIG. 4 so that the distal end 220 of leaflet 214 may extend into the annulus when in an open position. Alternatively, the distance D of extension of the first and second sides of the base 212, 216 may be used to locate and/or position the device 200 slightly within the annulus, with the first and second sides 212, 216 of the base extending downward (downstream) into the annulus as in FIG. 5.
  • As described in connection with device 100 above, the location of blood flow through device 200 and across rotatable leaflet 214 may be optimized as a system by configuring the degree of angle of maximum opening for leaflet 214, the rotational location of the leaflet 214, specifically the end of the leaflet located away from the point of flexion 218, and the distance or spacing of the end of the leaflet located furthermost from the point of flexion 218 when opened in the open position, i.e., maximum degree of opening. In addition, system elements that may be optimized for locating the blood flow onto native leaflets comprise the distance of extension of the first base side 212 over the annulus. In some cases, the first base side 212 may not extend over the annulus, instead the distal end 222 of the first base side 212 may be coextensive with an edge of the annulus, see e.g., FIG. 4. In other cases, the distal end 222 of the first base side 212 may extend a distance beyond the annular edge and, therefore, over the annulus the same distance.
  • Further, a modified embodiment of the device 200 of FIG. 3 may locate the prosthetic rotatable leaflet 214 at a position that is located above the native annular surface, i.e., in a super annular position, that does not result in any physical touching of the native valve leaflets. Thus, as shown in FIG. 6, device 300 comprises an anchoring support 302 and a valve support 330. The valve support comprises an inflow end 332 and an outflow end 334 and defines a flow channel therebetween. A first base side 336 may be attached along the flow channel of the valve support 330 and a prosthetic leaflet 338 attached at a position along the flow channel of the valve support 330 that enables engagement of the first base side 336 by the prosthetic leaflet 338 when in a closed position. Thus, the prosthetic leaflet 338 and first base side 336 may be positioned and spaced above the upper annular surface at exemplary position A, though it is understood that the prosthetic leaflet 338 and first base side 336 may be positioned at any point along the flow channel of the valve support 330. Stated differently, the prosthetic leaflet 338 and first base side 336 may be positioned at any point between the inflow and outflow ends 332, 334 of the valve support 330 including, but not limited to, a location that is coplanar with the upper annular surface.
  • It is understood that first base side 336 may comprise a very small lip structure to stop the upward rotation of the valve 338 and achieve the closed position to prevent regurgitation. The lip structure may surround valve support 338 to form a temporary seal between lip structure/first base side 336 and the closed prosthetic leaflet 338.
  • Valve support 330 may be a cylindrical structure as illustrated or may comprise a section of a cone, with increasing distance between the cone sides moving from the inflow end to the outflow end of the valve support 330. Alternatively, the valve support 330 may comprise a conical section with decreasing distance between the cone sides moving from the inflow end 332 to the outflow end 334 of the valve support 330. Other configurations for the valve support 330 may present themselves to the skilled artisan, each being within the scope of the present invention.
  • Alternatively, as in FIG. 7, the valve support 330, prosthetic leaflet 338 and fixed first side 336 may be positioned as extended downstream into the native annulus as indicated by position B. The length of extension of the valve support 330 relative to the lower opening of the anchoring structure 302 into the native annulus, dictates the position of the prosthetic valve leaflet 338 relative to the native leaflets. In some embodiments, the valve support 330 terminates at a point above the native leaflets, while in other cases the valve support 330 may extend to and perhaps beyond the native leaflets within the annulus, thereby pinning the native leaflets against the annulus. In all cases, the location of the prosthetic leaflet 338 and fixed first side 336 may be positioned at any point within the valve support 330 between the inflow end 332 and the outflow end 334.
  • Valve support 330 in FIGS. 6 and 7 may comprise a separate structure that is mechanically connected with the lower opening of the anchoring structure 302.
  • Alternatively, and preferably, the anchoring structure 302 comprises an expandable and collapsible transition section 340 whereby the anchoring structure turns radially inwardly to form the valve support 330. In this latter case, the valve support 330, transition section 340, and anchoring structure 302 comprise a unitary structure that may comprise different characteristics in each of the valve support 330, transition section 340 and anchoring structure 302. For example, stent cell sizes and/or arrangements may differ between the afore-mentioned device elements 330, 340 and/or 302. But, in this embodiment, the unitary construction allows the device of FIG. 6, in some cases, to be turned inside out, by pulling the valve support 330 outwardly and radially away from the anchoring structure. For illustrative purposes, such a turned-out device when expanded would resemble that shown in FIG. 7. This capability is highly advantageous during transition of the collapsed device through a delivery catheter to the heart chamber as the collapsed turned-out device of, e.g., FIG. 7, comprises only two layers as opposed to the non-turned-out device of FIG. 6 which, in the region of the valve support 330 comprises four layers and is, therefore, two layers thicker.
  • In some cases, the device of FIG. 7 is desired in the expanded configuration to position the valve support 330 within the annulus. In other cases, the device of FIG. 6 is desired for positioning the valve support 330 radially within the anchoring support 302 and for allowing location of the prosthetic valve 338 at, or above, the annular surface.
  • If the device of FIG. 6 is turned-out as shown in FIG. 7 for example, to facilitate delivery, the device 300 will be reconfigured after release from the distal end of the delivery catheter by pulling the valve support 330 radially back into the anchoring support 302 interior space to achieve the structure of the exemplary device of FIG. 6.
  • Thus, in the unitary structure case, the embodiment of FIG. 6 comprises the inflow end 332 of the valve support 330 is located at a position that is radially within the interior of anchoring structure 302 and the transition section 340 forms the outflow end 334 of the valve support 302, wherein the inflow end 332 of valve support 330 is spaced radially inward and away from the transition section 340. In FIG. 7, the inflow end 332 of the valve support 330 is defined by and substantially coextensive with the transition section 340, with the outflow end 334 of the valve support 330 extending radially outwardly away from the transition section 340.
  • Turning now to FIGS. 8-10, a two-door valved device 400 is illustrated and comprising an anchoring section 402 similar to the device 100, 200, 300 described above. Valve support section 404 comprises a first valve flap 406 and a second valve flap 408 that open and close against a lower opening 410 defined by anchoring section 402 and adapted to hingedly engage first and second valve flaps 406, 408.
  • Each of the first and second valve flaps 406, 408 may comprise a relatively stiff or rigid outer frame 412 in the general shape of a half circle, or other curvilinear form, and comprise a material on the inner portion 414 of the outer frame, e.g., tissue or fabric or other material with a central straight or linear section 411 connecting the two ends of the half-circle-shaped outer frame 412. At least one flexion, or hinging, region 416 is provided to bias the first and second valve flaps 406, 408 in the closed position (as shown) and to allow opening of the first and second valve flaps 406, 408 when the biasing force is overcome by blood flow pressure force as described above.
  • In this embodiment, the first and second valve flaps 406, 408 may comprise a sealing engagement together at the central straight or linear section 411 of the outer frame 412. This may be a total or partial seal and may be supplemented by a biocompatible and flexible gasket or liner 420 on one or both of the central straight or linear section 411 of the outer frame 412 to ensure sealing when the flaps close together.
  • An alternate embodiment shown in FIG. 10 may comprise the first and second valve flaps 406, 408 comprising a sail feature 422 attached at one end to the first and second valve flaps 406, 408 and free to move at the opposing end and comprising material having a generally downwardly curving profile, when engaged by blood flow from below, may catch upwardly flowing fluid, similar to the way sails catching wind, to flex and aid in generating upward force to close the flaps 406, 408 more efficiently and quickly to prevent regurgitation.
  • Moreover, it is contemplated that any prosthetic valve devices described herein, including for example the anchoring portions as described herein, as well as the prosthetic valve leaflets or prosthetic valve flaps and/or valve support structures as described herein may comprise a releasable amount of a therapeutic agent thereon for localized application to the heart chamber tissue and/or to the native valves, annulus or other structure. Further, the therapeutic agent disposed in or on the prosthetic device may target blood vessels, bodily conduits, or specific organs contacted by the circulatory system to treat, and/or prevent, a bodily disorder and/or accelerate a desired bodily response, e.g., and without limitation endotheliazation.
  • For the purposes of the present invention, the following terms and definitions apply:
  • “Bodily disorder” refers to any condition that adversely affects the function of the body.
  • The term “treatment” includes prevention, reduction, delay, stabilization, and/or elimination of a bodily disorder, e.g., a failing cardiac valve or a vascular disorder. In certain embodiments, treatment comprises repairing damage cause by the bodily, e.g., valvular or vascular, disorder and/or intervention of same, including but not limited to mechanical intervention.
  • A “therapeutic agent” comprises any substance capable of exerting an effect including, but not limited to therapeutic, prophylactic or diagnostic. Thus, therapeutic agents may comprise anti-inflammatories, anti-infectives, analgesics, anti-proliferatives, and the like including but not limited to antirestenosis drugs and therapeutic agents that accelerate endothelial coverage and endotheliazation, including but certainly not limited to a therapy stent marketed by OrbusNeich™ that is designed to repair vessel injury and regenerate the endothelium, to foster vessel healing achieved by accelerating endothelial coverage and controlling neo-intimal proliferation with a combination of endothelial progenitor cell capture and a sirolimus drug elution.
  • Therapeutic agent as used and defined herein further comprises mammalian stem cells. Therapeutic agent as used herein further includes other drugs, genetic materials and biological materials. The genetic materials mean DNA or RNA, including, without limitation, of DNA/RNA encoding a useful protein, intended to be inserted into a human body including viral vectors and non-viral vectors. Viral vectors include adenoviruses, gutted adenoviruses, adeno-associated virus, retroviruses, alpha virus, lentiviruses, herpes simplex virus, ex vivo modified cells (e.g., stem cells, fibroblasts, myoblasts, satellite cells, pericytes, cardiomyocytes, skeletal myocytes, macrophage), replication competent viruses, and hybrid vectors. Non-viral vectors include artificial chromosomes and mini-chromosomes, plasmid DNA vectors, cationic polymers, graft copolymers, neutral polymers PVP, SP1017, lipids or lipoplexes, nanoparticles and microparticles with and without targeting sequences such as the protein transduction domain (PTD). The biological materials include cells, yeasts, bacteria, proteins, peptides, cytokines and hormones. Examples for peptides and proteins include growth factors (FGF, FGF-1, FGF-2, VEGF, Endotherial Mitogenic Growth Factors, and epidermal growth factors, transforming growth factor .alpha. and .beta., platelet derived endothelial growth factor, platelet derived growth factor, tumor necrosis factor .alpha., hepatocyte growth factor and insulin like growth factor), transcription factors, proteinkinases, CD inhibitors, thymidine kinase, and bone morphogenic proteins. These dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules.
  • Therapeutic agents further include cells that may be of human origin (autologous or allogeneic) or from an animal source (xenogeneic), genetically engineered, if desired, to deliver proteins of interest at the transplant site. Cells within the definition of therapeutic agents herein further include whole bone marrow, bone marrow derived mono-nuclear cells, progenitor cells (e.g., endothelial progenitor cells) stem cells (e.g., mesenchymal, hematopoietic, neuronal), pluripotent stem cells, fibroblasts, macrophage, and satellite cells.
  • Therapeutic agent also includes non-genetic substances, such as: anti-thrombogenic agents such as heparin, heparin derivatives, and urokinase; anti-proliferative agents such as enoxaprin, angiopeptin, or monoclonal antibodies capable of blocking smooth muscle cell proliferation, hirudin, and acetylsalicylic acid, amlodipine and doxazosin; anti-inflammatory agents such as glucocorticoids, betamethasone, dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, and mesalamine; antineoplastic/antiproliferative/anti-miotic agents such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, methotrexate, azathioprine, adriamycin and mutamycin; endostatin, angiostatin and thymidine kinase inhibitors, taxol and its analogs or derivatives; anesthetic agents such as lidocaine, bupivacaine, and ropivacaine; anti-coagulants such as heparin, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin, dipyridamole, protamine, hirudin, prostaglandin inhibitors, platelet inhibitors and tick antiplatelet peptides; vascular cell growth promoters such as growth factors, Vascular Endothelial Growth Factors, growth factor receptors, transcriptional activators, and translational promoters; vascular cell growth inhibitors such as antiproliferative agents, growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; cholesterol-lowering agents; vasodilating agents; and agents which interfere with endogenous vasoactive mechanisms; anti-oxidants, such as probucol; antibiotic agents, such as penicillin, cefoxitin, oxacillin, tobranycin angiogenic substances, such as acidic and basic fibroblast growth factors, estrogen including estradiol (E2), estriol (E3) and 17-Beta Estradiol; and drugs for heart failure, such as digoxin, beta-blockers, angiotensin-converting enzyme, inhibitors including captopril and enalopril. The biologically active material can be used with (a) biologically non-active material(s) including a solvent, a carrier or an excipient, such as sucrose acetate isobutyrate, ethanol, n-methyl pyrolidone, dimethyl sulfoxide, benzyl benzoate and benzyl acetate.
  • Further, “therapeutic agent” includes, in particular in a preferred therapeutic method of the present invention comprising the administration of at least one therapeutic agent to a procedurally traumatized, e.g., by an angioplasty or atherectomy procedure, mammalian vessel to inhibit restenosis. Preferably, the therapeutic agent is a cytoskeletal inhibitor or a smooth muscle inhibitor, including, for example, taxol and functional analogs, equivalents or derivatives thereof such as taxotere, paclitaxel, Abraxane™, Coroxane™ or a cytochalasin, such as cytochalasin B, cytochalasin C, cytochalasin A, cytochalasin D, or analogs or derivatives thereof.
  • Additional specific examples of “therapeutic agents” that may be applied to a bodily lumen using various embodiments of the present invention comprise, without limitation: L-Arginine; Adipose Cells; Genetically altered cells, e.g., seeding of autologous endothelial cells transfected with the beta-galactosidase gene upon an injured arterial surface; Erythromycin; Penicillin: Heparin; Aspirin; Hydrocortisone; Dexamethasone; Forskolin; GP IIb-IIIa inhibitors; Cyclohexane; Rho Kinase Inhibitors; Rapamycin; Histamine; Nitroglycerin; Vitamin E; Vitamin C; Stem Cells; Growth Hormones; Hirudin; Hirulog; Argatroban; Vapirprost; Prostacyclin; Dextran; Erythropoietin; Endothelial Growth Factor; Epidermal Growth Factor; Core Binding Factor A; Vascular Endothelial Growth Factor; Fibroblast Growth Factors; Thrombin; Thrombin inhibitor; and Glucosamine, among many other therapeutic substances.
  • The therapeutic agent delivery system of the present invention, i.e., the prosthetic valve device, may be used to apply the therapeutic agent to any surface of cardiac chambers, e.g., the left atrium, as well as cardiac chambers in fluid or operative communication with the left atrium, e.g., the left ventricle and/or annulus located therebetween. In addition, the delivery system may be used to deliver an effective amount of therapeutic agent(s) to a body lumen in fluid and/or operative communication with the left atrium and related circulatory system. Such body lumens include, inter alia, blood vessels, urinary tract, coronary vasculature, esophagus, trachea, colon, and biliary tract. The therapeutic agent(s) may be coated to some, or all, of the prosthetic valve device as in known in the art to enable a time-release of the therapeutic agent(s) to the target(s) within the patient's body and may be provided so as to enable administration and delivery of an effective dose of the therapeutic agent(s) to the target(s).
  • Delivery of the agent(s) may be achieved through pressured contact of the therapeutic agent(s) on or in the prosthetic valve device as it expands against the cardiac chamber when positioned, similar to a coated expandable intravascular balloon or stent. The therapeutic agent(s) will then diffuse into the tissue. Alternatively, the therapeutic agent(s) may be swept into the blood flow with delivery to other non-cardiac chamber targets, e.g., tissues, organs, lumens, etc., including but not limited to the dysfunctioning native valve structure including leaflets.
  • The description of the invention and its applications as set forth herein is illustrative and is not intended to limit the scope of the invention. Features of various embodiments may be combined with other embodiments within the contemplation of this invention. Variations and modifications of the embodiments disclosed herein are possible, and practical alternatives to and equivalents of the various elements of the embodiments would be understood to those of ordinary skill in the art upon study of this patent document. These and other variations and modifications of the embodiments disclosed herein may be made without departing from the scope and spirit of the invention.

Claims (19)

What is claimed is:
1. A prosthetic cardiac valve device for supplementing and/or replacing function of dysfunctional native mitral valve leaflets disposed within the annulus between the left atrium and left ventricle, comprising:
an expandable anchoring section adapted to engage tissue within the left atrium;
a valve support structure comprising an inflow end and an outflow end and a single prosthetic leaflet attached to the valve support structure between the inflow end and the outflow end;
a transition section disposed between the expandable anchoring section and the expandable valve support structure, wherein the expandable anchoring section, valve support section and transition section comprise a unitary structure, and wherein the single prosthetic leaflet is adapted to move between an open and a closed position in response to fluid flow pressure.
2. The device of claim 1, further comprising a first base side attached to the valve support structure and adapted to provide a temporary seal for the single prosthetic leaflet at the closed position.
3. The device of claim 1, wherein the inflow end of the valve support structure is located radially within the expandable anchoring structure.
4. The device of claim 1, wherein the anchoring structure, prosthetic leaflet and valve support do not physically interact with the native leaflets.
5. The device of claim 3, wherein the outflow end of the valve support structure is defined by the transition section.
6. The device of claim 1, wherein the outflow end of the valve support structure is located outside the expandable anchoring structure and wherein the inflow end of the valve support structure is defined by the transition section.
7. The device of claim 1, wherein the outflow end of the valve support structure is adapted to be positioned within the annulus.
8. The device of claim 7, wherein the outflow end of the valve support structure is adapted to be positioned within the annulus and above the native leaflets.
9. The device of claim 8, wherein the single prosthetic leaflet is positioned within the valve support structure such that the single prosthetic leaflet does not physically interact with the native leaflets.
10. The device of claim 7, wherein the valve support structure is adapted to be disposed within the annulus and pins the native leaflets against the annulus.
11. The device of claim 1, wherein the single prosthetic leaflet is adapted to supplement the function of the dysfunctional native leaflets.
12. The device of claim 1, wherein the single prosthetic leaflet is adapted to replace the function of the dysfunctional native leaflets.
13. The device of claim 11, wherein the single prosthetic leaflet is further adapted to progressively take over functionality from dysfunctional native leaflets that deteriorate over time.
14. The device of claim 13, wherein the single prosthetic leaflet is adapted to replace the functionality of the dysfunctional native leaflets when fully deteriorated.
15. The device of claim 1, wherein the expandable anchoring structure, the expandable transition structure and the expandable valve support comprise open cell stent construction.
16. A prosthetic mitral valve device adapted to anchor within the left atrium, comprising:
an expandable anchoring structure defining a lower opening;
a first base side operatively engaged with expandable anchoring structure at the lower opening;
a second base side operatively engaged with the expandable anchoring structure at the lower opening and comprising a single prosthetic leaflet adapted to engage the first base side in a closed position and rotate away from the first base side in an open position.
17. The device of claim 16, wherein the first base side and the second base side are adapted to an expanded position on an upper annular surface within the left atrium and wherein the single prosthetic leaflet is positioned over the annulus.
18. The device of claim 16, wherein the first base side and the second base side extend a distance away from the lower opening of the anchoring structure.
19. The device of claim 18, wherein the first base side and the second base side are adapted to fit within the annulus.
US15/913,509 2017-03-07 2018-03-06 Systems, methods and devices for prosthetic heart valve with single valve leaflet Active US12029647B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/913,509 US12029647B2 (en) 2017-03-07 2018-03-06 Systems, methods and devices for prosthetic heart valve with single valve leaflet
CN201880024605.0A CN110505854B (en) 2017-03-07 2018-03-07 Systems, methods, and devices for prosthetic heart valves having a single valve leaflet
PCT/US2018/021244 WO2018165225A1 (en) 2017-03-07 2018-03-07 Systems, methods and devices for prosthetic heart valve with single valve leaflet
CA3054814A CA3054814C (en) 2017-03-07 2018-03-07 Systems, methods and devices for prosthetic heart valve with single valve leaflet
AU2018231187A AU2018231187B2 (en) 2017-03-07 2018-03-07 Systems, methods and devices for prosthetic heart valve with single valve leaflet
JP2019548635A JP2020509835A (en) 2017-03-07 2018-03-07 System, method and apparatus for a prosthetic heart valve with a single leaflet
EP18764951.2A EP3592296A4 (en) 2017-03-07 2018-03-07 Systems, methods and devices for prosthetic heart valve with single valve leaflet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762468112P 2017-03-07 2017-03-07
US15/913,509 US12029647B2 (en) 2017-03-07 2018-03-06 Systems, methods and devices for prosthetic heart valve with single valve leaflet

Publications (2)

Publication Number Publication Date
US20180256329A1 true US20180256329A1 (en) 2018-09-13
US12029647B2 US12029647B2 (en) 2024-07-09

Family

ID=63445934

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/913,509 Active US12029647B2 (en) 2017-03-07 2018-03-06 Systems, methods and devices for prosthetic heart valve with single valve leaflet

Country Status (7)

Country Link
US (1) US12029647B2 (en)
EP (1) EP3592296A4 (en)
JP (1) JP2020509835A (en)
CN (1) CN110505854B (en)
AU (1) AU2018231187B2 (en)
CA (1) CA3054814C (en)
WO (1) WO2018165225A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190069996A1 (en) * 2017-09-07 2019-03-07 Edwards Lifesciences Corporation Integral flushing solution for blood stasis prevention in artificial heart valves
US20190365538A1 (en) * 2018-06-04 2019-12-05 4C Medical Technologies, Inc. Devices, systems and methods for preventing prolapse of native cardiac valve leaflets
CN111904664A (en) * 2020-08-25 2020-11-10 江苏臻亿医疗科技有限公司 Tricuspid valve prosthesis
US11160653B2 (en) 2017-03-27 2021-11-02 Truleaf Medicai Ltd. Docking elements
US11202706B2 (en) 2019-05-04 2021-12-21 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
CN113853180A (en) * 2019-02-14 2021-12-28 4C医疗技术公司 Hydrophilic skirt for paravalvular leak mitigation and fit and hug optimization for prosthetic heart valve implants
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11273033B2 (en) 2018-09-20 2022-03-15 Vdyne, Inc. Side-delivered transcatheter heart valve replacement
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11298227B2 (en) * 2019-03-05 2022-04-12 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
US11331186B2 (en) 2019-08-26 2022-05-17 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US11344412B2 (en) 2019-08-20 2022-05-31 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11395738B2 (en) 2018-09-25 2022-07-26 Truleaf Medical Ltd. Docking elements
US11666444B2 (en) * 2017-08-03 2023-06-06 The Regents Of The University Of California Atrial cage for placement, securing and anchoring of atrioventricular valves
US11786366B2 (en) 2018-04-04 2023-10-17 Vdyne, Inc. Devices and methods for anchoring transcatheter heart valve
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
US11944537B2 (en) 2017-01-24 2024-04-02 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
US11957577B2 (en) 2017-01-19 2024-04-16 4C Medical Technologies, Inc. Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves
US11992403B2 (en) 2020-03-06 2024-05-28 4C Medical Technologies, Inc. Devices, systems and methods for improving recapture of prosthetic heart valve device with stent frame having valve support with inwardly stent cells
US12029647B2 (en) 2017-03-07 2024-07-09 4C Medical Technologies, Inc. Systems, methods and devices for prosthetic heart valve with single valve leaflet
US12036113B2 (en) 2017-06-14 2024-07-16 4C Medical Technologies, Inc. Delivery of heart chamber prosthetic valve implant
US12053375B2 (en) 2020-03-05 2024-08-06 4C Medical Technologies, Inc. Prosthetic mitral valve with improved atrial and/or annular apposition and paravalvular leakage mitigation
US12133797B2 (en) 2020-01-31 2024-11-05 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: paddle attachment feature
US12138158B2 (en) 2021-11-15 2024-11-12 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3920850A1 (en) 2019-02-06 2021-12-15 Inqb8 Medical Technologies, LLC Intra-cardiac left atrial and dual support systems
CN112022439A (en) * 2020-07-24 2020-12-04 启晨(上海)医疗器械有限公司 Artificial heart valve
CN116763502A (en) * 2022-03-11 2023-09-19 上海臻亿医疗科技有限公司 Artificial heart valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160242905A1 (en) * 2015-02-20 2016-08-25 4C Medical Technologies, Inc. Devices, systems and methods for cardiac treatment
US20170172737A1 (en) * 2015-12-22 2017-06-22 Nvt Ag Prosthetic mitral valve coaptation enhancement device

Family Cites Families (823)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424833A (en) 1981-10-02 1984-01-10 C. R. Bard, Inc. Self sealing gasket assembly
US4503569A (en) 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US5693083A (en) 1983-12-09 1997-12-02 Endovascular Technologies, Inc. Thoracic graft and delivery catheter
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
CN1050823A (en) * 1989-10-10 1991-04-24 卡尔本·伊姆普兰茨公司 Prosthetic heart valve
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
GB9012716D0 (en) 1990-06-07 1990-08-01 Frater Robert W M Mitral heart valve replacements
US5190528A (en) 1990-10-19 1993-03-02 Boston University Percutaneous transseptal left atrial cannulation system
US5441483A (en) 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
WO1995016476A1 (en) 1993-12-17 1995-06-22 Heartport Inc. System for cardiac procedures
WO1996025897A2 (en) 1995-02-22 1996-08-29 Menlo Care, Inc. Covered expanding mesh stent
US5693089A (en) 1995-04-12 1997-12-02 Inoue; Kanji Method of collapsing an implantable appliance
AU6271196A (en) 1995-06-07 1996-12-30 St. Jude Medical Inc. Direct suture orifice for mechanical heart valve
US5843090A (en) 1996-11-05 1998-12-01 Schneider (Usa) Inc. Stent delivery device
NL1004827C2 (en) 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US8845711B2 (en) 2007-10-19 2014-09-30 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
JP4162270B2 (en) 1997-06-27 2008-10-08 ザ トラスティーズ オブ コロンビア ユニバーシティー イン ザ シティー オブ ニューヨーク Equipment for circulation valve repair
US5954766A (en) 1997-09-16 1999-09-21 Zadno-Azizi; Gholam-Reza Body fluid flow control device
US5928258A (en) 1997-09-26 1999-07-27 Corvita Corporation Method and apparatus for loading a stent or stent-graft into a delivery sheath
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
EP1049425B1 (en) 1997-12-29 2009-11-25 Cleveland Clinic Foundation The System for minimally invasive insertion of a bioprosthetic heart valve
DK174814B1 (en) 1998-02-25 2003-12-01 Cook William Europ stent device
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
US6132458A (en) 1998-05-15 2000-10-17 American Medical Systems, Inc. Method and device for loading a stent
US20040088041A1 (en) 1999-07-20 2004-05-06 Stanford Ulf Harry Expandable stent with array of relief cuts
US6152144A (en) 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
US6319281B1 (en) 1999-03-22 2001-11-20 Kumar R. Patel Artificial venous valve and sizing catheter
WO2000059375A1 (en) 1999-04-05 2000-10-12 The Regents Of The University Of California Endomyocardial monophasic action potential for early detection of myocardium pathology
US7666204B2 (en) 1999-04-09 2010-02-23 Evalve, Inc. Multi-catheter steerable guiding system and methods of use
US6231602B1 (en) 1999-04-16 2001-05-15 Edwards Lifesciences Corporation Aortic annuloplasty ring
US6319280B1 (en) 1999-08-03 2001-11-20 St. Jude Medical, Inc. Prosthetic ring holder
US6371983B1 (en) 1999-10-04 2002-04-16 Ernest Lane Bioprosthetic heart valve
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
US6540782B1 (en) 2000-02-02 2003-04-01 Robert V. Snyders Artificial heart valve
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
ATE381291T1 (en) 2000-06-23 2008-01-15 Viacor Inc AUTOMATIC ANNUAL FOLDING FOR MITRAL VALVE REPAIR
US6409758B2 (en) 2000-07-27 2002-06-25 Edwards Lifesciences Corporation Heart valve holder for constricting the valve commissures and methods of use
US6572652B2 (en) 2000-08-29 2003-06-03 Venpro Corporation Method and devices for decreasing elevated pulmonary venous pressure
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US6893459B1 (en) 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US6974476B2 (en) 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
US6659981B2 (en) 2000-12-08 2003-12-09 Medtronic, Inc. Medical device delivery catheter with distal locator
US6899727B2 (en) 2001-01-22 2005-05-31 Gore Enterprise Holdings, Inc. Deployment system for intraluminal devices
US6790231B2 (en) 2001-02-05 2004-09-14 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
JP2005508201A (en) 2001-03-08 2005-03-31 アトリテック, インコーポレイテッド Atrial filter implant
US6503272B2 (en) 2001-03-21 2003-01-07 Cordis Corporation Stent-based venous valves
US8219208B2 (en) 2001-04-13 2012-07-10 Greatbatch Ltd. Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface
US6676692B2 (en) 2001-04-27 2004-01-13 Intek Technology L.L.C. Apparatus for delivering, repositioning and/or retrieving self-expanding stents
JP2005508208A (en) 2001-06-04 2005-03-31 アルバート・アインシュタイン・ヘルスケア・ネットワーク Cardiac stimulator with thrombus filter and atrial pacemaker
US7678128B2 (en) 2001-06-29 2010-03-16 Advanced Cardiovascular Systems, Inc. Delivery and recovery sheaths for medical devices
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
US7011671B2 (en) 2001-07-18 2006-03-14 Atritech, Inc. Cardiac implant device tether system and method
FR2828263B1 (en) 2001-08-03 2007-05-11 Philipp Bonhoeffer DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE
US20040243107A1 (en) 2001-10-01 2004-12-02 Macoviak John A Methods and devices for treating atrial fibrilation
CA2462254A1 (en) * 2001-10-01 2003-04-10 Am Discovery, Incorporated Devices for treating atrial fibrilation
US6790237B2 (en) 2001-10-09 2004-09-14 Scimed Life Systems, Inc. Medical stent with a valve and related methods of manufacturing
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US7144363B2 (en) 2001-10-16 2006-12-05 Extensia Medical, Inc. Systems for heart treatment
US20030083730A1 (en) 2001-10-25 2003-05-01 Scimed Life Systems, Inc. Loading cartridge for self-expanding stent
GB0125925D0 (en) 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
CN1638703A (en) 2002-01-25 2005-07-13 阿特里泰克公司 Atrial appendage blood filtration systems
US7125420B2 (en) 2002-02-05 2006-10-24 Viacor, Inc. Method and apparatus for improving mitral valve function
US6797001B2 (en) 2002-03-11 2004-09-28 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
US20030199971A1 (en) 2002-04-23 2003-10-23 Numed, Inc. Biological replacement valve assembly
US20030225445A1 (en) 2002-05-14 2003-12-04 Derus Patricia M. Surgical stent delivery devices and methods
US20030233141A1 (en) 2002-06-13 2003-12-18 Israel Henry M. Stent coated with stent graft and method therefor
US7041132B2 (en) 2002-08-16 2006-05-09 3F Therapeutics, Inc, Percutaneously delivered heart valve and delivery means thereof
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
AU2003277115A1 (en) 2002-10-01 2004-04-23 Ample Medical, Inc. Device and method for repairing a native heart valve leaflet
US8235844B2 (en) 2010-06-01 2012-08-07 Adams Golf Ip, Lp Hollow golf club head
US20040122515A1 (en) * 2002-11-21 2004-06-24 Xi Chu Prosthetic valves and methods of manufacturing
US6830585B1 (en) 2003-01-14 2004-12-14 3F Therapeutics, Inc. Percutaneously deliverable heart valve and methods of implantation
DE10362223B4 (en) 2003-01-21 2010-02-04 pfm Produkte für die Medizin AG Basic coil shape
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
US7175656B2 (en) 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US7201772B2 (en) 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
WO2005011534A1 (en) 2003-07-31 2005-02-10 Cook Incorporated Prosthetic valve devices and methods of making such devices
US9579194B2 (en) 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US20050096738A1 (en) 2003-10-06 2005-05-05 Cali Douglas S. Minimally invasive valve replacement system
US7566336B2 (en) 2003-11-25 2009-07-28 Cardia, Inc. Left atrial appendage closure device
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9232948B2 (en) 2003-12-23 2016-01-12 Stryker Corporation Catheter with distal occlusion apparatus
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
AU2005213458B2 (en) 2004-02-05 2010-04-22 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
US20070073387A1 (en) 2004-02-27 2007-03-29 Forster David C Prosthetic Heart Valves, Support Structures And Systems And Methods For Implanting The Same
AU2005218326A1 (en) 2004-02-27 2005-09-15 Aortx, Inc. Prosthetic heart valve delivery systems and methods
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
EP2308425B2 (en) 2004-03-11 2023-10-18 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous Heart Valve Prosthesis
US7758491B2 (en) 2004-04-05 2010-07-20 Genesee Biomedical, Inc. Method and apparatus for the surgical treatment of congestive heart failure
ES2552086T5 (en) 2004-04-08 2020-03-25 Aga Medical Corp Flanged occlusion devices
US7641686B2 (en) 2004-04-23 2010-01-05 Direct Flow Medical, Inc. Percutaneous heart valve with stentless support
US7534259B2 (en) 2004-05-05 2009-05-19 Direct Flow Medical, Inc. Nonstented heart valves with formed in situ support
CN100413471C (en) 2004-06-25 2008-08-27 深圳市先健科技股份有限公司 Latching of left auricular appendix and conveyor thereof
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
EP1796597B1 (en) 2004-09-14 2013-01-09 Edwards Lifesciences AG Device for treatment of heart valve regurgitation
US8052592B2 (en) 2005-09-27 2011-11-08 Evalve, Inc. Methods and devices for tissue grasping and assessment
US20060162731A1 (en) 2004-11-16 2006-07-27 Pulmonx Pulmonary occlusal stent delivery catheter, loading system and methods of use
EP1855623B1 (en) 2005-02-07 2019-04-17 Evalve, Inc. Devices for cardiac valve repair
US7918880B2 (en) 2005-02-16 2011-04-05 Boston Scientific Scimed, Inc. Self-expanding stent and delivery system
DK1850796T3 (en) 2005-02-18 2016-01-18 Cleveland Clinic Foundation DEVICE FOR REPLACEMENT OF A HEART VALVE
US8083793B2 (en) 2005-02-28 2011-12-27 Medtronic, Inc. Two piece heart valves including multiple lobe valves and methods for implanting them
SE531468C2 (en) 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
US7833268B2 (en) 2005-04-29 2010-11-16 Delgado Iii Reynolds M Method and apparatus for implanting an aortic valve prosthesis
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
EP2901967B1 (en) 2005-05-24 2019-10-02 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
US9089423B2 (en) 2010-05-10 2015-07-28 Hlt, Inc. Stentless support structure
US8663312B2 (en) 2005-05-27 2014-03-04 Hlt, Inc. Intravascular cuff
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
WO2007009117A1 (en) 2005-07-13 2007-01-18 Arbor Surgical Technologies, Inc. Two-piece percutaneous prosthetic heart valves and methods for making and using them
US8790396B2 (en) 2005-07-27 2014-07-29 Medtronic 3F Therapeutics, Inc. Methods and systems for cardiac valve delivery
US7455689B2 (en) 2005-08-25 2008-11-25 Edwards Lifesciences Corporation Four-leaflet stented mitral heart valve
WO2007025028A1 (en) 2005-08-25 2007-03-01 The Cleveland Clinic Foundation Percutaneous atrioventricular valve and method of use
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
WO2007054015A1 (en) 2005-11-09 2007-05-18 Ning Wen An artificial heart valve stent and weaving method thereof
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
WO2007075892A2 (en) 2005-12-23 2007-07-05 Clinasys Llc An implantable prosthetic valve
WO2007084418A2 (en) 2006-01-13 2007-07-26 Surmodics, Inc. Microparticle containing matrices for drug delivery
CN100444811C (en) 2006-01-16 2008-12-24 孔祥清 Automatically positioned left auricle block instrument
CN2820130Y (en) 2006-01-16 2006-09-27 孔祥清 Auricula sinistra blocking device capable of automatic positioning in auricula sinitra
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US20070193632A1 (en) * 2006-02-21 2007-08-23 Jianchao Shu Artificial heart valve and rotary pressure porting mechanisms
US8403981B2 (en) 2006-02-27 2013-03-26 CardiacMC, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US20070238979A1 (en) 2006-03-23 2007-10-11 Medtronic Vascular, Inc. Reference Devices for Placement in Heart Structures for Visualization During Heart Valve Procedures
CN101045022B (en) 2006-03-30 2010-08-25 温宁 Self-expanding stent axial wire-drawing tensioning mechanism
FR2899096B1 (en) 2006-04-04 2008-12-05 Perouse Soc Par Actions Simpli DEVICE FOR TREATING A CIRCULATION CIRCULATION OF THE BLOOD AND METHOD OF PREPARING SAID DEVICE
US7524331B2 (en) 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
US20070239254A1 (en) 2006-04-07 2007-10-11 Chris Chia System for percutaneous delivery and removal of a prosthetic valve
US20070239271A1 (en) 2006-04-10 2007-10-11 Than Nguyen Systems and methods for loading a prosthesis onto a minimally invasive delivery system
EP1849440A1 (en) 2006-04-28 2007-10-31 Younes Boudjemline Vascular stents with varying diameter
US8834550B2 (en) 2006-05-19 2014-09-16 Boston Scientific Scimed, Inc. Apparatus and method for loading and delivering a stent using a suture retaining mechanism
US20070293942A1 (en) 2006-06-16 2007-12-20 Daryush Mirzaee Prosthetic valve and deployment method
CN101505687A (en) 2006-06-21 2009-08-12 奥尔特克斯公司 Prosthetic valve implantation systems
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
WO2008013915A2 (en) 2006-07-28 2008-01-31 Arshad Quadri Percutaneous valve prosthesis and system and method for implanting same
US20080039928A1 (en) 2006-08-08 2008-02-14 Medlogics Device Corporation Slotted Self-Expanding Stent Delivery System
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
CN102247223B (en) 2006-09-08 2015-05-06 爱德华兹生命科学公司 Integrated heart valve delivery system
US8876895B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Valve fixation member having engagement arms
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
AU2013201970B2 (en) 2006-09-28 2016-03-03 Hlt, Inc. Delivery tool for percutaneous delivery of a prosthesis
FR2906454B1 (en) 2006-09-28 2009-04-10 Perouse Soc Par Actions Simpli IMPLANT INTENDED TO BE PLACED IN A BLOOD CIRCULATION CONDUIT.
US8029556B2 (en) 2006-10-04 2011-10-04 Edwards Lifesciences Corporation Method and apparatus for reshaping a ventricle
US8163011B2 (en) 2006-10-06 2012-04-24 BioStable Science & Engineering, Inc. Intra-annular mounting frame for aortic valve repair
US7935144B2 (en) 2006-10-19 2011-05-03 Direct Flow Medical, Inc. Profile reduction of valve implant
WO2008051554A2 (en) 2006-10-24 2008-05-02 Beth Israel Deaconess Medical Center Percutaneous aortic valve assembly
WO2008055301A1 (en) 2006-11-07 2008-05-15 Univ Sydney Devices and methods for the treatment of heart failure
US9232997B2 (en) 2006-11-07 2016-01-12 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
JP5593545B2 (en) 2006-12-06 2014-09-24 メドトロニック シーブイ ルクセンブルク エス.アー.エール.エル. System and method for transapical delivery of a self-expanding valve secured to an annulus
WO2008079272A2 (en) 2006-12-19 2008-07-03 St. Jude Medical, Inc. Prosthetic heart valve including stent structure and tissue leaflets, and related methods
FR2910269B1 (en) 2006-12-22 2009-02-27 Corevalve Inc TREATMENT EQUIPMENT FOR A CARDIAC VALVE, IN PARTICULAR A MITRAL VALVE
WO2008078956A1 (en) 2006-12-27 2008-07-03 Posco Excellent heat-dissipating black resin composition, method for treating a zinc coated steel sheet using the same and steel sheet treated thereby
WO2008091493A1 (en) 2007-01-08 2008-07-31 California Institute Of Technology In-situ formation of a valve
WO2008089365A2 (en) 2007-01-19 2008-07-24 The Cleveland Clinic Foundation Method for implanting a cardiovascular valve
US8303649B2 (en) * 2007-01-29 2012-11-06 Cook Medical Technologies Llc Artificial venous valve with discrete shaping members
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US20080269877A1 (en) 2007-02-05 2008-10-30 Jenson Mark L Systems and methods for valve delivery
WO2008103283A2 (en) 2007-02-16 2008-08-28 Medtronic, Inc. Delivery systems and methods of implantation for replacement prosthetic heart valves
US8070802B2 (en) 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
EP2025306B1 (en) 2007-04-23 2020-01-01 Saint Joseph Research Institute Methods of making a replacement heart valve
US8187284B2 (en) 2007-04-23 2012-05-29 Boston Scientific Scimed, Inc. Intraluminary stent relocating apparatus
FR2915678B1 (en) * 2007-05-02 2010-04-16 Lapeyre Ind Llc MECHANICAL PROTHETIC CARDIAC VALVE
US8764816B2 (en) 2007-05-07 2014-07-01 W. L. Gore & Associates, Inc. Stent delivery and deployment system
US7673379B1 (en) 2007-05-11 2010-03-09 Abbott Cardiovascular Systems Inc. Method of producing a stent-balloon assembly
US7766953B2 (en) 2007-05-16 2010-08-03 Med Institute, Inc. Deployment system for an expandable stent
US8403979B2 (en) 2007-05-17 2013-03-26 Cook Medical Technologies Llc Monocuspid prosthetic valve having a partial sinus
WO2008150529A1 (en) 2007-06-04 2008-12-11 St. Jude Medical, Inc. Prosthetic heart valves
US8663318B2 (en) 2007-07-23 2014-03-04 Hocor Cardiovascular Technologies Llc Method and apparatus for percutaneous aortic valve replacement
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
US8220121B2 (en) 2007-09-14 2012-07-17 Cook Medical Technologies Llc Device for loading a self-expandable prosthesis into a sheath
US9393137B2 (en) 2007-09-24 2016-07-19 Boston Scientific Scimed, Inc. Method for loading a stent into a delivery system
EP3245980B1 (en) 2007-09-26 2022-07-20 St. Jude Medical, LLC Collapsible prosthetic heart valves
WO2009045331A1 (en) 2007-09-28 2009-04-09 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
WO2009045334A1 (en) 2007-09-28 2009-04-09 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
EP2214594B1 (en) 2007-10-01 2017-01-18 Smith & Nephew, Inc. Apparatus for preparing bone for a prosthetic device
US9414842B2 (en) 2007-10-12 2016-08-16 St. Jude Medical, Cardiology Division, Inc. Multi-component vascular device
US7981151B2 (en) 2007-10-15 2011-07-19 Edwards Lifesciences Corporation Transcatheter heart valve with micro-anchors
EP2205184B2 (en) 2007-11-05 2023-01-11 St. Jude Medical, LLC Collapsible/expandable prosthetic heart valves with non-expanding stent posts and retrieval features
US20090125096A1 (en) 2007-11-12 2009-05-14 Medtronic Vascular, Inc. Stent Graft With Pins
WO2009073774A1 (en) 2007-12-04 2009-06-11 Cook Incorporated Storage and loading system for implantable medical devices
US10166127B2 (en) 2007-12-12 2019-01-01 Intact Vascular, Inc. Endoluminal device and method
US8257434B2 (en) 2007-12-18 2012-09-04 Cormatrix Cardiovascular, Inc. Prosthetic tissue valve
US8679176B2 (en) 2007-12-18 2014-03-25 Cormatrix Cardiovascular, Inc Prosthetic tissue valve
US8876897B2 (en) 2007-12-20 2014-11-04 Arash Kheradvar Implantable prosthetic valves and methods relating to same
EP2240119B1 (en) 2007-12-26 2018-03-28 Cook Medical Technologies LLC Stent and method of making a stent
US20090171456A1 (en) 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
US8287538B2 (en) 2008-01-14 2012-10-16 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US8157852B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
EP3449875A1 (en) 2008-01-24 2019-03-06 Medtronic, Inc. Stents for prosthetic heart valves
US8465540B2 (en) 2008-02-26 2013-06-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis
ES2903231T3 (en) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US9241792B2 (en) 2008-02-29 2016-01-26 Edwards Lifesciences Corporation Two-step heart valve implantation
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
WO2009120764A2 (en) 2008-03-25 2009-10-01 Ellipse Technologies, Inc. Systems and methods for adjusting an annuloplasty ring with an integrated magnetic drive
US10456259B2 (en) 2008-04-16 2019-10-29 Heart Repair Technologies, Inc. Transvalvular intraannular band for mitral valve repair
US11013599B2 (en) 2008-04-16 2021-05-25 Heart Repair Technologies, Inc. Percutaneous transvalvular intraannular band for mitral valve repair
WO2009127973A2 (en) 2008-04-18 2009-10-22 Symetis Sa Introducer
EP3967274B1 (en) 2008-04-23 2022-08-24 Medtronic, Inc. Stented heart valve devices
US10813779B2 (en) 2008-04-25 2020-10-27 CARDINAL HEALTH SWITZERLAND 515 GmbH Stent attachment and deployment mechanism
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
DK4223257T3 (en) 2008-06-06 2024-08-12 Edwards Lifesciences Corp Low profile transcatheter heart valve
US8591460B2 (en) 2008-06-13 2013-11-26 Cardiosolutions, Inc. Steerable catheter and dilator and system and method for implanting a heart implant
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US9101382B2 (en) 2009-02-18 2015-08-11 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
US20100016095A1 (en) 2008-07-15 2010-01-21 Michael Scott Burnett Golf club head having trip step feature
US9226820B2 (en) 2008-07-15 2016-01-05 St. Jude Medical, Inc. Axially anchoring collapsible and re-expandable prosthetic heart valves for various disease states
US8808356B2 (en) 2008-07-15 2014-08-19 St. Jude Medical, Inc. Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
CN102119013B (en) 2008-07-17 2014-12-03 Nvt股份公司 Cardiac valve prosthesis system
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US20100069948A1 (en) 2008-09-12 2010-03-18 Micrus Endovascular Corporation Self-expandable aneurysm filling device, system and method of placement
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
EP3613383B1 (en) 2008-11-21 2023-08-30 Percutaneous Cardiovascular Solutions Pty Limited Heart valve prosthesis
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
WO2010075998A2 (en) 2008-12-29 2010-07-08 Hille & Müller GMBH Coated product for use in an electrochemical device and a method for producing such a product
US9402720B2 (en) 2009-01-12 2016-08-02 Valve Medical Ltd. Modular percutaneous valve structure and delivery method
US8998982B2 (en) 2009-01-12 2015-04-07 Valve Medical Ltd. Method and apparatus for fine adjustment of a percutaneous valve structure
US20100217268A1 (en) 2009-02-20 2010-08-26 University Of Utah Intervertebral milling instrument
JP2012518470A (en) 2009-02-20 2012-08-16 ボストン サイエンティフィック サイムド,インコーポレイテッド Asymmetric bi-directional movable catheter sheath
US8394101B2 (en) 2009-02-23 2013-03-12 Globus Medical, Inc. Discectomy instrument
EP2221014B1 (en) 2009-02-23 2015-05-20 Inion Oy Implant, implantation tool and kit
TW201031381A (en) 2009-02-24 2010-09-01 Univ Nat Yang Ming The anti-subsidence dynamic coupling fixation plate for proximal femoral fracture
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
US20100217263A1 (en) 2009-02-26 2010-08-26 Thane International, Inc. Automated hair removal device
US8876812B2 (en) 2009-02-26 2014-11-04 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode with pressure sore reduction and heating capabilities
US8021420B2 (en) 2009-03-12 2011-09-20 Medtronic Vascular, Inc. Prosthetic valve delivery system
EP2408399B1 (en) 2009-03-17 2023-11-01 Mitrassist Medical Ltd. Heart valve prosthesis with collapsible valve
US20140057734A1 (en) 2009-03-25 2014-02-27 Clive S. Lu Grip for sporting equipment
CN101919750A (en) 2009-03-30 2010-12-22 卡迪万蒂奇医药公司 There is not the implantation method of sewing up cusps of pulmonary valve or mitral valve
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
US9066785B2 (en) 2009-04-06 2015-06-30 Medtronic Vascular, Inc. Packaging systems for percutaneously deliverable bioprosthetic valves
US9011522B2 (en) 2009-04-10 2015-04-21 Lon Sutherland ANNEST Device and method for temporary or permanent suspension of an implantable scaffolding containing an orifice for placement of a prosthetic or bio-prosthetic valve
US20100262157A1 (en) 2009-04-14 2010-10-14 Medtronic Vascular, Inc. Methods and Systems for Loading a Stent
US8414644B2 (en) 2009-04-15 2013-04-09 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
EP3453337B1 (en) 2009-06-17 2023-01-04 Coherex Medical, Inc. Medical device for modification of left atrial appendage
US8348998B2 (en) 2009-06-26 2013-01-08 Edwards Lifesciences Corporation Unitary quick connect prosthetic heart valve and deployment system and methods
US8657870B2 (en) 2009-06-26 2014-02-25 Biosensors International Group, Ltd. Implant delivery apparatus and methods with electrolytic release
DE102009037739A1 (en) 2009-06-29 2010-12-30 Be Innovative Gmbh Percutaneously implantable valve stent, device for its application and method for producing the valve stent
WO2011004925A1 (en) 2009-07-10 2011-01-13 (주)태웅메디칼 Stent
US8475522B2 (en) 2009-07-14 2013-07-02 Edwards Lifesciences Corporation Transapical delivery system for heart valves
US8845722B2 (en) 2009-08-03 2014-09-30 Shlomo Gabbay Heart valve prosthesis and method of implantation thereof
US8585019B2 (en) 2009-08-20 2013-11-19 Cook Medical Technologies Llc Loading apparatus and system for expandable intraluminal medical devices
US20110054515A1 (en) 2009-08-25 2011-03-03 John Bridgeman Device and method for occluding the left atrial appendage
AU2010286587B2 (en) 2009-08-27 2013-10-17 Medtronic Inc. Transcatheter valve delivery systems and methods
WO2011025981A1 (en) 2009-08-28 2011-03-03 3F Therapeutics, Inc. Transapical delivery device and method of use
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
EP3042615A1 (en) 2009-09-15 2016-07-13 Evalve, Inc. Methods, systems and devices for cardiac valve repair
JP5685256B2 (en) 2009-09-21 2015-03-18 メドトロニック,インコーポレイテッド Stented transcatheter prosthetic heart valve delivery system and method
US8652203B2 (en) 2010-09-23 2014-02-18 Cardiaq Valve Technologies, Inc. Replacement heart valves, delivery devices and methods
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
US8808369B2 (en) 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
JP4891379B2 (en) 2009-10-27 2012-03-07 Sriスポーツ株式会社 Golf club
CN102665612B (en) 2009-11-05 2015-04-08 宾夕法尼亚大学理事会 Valve prosthesis
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US20130190861A1 (en) 2012-01-23 2013-07-25 Tendyne Holdings, Inc. Prosthetic Valve for Replacing Mitral Valve
EP3838223A1 (en) 2009-12-08 2021-06-23 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
AU2015230879B2 (en) 2009-12-08 2017-06-15 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
US9504562B2 (en) 2010-01-12 2016-11-29 Valve Medical Ltd. Self-assembling modular percutaneous valve and methods of folding, assembly and delivery
CN105534561B (en) 2010-01-20 2018-04-03 康文图斯整形外科公司 For bone close to the device and method with bone cavity preparation
US10959840B2 (en) 2010-01-20 2021-03-30 Micro Interventional Devices, Inc. Systems and methods for affixing a prosthesis to tissue
US8518106B2 (en) 2010-02-17 2013-08-27 Medtronic, Inc. Catheter assembly with valve crimping accessories
US20110208293A1 (en) 2010-02-23 2011-08-25 Medtronic, Inc. Catheter-Based Heart Valve Therapy System with Sizing Balloon
US9522062B2 (en) 2010-02-24 2016-12-20 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
US10433956B2 (en) 2010-02-24 2019-10-08 Medtronic Ventor Technologies Ltd. Mitral prosthesis and methods for implantation
CA2752660A1 (en) 2010-02-25 2010-08-05 Jenavalve Technology Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8795354B2 (en) 2010-03-05 2014-08-05 Edwards Lifesciences Corporation Low-profile heart valve and delivery system
WO2011109813A2 (en) 2010-03-05 2011-09-09 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
CN103002823B (en) 2010-03-08 2017-11-28 康文图斯整形外科公司 Device and method for Bone Defect Repari
EP2544608A4 (en) 2010-03-08 2017-02-22 Conventus Orthopaedics, Inc. Apparatus and methods for securing a bone implant
US9320597B2 (en) 2010-03-30 2016-04-26 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with recapturing feature and method
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8491650B2 (en) 2010-04-08 2013-07-23 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method with stretchable stability tube
US8926692B2 (en) 2010-04-09 2015-01-06 Medtronic, Inc. Transcatheter prosthetic heart valve delivery device with partial deployment and release features and methods
US8512400B2 (en) 2010-04-09 2013-08-20 Medtronic, Inc. Transcatheter heart valve delivery system with reduced area moment of inertia
US8998980B2 (en) 2010-04-09 2015-04-07 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with recapturing feature and method
US20110251676A1 (en) 2010-04-12 2011-10-13 Medtronic Vascular, Inc. Sheath for Controlled Delivery of a Heart Valve Prosthesis
US8512401B2 (en) 2010-04-12 2013-08-20 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with funnel recapturing feature and method
US8579963B2 (en) 2010-04-13 2013-11-12 Medtronic, Inc. Transcatheter prosthetic heart valve delivery device with stability tube and method
US10512537B2 (en) 2010-04-16 2019-12-24 Abiomed, Inc. Flow optimized polymeric heart valve
CN101961273B (en) 2010-04-19 2012-11-21 杭州启明医疗器械有限公司 Valvular prosthetic replacement device with buffer action and stent
CN101953725B (en) 2010-04-19 2013-06-19 杭州启明医疗器械有限公司 Artificial valve displacement device and stent
CN101953723B (en) 2010-04-19 2013-02-27 杭州启明医疗器械有限公司 Stably-positioned artificial cardiac valve replacement device and stent
CN101961269B (en) 2010-04-19 2012-09-05 杭州启明医疗器械有限公司 Conveying device for conveying artificial cardiac valve replacement device
CN101953724B (en) 2010-04-19 2012-10-10 杭州启明医疗器械有限公司 Bracket fixing head used for loading artificial valve replacement device
CN101953728B (en) 2010-04-19 2012-09-05 杭州启明医疗器械有限公司 Conveniently-implantable artificial valve replacement device and scaffold
US8465541B2 (en) 2010-04-19 2013-06-18 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method with expandable stability tube
CN101953729B (en) 2010-04-19 2012-10-17 杭州启明医疗器械有限公司 Safe artificial valve replacing device and safe scaffold
US8623075B2 (en) 2010-04-21 2014-01-07 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method with controlled expansion of prosthetic heart valve
US8740976B2 (en) 2010-04-21 2014-06-03 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with flush report
JP5803010B2 (en) 2010-04-27 2015-11-04 メドトロニック,インコーポレイテッド Transcatheter prosthetic heart valve delivery device with deflection release characteristics
WO2011139746A1 (en) 2010-04-27 2011-11-10 Medtronic Inc. Transcatheter prosthetic heart valve delivery device with passive trigger release
AU2014203064B2 (en) 2010-05-05 2015-06-11 Neovasc Tiara Inc. Transcatheter mitral valve prosthesis
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
CA2793916C (en) 2010-05-10 2016-10-25 Edwards Lifesciences Corporation Prosthetic heart valve
US20130204311A1 (en) 2010-05-12 2013-08-08 Helical Solutions, Inc. Implants and methods for treating cardiac arrhythmias
WO2011143468A2 (en) 2010-05-12 2011-11-17 Shifamed, Llc Low profile electrode assembly
US9603708B2 (en) 2010-05-19 2017-03-28 Dfm, Llc Low crossing profile delivery catheter for cardiovascular prosthetic implant
US11278406B2 (en) 2010-05-20 2022-03-22 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
DE102010021345A1 (en) 2010-05-22 2011-11-24 Acoredis Gmbh Occlusions instrument for closing left atrial auricle of patient, has occluder provided with region that is located from central region to retention region for forming actuated connection between nub region of occluder and auricle wall
US9561102B2 (en) 2010-06-02 2017-02-07 Medtronic, Inc. Transcatheter delivery system and method with controlled expansion and contraction of prosthetic heart valve
EP2579789A2 (en) 2010-06-10 2013-04-17 Jeffrey W. Chambers Systems for preventing formation of blood clots in the left atrium
WO2012003317A1 (en) 2010-07-02 2012-01-05 Alex Javois Left atrial appendage occlusion device
AU2011279727B2 (en) 2010-07-15 2014-03-27 St. Jude Medical, Inc. Retainers for transcatheter heart valve delivery systems
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
WO2012012761A2 (en) 2010-07-23 2012-01-26 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US8696737B2 (en) 2010-08-11 2014-04-15 Hlt, Inc. Reinforced commissural support structure
WO2012023980A1 (en) 2010-08-17 2012-02-23 St. Jude Medical, Inc. Sleeve for facilitating movement of a transfemoral catheter
BR112013004264A2 (en) 2010-08-24 2016-08-02 St Jude Medical device, system and method of placement for a collapsible prosthetic heart valve
US9039759B2 (en) 2010-08-24 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Repositioning of prosthetic heart valve and deployment
EP2444030A1 (en) 2010-08-31 2012-04-25 Biotronik AG Medical valve implant for implantation in an animal body and/or human body
US10105224B2 (en) 2010-09-01 2018-10-23 Mvalve Technologies Ltd. Cardiac valve support structure
AU2011295854B2 (en) 2010-09-01 2016-07-21 Mvalve Technologies Ltd. Cardiac valve support structure
EP2428189A1 (en) 2010-09-10 2012-03-14 Symetis Sa Catheter delivery system for stent valve
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
BR112013005277B1 (en) 2010-09-10 2021-01-12 Symetis Sa valve replacement device and delivery system for dispensing a valve replacement device
JP2013540481A (en) 2010-09-17 2013-11-07 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Retainer for transcatheter heart valve delivery system
AU2011302641B2 (en) 2010-09-17 2014-10-02 St. Jude Medical, Cardiology Division, Inc. Assembly and method for loading a self-expanding collapsible heart valve
EP2616009A2 (en) 2010-09-17 2013-07-24 St. Jude Medical, Cardiology Division, Inc. Improved preparation methods for transcatheter heart valve delivery systems
USD653342S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Stent connections
ES2651744T3 (en) 2010-09-20 2018-01-29 St. Jude Medical, Cardiology Division, Inc. Delivery device provided with a curved rod and a straightening member for transcatheter implantation of an aortic valve
USD660967S1 (en) 2010-09-20 2012-05-29 St. Jude Medical, Inc. Surgical stent
BR112013006514A2 (en) 2010-09-20 2016-07-12 St Jude Medical Cardiology Div prosthetic heart valve
USD653341S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical stent
USD648854S1 (en) 2010-09-20 2011-11-15 St. Jude Medical, Inc. Commissure points
USD660433S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Surgical stent assembly
US9579193B2 (en) 2010-09-23 2017-02-28 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
US10321998B2 (en) 2010-09-23 2019-06-18 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
CA2811589A1 (en) * 2010-09-23 2012-03-29 Colibri Heart Valve Llc Percutaneously deliverable heart or blood vessel valve with frame having abluminally situated tissue membrane
US8845720B2 (en) * 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
US9161835B2 (en) 2010-09-30 2015-10-20 BioStable Science & Engineering, Inc. Non-axisymmetric aortic valve devices
PT3669828T (en) 2010-10-05 2021-07-12 Edwards Lifesciences Corp Prosthetic heart valve
WO2012054776A1 (en) 2010-10-21 2012-04-26 Medtronic Inc Mitral bioprosthesis with low ventricular profile
US9072872B2 (en) 2010-10-29 2015-07-07 Medtronic, Inc. Telescoping catheter delivery system for left heart endocardial device placement
US9186152B2 (en) 2010-11-12 2015-11-17 W. L. Gore & Associates, Inc. Left atrial appendage occlusive devices
GB201019354D0 (en) 2010-11-16 2010-12-29 Vascutek Ltd Prothesis
US9078750B2 (en) 2010-11-30 2015-07-14 Edwards Lifesciences Corporation Ergonomic mitral heart valve holders
CN201870772U (en) 2010-11-30 2011-06-22 孔祥清 Delivery device with valve positioning function for percutaneous aortic valve replacement
SG10201601962WA (en) 2010-12-14 2016-04-28 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
US9579197B2 (en) 2010-12-15 2017-02-28 Medtronic Vascular, Inc. Systems and methods for positioning a heart valve using visual markers
AU2011349578B2 (en) 2010-12-23 2016-06-30 Twelve, Inc. System for mitral valve repair and replacement
US8790196B2 (en) 2011-01-04 2014-07-29 Karsten Manufacturing Corporation Golf club heads with apertures and methods to manufacture golf club heads
EP2663258B1 (en) 2011-01-11 2018-11-21 Hans Reiner Figulla Prosthetic valve for replacing an atrioventricular heart valve
EP3636312B1 (en) 2011-01-11 2022-06-22 Boston Scientific Limited Apparatus useful for transcatheter aortic valve implantation
EP2478868A1 (en) 2011-01-25 2012-07-25 The Provost, Fellows, Foundation Scholars, and the other Members of Board, of the College of the Holy and Undivided Trinity of Queen Elizabeth Implant device
US9101808B2 (en) 2011-01-27 2015-08-11 Nike, Inc. Golf club head or other ball striking device having impact-influencing body features
US9717593B2 (en) 2011-02-01 2017-08-01 St. Jude Medical, Cardiology Division, Inc. Leaflet suturing to commissure points for prosthetic heart valve
US8932343B2 (en) 2011-02-01 2015-01-13 St. Jude Medical, Cardiology Division, Inc. Blunt ended stent for prosthetic heart valve
US20120209375A1 (en) 2011-02-11 2012-08-16 Gilbert Madrid Stability device for use with percutaneous delivery systems
EP2486894B1 (en) 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
GB2488530A (en) 2011-02-18 2012-09-05 David J Wheatley Heart valve
WO2012161786A1 (en) 2011-02-25 2012-11-29 University Of Connecticut Prosthetic heart valve
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
EP2526196A4 (en) 2011-03-07 2015-04-08 Conventus Orthopaedics Inc Apparatus and methods for bone repair preparation
US8602903B2 (en) 2011-04-12 2013-12-10 Kids Ii, Inc. Child support repositioning mechanism
WO2012147028A1 (en) 2011-04-28 2012-11-01 Koninklijke Philips Electronics N.V. Guided delivery of prosthetic valve
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
EP2522307B1 (en) 2011-05-08 2020-09-30 ITSO Medical AB Device for delivery of medical devices to a cardiac valve
US9144494B2 (en) 2011-05-12 2015-09-29 Medtronic, Inc. Delivery catheter system with micro and macro movement control
US8945209B2 (en) 2011-05-20 2015-02-03 Edwards Lifesciences Corporation Encapsulated heart valve
US20120303048A1 (en) 2011-05-24 2012-11-29 Sorin Biomedica Cardio S.R.I. Transapical valve replacement
US9289282B2 (en) 2011-05-31 2016-03-22 Edwards Lifesciences Corporation System and method for treating valve insufficiency or vessel dilatation
CN102805654B (en) 2011-06-01 2014-04-02 先健科技(深圳)有限公司 Occluder for left auricle
US9101471B2 (en) 2011-06-13 2015-08-11 Edwards Lifesciences Corporation Systems and delivery handles for delivering prosthetic heart valves disposed on valve holders
US9532887B2 (en) 2011-06-15 2017-01-03 St. Jude Medical, Inc. Multi-layer stent
US8764793B2 (en) 2011-06-17 2014-07-01 Northwestern University Left atrial appendage occluder
US9011523B2 (en) 2011-06-20 2015-04-21 Jacques Seguin Prosthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same
CN103997990A (en) 2011-06-21 2014-08-20 托尔福公司 Prosthetic heart valve devices and associated systems and methods
US8795357B2 (en) 2011-07-15 2014-08-05 Edwards Lifesciences Corporation Perivalvular sealing for transcatheter heart valve
WO2013013032A2 (en) 2011-07-20 2013-01-24 Boston Scientific Scimed, Inc. Heart valve replacement
US20130023852A1 (en) 2011-07-22 2013-01-24 William Joseph Drasler Flow Protection Device
US9119716B2 (en) 2011-07-27 2015-09-01 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
AU2012286789B2 (en) 2011-07-28 2016-10-27 St. Jude Medical, Cardiology Division, Inc. System for loading a collapsible heart valve
US9370422B2 (en) 2011-07-28 2016-06-21 St. Jude Medical, Inc. Expandable radiopaque marker for transcatheter aortic valve implantation
US20140172076A1 (en) 2011-08-03 2014-06-19 Aeeg Ab Delivery Device For Medical Implant And Medical Procedure
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
CA2844746C (en) 2011-08-11 2018-02-20 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
EP2750635A4 (en) 2011-09-01 2015-05-20 Endospan Ltd Cross-reference to related applications
US9364637B2 (en) 2011-09-06 2016-06-14 Medtronic, Inc. Transcatheter balloon-assisted mitral valve navigation device and method
US9358108B2 (en) 2011-09-12 2016-06-07 Highlife Sas Transcatheter valve prosthesis
US9387075B2 (en) 2011-09-12 2016-07-12 Highlife Sas Transcatheter valve prosthesis
US9549817B2 (en) 2011-09-22 2017-01-24 Transmural Systems Llc Devices, systems and methods for repairing lumenal systems
US9554904B2 (en) 2011-09-28 2017-01-31 Medtronic CV Luxembourg S.a.r.l. Distal tip assembly for a heart valve delivery catheter
WO2014144937A2 (en) 2013-03-15 2014-09-18 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
AU2012325813A1 (en) 2011-10-19 2014-04-03 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
JP6151705B2 (en) 2011-10-19 2017-06-21 トゥエルヴ, インコーポレイテッド Devices, systems and methods for heart valve replacement
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
ES2925731T3 (en) 2011-10-27 2022-10-19 Occlutech Holding Ag Medical implant, kit and method for manufacturing a 3D fabric of strands to form a medical implant
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US8778020B2 (en) 2011-11-08 2014-07-15 Boston Scientific Scimed, Inc. Replacement heart valve leaflet stitching method and device
CN103917169B (en) 2011-11-09 2016-11-09 波士顿科学国际有限公司 Plugging device
US9592099B2 (en) 2011-11-15 2017-03-14 St. Jude Medical, Cardiology Division, Inc. Transapical collapsible valve reference fixture
CA2852029A1 (en) 2011-11-23 2013-05-30 Occlutech Holding Ag Medical occlusion device
EP2596754A1 (en) 2011-11-23 2013-05-29 Occlutech Holding AG Medical implant and manufacturing method thereof
US9480558B2 (en) 2011-12-05 2016-11-01 Medtronic, Inc. Transcatheter valve having reduced seam exposure
US20130144328A1 (en) 2011-12-06 2013-06-06 Boston Scientific Scimed, Inc. Expanding distal sheath with combined embolic protection
CN104114127B (en) 2011-12-09 2017-09-05 爱德华兹生命科学公司 The heart valve prosthesis of commissure support with improvement
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
GB2512775A (en) 2011-12-29 2014-10-08 Beijing Percutek Therapeutics Co Ltd Aorta covered stent
US20130184811A1 (en) 2012-01-13 2013-07-18 Tendyne Holdings, Inc. Device and Method for Replacing Mitral Valve
FR2985659B1 (en) 2012-01-13 2015-03-06 Assist Publ Hopitaux De Paris DEVICE FOR ANCHORING A PROTHETIC CARDIAC VALVE.
WO2013116785A1 (en) 2012-02-01 2013-08-08 Hlt, Inc. Invertible tissue valve and method
US20150094802A1 (en) 2012-02-28 2015-04-02 Mvalve Technologies Ltd. Single-ring cardiac valve support
US20130304197A1 (en) 2012-02-28 2013-11-14 Mvalve Technologies Ltd. Cardiac valve modification device
GB2500432A (en) 2012-03-22 2013-09-25 Stephen Brecker Replacement heart valve with resiliently deformable securing means
US20130274873A1 (en) 2012-03-22 2013-10-17 Symetis Sa Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage
US11207176B2 (en) 2012-03-22 2021-12-28 Boston Scientific Scimed, Inc. Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage
US9066800B2 (en) 2012-03-28 2015-06-30 Medtronic, Inc. Dual valve prosthesis for transcatheter valve implantation
US9295547B2 (en) 2012-03-28 2016-03-29 Medtronic Vascular Galway Prosthesis for transcatheter valve implantation
US9101467B2 (en) 2012-03-30 2015-08-11 Medtronic CV Luxembourg S.a.r.l. Valve prosthesis
US9301839B2 (en) 2012-04-17 2016-04-05 Medtronic CV Luxembourg S.a.r.l. Transcatheter prosthetic heart valve delivery device with release features
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
ITTO20120372A1 (en) 2012-04-27 2013-10-28 Marcio Scorsin MONOCUSPIDE CARDIAC VALVE PROSTHESIS
US9445897B2 (en) 2012-05-01 2016-09-20 Direct Flow Medical, Inc. Prosthetic implant delivery device with introducer catheter
US9532871B2 (en) 2012-05-04 2017-01-03 St. Jude Medical, Cardiology Division, Inc. Delivery system deflection mechanism
CN104334120B (en) 2012-05-15 2016-10-26 瓣膜医学有限公司 For assembling the system and method for the percutaneous valve of folding
CN104684505B (en) 2012-05-20 2017-07-07 戴尔马修墨医学研究内结构和服务有限公司 Artificial mitral valves
EP2856972B1 (en) 2012-05-24 2019-01-16 Shanghai Cingular Biotech Corp Artificial heart valve
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
DE102012010798A1 (en) 2012-06-01 2013-12-05 Universität Duisburg-Essen Implantable device for improving or eliminating heart valve insufficiency
CZ2012376A3 (en) 2012-06-05 2013-12-18 Institut Klinické A Experimentální Medicíny Process for preparing pericardial prosthesis of cardiac valve, cardiac valve pericardial prosthesis produced in such a manner, device for conditioning and modification of autologous pericardial tissue for pericardial prosthesis of heart valve
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
JP2015519983A (en) 2012-06-22 2015-07-16 スカラ、ピエールSQUARA, Pierre Heart valve
US9289292B2 (en) 2012-06-28 2016-03-22 St. Jude Medical, Cardiology Division, Inc. Valve cuff support
US9241791B2 (en) 2012-06-29 2016-01-26 St. Jude Medical, Cardiology Division, Inc. Valve assembly for crimp profile
US20140005776A1 (en) 2012-06-29 2014-01-02 St. Jude Medical, Cardiology Division, Inc. Leaflet attachment for function in various shapes and sizes
US9615920B2 (en) 2012-06-29 2017-04-11 St. Jude Medical, Cardiology Divisions, Inc. Commissure attachment feature for prosthetic heart valve
US10004597B2 (en) 2012-07-03 2018-06-26 St. Jude Medical, Cardiology Division, Inc. Stent and implantable valve incorporating same
EP2872077B1 (en) 2012-07-12 2017-10-04 Boston Scientific Scimed, Inc. Low profile heart valve delivery system
EP2887909A1 (en) 2012-07-13 2015-07-01 Boston Scientific Scimed, Inc. Collapsible caged-ball prosthetic valve for transcatheter delivery and method of use
EP3213695B1 (en) 2012-07-13 2021-05-05 Boston Scientific Scimed, Inc. Occlusion device for an atrial appendage
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US9271856B2 (en) 2012-07-25 2016-03-01 Medtronic Vascular Galway Delivery catheter with distal moving capsule for transapical prosthetic heart valve delivery
US20140046436A1 (en) 2012-07-27 2014-02-13 The Regents Of The University Of California Implantable prosthetic valves and methods
US20140031951A1 (en) 2012-07-27 2014-01-30 Cook Medical Technologies Llc Two-Way Valve
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US9468525B2 (en) 2012-08-13 2016-10-18 Medtronic, Inc. Heart valve prosthesis
US9232995B2 (en) 2013-01-08 2016-01-12 Medtronic, Inc. Valve prosthesis and method for delivery
CN102805676B (en) 2012-08-14 2015-06-17 杭州启明医疗器械有限公司 Compression device for artificial valve replacement device
US20140057735A1 (en) 2012-08-21 2014-02-27 Ruey J. Yu Scientific golf and equipment
US20140057731A1 (en) 2012-08-24 2014-02-27 Gregory N. Stephens Threaded Structures with Solder Control Features
DE102012215108A1 (en) 2012-08-24 2014-02-27 Gewa Music Gmbh Connecting joint for a connecting shaft and connecting shaft with such a connecting joint
US9717595B2 (en) 2012-09-05 2017-08-01 Medtronic Vascular Galway Trans-aortic delivery system with containment capsule centering device
CN104736103A (en) 2012-09-12 2015-06-24 波士顿科学国际有限公司 Fixation anchor design for an occlusion device
WO2014043527A2 (en) 2012-09-14 2014-03-20 Millepede, Llc. Mitral valve inversion prostheses
DE102012216742A1 (en) 2012-09-19 2014-03-20 Hans-Hinrich Sievers Heart valve prosthesis
EP2710985A3 (en) 2012-09-20 2016-01-13 Biotronik AG Implant, system formed of an implant and a catheter, and method for producing such a system
US9295549B2 (en) 2012-10-12 2016-03-29 St. Jude Medical, Cardiology Division, Inc. Valve holder and loading integration
ES2617182T3 (en) 2012-10-19 2017-06-15 Boston Scientific Scimed, Inc. Anti-thrombic element for implanted medical devices
US9717592B2 (en) 2012-10-29 2017-08-01 Aneumed, Inc. Personalized aortic valve prosthesis
US9023099B2 (en) 2012-10-31 2015-05-05 Medtronic Vascular Galway Limited Prosthetic mitral valve and delivery method
US9675456B2 (en) 2012-11-02 2017-06-13 Medtronic, Inc. Transcatheter valve prosthesis delivery system with recapturing feature and method
US20140135907A1 (en) 2012-11-09 2014-05-15 Medtronic CV Luxembourg S.a.r.l. Medical Device Delivery System and Methods of Delivering Medical Devices
US9408951B2 (en) 2012-11-13 2016-08-09 Boston Scientific Scimed, Inc. Nanoparticle implantation in medical devices
US9144493B2 (en) 2012-11-14 2015-09-29 Medtronic Vascular Galway Limited Valve prosthesis deployment assembly and method
US20140135817A1 (en) 2012-11-14 2014-05-15 Boston Scientific Scimed, Inc. Left atrial appendage closure implant
US20140142688A1 (en) 2012-11-20 2014-05-22 Medtronic CV Luxembourg S.a.r.l. Medical Device Delivery System and Methods of Delivering a Medical Device
EP2732796A1 (en) 2012-11-20 2014-05-21 Nakostech Sarl Mitral valve replacement system
WO2014081796A1 (en) 2012-11-21 2014-05-30 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic heart valves
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US10039638B2 (en) 2012-12-19 2018-08-07 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
WO2014105873A1 (en) 2012-12-26 2014-07-03 Stryker Corporation Multilayer stent
US9700323B2 (en) 2012-12-31 2017-07-11 Boston Scientific Scimed Inc. Medical devices having fixation anchor
US9066801B2 (en) 2013-01-08 2015-06-30 Medtronic, Inc. Valve prosthesis and method for delivery
CN104994812B (en) 2013-01-25 2017-05-17 梅德坦提亚国际有限公司 A valve for short time replacement, for taking over the function of and/or for temporary or partial support of a native valve in a heart and a method for delivery therefor
KR102370065B1 (en) 2013-01-25 2022-03-04 메드텐티아 인터내셔날 엘티디 오와이 A system for cardiac valve repair
WO2014114797A1 (en) 2013-01-25 2014-07-31 Medtentia International Ltd Oy Temporary atrium support device
US10413401B2 (en) 2013-02-01 2019-09-17 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US9675451B2 (en) 2013-02-01 2017-06-13 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
WO2014121280A2 (en) 2013-02-04 2014-08-07 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US10285811B2 (en) 2013-02-06 2019-05-14 Symetis, SA Prosthetic valve, delivery apparatus and delivery method
US9168129B2 (en) 2013-02-12 2015-10-27 Edwards Lifesciences Corporation Artificial heart valve with scalloped frame design
US9456897B2 (en) 2013-02-21 2016-10-04 Medtronic, Inc. Transcatheter valve prosthesis and a concurrently delivered sealing component
CN104000672B (en) 2013-02-25 2016-06-15 上海微创心通医疗科技有限公司 Heart valve prosthesis
US20140243954A1 (en) 2013-02-27 2014-08-28 Donald Shannon Transcatheter mitral valve prosthesis
US9155616B2 (en) 2013-02-28 2015-10-13 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with expandable microspheres
US9387106B2 (en) 2013-02-28 2016-07-12 Medtronic Vascular, Inc. Medical device delivery systems and methods of use thereof
US9901470B2 (en) 2013-03-01 2018-02-27 St. Jude Medical, Cardiology Division, Inc. Methods of repositioning a transcatheter heart valve after full deployment
US9844435B2 (en) 2013-03-01 2017-12-19 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
US10080657B2 (en) 2013-03-07 2018-09-25 Cedars-Sinai Medical Center Catheter based apical approach heart prostheses delivery system
US9119713B2 (en) 2013-03-11 2015-09-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve replacement
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
EP2967849A4 (en) 2013-03-12 2017-01-18 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US20140277408A1 (en) 2013-03-12 2014-09-18 Boston Scientific Scimed, Inc. Prosthetic Heart Valve System
US9333077B2 (en) 2013-03-12 2016-05-10 Medtronic Vascular Galway Limited Devices and methods for preparing a transcatheter heart valve system
US9636222B2 (en) 2013-03-12 2017-05-02 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak protection
US9744034B2 (en) 2013-03-12 2017-08-29 St. Jude Medical, Cardiology Division, Inc. Radiopaque transcatheter valve and anatomical markers
US20140277388A1 (en) 2013-03-12 2014-09-18 Aga Medical Corporation Biocompatible foam occlusion device for self-expanding heart valves
US9339274B2 (en) 2013-03-12 2016-05-17 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US8986375B2 (en) 2013-03-12 2015-03-24 Medtronic, Inc. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US20160030169A1 (en) 2013-03-13 2016-02-04 Aortic Innovations, Llc Dual frame stent and valve devices and implantation
WO2014164572A1 (en) 2013-03-13 2014-10-09 Kaplan Aaron V Devices and methods for excluding the left atrial appendage
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
CN105263443B (en) 2013-03-14 2017-11-14 心肺医疗股份有限公司 Sutureless valve prosthesis delivery apparatus and its application method
US9326856B2 (en) 2013-03-14 2016-05-03 St. Jude Medical, Cardiology Division, Inc. Cuff configurations for prosthetic heart valve
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
EP2967845B1 (en) 2013-03-15 2018-08-29 Symetis SA Improvements relating to transcatheter stent-valves
EP2967862A4 (en) 2013-03-15 2017-05-17 Endoluminal Sciences Pty Ltd Means for controlled sealing of endovascular devices
EP2967861B1 (en) 2013-03-15 2017-11-29 Hlt, Inc. Low-profile prosthetic valve structure
US9439796B2 (en) 2013-03-15 2016-09-13 Cook Medical Technologies Llc Prosthesis delivery device
WO2014140282A1 (en) 2013-03-15 2014-09-18 Milux Holding S.A. Operable implant comprising an electrical motor and a gear system
WO2014145338A1 (en) 2013-03-15 2014-09-18 Navigate Cardiac Structures, Inc. Catheter-guided replacement valves apparatus and methods
US9993339B2 (en) 2013-03-15 2018-06-12 The Charlotte-Mecklenburg Hospital Authority Method and apparatus for therapy of mitral valve
US10149757B2 (en) 2013-03-15 2018-12-11 Edwards Lifesciences Corporation System and method for transaortic delivery of a prosthetic heart valve
CN103190968B (en) 2013-03-18 2015-06-17 杭州启明医疗器械有限公司 Bracket and stably-mounted artificial valve displacement device with same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US20140296969A1 (en) 2013-04-02 2014-10-02 Tendyne Holdlings, Inc. Anterior Leaflet Clip Device for Prosthetic Mitral Valve
US20140296970A1 (en) 2013-04-02 2014-10-02 Tendyne Holdings, Inc. Positioning Tool for Transcatheter Valve Delivery
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
FR3004336A1 (en) 2013-04-12 2014-10-17 St George Medical Inc MITRAL HEART VALVE PROSTHESIS AND RELIEF CATHETER
FR3004638B1 (en) 2013-04-19 2015-05-29 Invalv Lab IMPLANT, IN PARTICULAR TO BE PLACED IN A CARDIAC AURICULO-VENTRICULAR VALVE, COMPRISING A PROXIMAL ARM SPLITTING SYSTEM
CN105307598B (en) 2013-04-19 2017-09-12 海峡接入控股(私人)有限公司 Heart valve prosthesis
JP6561044B2 (en) 2013-05-03 2019-08-14 メドトロニック,インコーポレイテッド Valve transfer tool
WO2014178971A1 (en) 2013-05-03 2014-11-06 Cormatrix Cardiovascular, Inc. Prosthetic tissue valves and methods for anchoring same to cardiovascular structures
WO2014179280A1 (en) 2013-05-03 2014-11-06 Cormatrix Cardiovascular, Inc. Reinforced prosthetic tissue valves
US20140330370A1 (en) 2013-05-03 2014-11-06 Robert G. Matheny Prosthetic Valve Delivery and Mounting Apparatus and System
CN105377192A (en) 2013-05-09 2016-03-02 米塔埃瑟斯医疗有限公司 Heart valve assistive prosthesis
US10188515B2 (en) 2013-05-13 2019-01-29 Medtronic Vascular Inc. Devices and methods for crimping a medical device
JP6545665B2 (en) 2013-05-20 2019-07-17 トゥエルヴ, インコーポレイテッド Implantable heart valve devices, mitral valve repair devices, and related systems and methods
MX361339B (en) 2013-05-20 2018-12-04 Edwards Lifesciences Corp Prosthetic heart valve delivery apparatus.
EP3533417A1 (en) 2013-05-22 2019-09-04 ValCare, Inc. Transcatheter prosthetic valve for mitral or tricuspid valve replacement
EP3003187B1 (en) 2013-05-24 2023-11-08 Valcare, Inc. Heart and peripheral vascular valve replacement in conjunction with a support ring
CN105578991B (en) 2013-05-29 2017-11-14 M阀门技术有限公司 It is equipped with valve leaflets heart valve support device
US20140358224A1 (en) 2013-05-30 2014-12-04 Tendyne Holdlings, Inc. Six cell inner stent device for prosthetic mitral valves
US9326854B2 (en) 2013-06-13 2016-05-03 Medtronic Vascular Galway Delivery system with pacing element
US9968445B2 (en) 2013-06-14 2018-05-15 The Regents Of The University Of California Transcatheter mitral valve
US20140371844A1 (en) 2013-06-18 2014-12-18 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve and delivery system
CN203290964U (en) 2013-06-19 2013-11-20 孔祥清 Device for loop ligature and closing of left auricle through epicardium under intracardiac assistant positioning
CN203379235U (en) 2013-06-25 2014-01-08 杭州启明医疗器械有限公司 Pulmonary artery support and pulmonary artery valve replacement device with thereof
JP6461122B2 (en) 2013-06-25 2019-01-30 テンダイン ホールディングス,インコーポレイテッド Thrombus management and structural compliance features of prosthetic heart valves
US9962259B2 (en) 2013-06-25 2018-05-08 National University Of Singapore Stent member, artificial valve, and method of implanting the same
CN103431931B (en) 2013-06-25 2015-10-28 杭州启明医疗器械有限公司 Lung arterial support and there is the pulmonary artery valve replacement device of this lung arterial support
US9668856B2 (en) 2013-06-26 2017-06-06 St. Jude Medical, Cardiology Division, Inc. Puckering seal for reduced paravalvular leakage
WO2014210155A2 (en) 2013-06-26 2014-12-31 Medtronic, Inc. Anchor Deployment for Implantable Medical Devices
WO2014210299A1 (en) 2013-06-27 2014-12-31 Bridges Charles R Device, system, and method for implanting a prosthetic heart valve
EP3016614A1 (en) 2013-07-01 2016-05-11 St. Jude Medical, Cardiology Division, Inc. Hybrid orientation pravalvular sealing stent
WO2015004173A1 (en) 2013-07-11 2015-01-15 Jenavalve Technology Gmbh Delivery system for transcatheter aortic valve implantation
US9353447B2 (en) * 2013-07-11 2016-05-31 Solar Hydrogen Holdings, Inc. Multifactorial hydrogen reactor
US9414916B2 (en) 2013-07-17 2016-08-16 Medtronic Vascular Galway Adapter to actuate a delivery system
US9861474B2 (en) 2013-07-18 2018-01-09 The Trustees Of The University Of Pennsylvania Cardiac repair prosthesis sets and methods
EP2918246B1 (en) 2014-03-14 2018-08-08 Venus MedTech (HangZhou), Inc. Heart valve assembly comprising twofold sealing
US9895219B2 (en) 2013-07-31 2018-02-20 Medtronic Vascular Galway Mitral valve prosthesis for transcatheter valve implantation
EP2918245B1 (en) 2014-03-14 2017-05-03 Venus MedTech (HangZhou), Inc. Heart valve comprising a crown piece interconnected to leaflets, a top cuff and a bottom cuff; and a medical implant
EP3027145A1 (en) 2013-07-31 2016-06-08 Transcatheter Technologies GmbH Set comprising a catheter and a valve supporting implant
EP2835112B1 (en) 2013-08-08 2021-01-27 Sorin Group Italia S.r.l. Heart valve prosthesis
CN113616381A (en) 2013-08-12 2021-11-09 米特拉尔维尔福科技有限责任公司 Apparatus and method for implanting a replacement heart valve
US20160193045A1 (en) 2013-08-29 2016-07-07 Mayo Foundation For Medical Education And Research Self-assembling percutaneously implantable heart valve
WO2015031124A1 (en) 2013-08-29 2015-03-05 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve with lyophilized tissue
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
USD730521S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
US9968448B2 (en) 2013-09-04 2018-05-15 St. Jude Medical, Cardiology Division, Inc. Commissure attachment features for improved delivery flexibility and tracking
USD730520S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
US10195028B2 (en) 2013-09-10 2019-02-05 Edwards Lifesciences Corporation Magnetic retaining mechanisms for prosthetic valves
US9737399B2 (en) 2013-09-11 2017-08-22 Cormatrix Cardiovascular, Inc. Systems, apparatus and methods for sealing perivalvular leaks
WO2015038458A1 (en) 2013-09-12 2015-03-19 St. Jude Medical, Cardiology Division, Inc. Stent designs for prosthetic heart valves
EP3360514B1 (en) 2013-09-16 2021-11-03 Symetis SA Method and apparatus for compressing/loading stent-valves
US9414917B2 (en) 2013-09-17 2016-08-16 Medtronic, Inc. Systems and methods for loading a valve prosthesis onto a catheter
US20150088251A1 (en) 2013-09-26 2015-03-26 San Diego State University Research Foundation Cardiac valve prosthesis
US9393111B2 (en) 2014-01-15 2016-07-19 Sino Medical Sciences Technology Inc. Device and method for mitral valve regurgitation treatment
KR102256192B1 (en) 2013-10-05 2021-05-26 시노 메디칼 사이언시즈 테크놀로지, 인코포레이티드 Device and method for mitral valve regurgitation method
EP2856946A1 (en) 2013-10-07 2015-04-08 Occlutech Holding AG A medical implant for occluding an opening in a body and a method of producing such a medical implant
US10226340B2 (en) 2013-10-08 2019-03-12 The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center Cardiac prostheses and their deployment
CN103598939A (en) 2013-10-17 2014-02-26 杭州启明医疗器械有限公司 Safety improved pulmonary artery stent and pulmonary artery valve replacement device
CN203619728U (en) 2013-10-17 2014-06-04 杭州启明医疗器械有限公司 Pulmonary-artery valve replacing device and pulmonary artery stent capable of improving safety
US9925045B2 (en) 2013-10-21 2018-03-27 Medtronic Vascular Galway Systems, devices and methods for transcatheter valve delivery
US9788944B2 (en) 2013-10-21 2017-10-17 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve implantation access sheaths
US9050188B2 (en) 2013-10-23 2015-06-09 Caisson Interventional, LLC Methods and systems for heart valve therapy
US10646333B2 (en) 2013-10-24 2020-05-12 Medtronic, Inc. Two-piece valve prosthesis with anchor stent and valve component
US9662202B2 (en) 2013-10-24 2017-05-30 Medtronic, Inc. Heart valve prosthesis
US9414913B2 (en) 2013-10-25 2016-08-16 Medtronic, Inc. Stented prosthetic heart valve
CN105682611B (en) 2013-10-28 2018-06-01 坦迪尼控股股份有限公司 Prosthetic heart valve and the system and method for conveying prosthetic heart valve
EP3398562B1 (en) 2013-10-28 2022-12-21 Boston Scientific Limited Stent-valve, delivery apparatus and method
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US9629653B2 (en) 2013-11-01 2017-04-25 Cook Medical Technologies Llc Looped wire catheter and method
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
EP4176844A1 (en) 2013-11-06 2023-05-10 St. Jude Medical, Cardiology Division, Inc. Reduced profile prosthetic heart valve
WO2015069643A1 (en) 2013-11-06 2015-05-14 Becton Dickinson and Company Limited Connection apparatus for a medical device
WO2015073287A1 (en) 2013-11-12 2015-05-21 St. Jude Medical, Cardiology Division, Inc. Pneumatically power-assisted tavi delivery system
US9839765B2 (en) 2013-11-12 2017-12-12 St. Jude Medical, Cardiology Division, Inc. Transfemoral mitral valve repair delivery device
EP3071149B1 (en) 2013-11-19 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
US20150173898A1 (en) 2013-12-03 2015-06-25 William Joseph Drasler Transcatheter Mitral Valve Replacement Apparatus
CN203677318U (en) 2013-12-05 2014-07-02 杭州启明医疗器械有限公司 Artificial heart valve holding device
US10098734B2 (en) 2013-12-05 2018-10-16 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
CN103610520B (en) 2013-12-05 2016-08-17 杭州启明医疗器械有限公司 A kind of Cardiac valve prosthesis holder
CN111991117B (en) 2013-12-11 2023-10-24 雪松-西奈医学中心 Device for transcatheter mitral valve replacement in a double-orifice mitral valve
JP6539652B2 (en) 2013-12-12 2019-07-03 コンベンタス オーソピディックス, インコーポレイテッド Tissue displacement tools and methods
US9901444B2 (en) 2013-12-17 2018-02-27 Edwards Lifesciences Corporation Inverted valve structure
ES2771900T3 (en) 2013-12-19 2020-07-07 St Jude Medical Cardiology Div Inc Valve-sleeve fixings for prosthetic heart valve
EP3082619B1 (en) 2013-12-20 2024-04-10 Terumo Corporation Vascular occlusion
US9730701B2 (en) 2014-01-16 2017-08-15 Boston Scientific Scimed, Inc. Retrieval wire centering device
EP2896387A1 (en) 2014-01-20 2015-07-22 Mitricares Heart valve anchoring device
US9820852B2 (en) 2014-01-24 2017-11-21 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs
US9750603B2 (en) 2014-01-27 2017-09-05 Medtronic Vascular Galway Stented prosthetic heart valve with variable stiffness and methods of use
US10258343B2 (en) 2014-01-27 2019-04-16 Lifetech Scientific (Shenzhen) Co. Ltd. Left atrial appendage occluder
US9867556B2 (en) 2014-02-07 2018-01-16 St. Jude Medical, Cardiology Division, Inc. System and method for assessing dimensions and eccentricity of valve annulus for trans-catheter valve implantation
US10292711B2 (en) 2014-02-07 2019-05-21 St. Jude Medical, Cardiology Division, Inc. Mitral valve treatment device having left atrial appendage closure
US9072604B1 (en) 2014-02-11 2015-07-07 Gilberto Melnick Modular transcatheter heart valve and implantation method
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
CA2938468C (en) 2014-02-20 2023-09-12 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
EP4248914A3 (en) 2014-02-21 2024-05-01 Mitral Valve Technologies Sàrl Prosthetic mitral valve and anchoring device
US9889003B2 (en) 2014-03-11 2018-02-13 Highlife Sas Transcatheter valve prosthesis
US9763779B2 (en) 2014-03-11 2017-09-19 Highlife Sas Transcatheter valve prosthesis
US10064719B2 (en) 2014-03-11 2018-09-04 Highlife Sas Transcatheter valve prosthesis
US9687343B2 (en) 2014-03-11 2017-06-27 Highlife Sas Transcatheter valve prosthesis
EP2918248A1 (en) 2014-03-11 2015-09-16 Epygon Sasu An expandable stent-valve and a delivery device
US10390943B2 (en) 2014-03-17 2019-08-27 Evalve, Inc. Double orifice device for transcatheter mitral valve replacement
EP2921139B1 (en) 2014-03-18 2018-11-21 Nvt Ag Heartvalve implant
US9610157B2 (en) 2014-03-21 2017-04-04 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation
EP3122289A1 (en) 2014-03-26 2017-02-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve stent frames
EP3125826B1 (en) 2014-03-31 2020-10-07 St. Jude Medical, Cardiology Division, Inc. Paravalvular sealing via extended cuff mechanisms
US10149758B2 (en) 2014-04-01 2018-12-11 Medtronic, Inc. System and method of stepped deployment of prosthetic heart valve
ES2635438T3 (en) 2014-04-07 2017-10-03 Nvt Ag Device for implantation in the heart of a mammal
GB2525005B (en) 2014-04-09 2016-03-09 Cook Medical Technologies Llc Delivery system for implantable medical device
EP3131504B1 (en) 2014-04-14 2023-03-15 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation in prosthetic heart valves
WO2015160598A1 (en) 2014-04-17 2015-10-22 Medtronic Vascular Galway Hinged transcatheter prosthetic heart valve delivery system
US10321987B2 (en) 2014-04-23 2019-06-18 Medtronic, Inc. Paravalvular leak resistant prosthetic heart valve system
US9585752B2 (en) 2014-04-30 2017-03-07 Edwards Lifesciences Corporation Holder and deployment system for surgical heart valves
CA2947049C (en) 2014-05-06 2023-07-04 Dsm Ip Assets B.V. Prosthetic valve and method of making a prosthetic valve
US10195025B2 (en) 2014-05-12 2019-02-05 Edwards Lifesciences Corporation Prosthetic heart valve
ES2795358T3 (en) 2014-05-16 2020-11-23 St Jude Medical Cardiology Div Inc Subannular sealing for paravalvular leak protection
EP3257473A1 (en) 2014-05-16 2017-12-20 St. Jude Medical, Cardiology Division, Inc. Stent assembly for use in prosthetic heart valves
WO2015175450A1 (en) 2014-05-16 2015-11-19 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve with paravalvular leak sealing ring
CN106456328A (en) 2014-05-19 2017-02-22 爱德华兹生命科学卡迪尔克有限责任公司 Replacement mitral valve with annular flap
CA2986584A1 (en) 2014-05-21 2015-11-26 The Royal Institution For The Advancement Of Learning/Mcgill University Methods and systems for anatomical structure and transcatheter device visualization
EP3145450B1 (en) 2014-05-22 2019-07-17 St. Jude Medical, Cardiology Division, Inc. Stents with anchoring sections
FR3021208B1 (en) 2014-05-23 2021-03-12 Thomas Modine MITRAL OR TRICUSPID HEART VALVE PROSTHESIS
US9532870B2 (en) 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
US9855140B2 (en) 2014-06-10 2018-01-02 St. Jude Medical, Cardiology Division, Inc. Stent cell bridge for cuff attachment
US10111749B2 (en) 2014-06-11 2018-10-30 Medtronic Vascular, Inc. Prosthetic valve with flow director
CN106413589A (en) 2014-06-11 2017-02-15 奥特鲁泰克控股有限公司 Left atrial appendage occluder
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
US20150366690A1 (en) 2014-06-23 2015-12-24 Abbott Cardiovascular Systems Inc. Stent delivery system with anchoring guide wire and method for deploying a self-expanding stent
US9180005B1 (en) 2014-07-17 2015-11-10 Millipede, Inc. Adjustable endolumenal mitral valve ring
US10195026B2 (en) 2014-07-22 2019-02-05 Edwards Lifesciences Corporation Mitral valve anchoring
EP4066786A1 (en) 2014-07-30 2022-10-05 Cardiovalve Ltd. Articulatable prosthetic valve
EP2982336A1 (en) 2014-08-04 2016-02-10 Alvimedica Tibb Ürünler San. Ve Dis Tic. A.S. Mitral valve prosthesis, particularly suitable for transcatheter implantation
US20160038283A1 (en) 2014-08-06 2016-02-11 The University Of Iowa Research Foundation Systems and methods utilizing expandable transcatheter valve
JP2017525534A (en) 2014-08-15 2017-09-07 ディーエフエム、 エルエルシー Artificial implant delivery device
US20160045306A1 (en) 2014-08-18 2016-02-18 Boston Scientific Scimed, Inc. Cut pattern transcatheter valve frame
US10058424B2 (en) 2014-08-21 2018-08-28 Edwards Lifesciences Corporation Dual-flange prosthetic valve frame
US9877832B2 (en) 2014-08-22 2018-01-30 Medtronic Vascular, Inc. Rapid exchange transcatheter valve delivery system
WO2016033170A1 (en) 2014-08-26 2016-03-03 Mayo Foundation For Medical Education And Research Closure and ablation of body viscera and conduits
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
RU2721288C2 (en) 2014-09-17 2020-05-18 Метэктив Медикал, Инк. Medical device for saccular aneurysm treatment
PL3000437T3 (en) 2014-09-26 2018-10-31 Nvt Ag Implantable device for treating mitral valve regurgitation
CN204133530U (en) 2014-09-29 2015-02-04 上海形状记忆合金材料有限公司 Occluder for left auricle
US10390950B2 (en) 2014-10-03 2019-08-27 St. Jude Medical, Cardiology Division, Inc. Flexible catheters and methods of forming same
US20160095701A1 (en) 2014-10-07 2016-04-07 St. Jude Medical, Cardiology Division, Inc. Bi-Leaflet Mitral Valve Design
CN204181679U (en) 2014-10-13 2015-03-04 陈奕龙 Occluder for left auricle
CN104352261B (en) 2014-10-13 2017-11-03 深圳市科奕顿生物医疗科技有限公司 Occluder for left auricle
US10507101B2 (en) 2014-10-13 2019-12-17 W. L. Gore & Associates, Inc. Valved conduit
US9999504B2 (en) 2014-10-13 2018-06-19 Hlt, Inc. Inversion delivery device and method for a prosthesis
EP3009104B1 (en) 2014-10-14 2019-11-20 St. Jude Medical, Cardiology Division, Inc. Flexible catheter and methods of forming same
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
CN104287804B (en) 2014-10-27 2017-02-22 梁巧英 Biological cavity blocking device
US20160120643A1 (en) 2014-11-05 2016-05-05 Tara Kupumbati Transcatheter cardiac valve prosthetic
US10213307B2 (en) 2014-11-05 2019-02-26 Medtronic Vascular, Inc. Transcatheter valve prosthesis having an external skirt for sealing and preventing paravalvular leakage
WO2016077783A1 (en) 2014-11-14 2016-05-19 Cedars-Sinai Medical Center Cardiovascular access and device delivery system
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
CN105596052A (en) 2014-11-22 2016-05-25 常州乐奥医疗科技有限公司 Cage-type left auricle plugging device
CN204246182U (en) 2014-11-22 2015-04-08 常州乐奥医疗科技有限公司 A kind of novel umbrella occluder for left auricle
CN105615936A (en) 2014-11-22 2016-06-01 常州乐奥医疗科技有限公司 Novel left auricle occluder
CN204318826U (en) 2014-11-22 2015-05-13 常州乐奥医疗科技有限公司 A kind of novel cage occluder for left auricle
EP4410245A3 (en) 2014-11-26 2024-10-16 Edwards Lifesciences Corporation Transcatheter prosthetic heart valve and delivery system
CA2969129A1 (en) 2014-12-03 2016-06-09 Metavention, Inc. Systems and methods for modulating nerves or other tissue
EP3028668B1 (en) 2014-12-05 2024-10-30 Nvt Ag Prosthetic heart valve system and delivery system therefor
EP3229736B1 (en) 2014-12-09 2024-01-10 Cephea Valve Technologies, Inc. Replacement cardiac valves and method of manufacture
US20160158011A1 (en) 2014-12-09 2016-06-09 Didier De Canniere Intracardiac device to correct mitral regurgitation
US9517131B2 (en) 2014-12-12 2016-12-13 Than Nguyen Cardiac valve repair device
US9937037B2 (en) 2014-12-18 2018-04-10 W. L. Gore & Associates, Inc. Prosthetic valved conduits with mechanically coupled leaflets
WO2016100806A1 (en) 2014-12-18 2016-06-23 Medtronic Inc. Transcatheter prosthetic heart valve delivery system with clinician feedback
CA2972966C (en) 2015-01-07 2023-01-10 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
US10383726B2 (en) 2015-01-13 2019-08-20 George Kramer Implantable transcatheter intracardiac devices and methods for treating incompetent atrioventricular valves
US9579195B2 (en) 2015-01-13 2017-02-28 Horizon Scientific Corp. Mitral bileaflet valve
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US10478297B2 (en) 2015-01-27 2019-11-19 Medtronic Vascular, Inc. Delivery system having an integral centering mechanism for positioning a valve prosthesis in situ
EP3253333B1 (en) 2015-02-05 2024-04-03 Cardiovalve Ltd Prosthetic valve with axially-sliding frames
EP3884906A1 (en) 2015-02-05 2021-09-29 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
US10231834B2 (en) 2015-02-09 2019-03-19 Edwards Lifesciences Corporation Low profile transseptal catheter and implant system for minimally invasive valve procedure
US10039637B2 (en) 2015-02-11 2018-08-07 Edwards Lifesciences Corporation Heart valve docking devices and implanting methods
US10251748B2 (en) 2015-02-12 2019-04-09 Medtronic Vascular, Inc. Centering devices for use with a valve prosthesis delivery system and methods of use thereof
US20160235525A1 (en) 2015-02-12 2016-08-18 Medtronic, Inc. Integrated valve assembly and method of delivering and deploying an integrated valve assembly
CN104688292B (en) 2015-02-15 2017-08-25 上海形状记忆合金材料有限公司 A kind of left atrial appendage occlusion device and plugging system
CN204683686U (en) 2015-02-15 2015-10-07 上海形状记忆合金材料有限公司 A kind of left atrial appendage occlusion device and plugging system
US10555812B2 (en) 2015-02-17 2020-02-11 Medtronic Vascular, Inc. Methods for anchoring a heart valve prosthesis in a transcatheter valve implantation procedure
US20160235530A1 (en) 2015-02-18 2016-08-18 St. Jude Medical, Cardiology Division, Inc. Introducer sheath for transcatheter heart valve delivery
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
WO2016145250A1 (en) 2015-03-12 2016-09-15 Cedars-Sinai Medical Center Devices, systems, and methods to optimize annular orientation of transcatheter valves
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US10231827B2 (en) 2015-03-18 2019-03-19 Medtronic Vascular, Inc. Valve prostheses having an integral centering mechanism and methods of use thereof
JP6785786B2 (en) 2015-03-19 2020-11-18 ケーソン・インターヴェンショナル・エルエルシー Systems and methods for heart valve treatment
EP3730094B1 (en) 2015-03-20 2024-04-24 JenaValve Technology, Inc. Heart valve prosthesis delivery system
WO2016154172A2 (en) 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
CN104720937B (en) 2015-03-26 2017-09-26 杭州启明医疗器械有限公司 Reduce the valve bracket of reduction length and the valve replacement device with the valve bracket
CN204581599U (en) 2015-03-26 2015-08-26 杭州启明医疗器械有限公司 The valve bracket of use safety and there is the valve replacement device of this valve bracket
CN204581598U (en) 2015-03-26 2015-08-26 杭州启明医疗器械有限公司 Reduce the valve bracket of reduction length and there is the valve replacement device of this support
CN104720936B (en) 2015-03-26 2017-07-07 杭州启明医疗器械有限公司 Valve bracket using safety and the valve replacement device with the valve bracket
WO2016164257A1 (en) 2015-04-07 2016-10-13 St. Jude Medical, Cardiology Division, Inc. System and method for intraprocedural assessment of geometry and compliance of valve annulus for trans-catheter valve implantation
DE102015004246A1 (en) 2015-04-07 2016-10-13 Coramaze Technologies Gmbh System for the application of an implant, implant and application device
US10314696B2 (en) 2015-04-09 2019-06-11 Boston Scientific Scimed, Inc. Prosthetic heart valves having fiber reinforced leaflets
US10368986B2 (en) 2015-04-15 2019-08-06 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method
US10010417B2 (en) 2015-04-16 2018-07-03 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
ES2818128T3 (en) 2015-04-16 2021-04-09 Tendyne Holdings Inc Apparatus for the delivery and repositioning of transcatheter prosthetic valves
US10441416B2 (en) 2015-04-21 2019-10-15 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
DE102015005934A1 (en) 2015-05-12 2016-11-17 Coramaze Technologies Gmbh Implantable device for improving or eliminating heart valve insufficiency
DE102015005933A1 (en) 2015-05-12 2016-11-17 Coramaze Technologies Gmbh Implantable device for improving or eliminating heart valve insufficiency
US10517726B2 (en) 2015-05-14 2019-12-31 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
WO2016186909A1 (en) 2015-05-18 2016-11-24 Mayo Foundation For Medical Education And Research Percutaneously-deployable prosthetic tricuspid valve
US10052202B2 (en) 2015-05-25 2018-08-21 Venus Medtech (Hangzhou) Inc Transcatheter pulmonary ball valve assembly
US20160346081A1 (en) 2015-05-25 2016-12-01 Horizon Scientific Corp. Transcatheter Pulmonary Ball Valve Assembly
WO2016201024A1 (en) 2015-06-12 2016-12-15 St. Jude Medical, Cardiology Division, Inc. Heart valve repair and replacement
US10092400B2 (en) 2015-06-23 2018-10-09 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
US9713520B2 (en) 2015-06-29 2017-07-25 Ethicon, Inc. Skirted tissue repair implant having position indication feature
US10639149B2 (en) 2015-07-16 2020-05-05 St. Jude Medical, Cardiology Division, Inc. Sutureless prosthetic heart valve
US10327892B2 (en) 2015-08-11 2019-06-25 Boston Scientific Scimed Inc. Integrated adaptive seal for prosthetic heart valves
US11026788B2 (en) 2015-08-20 2021-06-08 Edwards Lifesciences Corporation Loader and retriever for transcatheter heart valve, and methods of crimping transcatheter heart valve
CN111658234B (en) 2015-08-21 2023-03-10 托尔福公司 Implantable heart valve devices, mitral valve repair devices, and associated systems and methods
US10195023B2 (en) 2015-09-15 2019-02-05 Boston Scientific Scimed, Inc. Prosthetic heart valves including pre-stressed fibers
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
SG10201913589PA (en) 2015-10-08 2020-02-27 Nat Univ Singapore A naturally designed mitral prosthesis
US9872765B2 (en) 2015-10-12 2018-01-23 Venus Medtech (Hangzhou) Inc Mitral valve assembly
WO2017066480A1 (en) 2015-10-14 2017-04-20 Heart Repair Technologies, Inc. Transvalvular intraannular band for mitral valve repair
EP4230133A1 (en) 2015-10-21 2023-08-23 Autonomix Medical, Inc. Controlled and precise treatment of cardiac tissues
FR3043907A1 (en) 2015-11-23 2017-05-26 Alain Dibie ASSEMBLY FOR REPLACING THE TRICUSPID ATRIO-VENTRICULAR VALVE
WO2017093379A1 (en) 2015-12-01 2017-06-08 Koninklijke Philips N.V. Device, system and method for determining vital sign information of a subject
AU2016370464B2 (en) 2015-12-14 2019-07-18 Medtronic Vascular Inc. Devices and methods for transcatheter valve loading and implantation
ITUB20159133A1 (en) 2015-12-15 2017-06-15 Innovheart S R L Prosthesis for heart valve
CN106913408B (en) 2015-12-28 2018-10-26 先健科技(深圳)有限公司 Transport system and intraluminal stent system
CN205286438U (en) 2015-12-30 2016-06-08 郭利斌 Left atrial appendage occluder
EP3419538A4 (en) 2016-02-22 2019-10-30 Conventus Orthopaedics, Inc. Apparatus and methods for spine and sacroiliac joint repair
CN109069271B (en) 2016-03-01 2021-11-02 米特拉尔爱有限责任公司 Systems, devices, and methods for anchoring and/or sealing a heart valve prosthesis
US10405974B2 (en) 2016-04-26 2019-09-10 Boston Scientific Scimed, Inc. Replacement heart valve with improved stitching
JP2019514597A (en) 2016-05-09 2019-06-06 クヴァンテック アーゲー Device for storing and loading a self-expanding stent-like device
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
RU2018145775A (en) 2016-05-16 2019-02-18 Вэлв Медикал Лтд. TURN VALVE INVERTER SHELL
WO2017200920A1 (en) 2016-05-19 2017-11-23 Boston Scientific Scimed, Inc. Prosthetic valves, valve leaflets and related methods
WO2018013515A1 (en) 2016-07-12 2018-01-18 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US11096781B2 (en) 2016-08-01 2021-08-24 Edwards Lifesciences Corporation Prosthetic heart valve
US10383725B2 (en) 2016-08-11 2019-08-20 4C Medical Technologies, Inc. Heart chamber prosthetic valve implant with base, mesh and dome sections with single chamber anchoring for preservation, supplementation and/or replacement of native valve function
US10548722B2 (en) 2016-08-26 2020-02-04 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
EP3503848B1 (en) 2016-08-26 2021-09-22 Edwards Lifesciences Corporation Multi-portion replacement heart valve prosthesis
US10874512B2 (en) 2016-10-05 2020-12-29 Cephea Valve Technologies, Inc. System and methods for delivering and deploying an artificial heart valve within the mitral annulus
US10702408B2 (en) 2016-10-31 2020-07-07 Cook Medical Technologies Llc Suture esophageal stent introducer
US10492907B2 (en) 2016-11-07 2019-12-03 Medtronic Vascular, Inc. Valve delivery system
WO2018125806A1 (en) 2016-12-29 2018-07-05 Boston Scientific Scimed, Inc. Hydration delivery system for stents
CN108261255B (en) 2016-12-30 2020-12-25 先健科技(深圳)有限公司 Artificial heart valve device and valve leaf and support main body thereof
US20180193153A1 (en) 2017-01-10 2018-07-12 Conventus Orthopaedics, Inc. Articular surface repair
US10653523B2 (en) 2017-01-19 2020-05-19 4C Medical Technologies, Inc. Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves
EP4209196A1 (en) 2017-01-23 2023-07-12 Cephea Valve Technologies, Inc. Replacement mitral valves
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
JP7094965B2 (en) 2017-01-27 2022-07-04 イエナバルブ テクノロジー インク Heart valve imitation
US10932909B2 (en) 2017-02-07 2021-03-02 Shanghai Joy Medical Devices Co., Ltd Device for treating regurgitation of tricuspid and implantation method therefor
CN107007887B (en) 2017-02-27 2020-10-02 杭州启明医疗器械股份有限公司 Cross-linked artificial biological valve and preparation method thereof
CN106913909B (en) 2017-02-27 2020-09-01 杭州启明医疗器械股份有限公司 Dry artificial biological valve and preparation method thereof
US12029647B2 (en) 2017-03-07 2024-07-09 4C Medical Technologies, Inc. Systems, methods and devices for prosthetic heart valve with single valve leaflet
WO2018184226A1 (en) 2017-04-07 2018-10-11 上海甲悦医疗器械有限公司 Prosthetic valve and prosthetic valve implanting method
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10973634B2 (en) 2017-04-26 2021-04-13 Edwards Lifesciences Corporation Delivery apparatus for a prosthetic heart valve
US11839539B2 (en) 2017-05-15 2023-12-12 Edwards Lifesciences Corporation Valve sealing tissue and mesh structure
US12036113B2 (en) 2017-06-14 2024-07-16 4C Medical Technologies, Inc. Delivery of heart chamber prosthetic valve implant
BR112019027404A2 (en) 2017-06-30 2020-07-07 Edwards Lifesciences Corporation locking and releasing mechanisms for implantable transcatheter devices
CN110996853B (en) 2017-06-30 2023-01-10 爱德华兹生命科学公司 Docking station for transcatheter valve
US10918426B2 (en) 2017-07-04 2021-02-16 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone
WO2019028264A1 (en) 2017-08-03 2019-02-07 The Regents Of The University Of California Atrial cage for placement, securing and anchoring of atrioventricular valves
US10856971B2 (en) 2017-08-18 2020-12-08 Edwards Lifesciences Corporation Sealing members for prosthetic heart valve
US20190201192A1 (en) 2018-01-02 2019-07-04 4C Medical Technologies, Inc. Stent features and methods to aid with apposition and alignment to native anatomy, mitigation of paravalvular leak and functional efficiency of prosthetic heart valve
US11096812B2 (en) 2018-01-22 2021-08-24 St. Jude Medical, Cardiology Division, Inc. Delivery system and method for loading a self-expanding collapsible heart valve
US10874513B2 (en) 2018-02-12 2020-12-29 4C Medical Technologies, Inc. Expandable frames and paravalvular leak mitigation systems for implantable prosthetic heart valve devices
JP7125993B2 (en) 2018-03-08 2022-08-25 シメティス・ソシエテ・アノニム Implantable valve with attached polymer component
US11110264B2 (en) 2018-04-20 2021-09-07 Cardiovascular Systems, Inc. Intravascular pump with expandable distal region
US20190365538A1 (en) 2018-06-04 2019-12-05 4C Medical Technologies, Inc. Devices, systems and methods for preventing prolapse of native cardiac valve leaflets
US11541224B2 (en) 2018-07-30 2023-01-03 Cardiovascular Systems, Inc. Intravascular pump without inducer and centrifugal force-driven expansion of impeller blades and/or expandable and collapsible impeller housing
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
US11351028B2 (en) 2018-09-04 2022-06-07 4C Medical Technologies, Inc. Stent loading device with fluid reservoir
US11000000B2 (en) 2018-09-14 2021-05-11 4C Medical Technologies, Inc. Repositioning wires and methods for repositioning prosthetic heart valve devices within a heart chamber and related systems, devices and methods
US20200315678A1 (en) 2019-01-09 2020-10-08 Conventus Orthopaedics, Inc. Apparatus and methods for bone treatment
US20200261219A1 (en) 2019-02-14 2020-08-20 4C Medical Technologies, Inc. Hydrophilic skirt for paravalvular leak mitigation and fit and apposition optimization for prosthetic heart valve implants
US11452628B2 (en) 2019-04-15 2022-09-27 4C Medical Technologies, Inc. Loading systems for collapsible prosthetic heart valve devices and methods thereof
US20200375733A1 (en) 2019-05-30 2020-12-03 4C Medical Technologies, Inc. Devices, systems and methods for collapsible and expandable implant loading, transseptal delivery, positioning deployment and repositioning deployment
ES2976737T3 (en) 2019-10-03 2024-08-07 Truleaf Medical Ltd Anchoring element
US12133797B2 (en) 2020-01-31 2024-11-05 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: paddle attachment feature
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
US12053375B2 (en) 2020-03-05 2024-08-06 4C Medical Technologies, Inc. Prosthetic mitral valve with improved atrial and/or annular apposition and paravalvular leakage mitigation
US11992403B2 (en) 2020-03-06 2024-05-28 4C Medical Technologies, Inc. Devices, systems and methods for improving recapture of prosthetic heart valve device with stent frame having valve support with inwardly stent cells
WO2023230023A1 (en) 2022-05-23 2023-11-30 4C Medical Technologies, Inc. Systems and methods for optimizing blood flow

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160242905A1 (en) * 2015-02-20 2016-08-25 4C Medical Technologies, Inc. Devices, systems and methods for cardiac treatment
US20170172737A1 (en) * 2015-12-22 2017-06-22 Nvt Ag Prosthetic mitral valve coaptation enhancement device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11957577B2 (en) 2017-01-19 2024-04-16 4C Medical Technologies, Inc. Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves
US11944537B2 (en) 2017-01-24 2024-04-02 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
US12029647B2 (en) 2017-03-07 2024-07-09 4C Medical Technologies, Inc. Systems, methods and devices for prosthetic heart valve with single valve leaflet
US11160653B2 (en) 2017-03-27 2021-11-02 Truleaf Medicai Ltd. Docking elements
US20220008195A1 (en) * 2017-03-27 2022-01-13 Truleaf Medical Ltd. Docking elements
US12036113B2 (en) 2017-06-14 2024-07-16 4C Medical Technologies, Inc. Delivery of heart chamber prosthetic valve implant
US11666444B2 (en) * 2017-08-03 2023-06-06 The Regents Of The University Of California Atrial cage for placement, securing and anchoring of atrioventricular valves
US20190069996A1 (en) * 2017-09-07 2019-03-07 Edwards Lifesciences Corporation Integral flushing solution for blood stasis prevention in artificial heart valves
US20220202569A1 (en) * 2017-09-07 2022-06-30 Edwards Lifesciences Corporation Prosthetic valve with integral flushing for blood stasis prevention
US11786366B2 (en) 2018-04-04 2023-10-17 Vdyne, Inc. Devices and methods for anchoring transcatheter heart valve
US20190365538A1 (en) * 2018-06-04 2019-12-05 4C Medical Technologies, Inc. Devices, systems and methods for preventing prolapse of native cardiac valve leaflets
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
US11273033B2 (en) 2018-09-20 2022-03-15 Vdyne, Inc. Side-delivered transcatheter heart valve replacement
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US11395738B2 (en) 2018-09-25 2022-07-26 Truleaf Medical Ltd. Docking elements
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
CN113853180A (en) * 2019-02-14 2021-12-28 4C医疗技术公司 Hydrophilic skirt for paravalvular leak mitigation and fit and hug optimization for prosthetic heart valve implants
US11298227B2 (en) * 2019-03-05 2022-04-12 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
US11712335B2 (en) 2019-05-04 2023-08-01 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11202706B2 (en) 2019-05-04 2021-12-21 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11344412B2 (en) 2019-08-20 2022-05-31 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11331186B2 (en) 2019-08-26 2022-05-17 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11337807B2 (en) 2019-08-26 2022-05-24 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
US12133797B2 (en) 2020-01-31 2024-11-05 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: paddle attachment feature
US12053375B2 (en) 2020-03-05 2024-08-06 4C Medical Technologies, Inc. Prosthetic mitral valve with improved atrial and/or annular apposition and paravalvular leakage mitigation
US11992403B2 (en) 2020-03-06 2024-05-28 4C Medical Technologies, Inc. Devices, systems and methods for improving recapture of prosthetic heart valve device with stent frame having valve support with inwardly stent cells
CN111904664A (en) * 2020-08-25 2020-11-10 江苏臻亿医疗科技有限公司 Tricuspid valve prosthesis
US12138158B2 (en) 2021-11-15 2024-11-12 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US12144731B2 (en) 2022-03-07 2024-11-19 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis

Also Published As

Publication number Publication date
CA3054814A1 (en) 2018-09-13
CN110505854B (en) 2022-03-29
EP3592296A4 (en) 2020-12-02
US12029647B2 (en) 2024-07-09
JP2020509835A (en) 2020-04-02
CA3054814C (en) 2022-07-12
AU2018231187B2 (en) 2020-07-09
CN110505854A (en) 2019-11-26
AU2018231187A1 (en) 2019-10-24
WO2018165225A1 (en) 2018-09-13
EP3592296A1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
US12029647B2 (en) Systems, methods and devices for prosthetic heart valve with single valve leaflet
US11413144B2 (en) Delivery system having retractable wires as a coupling mechanism and a deployment mechanism for a self-expanding prosthesis
US10231828B2 (en) Reduced profile prosthetic heart valve
US10159568B2 (en) Delivery system having retractable wires as a coupling mechanism and a deployment mechanism for a self-expanding prosthesis
US10111749B2 (en) Prosthetic valve with flow director
JP6735294B2 (en) Implantable heart valve device
US20200214833A1 (en) Valve prostheses having an integral centering mechanism and methods of use thereof
US11857441B2 (en) Stent loading device
EP3399947A1 (en) Prosthetic valve with flow director

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: 4C MEDICAL TECHNOLOGIES, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAMBERS, JEFFREY W.;KUMAR, SARAVANA B.;HIGGINS, JOSEPH P.;AND OTHERS;SIGNING DATES FROM 20180319 TO 20200211;REEL/FRAME:051821/0609

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE