US20180120484A9 - Diffractive Waveplate Lenses and Applications - Google Patents
Diffractive Waveplate Lenses and Applications Download PDFInfo
- Publication number
- US20180120484A9 US20180120484A9 US14/688,197 US201514688197A US2018120484A9 US 20180120484 A9 US20180120484 A9 US 20180120484A9 US 201514688197 A US201514688197 A US 201514688197A US 2018120484 A9 US2018120484 A9 US 2018120484A9
- Authority
- US
- United States
- Prior art keywords
- optical
- optical system
- lens
- diffractive waveplate
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WTBOTSJUCGVZFQ-UHFFFAOYSA-N C=C=CCCCCCCN=O Chemical compound C=C=CCCCCCCN=O WTBOTSJUCGVZFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1833—Diffraction gratings comprising birefringent materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1616—Pseudo-accommodative, e.g. multifocal or enabling monovision
- A61F2/1618—Multifocal lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1654—Diffractive lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4205—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4205—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
- G02B27/4211—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4205—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
- G02B27/4216—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting geometrical aberrations
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4261—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element with major polarization dependent properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0081—Simple or compound lenses having one or more elements with analytic function to create variable power
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/10—Bifocal lenses; Multifocal lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/001—Axicons, waxicons, reflaxicons
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1828—Diffraction gratings having means for producing variable diffraction
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/024—Optical fibres with cladding with or without a coating with polarisation maintaining properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/351—Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
- G02B6/3534—Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being diffractive, i.e. a grating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/3592—Means for removing polarization dependence of the switching means, i.e. polarization insensitive switching
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/022—Ophthalmic lenses having special refractive features achieved by special materials or material structures
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/06—Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
- G02C7/061—Spectacle lenses with progressively varying focal power
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/08—Auxiliary lenses; Arrangements for varying focal length
- G02C7/086—Auxiliary lenses located directly on a main spectacle lens or in the immediate vicinity of main spectacles
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/12—Polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C2202/00—Generic optical aspects applicable to one or more of the subgroups of G02C7/00
- G02C2202/16—Laminated or compound lenses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C2202/00—Generic optical aspects applicable to one or more of the subgroups of G02C7/00
- G02C2202/20—Diffractive and Fresnel lenses or lens portions
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/10—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
Definitions
- This invention relates to optical lenses, and in particular to systems, devices, and methods of fabricating and manufacturing optical lenses used for imaging optics and systems, astronomy, displays, polarizers, optical communication and other areas of laser and photonics technology.
- the present invention is in the technical field of optics. More particularly, the present invention is in the technical field of lenses, systems of lenses, imaging and controlling of light beams.
- Lenses are commonly made by shaping an optical material such as glass. The weight of such lenses increases strongly with diameter making them expensive and prohibitively heavy for applications requiring large area. Also the quality of a lens typically decreases with increasing size.
- conventional lenses sometimes have curved surfaces that are non-spherical. The need to grind and polish conventional lenses with non-spherical surfaces can make such lenses extremely expensive. Segmented lenses such as Fresnel lenses are relatively thin, however, the structural discontinuities result in severe aberrations. Uses of holographic lenses are limited by the compromise of efficiency, spectral bandwidth and dispersion. Thus, there is a need for lenses that could be obtained in the form of thin film structurally continuous coatings on a variety of substrates for a variety of spectral ranges.
- a primary objective of the present invention is to provide systems, devices, and methods for providing a structurally continuous thin film lens wherein the sign of its focal length can be chosen to be positive or negative by flipping the lens.
- the second objective of the present invention is providing an imaging system comprising a DW lens with spherically or cylindrically symmetric continuous structure, deposited on a variety of substrate such as optical fiber facet, a refractive lens, a birefringent lens, a phase retardation plate or a tunable lens.
- the third objective of the present invention is providing sunglasses, swimming goggles, and goggles for eye protection that employ continuous thin film structures, that correct for human vision defects as do conventional prescription sunglasses or goggles but that perform this function without requiring curved lens surfaces.
- the fourth objective of the present invention is providing a lens with continuous thin film structure whose properties can be changed in a useful way by application of an electrical potential to the lens.
- the fifth objective of the present invention is providing a lens with a continuous thin film structure on a non-planar surface.
- the sixth objective of the present invention is providing a flat mirror coated with a continuous thin film structure that focuses or defocuses light.
- FIG. 1A shows spatial distribution of optical axis orientation in spherical diffractive waveplate lenses of one sign.
- FIG. 1B shows spatial distribution of optical axis orientation in spherical diffractive waveplate lenses of an opposite sign.
- FIG. 2A shows a representation of a spherical diffractive waveplate lens with continuous alignment lines of anisotropy axis of the birefringent material.
- FIG. 2B shows spherical diffractive waveplate lenses of opposite signs in description with continuous alignment lines.
- FIG. 3 shows a diffractive waveplate lense viewed from opposite sides.
- FIG. 4A shows polarization properties of focusing and defocusing of a right-hand circular polarized beam by a diffractive waveplate lens, respectively.
- FIG. 4B shows polarization properties of focusing and defocusing a left-hand circular polarized beam by a diffractive waveplate lens, respectively.
- FIG. 5A shows the structure of a cylindrical diffractive waveplate lens.
- FIG. 5B shows the structure of another cylindrical diffractive waveplate lens.
- FIG. 6A shows the presence of both focused and defocused beams when an unpolarized light is incident on a diffractive waveplate lens.
- FIG. 6B shows a method for spatially filtering out the defocused beam.
- FIG. 6C shows the method for filtering out the defocused beam by a circular polarizer.
- FIG. 7 shows glasses having diffractive waveplate lens coatings.
- FIG. 8 shows a kit comprising diffractive waveplate lenses with reattachable adhesive backing.
- FIG. 9 shows application of a diffractive waveplate lens on a refractive lens.
- FIG. 10 shows a planar mirror converted into a focusing or defocusing mirror by addition of the diffractive waveplate lens coating.
- Diffractive waveplate A birefringent film with anisotropy axis orientation modulated in the plane of the film. Different modulation patterns are possible resulting in different optical functionality, including lens, prism, axicon, etc. Generally, DWs may possess more than one layer, and the anisotropy axis may be modulated also in the bulk of the layer.
- Diffractive waveplate lens A diffractive waveplate with lens function. It may provide spherical, cylindrical, and other types of lens action.
- Optical substrate or optical film A transparent material providing mechanical support for DWs. It may be glass, quartz, plastic, or any other material that is at least partially transparent for the wavelengths of light that propagate through the DWs.
- Switchable Diffractive waveplate A DW that can be switched between diffractive and non-diffractive states upon application of external influences such as electric fields, temperature, optical radiation, etc. Generally, the switching can take place through gradual change of diffraction spectrum.
- Variable phase retarder or polarization controller An optical component capable of controlling the polarization of light propagated through it by applying electric fields, changing temperature, exposure to a light beam, etc. Particularly, it may be a liquid crystal sandwiched between substrates coated with transparent electrodes.
- the term “light” will often be used to describe the electromagnetic radiation that interacts with the diffractive waveplate lenses that are the subject of this invention.
- “light” generally means electromagnetic radiation with a wavelength in the visible region of the electromagnetic spectrum
- the usage of the term “light” in the description is not restrictive, in the sense of limiting the design and application to diffractive waveplate lenses that operate only in the visible region of the spectrum.
- all the designs and concepts described herein apply to operation over a wide range of the electromagnetic spectrum, including the microwave, infrared, visible, ultraviolet, and X-ray regions. While physical embodiments of diffractive waveplate lenses are at present advanced for operation in the visible region of the spectrum, the designs and applications disclosed here are applicable over all the noted regions of the electromagnetic spectrum.
- the exemplary applications have been described herein with terms such as “light” being used to describe the electromagnetic radiation that is acted upon by the disclosed diffractive waveplate lenses.
- the term “light” in this context should not be taken to restrict the scope of the disclosed embodiments to only those in which the electromagnetic radiation acted upon or manipulated by the diffractive waveplate lenses is in the visible region of the spectrum.
- the exemplary embodiments disclosed here in addition to being applicable in the visible region of the spectrum, are equally applicable to the microwave, infrared, ultraviolet, and X-ray regions of the spectrum. Exceptions to this generalization are the applications relating to human vision, for which operation in the visible region of the spectrum is required.
- the present invention relates to the design and application of diffractive waveplate lenses.
- the term “diffractive waveplate lens” as used herein describes a thin film of birefringent material deposited on a transparent structure, for example, a thin flat substrate of optical material such as glass. This birefringent film has the property that it retards the phase of light of one linear polarization by approximately one half wave (pi radians of optical phase) relative to the light of the other linear polarization.
- the optical axis orientation depends on the transverse position on the waveplate, i.e. the position in the two coordinate axes perpendicular to the surface of the diffractive waveplate lens. In other words, the optical axis orientation is modulated in one or both of the transverse directions parallel to the surface of the substrate on which the active thin film is applied. Lensing action is due to parabolic profile of optical axis orientation modulation.
- the first type of diffractive waveplate lens is axially symmetric and is used, for example, to focus a collimated beam of light to a point in space.
- the second type of diffractive waveplate lens is cylindrically symmetric and is used, for example, to focus a collimated beam of light to a line segment in space.
- an optical system of circular symmetry is used as an example, but in general, all of the conclusions apply as well to optical systems of cylindrical symmetry.
- the orientation of the anisotropy axis at each point of the birefringent thin film 101 is indicated by a short line segment.
- the orientation of the anisotropy axis of the birefringent material including the thin film layer depends only on the radial distance r from a center point.
- This type of spherical diffractive waveplate lens is used for applications such as focusing a collimated beam of light to a point for imaging a distant scene onto a sensor array.
- the angle ⁇ that the anisotropy axis of the birefringent material makes with the coordinate axis is given by the following equation:
- ⁇ is the wavelength of that radiation
- f is the focal length of the diffractive waveplate lens (DWL)
- r is the distance to the central point.
- the difference in signs in variation of the anisotropy axis with radius designate lenses of two opposite signs.
- the difference in corresponding patterns 101 and 102 in FIGS. 1A and 1B is even better visible in representation of the DWL structure by continuous lines 201 as shown in FIG. 2A .
- DWLs of different signs correspond to the right- and left-spiraling patterns shown in FIG. 2B , respectively.
- DWLs of opposite optical axis modulation signs need not be two separate optical components and is obtained by rotating the DWL around an axis in the plane of the DWL by 180 degrees.
- the observers 301 and 302 looking at a given DWL from opposite sides as shown in FIG. 3 see patterns of opposite sign.
- FIG. 4A This optical asymmetry is described in detail in regard to FIG. 4A wherein the DWL layer 430 is shown on a substrate 440 .
- a right-hand circular polarized (RHCP) light beam 410 is transformed into a defocused left-hand circular polarized (LHCP) beam 421 when incident from the side of the substrate.
- Arranging the component 400 with the substrate facing the incident RHCP beam results in a focused LHCP beam 422 .
- LHCP light beam 420 in FIG. 4B For a LHCP light beam 420 in FIG. 4B , the situation is reversed.
- the LHCP beam 420 is transformed into a focused RHCP beam 412 when incident from the side of the DWL and it is transformed into defocused RHCP beam 411 when incident from the side of the substrate.
- the orientation of the optical axis of the birefringent material of the thin film layer depends only on the linear distance x from a central axis.
- This type of cylindrical diffractive waveplate lens is used for applications such as focusing a beam of light to a line for imaging light from the sun onto a line of photovoltaic devices.
- the angle ⁇ that the optical axis of the birefringent material makes with the coordinate axis is given by the following equation:
- FIGS. 5A and B correspond to patterns of different sign (cylindrical lenses of different sign).
- the source of light is unpolarized.
- the DWL focuses one hand of circular polarized component of light 620 and defocuses the opposite one 610 .
- the power density of the defocused light 621 decreases rapidly with propagation distance and can still allow imaging for the focused portion of the light 612 .
- An aperture 650 can be introduced in the system as shown in FIG. 6B to allow propagation of the focused component while further attenuating the defocused beam propagated through the system and to the sensor.
- the defocused polarization can be fully blocked using a circular polarizer 660 as shown in FIG. 6C .
- the polarizer film is integrated with the DWL and can serve as a substrate.
- polarized sunglasses, goggles, etc. can serve as such a substrate.
- Attaching DWL films 703 on circular polarizing glasses 702 may impart ophthalmic action on sunglasses, protective goggles, ski goggles, and other protective eye ware shown as 701 in FIG. 7 .
- a quarter wave phase retardation plate can be integrated with the DWL to be used with sunglasses that are linearly polarized.
- An example of uses of electrically switchable diffractive waveplate lenses of the present invention are camera lenses and machine vision wherein the contrast reduction due to presence of defocused beam does not affect required image information obtained due to focused portion of the beam.
- the DW lenses 801 shown in FIG. 8 may have an adhesive backing 803 for attachment to a support sheet 804 making up a kit that incorporates many DWLs that could be detached and reattached to a different substrate such as a refractive lens.
- a refractive lens This is demonstrated in FIG. 9 where 900 is a refractive lens, 901 is the adhesive, and 902 designates DWL with all other functional layers as required for different applications.
- the refractive lens can be birefringent and/or variable.
- the flexibility of being able to change the properties of a diffractive waveplate lens simply by changing the pattern of the optical axis orientation in the thin film of the lens does not apply only to correcting for spherical aberrations, it applies to the other types of imaging aberrations well known in the art of optical design. Additionally, the present invention provides the opportunity of fabricating bifocal ophtalmic lenses by smooth variations of the orientation pattern in the thin film diffractive waveplate. In one embodiment of the current invention for ophthalmic uses, the flexibility of producing any desired orientation pattern can be used to inexpensively fabricate lenses fine-tuned to precisely correct eye aberrations.
- a very common application of optical systems is to correct for deficiencies in human vision.
- a refractive lens is placed in front of each eye.
- the corrective optical element is fabricated from a refractive medium, such as glass or plastic in the case of eyeglasses.
- Eyeglasses include those that, in addition to providing refractive correction, also provide protection of the eyes from sunlight (prescription sunglasses).
- the surfaces of eyeglasses have a particular curvature, often designed specifically for the person who wears the corrective optics. It would be of value from the point of view of cost and weight to eliminate the need for surface curvature in wearable vision correction devices. Since diffractive waveplate lenses include surface layers sometimes only a few micrometers in thickness, compared to the few millimeters of thickness typical of common eyeglasses, creation of eyeglasses and other wearable optics for vision correction could be of significant value due to reduction in cost and weight.
- the requirements of the primary application may conflict with the requirement for vision correction.
- the ballistic performance of the goggles is dependent on the cross section of the optical element covering the eye. It would be highly desirable in such applications as swimming goggles and goggles designed for eye protection to be able to provide vision correction by means of thin film layers, without having to disturb the underlying structure.
- Diffractive waveplate lenses have the capability to allow vision correction without changing the underlying optical element, simply by applying the diffractive waveplate lenses on the surface of each goggle.
- a common method of human vision correction is to insert an intraocular lens as a replacement for the biological lens of the eye.
- the most common reason for this replacement is to correct for the vision defects associated with cataracts.
- the surgical techniques required to perform replacement of the biological lens with an artificial lens are highly developed and usually successful, the availability of an optical element that performs the same function, but in a lighter package, would provide an additional option for the refinement of this medical procedure.
- diffractive waveplate lenses unlike conventional refractive lenses, can be very thin and yet still perform the desired function, a potentially valuable application of this technology is fabrication of such lenses, either alone or combined with other optical elements, as an intraocular replacement for the biological lens of the human eye.
- an alternative embodiment is to apply the thin film diffractive waveplate lens to a flat mirror as demonstrated in FIG. 10 .
- flat reflective optical elements can be fabricated to have a wide variety of beam deflecting properties, including the ability to focus light with a flat reflective optical element.
- a flat mirror 1004 is coated with a quarter waveplate 1003 and a diffractive waveplate lens 1002 .
- a circular polarized collimated light beam 1001 is thus reflected from the system a focused beam 1105 , for example.
- the exemplary embodiments described herein have assumed either explicitly or implicitly that the thin film constituting the diffractive waveplate lens is applied to the flat surface of a solid substrate such as glass. Neither the assumption of a solid substrate, nor the assumption of a flat surface, should be taken as restrictive in defining the potential embodiments of this invention. As will be evident to anyone skilled in the art, the coatings may be applied to curved substrates, and to flexible substrates. All of the exemplary embodiments described herein could also be realized with either a curved substrate, a flexible substrate, or a substrate that is both curved and flexible.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Ophthalmology & Optometry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Transplantation (AREA)
- Veterinary Medicine (AREA)
- Geometry (AREA)
- Prostheses (AREA)
- Lenses (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Polarising Elements (AREA)
- Eyeglasses (AREA)
- Liquid Crystal (AREA)
Abstract
Description
- This application claims the benefit of priority to U.S. Provisional Application Ser. 61/980,062 filed Apr. 16, 2014, the entire application of which is incorporated by reference in its' entirety.
- This invention was made in part with U.S. Government support under Army Contract No. W911QY-12-C-0016. The government has certain rights in this invention.
- This invention relates to optical lenses, and in particular to systems, devices, and methods of fabricating and manufacturing optical lenses used for imaging optics and systems, astronomy, displays, polarizers, optical communication and other areas of laser and photonics technology.
- The present invention is in the technical field of optics. More particularly, the present invention is in the technical field of lenses, systems of lenses, imaging and controlling of light beams. Lenses are commonly made by shaping an optical material such as glass. The weight of such lenses increases strongly with diameter making them expensive and prohibitively heavy for applications requiring large area. Also the quality of a lens typically decreases with increasing size. To achieve desirable features such as high-quality imaging, conventional lenses sometimes have curved surfaces that are non-spherical. The need to grind and polish conventional lenses with non-spherical surfaces can make such lenses extremely expensive. Segmented lenses such as Fresnel lenses are relatively thin, however, the structural discontinuities result in severe aberrations. Uses of holographic lenses are limited by the compromise of efficiency, spectral bandwidth and dispersion. Thus, there is a need for lenses that could be obtained in the form of thin film structurally continuous coatings on a variety of substrates for a variety of spectral ranges.
- Thus, the need exists for solutions to the above problems with the prior art.
- A primary objective of the present invention is to provide systems, devices, and methods for providing a structurally continuous thin film lens wherein the sign of its focal length can be chosen to be positive or negative by flipping the lens.
- The second objective of the present invention is providing an imaging system comprising a DW lens with spherically or cylindrically symmetric continuous structure, deposited on a variety of substrate such as optical fiber facet, a refractive lens, a birefringent lens, a phase retardation plate or a tunable lens.
- The third objective of the present invention is providing sunglasses, swimming goggles, and goggles for eye protection that employ continuous thin film structures, that correct for human vision defects as do conventional prescription sunglasses or goggles but that perform this function without requiring curved lens surfaces.
- The fourth objective of the present invention is providing a lens with continuous thin film structure whose properties can be changed in a useful way by application of an electrical potential to the lens.
- The fifth objective of the present invention is providing a lens with a continuous thin film structure on a non-planar surface.
- The sixth objective of the present invention is providing a flat mirror coated with a continuous thin film structure that focuses or defocuses light.
- Further objects and advantages of this invention will be apparent from the following detailed description of the presently preferred embodiments which are illustrated schematically in the accompanying drawings.
-
FIG. 1A shows spatial distribution of optical axis orientation in spherical diffractive waveplate lenses of one sign. -
FIG. 1B shows spatial distribution of optical axis orientation in spherical diffractive waveplate lenses of an opposite sign. -
FIG. 2A shows a representation of a spherical diffractive waveplate lens with continuous alignment lines of anisotropy axis of the birefringent material. -
FIG. 2B shows spherical diffractive waveplate lenses of opposite signs in description with continuous alignment lines. -
FIG. 3 shows a diffractive waveplate lense viewed from opposite sides. -
FIG. 4A shows polarization properties of focusing and defocusing of a right-hand circular polarized beam by a diffractive waveplate lens, respectively. -
FIG. 4B shows polarization properties of focusing and defocusing a left-hand circular polarized beam by a diffractive waveplate lens, respectively. -
FIG. 5A shows the structure of a cylindrical diffractive waveplate lens. -
FIG. 5B shows the structure of another cylindrical diffractive waveplate lens. -
FIG. 6A shows the presence of both focused and defocused beams when an unpolarized light is incident on a diffractive waveplate lens. -
FIG. 6B shows a method for spatially filtering out the defocused beam. -
FIG. 6C shows the method for filtering out the defocused beam by a circular polarizer. -
FIG. 7 shows glasses having diffractive waveplate lens coatings. -
FIG. 8 shows a kit comprising diffractive waveplate lenses with reattachable adhesive backing. -
FIG. 9 shows application of a diffractive waveplate lens on a refractive lens. -
FIG. 10 shows a planar mirror converted into a focusing or defocusing mirror by addition of the diffractive waveplate lens coating. - Before explaining the disclosed embodiments of the present invention in detail it is to be understood that the invention is not limited in its applications to the details of the particular arrangements shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
- In the Summary above and in the Detailed Description of Preferred Embodiments and in the accompanying drawings, reference is made to particular features (including method steps) of the invention. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally.
- In this section, some embodiments of the invention will be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and prime notation is used to indicate similar elements in alternative embodiments.
- A list of components will now be described.
- 101 left hand thin film
- 102 right hand thin film
- 201 continuous lines
- 301 observer
- 302 observer
- 400 component/element
- 410 right-hand circular polarized (RHCP) light beam
- 411 defocused RHCP light beam
- 412 focused RHCP light beam
- 420 left-hand circular polarized (LHCP) light beam
- 421 defocused (LHCP) light beam
- 422 focused LHCP beam
- 430 DWL layer
- 440 substrate
- 610 one-hand circular polarized light
- 612 focused light
- 620 opposite-hand circular polarized light
- 621 defocused light
- 630 DWL layer
- 640 substrate
- 650 aperture
- 660 circular polarizer
- 701 sunglasses
- 702 quarter wave phase retardation plate
- 703 DML film
- 801 DW lenses
- 802 functional layers
- 803 adhesive backing
- 804 support sheet
- 900 refractive lens
- 901 adhesive
- 902 DWL
- 1001 circular polarized collimated light beam
- 1002 DWL
- 1003 quarter waveplate
- 1004 flat mirror
- 1005 focused beam
- Diffractive waveplate (DWs): A birefringent film with anisotropy axis orientation modulated in the plane of the film. Different modulation patterns are possible resulting in different optical functionality, including lens, prism, axicon, etc. Generally, DWs may possess more than one layer, and the anisotropy axis may be modulated also in the bulk of the layer.
Diffractive waveplate lens: A diffractive waveplate with lens function. It may provide spherical, cylindrical, and other types of lens action.
Optical substrate or optical film: A transparent material providing mechanical support for DWs. It may be glass, quartz, plastic, or any other material that is at least partially transparent for the wavelengths of light that propagate through the DWs. It may possess anti-reflective or anti-scratch functions.
Switchable Diffractive waveplate: A DW that can be switched between diffractive and non-diffractive states upon application of external influences such as electric fields, temperature, optical radiation, etc. Generally, the switching can take place through gradual change of diffraction spectrum.
Variable phase retarder or polarization controller: An optical component capable of controlling the polarization of light propagated through it by applying electric fields, changing temperature, exposure to a light beam, etc. Particularly, it may be a liquid crystal sandwiched between substrates coated with transparent electrodes. - In the following description of the invention, the term “light” will often be used to describe the electromagnetic radiation that interacts with the diffractive waveplate lenses that are the subject of this invention. Although “light” generally means electromagnetic radiation with a wavelength in the visible region of the electromagnetic spectrum, it should be understood that the usage of the term “light” in the description is not restrictive, in the sense of limiting the design and application to diffractive waveplate lenses that operate only in the visible region of the spectrum. In general, all the designs and concepts described herein apply to operation over a wide range of the electromagnetic spectrum, including the microwave, infrared, visible, ultraviolet, and X-ray regions. While physical embodiments of diffractive waveplate lenses are at present advanced for operation in the visible region of the spectrum, the designs and applications disclosed here are applicable over all the noted regions of the electromagnetic spectrum.
- Many of the exemplary applications have been described herein with terms such as “light” being used to describe the electromagnetic radiation that is acted upon by the disclosed diffractive waveplate lenses. The term “light” in this context should not be taken to restrict the scope of the disclosed embodiments to only those in which the electromagnetic radiation acted upon or manipulated by the diffractive waveplate lenses is in the visible region of the spectrum. As will be evident to those skilled in the art, the exemplary embodiments disclosed here, in addition to being applicable in the visible region of the spectrum, are equally applicable to the microwave, infrared, ultraviolet, and X-ray regions of the spectrum. Exceptions to this generalization are the applications relating to human vision, for which operation in the visible region of the spectrum is required.
- The present invention relates to the design and application of diffractive waveplate lenses. The term “diffractive waveplate lens” as used herein describes a thin film of birefringent material deposited on a transparent structure, for example, a thin flat substrate of optical material such as glass. This birefringent film has the property that it retards the phase of light of one linear polarization by approximately one half wave (pi radians of optical phase) relative to the light of the other linear polarization. In diffractive waveplate lenses, the optical axis orientation depends on the transverse position on the waveplate, i.e. the position in the two coordinate axes perpendicular to the surface of the diffractive waveplate lens. In other words, the optical axis orientation is modulated in one or both of the transverse directions parallel to the surface of the substrate on which the active thin film is applied. Lensing action is due to parabolic profile of optical axis orientation modulation.
- There are two general types of diffractive waveplate lenses to which the present invention applies. The first type of diffractive waveplate lens is axially symmetric and is used, for example, to focus a collimated beam of light to a point in space. The second type of diffractive waveplate lens is cylindrically symmetric and is used, for example, to focus a collimated beam of light to a line segment in space. In many examples below, an optical system of circular symmetry is used as an example, but in general, all of the conclusions apply as well to optical systems of cylindrical symmetry.
- Lenses that Allow Choosing the Sign of the Focal Length Depending on Orientation
- In
FIG. 1 , the orientation of the anisotropy axis at each point of the birefringentthin film 101 is indicated by a short line segment. In the first type of diffractive waveplate lenses to which the present invention applies, illustrated inFIG. 1A , the orientation of the anisotropy axis of the birefringent material including the thin film layer depends only on the radial distance r from a center point. This type of spherical diffractive waveplate lens is used for applications such as focusing a collimated beam of light to a point for imaging a distant scene onto a sensor array. To perform this function, the angle α that the anisotropy axis of the birefringent material makes with the coordinate axis is given by the following equation: -
- where k0=2π/λ is the wavenumber of the light that is to be focused by the diffractive waveplate lens, λ is the wavelength of that radiation, f is the focal length of the diffractive waveplate lens (DWL), and r is the distance to the central point.
- The difference in signs in variation of the anisotropy axis with radius designate lenses of two opposite signs. The difference in
corresponding patterns FIGS. 1A and 1B is even better visible in representation of the DWL structure bycontinuous lines 201 as shown inFIG. 2A . DWLs of different signs correspond to the right- and left-spiraling patterns shown inFIG. 2B , respectively. - In the preferred embodiment of the present invention, DWLs of opposite optical axis modulation signs need not be two separate optical components and is obtained by rotating the DWL around an axis in the plane of the DWL by 180 degrees. The
observers FIG. 3 see patterns of opposite sign. - This optical asymmetry is described in detail in regard to
FIG. 4A wherein theDWL layer 430 is shown on asubstrate 440. As an example, a right-hand circular polarized (RHCP)light beam 410 is transformed into a defocused left-hand circular polarized (LHCP)beam 421 when incident from the side of the substrate. Arranging thecomponent 400 with the substrate facing the incident RHCP beam results in afocused LHCP beam 422. - For a LHCP
light beam 420 inFIG. 4B , the situation is reversed. TheLHCP beam 420 is transformed into afocused RHCP beam 412 when incident from the side of the DWL and it is transformed into defocusedRHCP beam 411 when incident from the side of the substrate. - In the second type of diffractive waveplate lenses to which the present invention applies, illustrated in
FIGS. 5A and 5B , the orientation of the optical axis of the birefringent material of the thin film layer depends only on the linear distance x from a central axis. This type of cylindrical diffractive waveplate lens is used for applications such as focusing a beam of light to a line for imaging light from the sun onto a line of photovoltaic devices. In the paraxial approximation, the angle α that the optical axis of the birefringent material makes with the coordinate axis is given by the following equation: -
- where k0 and f have the same meanings as before, and x is the distance from the center of the coordinate axis.
FIGS. 5A and B correspond to patterns of different sign (cylindrical lenses of different sign). - In many imaging applications, the source of light is unpolarized. In such a case show in
FIG. 6A the DWL focuses one hand of circular polarized component oflight 620 and defocuses the opposite one 610. The power density of the defocused light 621 decreases rapidly with propagation distance and can still allow imaging for the focused portion of the light 612. Anaperture 650 can be introduced in the system as shown inFIG. 6B to allow propagation of the focused component while further attenuating the defocused beam propagated through the system and to the sensor. The defocused polarization can be fully blocked using acircular polarizer 660 as shown inFIG. 6C . In realization show inFIG. 6C , the polarizer film is integrated with the DWL and can serve as a substrate. - In a particularly important application, polarized sunglasses, goggles, etc. can serve as such a substrate. Attaching
DWL films 703 on circularpolarizing glasses 702 may impart ophthalmic action on sunglasses, protective goggles, ski goggles, and other protective eye ware shown as 701 inFIG. 7 . Further, a quarter wave phase retardation plate can be integrated with the DWL to be used with sunglasses that are linearly polarized. - An example of uses of electrically switchable diffractive waveplate lenses of the present invention are camera lenses and machine vision wherein the contrast reduction due to presence of defocused beam does not affect required image information obtained due to focused portion of the beam.
- Combination with Other Functional Layers
- The
DW lenses 801 shown inFIG. 8 , along with otherfunctional layers 802, may have anadhesive backing 803 for attachment to asupport sheet 804 making up a kit that incorporates many DWLs that could be detached and reattached to a different substrate such as a refractive lens. This is demonstrated inFIG. 9 where 900 is a refractive lens, 901 is the adhesive, and 902 designates DWL with all other functional layers as required for different applications. The refractive lens can be birefringent and/or variable. - The flexibility of being able to change the properties of a diffractive waveplate lens simply by changing the pattern of the optical axis orientation in the thin film of the lens does not apply only to correcting for spherical aberrations, it applies to the other types of imaging aberrations well known in the art of optical design. Additionally, the present invention provides the opportunity of fabricating bifocal ophtalmic lenses by smooth variations of the orientation pattern in the thin film diffractive waveplate. In one embodiment of the current invention for ophthalmic uses, the flexibility of producing any desired orientation pattern can be used to inexpensively fabricate lenses fine-tuned to precisely correct eye aberrations.
- A very common application of optical systems is to correct for deficiencies in human vision. In this application, in common eyeglasses, a refractive lens is placed in front of each eye. The corrective optical element is fabricated from a refractive medium, such as glass or plastic in the case of eyeglasses. Eyeglasses include those that, in addition to providing refractive correction, also provide protection of the eyes from sunlight (prescription sunglasses).
- In order to provide vision correction, the surfaces of eyeglasses have a particular curvature, often designed specifically for the person who wears the corrective optics. It would be of value from the point of view of cost and weight to eliminate the need for surface curvature in wearable vision correction devices. Since diffractive waveplate lenses include surface layers sometimes only a few micrometers in thickness, compared to the few millimeters of thickness typical of common eyeglasses, creation of eyeglasses and other wearable optics for vision correction could be of significant value due to reduction in cost and weight.
- In the case of swimming goggles and goggles designed for eye protection, the requirements of the primary application may conflict with the requirement for vision correction. For example, in the case of goggles designed to protect the eyes from small high-speed moving objects, the ballistic performance of the goggles is dependent on the cross section of the optical element covering the eye. It would be highly desirable in such applications as swimming goggles and goggles designed for eye protection to be able to provide vision correction by means of thin film layers, without having to disturb the underlying structure. Diffractive waveplate lenses have the capability to allow vision correction without changing the underlying optical element, simply by applying the diffractive waveplate lenses on the surface of each goggle.
- A common method of human vision correction is to insert an intraocular lens as a replacement for the biological lens of the eye. The most common reason for this replacement is to correct for the vision defects associated with cataracts. While the surgical techniques required to perform replacement of the biological lens with an artificial lens are highly developed and usually successful, the availability of an optical element that performs the same function, but in a lighter package, would provide an additional option for the refinement of this medical procedure. Since diffractive waveplate lenses, unlike conventional refractive lenses, can be very thin and yet still perform the desired function, a potentially valuable application of this technology is fabrication of such lenses, either alone or combined with other optical elements, as an intraocular replacement for the biological lens of the human eye.
- While all of the exemplary embodiments discussed herein are of a realization of diffractive waveplate lenses employed in a mode in which the optical beam is transmitted through the thin film diffractive waveplate lens and through the underlying substrate, an alternative embodiment is to apply the thin film diffractive waveplate lens to a flat mirror as demonstrated in
FIG. 10 . In this manner, flat reflective optical elements can be fabricated to have a wide variety of beam deflecting properties, including the ability to focus light with a flat reflective optical element. In one of the preferred embodiments shown inFIG. 10 , aflat mirror 1004 is coated with aquarter waveplate 1003 and adiffractive waveplate lens 1002. A circular polarized collimatedlight beam 1001 is thus reflected from the system a focused beam 1105, for example. - The exemplary embodiments described herein have assumed either explicitly or implicitly that the thin film constituting the diffractive waveplate lens is applied to the flat surface of a solid substrate such as glass. Neither the assumption of a solid substrate, nor the assumption of a flat surface, should be taken as restrictive in defining the potential embodiments of this invention. As will be evident to anyone skilled in the art, the coatings may be applied to curved substrates, and to flexible substrates. All of the exemplary embodiments described herein could also be realized with either a curved substrate, a flexible substrate, or a substrate that is both curved and flexible.
- While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.
Claims (20)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/688,197 US10274650B2 (en) | 2010-01-29 | 2015-04-16 | Diffractive waveplate lenses and applications |
US16/220,995 US10557977B1 (en) | 2010-01-29 | 2018-12-14 | Diffractive waveplate lenses and applications |
US16/746,254 US11366253B2 (en) | 2010-01-29 | 2020-01-17 | Diffractive waveplate lenses and applications |
US16/746,366 US11366254B2 (en) | 2010-01-29 | 2020-01-17 | High-efficiency wide-angle beam steering system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/697,083 US20110188120A1 (en) | 2010-01-29 | 2010-01-29 | Broadband optics for manipulating light beams and images |
US13/916,627 US20140285893A1 (en) | 2010-01-29 | 2013-06-13 | Broadband optics for manipulating light beams and images |
US201461980062P | 2014-04-16 | 2014-04-16 | |
US14/688,197 US10274650B2 (en) | 2010-01-29 | 2015-04-16 | Diffractive waveplate lenses and applications |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/916,627 Continuation-In-Part US20140285893A1 (en) | 2010-01-29 | 2013-06-13 | Broadband optics for manipulating light beams and images |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/688,425 Continuation-In-Part US10191191B2 (en) | 2010-01-29 | 2015-04-16 | Diffractive waveplate lenses and applications |
US16/220,995 Continuation-In-Part US10557977B1 (en) | 2010-01-29 | 2018-12-14 | Diffractive waveplate lenses and applications |
Publications (3)
Publication Number | Publication Date |
---|---|
US20160209560A1 US20160209560A1 (en) | 2016-07-21 |
US20180120484A9 true US20180120484A9 (en) | 2018-05-03 |
US10274650B2 US10274650B2 (en) | 2019-04-30 |
Family
ID=54321920
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/688,540 Active US9753193B2 (en) | 2014-04-16 | 2015-04-16 | Methods and apparatus for human vision correction using diffractive waveplate lenses |
US14/688,197 Active 2030-10-12 US10274650B2 (en) | 2010-01-29 | 2015-04-16 | Diffractive waveplate lenses and applications |
US14/688,256 Active 2030-02-25 US10120112B2 (en) | 2010-01-29 | 2015-04-16 | Diffractive waveplate lenses for correcting aberrations and polarization-independent functionality |
US14/688,425 Active US10191191B2 (en) | 2010-01-29 | 2015-04-16 | Diffractive waveplate lenses and applications |
US16/220,995 Active US10557977B1 (en) | 2010-01-29 | 2018-12-14 | Diffractive waveplate lenses and applications |
US16/746,254 Active 2030-08-28 US11366253B2 (en) | 2010-01-29 | 2020-01-17 | Diffractive waveplate lenses and applications |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/688,540 Active US9753193B2 (en) | 2014-04-16 | 2015-04-16 | Methods and apparatus for human vision correction using diffractive waveplate lenses |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/688,256 Active 2030-02-25 US10120112B2 (en) | 2010-01-29 | 2015-04-16 | Diffractive waveplate lenses for correcting aberrations and polarization-independent functionality |
US14/688,425 Active US10191191B2 (en) | 2010-01-29 | 2015-04-16 | Diffractive waveplate lenses and applications |
US16/220,995 Active US10557977B1 (en) | 2010-01-29 | 2018-12-14 | Diffractive waveplate lenses and applications |
US16/746,254 Active 2030-08-28 US11366253B2 (en) | 2010-01-29 | 2020-01-17 | Diffractive waveplate lenses and applications |
Country Status (5)
Country | Link |
---|---|
US (6) | US9753193B2 (en) |
EP (1) | EP3132307A4 (en) |
JP (1) | JP2017529128A (en) |
CA (1) | CA2946693A1 (en) |
WO (1) | WO2015161084A1 (en) |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9557456B2 (en) | 2010-01-29 | 2017-01-31 | The United States Of America As Represented By The Secretary Of The Army | Broadband optics for manipulating light beams and images |
US11366254B2 (en) | 2010-01-29 | 2022-06-21 | Beam Engineering For Advanced Measurements Co. | High-efficiency wide-angle beam steering system |
US9983479B2 (en) | 2010-04-21 | 2018-05-29 | Beam Engineering For Advanced Measurements Co. | Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays |
US10197715B1 (en) | 2013-03-15 | 2019-02-05 | Beam Engineering For Advanced Measurements Co. | Methods of diffractive lens and mirror fabrication |
US10114239B2 (en) | 2010-04-21 | 2018-10-30 | Beam Engineering For Advanced Measurements Co. | Waveplate lenses and methods for their fabrication |
US20110262844A1 (en) | 2010-04-21 | 2011-10-27 | Beam Engineering For Advanced Measurement Co. | Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays |
US10107945B2 (en) | 2013-03-01 | 2018-10-23 | Beam Engineering For Advanced Measurements Co. | Vector vortex waveplates |
US10185182B2 (en) | 2013-03-03 | 2019-01-22 | Beam Engineering For Advanced Measurements Co. | Mechanical rubbing method for fabricating cycloidal diffractive waveplates |
US10075625B2 (en) | 2013-07-04 | 2018-09-11 | Beam Engineering For Advanced Measurements Co. | Method for camera detection and jamming |
WO2015161084A1 (en) * | 2014-04-16 | 2015-10-22 | Beam Engineering For Advanced Measurements Co. | Methods and apparatus for human vision correction using diffractive waveplate lenses |
WO2016154537A1 (en) * | 2015-03-26 | 2016-09-29 | Kent State University | Compact non-mechanical zoom lens |
US10330947B2 (en) | 2015-06-22 | 2019-06-25 | Beam Engineering For Advanced Measurements, Co. | Diffractive mirrors and diffractive telescopes with corrected temporal dispersion |
US9976911B1 (en) | 2015-06-30 | 2018-05-22 | Beam Engineering For Advanced Measurements Co. | Full characterization wavefront sensor |
US10191296B1 (en) | 2015-06-30 | 2019-01-29 | Beam Engineering For Advanced Measurements Co. | Laser pointer with reduced risk of eye injury |
US20180209918A1 (en) * | 2015-07-14 | 2018-07-26 | Synergx Technologies Inc. | Optical inspection system for transparent material |
US10436957B2 (en) | 2015-10-27 | 2019-10-08 | Beam Engineering For Advanced Measurements Co. | Broadband imaging with diffractive waveplate coated mirrors and diffractive waveplate objective lens |
EP3296801A1 (en) | 2016-09-14 | 2018-03-21 | Carl Zeiss Vision International GmbH | Eyewear with transparent component for generating colour effects |
KR20180043072A (en) * | 2016-10-19 | 2018-04-27 | 삼성전자주식회사 | Lens unit and see-through type display apparatus including the same |
US10423045B2 (en) | 2016-11-14 | 2019-09-24 | Beam Engineering For Advanced Measurements Co. | Electro-optical diffractive waveplate beam shaping system |
US10668561B2 (en) | 2016-11-15 | 2020-06-02 | Coherent, Inc. | Laser apparatus for cutting brittle material |
CN110249256B (en) | 2016-12-08 | 2023-03-03 | 奇跃公司 | Diffraction device based on cholesteric liquid crystals |
US10153838B1 (en) * | 2016-12-28 | 2018-12-11 | Facebook, Inc. | Quad tracker with birefringent optics |
JP7300996B2 (en) | 2017-03-21 | 2023-06-30 | マジック リープ, インコーポレイテッド | Ocular imaging device using diffractive optical elements |
KR101965785B1 (en) * | 2017-05-15 | 2019-04-04 | 경희대학교 산학협력단 | Augmented Reality Head Mounted Display Dystem |
US11249309B2 (en) * | 2017-06-12 | 2022-02-15 | Magic Leap, Inc. | Augmented reality display having multi-element adaptive lens for changing depth planes |
US10274805B2 (en) | 2017-06-13 | 2019-04-30 | Beam Engineering For Advanced Measurements Co. | Polarization-independent switchable lens system |
JP7280250B2 (en) | 2017-09-21 | 2023-05-23 | マジック リープ, インコーポレイテッド | Augmented reality display with waveguide configured to capture images of the eye and/or environment |
KR20240056672A (en) | 2017-10-11 | 2024-04-30 | 매직 립, 인코포레이티드 | Augmented reality display comprising eyepiece having a transparent emissive display |
WO2019084334A1 (en) | 2017-10-26 | 2019-05-02 | Magic Leap, Inc. | Broadband adaptive lens assembly for augmented reality display |
US10466496B2 (en) | 2017-12-06 | 2019-11-05 | Facebook Technologies, Llc | Compact multi-color beam combiner using a geometric phase lens |
JP7048962B2 (en) * | 2017-12-21 | 2022-04-06 | 株式会社フォトニックラティス | Optical element |
US11175441B1 (en) | 2018-03-05 | 2021-11-16 | Beam Engineering For Advanced Measurements Co. | Polarization-independent diffractive optical structures |
US11982906B1 (en) | 2018-03-05 | 2024-05-14 | Beam Engineering For Advanced Measurements Co. | Polarization-independent diffractive optical structures |
US11846779B2 (en) | 2018-03-15 | 2023-12-19 | Meta Platforms Technologies, Llc | Display device with varifocal optical assembly |
US11175508B2 (en) * | 2018-03-15 | 2021-11-16 | Facebook Technologies, Llc | Display device with varifocal optical assembly |
US20220026721A1 (en) * | 2018-03-15 | 2022-01-27 | Facebook Technologies, Llc | Polarization-sensitive components in optical systems for large pupil acceptance angles |
US11327306B2 (en) | 2018-03-15 | 2022-05-10 | Facebook Technologies, Llc | Angular performance of apochromatic pancharatnam berry phase components using a C-plate |
US11175507B2 (en) | 2018-03-15 | 2021-11-16 | Facebook Technologies, Llc | Polarization-sensitive components in optical systems for large pupil acceptance angles |
CN108803031A (en) * | 2018-05-29 | 2018-11-13 | 成都理想境界科技有限公司 | A kind of nearly eye display device and equipment, zoom module and Zooming method |
EP3807715A4 (en) | 2018-06-15 | 2022-03-23 | Magic Leap, Inc. | Wide field-of-view polarization switches with liquid crystal optical elements with pretilt |
EP3807711A4 (en) | 2018-06-15 | 2022-02-23 | Magic Leap, Inc. | Wide field-of-view polarization switches and methods of fabricating liquid crystal optical elements with pretilt |
JP2021528686A (en) | 2018-06-20 | 2021-10-21 | エシロール・アンテルナシオナル | Lens element |
KR102578653B1 (en) | 2018-07-23 | 2023-09-15 | 삼성전자 주식회사 | Electronic device capable of providing multi focus to light of display |
JP2021536592A (en) | 2018-08-31 | 2021-12-27 | マジック リープ, インコーポレイテッドMagic Leap, Inc. | Spatically decomposed dynamic dimming for augmented reality devices |
CN109188700B (en) * | 2018-10-30 | 2021-05-11 | 京东方科技集团股份有限公司 | Optical display system and AR/VR display device |
US11199721B1 (en) * | 2018-12-18 | 2021-12-14 | Facebook Technologies, Llc | Polarization volume hologram lens |
JP2022517207A (en) | 2019-01-11 | 2022-03-07 | マジック リープ, インコーポレイテッド | Time-multiplexed display of virtual content at various depths |
US11360325B2 (en) * | 2019-02-11 | 2022-06-14 | Johnson & Johnson Vision Care, Inc | Employing diffractive structure to reduce soft contact lens variation |
WO2020179012A1 (en) * | 2019-03-06 | 2020-09-10 | 株式会社ニコン | Ophthalmological lens and ophthalmological lens manufacturing method |
JP2022532931A (en) | 2019-05-24 | 2022-07-20 | マジック リープ, インコーポレイテッド | Varifocal assembly |
CN113906331B (en) * | 2019-06-05 | 2024-08-16 | 依视路国际公司 | Active lens suitable for correcting abnormal refraction of wearer's eye |
JP7545693B2 (en) | 2019-08-05 | 2024-09-05 | ユニヴァーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレーテッド | Head-mounted display device and optical display system |
US11294240B2 (en) | 2019-08-10 | 2022-04-05 | Beam Engineering For Advanced Measurements Co. | Diffractive waveplate devices that operate over a wide temperature range |
US11269203B2 (en) | 2020-01-23 | 2022-03-08 | Hong Kong Applied Science And Technology Institute Company Limited | Multifocal system with polarization-independent focusing |
US11762220B2 (en) | 2020-04-30 | 2023-09-19 | Coopervision International Limited | Multifocal ophthalmic lenses and related methods |
US11640079B2 (en) | 2020-07-23 | 2023-05-02 | Raytheon Company | Beam splitter with switchable output beam |
WO2022032198A1 (en) | 2020-08-07 | 2022-02-10 | Magic Leap, Inc. | Tunable cylindrical lenses and head-mounted display including the same |
CN112051675B (en) * | 2020-09-27 | 2022-11-25 | 京东方科技集团股份有限公司 | Near-to-eye display device |
WO2022170135A1 (en) * | 2021-02-05 | 2022-08-11 | Boulder Nonlinear Systems, Inc. | Simultaneous focusing of an optical system to multiple focal planes using liquid crystal polarization lenses |
KR102551740B1 (en) * | 2021-04-02 | 2023-07-05 | 한양대학교 산학협력단 | Extended depth of focus lenses having multiple wave plate |
KR102549865B1 (en) * | 2021-04-02 | 2023-06-30 | 한양대학교 산학협력단 | Multi-focusing lenses having mutiple wave plate |
WO2022271494A1 (en) * | 2021-06-22 | 2022-12-29 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Diffractive optics having transversely distributed multiple foci |
EP4435498A1 (en) | 2021-11-19 | 2024-09-25 | IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) | Contact lens having multi-layered wavelength plate |
KR20230073942A (en) | 2021-11-19 | 2023-05-26 | 한양대학교 산학협력단 | Contact lenses having mutiple wave plate |
US12111557B1 (en) * | 2023-07-03 | 2024-10-08 | Beam Engineering For Advanced Measurements Co. | Diffractive beam steering system with high efficiency |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4698816A (en) * | 1982-12-20 | 1987-10-06 | General Electric Co. | Optical transmission filter |
US5047847A (en) * | 1988-10-19 | 1991-09-10 | Olympus Optical Co., Ltd. | Endoscope using liquid crystal devices different in the response frequency in the image forming optical system |
US5150234A (en) * | 1988-08-08 | 1992-09-22 | Olympus Optical Co., Ltd. | Imaging apparatus having electrooptic devices comprising a variable focal length lens |
US5619325A (en) * | 1995-04-04 | 1997-04-08 | Advantest Corporation | Optical system for ellipsometry utilizing a circularly polarized probe beam |
US20030214700A1 (en) * | 2001-11-30 | 2003-11-20 | Yakov Sidorin | Tunable filter |
US20040051846A1 (en) * | 1999-07-02 | 2004-03-18 | E-Vision, Llc | System, apparatus, and method for correcting vision using an electro-active lens |
US20060222783A1 (en) * | 2005-03-29 | 2006-10-05 | Dai Nippon Printing Co., Ltd. | Process for producing optical element |
US20130202246A1 (en) * | 2012-02-03 | 2013-08-08 | Roy Meade | Active alignment of optical fiber to chip using liquid crystals |
Family Cites Families (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2435616A (en) | 1944-07-07 | 1948-02-10 | Eastman Kodak Co | Elimination coupling with azosubstituted couplers |
US3721486A (en) | 1970-01-13 | 1973-03-20 | A Bramley | Light scanning by interference grating and method |
US3897136A (en) | 1973-03-09 | 1975-07-29 | Xerox Corp | Polarization-grating moire |
US4160598A (en) | 1977-08-24 | 1979-07-10 | Rca Corporation | Apparatus for the determination of focused spot size and structure |
US4301023A (en) | 1980-06-23 | 1981-11-17 | American Thermometer Co., Inc. | Cholesteric compositions |
GB2209751A (en) | 1987-09-14 | 1989-05-24 | Plessey Co Plc | Water-soluble photochromic compounds |
US4981342A (en) | 1987-09-24 | 1991-01-01 | Allergan Inc. | Multifocal birefringent lens system |
US4974941A (en) | 1989-03-08 | 1990-12-04 | Hercules Incorporated | Process of aligning and realigning liquid crystal media |
US4956141A (en) | 1989-04-07 | 1990-09-11 | Libbey-Owens-Ford Co. | Molding process utilizing a mold release membrane |
US5100231A (en) | 1989-04-27 | 1992-03-31 | Coherent, Inc. | Apparatus for measuring the mode quality of a laser beam |
US4983332A (en) | 1989-08-21 | 1991-01-08 | Bausch & Lomb Incorporated | Method for manufacturing hydrophilic contact lenses |
US5042950A (en) | 1990-05-22 | 1991-08-27 | The United States Of America As Represented By The United States Department Of Energy | Apparatus and method for laser beam diagnosis |
CA2060576C (en) * | 1991-02-04 | 1995-09-26 | Katsuhiko Hirabayashi | Electrically tunable wavelength-selective filter |
US5218610A (en) | 1992-05-08 | 1993-06-08 | Amoco Corporation | Tunable solid state laser |
US5325218A (en) | 1992-12-31 | 1994-06-28 | Minnesota Mining And Manufacturing Company | Cholesteric polarizer for liquid crystal display and overhead projector |
JPH08508826A (en) | 1993-04-07 | 1996-09-17 | ザ テクノロジィー パートナーシップ ピーエルシー | Switchable lens |
US5895422A (en) * | 1993-06-17 | 1999-04-20 | Hauber; Frederick A. | Mixed optics intraocular achromatic lens |
US5446596A (en) | 1993-07-01 | 1995-08-29 | Mostrorocco; Stephen | Ophthalmic lens holder |
US6170952B1 (en) * | 1993-12-07 | 2001-01-09 | Neoptx, Inc. | Adherent corrective lenses and eyeglasses embodying the same |
US5621525A (en) | 1995-02-06 | 1997-04-15 | University Of Central Florida | Apparatus and method for measuring the power density of a laser beam with a liquid crystal |
EP0753785B1 (en) | 1995-07-11 | 2016-05-11 | Rolic AG | Transfer of polarisation patterns to polarisation sensitive photolayers |
DE19535392A1 (en) | 1995-09-23 | 1997-03-27 | Zeiss Carl Fa | Radial polarization-rotating optical arrangement and microlithography projection exposure system with it |
US5903330A (en) | 1995-10-31 | 1999-05-11 | Rolic Ag | Optical component with plural orientation layers on the same substrate wherein the surfaces of the orientation layers have different patterns and direction |
KR100208970B1 (en) | 1995-12-29 | 1999-07-15 | 구자홍 | A lc cell and a fabrication method thereof |
JP4104718B2 (en) | 1997-04-11 | 2008-06-18 | 富士ゼロックス株式会社 | Optical recording method |
US6219185B1 (en) | 1997-04-18 | 2001-04-17 | The United States Of America As Represented By The United States Department Of Energy | Large aperture diffractive space telescope |
US5907435A (en) | 1997-06-26 | 1999-05-25 | Xerox Corporation | Laser beam optical focusing system of two symmetrical diffractive optical elements |
US6184961B1 (en) | 1997-07-07 | 2001-02-06 | Lg Electronics Inc. | In-plane switching mode liquid crystal display device having opposite alignment directions for two adjacent domains |
US20010018612A1 (en) | 1997-08-07 | 2001-08-30 | Carson Daniel R. | Intracorneal lens |
EP0905164B1 (en) | 1997-09-30 | 2006-05-03 | Nippon Mitsubishi Oil Corporation | Liquid crystalline polyester compositions and their uses |
US6139147A (en) | 1998-11-20 | 2000-10-31 | Novartis Ag | Actively controllable multifocal lens |
US6107617A (en) | 1998-06-05 | 2000-08-22 | The United States Of America As Represented By The Secretary Of The Air Force | Liquid crystal active optics correction for large space based optical systems |
US6320663B1 (en) | 1999-01-22 | 2001-11-20 | Cymer, Inc. | Method and device for spectral measurements of laser beam |
GB2345978A (en) | 1999-01-23 | 2000-07-26 | Sharp Kk | Diffractive spatial light modulator |
JP2001142033A (en) | 1999-11-11 | 2001-05-25 | Yoshikazu Ichiyama | Translucent body having reflected latent image and fashion glasses using the same |
US7324286B1 (en) | 2000-01-04 | 2008-01-29 | University Of Central Florida Research Foundation | Optical beam steering and switching by optically controlled liquid crystal spatial light modulator with angular magnification by high efficiency PTR Bragg gratings |
US6452145B1 (en) | 2000-01-27 | 2002-09-17 | Aoptix Technologies, Inc. | Method and apparatus for wavefront sensing |
US6498872B2 (en) * | 2000-02-17 | 2002-12-24 | Jds Uniphase Inc. | Optical configuration for a dynamic gain equalizer and a configurable add/drop multiplexer |
JP2001242315A (en) | 2000-02-29 | 2001-09-07 | Fuji Photo Film Co Ltd | Cholesteric liquid crystal color filter, its manufacturing method and display device utilizing the same |
US6551531B1 (en) | 2000-03-22 | 2003-04-22 | Johnson & Johnson Vision Care, Inc. | Molds for making ophthalmic devices |
US6646799B1 (en) | 2000-08-30 | 2003-11-11 | Science Applications International Corporation | System and method for combining multiple energy bands to improve scene viewing |
US7072086B2 (en) * | 2001-10-19 | 2006-07-04 | Batchko Robert G | Digital focus lens system |
US20030021526A1 (en) | 2000-12-05 | 2003-01-30 | Oleg Bouevitch | Dynamic dispersion compensator |
GB2374081B (en) | 2001-04-06 | 2004-06-09 | Central Research Lab Ltd | A method of forming a liquid crystal polymer layer |
US20030072896A1 (en) | 2001-06-07 | 2003-04-17 | The Hong Kong University Of Science And Technology | Photo-induced alignment materials and method for LCD fabrication |
EP1420275B1 (en) | 2001-08-24 | 2008-10-08 | Asahi Glass Company, Limited | Isolator and optical attenuator |
EP1462383A4 (en) | 2001-11-01 | 2006-04-19 | Idemitsu Unitech Co Ltd | Atmosphere improving tape for package, package with atmosphere improving tape and method of manufacturing the package, package container with atmosphere improving tape, engaging device, and package with engaging device |
KR100577792B1 (en) | 2001-12-22 | 2006-05-10 | 비오이 하이디스 테크놀로지 주식회사 | Rubbing machine of LCD having religning function and method for rubbing using the same |
US6887729B2 (en) | 2002-01-14 | 2005-05-03 | Reveo, Inc. | Twisted nematic micropolarizer and its method of manufacturing |
JP3969637B2 (en) | 2002-02-13 | 2007-09-05 | 日東電工株式会社 | Method for producing liquid crystal alignment film, liquid crystal alignment film, optical film and image display device |
JP3873869B2 (en) | 2002-02-26 | 2007-01-31 | ソニー株式会社 | Liquid crystal display device and manufacturing method thereof |
US6792028B2 (en) | 2002-03-22 | 2004-09-14 | Raytheon Company | Method and laser beam directing system with rotatable diffraction gratings |
US6678042B2 (en) | 2002-05-01 | 2004-01-13 | Beam Engineering For Advanced Measurements Co. | Laser beam multimeter |
JP4367684B2 (en) * | 2002-05-15 | 2009-11-18 | シチズンホールディングス株式会社 | Dynamic gain equalizer |
US6911637B1 (en) | 2002-05-23 | 2005-06-28 | The United States Of America As Represented By The Secretary Of The Army | Wavefront phase sensors using optically or electrically controlled phase spatial light modulators |
JP2004133152A (en) | 2002-10-10 | 2004-04-30 | Nippon Oil Corp | Transferable liquid crystal laminate |
US7035497B2 (en) | 2002-10-25 | 2006-04-25 | Oplink Communications, Inc. | Miniature 1×2 magneto-optic switch |
CN1256617C (en) | 2002-12-05 | 2006-05-17 | 联华电子股份有限公司 | Apparatus and method for rubbing LCD substrate |
JP2004226752A (en) | 2003-01-23 | 2004-08-12 | Nippon Oil Corp | Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate and liquid crystal display comprising the layered body |
US6728049B1 (en) | 2003-03-31 | 2004-04-27 | Beam Engineering For Advanced Measurements Co. | Universal optical filter holder |
IL155330A (en) | 2003-04-09 | 2011-11-30 | Technion Res & Dev Foundation | System and method for producing a light beam with spatially varying polarization |
US7095772B1 (en) | 2003-05-22 | 2006-08-22 | Research Foundation Of The University Of Central Florida, Inc. | Extreme chirped/stretched pulsed amplification and laser |
US7035025B2 (en) | 2003-05-28 | 2006-04-25 | Agilent Technologies, Inc. | Compact precision beam manipulators |
US7094304B2 (en) | 2003-10-31 | 2006-08-22 | Agilent Technologies, Inc. | Method for selective area stamping of optical elements on a substrate |
US7196758B2 (en) | 2003-12-30 | 2007-03-27 | 3M Innovative Properties Company | Method of alignment of liquid crystals comprising exposing an alignment material to an interference pattern |
US20050271325A1 (en) | 2004-01-22 | 2005-12-08 | Anderson Michael H | Liquid crystal waveguide having refractive shapes for dynamically controlling light |
US20090052838A1 (en) | 2004-03-22 | 2009-02-26 | Mcdowall Ian | Electrically controlled optical elements and method |
US7304719B2 (en) | 2004-03-31 | 2007-12-04 | Asml Holding N.V. | Patterned grid element polarizer |
US7397980B2 (en) * | 2004-06-14 | 2008-07-08 | Optium Australia Pty Limited | Dual-source optical wavelength processor |
KR100702397B1 (en) | 2004-06-14 | 2007-04-02 | 후지필름 가부시키가이샤 | Image processing system, image processing method and recording medium storing image processing program |
CN1710447A (en) * | 2004-06-17 | 2005-12-21 | 鸿富锦精密工业(深圳)有限公司 | Mould core of non-spherical diffraction lens and mfg. method thereof |
US7156516B2 (en) | 2004-08-20 | 2007-01-02 | Apollo Optical Systems Llc | Diffractive lenses for vision correction |
US20060109532A1 (en) | 2004-11-19 | 2006-05-25 | Savas Timothy A | System and method for forming well-defined periodic patterns using achromatic interference lithography |
US7424185B2 (en) | 2005-01-24 | 2008-09-09 | University Of Central Florida Research Foundation, Inc. | Stretching and compression of laser pulses by means of high efficiency volume diffractive gratings with variable periods in photo-thermo-refractive glass |
EP1886171B1 (en) | 2005-03-01 | 2012-05-16 | Stichting Dutch Polymer Institute | Polarization gratings in mesogenic films |
US20070115551A1 (en) | 2005-04-01 | 2007-05-24 | Alexis Spilman | Space-variant waveplate for polarization conversion, methods and applications |
US8582094B1 (en) | 2005-04-20 | 2013-11-12 | Kla-Tencor Technologies Corp. | Systems and methods for inspecting specimens including specimens that have a substantially rough uppermost layer |
US7495369B2 (en) | 2005-05-26 | 2009-02-24 | Araz Yacoubian | Broadband imager |
CA2618021C (en) | 2005-08-05 | 2014-08-05 | Visiogen, Inc. | Accommodating diffractive intraocular lens |
KR20070063237A (en) | 2005-12-14 | 2007-06-19 | 비오이 하이디스 테크놀로지 주식회사 | Apparatus for rubbing alignment layer |
KR100939611B1 (en) | 2005-12-29 | 2010-02-01 | 엘지디스플레이 주식회사 | System and apparatus for rubbing an alignment layer and method of fabricating a liquid crystal display device using thereof |
US20070247586A1 (en) | 2006-04-22 | 2007-10-25 | Beam Engineering For Advanced Measurements Co. | Optical actuation system with deformable polymer film |
US7783144B2 (en) | 2006-04-24 | 2010-08-24 | The Hong Kong University Of Science And Technology | Electrically tunable microresonators using photoaligned liquid crystals |
ITTO20060303A1 (en) | 2006-04-26 | 2007-10-27 | Consiglio Nazionale Ricerche | LETTER OF ASSIGNMENT FOLLOWS |
US7450213B2 (en) | 2006-06-29 | 2008-11-11 | Lg Display Co., Ltd. | Methods of manufacturing liquid crystal display devices |
WO2008078254A1 (en) * | 2006-12-22 | 2008-07-03 | Koninklijke Philips Electronics N.V. | An imaging system with two imaging modalities |
ATE524754T1 (en) | 2007-03-12 | 2011-09-15 | Jds Uniphase Corp | PRODUCTION METHOD FOR A SPACIALLY VARIABLE LIQUID CRYSTAL DELAY PLATE |
JP2010525395A (en) | 2007-04-16 | 2010-07-22 | ノース・キャロライナ・ステイト・ユニヴァーシティ | Method and related apparatus for making a switchable liquid crystal polarizing grating on a reflective substrate |
US8339566B2 (en) | 2007-04-16 | 2012-12-25 | North Carolina State University | Low-twist chiral liquid crystal polarization gratings and related fabrication methods |
KR101383717B1 (en) | 2007-06-27 | 2014-04-10 | 삼성디스플레이 주식회사 | Display device and method of manufacturing the same |
US8643822B2 (en) | 2007-07-03 | 2014-02-04 | Jds Uniphase Corporation | Non-etched flat polarization-selective diffractive optical elements |
US8531646B2 (en) | 2007-09-11 | 2013-09-10 | Kent State University | Tunable liquid crystal devices, devices using same, and methods of making and using same |
US8077388B2 (en) | 2007-09-13 | 2011-12-13 | University Of Utah Research Foundation | Light polarization converter for converting linearly polarized light into radially polarized light and related methods |
KR101374110B1 (en) | 2007-11-08 | 2014-03-13 | 엘지디스플레이 주식회사 | Method of Rubbing and Method of Fabricating for Liquid Crystal Display Device Using the same, and Liquid Crystal Display Device Manufactured by therby |
US20090122402A1 (en) | 2007-11-14 | 2009-05-14 | Jds Uniphase Corporation | Achromatic Converter Of A Spatial Distribution Of Polarization Of Light |
US7570432B1 (en) * | 2008-02-07 | 2009-08-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | Metamaterial gradient index lens |
US8523354B2 (en) | 2008-04-11 | 2013-09-03 | Pixeloptics Inc. | Electro-active diffractive lens and method for making the same |
DE602009000115D1 (en) | 2008-04-15 | 2010-09-30 | Jds Uniphase Corp | Wavelength wafer based apparatus and method for reducing speckles in laser lighting systems |
US7905595B2 (en) | 2008-04-28 | 2011-03-15 | Crt Technology, Inc. | System and method to treat and prevent loss of visual acuity |
US20100003605A1 (en) | 2008-07-07 | 2010-01-07 | International Business Machines Corporation | system and method for projection lithography with immersed image-aligned diffractive element |
DK2163923T3 (en) | 2008-09-12 | 2015-02-09 | Jds Uniphase Corp | Optiskhvirvel-delaying microarray |
US8810758B2 (en) | 2009-03-24 | 2014-08-19 | Jay Ahling | Dual-function alignment layer for liquid crystal devices to improve degradation resistance to radiation |
US8982313B2 (en) | 2009-07-31 | 2015-03-17 | North Carolina State University | Beam steering devices including stacked liquid crystal polarization gratings and related methods of operation |
WO2011029962A1 (en) | 2009-09-08 | 2011-03-17 | Imaginación Creativa, S.L.U. | Display cabinet with photographic and video camera‑disabling system |
US8300294B2 (en) | 2009-09-18 | 2012-10-30 | Toyota Motor Engineering & Manufacturing North America, Inc. | Planar gradient index optical metamaterials |
JP2011090278A (en) | 2009-09-25 | 2011-05-06 | Hitachi Displays Ltd | Liquid crystal display |
US20110097557A1 (en) | 2009-10-26 | 2011-04-28 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Alignment layer for planar alignment of a polymerizable liquid crystalline or mesogenic material |
US8623083B2 (en) | 2009-11-06 | 2014-01-07 | Amo Groningen B.V. | Diffractive binocular lens systems and methods |
US9475901B2 (en) | 2009-12-08 | 2016-10-25 | Transitions Optical, Inc. | Photoalignment materials having improved adhesion |
US20110188120A1 (en) * | 2010-01-29 | 2011-08-04 | Beam Engineering For Advanced Measurement Co. | Broadband optics for manipulating light beams and images |
US9557456B2 (en) | 2010-01-29 | 2017-01-31 | The United States Of America As Represented By The Secretary Of The Army | Broadband optics for manipulating light beams and images |
US9128281B2 (en) * | 2010-09-14 | 2015-09-08 | Microsoft Technology Licensing, Llc | Eyepiece with uniformly illuminated reflective display |
ES2748829T3 (en) | 2010-03-29 | 2020-03-18 | Ravenbrick Llc | Polymer stabilized thermotropic liquid crystal device |
US10197715B1 (en) | 2013-03-15 | 2019-02-05 | Beam Engineering For Advanced Measurements Co. | Methods of diffractive lens and mirror fabrication |
US20110262844A1 (en) | 2010-04-21 | 2011-10-27 | Beam Engineering For Advanced Measurement Co. | Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays |
US9983479B2 (en) | 2010-04-21 | 2018-05-29 | Beam Engineering For Advanced Measurements Co. | Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays |
US10114239B2 (en) | 2010-04-21 | 2018-10-30 | Beam Engineering For Advanced Measurements Co. | Waveplate lenses and methods for their fabrication |
FR2962536B1 (en) | 2010-07-06 | 2019-12-27 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | LIQUID CRYSTAL MICROLENTINE WAVEFRONT ANALYZER |
TW201234072A (en) | 2010-11-01 | 2012-08-16 | Pixeloptics Inc | Dynamic changeable focus contact and intraocular lens |
KR101874424B1 (en) | 2011-09-05 | 2018-07-06 | 삼성디스플레이 주식회사 | Alignment layer for display device, liquid crystal display device including the same and method and apparatus for treating the same |
US8911080B2 (en) | 2012-08-27 | 2014-12-16 | Johnson & Johnson Vision Care, Inc. | Usage compliance indicator for contact lenses |
WO2014185994A2 (en) | 2013-01-28 | 2014-11-20 | U.S. Government As Represented By The Secretary Of The Army | Cycloidal diffractive waveplate and method of manufacture |
CN105009002B (en) | 2013-03-01 | 2019-03-05 | 西铁城时计株式会社 | Beam cutting element |
US10107945B2 (en) | 2013-03-01 | 2018-10-23 | Beam Engineering For Advanced Measurements Co. | Vector vortex waveplates |
US10185182B2 (en) | 2013-03-03 | 2019-01-22 | Beam Engineering For Advanced Measurements Co. | Mechanical rubbing method for fabricating cycloidal diffractive waveplates |
WO2014164599A1 (en) | 2013-03-11 | 2014-10-09 | U.S. Government As Represented By The Secretary Of The Army | Method of fabricating liquid crystal polymer film |
EP2936220B1 (en) * | 2013-03-13 | 2022-11-16 | ImagineOptix Corporation | Polarization conversion systems with geometric phase holograms |
US10075625B2 (en) | 2013-07-04 | 2018-09-11 | Beam Engineering For Advanced Measurements Co. | Method for camera detection and jamming |
US9933685B2 (en) * | 2013-08-05 | 2018-04-03 | The Hong Kong University Of Science And Technology | Switchable liquid crystal fresnel lens |
US9140444B2 (en) | 2013-08-15 | 2015-09-22 | Medibotics, LLC | Wearable device for disrupting unwelcome photography |
US9541772B2 (en) | 2013-09-17 | 2017-01-10 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers |
US9592116B2 (en) | 2013-09-17 | 2017-03-14 | Johnson & Johnson Vision Care, Inc. | Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers |
SG10201405242WA (en) * | 2013-09-17 | 2015-04-29 | Johnson & Johnson Vision Care | Variable optic ophthalmic device including liquid crystal elements |
US9535258B1 (en) | 2013-12-30 | 2017-01-03 | Ball Aerospace & Technologies Corp. | Method and apparatus for correcting chromatic aberrations in a telescope |
WO2015125149A1 (en) | 2014-02-23 | 2015-08-27 | Nova Measuring Instruments Ltd. | Optical critical dimension metrology |
WO2015161084A1 (en) | 2014-04-16 | 2015-10-22 | Beam Engineering For Advanced Measurements Co. | Methods and apparatus for human vision correction using diffractive waveplate lenses |
NZ773816A (en) | 2015-03-16 | 2022-07-29 | Magic Leap Inc | Methods and systems for diagnosing and treating health ailments |
US10330947B2 (en) | 2015-06-22 | 2019-06-25 | Beam Engineering For Advanced Measurements, Co. | Diffractive mirrors and diffractive telescopes with corrected temporal dispersion |
US10191296B1 (en) | 2015-06-30 | 2019-01-29 | Beam Engineering For Advanced Measurements Co. | Laser pointer with reduced risk of eye injury |
US9976911B1 (en) | 2015-06-30 | 2018-05-22 | Beam Engineering For Advanced Measurements Co. | Full characterization wavefront sensor |
US10436957B2 (en) | 2015-10-27 | 2019-10-08 | Beam Engineering For Advanced Measurements Co. | Broadband imaging with diffractive waveplate coated mirrors and diffractive waveplate objective lens |
US10423045B2 (en) | 2016-11-14 | 2019-09-24 | Beam Engineering For Advanced Measurements Co. | Electro-optical diffractive waveplate beam shaping system |
-
2015
- 2015-04-16 WO PCT/US2015/026186 patent/WO2015161084A1/en active Application Filing
- 2015-04-16 US US14/688,540 patent/US9753193B2/en active Active
- 2015-04-16 CA CA2946693A patent/CA2946693A1/en not_active Abandoned
- 2015-04-16 US US14/688,197 patent/US10274650B2/en active Active
- 2015-04-16 US US14/688,256 patent/US10120112B2/en active Active
- 2015-04-16 JP JP2017506626A patent/JP2017529128A/en active Pending
- 2015-04-16 EP EP15779550.1A patent/EP3132307A4/en not_active Withdrawn
- 2015-04-16 US US14/688,425 patent/US10191191B2/en active Active
-
2018
- 2018-12-14 US US16/220,995 patent/US10557977B1/en active Active
-
2020
- 2020-01-17 US US16/746,254 patent/US11366253B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4698816A (en) * | 1982-12-20 | 1987-10-06 | General Electric Co. | Optical transmission filter |
US5150234A (en) * | 1988-08-08 | 1992-09-22 | Olympus Optical Co., Ltd. | Imaging apparatus having electrooptic devices comprising a variable focal length lens |
US5047847A (en) * | 1988-10-19 | 1991-09-10 | Olympus Optical Co., Ltd. | Endoscope using liquid crystal devices different in the response frequency in the image forming optical system |
US5619325A (en) * | 1995-04-04 | 1997-04-08 | Advantest Corporation | Optical system for ellipsometry utilizing a circularly polarized probe beam |
US20040051846A1 (en) * | 1999-07-02 | 2004-03-18 | E-Vision, Llc | System, apparatus, and method for correcting vision using an electro-active lens |
US20030214700A1 (en) * | 2001-11-30 | 2003-11-20 | Yakov Sidorin | Tunable filter |
US20060222783A1 (en) * | 2005-03-29 | 2006-10-05 | Dai Nippon Printing Co., Ltd. | Process for producing optical element |
US20130202246A1 (en) * | 2012-02-03 | 2013-08-08 | Roy Meade | Active alignment of optical fiber to chip using liquid crystals |
Also Published As
Publication number | Publication date |
---|---|
US10120112B2 (en) | 2018-11-06 |
US20200025986A1 (en) | 2020-01-23 |
US10274650B2 (en) | 2019-04-30 |
US20160047956A1 (en) | 2016-02-18 |
JP2017529128A (en) | 2017-10-05 |
WO2015161084A1 (en) | 2015-10-22 |
US20150301356A1 (en) | 2015-10-22 |
US20160209560A1 (en) | 2016-07-21 |
EP3132307A4 (en) | 2017-04-05 |
US20160047955A1 (en) | 2016-02-18 |
US10557977B1 (en) | 2020-02-11 |
US11366253B2 (en) | 2022-06-21 |
US20180039003A9 (en) | 2018-02-08 |
US10191191B2 (en) | 2019-01-29 |
EP3132307A1 (en) | 2017-02-22 |
US9753193B2 (en) | 2017-09-05 |
CA2946693A1 (en) | 2015-10-22 |
US20200150323A1 (en) | 2020-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10274650B2 (en) | Diffractive waveplate lenses and applications | |
US10274805B2 (en) | Polarization-independent switchable lens system | |
US10802302B2 (en) | Waveplate lenses and methods for their fabrication | |
US8441731B2 (en) | System and apparatus for pixel matrix see-through display panels | |
KR20040053147A (en) | Hybrid electro-active lens | |
US20160320684A1 (en) | Method and apparatus for creation and electrical tuning of spatially non-uniform reflection of light | |
JP2016508625A (en) | See-through display device with degree | |
US10884309B2 (en) | Transferable thin-film optical devices | |
CN109669278B (en) | Lens and spectacles | |
CN109983367B (en) | Optical lens and goggle comprising the same | |
CN115210615A (en) | Achromatic optics based on birefringent materials with positive and negative birefringence dispersion | |
TW200525184A (en) | Improved hybrid electro-active lens | |
US20220365266A1 (en) | Apochromatic liquid crystal polarization hologram device | |
CN110361874A (en) | Eyesight correction device | |
US20240337785A1 (en) | Switchable structured illumination generator, light guide display system with stray light reduction, and stress-neutral optical coating | |
CN112068332B (en) | Liquid crystal lens and liquid crystal glasses | |
US20240208166A1 (en) | Semi-finished optical element for manufacturing an ophthalmic article, ophthalmic article and related manufacturing method | |
CN116859640A (en) | Variable focus optical system | |
US20190113801A1 (en) | Optical element and optical apparatus | |
KR20220137262A (en) | Extended depth of focus lenses having multiple wave plate | |
JP2009192791A (en) | Liquid crystal lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BEAM ENGINEERING FOR ADVANCED MEASUREMENTS CO., FL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TABIRIAN, NELSON V.;SERAK, SVETLANA V.;ROBERTS, DAVID E.;AND OTHERS;REEL/FRAME:036414/0453 Effective date: 20150824 |
|
AS | Assignment |
Owner name: U.S. ARMY NATICK SOLDIER RESEARCH, DEVELOPMENT AND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STEEVES, DIANE M.;KIMBALL, BRIAN R.;REEL/FRAME:037825/0815 Effective date: 20150714 |
|
AS | Assignment |
Owner name: US GOVERNMENT AS REPRESENTED BY THE SECRETARY OF T Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIMBALL, BRIAN R;STEEVES, DIANE M;REEL/FRAME:038289/0175 Effective date: 20150714 |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |