US20160370048A1 - Ice making duct for refrigerator and ice making method of using the same - Google Patents
Ice making duct for refrigerator and ice making method of using the same Download PDFInfo
- Publication number
- US20160370048A1 US20160370048A1 US14/835,459 US201514835459A US2016370048A1 US 20160370048 A1 US20160370048 A1 US 20160370048A1 US 201514835459 A US201514835459 A US 201514835459A US 2016370048 A1 US2016370048 A1 US 2016370048A1
- Authority
- US
- United States
- Prior art keywords
- cooling
- duct
- ice making
- refrigerator
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C5/00—Working or handling ice
- F25C5/20—Distributing ice
- F25C5/22—Distributing ice particularly adapted for household refrigerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/06—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
- F25D17/062—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
- F25D17/065—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2400/00—Auxiliary features or devices for producing, working or handling ice
- F25C2400/10—Refrigerator units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2317/00—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
- F25D2317/06—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
- F25D2317/061—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/02—Refrigerators including a heater
Definitions
- the present invention relates to an ice making duct for a refrigerator and an ice making method using the same.
- a refrigerator is an appliance that serves to store food at low temperatures; it may be configured to store food at temperatures below freezing or at low but above freezing temperatures.
- the temperature inside the refrigerator is maintained at the desired level by cool air that is continuously supplied to the refrigerator.
- the cool air is continuously produced by a heat exchange operation between air and a refrigerant performed in a refrigeration cycle comprising four sequential phases: compression, condensation, expansion, and evaporation. Cool air is channeled to the inside of the refrigerator and is evenly distributed inside the refrigerator by convection.
- the body of a refrigerator typically has a rectangular hexahedral shape that opens frontward, with a refrigerator compartment and a freezer compartment defined and isolated from one another within the refrigerator body.
- the open front of the refrigerator body may comprise both a refrigerator compartment door and a freezer compartment door that can open or close the refrigerator compartment and the freezer compartment, respectively.
- the storage space defined inside the refrigerator may comprise a plurality of drawers, shelves, and boxes designed to store various kinds of food in various optimal states.
- a top mount type refrigerator in which the freezer compartment is provided in the upper part of the refrigerator body and the refrigerator compartment is provided in the lower part of the refrigerator body is well known.
- a bottom freezer type refrigerator in which the freezer compartment is provided in the lower part of the refrigerator body has been proposed and used.
- the bottom freezer type refrigerator may be preferable since the more frequently used refrigerator compartment is located in the upper part of the refrigerator body and the less frequently used freezer compartment is located in the lower part of the refrigerator body.
- the bottom freezer type refrigerator is problematic in that to take ice cubes from the freezer compartment, a user must open the freezer compartment door and collect ice cubes while bending.
- a refrigerator in which an ice dispenser for dispensing ice cubes is provided in a refrigerator compartment door placed in the upper part of a bottom freezer type refrigerator has been proposed and used.
- an ice making device for making ice cubes may be provided in the refrigerator compartment door or inside the refrigerator compartment.
- cooling air cooled by an evaporator is separately discharged to the freezing compartment and the refrigerating compartment.
- the cooling air discharged to the freezing compartment side flows to the ice making device along a cooling air supply duct embedded in a sidewall of a main body of the refrigerator and subsequently freezes water, while flowing within the ice making device.
- the cooling air within the ice making device is discharged to the refrigerating compartment through a cooling air reducing duct embedded in the sidewall of the main body of the refrigerator, lowering an internal temperature of the refrigerating compartment.
- the cooling air of the freezing compartment is channeled to the ice making device via the cooling air supply duct and the cooling air reducing duct, the supply efficiency of the cooling air may be suboptimal.
- embodiments of the present invention provide an ice making duct for a refrigerator in which air cooled in a cooling air duct can be directly used to generate ice.
- FIG. 1 is a view illustrating a configuration of an ice making duct of a refrigerator in accordance with an embodiment of the present invention
- FIG. 2 is a cross-sectional view taken along line A-A of FIG. 1 ;
- FIG. 3 is a block diagram illustrating a refrigerating cycle of the ice making duct of the refrigerator in accordance with an embodiment of the present invention
- FIG. 4 is a perspective view illustrating the refrigerator in accordance with an embodiment of the present invention.
- FIG. 5 is a view illustrating a state of connection between an ice making compartment and a cooling duct in the refrigerator in accordance with an embodiment of the present invention
- FIG. 6 is a view illustrating an internal configuration of the ice making compartment of the refrigerator in accordance with an embodiment of the present invention.
- FIG. 7 is a flowchart illustrating an ice making method using an ice making duct of a refrigerator in accordance with an embodiment of the present invention.
- an ice making duct 200 of the refrigerator in accordance with an embodiment of the present invention may generate ice using air cooled in a cooling duct 210 .
- the refrigerator 1 may include a main body 10 , a barrier 20 that separates the inside of the main body 10 into a refrigerating compartment and a freezing compartment, a refrigerating compartment door 30 for selectively closing the refrigerating compartment on both edges of a front surface of the main body 10 , and a freezing compartment door 40 for closing a front opening of the freezing compartment.
- the refrigerator 1 in accordance with this embodiment is a bottom freeze type refrigerator in which the freezing compartment is positioned in a lower portion thereof, but the present invention is not limited thereto and may be applied to various types of refrigerators.
- the ice making duct 200 may include a cooling duct 210 in which cooling air can flow in a longitudinal direction, an evaporation coil 220 for cooling the cooling duct 210 through conduction, and heat transfer fins provided within the cooling duct 210 .
- the cooling duct 210 may include a cooling channel 211 , a first duct hole 212 , and a second duct hole 213 .
- the cooling channel 211 a passage in which cooling air flows, may extend in a longitudinal direction within the cooling duct 210 .
- the cooling channel 211 has a length sufficient for cooling air; thus, the air, while moving in the cooling channel 211 for a predetermined period of time, may be cooled to a temperature suitable to make ice.
- first duct hole 212 may be provided at one end of the cooling channel 211 to supply the cooling air to the ice making compartment 110
- second duct hole 213 may be provided at the other end of the cooling channel 211 to receive the cooling air from the ice making compartment 110
- first duct hole 212 may be connected to an upper portion of the ice making compartment 110 and the second duct hole 213 to a lower portion of the ice making compartment 110 , and the cooling air within the cooling duct 210 may move from a lower end of the cooling duct 210 to an upper end thereof.
- the cooling duct 210 may extend to be bent in a vertical direction of the main body 10 such that the cooling duct 210 is sloped in a forward direction of the main body 10 within the main body 10 .
- the cooling duct 210 may be bent to have a “C” shape in a forward direction of the main body 10 .
- the cooling duct 210 is bent to have a “C” shape, when defrosted water is generated within the cooling duct 210 , the defrosted water may move to the lowermost portion of the cooling duct 210 and may be subsequently discharged to the outside through a separate draining device (not shown).
- the cooling duct 210 is installed in the main body 10 of the refrigerator 1 , and the ice making compartment 110 is provided within the refrigerating compartment door 30 of the refrigerator 1 .
- the first duct hole 212 and the second duct hole 213 of the cooling duct 210 may be selectively connected to an inlet 310 and an outlet 320 of the ice making compartment 110 , respectively, depending on the open or closed state of the refrigerating compartment door 30 .
- cooling air within the cooling duct 210 may be introduced to the inlet 310 of the ice making compartment 110 through the first duct hole 212 , and the cooling air introduced to the ice making compartment 110 may circulate within the ice making compartment 110 to freeze water within the ice making compartment 110 to make ice. Thereafter, the cooling air within the ice making compartment 110 may be discharged to the second duct hole 213 of the cooling duct 210 through the outlet 320 , and the cooling air discharged from the ice making compartment 110 may be re-cooled in the cooling duct 210 and then introduced again to the inlet 310 of the ice making compartment 110 .
- the evaporation coil 220 may cool air within the cooling duct 210 by heat exchange with a refrigerant.
- the evaporation coil 220 is installed to be wound around the cooling duct 210 , and thus, when the refrigerant circulates, depending on the refrigerating cycle, the evaporation coil 220 may cool the cooling duct 210 through conduction.
- the evaporation coil 220 may serve as an evaporator of the refrigerating cycle.
- the evaporation coil 220 may implement the refrigerating cycle including a process of compression-condensation-expansion-evaporation, together with a compressor 11 , a condenser 12 , and an expansion valve 13 .
- the configuration of the compressor 11 , the condenser 12 , the expansion valve 13 , and the evaporation coil 220 are provided as a refrigerating cycle for providing cooling air to the ice making compartment 110 , but the configuration may also provide the cooling air to the refrigerating compartment and the freezing compartment of the refrigerator as well.
- the configuration of the compressor 11 , the condenser 12 , and the expansion valve 13 may also share a refrigerant with an evaporator (not shown) for providing cooling air to the refrigerating compartment and the freezing compartment.
- the heat transfer fins may be formed of a plurality of radiating fins that protrude inside the cooling duct 210 .
- the plurality of radiating fins may be arranged to be spaced apart at predetermined intervals within the cooling duct 210 .
- the heat transfer fins serve to increase an area in which heat is exchanged between air moving in the cooling channel 211 within the cooling duct 210 and a refrigerant moving in the evaporation coil 220 , thereby effectively transferring cold and heat from the refrigerant to the air.
- FIG. 5 is a view illustrating a state of connection between the ice making compartment and the cooling duct in the refrigerator in accordance with an embodiment of the present invention.
- FIG. 6 is a view illustrating an internal configuration of the ice making compartment of the refrigerator in accordance with an embodiment of the present invention.
- the ice making compartment 110 may be provided in the refrigerating compartment door 30 of the refrigerator 1 .
- the ice making compartment 110 is provided in an upper portion of the refrigerating compartment door 30 is presented as an example, but this is merely illustrative and the ice making compartment 110 may be installed in other position of the refrigerating compartment door 30 .
- the ice making compartment 110 may provide an ice making space 111 in which ice is generated.
- an ice maker 120 may be provided within the ice making compartment 110 .
- the ice maker 120 may freeze water using cooling air channeled to the ice making space 111 and dispense the ice to the ice bank 130 .
- the ice bank 130 may be positioned below the ice maker 120 from which it is dispensed, and the ice bank 130 may store the dispensed ice and provide the ice to a user through a dispenser unit (not shown).
- the circulation fan 330 may move the cooling air from the inlet 310 to the outlet 320 .
- FIG. 7 is a flowchart illustrating an ice making method using an ice making duct of a refrigerator in accordance with an embodiment of the present invention.
- the ice making method of the refrigerator in accordance with an embodiment of the present invention may include the steps of supplying a refrigerant to an evaporation coil (step S 100 ), supplying air to a cooling duct with the evaporation coil wound therearound (step S 200 ), cooling the air by heat transfer fins provided within the evaporation coil (step S 300 ), supplying the cooling air to an ice making compartment for generating ice (step S 400 ), discharging the cooling air within the ice making compartment to the cooling duct (step S 500 ), and re-cooling the discharged cooling air in the cooling duct (step S 600 ).
- a refrigerant of a refrigerating cycle may be supplied to the evaporation coil.
- the evaporation coil may form a refrigerating cycle including a process of compression-condensation-expansion-evaporation, together with a compressor, a condenser, and an expansion valve.
- step S 200 of supplying air to the cooling duct with the evaporation coil wound therearound air may be supplied to the cooling duct to cool the air.
- the air supplied to the interior of the cooling duct may move from a lower end to an upper end of the cooling duct.
- step S 300 of cooling air by heat transfer fins provided within the evaporation coil air is moved within the cooling duct around which an evaporation coil is wound so as to be cooled.
- Air within the cooling duct may move along a cooling channel, in which the heat transfer fins protrude, while being exchanged with the refrigerant of the evaporation coil for a predetermined period of time.
- the air discharged from the cooling duct may be cooled to a temperature (e.g., 14 degrees or lower below zero) suitable to make ice.
- step S 400 of supplying cooling air to the ice making compartment to generate ice the air cooled in the cooling duct may be supplied to an ice making space of the ice making compartment through an inlet of the ice making compartment.
- the cooling air introduced into the ice making space may circulate in the ice making space through the operation of a circulation fan, freezing water within the ice making space.
- step S 500 of discharging cooling air from the ice making compartment to the cooling duct the cooling air within the ice making space may be discharged to the cooling duct through an outlet of the ice making compartment.
- step S 600 of re-cooling the discharged cooling air in the cooling duct the cooling air introduced to the cooling duct is moved again along the cooling channel of the cooling duct for a predetermined period of time so as to be re-cooled to a temperature lower than necessary for making ice.
- the cooling efficiency can be enhanced and the supply efficiency of cooling air can be increased.
- cooling air circulates between the cooling duct and an ice making space of the refrigerator door for a short period of time, the loss of cooling air can be effectively reduced and power consumption can also be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
An ice making duct for a refrigerator and an ice making method using the same are disclosed. The ice making duct for a refrigerator comprises a cooling duct configured to allow cooling air to flow in a longitudinal direction therein, and to have both ends connected to the ice making compartment such that the cooling air circulates to the ice making compartment, an evaporation coil installed to be wound around the cooling duct and configured to cool air by heat exchange with a refrigerant, and a heat transfer fin provided within the cooling duct.
Description
- This application is based on and claims priority to Korean Patent Application No. 10-2015-0085324, filed on Jun. 16, 2015 for inventor Min Bon Koo. The disclosure of this application is incorporated herein in its entirety by reference.
- The present invention relates to an ice making duct for a refrigerator and an ice making method using the same.
- A refrigerator is an appliance that serves to store food at low temperatures; it may be configured to store food at temperatures below freezing or at low but above freezing temperatures.
- The temperature inside the refrigerator is maintained at the desired level by cool air that is continuously supplied to the refrigerator. The cool air is continuously produced by a heat exchange operation between air and a refrigerant performed in a refrigeration cycle comprising four sequential phases: compression, condensation, expansion, and evaporation. Cool air is channeled to the inside of the refrigerator and is evenly distributed inside the refrigerator by convection.
- The body of a refrigerator typically has a rectangular hexahedral shape that opens frontward, with a refrigerator compartment and a freezer compartment defined and isolated from one another within the refrigerator body. The open front of the refrigerator body may comprise both a refrigerator compartment door and a freezer compartment door that can open or close the refrigerator compartment and the freezer compartment, respectively. The storage space defined inside the refrigerator may comprise a plurality of drawers, shelves, and boxes designed to store various kinds of food in various optimal states.
- In the related art, a top mount type refrigerator in which the freezer compartment is provided in the upper part of the refrigerator body and the refrigerator compartment is provided in the lower part of the refrigerator body is well known. However, in recent years, for greater convenience to users, a bottom freezer type refrigerator in which the freezer compartment is provided in the lower part of the refrigerator body has been proposed and used. The bottom freezer type refrigerator may be preferable since the more frequently used refrigerator compartment is located in the upper part of the refrigerator body and the less frequently used freezer compartment is located in the lower part of the refrigerator body. However, the bottom freezer type refrigerator is problematic in that to take ice cubes from the freezer compartment, a user must open the freezer compartment door and collect ice cubes while bending.
- In an effort to solve the problem, in recent years, a refrigerator in which an ice dispenser for dispensing ice cubes is provided in a refrigerator compartment door placed in the upper part of a bottom freezer type refrigerator has been proposed and used. In such a refrigerator, an ice making device for making ice cubes may be provided in the refrigerator compartment door or inside the refrigerator compartment.
- For example, in the bottom freeze type refrigerator in which the ice making device is installed in the refrigerating compartment door, air (cooling air) cooled by an evaporator is separately discharged to the freezing compartment and the refrigerating compartment. The cooling air discharged to the freezing compartment side flows to the ice making device along a cooling air supply duct embedded in a sidewall of a main body of the refrigerator and subsequently freezes water, while flowing within the ice making device. Thereafter, the cooling air within the ice making device is discharged to the refrigerating compartment through a cooling air reducing duct embedded in the sidewall of the main body of the refrigerator, lowering an internal temperature of the refrigerating compartment.
- However, since the cooling air of the freezing compartment is channeled to the ice making device via the cooling air supply duct and the cooling air reducing duct, the supply efficiency of the cooling air may be suboptimal.
- In addition, since the cooling air of the freezing compartment side should be moved to the ice making device of the refrigerating compartment door, when the refrigerator is continuously operated, power consumption may increase significantly.
- In view of the above, embodiments of the present invention provide an ice making duct for a refrigerator in which air cooled in a cooling air duct can be directly used to generate ice.
- The above and other aspects and features of the present invention will become apparent from the following description of embodiments, given in conjunction with the accompanying drawings, in which:
-
FIG. 1 is a view illustrating a configuration of an ice making duct of a refrigerator in accordance with an embodiment of the present invention; -
FIG. 2 is a cross-sectional view taken along line A-A ofFIG. 1 ; -
FIG. 3 is a block diagram illustrating a refrigerating cycle of the ice making duct of the refrigerator in accordance with an embodiment of the present invention; -
FIG. 4 is a perspective view illustrating the refrigerator in accordance with an embodiment of the present invention; -
FIG. 5 is a view illustrating a state of connection between an ice making compartment and a cooling duct in the refrigerator in accordance with an embodiment of the present invention; -
FIG. 6 is a view illustrating an internal configuration of the ice making compartment of the refrigerator in accordance with an embodiment of the present invention; and -
FIG. 7 is a flowchart illustrating an ice making method using an ice making duct of a refrigerator in accordance with an embodiment of the present invention. - Hereinafter, embodiments of the present invention will be described in detail with the accompanying drawings.
- As illustrated in
FIGS. 1 to 4 , anice making duct 200 of the refrigerator in accordance with an embodiment of the present invention may generate ice using air cooled in acooling duct 210. - The
refrigerator 1 may include amain body 10, abarrier 20 that separates the inside of themain body 10 into a refrigerating compartment and a freezing compartment, a refrigeratingcompartment door 30 for selectively closing the refrigerating compartment on both edges of a front surface of themain body 10, and afreezing compartment door 40 for closing a front opening of the freezing compartment. - The
refrigerator 1 in accordance with this embodiment is a bottom freeze type refrigerator in which the freezing compartment is positioned in a lower portion thereof, but the present invention is not limited thereto and may be applied to various types of refrigerators. - The
ice making duct 200 may include acooling duct 210 in which cooling air can flow in a longitudinal direction, anevaporation coil 220 for cooling thecooling duct 210 through conduction, and heat transfer fins provided within thecooling duct 210. - The
cooling duct 210 may include acooling channel 211, afirst duct hole 212, and asecond duct hole 213. - The
cooling channel 211, a passage in which cooling air flows, may extend in a longitudinal direction within thecooling duct 210. In particular, thecooling channel 211 has a length sufficient for cooling air; thus, the air, while moving in thecooling channel 211 for a predetermined period of time, may be cooled to a temperature suitable to make ice. - Further, the
first duct hole 212 may be provided at one end of thecooling channel 211 to supply the cooling air to theice making compartment 110, and thesecond duct hole 213 may be provided at the other end of thecooling channel 211 to receive the cooling air from theice making compartment 110. For example, thefirst duct hole 212 may be connected to an upper portion of the ice makingcompartment 110 and thesecond duct hole 213 to a lower portion of theice making compartment 110, and the cooling air within thecooling duct 210 may move from a lower end of thecooling duct 210 to an upper end thereof. - The
cooling duct 210 may extend to be bent in a vertical direction of themain body 10 such that thecooling duct 210 is sloped in a forward direction of themain body 10 within themain body 10. For example, thecooling duct 210 may be bent to have a “C” shape in a forward direction of themain body 10. - In this manner, since the
cooling duct 210 is bent to have a “C” shape, when defrosted water is generated within thecooling duct 210, the defrosted water may move to the lowermost portion of thecooling duct 210 and may be subsequently discharged to the outside through a separate draining device (not shown). - The
cooling duct 210 is installed in themain body 10 of therefrigerator 1, and theice making compartment 110 is provided within the refrigeratingcompartment door 30 of therefrigerator 1. Thefirst duct hole 212 and thesecond duct hole 213 of thecooling duct 210 may be selectively connected to aninlet 310 and anoutlet 320 of theice making compartment 110, respectively, depending on the open or closed state of the refrigeratingcompartment door 30. - That is, when the refrigerating
compartment door 30 is closed, cooling air within thecooling duct 210 may be introduced to theinlet 310 of theice making compartment 110 through thefirst duct hole 212, and the cooling air introduced to theice making compartment 110 may circulate within theice making compartment 110 to freeze water within the ice makingcompartment 110 to make ice. Thereafter, the cooling air within theice making compartment 110 may be discharged to thesecond duct hole 213 of thecooling duct 210 through theoutlet 320, and the cooling air discharged from theice making compartment 110 may be re-cooled in thecooling duct 210 and then introduced again to theinlet 310 of theice making compartment 110. - The
evaporation coil 220 may cool air within thecooling duct 210 by heat exchange with a refrigerant. To this end, theevaporation coil 220 is installed to be wound around thecooling duct 210, and thus, when the refrigerant circulates, depending on the refrigerating cycle, theevaporation coil 220 may cool thecooling duct 210 through conduction. - The
evaporation coil 220 may serve as an evaporator of the refrigerating cycle. For example, theevaporation coil 220 may implement the refrigerating cycle including a process of compression-condensation-expansion-evaporation, together with acompressor 11, acondenser 12, and anexpansion valve 13. - In this embodiment, the configuration of the
compressor 11, thecondenser 12, theexpansion valve 13, and theevaporation coil 220 are provided as a refrigerating cycle for providing cooling air to theice making compartment 110, but the configuration may also provide the cooling air to the refrigerating compartment and the freezing compartment of the refrigerator as well. In addition, the configuration of thecompressor 11, thecondenser 12, and theexpansion valve 13 may also share a refrigerant with an evaporator (not shown) for providing cooling air to the refrigerating compartment and the freezing compartment. - The heat transfer fins may be formed of a plurality of radiating fins that protrude inside the
cooling duct 210. The plurality of radiating fins may be arranged to be spaced apart at predetermined intervals within thecooling duct 210. The heat transfer fins serve to increase an area in which heat is exchanged between air moving in thecooling channel 211 within thecooling duct 210 and a refrigerant moving in theevaporation coil 220, thereby effectively transferring cold and heat from the refrigerant to the air. -
FIG. 5 is a view illustrating a state of connection between the ice making compartment and the cooling duct in the refrigerator in accordance with an embodiment of the present invention.FIG. 6 is a view illustrating an internal configuration of the ice making compartment of the refrigerator in accordance with an embodiment of the present invention. - As illustrated in
FIGS. 5 and 6 , theice making compartment 110 may be provided in the refrigeratingcompartment door 30 of therefrigerator 1. In this embodiment, a case in which theice making compartment 110 is provided in an upper portion of the refrigeratingcompartment door 30 is presented as an example, but this is merely illustrative and theice making compartment 110 may be installed in other position of the refrigeratingcompartment door 30. - The
ice making compartment 110 may provide anice making space 111 in which ice is generated. In addition, anice maker 120, anice bank 130, and acirculation fan 330 may be provided within theice making compartment 110. - The
ice maker 120 may freeze water using cooling air channeled to theice making space 111 and dispense the ice to theice bank 130. Theice bank 130 may be positioned below theice maker 120 from which it is dispensed, and theice bank 130 may store the dispensed ice and provide the ice to a user through a dispenser unit (not shown). Thecirculation fan 330 may move the cooling air from theinlet 310 to theoutlet 320. -
FIG. 7 is a flowchart illustrating an ice making method using an ice making duct of a refrigerator in accordance with an embodiment of the present invention. - As illustrated in
FIG. 7 , the ice making method of the refrigerator in accordance with an embodiment of the present invention may include the steps of supplying a refrigerant to an evaporation coil (step S100), supplying air to a cooling duct with the evaporation coil wound therearound (step S200), cooling the air by heat transfer fins provided within the evaporation coil (step S300), supplying the cooling air to an ice making compartment for generating ice (step S400), discharging the cooling air within the ice making compartment to the cooling duct (step S500), and re-cooling the discharged cooling air in the cooling duct (step S600). - In step S100 of supplying a refrigerant to the evaporation coil, a refrigerant of a refrigerating cycle may be supplied to the evaporation coil. Here, the evaporation coil may form a refrigerating cycle including a process of compression-condensation-expansion-evaporation, together with a compressor, a condenser, and an expansion valve.
- In step S200 of supplying air to the cooling duct with the evaporation coil wound therearound, air may be supplied to the cooling duct to cool the air. The air supplied to the interior of the cooling duct may move from a lower end to an upper end of the cooling duct.
- In step S300 of cooling air by heat transfer fins provided within the evaporation coil, air is moved within the cooling duct around which an evaporation coil is wound so as to be cooled.
- Air within the cooling duct may move along a cooling channel, in which the heat transfer fins protrude, while being exchanged with the refrigerant of the evaporation coil for a predetermined period of time. As a result, the air discharged from the cooling duct may be cooled to a temperature (e.g., 14 degrees or lower below zero) suitable to make ice.
- In step S400 of supplying cooling air to the ice making compartment to generate ice, the air cooled in the cooling duct may be supplied to an ice making space of the ice making compartment through an inlet of the ice making compartment. The cooling air introduced into the ice making space may circulate in the ice making space through the operation of a circulation fan, freezing water within the ice making space.
- In step S500 of discharging cooling air from the ice making compartment to the cooling duct, the cooling air within the ice making space may be discharged to the cooling duct through an outlet of the ice making compartment.
- In step S600 of re-cooling the discharged cooling air in the cooling duct, the cooling air introduced to the cooling duct is moved again along the cooling channel of the cooling duct for a predetermined period of time so as to be re-cooled to a temperature lower than necessary for making ice.
- In accordance with the embodiments of the present invention, since ice is generated using cooling air directly cooled in a cooling duct, the cooling efficiency can be enhanced and the supply efficiency of cooling air can be increased.
- In addition, in accordance with the embodiments of the present invention, since cooling air circulates between the cooling duct and an ice making space of the refrigerator door for a short period of time, the loss of cooling air can be effectively reduced and power consumption can also be reduced.
- While the invention has been shown and described with respect to the embodiments, the present invention is not limited thereto. It will be understood by those skilled in the art that various changes and modifications may be made without departing from the scope of the invention as defined in the following claims.
Claims (16)
1. An ice making duct for a refrigerator, comprising:
a cooling duct configured to allow cooling air to flow in a longitudinal direction therein, and to have both ends connected to the ice making compartment such that the cooling air circulates to the ice making compartment;
an evaporation coil installed to be wound around the cooling duct and configured to cool air by heat exchange with a refrigerant; and
a heat transfer fin provided within the cooling duct.
2. The refrigerator of claim 1 , wherein a plurality of heat transfer fins are arranged to be spaced apart within the cooling duct.
3. The refrigerator of claim 2 , wherein a first duct hole is connected to an upper portion of the ice making compartment and a second duct hole is connected to a lower portion of the ice making compartment.
4. The refrigerator of claim 1 , wherein the cooling duct comprises:
a cooling channel configured to extend in a longitudinal direction within the cooling duct such that the cooling air can flow;
a first duct hole provided at one end of the cooling channel to supply the cooling air to the ice making compartment; and
a second duct hole provided at another end of the cooling channel to receive the cooling air from the ice making compartment; and
5. The refrigerator of claim 1 , wherein the cooling duct is configured to extend to be bent in a vertical direction of the main body such that the cooling duct is sloped in a forward direction of the main body of the refrigerator within a main body of a refrigerating compartment.
6. The refrigerator of claim 1 , wherein the cooling duct is installed in the main body of the refrigerator and the ice making compartment is installed in a refrigerating compartment door of the refrigerator, and wherein one end portion and the other end portion of the cooling duct are selectively connected to the ice making compartment depending on the opened or closed status of the refrigerating compartment door.
7. The refrigerator of claim 1 , wherein the evaporation coil is configured to serve as an evaporator of a refrigerating cycle and to cool the cooling duct through conduction.
8. An ice making method using an ice making duct of a refrigerator, the method comprising:
supplying a refrigerant to an evaporation coil;
supplying air to a cooling duct with the evaporation coil wound therearound;
cooling the air via heat transfer fins provided within the evaporation coil such that heat is exchanged between the air and the refrigerant;
supplying the cooling air to an ice making compartment for making ice;
discharging the cooling air within the ice making compartment to the cooling duct; and
re-cooling the discharged cooling air in the cooling duct.
9. The method of claim 8 , wherein, in the cooling of the air by heat exchange between the air and the refrigerant, the cooling air is moved along a cooling channel of the cooling duct for a predetermined period of time so as to be cooled to a temperature lower than a predetermined temperature.
10. An ice making duct means for a refrigerator, comprising:
a cooling duct configured to allow cooling air to flow in a longitudinal direction therein, and to have both ends connected to the ice making compartment such that the cooling air circulates to the ice making compartment;
an evaporation coil means installed to be wound around the cooling duct and configured to cool air by heat exchange with a refrigerant; and
a heat transfer fin means provided within the cooling duct.
11. The refrigerator of claim 10 , wherein a plurality of heat transfer fin means are arranged to be spaced apart within the cooling duct means.
12. The refrigerator of claim 11 , wherein a first duct hole is connected to an upper portion of the ice making compartment and a second duct hole is connected to a lower portion of the ice making compartment.
13. The refrigerator of claim 10 , wherein the cooling duct comprises:
a cooling channel configured to extend in a longitudinal direction within the cooling duct such that the cooling air can flow;
a first duct hole provided at one end of the cooling channel to supply the cooling air to the ice making compartment; and
a second duct hole provided at another end of the cooling channel to receive the cooling air from the ice making compartment; and
14. The refrigerator of claim 10 , wherein the cooling duct is configured to extend to be bent in a vertical direction of the main body such that the cooling duct is sloped in a forward direction of the main body of the refrigerator within a main body of a refrigerating compartment.
15. The refrigerator of claim 10 , wherein the cooling duct is installed in the main body of the refrigerator and the ice making compartment is installed in a refrigerating compartment door of the refrigerator, and wherein one end portion and the other end portion of the cooling duct are selectively connected to the ice making compartment depending on the opened or closed status of the refrigerating compartment door.
16. The refrigerator of claim 10 , wherein the evaporation coil means is configured to serve as an evaporator of a refrigerating cycle and to cool the cooling duct through conduction.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0085324 | 2015-06-16 | ||
KR1020150085324A KR101659913B1 (en) | 2015-06-16 | 2015-06-16 | Ice making duct of refrigerator and ice making method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160370048A1 true US20160370048A1 (en) | 2016-12-22 |
Family
ID=54199104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/835,459 Abandoned US20160370048A1 (en) | 2015-06-16 | 2015-08-25 | Ice making duct for refrigerator and ice making method of using the same |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160370048A1 (en) |
EP (1) | EP3106784A1 (en) |
KR (1) | KR101659913B1 (en) |
CN (1) | CN106257201A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106940109A (en) * | 2017-03-01 | 2017-07-11 | 青岛海尔股份有限公司 | Refrigerator with ice making function |
US10663207B2 (en) | 2016-12-08 | 2020-05-26 | Samsung Electronics Co., Ltd. | Refrigerator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102418144B1 (en) * | 2017-08-21 | 2022-07-07 | 엘지전자 주식회사 | Refrigerator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3568465A (en) * | 1969-06-05 | 1971-03-09 | Westinghouse Electric Corp | Single evaporator for combination refrigeration apparatus |
US20060059946A1 (en) * | 2002-12-10 | 2006-03-23 | Showa Denko K.K. | Finned tube for heat exchangers, heat exchanger, apparatus for fabricating heat exchanger finned tube and process for fabricating heat exchanger finned tube |
US20080148761A1 (en) * | 2006-12-21 | 2008-06-26 | Natarajan Venkatakrishnan | Ice producing apparatus and method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1780930A (en) * | 1928-06-01 | 1930-11-11 | Karmazin John | Brine-tank evaporation unit |
US2013134A (en) * | 1932-08-10 | 1935-09-03 | Servel Inc | Evaporator |
KR980004460U (en) * | 1996-06-04 | 1998-03-30 | Evaporator of refrigerator | |
JP4233317B2 (en) * | 2002-12-10 | 2009-03-04 | 昭和電工株式会社 | Finned tube for heat exchanger, heat exchanger, manufacturing apparatus for finned tube for heat exchanger, and manufacturing method for finned tube for heat exchanger |
KR100584273B1 (en) | 2004-04-06 | 2006-05-26 | 엘지전자 주식회사 | The cold air path of ice manufacture room in the refrigerator door |
KR100597300B1 (en) * | 2004-11-02 | 2006-07-05 | 엘지전자 주식회사 | Cold air circulating structure for refrigerator |
MX2007009267A (en) * | 2005-02-01 | 2007-09-19 | Lg Electronics Inc | Refrigerator. |
KR100651307B1 (en) * | 2005-02-25 | 2006-11-29 | 엘지전자 주식회사 | A refrigerator |
KR101343092B1 (en) * | 2006-11-03 | 2013-12-20 | 엘지전자 주식회사 | Freezing Room on a Refrigerating Door |
US20100326096A1 (en) * | 2008-11-10 | 2010-12-30 | Brent Alden Junge | Control sytem for bottom freezer refrigerator with ice maker in upper door |
-
2015
- 2015-06-16 KR KR1020150085324A patent/KR101659913B1/en active IP Right Grant
- 2015-08-25 US US14/835,459 patent/US20160370048A1/en not_active Abandoned
- 2015-09-09 CN CN201510571423.3A patent/CN106257201A/en active Pending
- 2015-09-25 EP EP15186859.3A patent/EP3106784A1/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3568465A (en) * | 1969-06-05 | 1971-03-09 | Westinghouse Electric Corp | Single evaporator for combination refrigeration apparatus |
US20060059946A1 (en) * | 2002-12-10 | 2006-03-23 | Showa Denko K.K. | Finned tube for heat exchangers, heat exchanger, apparatus for fabricating heat exchanger finned tube and process for fabricating heat exchanger finned tube |
US20080148761A1 (en) * | 2006-12-21 | 2008-06-26 | Natarajan Venkatakrishnan | Ice producing apparatus and method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10663207B2 (en) | 2016-12-08 | 2020-05-26 | Samsung Electronics Co., Ltd. | Refrigerator |
US11384973B2 (en) | 2016-12-08 | 2022-07-12 | Samsung Electronics Co., Ltd. | Refrigerator |
CN106940109A (en) * | 2017-03-01 | 2017-07-11 | 青岛海尔股份有限公司 | Refrigerator with ice making function |
Also Published As
Publication number | Publication date |
---|---|
EP3106784A1 (en) | 2016-12-21 |
CN106257201A (en) | 2016-12-28 |
KR101659913B1 (en) | 2016-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3106795B1 (en) | Ice making system and method for a refrigerator | |
AU2018388901B2 (en) | Direct cooling ice maker | |
EP3239629A1 (en) | Ice-making device | |
US8099975B2 (en) | Icemaker for a refrigerator | |
US8745992B2 (en) | Refrigerator | |
US10302345B2 (en) | Refrigerator | |
US20090293508A1 (en) | Refrigerator including high capacity ice maker | |
EP3106798B1 (en) | Ice making system and method for a refrigerator | |
KR20070120765A (en) | Refrigerator | |
US20160370048A1 (en) | Ice making duct for refrigerator and ice making method of using the same | |
US10180275B2 (en) | Ice making duct for refrigerator and ice making method using the same | |
US20160370071A1 (en) | Refrigerator and ice making method thereof | |
US10180273B2 (en) | Ice making system and method for a refrigerator | |
KR101705666B1 (en) | Refrigerator and ice making method thereof | |
US20160370087A1 (en) | Cooled-air circulation structure of refrigerator and method for controlling the same | |
KR20070065747A (en) | Evaporator of refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DONGBU DAEWOO ELECTRONICS CORPORATION, KOREA, REPU Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOO, MIN BON;REEL/FRAME:036418/0265 Effective date: 20150819 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |